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ABSTRACT OF THE DISSERTATION 
 

Specific Solutions to General Problems in Data Science and Ecology 
 

 
by 

 

Erik Saberski 

 

Doctor of Philosophy in Oceanography 

University of California San Diego, 2024 

Professor George Sugihara, Chair 
 

 

Nature is hard to predict. Rules and relationships you discover about a system today may 

be totally different tomorrow. These relationships do not change randomly over time; rather, they 

change as the state of the system evolves. In a deterministic view of the world, similar states lead 

to similar outcomes. In this thesis, I leverage this principle to better understand and ultimately 

predict, complex systems.   

In chapter 1, I work closely with the National Parks Service to understand variables that 

influence flow target values through the Everglades National Park. The Tamiami Trail Flow 

Formula, a linear (not state-dependent) was previously developed to predict such values. In this 
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chapter I show that with only minor adjustments to their linear approach, a non-linear (state-

dependent) predictor can be made with significant prediction improvement. 

Chapter 2 focuses on the role of scale in understand ecosystem relationships. Using both 

models and real world examples I show that not one scale can capture all of the dynamics of a 

real world system: for example, some relationships are better resolved at an annual timescale 

while others are best resolved monthly.   

In chapter 3 I develop a new method for classifying systems based on the delay in their 

dynamic relationships. This method is applied to study the behavioral states of the nematode 

Caenorhabditis elegans. By analyzing the causal relationships between eigenvectors that 

represent the worm's posture (“eigenworms”), I am able to classify the behavioral state of the 

worm (foraging or reacting to a harmful stimulus). Additionally, I demonstrate that this 

technique can identify genetic mutations in these worms solely through analysis of their bodily 

movements. 

This work demonstrates the that powerful models and non-linear relationships can be 

extrapolated directly from data without the need for assumptions or fixed equations. 
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Chapter 0 INTRODUCTION 
 

The natural world is rich with complex systems where relationships between variables 

change over time (Deyle et al. 2022). In this thesis, I explore approaches to gain a deeper 

mechanistic understanding of these systems with the overall aim to (1) make forecasts on their 

future values and (2) understand how variables influence each other.  

I focus on Empirical dynamic modelling (EDM) – an evolving suite of time-series 

analysis techniques for understanding relationships between variables and making predictions on 

non-linear systems (Sugihara & May 1990; Sugihara 1994; Sugihara et al. 2012; Deyle et al. 

2016b; Cenci, Sugihara & Saavedra 2019). Unlike other methods that rely on theoretical 

equations or assumptions about system dynamics, EDM looks directly at data to build models 

that encapsulate changing relationships between variables. 

A common thread through this thesis is the concept of a “dynamic causal relationship” – 

where a change in the state of one variable causes a change in the state of another variable 

(Sugihara et al. 2012). Such relationships in non-linear systems may not be identified with 

classical approaches such as path analysis and structural equation modeling that depend on linear 

correlation (Spirtes, Glymour & Scheines 2000). Understanding causal relationships in natural 

systems can help predict future states and understand the consequences of human (or other) 

interventions (Saberski et al. 2022). 

In Chapter 1, I focus on predicting target flows throughout the Tamiami Trail in the 

Everglades National Park. This serves as a demonstration of how relationships between variables 

are not static – rather, they can change over the course of seasons or decades, and can be state-

dependent, changing with evolving variable values (e.g., precipitation, upstream water levels).  
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Managers of this system created the Tamiami Trail Flow Formula, a linear equation to 

predict weekly target flows based on a few hand-chosen variables including precipitation and 

upstream and downstream water levels. This linear solution inherently assumes relationships are 

static over time and thus only achieves moderate success. Managers of this system also state that 

they understand that nonlinear solutions may perform better but are far too complex to 

implement. I show that it is possible to achieve significant prediction improvement with only 

minimal changes to their current linear setup to create an improved, state-dependent (non-linear) 

formula. Further, I show that using tests to detect causal relationships many of their hand-picked 

variables had little-to-no influence on target flows. 

While chapter 1 shows examples of how dynamics can change over time, chapter 2 

explores how relationships in ecosystems change as a function of scale. This is a subtle but 

crucial property to consider when managing ecosystems in the context of causal relationships. I 

show through both model and real-world examples that as systems are analyzed at varying 

scales, new sets of causal relationships emerge. From this work, I urge managers to consider 

multiple scales (spatial, temporal, species aggregation, etc.) when constructing and implementing 

causal ecosystem networks. 

In Chapter 3 I introduce a novel implementation of causal relationships by using the 

delay in dynamic relationships as a fingerprint to classify systems. This chapter focuses on 

behavioral states of the nematode Caenorhabditis elegans. Using the causal relationships 

between eigenvectors – abstract variables that define the worm’s position – I classify the 

behavior of the worm. Specifically, by measuring how different regions of the worm’s body are 

influencing each other, I discern whether the worm is either foraging for food or escaping a 
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noxious stimulus. I further show that this same technique can be used to identify genetic 

mutations in worms from just their body movements alone. 

Collectively, this thesis underscores the significance of understanding causal 

relationships in natural systems. It highlights the need for adaptable, nuanced models and 

approaches that reflect the inherent complexity and dynamic nature of ecological systems. This 

work serves as a foundation for future research and management strategies, guiding us towards 

more effective stewardship of the natural world. Through a combination of theoretical innovation 

and practical application, it contributes profoundly to our understanding of the intricate tapestry 

of life and its myriad interactions. 
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Chapter 1 Improved Prediction of Managed Water Flow into Everglades National Park 

Using Empirical Dynamic Modeling 

Abstract 

Alteration of natural surface flow paths across South Florida has been detrimental to the 

environmental health and sustainability of the Everglades and surrounding ecosystems. As part 

of the Comprehensive Everglades Restoration Plan (CERP), predicting flows into Everglades 

National Park (ENP) is a central concern of effective management strategies. Management 

efforts have established weekly target flows into Everglades National Park through optimization 

of numerically intensive hydrological models. These target flows are focused specifically on 

flows across US Highway 41, also known as the Tamiami Trial. To aide in timely management 

assessments in response to current or predicted hydrologic conditions, the Tamiami Trail Flow 

Formula (TTFF) was developed previously to predict weekly target flows based on linear 

regression of six theorized flow drivers. It is known that these drivers exhibit nonlinear 

dynamics, suggesting that there is room for improvement in relation to the strictly linear TTFF. 

We used empirical dynamic modeling (EDM), a nonparametric modeling paradigm for 

forecasting and analyzing nonlinear time series, to show that prediction accuracy is improved 

when nonlinearity is accounted for. This method relies on weighted linear regressions that 

depend on specific environmental conditions or system states, i.e., in which the regression gives 

greater weight to input variables that have values that are more similar to the current state. 

Surprisingly, we found that only two of the six standard TTFF variables are required in the 

nonlinear weekly forecast model (upstream and downstream water levels), and thus the EDM 

model not only improves accuracy but also greatly simplifies hydrologic forecasting.  
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Introduction 

Many analytic approaches use equation-based models as approximations of real-world 

systems to test hypothesized mechanisms or to predict future outcomes. However, real world 

systems are often nonlinear and multidimensional, which can render explicit parametric 

approaches intractable. Empirical approaches, which extract information from the data instead of 

relying on hypothesized equations, represent a natural and flexible approach to modeling 

complex, nonlinear systems such as managed water resources. 

Empirical dynamic modeling (EDM) is a non-parametric framework for modeling 

nonlinear systems based on the mathematical theory of reconstructing attractors (vector fields 

that can show how variables interact though time) from time series data (Takens 1981). EDM 

was initially aimed to address problems in ecology (Sugihara & May 1990; Sugihara 1994; 

Dixon, Milicich & Sugihara 1999; Sugihara et al. 2012; Ye & Sugihara 2016), however its 

applications have extended to many areas such as climate change  (Van Nes et al.), atmospheric 

sciences (Sugihara et al.), neuroscience (Segundo et al.), studying the dynamics of infant heart 

rhythms (Sugihara et al.), identifying the drivers of influenza outbreaks (Deyle et al.), and 

classifying complex behaviors in the nematode C. Elegans (Lorimer et al. 2021; Saberski et al. 

2021). To our knowledge, EDM has not yet been used specifically to map hydrologic dynamics. 

Here, we introduce the use of EDM as a tool for forecasting managed water flows in Everglades 

National Park as a component of the Comprehensive Everglades Restoration Plan (CERP). A 

lucid and accessible introduction to EDM is provided by (Chang, Ushio & Hsieh 2017). 

Managed flows 

The Florida Everglades originally consisted of 3 million acres of marsh draining the 

Kissimmee River Basin and Lake Okeechobee southward into Florida Bay. Starting in the late 
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19th Century, ambitious plans to “drain” the Everglades to produce arable and habitable lands 

were initiated, eventually coalescing in 1948 under the Congressionally authorized Central and 

Southern Florida Project under auspices of the United States Army Corps of Engineers 

(USACE).  Design goals were to provide flood control and agricultural sustainability, with major 

features including the Herbert Hoover dike impounding Lake Okeechobee, creation of a large 

agricultural area along the southern lake border, a levee along the eastern boundary of the 

Everglades, and impoundment of three water conservation areas (WCAs) linking Lake 

Okeechobee to Everglades National Park and the southern coast (Council). 

The result of these water control efforts was a fundamental alteration of the natural flow 

paths and hydroperiods (figure 1.1), which was eventually recognized as detrimental to 

environmental health and sustainability of the Everglades and its ecosystem services. 

Recognition of these changes led to the Congressionally mandated Comprehensive Everglades 

Restoration Plan (CERP) in 2000, a framework for restoring, preserving, and protecting the 

South Florida ecosystem. CERP was originally designed with 68 project components expected to 

take 30 years at an estimated cost of $8 billion. Over the last two decades, it has been recognized 

that CERP and state restoration efforts must encompass an adaptive management approach. As 

such, the restoration today is a complex, adaptive collaboration continuing to evolve (National 

Academies of Sciences 2019). 
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Figure 1.1 Schematic of flow paths in South Florida: (a) predrainage; and (b) modern. In the 
predevelopment era, the Kissimmee Valley floodplain drained into Lake Okeechobee, which 
then overflowed its southern rim in a river of grass to the southern peninsula. Postdevelopment, 
flow paths were channelized, represented by arrows, and the remaining segments of the 
Everglades were impounded with levees and canals. (Base map courtesy of South Florida 
Natural Resources Center.) 

 
A central tenant of CERP is to increase water flows and hydroperiods within Everglades 

National Park. A fundamental barrier to this was construction of the Tamiami Trail (U.S. 

Highway 41) in the early 20th Century. The trail acts as a levee preventing natural flow from the 

upstream WCAs and natural areas. Flows from the upstream WCAs are managed primarily 

through the S-12 gated weirs (figure 1.2) with both upstream and downstream regulation limits.   
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Figure 1.2 Schematic of Everglades water control structures and projects. The Tamiami Trail, S-
12 and S-333 structures separate upstream water conservation areas (WCAs) from Everglades 
National Park. (Base map courtesy of South Florida Natural Resources Center.) 
 

A recent adaptation of restoration water management is the redevelopment of flow targets 

for releases into Everglades National Park as part of the Combined Operational Plan (COP) (U.S. 

Army Corps of Engineers 2017). These targets serve as goals for maintaining healthy water 

levels throughout the greater Everglades system based on multiple environmental variables such 
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as weekly rainfall and estimated evaporation and are recalculated on a weekly basis. Because 

these flow targets are derived from up-to-date environmental conditions, future flow targets 

cannot be exactly determined without knowing the future environmental state. In order to best 

prepare for these weekly targets, the Tamiami Trail Flow Formula (TTFF) (SFWMD 2020) was 

recently developed to forecast future flow targets. A diagram of the inputs and outputs to these 

models is represented in figure 1.3. This figure emphasizes that the goal of the TTFF is not to 

predict the following week's flow into the ENP; rather, it is to forecast what the following week's 

target flow will be. This subtle difference has huge implications: although the following week's 

target will guide what the managed flow into the system will be, predicting the target is 

fundamentally different than predicting the raw flow. 

 
Figure 1.3 Inputs and outputs to TTFF. Each week, the current week’s environmental conditions 
are used to generate a target flow that dictates management for the following week. This data is 
also used to forecast next week’s target flow using the TTFF, a forecast that implicitly accounts 
for next week’s environmental conditions. Overall, this produces both a target to guide 
management for the upcoming week and a forecast to predict next week’s new target, giving 
time for managers to prepare.  
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The quality of the forecasts made by the TTFF are particularly critical as the system must 

be managed as a whole, taking into account both the desired downstream conditions and the 

upstream storage capacity. Upstream basins are large and respond slowly to changes in 

operational efforts. Thus, considerable lead time is needed to adjust basin water levels. 

Forecasting next week's target flow is extremely important as it can provide valuable lead time 

for managers to appropriately prepare the upstream basin level to effectively meet the future 

desired target. 

Setting the incoming flow volumes appropriately is critical to make projected deliveries 

through Tamiami Trail and not create adverse impacts due to flooding. Improvements in forecast 

skill will reduce the likelihood of ecologically adverse conditions within the WCAs or, simply 

put, having too much or too little water to manage the system properly. A primary aim of the 

present work is to examine the TTFF to ascertain the completeness of its information content, 

and to compare it to, and determine the potential benefits of, forecasts made using EDM. 

 

Target Flows and the Tamiami Trail Flow Formula 

Target flows were determined over the 1965-2005 period using the Regional Simulation 

Model (RSM) (SFWMD 2020b) and an inverse modeling tool, identifying optimal flows in 

response to hydrologic constraints (SFWMD 2020). The resultant time series is referred to as 

Qsum(t) representing cumulative, weekly target flows across Tamiami Trail into Everglades 

National Park. To model these target flows in response to current or future conditions, the 

Tamiami Trail Flow Formula (TTFF), a linear model, was developed (SFWMD 2020). TTFF 

developers recognized the nonlinear nature of the problem, but decided that a linear formulation 

performed adequately and was simpler and easier to understand than a nonlinear or machine 



11 

learning model. The TTFF presumes that precedent values of rain, evapotranspiration, upstream 

and downstream water levels, and flow, are required to best predict target flows. 

 

The TTFF is formulated as: 

𝑄!"#%(𝑡) = 𝛽$𝑆%&'(𝑡) + 𝛽(𝑆)*+(𝑡) + 𝛽,𝑄!"#(𝑡 − 1) + 𝛽-𝑅(𝑡) + 𝛽.𝑃𝐸𝑇(𝑡) + 𝛽/𝑍𝐴(𝑡) 

where 𝑄!"#%(𝑡) is the predicted target flow release for the coming week (sum of S-12A, S-12B, 

S-12C, S-12D and S-333, see figure 1.2). 𝑆%&'(𝑡) is the spatial average of observed water levels 

in WCA-3A at the start of the current week (start of a week is Sunday and the end of a week is 

Saturday). 𝑆)*+(𝑡)	is observed water level in Everglades National Park, Northeast Shark River 

slough (NESRS), for the current week. Qsum(t-1) is the daily average of target flow releases for 

the previous week. R(t) is areal average of total weekly rainfall for WCA-3A, PET is the total 

weekly potential evapotranspiration at the 3AS3WX station, and ZA is the zone A regulation 

water level of the current week in WCA-3A. When water levels in WCA-3A are above ZA, flood 

control water releases are authorized across Tamiami Trail.  𝛽 are linear regression fit 

coefficients.  

  Plotting the raw variables against target flows (figure 1.4) reveals that the highest 

correlation among the variables is the previous week's target flow (autocorrelation). This makes 

sense because water flows relatively slowly through the Everglades, giving the system large 

inertia. We therefore expect flows to have relatively low change from the prior week and to 

exhibit temporal autocorrelation. Upstream and downstream water levels are also noticeably 

correlated with future flows. The other two variables that show positive correlations with flow 

are upstream (WCA-3A) and downstream (NESRS) water-levels. Despite the positive 

correlations, the data suggests a nonlinear fit may be more suitable for these variables (e.g., 
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exponential relationship between flow and NESRS level). The remaining variables, rain, PET, 

and ZA, show no clear indication of linear relationship or covariation (correlation) of any kind; a 

circumstance that often occurs with nonlinear dynamics and overlapping effects from 

explanatory variables (Sugihara et al. 2012). These variables are also likely coupled with each 

other (e.g., upstream water level influencing downstream water level, rainfall influencing water 

levels), creating a complex web of dynamics that may be difficult to define with parametric 

models. Taken together this suggests that predictions might be improved when the system is 

viewed through a nonlinear, non-parametric lens. 

 
Figure 1.4 (a) Time series of Qsum and the presumed causal variables; and (b) scatter plots of the 
variables versus Qsum. 

 
Despite the strictly linear nature of the TTFF, it has seemingly impressive short-term 

predictive predictive accuracy, achieving a correlation between observed and predicted weekly 

values of 𝜌 = 	0.90. However, this is largely due to the significant amount of autocorrelation in 

the data on a weekly time scale: a constant predictor (predicting the value next week will be the 
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same as the current) achieves a predictive accuracy of 𝜌 = 	0.88. Other metrics for predictive 

accuracy show that the formula has much room for improvement: it only correctly predicts the 

directional change in flow 60% of the time and prediction accuracy on changes in flow (Δ𝑄 =

𝑄01$ − 𝑄0 ) achieves a predictive accuracy of 𝜌 = 	0.45. 

 

Non-linear, Non-parametric Approaches 

As noted above, the TTFF was generated through a generalized linear model of six 

variables hypothesized to be influential to flow using data collected from 1965-2005. Because 

the TTFF was generated from a single best-fit solution on the entire data record, the model is 

implicitly stationary: resolved coefficients of the TTFF are fixed constants reflecting the global 

nature of the statistical regression. This is fundamentally distinct from dynamic nonlinear models 

where relationships among variables can change. In fact, nonlinear models can be constructed 

piece-wise from segmented linear models to address how relationships among variables change 

as the system state evolves.  

For example, if one assumes the dynamics are slowly changing over time, the linear 

solution can be recalculated every few years to find a new set of coefficients specific to recent 

data. Similarly, if dynamics are theorized to change seasonally one may calculate coefficients for 

each month of the year. Such partitions are known as "similar states", where a state refers to a set 

of conditions associated with a specific set of dynamics. Similar states exhibit similar dynamics.  

Typically, the "state" of a natural system depends on multiple factors (so-called state 

variables). In the seasonal model which calculated coefficients for each month (described 

above), for example, the time of year would be considered one state variable. Just as the seasonal 

model recalculates coefficients depending on the month, similar nonlinear models can be built to 
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account for other state-variables. For example, in the case of the TTFF it may be sensible to re-

derive coefficients by partitioning the data into subsets with similar flow rates: high flow rates 

may have different dynamics than low flow rates. 

 

EDM 

Empirical dynamic modelling (EDM) focuses on reconstructing a system's state-space: a 

multi-dimensional representation of system variables as a function of time (Sugihara & May 

1990; Sugihara 1994; Sugihara et al. 2012). Forecasting leverages the fact that points localized in 

state-space (nearest neighbors) exhibit similar dynamics (Sugihara & May 1990; Sugihara 1994). 

While the examples above describe ways to define the state space based on one variable (e.g. 

month, flow regime), EDM considers multiple variables together to identify similar states 

without presuming specific relationships (Deyle & Sugihara 2011; Deyle et al. 2016b); rather, 

dynamics are derived directly from the data.  

EDM can be used to screen the available time series data and identify which variables are 

relevant to usefully include in a nonlinear forecasting model. Additionally, EDM involves the 

use of a causality test, convergent cross-mapping (CCM, (Sugihara et al.)) which identifies non-

linear coupling between variables directly from time series data (figure S1). This contrasts with 

the normal modelling procedure of TTFF where the specific variables used are asserted or 

hypothesized to be relevant.   

Here, we utilize a state-space forecasting technique within the EDM framework called 

"S-Maps" (sequential locally weighted global linear maps) (Sugihara): At each point in time, 

coefficients are recalculated based on a linear-fit that maps state-variables onto a target variable, 

similar to the TTFF formulation. However, each fit at time t is weighted towards similar states to 
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that of time t. This is analogous to the non-linear methods described above, however instead of 

rigid cut-offs defined by the partition (e.g., partitioning data strictly by months; either weights of 

1 or 0), weights are applied smoothly based on proximity with an exponential kernel applied to 

all points in the state-space. A nonlinearity parameter, 𝜃, can be adjusted to change how state-

specific forecasts are: 𝜃 of zero gives all states equal weight regardless of state-similarity, 

equating to a global autoregressive model. Higher values of 𝜃, however, localize the forecast to 

more state-specific conditions, accounting for how system dynamics change over time. 

We note that the S-Map method only adds one more step into the process of how the 

TTFF was originally formulated. Both the TTFF and S-Map forecasts utilize regressive maps 

from driving variables onto flow targets, S-Maps just also include weights with these regressions 

such that nearest neighbors are weighted more heavily in each prediction. It is worth noting that 

typically when performing S-Map (or other state-space based methods such as those described in 

the following section), the value being predicted from is left out of local linear regressions in 

order to obtain an unbiased predictions (i.e., leave-one-out-cross-validation). 

 

Models 

 

• System state can be defined in many ways. For example, the state can be simply defined 

by the value of one variable (e.g., a high flow state vs. a low flow state), or combinations 

of multiple (e.g., high/low flow in the winter vs. high/low flow in the summer).  Here, we 

analyze the performance of four different ways to define system state: 

• Interannual Predictor: Re-calculates linear regressions on the six variables from equation 

1 using the previous 5 years of data (time points t-260:t) to predict flow at time t+1.  
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• Seasonal Predictor: Re-calculates coefficients using historical data within 6 weeks of the 

current year-day. For example, if a forecast is predicting flow in the first week of March, 

all historical data between mid-January and mid-April is used to generate linear 

coefficients. 

• Variable-specific Predictor: Re-calculates coefficients at each time (t) using the 10% of  

values in the dataset that have the closest values of the given variable (v); i.e. the 

timepoints (t*) with the smallest values |𝑣0 − 𝑣0∗ |. This was performed on the 5 theorized 

drivers of flow. 

• EDM S-Maps: Contrasting the variable-specific model in which data is partitioned based 

on the value of a single variable, S-Maps use all input variables to define the "state 

space". At each point in time, the nearest neighbors are defined as the other points in time 

that also have similar set of all of the variables (as measured by Euclidean distance in 

state-space), not just one. Coefficients are re-calculated at each point in time just as in the 

models above, however, regressions are weighted towards state-space coordinates that 

have similar states (similarly valued state-variables at a particular time). The variables 

included in these S-Map forecasts are the six TTFF variables as well as a sine and cosine 

term each with a 1-year period to represent the time of year. 

 

Results and Discussion 

Model Coefficients 

When the TTFF was formulated, the static coefficients were associated with physical processes. 

For example, rain had a positive coefficient that was interpreted as more rainfall should increase 

overall flow. However, depending on the data used in the linear regression to formulate the 
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TTFF, one can obtain either a negative coefficient, positive coefficient or a coefficient near 0 

(figure 1.5). For example, in model 1 (Interannual Predictor), we find that the linear regression 

calculated using only data from 1985-1990 yields a negative coefficient for rain (figure 1.5). This 

highlights that it can be dangerous to make physical interpretations based on linear coefficients if 

the results change depending on the data used. In this case, we suggest that the influence of rain 

on flow targets can in fact change from positive to negative depending on the state of the system. 

For example, certain states may cause rainfall to increase downstream water level more so than 

upstream, which may in turn reduce the overall flow. 

 
Figure 1.5 (a) Recalculating the TTFF coefficients every 5 years yields different coefficients 
over time compared with the linear coefficients depending on the time of year reveals seasonal 
dynamics among the TTFF defined by the TTFF (red lines); and (b) recalculating the coefficients 
variables. 
  

Each model resulted in coefficients that change over time. For example, figure 1.5 shows 

how coefficients change for the interannual predictor (a) and seasonal predictor (b). The 

interannual predictor reveals coefficients with significant temporal variation, exhibiting 

dynamics reflective of external interactions.  We also note a large excursion in NESRS, ZA and 

PET coefficients from the mid 1990's to 2000.  This was a period of high water levels in the 
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upstream WCAs, with accordingly negative influence of NESRS (downstream water levels) and 

positive forcing associated by upstream water availability (ZA).  

The seasonal predictor clearly recovers dynamics reflective of the South Florida summer 

monsoon, with a dry season from November through April, and wet season May to October.  

Here, WCA-3A and ZA (upstream water supply) closely reflect these monsoon patterns with 

distinct shift from positive to negative coefficients in April and November. Further, the 

downstream NESRS exhibits a delayed response consistent with water management releases. 

 

Model Performance and Causal Inference 

Figure 1.6 compares the model accuracy of all models tested. We use the mean absolute 

error (MAE) as our main metric for model accuracy because it is a meaningful value for 

managers implementing these predicted target values. The TTFF achieves a MAE of 7.2 m3/s. 

The inter-annual predictor performs the worst with a MAE of flow forecasts of 7.3 m3/s. Three of 

the variable-specific predictors (using Rain, ZA, and PET to define system state) also perform 

poorly (worse than the TTFF).  The other three variable-specific predictors (using NESRS, 

WCA-3A and flow) outperform the TTFF, achieving a MAE under 7.2 m3/s. The second best 

model was the seasonal model, achieving a MAE of 6.9 m3/s. S-Map forecasts, however, 

provided the highest fidelity achieving a MAE of 6.5 m3/s. 
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Figure 1.6 Comparison of different predictive models accuracy (mean absolute error between 
observed and predicted flow change). The TTFF (green) is a linear regression across all 
historical data. The 5 year predictor (purple) recalculates the TTFF coefficients in a 5 year 
moving window. The seasonal predictor (orange) recalculates the coefficients using historical 
data within 6 weeks of the given year date (see Methods). Each variable (v) predictor (blue) 
makes forecasts from time t using only historical data with similar values of vt (see methods). S-
Maps (gold) account for all of the  nonlinearities among the variables to make a smooth "state-
space" that is not specific to the state of any one variable. 

 
The six variables selected as independent variables of the TTFF model make complete 

sense from the perspective of a hydrologic system. However, all variables may not provide 

significant information for improving forecasts. 
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To verify that the five hypothesized variables are indeed causal drivers of flow targets, 

we performed the EDM nonlinear causality test convergent cross-mapping (CCM), (Sugihara et 

al.). Despite the limited correlation between flow targets and these variables (figure 1.4), CCM 

reveals evidence for nonlinear coupling between all five variables and flow targets (figure S1). 

For an introduction to CCM, see the video at http://tinyurl.com/EDM-intro. Variables that show 

weak coupling (low CCM values, e.g. Rain and PET) do not necessarily provide useful 

information for improving predictions beyond the information gained from the strong drivers 

(e.g. upstream and downstream water levels). To further evaluate whether the five theorized 

driving variables of the TTFF are important for making predictions, we measured the 

performance of the S-Map predictor with variables removed one at a time (figure 1.7). Three of 

these variables (ZA, PET, and Rain) showed little-to-no negative impact on overall predictions 

when removed. This suggests that these variables, although shown to be weak causal drivers with 

CCM, may not be important for defining the state space of the system: no matter their values, the 

dynamics of Qsum do not appreciably change. As a further check we performed an exhaustive 

assessment of state-space variable combinations using the EDM "multiview" algorithm (figure 

S2, (Ye & Sugihara)). The multiview approach tests the predictive accuracy of using different 

combinations of variables (with varying time  delays, see supplement S2) to reconstruct the state-

space. This gives a more complete measure of how important variables are for making 

predictions (see supplement S2).   Combined with the CCM results, these analyses confirm that 

the variables ZA, PET, and Rain in the historical data, although potentially important, are not in 

themselves historically important for the overall goal of predicting integrated water flows on a 

weekly timescale across the Tamiami Trail.  



21 

 
Figure 1.7 Removing variables in S-Map forecasts to measure the impact on forecasts. Note that 
the only two variables that have significant negative impact on forecasts (increased MAE) when 
removed are water levels in the WC3A and NESRS regions. 
 

In accordance with figure 1.6, we find that predictions are significantly hindered when 

WCA-3A and NESRS are removed. Physically, this aligns with the fact that upstream (WCA-

3A) and downstream (NESRS) water levels are the primary variables determining weir flow, 

whereas rain and PET accumulated over one week are integrated drivers of these upstream and 

downstream water levels. Further, focusing on periods of high flow and low flow reveals that the 

WCA-3A water stage is more important for making forecasts during high flow while the stage in 

NESRS is more important when predicting low flow regimes.  

The accuracy of the S-Map forecasts is further improved to a MAE of 6.3 m3\s when ZA, 

PET, and Rain were excluded from the embedding. Figure 1.8a shows this improvement 

compared to the performance of the TTFF on the test data set of weekly sampled data spanning 

1965 - 2005. Further, Figure 1.8b shows that the prediction improvement varies depending on 

the flow: S-Maps outperform the TTFF during all flow regimes, however periods of lower flow 

show the greatest improvement. Figure 1.8c&d show that this finding is also true when looking 

at a contemporary data set (weekly data from 2007 - 2020).  
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Figure 1.8 Comparison of TTFF and S-Map forecasts. S-Maps here do not utilize Rain, Za, or 
PET. (a) and (c) show that overall, S-Maps outperform the TTFF  on the original dataset (1965-
2005, (a)) as wells as on contemporary data spanning 2007-2020 (c). (b) and (d) show average 
error for both forecasting algorithms as a function of flow, as well as the difference between the 
errors (maroon). Note that the S-Map forecasts significantly outperform the TTFF during low-
flow regimes. (e) shows an example of a 6-month period with relatively low flow with 
corresponding predictions made by the TTFF (blue) and S-Maps (gold).   
 

The TTFF achieves a seemingly significant predictive accuracy with correlation between 

observed and predicted target flows of 0.90. However, upon inspection, it becomes apparent that 

such accuracy is not hard to achieve: simply predicting next week's flow will be the same as this 
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week achieves a comparable correlation of 0.88. By removing variables one at a time from the 

TTFF, model performance stays essentially constant. This suggests that relationships presumed 

by TTFF may not be as fully informative for forecasting dynamics of the system as one might 

presume. 

Because correlation between observed and predicted values is obscured by the high level 

of autocorrelation in the system, correlation is not the best metric to determine the significance of 

predictions. Here, we focus on mean absolute error as a standard for measuring predictive 

accuracy. Using S-Maps, we find an average improvement of 0.9 m3/s per weekly prediction 

(from a MAE of 7.2 to 6.3 m3/s). This translates to a predicted flow of over 500,000 m3/s of 

water over the course of a week.  Still, without a point of reference, the relative magnitude of this 

improvement is difficult to assess. As additional metrics of predictive accuracy, we find that 

predicting the correct directional change (higher or lower next week than the current week) 

increased from 60% with the TTFF to 70% with S-Maps. We determined a null standard for this 

metric to be 55% by predicting next week's change will be the same as the previous week's (i.e. 

if the flow target increased last week, it will increase again next week). Thus, an improvement 

from 60% to 70% corresponds to an improvement from 5% above the null to 15%. Further, 

correlation between predicted and observed changes in target flows from the prior week (Δ𝑄 =

𝑄01$ − 𝑄0) improved from 𝜌 = 	0.45 with the TTFF to 𝜌 = 	0.58 with S-Maps.   

 

State-space (Non-linear) relationships 

If a real-world system exhibits purely linear dynamics, reducing the amount of data used 

in the best-fit solution should hinder predictive accuracy because it reduces the signal-to-noise 

ratio (assuming equal amounts of noise throughout the timeseries). However, if partitioning the 
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data into state-dependent subsets leads to improved predictions, the system dynamics are in fact 

different within each partition (i.e. the system is nonlinear). We find that certain partitions lead to 

increased predictability over the general linear solution (TTFF), suggesting that this system is 

indeed nonlinear. Specifically, we find that the seasonal partitions perform relatively best (aside 

from S-Maps), suggesting that the dynamics of this system are highly dependent on seasonal 

forcing. 

A 5-year moving window performed the worst out of the models tested, obtaining a MAE 

of 7.3 m3/s (figure 1.6). This suggests that the system is not significantly changing on a year-to-

year basis. However, that is not to say that dynamics do not change inter-annually at all; rather, 

the potential nonlinearity accounted for does not improve predictions more than the negative 

impact of using fewer data-points, reducing the signal-to-noise ratio. We did find that a 5-year 

window outperformed all other window sizes tested (ranging from 2 - 20 years, figure S3). This 

suggests window sizes that are too small have a large signal-to-noise ratio while window sizes 

too large obscure the nonlinear effects. 

It is interesting to note that ZA seems to potentially have a relatively strong causal 

influence on flow targets: it has the third highest CCM value (figure S1) and is the third most 

important variable in mulitview embeddings (figure S2). This is likely due to the strong seasonal 

forcing in this system: ZA represents the Zone A regulation, a waveform with constant annual 

periodicity. While this value may influence managed flows in the region, it more likely 

contributes in predictive models as a variable that helps define the time of year (season). This is 

affirmed by predictive accuracy being hardly diminished when it is removed from S-Map 

embeddings (figure 1.7), which already include sine and cosine terms to provide seasonal 

information.  
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When partitioning these results specifically into periods of high and low target flows, we 

find that water levels in WCA-3A are more important when making predictions during high flow 

periods while water levels in NESRS are relatively more important during low flow periods 

(1.7). This may be explained by water management operations in this region: when upstream 

water levels (WCA-3A) are high, water is available for release into ENP. Conversely, when 

downstream (NESRS) water levels are low, there is a need to release water to mitigate drought, 

likely at lower flow values. 

The TTFF was specifically formulated on weekly data collected from 1965-2005. It is 

instructive to measure whether the predictive improvement obtained with S-Maps constructed 

using data from the same 1965-2005 period is consistent in contemporary data. Figure 1.8c\&d 

show that S-Maps still outperform TTFF on data spanning 2007-2020.  

Although EDM outperforms the TTFF over the course of the entire timeseries on 

average, it may still be possible that the TTFF outperforms S-Maps during specific flow regimes. 

An important management concern of flows from the WCAs into ENP are low-flow regimes 

during dry season and drought conditions. Figure 1.8b\&d shows that S-Maps outperform the 

TTFF during low flow (0-25 m3/s), especially during flows close to 0 m3/s. Figure 1.8e shows an 

example of the significant improvement gained through using S-Maps.  

The S-Map forecasts are fundamentally similar to that of the TTFF. The main differences 

being 1) S-Maps utilize fewer variables (they do not include Rain, ZA, or PET) and, most 

importantly, 2) S-Maps solve for linear fits only on similar states rather than on all historical 

data. Yet, just these two changes significantly improve forecasts. This demonstrates that 

nonlinear forecasting does not need to be complex; rather, it can be implemented with nearly the 

same ease as linear formulations while providing insight about nonlinear relationships. 
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Conclusion 

A guiding principle of the Comprehensive Everglades Restoration Plan is to "get the water 

right". This refers to restoring the quantity, quality, timing and distribution of water throughout 

the greater Everglades system. This work focuses on the "quantity" aspect of this plan. A core 

component of this objective is management of water delivered across the Taimiami Trail from 

the upstream water conservation areas into Everglades National Park. This management is highly 

constrained by competing interests of hydroperiod and water depths for ecologic benefit, flood 

control for agricultural and urban interests, and water quality.  These issues become particularly 

acute during the seasonal dry periods and droughts.  While efforts continue to remove barriers to 

natural "sheetflow" across the Trail, the active management of this complex, nonlinear objective 

is an fundamental lever in the water managers toolbox towards Everglades restoration.  

This work highlights the importance of model selection when dealing with real-world 

systems. In cases where the system is multidimensional and dynamic, it is ambitious to assume a 

single linear equation can describe the dynamics of a system. Despite this, such linear models are 

often favored due to their simplicity. However, significantly improved, nonlinear approaches do 

not necessitate significantly complicated models. Here, we used the same linear regressive 

approach as used to formulate the TTFF; however, we added a nonlinear perspective by 

partitioning the data into similar states. This effectively changes the question the models address 

from "what is the single set of rules that define this system?" to "what are the rules of this system 

when it looks like it does right now"? This nonlinear perspective significantly improves 

predictions of weekly integrated flows from the WCAs into ENP, while also revealing dynamical 
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truths about the system. Given that nonlinear dynamics are ubiquitous in nature, such nonlinear 

approaches should also be ubiquitous in management efforts. 
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Chapter 2 The Impact of Data Resolution on Dynamic Causal Inference in Multiscale Ecological 
Networks 
Abstract 

While it is commonly accepted that ecosystem dynamics are nonlinear, what is often not 

acknowledged is that nonlinearity implies scale-dependence. With the increasing availability of 

high-resolution ecological time series, there is a growing need to understand how scale and 

resolution in the data affect the construction and interpretation of causal networks – specifically, 

networks mapping how changes in one variable drive changes in others as part of a shared 

dynamic system (“dynamic causation”). We use Convergent Cross Mapping (CCM), a method 

specifically designed to measure dynamic causation, to study the effects of varying temporal and 

taxonomic/functional resolution in data when constructing ecological causal networks.  Our 

analyses involve time-series data from mean-field logistic models, multi-timescale individual-

based automata models, and observational data from several aquatic ecosystems.  As the system 

is viewed at different scales relationships will appear and disappear. The relationship between 

data resolution and interaction presence is not random: the temporal scale at which a relationship 

is uncovered identifies a  biologically relevant scale that drives changes in population abundance. 

Further, causal relationships between taxonomic aggregates (low-resolution) are shown to be 

influenced by the number of interactions between their component species (high-resolution). 

Both phenomena are observed in models and real-world data. Because no single level of 

resolution captures all the causal links in a system, a more complete understanding requires 

multiple levels when constructing causal networks. This approach provides a more nuanced view 

of how ecosystems operate that can improve our ability to predict and manage ecosystems.  
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Introduction 
One of the fundamental goals of ecology is to understand causal interactions as they 

occur within naturally evolving ecosystems. Here causation can be direct or transitive, span 

multiple mechanisms (e.g., trophic, competition, mutualism, etc.), and change with ecosystem 

state. All of this ultimately determines how effects (natural or managed) propagate, and travel in 

ways that can sometimes lead to unintended consequences. Although, controlled experiments can 

be important for establishing direct causal links in principle, in practice, because interactions in 

nature tend to change with the evolving ecosystem state (Deyle et al. 2016b; Ushio et al. 2018; 

Deyle et al. 2022; Liu & Gaines 2022) static single-factor assessments fail to translate into 

predictive understanding. This is a challenge that can be met with a data-driven approach for 

inferring causal effects between ecosystem components using observational time series (Dixon, 

Milicich & Sugihara 1999; Brookshire & Weaver 2015; Deyle et al. 2016a; Matsuzaki et al. 

2018; Yang, Peng & Huang 2018; Liu & Gaines 2022; Orenstein, Saberski & Briseño-Avena 

2022). 

How data resolution impacts perception is fundamental. Indeed, the basic notion of what 

constitutes the variables of study in real ecological applications is necessarily tied up in the 

scales of observation. For example, in some lakes we might measure chlorophyll-a every hour 

but only at the surface, while in others we might measure and define each known species of 

chlorophyte and diatom at various depths, but only once per summer. Although both observe 

something of dynamics underlying primary production, such differences in scale and aggregation 

will determine what we see as the causal factors shaping the dynamics of those observations. 

Accounting for these differences is the focus of this work. 
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While approaches that rely on a statistical framework do not assume an underlying 

deterministic dynamical system (Glymour et al. 1997; Spirtes, Glymour & Scheines 2000; Pearl 

2009), here we take the position that dynamics are an essential part of the machinery. Through a 

dynamical systems lens, causality can be regarded as explicitly deterministic, mechanistic, and 

dynamic. This contrasts with statistical definitions of causality where relationships are 

independent of changing system states. Thus, we are interested in whether a change in one 

variable produces a change in another due to their mechanistic coupling in a shared dynamic 

system (i.e., “dynamic causation”).  

Here, we revisit the role of scale and aggregation in causal pattern and process using a 

common data-driven approach specifically aimed at measuring dynamic causation in ecosystems: 

convergent cross-mapping (CCM) (Sugihara et al. 2012; Brookshire & Weaver 2015; Matsuzaki 

et al. 2018; Yang, Peng & Huang 2018; Chang et al. 2020; Liu & Gaines 2022). CCM infers 

causal relationships from time series data by exploiting Takens’ Theorem (Takens 1981), which 

states as a generic property that, quite remarkably, any one variable in a coupled dynamic system 

will contain information about the other variables in the network. This means that links inferred 

using CCM are not simply binary and independent but include transitive effects across multiple 

components of the full natural system. Thus, causal interaction webs produced by CCM provide 

a comprehensive picture of causal interdependence that can be used, for example, to effectively 

study direct and indirect consequences of interventions, and, in principle, it should be able to do 

so using readily available monitoring data.  

Unlike classical structural modeling approaches for detecting causal association 

(Glymour et al. 1997; Spirtes, Glymour & Scheines 2000; Pearl 2009), CCM is specifically 

designed to detect nonlinear relationships that are invisible to correlation-based methods. Adding 
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to its practical significance in ecological network analysis is the fact that CCM does not require 

all relevant causal variables to be observed—a consequence of Takens’ Theorem. Other 

commonly used methods to construct causal networks from time series data include Granger 

causality and structural causal models informed by machine learning (Runge et al. 2019). None 

of these methods are both explicitly nonlinear and dynamic, and many are based on conditional 

probabilities that require all relevant causal variables to be observed. This is a constraint that 

makes them less practical for ecological applications. Further, these methods focus on direct 

linkages which allows for easier conceptualization, yet precisely for that reason does not capture 

the true level of interdependence in ecosystems. CCM can address the kinds of problems that are 

directly relevant to conservation and management efforts (Saberski et al. 2022) —for example, 

how small changes in one variable can propagate and push a system toward or pull it away from 

collapse (Cenci, Sugihara & Saavedra 2019; Medeiros et al. 2023). 

Indeed, whichever causal inference method is chosen, it is an unavoidable fact that data 

will be aggregated through primary observations and subsequent processing over some spatial, 

taxonomic, and/or temporal scale in constructing any kind of ecological network. Food webs are 

often constructed in terms of functional groups by pooling species into taxonomic aggregates 

(Dunne, Williams & Martinez 2002) as well as trophic equivalence classes (Sugihara 1983) and 

pollination networks have been analyzed at spatial and temporal scales that span many orders of 

magnitude (Bascompte & Jordano 2007; Rasmussen et al. 2013). Some have argued that 

aggregated data can reveal robust patterns and valuable insight (Sugihara, Schoenly & Trombla 

1989; Martinez 1993; Sugihara, Bersier & Schoenly 1997; Dunne, Williams & Martinez 2004), 

while others suggest that aggregation can mask important ecosystem dynamics that arise more 

coherently at finer scales (Abarca-Arenas & Ulanowicz 2002; Allesina, Bondavalli & Scharler 
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2005; Pinnegar et al. 2005). Taking in both points of view suggests that one can be intentional 

about the often-unacknowledged choice of scale and even take full advantage of it to improve 

understanding of ecological dynamics on scales relevant to management. 

Already as early as 1992, in his MacArthur Award keynote address Simon Levin stated: 

“Applied challenges, such as the prediction of the ecological causes and consequences of global 

climate change, require interfacing phenomena that occur on very different scales of space, time, 

and ecological organization” (Levin 1992). Indeed, the recognition by ecologists (Iwasa, 

Andreasen & Levin 1987; Allen & Starr 2017) that dynamic processes occur simultaneously at 

multiple spatial and temporal scales has arisen in many fields including economics (e.g., Lange-

Hicks Condition (Lange 1944)) and neuroscience (Van de Ville, Britz & Michel 2010), where it 

is often termed the “aggregation problem”.  Here the focus has been on investigating conditions 

under which a coarse-grained “macrosystem” view (where dynamics occur between aggregated 

macroscopic variables like functional groups) and a fine-grained “microsystem” view (where 

dynamics occur between disaggregated or less aggregated variables like population abundances 

of individual species) give different results (Sugihara et al. 1984; Sugihara, Schoenly & Trombla 

1989). The simple answer given in the Lange-Hicks condition is that unless the dynamics are 

linear or can be separated (i.e., where fast components can be treated as if they are in equilibrium 

and slow components as if they are constant), scale matters. Indeed, the overwhelming evidence 

that ecological dynamics are nonlinear and state-dependent means that analyses at different 

scales will present different portraits of the functional relationships – a potential liability if 

ignored, but when accounted for can become a substantial asset to support the understanding and 

management of these systems. 
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Because nonlinearity implies scale-dependence and ecological dynamics are nonlinear 

(Sugihara 1994; Hsieh et al. 2005; Clark & Luis 2020; Munch et al. 2022), it is not surprising 

that identifying dynamic causal linkages will necessarily depend on the scale and resolution of 

the data used. However, how this plays out in practice is not known. Here we aim to provide a 

better understanding of the implications of scale and resolution when constructing and 

interpreting dynamic causal networks for ecosystems. 

Methods 
1) Model and Field Data 

Multiple Time Scales in a 3-Component Individual-based Automata Model 

To understand how dynamics spanning multiple time scales can be accommodated we 

construct a simple game-of-life analogue that incorporates trophic activity on multiple time 

scales. It is an individual-based ecological automata model with three components intended to 

simulate species dynamics in three trophic levels, each operating on a different time scale (Fig. 

2.1): “resources”, “primary consumers”, and “secondary consumers”. The components 

(individuals) exist in a 2-dimensional (1000 x 1000) grid. Each individual moves randomly and 

follows the simple trophic rules described below to determine whether it survives or reproduces 

in subsequent timesteps. The system is initialized arbitrarily with 15,000 resources, 1,500 

primary consumers, and 20 secondary consumers placed randomly on the grid. Each is allowed 

to move randomly from their position in both x and y directions with a speed (distance traveled 

in one timestep) s (sR and sPC = 10, sSC = 25). Primary consumers eat resources within a radius 

rPC = 10 and secondary consumers consume primary consumers within a radius rSC = 100. At 

each timestep, 500 new resources are introduced randomly on the grid.  This pedagogical 

example is intended to be a simple template to demonstrate scale effects, and the qualitative 

results are robust to the specific parameters chosen. 
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If an individual primary consumer consumes at least 1 resource at time t, it survives to 

time t+1; if it consumes at least 2 resources at time t it will have an offspring at time t+1. 

However, if a primary consumer consumes 0 resources at time t, it does not survive to time t+1. 

Secondary consumers follow similar rules but operate on much larger scales: it survives if it has 

consumed at least a minimum number of 3,000 of primary consumers in the prior 500 timesteps 

and has one offspring if it consumes at least 5,000 primary consumers in the last 500 timesteps 

(limited to 1 offspring per 200 timesteps per secondary consumer).  

The simulation ran for 15,000 timesteps to generate three distinct abundance time series, 

one for each trophic category (Fig. 2.1). We performed CCM between each time series using E = 

4, tau = 1, tp = -1 (high-resolution web, Fig. 2.1 middle) and E=4, tau = 500, tp = -500 (low-

resolution web, Fig. 2.1 right). Only CCM linkages having rho values greater than the cross 

correlation were taken to show nonlinear causal connection. Subtracting out the linear cross-

correlation is a simple way to measure whether there are causal dynamics beyond the linear 

correlation (Deyle et al. 2013). 

 

Aggregation in a Logistic Model 

We used a simple logistic model to examine the relationship between species-resolved 

connectance and resolved causal influence between two aggregated functional groups. This was 

accomplished by simulating 20 timeseries loosely representing 10 predators and 10 prey. A 

randomized interaction matrix defined the one-timestep relationships of each timeseries on each 

other. Predators had negative influences on prey and prey had positive influences on predators. 

For simplicity, the model simulations did not include any intra-aggregate interactions. The 

abundances were constrained to [0,1] by taking the reciprocal of any abundance if it exceeded 1. 
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A connectance parameter (C) determined the number of non-zero elements in the interaction 

matrix. The main diagonal of the interaction matrix was set to -0.15 for all timeseries.  

We performed 500 model simulations with C ranging between 0.3 and 0.9. After each 

simulation completed, we took the sum of the 10 predators and 10 prey to generate two 

aggregate timeseries. CCM was then performed to measure the influence of the predators on prey 

using E = 5, tau = 1, and tp = -1. The resolved interaction strength was measured as the 

correlation coefficient between observations and predictions from this CCM analysis. This was 

used to explore the effect of connectance on aggregated CCM values. 

 

Observational Data from Four Aquatic Sites 

We focus on four exceptional long-term ecological monitoring studies containing highly 

resolved time series for the individual taxa located in 1) The North Sea (from the Survey of the 

Marine Biological Association, formerly the Sir Alister Hardy Foundation for Ocean Science 

(SAHFOS), 2) Port Erin Bay (MetaBase), 3) Lake Zurich (Pomati et al. 2020) and 4) A kelp 

forest system of San Nicholas Island  (Kenner et al. 2013). Sites 1-3 were sampled monthly 

while the kelp forest system was analyzed as annual averages. The four studies were chosen 

based on data quality: their time-series data have a high degree of continuity and overall length, 

and there is sufficient knowledge about the ecosystems to construct a credible food web from 

systematic literature searches and expert knowledge. To ensure quality and uniformity in the 

analyses for each dataset, taxa whose time series contained less than 35 non-zero data points or 

were known to be inconsistently monitored were removed from the analysis. 

 

Food web construction 
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Systematic literature surveys were used to construct food webs for each system. Data 

extracted for each taxon included: genus, species, prey, predators, trophic role (autotroph, 

heterotroph, mixotroph, primary consumer, secondary consumer), and additional ecological or 

biological notes of interest (including, but not limited to competition, known defenses and size). 

In certain cases where no information could be found for a taxon, researchers from the long-term 

monitoring sites were solicited to provide expert opinion to fill in remaining gaps. 

Final food-web constructions represent the collation of taxon-specific relationships into 

functional group aggregates (Fig. 2.5). Functional groups are defined by both trophic level and 

taxonomic criteria (e.g., Omnivorous copepods). Food-web interactions were drawn between 

functional groups if any member within one group had a direct trophic interaction with any 

member within another group. Food webs for Port Erin Bay and the North Sea datasets were 

reviewed by plankton experts at SAHFOS. 

 

2) Analysis 

Convergent Cross Mapping 

Convergent cross-mapping (CCM) measures dynamic causation by using cross-map 

prediction to assess how well one time series can be used to predict another. If time series Y has 

been influenced by a driver X, it contains information that can be extracted (using Takens’ 

Theorem (Takens 1981)) to predict (“map onto”) values of time series X (Sugihara et al. 2012). 

Thus, in CCM the recipient time series has information that allows one to recover states of the 

driver, where predictions are based on time-indexed nearest-neighbors (Sugihara & May 1990) 

in time-lagged embeddings. For the monthly sampled systems, we use an embedding dimension 

(E) of 12 and for the Kelp Forest system we use an E of 4 with the prediction horizon (tp) set to 
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0. A “CCM value” is defined as the Pearson’s correlation between observed and predicted 

values.  

 

Accommodating Seasonal Synchrony 

The abundances of species within each monthly-sampled system show high levels of 

seasonal synchrony. As described in Sugihara et al (2012), when time series are synchronized, if 

applied uncritically CCM can return a false positive result (Cobey & Baskerville 2016; Sugihara, 

Deyle & Ye 2017). To address this, “seasonal surrogates” can be constructed that maintain the 

seasonal relationship between two time series but shuffle the other properties of the time series. 

This is accomplished here by randomly shuffling the time series values within each month (e.g., 

shuffling all January values, then all February values, etc.). CCM is then performed on the 

resulting null surrogate time series to measure how accurate cross-mapping is on samples having 

only this seasonal property but whose dynamics are otherwise randomized. We repeat this 100 

times for each possible interaction to get a distribution of null surrogate CCM values. An 

observed CCM value that is more accurate than at least 95 out of the 100 surrogate values is 

considered significant and the causal link is included. 

 

Causal Web Construction 

To compare food webs and causal webs at the same aggregate resolution, we create 

aggregate time series by normalizing each species-abundance time series between 0 and 1 then 

add their abundances at each point in time. This normalization procedure gives species equal 

contribution to the aggregate time series which prevents a single, highly abundant taxa from 

dominating the aggregate. We then perform CCM as described above between each aggregate of 



38 

each system. High-resolution webs are constructed by performing CCM between each individual 

species (when the system is viewed at highest resolution).  

Results 
First, we investigate how varying timescales can play a role in resolving ecosystem 

dynamics using the individual-based automata (IBA) model. By adjusting the time-lag (tau) in 

reconstructed embeddings to capture causal relationships at different timescales, we find that 

high-frequency causal webs resolve bidirectional influences between resources and primary 

consumers, but only show unidirectional effects of secondary consumers on primary consumers 

and resources (Fig. 2.1). The high-frequency causal web does not show any influence of primary 

consumers or resources on secondary consumer abundance. However, these dynamics are well-

resolved at a 500-timestep scale (Fig. 2.1).  
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Figure 2.1 A model simulation in which resources, primary consumers, and secondary 
consumers exist on a grid and move randomly. Each timestep, primary consumers eat resources 
and secondary consumers consume primary consumers. Both primary and secondary consumers 
have rules determining whether they survive, starve, or reproduce. Primary consumers and 
resources interact on a 1-timestep timescale, and secondary consumers consume primary 
consumers at a 1-timestep scale as well; however, primary consumers influence secondary 
consumers at a 500-timestep scale. Thus, causal webs constructed using a 1-timestep frequency 
do not resolve the influence of primary consumers on secondary consumers (middle), but the 
causal webs constructed using a 500-timestep frequency do (right). 
 

We use the same technique on the three monthly-sampled systems to quantify causal 

relationships at different time scales. Fig. 2.2 shows the number of network interactions resolved 

by CCM at each scale. All three systems had more interactions resolved at the monthly scale 

than at the annual scale (tau = 12). 
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Figure 2.2 The number of interactions in each system resolved at a monthly timescale (tau = 1) 
and annual timescale (tau = 12). Note that in all systems more interactions are resolved at the 
monthly timescale, but there are still interactions in each system that are exclusively resolved at 
the annual timescale. 
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By varying the connectance of the interaction matrix of the logistic models, we find a 

positive association between model connectance and resolved interaction strength between the 

predator and prey aggregates (Fig. 2.3). That is, the more links there are connecting individual 

species across aggregates, the more likely there will be a resolved link between the aggregates in 

a lower-resolution network. A similar pattern is shown in real-world data (Fig. 2.4). 

 

Figure 2.3 Fine scale connectance translates to aggregate interaction strength: Logistic models 
with two aggregates (10 predators and 10 prey) run at varying levels of high-resolution 
connectance (proportion of non-zero elements joining the two aggregates in the interaction 
matrix). Higher connectance at the fine scale creates stronger aggregated interaction strength 
resolved between the functional groups. 
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Figure 2.4 Real world examples showing the relationship between aggregated and fine-scale 
linkages. Boxplots show that causally linked aggregates (coarse-scale) have more causal links at 
the species level (fine-scale). 

Finally, we compared the low-resolution aggregate webs with food webs constructed at 

the same taxonomic resolution (Fig. 2.5). We find that most food web links are resolved to be 

causal, but there are also causal interactions that are non-trophic, and trophic interactions that are 

not resolved as causal. The lack of a resolved causal link does not mean that interaction is absent; 

rather, there is no dynamic dependence between abundances detected in the data at that scale. 
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Figure 2.5 A comparison of food webs and aggregate causal webs for the four systems studied. 
(A) Aggregated causal webs (blue arrows) overlayed with food webs (red arrows). (B) High-
resolution causal webs mapping interactions between individual species. Each large circle 
represents an aggregated function group of species, and each dot represents an individual 
species. Note that although there are more causal links (blue arrows) than food web links (red 
arrows) in A, not every food web link is detectably causal as might be expected from scale 
considerations. Indeed, when the systems are views through a high-resolution (species-resolved) 
lens, there is always at least one link between all trophically linked aggregates (B). 
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Discussion 
The individual-based automata (IBA) model clearly shows that different causal 

relationships appear when data of different temporal resolution is used. Although primary 

consumers (and resources, indirectly) influence secondary consumer abundance, it makes sense 

that the causal relationship will not be resolved using high-frequency data, as the influence of 

primary consumers on secondary consumers occurs over 500 timesteps. When dynamics are 

measured at a 500-timestep scale, the influences of resources and primary consumers on 

secondary consumers are resolved (Fig. 2.1). 

If this were a real system and causal linkages were only measured at a high-resolution 

timescale, one may inaccurately conclude that the primary consumers have no influence on the 

abundance of secondary consumers. In a management situation, one may then incorrectly deem it 

is safe to alter the abundance of the primary consumers (e.g., increasing fishing, removing 

habitat, etc.) without any predicted consequences on the abundance of the secondary consumer. 

Of course, this would be a mistake since the secondary consumers are entirely dependent on the 

primary consumers, but at a much slower temporal scale.  

The causal influences measured depend on the scales defined by the data and by 

parametric decisions (e.g., embedding dimension chosen for the analysis). If the data is 

aggregated, the analysis will quantify relationships between aggregates. Similarly, if time series 

are sampled at a specific frequency (e.g., monthly), then relationships that occur at that time 

scale will be measured (assuming time-lagged embeddings are made with 1-timestep). 

Interactions occurring at higher (or lower) frequencies than those captured by the sampling 

frequency will not be properly resolved. 

We see similar patterns in real-world data. Fig. 2.2 shows interactions from three distinct 

ecosystems, each evaluated annually and monthly. This comparison illuminates the dynamic 
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nature of ecological interactions that manifest differently across these timescales: certain 

interactions become apparent only in the annual data, whereas others are evident exclusively in 

the monthly data. Thus, the temporal scale chosen will influence the resolved interaction 

network. Specifically, the annual data reveal interactions that may be obscured monthly due to 

the finer temporal resolution capturing more transient dynamics. Conversely, the monthly data 

can unveil more short-term interactions that might be averaged out or diluted when viewed 

through the broader lens of yearly assessments.  

As a crude heuristic, it has been argued that scaling state-space-reconstruction to the 

generation times of species may help resolve dynamics (Munch et al. 2023). For example, In 

Lake Zurich the animal species with the smallest ratio of number of annual/monthly resolved 

influences were Cyclopoida C1-C3 (34 monthly, 13 annual), nauplii (32 monthly, 13 annual) and 

eggs (24 monthly, 10 annual) which either die or grow into their next life-stage on the order of 

days to weeks. The animal species with the largest ratio were adult Cyclops (9 monthly, 14 

annual) and Eudiaptomus Gracilis (13 monthly, 16 annual) which has generation times on the 

order of months (WÆRVÅGEN & Nilssen 2010) (highlights in Table S1). However, because 

species can exhibit dynamics that span many orders of magnitude (e.g., as illustrated in Fig. 2.1) 

it is not surprising to find exceptions that do not follow this rule-of-thumb. 

Similar to temporal scale, taxonomic aggregation can also be a double-edged sword that 

can obscure or clarify interaction patterns. Some have argued that aggregating abundances across 

multiple individuals, populations, or habitats can reveal the emergent structure of ecosystem 

networks by smoothing over small scale stochasticity (Sugihara, Schoenly & Trombla 1989; 

Sugihara, Bersier & Schoenly 1997; Dunne, Williams & Martinez 2004). Aggregation can have 

practical advantages in terms of increased efficiency of data collection, ease of visualization etc. 
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However, others argue that aggregation can also lead to oversimplification that can potentially 

mask important network properties (Abarca-Arenas & Ulanowicz 2002; Allesina, Bondavalli & 

Scharler 2005; Pinnegar et al. 2005). 

The model simulations within our study provide a context for the debate on aggregation 

in ecological research (Fig. 2.3). In the simulations, timeseries were aggregated to analyze the 

relationship between model connectance and the aggregate relationship. The model shows that 

higher connectance at a fine scale translates to higher connectance at a larger aggregate scale: the 

more links there are connecting individual species across aggregates, the more likely there will 

be a resolved link between the aggregates in a lower-resolution network. This underscores the 

sensitivity of CCM to underlying structural parameters of ecological networks and suggests that 

higher fine-scale connectance, indicative of more densely interconnected ecosystems, can 

amplify detectable interactions in aggregate data.  

Fig. 2.4 shows a similar association in four real-world systems: higher connectance 

between individual species across aggregates is associated with an increased likelihood of 

resolving a significant association between the aggregates. Thus, high-resolution connectivity 

within ecosystems can significantly influence the detectability of interactions among aggregated 

groups. However, it is worth noting that the correlation between fine-scale connectance and 

aggregate interaction strength may not be generalizable to other systems, and is likely sensitive 

to how timeseries are aggregated and other parametric choices. 

In the context of ecosystem management, the absence of detected influence at an 

aggregate level might overlook vital high-resolution (species-resolved) interactions that are 

crucial for ecosystem functioning. Such an oversight could lead to management decisions that 
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inadvertently destabilize ecological relationships. This emphasizes the need to consider high-

resolution interactions within broader ecosystem management strategies.  

Fig. 2.5 shows that while most of the food web links are measurably causal, there are also 

causal interactions that are non-trophic (blue arrows), and trophic interactions that are non-causal 

(red arrows). While finding non-trophic causal interactions (blue arrows) is not surprising 

(competition, mutualism etc.), the converse (known trophic links that measure up as non-causal) 

is more surprising (red arrows) (Kawatsu et al. 2021). At first glance, this looks like a mistake. 

After all, if a predator consumes a prey, one should expect the predator to have a causal 

influence on the abundance of the prey. However, we emphasize that lack of a resolved causal 

link does not indicate a lack of interaction; rather, it reveals there is no resolved influence at that 

scale at which it was measured. It is likely that the non-causal trophic links may be resolved as 

causal links when the system is viewed at a higher taxonomic resolution or different timescale. 

Conclusion 
Emerging tools that allow for the collection of higher-resolution ecological data (Merz et 

al. 2021) should enable deeper insights into how ecosystems operate. These results show that 

beyond enabling a fine-scale view, a major advantage of high-resolution data is that it allows 

viewing the system at multiple time scales. The same principle applies to data collected at high 

taxonomic resolution. Species-level networks together with networks based on coarser functional 

aggregates can provide a more robust picture of ecosystem functioning than a high-resolution 

network can achieve alone, and critically better reflect emerging quantitative paradigms for 

ecosystem-based management. 

Statements about causality (e.g., “species A influences species B”) are usually made in 

absolute terms without considering the data resolution context. This work can be a reminder that 
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such statements be kept pragmatic, acknowledging that relationships may appear, disappear, or 

change as systems are viewed at different scales.  
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Chapter 3 Networks of Causal Linkage Between Eigenmodes Characterize Behavioral Dynamics 
of Caenorhabditis elegans 

Abstract 
Behavioral phenotyping of model organisms has played an important role in unravelling the 

complexities of animal behavior. Techniques for classifying behavior often rely on easily 

identified changes in posture and motion. However, such approaches are likely to miss complex 

behaviors that cannot be readily distinguished by eye (e.g. high-dimensional dynamics). To 

explore this issue, we focus on the model organism Caenorhabditis elegans, where behaviors 

have been extensively recorded and classified. Using a dynamical systems lens, we identify high-

dimensional, non-linear causal relationships between four basic shapes that describe worm 

motion (eigenmodes, also called “eigenworms”). We find relationships between all pairs of 

eigenmodes, but the timescales of the dynamics vary between pairs and across individuals. Using 

these varying timescales, we create “interaction profiles” to represent an individual’s behavioral 

dynamics. These profiles show consistent patterns among individuals in similar well-known 

behavioral states: i.e., the profiles for foraging individuals are distinct from those of individuals 

exhibiting an escape response. More importantly, we find that interaction profiles can distinguish 

high dimensional behaviors among mutant strains previously classified as phenotypically similar 

and can detect differences not previously identified in strains related to dysfunction of 

hermaphrodite-specific neurons.  

 

Introduction 
Caenorhabditis elegans has long been an important model species for studying the 

drivers of behavioral dynamics, in part due to its ease of lab culture, completely mapped nervous 

system, and sequenced genome (White et al. 1986; Waterston 1998). This body of knowledge is 

the basis for discoveries regarding the locomotory phenotypic consequences of changes in 
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genotype and neural structure (e.g. (Krajacic et al. 2012; Brown et al. 2013; Koren et al. 2015; 

Lin & Chuang 2017; Yan 2017; Javer, Ripoll-Sánchez & Brown 2018; McDiarmid, Yu & 

Rankin 2018)). To this end, immense work has been dedicated to generating and analyzing high-

resolution recordings of C. elegans in motion under experimental conditions of interest (e.g. 

(Feng et al. 2004; Stephens et al. 2008)).   

Based on such recordings, Stephens et al. (Stephens et al. 2008) found that linear 

combinations of just four static vectors, or “eigenworms” (also referred to as “eigenmodes”), can 

account for 92% of the variance of body poses formed by C. elegans. Thus, the posture of any 

worm can be represented with only a few variables at high precision. This seminal work further 

found relationships between the eigenworms. For example, when a worm is moving in a straight 

path foraging for food, the first two coefficients (𝑎$ and 𝑎(, defining sinusoidal oscillations of 

the body shape) form a quadrature pair: for any value of one of these coefficients during forward 

locomotion, the other value is predictably out-of-phase by 90 degrees ((Stephens et al. 2008), Fig 

3.1a).  
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Figure 3.1 Identifying relationships between eigenmodes of worm position. (a) During forward 
locomotion, the static view of the first two eigenmodes form a quadrature pair; any given value 
of 𝑎$is likely to be 90 degrees out of phase with 𝑎(. (b) CCM identifies complex relationships 
between dynamically coupled variables by using time-lagged embeddings to measure the extent 
to which nearest neighbors on one attractor (e.g. black crosses, left) map to nearest neighbors on 
the other (e.g. black crosses, right). 
 

Because eigenmode dynamics describe patterns of an individual’s motion, measured 

changes in the eigenmodes can be used to identify changes in factors driving behavior. For 
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example, changes in the relationship between 𝑎$ and 𝑎( have been used to quantify the effect of 

simulated damage to the neural network (Kunert, Maia & Kutz 2017) and changes in 𝑎$ and 𝑎- 

(the fourth eigenmode coefficient) have been used to describe effects of locomotory neural 

ablation (Yan 2017). Furthermore, recent studies have used patterns within the eigenmode 

projections to classify distinct behaviors (Ahamed, Costa & Stephens 2019; Costa, Ahamed & 

Stephens 2019). Although there is a wealth of information encoded in the eigenmodes, 

identifying systematic relationships can be challenging. There may be many high-dimensional, 

complex relationships between eigenmodes that have not yet been identified. Here, we seek to 

uncover such hidden relationships between eigenmodes and explore how these can be used to 

quantitatively characterize and distinguish complex suites of behavior. 

To develop an intuition for how dimensionality and dynamics interrelate, consider again 

the quadrature pair relationship between eigenmode coefficients 𝑎$ and 𝑎(	(Fig 3.1a). This static 

relationship describes a manifold-like structure on which 𝑎$ and 𝑎( vary through time, but it 

does not discern dynamics along that structure. Specifically, knowing the value of 𝑎$and 𝑎( at 

any moment does not tell us whether the next value of 𝑎$ and 𝑎( should follow the manifold in a 

clockwise, counterclockwise, or some other direction. In fact, forward and reverse worm motion 

correspond to opposite directions of rotation along this structure (Stephens et al. 2008). 

Resolving this uncertainty requires additional information. In this case, phase velocity would be 

sufficient, but more generally, identifying the required information (dimensions) will be 

challenging. Fortunately, a powerful theorem from dynamical systems theory can help resolve 

this problem. Takens’ Embedding Theorem (Takens 1981) tells us that by taking time lags of just 

one of the component variables of a dynamical system, we can create an embedding that allows 

important dynamic properties of the entire system to be preserved and observed. For an 
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accessible introduction to this concept, and how it can be practically exploited, see the video at 

http://tinyurl.com/EDM-intro. Indeed, looking at a time-lagged coordinate representation of 

𝑎$(Fig 3.1b) shows us that the quadrature-pair structure of the 𝑎$,𝑎( manifold is preserved, and 

that the third time-lag dimension reveals additional subtleties (more time-lag dimensions may be 

beneficial, but cannot be visualised). 

To reveal hidden relationships between eigenmodes, we use convergent cross-mapping 

(CCM, (Sugihara et al. 2012)), a method based on Takens-style time-series embeddings. CCM 

detects nonlinear relationships between time series by tracking the temporal correspondence of 

nearest neighbors (Fig. 3.1b). If the nearest neighbors in the time-lag embedding formed from 

one variable (Fig. 3.1b, left), map temporally to nearby neighbors in the time-lag embedding 

formed from another variable (Fig 3.1b, right), then the state of the second variable can be 

predicted from the first, indicating a dynamic causal relationship from the second variable to the 

first (see (Sugihara et al. 2012) for further details). 

Because several timescales may be relevant, we measure the strength of interaction 

across a range of delays between cause and effect, to produce an interaction profile, for a given 

ordered pair of eigenmode coefficients (see Methods). The collection of these pairwise 

interaction profiles between all ordered pairs of the first four eigenmode-coefficient timeseries 

then provides a full quantitative characterization of the worm motion dynamics. The complexity 

seen in C. Elegans behavior can (at least partially) be attributed to eigenmode relationships 

occurring at varying timescales; at any given time, each pair of eigenmodes may be in a different 

‘phase’ of their relationship allowing for many possible combinations of active causal influences 

(see S1 Video).  Here we assess the stability, robustness and utility of this novel characterization 
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by examining how it differs within and between broad categories of phenotypic behavior, in 

several strains of worm.  

Previous studies have used a variety of methods to extract phenotypic features or 

behavioral motifs to cluster mutant strains, such as biomechanical profiling (e.g. (Krajacic et al. 

2012)), construction of dictionaries of features (e.g. (Brown et al. 2013; Koren et al. 2015; Javer, 

Ripoll-Sánchez & Brown 2018) empirical mode decomposition of body curvature of the worm 

(e.g. (Lin & Chuang 2017)), and machine learning (Javer et al. 2018). Because nonparametric 

models have successfully classified C. elegans behaviors (Ahamed, Costa & Stephens 2019; 

Costa, Ahamed & Stephens 2019), we expect methods specifically designed to identify 

relationships in nonlinear systems (e.g. (Sugihara et al. 2012; Deyle et al. 2016b)) to excel in 

exploring differences between behaviors as well.  

Materials and Methods 
To analyze the dynamics of 12 foraging worms (Broekmans et al. 2016), we performed 

convergent cross-mapping (CCM (Sugihara et al. 2012)) between all pairs of the first four 

eigenmodes. To do this, 200 time indices (t) were randomly selected from the time series (of 

33,600 values) such that none were blank (NA or NaN) and used as our library in CCM [16]. We 

embedded these 200 values of t in ten-dimensions, taking time lags to make points in the form [xt 

, xt-1 , … xt-9 ]. This embedding was then used to make predictions on the target time series (at 

time t - tp) as described in (Sugihara et al. 2012). We repeated this 50 times, selecting a different 

sample of 200 time indices each time, and the average correlation coefficient between observed 

and predicted values was used as the resolved CCM value for the time delay (tp) tested. This was 

repeated for tp values from -32 to 0 (equivalent to -2 to 0 seconds) to quantify how the strength 

of the interactions change with different delays (see (Ye et al. 2015)). These CCM values were 

then normalized between 0 and 1 by subtracting the minimum value and dividing by the 
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difference between the maximum and minimum values. This process was repeated for all pairs of 

the first 4 eigenmodes (4x3 = 12 total) across all foraging individuals (12), creating 12 plots of tp 

vs. CCM for each pair for each of the 12 individuals (Fig 3.2b). The average interaction profile 

(red lines Figs 3.2, 3.3a) is the normalized average across all individuals for each pair of 

eigenmodes. 

 To calculate the optimal embedding dimensions (E) for each individual, a similar process 

was done, however tp was set to the value that gave the highest CCM value in the average 

interaction profile for the pair of eigenmodes tested with ten dimensions. E (number of lags in 

the embedding) was tested from 2 to 40 with the optimal E being the number of lags that 

produced the highest CCM value.  

For the 91 escaping worms tested (Broekmans et al. 2016), time series were 600 values 

long and sampled at 20 Hz with a laser pulse to the head occurring at 10 seconds (200th time 

index). Because we are only interested in escape response behavior, the first 200 values are 

removed from each time series, making the remaining time series 400 values long— much 

shorter than the 33,600 values of foraging behavior. The analysis follows similarly as that of the 

foraging analysis; however, to account for the shorter time series, only 100 random time indices 

were selected. Also, an “exclusion radius” of 10 values was also implemented, making nearest 

neighbors at least 10 indices (half a second) apart when making each prediction (see (Sugihara & 

May 1990)). tp values were then tested from -40 to 0 (still equivalent to -2 to 0 seconds due to 

sampling frequency) to make the interaction profile for each escape response individual. 

The difference (D) between two interaction profiles was calculated by taking the average 

of the absolute difference of the all CCM values for each pair of eigenmodes (Fig 3.3c). This can 

be summarized by equation 1 below: 
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Because the two datasets were sampled at different frequencies, values of the foraging 

dataset were interpolated in order to compare the difference between foraging and escape 

response individuals (S7 Fig). This allows for values to line up in time between foraging and 

escaping interaction profiles. To measure the significance of these differences, we compared 

these values to that of random surrogates. Surrogates were generated by randomly shuffling 

normalized CCM values within each interaction profile before differences were calculated. This 

process simulates interaction profiles that have the same distribution of values of real interaction 

profiles but without any temporal correspondence between them. Thus, this is what one might 

expect in an extreme case of two completely different interaction profiles of two individuals.  

 Mutant strain data was downloaded from the Worm Behavior Database from the Schafer 

Lab: https://www2.mrc-lmb.cam.ac.uk/groups/wschafer/WormBehaviorDatabase.tmp.html. 

Time series were filtered to only include those which had less than 25% NA’s in the data and 

over 200 indices. This left 6,376 individuals encompassing 287 distinct strains. The analysis to 

generate interaction profiles for individuals of specific strains follows analogously from that of 

the foraging worms. However, because this data set was sampled at 30 Hz, tp was set to -60 to 0, 

only testing every sixth value to reduce computation time. To compare the differences between 

each strain, the interaction profiles for genetically identical individuals were averaged and 

differences between strains were taken between the averaged interaction profiles. This gave us a 

287 x 287 symmetric distance matrix of differences between all pairs of strains. These values 
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were then used to generate the boxplots shown in Fig 3.4a,b by considering the differences 

between strains within specific categories defined by (Brown et al. 2013). 

 This distance matrix was also used to test whether the groups were distinct (Fig 3.4c). To 

measure whether two groups were distinct from each other, we considered every pairwise 

combination between two groups (group A and group B, Fig 3.4c). For each strain in group A, 

we considered which other strain had the most similar interaction profile (smallest D) out of all 

other strains in group A and B. After doing this for each strain in group A, we calculated the 

percentage of strains that had their most similar strain also in group A. This percentage was then 

recalculated 1000 times, however, the associations of which group each strain belonged to (A or 

B) was randomized each time. The level of distinction was measured as the fraction of 

randomized percentages that were less than that of the non-randomized percentage. In Fig 3.4c, 

the lowest level of significant distinction (lightest shade of green) corresponds to 80% of the 

randomized data showing less distinction than the real data and the darkest shade corresponds to 

100%.  

Results 
Looking first at N2 wildtype worms during foraging (data from (Broekmans et al. 2016)), 

we find a high degree of consistency in the interaction profiles across individual worms (Fig 

3.2). These profiles indicate that there exist characteristic timescales of interaction specific to 

particular eigenmode pairs that remain consistent throughout the foraging behavior. Indeed, 

contrasting these foraging interaction profiles with those obtained from the same type of worm 

during an escape response elicited by an aversive stimulus (data also from (Broekmans et al. 

2016)), shows that the interaction profiles are not only consistent, but also specific: a clear 

qualitative difference in shape is evident in each profile between the foraging and escaping 

worms (Fig 3.3a). 
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Figure 3.2 Interaction profiles represented by time-lag versus normalized CCM correlation 
coefficient (ρ) for each pair of the first four eigenmodes for 12 foraging worms (grey lines - 
individuals, red line - average). Note that pairs of eigenmodes interact at different timescales, 
however, these relationships are relatively consistent across individuals. 
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Figure 3.3 Comparing dynamics of the eigenmodes in worms foraging and exhibiting an escape 
response. (a) The average CCM values between the first four eigenmodes of worm position 
plotted against tp for foraging (red) and escape response (blue) worms. Shaded regions represent 
one standard deviation on either side of the mean. (b) The optimal embedding dimension to 
resolve driving dynamics in foraging (red) and escape response (blue) worms. (c) The difference 
between two individuals’ dynamics can be quantified by adding the absolute difference between 
their respective CCM values versus tp (interaction profiles). (d) Boxplots showing the 
differences in dynamics between all pairs of worms. Each pair falls into one of three categories: 
two foraging worms (Frg - Frg), two escape response worms (Esc - Esc), or one foraging and one 
escape response (Frg - Esc). The red line represents the average distance between randomly 
shuffled surrogate profiles (see Methods). 
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To quantify this difference, we introduce a simple statistic: we denote by D the average 

absolute difference between each pair of curves across the 12 eigenmode comparisons (Fig 3.3c). 

Calculating D between all pairs of individuals (12 foraging and 91 escaping) shows that the 

average distance between pairs of foraging worms is less than that between pairs of escaping 

worms (t-test 𝑝	 < 	106/), implying that there is more variability in escape response behaviors 

(Fig 3.3d). Furthermore, i) pairs of worms exhibiting the same category of behavior have a 

smaller difference than those exhibiting different categories of behavior (Fig 3.3d); and ii) the 

differences between categories of behavior are smaller than those between random surrogate data 

(Fig 3.3d; see Methods). Taken together, this suggests that the interaction profiles provide a 

quantitative characterization of these complex suites (categories) of behavior that is consistent 

and specific at the individual category level, and distinctive and meaningful in between-category 

comparisons. 

The interaction profiles so far discussed were generated using 10-dimensional 

embeddings (see Methods), but we find that the structural consistency of these profiles is also 

robust to embedding dimension, across a very broad range (S2 Fig). Despite this robustness to 

embedding dimension, examining the effect of embedding dimension on the strength of 

interaction independently, may still yield additional insight into dynamical differences between 

behaviors. By keeping the time delay for each ordered pair of eigenmodes fixed, we examine 

which embedding dimensions reveal the strongest causal interaction (see Methods). Interestingly, 

we find that the average optimal embedding dimension for eigenmode dynamics driven by 𝑎( 

and 𝑎, (other eigenmodes mapped onto 𝑎( and 𝑎,by CCM) is significantly lower (t-test 𝑝	 <

	106/) for worms exhibiting an escape response than for those that are foraging (Fig 3.3b). 

Furthermore, for foraging individuals, the driving dynamics of 𝑎$ and 𝑎- can typically be 
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resolved in fewer dimensions than those of 𝑎( and 𝑎,, which show a strong left skew (t-test p < 

10-6 for all pairs except [𝑎(, 𝑎,] and [𝑎$, 𝑎-]). 

A number of genetic mutations are known to affect locomotion, and previous studies 

have made great strides in quantifying and categorizing the locomotory phenotypes caused by 

thousands of mutations (Brown et al. 2013; Koren et al. 2015; Javer, Ripoll-Sánchez & Brown 

2018). From recordings of over 6,000 individuals encompassing 287 distinct mutations, we 

generated average interaction profiles (see Methods) for each mutation and calculated pairwise 

distances (D) between all pairs of mutations. Each mutation falls into one of nine categories of 

“phenotypically or functionally similar” as defined in (Brown et al. 2013). Calculating D 

between distinct mutant strains showed that phenotypically similar mutations had significantly 

smaller differences in dynamics (lower variance) than the average across all strains for 6 out of 

the 9 categories (t-test 𝑝	 < 	106/for 5 out of 6, 𝑝 = 0.01 for TRP Channel,  Fig 3.4a). The “egg 

laying defective” and “uncoordinated” groups showed average within-group differences 

significantly greater than the average difference between all mutants (t-test 𝑝	 < 	106/). This 

implies that strains within these two categories have variable and dissimilar patterns of behavior. 

When we split the “egg laying defective” category into mutants with hypothesized or confirmed 

effects on hermaphrodite specific motor neurons (HSNs), neurons essential for normal 

reproduction (Desai & Horvitz 1989), and strains without known effects on HSNs (see S3 

Table), we find that strains affecting HSNs exhibit more similar behavior than those that do not 

(t-test 𝑝	 = 106-	, Fig 3.4b). Both subgroups, however, still show relatively high variance when 

compared to the differences seen within other groups of mutations.  
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Figure 3.4 (a) Differences in dynamics between pairs of phenotypically similar mutants. The red 
line indicates the median distance of all mutants from each other. The boxplots are ordered from 
top to bottom in increasing median difference between strains, where smaller differences indicate 
more similar dynamics (less variance) between profiles. (b) Differences between strains of two 
subgroups of “egg laying defective” strains: those that affect hermaphrodite specific motor 
neurons (HSNs) and those that do not. Note that this difference is not identified by (Brown et al. 
2013) (S4 Fig). (c) Groups that show significantly different interactions profiles from each other 
(see Methods). Note that although some groups show lower variance, they are not necessarily 
discernable from each other. 

Although some groups show lower variance than others, they are not necessarily distinct 

from each other. To measure how distinct two groups are from each other, we identify the most 

similar strain (strain with the smallest difference D) to each strain in the two groups. If strains of 

one group tend to have a most similar strain that is also in that group, then that group is distinct 

from the other (see Methods). This process allows for directionality in these distinctions: group 

A may be distinct from group B, but group B may not be distinct from A. Mutations affecting 

acetylcholine receptors show the lowest variance, however their interaction profiles are not 

significantly distinct from egl or monoamine related mutations (Fig 3.4c). Interestingly, 

monoamine related mutations are, however, moderately distinct from acetylcholine receptor-

affecting mutations (Fig 3.4c). In fact, monoamine related mutations are the most distinct group 

of mutations (distinct from all except neuropeptide-affecting mutations). Analogously, G-protein 
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related mutations are the least distinct group (only distinct from “other” and TRP channel-

affecting mutations). Performing this analysis on the egl mutation subgroups (affecting/not 

affecting HSNs) shows that the two groups are indeed distinct from each other (see Methods). 

Discussion 
Worms exhibiting different categories of phenotypic behavior show significantly greater 

differences in their interaction profiles than those of the same behavior. Within a single strain, 

the interaction profiles of escaping individuals show higher variation than those of foraging 

worms. This may be due to slight differences in the stimuli triggering the escape response (e.g. 

exactly where on the worm the stimulus hit, or the position the worm was in when the stimulus 

occurred) and future work could explore the exact drivers of escape response behavior. Still, 

there are consistent patterns in the relationships between eigenmodes of escape response 

individuals (S5 Fig). Furthermore, when comparing differences of the interaction profiles 

between foraging and escaping individuals, differences are greater than those for individuals 

exhibiting the same behavior, however the differences are still less than that of randomly 

sampled surrogates, which represent a theoretical average difference between two entirely 

different worm behaviors (see Methods). This implies that although they are distinct behaviors, 

both foraging and escaping dynamics show behaviors consistent with an underlying structure that 

is not maintained in the randomly shuffled surrogate data. 

Different classifications of mutations show different levels of variance between their 

component strains’ interaction profiles (Fig 3.4a). For example, mutations affecting 

acetylcholine receptors show relatively low variance in their interaction profiles while those of 

egl and unc mutations show high variance. The high variance in the egl and unc mutations can be 

attributed to the known variety of phenotypes caused by genes in multiple pathways within these 

two general groupings, as well as overlap between these categories (e.g. (Trent, Tsung & Horvitz 
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1983; Bany, Dong & Koelle 2003)). Although these two groups do not seem to describe one 

specific set of dynamics, there may be patterns among specific strains within these groups. For 

example, egl mutants with known effects on HSNs (Desai & Horvitz 1989; Garriga 1995; Jacob 

& Kaplan 2003; Kwok et al. 2006; Ringstad & Horvitz 2008; Díaz-Balzac et al. 2015) have less 

variation in their profiles than the rest of the egl group on average (Fig 3.4b). Although there is 

less variance in interaction profiles among egl mutations with known effects on HSNs than those 

without, there is still relatively high variance in both groups. In addition to controlling vulval and 

uterine muscles, HSNs are known to help regulate feeding (Lee et al. 2017) and some HSN 

mutations cause uncoordinated locomotion (Desai et al. 1988). Furthermore, the mutations 

classified as having a potential effect on HSNs disrupt a variety of functions, ranging from HSN 

cell migration in development to G-protein coupled receptors expressed in HSNs (e.g. (Desai & 

Horvitz 1989; Garriga 1995; Forrester, Kim & Garriga 2004)), and can play roles in the function 

of additional neuron types and pathways (e.g. (Jacob & Kaplan 2003)). The multiple roles of 

HSNs and of mutations classified as affecting HSNs could explain some of the variability among 

the worms in this group.  

Mutations with effects on acetylcholine receptors showed the lowest variance in their 

interaction profiles; however, most other strains cannot be distinguished from them (Fig 3.4c). 

This can be imagined graphically as two clusters of points with one cluster tightly grouped 

within the other. If a point lies outside the inner cluster, it can be confidently determined that it is 

not a member of the inner cluster. However, if a point lies within the inner cluster, it cannot be 

confidently distinguished from the outer cluster. This may imply that the dynamics shown in 

acetylcholine receptor affecting groups are somewhat representative of the overall average 

dynamics seen in all strains. This result was not seen in all groups with low variance. For 
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example, the interaction profiles of strains affecting Deg/ENaC channels are largely 

distinguished both from other groups and other groups from them. Analogously, this can be 

graphically imagined as two non-overlapping clusters of points. It is possible that mutations 

affecting Deg/ENaC channels cause distinct changes in worm movement which manifests here as 

a distinct difference in their interaction profiles. 

Our results resonate with that of Brown et al. (Brown et al. 2013), who used a 

nonparametric approach to cluster strains into phenotypic groups based on similarities in 

frequencies of repeated positions. The two methods broadly agree (S6 Fig), however, interaction 

profiles can show greater sensitivity in making some distinctions. We find that both methods 

identify high variance in the unc group and low variance among individuals with mutations 

affecting acetylcholine receptors. Also, both methods find that although individuals with 

mutations affecting acetylcholine receptors show low phenotypic variance, other groups cannot 

be confidently distinguished from them (i.e. they cluster within other groups). There are some 

groups that were found to be distinct only with one method and not the other. For example, 

mutations affecting neuropeptides and those affecting G-protein coupled receptors were not 

distinct from each other in (Brown et al. 2013) but were found to be distinct based on their 

interaction profiles (Fig 3.4c). Further, the differences identified here in HSN-affecting strains is 

not identified in Brown et al. (S4 Fig). 

Still, there are a few differences identified in (Brown et al. 2013) that are missed with the 

interaction profiles described here. For example, Brown et al. found that monoamine related 

mutations are phenotypically distinct from those affecting neuropeptides while their interaction 

profiles were not significantly different (Fig 3.4c). However, it is possible that some dynamics 

identified by Brown et al. are not resolved with the methods described here. For example, certain 
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behaviors (motifs) identified in their work may be best resolved in lower-dimensional spaces. 

Interaction profiles here strictly measure how well dynamics are resolved in 10 dimensions and 

consequently may not resolve lower-dimensional dynamics. It is encouraging that even with a 

fixed embedding dimension, interaction profiles can identify novel phenotypic differences 

between strains. Future work should explore the potential of exploring interaction profiles 

without fixed parameters. 

Interestingly, when examining the effect of dimensionality on foraging and escaping N2 

worm behavior representation, the dynamics of 𝑎( and 𝑎, show lower optimal embedding 

dimensions for escape than for foraging. We note that reduction in dimensionality of dynamics is 

also observed in other systems under atypical or stressful conditions, such as in brain activity 

preceding an epileptic seizure (Scheffer et al. 2009). 

Beyond exploring interaction profiles in other embedding dimensions, it would be 

interesting to consider other distance metrics between these profiles. Perhaps certain 

relationships (different panels in Figs 3.2, 3.3a) are more indicative of certain changes in worm 

behavior. The difference metric used here is minimalistic in that it makes very few assumptions 

and is consequently far from optimized; differences between distinct strains may become further 

resolved with improved distance metrics. 

Nonetheless, we find interaction profiles reveal novel distinctions between groups of 

mutations without exhaustively testing parameters (distance metric, embedding dimension, 

eigenmodes tested, etc.). These findings shed light on the potential of using these complex 

relationships between eigenmodes as a classifier of worm behavior. Future work should explore 

the extent to which further distinctions between strains can be made with different parametric 

considerations. 
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Chapter 4 Conclusion 
We do not live in a linear world with static relationships. Behaviors that we observe 

today may not be seen tomorrow. Similarly, patterns we see in one part of the world may not 

exist in another part of the world. We live in a state-dependent world, where the rules change 

depending on the conditions at play. In order to best understand and ultimately predict natural, 

complex systems, we must consider how such rules and relationships change with respect to 

time, space, resolution, and more generally, state. 

As shown in chapter 1, it is all too common in management situations to choose the 

simple solution over the complex. However, if you are to take anything away from this thesis, I 

hope it is that non-linearity does not necessitate complexity. With only a small amount of work a 

linear solution can become a much-improved non-linear solution by simply considering, for 

example, how relationships change with the season (Saberski et al. 2022).  

If you are to dissect the steps taken in chapter 1 starting from the original formulation of 

the TTFF to the much-improved non-linear predictor it would only include one extra step. 

TTFF Linear Formulation: 

1) Collect historical data. 

2) Run a multi-variate linear regression on the data. 

TTFF Non-linear Formulation: 

1) Collect historical data. 

2) Group the data into similar-looking chunks. 

3) Run a multi-variate linear regression on each chunk of data. 

This one extra step immediately takes what was a linear solution that is never a true 

representation of the system but rather a global average of its dynamics and makes it something 

that can be a true representation of the system at a given point in time.  
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Beyond considering how relationships may potentially change over time, chapter 1 also 

highlights the importance of what it means for a relationship to be causal. A causal relationship 

is one in which a change in one variable induces a change in another. Thus, if X has a causal 

influence on Y then knowing the current state of X can help predict a future state of Y (note: the 

directionality stated here is reversed from how the causality test CCM is performed). The 

variables chosen for the original TTFF formulation were picked due to their hypothesized 

influence on target flows. However, after testing for causality we found that two of the variables 

(precipitation and the Zone A regulation) had little-to-no causal relationship on target flows. In 

fact, including them made predictions worse. 

Data can tell us a lot about how systems are structed and how they function. We do not 

need to rely on hypothesized relationships to build models. Rather, as shown in chapter 1, we can 

both identify which relationships are causal, and construct non-linear state-dependent models 

based entirely on what the data shows. However, building models entirely from data is a double-

edged sword: when you use data to construct models your models will be held to the same 

scaling constraints as your data. Chapter 2 explores how this plays out both in model and real-

world systems.  

Data is always confined by some scale. For example, data can be confined to some spatial 

region, a specific temporal resolution, or an aggregation across some population of individuals. 

Relationships and dynamics obtained from the data will be inherently specific to the scale of the 

data. This makes mapping system dynamics tricky especially since one system can exhibit 

dynamics across many scales. 

In figure 2.1, we construct a simple model that has three species exhibiting dynamics at 

varying temporal scales. Specifically, blue dots influence green dots at a 1-timestep scale, but 
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green dots influence blue dots at a 500-timestep scale. When the data is resolved to a 1-timestep 

resolution, no significant causal relationship is identified for green dots influencing blue dots. In 

a management setting, this could lead to potentially catastrophic outcomes: if one ran their 

causality test and found no influence of one species on another, they may deem it safe to alter or 

remove that species with no predicted influence on the other. However, there may in fact be an 

important relationship at a different scale. In this model example, when causality was measured 

at a 500-timestep scale there was a clear association between the two. 

Relationships do not only change over time – they can change across scale as well. 

Consider figure 1.5: on the y axis is the magnitude of some relationship and on the x axis there is 

time. However, imagine if the x axis was instead temporal resolution, spatial scale, or number of 

species aggregated. A similar pattern is likely to emerge: relationships that are dynamic. 

It can be daunting to quantify interactions in such a dynamic world. Tools like S-Map 

offer a broad way to scope data to only similar states – however, if your given embedding is not 

complete even similar states can evolve differently (a so-called “singularity”). Consider the 

dynamics of the nematode C. Elegans described in chapter 3. At any moment a worm foraging 

may be in a similar eigen position (similarly valued eigenworms) as a worm exhibiting an escape 

response. However, if we could know in advance to separate these two states out ahead of time, 

we could avoid this potential singularity.  

This logic is similar to that described in chapter 1 (figure 1.6) where we split river flow 

data into different states manually based on time of year, upstream and downstream water level, 

precipitation, etc. In chapter 1 however, we knew ahead of time how to separate these distinct 

states. In chapter 3 we developed a tool to separate states without knowing ahead of time which 

were distinct. This is analogous to being able to know which season’s dynamics are being 
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exhibited by the river flow without having any information about what month it currently is. 

Based on the dynamic fingerprint (the “interaction profile”), we can separate the distinct states 

directly from the data. 

Natural systems are complex because they have many interacting parts, where each 

relationship can change depending on the state. To best understand and predict systems we need 

to accurately depict these interactions among their components, considering exactly how the 

change over time (chapter 1) and change with respect to scale (chapter 2). Further, dynamic 

relationships resolved directly from data can be leveraged to improve our ability to classify 

distinct system states (chapter 3).  

In conclusion, this thesis not only challenges the traditional reliance on linear models in 

understanding natural systems but also provides a comprehensive framework for approaching 

their complexity. By embracing non-linearity, acknowledging the importance of scale, and 

utilizing data-driven insights, we can better understand, predict, and manage the dynamic and 

intricate systems that govern our natural world. This work sets the stage for future research and 

practical applications, paving the way for more effective and sustainable management of 

complex natural systems. 
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