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EPIGRAPH 
 

 

 

We are like tenant farmers chopping down the fence around our house for fuel when we should 

be using Nature's inexhaustible sources of energy – sun, wind and tide. ... I'd put my money on 

the sun and solar energy. What a source of power! I hope we don't have to wait until oil and coal 

run out before we tackle that. 

 

Thomas Edison, 1931 

 

 

 

 

 

 

I have no doubt that we will be successful in harnessing the sun's energy. If sunbeams were 

weapons of war, we would have had solar energy centuries ago. 

 

George Porter (Nobel Prize winner in Chemistry), 1973 
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 Solar energy is a promising renewable resource, but the variability of solar photovoltaic 

(PV) power due to cloud-caused fluctuations is a concern for electric grid operators. Fortunately, 

though, the relative variability of a PV powerplant will be reduced due to the geographic diversity 

within the plant. The amount of the variability reduction (VR) will depend on the geometry of the 

plant, the timescale of interest, and the local meteorological conditions. This work focuses on 

quantifying and modeling the VR in scaling up from an irradiance point sensor to a PV 

powerplant. The dependence of VR on timescale is demonstrated using high-frequency data and 

the wavelet transform. The wavelet variability model (WVM), which simulates the variability of 

a PV powerplant by estimating the VR at each timescale, is developed and validated. Inputs to the 

WVM are a point sensor irradiance timeseries, the powerplant layout, and the cloud speed. As an 

example application, the WVM is used to simulate the numbers of ramps larger than 10% of 

capacity per minute at various sizes of PV powerplants in Puerto Rico. 

.
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1. Introduction  

 Motivation 1.1.

 The sun is a colossal energy source. In one hour, enough energy is incident on the Earth 

though solar radiation as is consumed by humans in one year [1]. Capturing even a small fraction 

of this solar radiation can lead to substantial energy production. Solar photovoltaic (PV) modules 

are a simple way of converting solar radiation into electricity. Other than cost, which is being 

lowered every year and is expected to reach $1/watt by 2020 [2], the main downside to PV 

compared to conventional electric generation methods (such as coal, nuclear, or natural gas 

powerplants) is the variable nature of the power output. When clouds pass over a PV module, 

they temporarily reduce the power output. On longer timescales, additional variability is caused 

due to the sun’s movement through the sky: maximum power is produced at solar noon, and no 

power is produced at night.  

 Cloud-caused variability is especially an issue for grid-connected solar PV powerplants 

as unanticipated changes in PV plant power output can strain the electric grid. At short timescales 

(seconds), sharp changes in power output from a PV powerplant can cause local voltage flicker 

issues. At longer timescales (minutes), producing less PV power than expected can cause 

balancing issues, where load can exceed generation. PV powerplant variability can be 

counteracted by other, fast ramping generation sources (e.g., gas turbines) and by storage systems 

(e.g., batteries), but both are quite expensive and substantially increase the cost of PV 

powerplants. Fortunately, though, geographic diversity leads to a reduction in the variability of 

PV powerplant output. The amount of the reduction in variability due to geographic smoothing 

depends on plant layout, timescale of interest, and meteorological conditions, but can be quite 

significant.  
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 Background 1.2.

 Solar radiation reaching the Earth’s surface can be broken down into 3 components: 

direct or beam radiation ( ) which is radiation directly from the sun, diffuse radiation ( ) which 

is scattered by clouds and atmospheric gases and particles, and reflected radiation (  ) which is 

reflected off of the ground. The sum of all three forms of radiation is the global irradiance, 

         .    is a function of tilt and azimuth angle, and so  GI reaching a PV panel or 

irradiance sensor depends on its orientation. GI is typically measured in units of W m
-2

. If an 

irradiance sensor is mounted horizontal, then it is said to be measuring global horizontal 

irradiance (GHI). If the sensor is tilted, then it is said to be measuring plane of array (POA) 

irradiance. Typically, POA irradiance measurements exist at solar PV powerplants and at the 

same orientation as the PV modules. 

 For variability applications, the power output of the areal aggregate of an entire PV plant, 

    , is the quantity of interest. Power output measurements are difficult to obtain because most 

PV plant operators consider this information proprietary. Irradiance measurements are much more 

common and easily available. Power output of PV modules can be approximated from the GI 

incident on those modules. POA irradiance measured at the 1.2 MW PV plant in Lanai, HI was 

found to be nearly linearly proportional to power output [3]. The slight non-linearity is mostly 

due to temperature effects, as conversion efficiency slightly decreases with increasing 

temperature: approximately 0.5% per ºC change in temperature for silicon modules. Highly 

detailed irradiance to power models which account for all the non-linear effects (such as [4]) can 

be used, but are generally unnecessary for variability applications. At timescales of interest to 

variability studies, changes in power output are dominated by changes in irradiance, and hence 

the variability of solar irradiance can be used as a proxy for the variability of solar power.  

 Inherent in all irradiance and power output timeseries are seasonal and diurnal cycles 

relating to changes in the Earth-Sun position and atmospheric effects. However, these occur over 
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long timescales and can be counteracted by slower ramping and hence cheaper ancillary power 

sources. In order to isolate short term, cloud-caused effects, a normalized irradiance called the 

clear-sky index (  ) is used.    is the GI (either GHI or POA) divided by the clear-sky GI 

expected at the Earth’s surface, taking into account the climatological atmospheric transmissivity 

and turbidity. Clear-sky values can exceed 1 due to cloud enhancement (Fig. 1.1). The clear-sky 

index is essential when applying the wavelet transform (Chapter 4), and is a non-dimensional 

value that allows for easy comparison and conversion between irradiance and power (Chapter 5). 

 

Fig. 1.1: Measured GHI and clear-sky modeled GHIskc (top) and clear-sky index    (bottom) on September 

1, 2012 at the University of Puerto Rico, Mayaguez. The clear-sky GHI and clear-sky index were only 

calculated for times when the sun was more than 10° above the horizon.  

 For quantifying solar variability, ramp rate (RR) statistics are the most common and 

practically relevant quantities. RRs are of interest to PV plant and electric grid operators as 

extreme changes in power output impact electric grid operations disproportionately. RRs are 
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calculated by differencing values of a solar timeseries and dividing by the timescale. For 

example, GHI RRs are: 

The timestep,   , is important to define. RRs calculated at short timesteps will, on average, be 

smaller than RRs at longer timesteps, as they have had less time to deviate from the previous 

value. Many works have presented RRs at 5-minute, 15-minute, or 1-hour timesteps, often 

because those were the highest temporal resolution data available at the time (e.g., Chapter 2). 

Recently, higher-resolution data become available and showed that 1-second RRs will have quite 

different statistics than 1-minute or 1-hour RRs (Chapter 4). 

 RRs are also often calculated for the power output of a PV system. We substitute in 

power, P, for GHI in Eq. 1.1 to calculate RRs of power output:  

 For comparison between PV systems, power RRs can be normalized by the capacity of 

installed PV, creating relative RRs (rRRs) that are the changes relative to fraction of installed 

capacity:  

Due to geographic smoothing, rRRs are usually smaller at larger PV plants than at small ones. 

However, RRs are almost always larger for large PV plants, even if they benefit from a greater 

amount of geographic smoothing than smaller plants. For example, a 5MW plant experiencing a 

1MW RR and a 10MW experiencing a 2MW RR will both have the same         . For a 

further discussion of rRRs, see [5]. 

     
      

 

  
(∑        

  ∑     
    ). 1.1 

   
      

 

  
(∑      

  ∑   
    ). 1.2 

    
   

   
  

                        
. 

1.3 
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 To quantify the reduction in variability achieved over a PV system, we define the 

variability reduction (VR) as the ratio of variability at a point to variability of the aggregate PV 

system: 

    ̅  
                       

                    
. 1.4 

Variability in this case can refer to any relative variability metric: maximum rRRs, average rRRs, 

or wavelet power contents. Since the variability at the point sensor will always be equal to or 

greater than the variability of the aggregate system,     . Larger values of VR indicate more 

geographic smoothing. At short timescales, we expect VR to be large, as short-timescale 

fluctuations are strongly damped by geographic smoothing. At longer timescales, though, VR will 

approach 1. On fully clear days, the VR has no meaning since both the point sensor and the whole 

PV system will have a clear, smooth profile. 

 Summary and Discussion of Chapters 1.3.

 The chapters in this thesis focus on examining and modeling the variability reduction 

(VR) in PV powerplants due to geographic smoothing. The chapters follow the progression of the 

PhD research: early chapters focus on analyzing and modeling factors that affect solar variability 

while the later chapters present a model for simulating PV powerplant variability.  

 In Chapter 2, the VR due to geographic smoothing is quantified through the aggregation 

of 5-minute global horizontal irradiance (GHI) data of four sites spread across the state of 

Colorado. This chapter presented a suite of tools required to analyze solar radiation timeseries. It 

focuses on ramp rate (RR) statistics and the geographic smoothing of four sites spread far apart 

(100s of km). Coherence spectra are presented and allow for the estimation of the timescale of 

decorrelation, and Fourier decompositions show the decrease in high-frequency power content for 

the average of all four sites. While this paper serves as solid evidence of geographic smoothing, 

the analysis tools were improved in future works. Most importantly, the wavelet decomposition 

was adopted (e.g., in Chapter 4) in place of the Fourier decomposition and coherence spectra. The 
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wavelet decomposition allows for temporal resolution of fluctuations and a wavelet shape can be 

chosen that better fits solar fluctuations than the sine wave used in the Fourier decomposition. 

Future works focused on powerplant or feeder-scale variability (a few kilometers), and shorter 

timescales (1-second), which are more applicable to current electric grid concerns.  

 Chapter 3 models the relationship between GHI and plane of array (POA) irradiance for a 

tilted PV module. This relationship is important when simulating the power output of PV 

powerplants, and is used in the wavelet variability model (Chapter 5). Power produced by a PV 

module is almost linearly proportional to the GI incident on that module. PV powerplants almost 

always have south-tilted PV modules and sometimes have tracking modules, yet irradiance 

sensors are often mounted horizontal and measure GHI. To simulate power output of a PV 

module, these GHI measurements much be converted to POA using the model described in this 

chapter. An additional interesting use of this GHI to POA model is that it can be used to 

determine the optimum orientation of a PV module by comparing the incident irradiance at all 

possible orientations. These optimal orientations, as well as the benefits of tracking over optimal 

orientation, are shown in the figures of Chapter 3.  

 Wavelet analysis is applied to high-frequency irradiance data in Chapter 4. The top hat 

wavelet is chosen because its shape closely resembles a fluctuation in solar irradiance due to a 

cloud passing over. 1-second GHI data measured on the UCSD campus is used to compute the 

power content of wavelet fluctuations at each timescale. While this is fundamentally similar to 

the Fourier transform, the wavelet transform is both a better fit to solar fluctuations due to the top 

hat shape and allows for a temporal resolution of fluctuations (i.e., when they occur during the 

day). The power contents show that the VR is a function of timescale, which is especially 

important at short timescales where the VR can change significantly. The command of the 

wavelet transform for solar variability applications developed in this chapter served as a major 

stepping stone towards creation of the wavelet variability model presented in Chapter 5. 
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 Chapter 5 presents the wavelet variability model (WVM), which directly addresses the 

issue of estimating the impact of PV powerplants to the electric grid. The WVM is a model for 

simulating solar PV powerplant output given a single irradiance point sensor as input. The WVM 

takes advantage of the temporal resolution of wavelet fluctuations seen in Chapter 4. The wavelet 

transform of the input irradiance point sensor is found, and then scaled by the VR. Through an 

inverse wavelet transform, the PV powerplant output is simulated. The VR is modeled using an 

equation that estimates correlations between pairs of PV modules in the powerplant, taking into 

account the distance between the modules, the timescale, and the meteorological conditions. The 

WVM is advanced compared to most other models in its ability to account for different 

smoothing at different timescales (through use of the wavelet transform) and in its ability to 

account for varying meteorological conditions day-by-day. In Chapter 6 the meteorological 

impacts are further studied, and it is found that cloud speed is the dominant daily-changing factor 

in scaling the VR over a powerplant. 

 Chapter 6 builds upon the WVM presented in Chapter 5 by adding cloud speeds into the 

model. The WVM as described in Chapter 5 required an irradiance sensor network to resolve the 

daily meteorological conditions at the PV powerplant location to be simulated, but the cloud 

speed method eliminates that requirement. A simple cloud simulator is used to determine the 

effect of cloud size and cloud speed and to further test the correlation model used in the WVM. 

Cloud speed is found to be the dominant scaling factor, and cloud size does not have a noticeable 

influence except in extreme cases of very small clouds. By coupling cloud speeds obtained from 

numerical weather prediction with the WVM, the WVM can now be run for any location within 

the numerical weather forecast domain with only a single irradiance point sensor as input (no 

further meteorological conditions are required). This should have a profound impact in making 

the WVM easier to use.  
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 The WVM has already found many applications. Through an internship with Sandia 

National Laboratories, the WVM has been to create realistic inputs to grid integration studies, 

mostly focusing on feeder-level effects. For example, the impact of adding PV to three different 

feeders in Utah was studied to determine the effect on voltage and tap changer use [6, 7], and the 

WVM was used to convert the available point sensor irradiance into simulated PV plant output. 

The WVM has also been used to simulate yet-to-be built PV plants for an estimation of their 

variability to allow for proper storage procurement and compliance with variability requirements. 

This has been especially important in Puerto Rico, where the Puerto Rico Electric Power 

Authority (PREPA) has instituted a requirement that all PV plants on the island must not produce 

changes in power output (RRs) greater than 10% per minute. With only PV plant layout, power 

capacity, and an input irradiance timeseries as inputs, the WVM can be used to estimate the 

number of times per day that 10% per minute RRs will occur. This can be of great help for 

prospective PV plants.  
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2. Solar Variability of Four Sites across the State of Colorado 

Reprinted from Renewable Energy, Volume 35, Issue 12, Matthew Lave, Jan Kleissl, “Solar 

variability of four sites across the state of Colorado,” Copyright 2010, with permission from 

Elsevier 

 

 

Abstract 

 Solar Global Horizontal Irradiance (GHI) fluctuates on both short (seconds to hours) and 

long (days to months) time scales leading to variability of power produced by solar photovoltaic 

(PV) systems. Under a high PV penetration scenario, fluctuations on short time scales may 

require a supplementary spinning power source that can be ramped quickly, adding significant 

external cost to PV operation. In order to examine the smoothing effect of geographically 

distributed PV sites, GHI timeseries at 5 minute resolution at four sites across the state of 

Colorado were analyzed. GHI at the four sites was found to be correlated due to synchronous 

changes in the solar zenith angle. However, coherence analysis showed that the sites became 

uncorrelated on time scales shorter than 3 hours, resulting in smoother average output at short 

time scales. Likewise, extreme ramp rates were eliminated and the spread in ramp rate magnitude 

was significantly reduced when all four sites were averaged. Nevertheless, even for the averaged 

output, high frequency fluctuations in PV power output are relatively larger in magnitude than 

fluctuations expected from wind turbines. Our results allow estimation of the ancillary services 

required to operate distributed PV sites. 

 Introduction 2.1.

 Over the past few years, there has been an increasing interest in harnessing renewable 

energy sources such as wind and solar power as a supplement to, or replacement for, current 

carbon-based power sources. However, at high grid penetration, the variability of these renewable 

sources has the potential to affect grid reliability and energy cost. Wind power has thus far been 

the more popular technology for large scale implementation, with about 121 GW of wind power 
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installed across the world at the end of 2008 [1]. In areas where a large percentage of the power is 

provided by wind, fast-ramping of other power sources has been used to counteract wind 

variability [2]. 

 In comparison to wind power, installed solar photovoltaic (PV) power capacity was 

relatively small, with only about 13 GW at the end of 2008 [1]. However, PV installation has 

increased rapidly over the past few years. Since 2002, PV power capacity has increased 48% per 

year, on average, and is expected to continue to be the fastest growing energy technology in the 

world [3].
 
Since PV is growing so quickly, it is pertinent to study high-penetration scenarios.  

 Geographically dispersing wind power sites is an effective way of reducing wind 

variability, as power production at different sites typically becomes uncorrelated over a few 100 

km [4-6]. In Northern Europe wind power supply from sites more than 1500 km apart is 

uncorrelated [7]. When aggregated, the output of 1496 widely spread wind turbines in Germany 

showed maximum variations of 60% in 4 hours. Similarly, one would expect that geographic 

dispersion of solar energy production sites could mitigate solar variability caused by atmospheric 

transmissivity changes in short timescales (clouds), while being largely ineffective in mitigation 

of the day-night-solar variability. 

 Analyzing a month of 1 minute radiation data from 11 sites over 75 x 75 km in 

Wisconsin (a mid-latitude frontal weather regime), Long and Ackerman (1995) determined the 

correlation of Global Horizontal Irradiance (GHI) and GHI normalized by clear sky radiation [8]. 

As expected, the correlation coefficients were smaller for the normalized value, as the 

synchronized occurrence of rising and setting sun at all stations contributes significantly to a high 

correlation. Large day-to-day differences in correlations were observed indicating limitations for 

average statistics in describing or modeling insolation. Moreover, for individual days – especially 

overcast days – there was significant scatter in the correlation versus distance plots for all stations 

pairs indicating that atmospheric transmissivity is not an isotropic process. Barnett et al. (1998) 
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used Oklahoma Mesonet data from 111 GHI sensors to define spatial correlograms [9]. 

Subtracting out the diurnal signal, they found that characteristic length and time scales (i.e. the 

distances and time differences at which correlation goes to zero) were 300 km and 60 minutes, 

respectively. Curtright and Apt (2008) examined three PV sites spread across hundreds of 

kilometers in the state of Arizona and found a reduction in average 10 minute step size magnitude 

and in standard deviation for the sum of all three sites [10]. However, they also found that short 

timescale variability of large-scale PV power was still significant and that the geographical 

diversity did not dampen PV variability enough to eliminate the need for substantial supplemental 

power sources. Wiemken et al. (2001) studied 100 PV systems spread across Germany, and also 

found a decrease in average step size magnitude and standard deviation for the sum of all 

systems, but did not present timescale variability analysis [11]. 

 In this paper we study the variability of measured GHI at four different sites across the 

state of Colorado. This choice is motivated by the fact that the greatest spatial density of 1 to 5 

minute resolution irradiance data exists in Colorado. Topographical and meteorological 

differences between Wisconsin, Oklahoma, Arizona and Colorado also warrant the analysis of 

variability over different regions. The sharper terrain difference across these Colorado sites may 

lead to more varied weather patterns and increased geographic variation. Moreover, we extend 

the existing literature by analyzing shorter time scales (5 minute) and examining coherence 

between the sites and its effect on smoothing average output at different time scales through 

spectral analysis. 

 Data 2.2.

 While ultimately PV array power output is the relevant variable for variability analysis, 

90% of the variability in PV output is explained by variability in GHI. Consequently, here we 

assume that solar radiation is proportional to PV power output and we use radiant flux density (W 

m
-2

) rather than power for this analysis, neglecting the influence of PV panel temperature on 
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panel efficiency. Furthermore, while variability analysis of PV output is more practically 

relevant, these studies are not as representative, since they depend on the system specifications, 

and there is generally less publicly available time-resolved data for PV output. 

 GHI data were obtained from the National Renewable Energy Laboratory’s (NREL) 

Measurement and Instrumentation Data Center (MIDC) [12]. Sites were chosen which were 

within a few hundred kilometers of one another such that they would typically feed into one 

utility grid, and had complete data for Jan 1, 2008 – Dec 31, 2008. Four sites fit these criteria: the 

National Wind Technology Center (NWTC), the NREL Solar Radiation Research Laboratory 

(SRRL), the South Park Mountain Data (SPMD), and the Xcel Energy Comache Station (XCEL, 

Fig. 2.1). The distances between sites are shown in Table 2.1. The NWTC site has an Eppley 

Laboratory, Inc. Precision Spectral Pyranometer, SRRL data were collected using a Kipp and 

Zonen CMP 22 pyranometer, and the XCEL site uses a LICOR LI-200 silicon Pyranometer. All 

sites had data at 1 minute resolution except for SPMD where a LI-200 was operated at five 

minute temporal resolution. 

 

Fig. 2.1: The sites used for this study on a terrain map with elevations in meters: National Wind 

Technology Center (NWTC), Solar Radiation Research Laboratory (SRRL), South Park Mountain Data 

(SPMD), and Xcel Energy Comanche Station (XCEL). Map © 2010 Google - Map Data © 2010 Google 
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Table 2.1: Distance between sites. 

From To Distance 

NWTC SRRL 19 km 

NWTC SPMD 78 km 

NWTC XCEL 197 km 

SRRL SPMD 65 km 

SRRL XCEL 178 km 

SPMD XCEL 149 km 

 Although a greater geographical wealth of solar radiation data is available through 

NREL’s National Solar Radiation Database (NSRDB), these data are only recorded once per 

hour, and much of it is not based on GHI measurements. Using one hour resolution, even if it is 

an average of data collected at shorter intervals, will filter out the shorter time-scale 

intermittencies that produce the largest ramp rates (RRs). For example, large RRs caused by 

clouds occur on scales of seconds to ten minutes. Fig. 2.2 illustrates the difference in RRs 

between hourly data and one or five minute data, which is the motivation for using the unique 

collocation of highly time resolved data in Colorado in this paper.  

 

Fig. 2.2: Comparison of original 1 minute GHI data, with 5 minute and 60 minute  averages for SRRL on 

April 2, 2008.  

 Visual examination of the timeseries revealed that SPMD tends to be shaded in the 

morning due to high surrounding terrain. This variability is naturally occurring (i.e. it would be 
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the same for a PV array at the same site), but was eliminated from the dataset by filtering out data 

at large solar zenith angles (SZAs). We also found that NWTC seems to be shaded at several 

times of the day, especially around 1400 MST. This unexplained shading in NWTC was difficult 

to correct for and the realization of the shading will be further discussed in the results section.  

 Methods 2.3.

2.3.1. Data Quality Control 

 Since this paper does not attempt an assessment of the mean solar resource, but an 

analysis of the variability in GHI, slight sensor differences in offset and/or gain will not have a 

significant effect on our results. Nevertheless, we calibrated the sites against each other on clear 

days in the region, when they are expected to be similar given the small variability of atmospheric 

composition over short distances. The SRRL site is maintained daily by trained NREL staff and is 

considered to have the best data. Therefore, the NWTC and XCEL data were corrected using a 

linear regression against SRRL on nine clear days (Jan 13, Mar 3, Apr 14, Jun 14, Jul 13, Aug 28, 

Sep 16, Nov 19, Dec 25). The SPMD site was not corrected since higher clear sky atmospheric 

transmissivity associated with its high elevation (expected transmissivity of about 81% versus 

79% for the other sites) would result in a different clear sky GHI.  

 A linear regression of GHI(SRRL) = A GHI(site X) + B was applied. The regression 

constants A and B for the XCEL site were nearly constant throughout the year, so an overall 

linear fit of all nine clear days was applied. The regression constants for NWTC showed a 

seasonal variation. Consequently, interpolated (time dependent) slopes and intercepts based on 

regressions from the nine clear days were used. The variability in the regression coefficients is an 

indication of differences in the cosine response of the sensors or of a sensor that is not leveled 

properly. While this will affect the average and seasonality of the mean solar resource, it has little 

influence on short-term RRs analyzed in this study. 



15 

 

 

 

 The largest intercept from all regressions was B = 59.79 W m
-2

, so all GHI less than 60 

W m
-2 

were eliminated in the dataset. In this way, data near sunrise and sunset, which are prone to 

topographic shading effects and have little relevance in practice since power output is small and 

large RRs do not occur, are removed from the dataset. We stress that more advanced corrections 

(such as dependent on SZA) could be applied, but natural variability in airmass between sites and 

the objective of quantifying variability means the added value of such corrections is small. 

2.3.2. Spatial and Temporal Correlation 

 To test the smoothing effect of geographic dispersion, a fifth virtual site, called average 

(AVG4), was defined as the average GHI of all four sites. Due to SPMD only having five minute 

temporal resolution, the average is comprised of the 5 minute averages of NWTC, SRRL, and 

XCEL, combined with the SPMD data.  

 For utilities and independent system operators, frequency of occurrence and magnitude of 

RRs of renewable power sources are the critical quantity of interest. A probability distribution 

function (pdf) can be used to compare the probabilities of different RR for the individual sites and 

for the average of all four sites. Five minute, daytime only (defined as GHI greater than 60 W m
-

2
) data were used for all sites. Ramps occur naturally throughout the day with changes in the 

SZA. However, since these ramps are predictable they are of lesser concern and were removed 

from the analysis. Expected clear-sky irradiance (SKC) was calculated using standard 

astronomical formulae and assuming that clear sky atmospheric transmissivity is (          

           ), where Z is station elevation in meters. SKC was subtracted from the GHI at each 

site, such that the remaining value was variation from expected irradiance. The RRs of these 

variations were calculated as the difference between successive data points over five minutes, 

using the equation RR = [GHI(t) - SKC(t) – GHI(t-5min) + SKC(t-5min)] / 5 min, given in units 

of W m
-2 

min
-1

. 
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 Power Spectral Density (PSD) analysis provides insight into how much of the variability 

in GHI can be explained by events at different frequencies such as daily and seasonal cycles in 

SZA, as well as variations in atmospheric transmissivity due to meteorological events such as 

cloud cover which occur over a range of frequencies. PSD analysis gives an indication of the 

amount of complementary ancillary services necessary to counteract variability at different 

frequencies. The larger the PSD, the larger the variance in power output and the larger the 

required rampable (conventional) power sources to make up for the difference.  Low frequency 

oscillations, which may be due to daily or even seasonal cycles, can be supplemented with rather 

constant power sources such as traditional large power plants. High frequency oscillations are 

more challenging and must be supplemented with faster ramping power sources. 

 To test for overall correlation the Pearson correlation coefficient was calculated between 

the GHI time series at different sites. Due to the synchronized SZA variations at different sites in 

the same region, the correlation coefficients are usually close to one. Nevertheless, the smaller the 

correlation coefficient, the more smoothing would be expected (a correlation coefficient of -1 

would indicate perfect smoothing of the aggregate power output of two sites). A better measure 

for correlation on shorter timescales, which is more important for smoothing the extreme ramp 

rates, is the coherence spectrum [13]. The coherence spectrum provides a normalized covariance 

at each frequency, allowing analysis of correlation at short timescales. Since long timescales 

(seasonal cycles, synoptic weather patterns, and daily cycles) affect all our sites in the same way, 

the coherence spectrum between any two sites is expected to have a value close to 1. On shorter 

timescales, the coherence spectrum indicates how correlated intra-day events such as transient 

clouds or mesoscale weather systems are between two sites. The timescale at which sites become 

uncorrelated is an indication of the longest timescale on which they will dampen aggregate 

variability. 
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 Results 2.4.

2.4.1. Ramp Rates 

 In the tables and figures referenced in this section the values for AVG4 are given 

throughout. However, we will wait to discuss these in a coherent fashion at the end of this 

section. The average and maxima of the magnitude of RRs for each site are shown in Table 2.2. 

With an average RR magnitude of 9.9 W m
-2

 min
-1

 SPMD had the largest, while XCEL had the 

smallest at 6.2 W m
-2

 min
-1

. The maximum RRs are very similar for all sites. Since the mean 

absolute value of the RR is already a measure of the RR variability, the standard deviation of the 

RR (not the absolute value) is expected to give qualitatively similar results as is confirmed in 

Table 2.2. However, the kurtosis (the 4
th
 moment normalized by the 2

nd
 moment squared) weights 

extreme RR events higher. The fact that SPMD had the smallest kurtosis and largest standard 

deviation suggests that medium sized RRs were common, but extreme RRs were rarer than at the 

other three sites. The XCEL site had the lowest standard deviation but the highest kurtosis. 

Sensor shading would produce more extreme RRs, so the fact that the NWTC kurtosis is similar 

to SRRL and the standard deviations were equal indicates that shading likely was not a significant 

contributor to the variability at the site. Generally the kurtosis is much larger than 3 (the value 

expected for a Gaussian distribution) indicating the prevalence of extreme events (or large RR) in 

the distribution. 

Table 2.2: Five minute ramp rate statistics for daytime GHI in 2008 

 Mean(|RR|) 

[W m
-2

 min
-1

] 

Max(|RR|) 

[W m
-2

 min
-1

] 

Std(RR) 

[W m
-2

 min
-1

] 

Kurtosis(RR) 

[–] 

NWTC 7.4 178.6 16.8 21.3 

SRRL 7.4 160.8 16.8 20.6 

SPMD 9.9 188.6 21.8 17.7 

XCEL 6.2 163.7 14.9 23.8 

AVG4 5.6 111.8 10.8 15.4 

 The probability density (pdf) of RRs is shown in Fig. 2.3. Consistent with the standard 

deviations found previously, the pdf of SPMD is the widest, indicating higher probabilities of 
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large RRs. The XCEL site has the most narrow pdf, meaning it is the least likely to have a large 

RR. 

 

Fig. 2.3: Probability density function (pdf) of the ramp rates of NWTC, SRRL, SPMD, XCEL sites and the 

average of all four sites (AVG4) for 5 minute GHI-SKC data.  

 The cumulative density (cdf) of the absolute value of RR for each site is shown in Fig. 

2.4. From the cdf, one can read the probability of RRs larger than a threshold. For the XCEL site, 

there is a 5% chance that RRs will be larger in magnitude than 31 W m
-2

 min
-1

. At both NWTC 

and SRRL, there is a 5% chance of a RR with magnitude 36 W m
-2

 min
-1

 or larger. Again, SPMD 

shows the highest propensity to large RRs. There is a 5% chance that a RR at SPMD is larger 

than 49 W m
-2

 min
-1

 in magnitude. Given our 5 minute timestep and an average length of day of 

10.7 hours, an event with a 5% chance occurs on average about 6 times per day. 
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Fig. 2.4 : Cumulative probability distribution function (cdf) of the absolute value of GHI-SKC ramp rate 

over five minutes for NWTC, SRRL, SPMD, XCEL and their average. (a) Entire cdf; (b) Zoom in to the 

‘knee’ of the graph showing the probability of medium to large RRs. The black horizontal line shows 

P=0.95 and intersects with this line are labeled with the RR magnitude which is exceeded 5% of the time. 

2.4.2. Power spectral analysis 

 The power spectrum for all sites calculated for the entire year 2008 is shown in Fig. 2.5. 

In all four spectra, the largest peak appears at a frequency of 1.16 x 10
-5

 Hz, which corresponds to 

a period of 24 hours. This is expected due to cyclic daily availability of the SZA. Longer period 

cycles corresponding to variability over days to months also show a large PSD due to weather 

patterns and the seasonal variability of the SZA [10]. The higher frequency (f > 2 x 10
-3

 Hz) 

variations are dominated by atmospheric transmissivity changes by clouds. Generally, the PSD 

decreases with increasing frequency, but the rate of decrease varies from site to site.   
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Fig. 2.5: Power spectral density of (a) NWTC (b) SRRL and AVG4 (c) SPMD, and (d) XCEL for 2008 

using 5 minute averaged GHI data. The yellow line is the linear best fit line for time scales less than 1-hour. 

(b) The blue line is the linear best fit line for time scales less than 1-hour for AVG4.  

 To quantify this decrease in variability as a function of frequency at each site, linear fits 

for periods of less than 1 hour, 1-3 hours, and 3-11 hours are shown in Table 2.3. The SRRL site 

consistently had a steeper slope compared to the other sites. For periods less than one hour, the 

slopes ranged from -1.559 (SRRL) to -1.392 (SPMD). At 1-3 hours, SRRL again had the steepest 

slope of -1.477, but all the others had flatter slopes than for periods less than 1 hour. For 3-11 

hours, the SRRL, NWTC, and XCEL slopes were -1.432, -1.452, and -1.509, respectively, but the 

SPMD slope was even flatter than in the other period ranges, at only -0.981.The ratios of the 

integrals of the PSD over periods shorter than one hour to the total integral over all periods (i.e., 

the fractions of total variance contained in the high frequencies) are also shown in Table 2.3 (2
nd

 

to last column). XCEL had the smallest ratio of high frequency oscillations, which suggests it has 

relatively more variability on long time scales. NWTC and SRRL had smaller integral ratios than 

SPMD, suggesting more high frequency forcing such as clouds at SPMD than at the other sites. 
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This is also consistent with the flatter slope at SPMD for f > 1 / 3 hr
-1 

and the width of the pdf in 

Fig. 2.3. 

Table 2.3: Statistics on the PSDs in Fig. 5. Columns 2-5 give linear regressions in a log-log plot, where 

the exponent of f is the slope. Column 6 is the fraction of the total variance contained in time scales 

less than 1 hour. Column 7 is the mean PSD intensity for timescales less than 1 hour. 

 Linear 

regression for 

periods less 

than 1-hour 

Linear 

regression 

for periods 

of 1-3 hours 

Linear 

regression 

for periods 

of 3-11 

hours 

Linear 

regression 

for all 

periods 

∫    
       

∫    
     

 
< PSD |        > 

[W
2
 m

-4
 s] 

NWTC 10
-6.275

f
-1.488

 10
-4.918

f
-1.115

 10
-6.297

f
-1.452

 10
-5.857

f
-1.352

 0.0244 0.0448 

SRRL 10
-6.500

f
-1.559

 10
-6.301

f
-1.477

 10
-6.186

f
-1.432

 10
-5.954

f
-1.380

 0.0224 0.0437 

SPMD 10
-5.780

f
-1.392

 10
-5.323

f
-1.256

 10
-4.182

f
-0.981 

10
-5.333

f
-1.247

 0.0325 0.0684 

XCEL 10
-6.272

f
-1.451

 10
-4.888

f
-1.057

 10
-6.640

f
-1.509

 10
-5.896

f
-1.328

 0.0160 0.0337 

AVG4 10
-6.724

f
-1.448

 10
-6.617

f
-1.408

 10
-8.002

f
-1.757 

10
-6.674

f
-1.432

 0.0064 0.0117 

2.4.3. Correlation coefficients and coherence spectrum 

 After discussing variability at each site, we will now compare the sites to one another to 

see if geographic dispersion can mitigate solar variability. The Pearson correlation of GHI and 

GHI-SKC at each of the sites increases with geographic proximity of the sites (Table 2.4). NWTC 

and SRRL show the strongest correlation due to their geographical proximity. The XCEL and 

SPMD sites show smaller correlations to the other two sites probably due to their large 

geographic distance (XCEL) and higher altitude (SPMD). Mountain ranges may act as natural 

barriers to cloud motion. GHI-SKC indicates the deviation of GHI from an expected value (SKC), 

so correlation of GHI-SKC is a better measure of ability to dampen variability on short time 

scales. As seasonal and diurnal cycles are taken out, the correlation coefficients for GHI-SKC 

decrease substantially (especially for distant sites) and become similar to the coherence at small 

time scales (Fig. 6). The weaker correlation of XCEL and SPMD to the other sites  implies that 

integrating the XCEL and SPMD sites into the same grid as SRRL and NWTC will dampen 

fluctuations in solar power output of the average of all sites. 
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Table 2.4: Correlation coefficient between the sites for both GHI and GHI-SKC for daylight hours 

over the year 2008.  

 NWTC SRRL SPMD XCEL 

 GHI GHI-

SKC 

GHI GHI-

SKC 

GHI GHI-

SKC 

GHI GHI-

SKC 

NWTC X X 0.827 0.636 0.659 0.361 0.706 0.300 

SRRL 0.827 0.636 X X 0.658 0.365 0.706 0.306 

SPMD 0.659 0.361 0.658 0.365 X X 0.658 0.273 

XCEL 0.706 0.300 0.706 0.306 0.658 0.273 X X 

 The coherence of each of the four sites with the other sites is shown in Fig. 2.6. Generally 

the correlation between sites is highest for seasonal changes (about 0.8). Then, the correlation 

decreases with decreasing time scale but remains large including peaks at periods of 24 and 12 

hours. A reduction in coherence is observed at a period of 2 days, which may indicate a 

decorrelation due to atmospheric transmissivity differences caused by different weather patterns 

or aerosol absorption. NWTC and SRRL again show the highest correlation, but only for 

timescales longer than three hours. For periods shorter than 12 hours (three hours for SRRL-

NWTC), all sites have similar coherences of about 0.2, showing less correlated variation over 

short time scales. Consequently, when combined, the four sites are expected to smooth the 

averaged output on time scales shorter than 12 hours.  
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Fig. 2.6 : Coherence spectrum between GHI for each pair of sites for 2008. 

2.4.4. Averaged output from all sites 

 The GHI timeseries sample (Fig. 2.7) showed that while each individual site fluctuates 

significantly over these two days, the average of all four sites has much smaller fluctuations. This 

confirms anecdotally that averaging geographically separated sites will lead to a smoother output. 
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Fig. 2.7: Five minute GHI data at NWTC, SRRL, SPMD, XCEL and their average over June 10th and 11th, 

2008, with values less than 60 W m-2 filtered out.  

 

 RR analysis of the average site confirms this effect (Table 2.2). There is a decrease in 

mean magnitude, maximum magnitude, standard deviation, and kurtosis for the AVG4 site over 

each of the individual sites. Particularly of note are the standard deviation and kurtosis, 

suggesting few extreme RRs. Fig. 2.3 confirms that the tails of the AVG4 pdf go to zero at a 

lower RR than the individual sites, indicating a lower probability of extreme RRs for AVG4. 

Based on the AVG4 cdf there was a 5% probability that the magnitude of the RR would be 

greater than 24 W m
-2

 min
-1

 (Fig. 2.4). This was less than half the RR found for the SPMD site 

alone. 

 While RR analysis has demonstrated a reduction in magnitude of RR of averaged 

irradiances from four sites, a power spectral analysis allows quantifying the time scales over 

which most of the reduction in RR occurs (Fig. 2.5b). The amplitude of the AVG4 PSD was 

smaller than the SRRL PSD for nearly all time scales. The PSD of AVG4 became visibly smaller 

than the individual sites for f > 2 x 10
-6

 Hz (5.8 days) and the ratio (as indicated by the vertical 
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distance on the log scale) became largest and remained constant for f > 1 x 10
-4

 Hz (2.8 h). This 

was consistent with the shortest period of high correlation observed for SRRL and NWTC in Fig. 

2.6. Linear best fit lines and integral ratios of the PSD at the AVG4 site had consistent, steep 

slopes over all three period ranges that were close to the steepest slopes of any of the individual 

sites, indicating a strong reduction of high-frequency variability for AVG4. It should also be 

noted that the offset of the linear fit for the AVG4 site was the smallest for all three period ranges, 

which made the amplitude of variation of the AVG4 site on short timescales smaller than any of 

the other sites. For variability at periods shorter than 1 hour, the relative variance was less than 

half the relative variance at XCEL (the site with the least variability) and the mean PSD was less 

than a third the XCEL mean, indicating a significant decrease in high frequency variability when 

all four sites were averaged together.  

 Discussion 2.5.

 Overall, a significant smoothing effect was observed when the averaged solar irradiance 

at four solar sites across Colorado is compared to the individual sites. RR analysis showed a 

significant decrease in the mean RR magnitude, maximum RR magnitude, standard deviation, 

and kurtosis of the average compared to each site individually, consistent with previous work [10, 

11]. Both the pdf and cdf of RRs indicated that the average of all four sites is less likely to have 

large fluctuations than each of the other sites individually. There was a 23-51% decrease in the 

RR that has a 5% probability of occurring for AVG4. This will mean smaller RRs and less 

uncertainty in operating the grid resulting in a reduced need for the procurement of expensive 

ancillary services or spinning reserve. 

 The variability of solar radiation over short timescales also decreased significantly for the 

averaged irradiance. Power spectral density analysis showed an overall slope of 
43.1f  for the 

average, while the individual sites ranged from 
38.1f  to 

25.1f   These were all consistent with 
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slopes for solar spectra, such as those found by Curtright and Apt of 
3.1f  

for periods down to 10 

minutes. However, these slopes were larger than the Kolmogorov spectrum (
3/5f ) expected for 

wind turbines and found by Apt (2007) and others [14]. PSD analysis showed significant 

decreases in the mean PSD intensity at frequencies corresponding to periods shorter than one 

hour and the ratio of high frequency oscillations to all oscillations. This drop-off of high 

frequency oscillations was consistent with Nanahara et al.'s (2004) findings for distributed wind 

turbine sites [15]. The average reduced high frequency fluctuations, but did not eliminate them. 

High frequency fluctuations in PV power output could be a problem because they require another 

power source to change its output at high frequencies in order to compensate. 

 High frequency variability could be reduced even further by increasing the number of and 

geographic dispersion between sites. For example, high correlation was found in GHI between 

NWTC and SRRL which are only 19 km apart. Coherence analysis showed that NWTC and 

SRRL were highly correlated in GHI for timescales longer than three hours, but become nearly 

uncorrelated for timescales less than three hours. Consequently while variability on large time 

scales will not decrease significantly by adding more sites, additional sites even if only a few km 

apart will decrease the short term variability.   

 As PV penetration into electricity grids increases, it is important to consider the 

variability, capacity factors, and peak shaving potential of PV, including the effect energy storage 

can have on the power output from PV systems.  The appendix lists a simple analysis performed 

for the state of Colorado of the potential of PV to match the load. 
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Appendix: PV Power Production vs. Load 

 Another important consideration of solar energy is how the power produced will 

correspond to the load. DOE electric energy use data for the state of Colorado for 2007 shows 

that Colorado's net generation was 53,907 GWh, or 1.94 x 10
17 

J [16]. The AVG4 site would have 

produced 6.4 x 10
9
 Wh m

-2
. Considering a virtual solar array with a solar conversion efficiency of 

0.15, we find that it would take roughly 2.0 x 10
8
 m

2
 or about 77 mi

2
 of PV panels to produce 

enough electricity for Colorado during 2007. For reference, a very large PV array at Nellis Air 

Force Base in Nevada covers only 0.22 mi
2  

[17]. In addition to land requirements, a storage 

device that could store this massive amount of energy for up to 6 months would be required. It 

has been demonstrated for wind turbines that by using storage devices, such as compressed air, 

the capacity factor can be raised to a baseload level (greater than 70%) [18]. However, since the 

average PSD slope found in this study is flatter than for wind turbines, PV will likely require 

more supplementary power than wind power.  

 These excessive land area and storage requirements show that it is very unlikely that solar 

power alone would ever power the entire state of Colorado, especially in the winter when evening 

heating demands are high and solar radiation is low. A better solution, at least in Colorado, 

appears to be using PV to supplement baseload power sources to cover the summer peak demand 

that is more synchronous with GHI [2, 19].  
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Abstract 

 Optimum tilt and azimuth angles for solar panels were calculated for a grid of 0.1⁰ by 

0.1⁰ National Solar Radiation Data Base (NSRDB-SUNY) cells covering the continental United 

States. The average global irradiation incident on a panel at this optimum orientation over one 

year was also calculated, and was compared to the solar radiation received by a flat horizontal 

panel and a 2-axis tracking panel. Optimum tilt and azimuth angles varied by up to 10⁰ from the 

rule of thumb of latitude tilt and due south azimuth, especially in coastal areas, Florida, Texas, 

New Mexico, and Colorado. Compared to global horizontal irradiation, irradiation at optimum 

fixed tilt increased with increasing latitude and by 10% to 25% per year. Irradiation incident on a 

2-axis tracking panel in one year was 25% to 45% higher than irradiation received by a panel at 

optimum fixed orientation. The highest increases in tracking irradiation were seen in the 

southwestern states, where irradiation was already large, leading to annual irradiation of over 3.4 

MWh m
-2

.  

 Introduction 3.1.

 Solar photovoltaic (PV) systems are quickly gaining popularity in the United States 

(U.S.), thanks to incentive programs and enhanced interest in environmental sustainability and 

energy independence. As more PV systems are installed across the U.S., it becomes increasingly 

important to maximize their power output. Aside from increasing a panel’s solar conversion 

efficiency, power output can be increased by considering the solar geometry as well as the 

seasonal and daily variation of atmospheric transmissivity at a particular site. Specifically, it is 

important to know what the optimum tilt and azimuth angles are at which to mount a fixed tilt 
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panel on a flat roof or on the ground such that it receives maximum irradiation. In addition, 

knowing the increase in solar radiation incident on a two-axis tracking panel will allow analysis 

of the economics of tracking PV systems, which are more expensive to install and maintain. 

 Since the power production of a PV panel is close to linearly proportional to the amount 

of solar radiation (photons) reaching the panel surface, incident irradiation is an excellent proxy 

for power output. To maximize absorption of solar radiation in clear skies, the normal to the plane 

of the PV panel should be pointing towards the sun such that the solar direct beam is 

perpendicular to the panel surface.  While a fixed tilt panel can only be normal to the incident 

sunlight once a day, a two-axis tracking panel improves over a fixed tilt panel by following the 

sun through the sky such that the plane of array normal is always parallel to the incident sunlight. 

However, when the majority of global irradiance is diffuse, horizontal alignment often provides 

the maximum global irradiance [1].  

 Some previous studies used modeled extraterrestrial radiation incident on the top of the 

atmosphere to find equations for optimum tilt over a large area[2, 3]. This method accounts for 

the deterministic (celestial) variables which affect solar radiation, but it does not consider the 

stochastic (clouds and other weather) variables which also affect the optimum angles. Using an 

extraterrestrial radiation model, the optimum azimuth is always due south (or north in the 

southern hemisphere), since solar radiation will be symmetric about solar noon. These studies [2, 

3] confirmed the simple rule of thumb that tilt angle,  , equal to latitude,  , is optimal for a clear 

year (e.g., panel at 40⁰N should have 40⁰ tilt from horizontal). For different seasons of the year, 

the optimum tilt was found to differ by up to 15° from latitude (more in the winter, less in the 

summer).   

 Other studies have used measured solar radiation data instead of clear-sky models to 

account for both the celestial and weather changes. Measured global horizontal irradiation (GHI) 

at four sites in the U.S. state of Alabama was used to find the optimum yearly tilt angle,      
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     ⁰ [4]. Using a fixed tilt PV panel at different tilts and a tracking PV panel mounted on a 

roof in Sanliurfa, Turkey (37⁰ N) optimum tilt and the effect of tracking was quantified[5]. 

Optimum tilts ranged from 13⁰ in July to 61⁰ in December.  Solar irradiation received on a 

tracking panel was 29% larger compared to a panel at optimum tilt for one day in July. Using 

measured GHI and diffuse horizontal irradiation (DHI) values the optimum yearly tilt was found 

to be 3.3⁰ for Brunei Darussalam (4.9⁰ N)[6], and 30.3⁰ for Izmir, Turkey (38.5⁰N)[7]. 

 One comprehensive study computed optimum tilt for a large area using measured 

irradiation[8]. GHI and DHI from 566 ground meteorological stations across Europe, turbidity 

data from 611 sites, and a digital elevation model were used to derive expected radiation over a 1 

x 1 km grid covering Europe. The optimum yearly panel tilt is less than latitude tilt for Europe 

and is not solely a function of latitude (as concluded in the clear sky studies), but is also a 

function of cloudiness. 

 To the best of our knowledge, maps of optimum tilt and azimuth angles based on 

measured radiation have not been published for the U.S. In this paper, we present solar maps of 

the continental United States (CONUS) showing the optimum panel tilt and azimuth, the radiation 

incident on a panel at optimum tilt and azimuth, and the radiation received by a tracking panel. 

While maps showing irradiation at latitude tilt facing due south and tracking irradiation have been 

published by the National Renewable Energy Laboratory (NREL)[9], the NREL maps do not 

show optimum tilt and azimuth. Furthermore, with their resolution of 40 x 40 km, the maps 

presented here will have sixteen grid points for every one grid point in the NREL maps. The 

higher spatial resolution is especially important in areas with strong gradients in radiation, such as 

coastal or mountainous areas. We will describe the data source (Section 2), the model used to 

compute irradiation on a tilted plane (Section 3), and the derivation of optimum angles (Section 

4). Section 5 presents a validation of the algorithm, and sections 6 and 7 describe the resulting 

maps and conclusions, respectively. 
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 Data 3.2.

 Satellite derived GHI and DHI obtained from the National Solar Radiation Database 

(NSRDB-SUNY) were used for this study[10]. The NSRDB-SUNY dataset contains hourly GHI, 

DHI, and direct normal irradiation (DNI) values for the entire United States on a 0.1⁰ node 

registered grid, corresponding to a grid spacing of about 10 km, for 1998-2005. NSRDB-SUNY 

was created by applying the model developed at the State University of New York (SUNY) – 

Albany [11] to satellite imagery of the U.S. from Geostationary Operational Environmental 

Satellites (GOES). A cloud index was derived for each pixel and was used along with 

atmospheric turbidity, site elevation, ground snow cover, ground specular reflectance 

characteristics and individual pixel sun-satellite angle to derive surface irradiations.  Atmospheric 

turbidity is quantified in terms of the air mass independent Linke Turbidity coefficient[12], which 

is a function of monthly average atmospheric aerosol content, water vapor and ozone. This Linke 

Turbidity coefficient was used to compute clear sky DNI and DHI. Clear sky DNI was multiplied 

by a ratio of DNIs calculated using the DIRINT model [13] to find DNI for the actual sky 

condition. DHI was found by finding the vertical component of DNI[14]. 

 The SUNY gridded data comes from two satellites: GOES-East and GOES-West, which 

produce snapshot images at 15 minutes past the hour and on the hour, respectively. Although 

GOES satellite data has a resolution of 1 x 1 km, the data are down-sampled to a 10 km grid to 

reduce computation time of the SUNY model[14]. For consistency, the SUNY gridded data is 

shifted and interpolated to model the sum of irradiance incident on each grid point for the 

previous hour (‘Sglo’ column). This results in each hourly irradiation value having the units of 

Wh m
-2

. Hourly uncertainties of the SUNY gridded data range from 8% under optimal conditions 

to up to 25%[14], though the mean bias error for long periods of time – such as the 8 years used 

in this study – is expected to be much lower than these values [15].   
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 We chose to use the SUNY gridded data because of the long time period, the high spatial 

resolution, the consistency in its derivation for a large area, and because DHI and DNI are 

provided. While the NSRDB and other sources contain measurements from grounds stations 

which have smaller errors than SUNY measurements, the spatial resolution is poor. The NSRDB, 

for example, only contains high quality ground irradiation measurements from 221 sites in 40 

states [14] as compared to the 97,305 NSRDB-SUNY grid points covering the CONUS.  

 Global Irradiation on a Tilted Plane 3.3.

3.3.1. Direct Irradiation 

 For this study, SUNY irradiations on a horizontal surface had to be converted to 

irradiations at an arbitrary tilt and azimuth. We chose to use the algorithms described by Page 

[16] due to the deterministic functional dependence upon location which is desirable in 

processing data for the entire CONUS. Other models (e.g. Perez[17]) require empirical 

coefficients which must be determined at each location using ground measurements.   

 The Page Model takes GHI, DHI, time, latitude, and longitude as inputs and outputs 

global  hourly irradiation (GI) for a panel of any tilt and azimuth as          . Direct 

beam ( ), diffuse ( ), and ground reflected irradiation (  ) on the tilted surface are calculated 

using astronomical variables, ground surface albedo, and an empirical function relating diffuse 

and GI.  

 Direct (beam) irradiation,  , on the tilted surface is a function of tilt   and azimuth   

(    is due south) as 

                    3.1 

where        is the solar incidence angle on the tilted panel.    is beam normal irradiation at the 

tilted panel surface, which is calculated from the SUNY data as 

                   3.2 
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For computational efficiency, the SUNY DNI  was not used , but was found to be similar to    

from Eq. 3.2.    and    represent GHI and DHI, respectively. The mid-hour solar altitude angle, 

  , is the angular elevation of the sun above the horizontal plane, and is a function of the solar 

declination angle, the solar hour angle, and the latitude at which the panel is installed. Since the 

NSRDB-SUNY presents the average of the irradiation over the previous hour, mid-hour values of 

the solar altitude angle are used since they are nearly an average of the solar altitude angle over 

the previous hour. For example, the irradiation with time stamp 1100 LST will be the average of 

irradiation between 1000 LST and 1100 LST and the solar altitude angle will be calculated at 

1030 LST.  

3.3.2. Diffuse Irradiation 

 The diffuse component of irradiation on a tilted surface is significantly more complicated 

to model. Page [16] computes the ratio of diffuse radiation on the tilted panel to diffuse horizontal 

radiation as 

      

  
            

           

     
 

3.3 

To account for cloud cover, a modulating function in the form of a clearness index,     is 

used:                                  , where   is the correction to the mean solar 

distance from earth. We used the empirical function      found by Page for Southern Europe to 

relate the directionality of diffuse irradiation to the panel tilt angle and clearness index 

         (
 

 
)  (                         

 )                   (
 

 
)  

3.4 

which was accurate for our validation site in Golden, Colorado (see Section 3.5 later).  

3.3.3. Reflected Irradiation 

 Reflected irradiation,   , is modeled by  

           3.5 
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where the reflection coefficient    is solely a function of panel tilt,    
      

 
. We assumed a 

ground surface albedo of        as an average for land. Use of albedo maps from remote 

sensing would be more accurate, but spatial heterogeneity of albedos within the typical 100 km
2
 

grid cell, especially in urban areas, would still cause a large margin of error. At the orientations 

used in this study, the sensitivity to albedo is small. In San Diego, California (117.25⁰W, 

32.85⁰N), changing the albedo by ±0.1  from the assumed 0.2 leads to a ±0.71% change in the 

average annual irradiation reaching a panel at optimum orientation and a ±1.08% change for a 

tracking panel. Similarly, for Albany, New York (73.85⁰W, 42.85⁰N), altering the albedo by ±0.1 

leads to a ±0.87% difference for a panel at optimum orientation and a ±1.20% difference in a 

tracking panel. These albedo changes led to 2° changes in optimum tilt for both San Diego and 

Albany.  

 

 Optimum panel angles, tracking, and resulting irradiation 3.4.

3.4.1. Optimum tilt and azimuth angles for a fixed panel 

 To determine optimum tilt and azimuth angles, the Page Model was written in function 

form with inputs of panel tilt, panel azimuth, latitude, longitude, time,   , and   . The output of 

this function is the sum of GI on a panel over the 8 years contained in the SUNY gridded data. 

Then, for each SUNY grid point (fixed latitude, longitude, time,   , and   ), the local maximum 

GI as a function of panel tilt and panel azimuth was found using unconstrained nonlinear 

optimization (function ‘fminsearch’ in MATLAB, The Mathworks, Inc.). The optimum tilt and 

azimuth angle as well as the maximum annual irradiation reaching a panel at optimum fixed tilt 

were recorded for comparison to horizontal and tracking panels.  

3.4.2. Irradiation onto a Tracking Panel 

 For concentrating systems, DNI is the relevant metric and corresponding maps already 

exist [9]. This study focuses on fixed (typically PV) systems and tracking results are only shown 
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for reference. To determine the average annual GI reaching a two axis time-position (or 

chronological) tracking panel, the same function described in Section 3.4.1 was used, but the 

panel tilt angle was set equal to the solar altitude angle while the panel azimuth was set equal to 

the solar azimuth. While other tracking technologies such as single axis, active or passive 

tracking exist, we chose to use time-position two-axis tracking due to its simplicity and 

generality. Other tracking techniques may outperform time-position tracking in high diffuse 

radiation conditions as then a flat orientation is usually optimal [1]. 

 Validation 3.5.

3.5.1.  Comparison to measurements at SRRL 

 The model was validated against measured irradiation from the NREL Solar Radiation 

Research Laboratory (SRRL) located at Golden, Colorado (39.74⁰N, 105.18⁰W). SRRL was 

selected due to its high data quality and because hourly measurements of GHI, DHI, GI on a 

surface tilted 40⁰ due south, and GI on a tracking panel all taken at the same location are 

available. A Kipp and Zonen CM 22 pyranometer measures GHI, another CM 22 pyranometer 

with a diffuse shading disk measures DHI, an Eppley Laboratory, Inc. Precision Spectral 

pyranometer measures GI on the tilted surface, and GI for a two axis tracking panel was 

measured using a Kipp and Zonen CM 21 pyranometer[18]. 

3.5.1.1. Tilted Panel 

 Inputs of hourly GHI and DHI for January 1 to December 31 2009 were obtained from 

the NREL Measurement and Instrumentation Data Center (MIDC)[18]. Although 1-minute 

resolution is available from the MIDC, hourly resolution was chosen to be representative of the 

hourly SUNY data. We input albedo (0.2), tilt angle (40⁰) and azimuth of the tilted panel (0⁰) to 

obtain direct, diffuse, and reflected radiation on the tilted surface. These were summed to create 

an estimated GI on the tilted panel (Section 3.3), which was compared to the measured GI on the 

tilted panel for times when solar altitude angle > 10⁰ (Fig. 3.1a). 
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 For this comparison, the mean absolute error (MAE), mean bias error (MBE), root mean 

squared error (RMSE), relative MBE (rMBE), and relative RMSE (rRMSE) were computed from 

the instantaneous error,  , by 

                          3.6 

    
∑| |
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 The Pearson correlation coefficient and other error metrics (Table 1) show the strong 

correlation between the estimated and measured GI. The RMSE for GI on the tilted surface was 

found to be 5%, which is smaller than errors reported for GHI and DNI in the SUNY-gridded data 

[14]. Since the 8 year sum is the only value used in creating the maps presented in this paper, the 

small rMBE value validates the Page Model for our application. 

3.5.1.2. Tracking Panel 

 The Page Model was also applied for a tracking panel at SRRL, and compared to 

measured values (Fig. 3.1b).  Again, a high correlation is observed between measured and 

modeled GI (Table 1). All statistics show larger errors than for the fixed tilt case, but the RMSE 

(7%) is still smaller than errors reported in the SUNY data[14]. In addition, the rMBE remains 

very small.  
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Fig. 3.1: Scatter plot of (a) the measured GI on a surface at 40⁰ tilt, facing due south, and (b) the measured 

GI on a tracking panel, plotted versus values calculated using the Page Model. Measurements were taken 

at SRRL in Golden, Colorado. The values shown are hourly daytime values (solar elevation angle >10⁰) 

for the entire year 2009. The solid lines are 1:1 lines for reference. 

Table 3.1: Daytime (solar altitude angle>10⁰) statistics for errors between the measured GI at the 

SRRL panel tilted 40⁰ or the SRRL tracking panel and the calculated GI using the Page Model for 

1998-2005. 

 Mean 

Measured GI 

[Wh m
-2

] 

Pearson Correlation 

Coefficient 

[-] 

 

MAE 

[Wh m
-2

] 

 

MBE 

[Wh m
-2

] 

 

RMSE 

[Wh m
-2

] 

 

rMBE 

[-] 

 

rRMSE 

[-] 

40º tilt 541.2 0.997 17.1 2.37 27.5 0.44% 5.0% 

tracking 704.4 0.992 29.2 4.84 50.6 0.69% 7.2% 

 

 While the Page Model shows larger MAE and RMSE errors resulting from differences on 

an hour-by-hour basis, bias errors of GI received on either a fixed tilt or a tracking panel are 

small. The analysis in this paper relies on 8 year averages of the SUNY-gridded data, so the 

rMBE is the most important statistic presented in Table 1.  

3.5.2. Comparison to PVWatts 

 PVWatts2 [19] is a tool published by NREL “to permit non-experts to quickly obtain 

performance estimates for grid-connected PV systems” [20]. It allows for the calculation of 
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irradiation on a panel of any fixed tilt provided by the user, as well as for a 1- or 2-axis tracking 

panel at any location in the U.S. using gridded irradiation data at 40 km resolution. Comparisons 

between PVWatts2 and our algorithm for 5 cities in the U.S. are shown in Table 2. The centers of 

PVWatts2 grid points do not correspond to the SUNY 10km data, so a distance weighted average 

of the 4 closest SUNY sites to the center of the PVWatts2 grid point was used to determine the 

values presented in Table 2. Some deviations between our results and PVWatts2 are expected due 

to the differences in spatial resolution, especially in areas with large gradients in irradiation. For 

this reason, the PVWatts2 grid points chosen for Table 2 are far away from coasts, except for Los 

Angeles, where the grid cells are at least 25 km from the ocean. Overall, the absolute differences 

between our results and PVWatts2 range from 0.5% to 5.1%. These are smaller than the expected 

error of PVWatts2 of 10-12%[19], suggesting that our implementation of the Page Model 

compares well to established models.  

Table 3.2: Comparison and relative mean bias error of irradiation calculated from PVWatts2 and 

Page Model for panels at optimum fixed tilt and for tracking panels at selected sites.  

Location 

Optimum 

Orientation 

(tilt/azimut

h) 

GI at Optimum Fixed 

Orientation [kWh m
-2

 day
-1

] 
 

GI for Tracking 

[kWh m
-2

 day
-1

] 

SUNY 

+ Page 
PVWatts2 rMBE  

SUNY + 

Page 
PVWatts2 rMBE 

Orlando, FL 

(81.35⁰W, 

28.49⁰N) 

29.1⁰/7.6⁰E 5.22 5.29 -1.3%  6.77 6.81 -0.6% 

Dallas, TX 

(96.84⁰W, 

32.72⁰N) 

30.5⁰/5.9⁰E 5.09 5.24 -2.9%  6.76 6.92 -2.3% 

Phoenix, AZ 

(112.21⁰W, 

33.50⁰N) 

33.4⁰/0.3⁰
W 

6.50 6.29 3.3%  9.09 8.65 5.1% 

Los Angeles, CA 

(117.95⁰W, 

34.08⁰N) 

32.4⁰/3.8⁰
W 

5.79 5.82 -0.5%  7.73 7.52 2.8% 

St. Louis, MO 

(90.28⁰W, 

38.49⁰N) 

34.8⁰/1.0⁰
W 

4.76 4.82 -1.2%  6.25 6.31 1.0% 

 Maps 3.6.

 The Page Model was applied to produce solar radiation maps of the CONUS. Figures 2a 

and 2b show the optimum annual tilt from horizontal and the optimum tilt minus latitude, 
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respectively. The values for optimum tilt were calculated coupled with the optimum azimuth. 

Since there is an interdependence of optimum azimuth and tilt, optimum tilts at an azimuth of 0⁰ 

were also calculated, but the mean absolute deviation from Figure 2a was less than 0.1⁰ and the 

maximum deviation was 1.4⁰. Therefore, results for optimum tilt angels in Figure 2a apply to 

both optimum azimuth and due south azimuth.  Figure 2b can be used to investigate the rule of 

thumb that panels should be installed at latitude tilt. If latitude tilt were indeed the optimum tilt, 

then Figure 4 would show zero differences. Indeed, the differences shown in Figure 4 are small 

for low latitudes, but they become significant at higher latitudes. Some areas exhibit distinct 

differences in optimum tilt from points at the same latitude, showing that optimum tilt is not 

solely a function of latitude. Latitude tilt might be accurate for clear sky conditions, but if a site 

shows seasonal variations in cloudiness, its optimum tilt will be altered. For example, California’s 

Central Valley experiences Tule fog during winter. Consequently, the optimum tilt there is 

weighted towards the best tilt in the (clearer) summer months when more radiation can be 

collected. 

  

Fig. 3.2: (a) Map of the optimum tilt from horizontal to maximize annual incident GI. (b) Map of the 

optimum tilt from horizontal (a) minus the latitude for each location. This shows the difference in degrees 

between the optimum tilt and the rule of thumb suggesting latitude tilt.  

 Figure 3 displays the optimum annual azimuth for a solar panel, and can be combined 

with Figure 2a to determine the optimum annual orientation (tilt and azimuth) for a fixed solar 

panel. Figure 3 can also be used to investigate whether a due south azimuth results in the 

maximum irradiation. Due south is optimal for many parts of the country, but there are notable 



42 

 

 

 

exceptions in Florida, Central Texas, the centers of Wyoming, Colorado, and New Mexico, and 

along the Pacific Coastline. A due south azimuth would suggest that equal amounts of solar 

radiation are received before and after solar noon. A non-zero azimuth therefore suggests that 

solar radiation at a given site was not symmetric. For example, many parts of the Pacific 

Coastline are subject to summer morning fog that evaporates in the late morning, leading to more 

afternoon irradiation and thus an optimum azimuth facing towards the west. Large parts of 

Florida and New Mexico, on the other hand, are often subject to afternoon convective clouds, 

leading to an optimum azimuth facing east. Figure 3 shows a discontinuity in optimum azimuth 

angle around a latitude of 107.5
o
 which marks the border between GOES-East and GOES-West 

satellite data in the SUNY dataset. An error in the time shift of SUNY satellite irradiances to 

hourly irradiation for the evening hours related to the timing of GOES imagery is the likely 

explanation [15]. This would indicate that our azimuth angles for the area west of 107.5
o
 are 

biased towards the west.   

 

Fig. 3.3: Map showing the optimum azimuth to maximize incident GI. Due south is 0⁰, and values shown 

on the map are east or west of due south. When coupled with Figure 2a, the optimum orientation (tilt and 

azimuth) at any location on the map can be determined.  

 The average annual GI reaching a panel at optimum fixed tilt and azimuth is mapped in 

Figure 4a (a very similar map of irradiation reaching a panel at latitude tilt and south azimuth is 

presented on the NREL website[9]). This map is useful in determining where it would be best to 

install fixed solar panels, since incident radiation is nearly linearly proportional to power output 

of a PV panel. Areas of highest annual solar radiation at optimum tilt are located in the 
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southwestern U.S. including southeastern California, southern Nevada, Arizona, southern Utah, 

New Mexico, southern Colorado, and western Texas. Most of the rest of the CONUS receives 

much lower amounts of annual solar radiation at optimum tilt. For example, Florida and the 

southern tip of Texas are both at lower latitudes than the southwestern states, yet receive around 

0.5 MWh m
-2

 (about 20%) less GI per year.  

 To determine the importance of installing a solar panel at the optimum orientation, the 

percentage increase in GI reaching an optimally oriented panel versus GHI is shown in Figure 4b. 

At almost every location in the CONUS the irradiation increases by at least 10% at optimum 

orientation over flat. The gain increases with increasing latitude, with a maximum of 25% 

increase observed in parts of Montana. This is consistent with the increase in optimum tilt shown 

in Fig. 3.2a. The further north a site is, the larger the difference between flat and optimum 

orientation and the larger the increase in irradiation received at optimum orientation.  

  

Fig. 3.4: (a) Map showing the average annual GI reaching a panel at optimum tilt and azimuth. (b) Map 

showing the percentage increase in GI incident on a PV panel at optimum tilt and azimuth versus a flat 

horizontal panel.  

 Fig. 3.5a shows the average annual GI reaching a tracking panel at each location. This 

map is similar to Fig. 3.4a which shows the GI at optimum orientation. This is expected since 

both depend on the GHI reaching each location. However, the solar irradiation reaching tracking 

panels is significantly larger than the irradiation reaching optimally oriented panels. To quantify 

this increase, Figure 5b shows the percentage increase in GI reaching a tracking solar panel over a 

panel at fixed optimal orientation, which ranges from 25% to 45%. The largest percent increases 
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occur in the southwestern U.S., while the smallest increases occur in the eastern U.S. and on the 

Pacific Coastline. The large increases are related to clear skies when irradiance is more variable 

as a function of view angle and tracking shows greater benefits. Smaller increases are related to 

cloudy conditions which cause more uniform diffuse irradiation patterns. In cloudy conditions 

other tracking strategies would result in a slightly better performance (Section 3.4.2). The highest 

percentage increases occur in areas where irradiation at optimum tilt was already large (i.e., less 

cloudy areas), making tracking panels very attractive for areas such as the southwestern states.  

  

Fig. 3.5: (a) Map of the annual GI reaching a two-axis tracking solar panel. (b) Map of the percentage 

increase in GI reaching a tracking panel over GI reaching a panel at fixed optimum orientation.   

 Conclusion 3.7.

 The optimum tilt and azimuth angles to collect global solar irradiation (GI) in the 

CONUS were determined using the Page Model applied to the SUNY 10 km gridded data. While 

rules of thumb suggest that maximum GI is obtained at latitude tilt with an azimuth facing due 

south, it was found for most locations in the CONUS that higher GI could be obtained by 

deviating from this rule. The optimum tilt was never found to be greater than latitude tilt, but it 

was found to be up to 10⁰ less than latitude tilt. On average, the deviation from latitude tilt 

increased at higher latitudes, but optimum tilt was not found to simply be a function of latitude. 

Seasonal weather patterns such as winter clouds led to changes in the optimum tilt. Azimuths 

deviating up to 10⁰ west or east of due south were found for areas with typical daily cloud 

patterns such as morning fog or afternoon thunderstorms.   
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 Areas of high GI on an optimal fixed orientation panel occur in the southwestern U.S., 

with up to 2.4 MWh m
-2

 per year. Compared to global horizontal irradiation, irradiation at 

optimum fixed tilt increased with increasing latitude and by 10% to 25% per year. These 

increases are significant considering they require no more active work than determining the 

optimum orientation during panel installation. However, the sensitivity of annual irradiation to 

inclination is small near the optimum point. While small increases in power production may have 

a significant impact on economic payback time, other factors such as aesthetics and mounting 

considerations may dictate a near-optimal angle that would result in a relatively small loss in 

annual power production. 

 GI reaching a tracking surface shows very similar geographic patterns to GI at optimum 

fixed orientation, but a tracking panel can receive over 3.4 MWh m
-2

 per year. The increase from 

using a tracking panel was strongest where fixed orientation irradiation was large, corresponding 

to relatively clear skies on average. This suggests using tracking panels in areas of high 

irradiation so long as the increases are enough to balance the higher initial costs, maintenance 

costs, and energy lost to the tracking mechanism.  

  Overall, we found that the rule of thumb for orientation of a solar panel was up to 10⁰ off 

for tilt, azimuth, or both. We recommend using optimum tilt and azimuth angles presented here to 

increase irradiation received at any site. Our analysis does not consider the temperature effect on 

PV efficiency. Given that the panel temperatures are larger in summer than in winter and larger in 

the afternoon than in the morning, consideration of this effect would result in larger tilts and an 

azimuth facing more east of south, but the changes are expected to be small and depend on the 

PV temperature coefficient. Moreover this analysis optimizes for annual irradiation, but does not 

consider the seasonality and diurnal pattern of electricity prices. If the PV array output displaces 

consumption from the local facility with time-of-use pricing or if the electricity generated is bid 

into the market, the irradiations would have to be weighted by the electricity price at the time to 
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determine economic effects. Since electricity prices vary by region and time, accumulating such a 

database from 1997-2005 was beyond the scope of this project. Generally, since electricity is 

more expensive in the summer and during the afternoon peak demand the optimum azimuth 

would be further west of south and the optimum tilt would be closer to zero if economic 

consideration were taken into account.  
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Abstract 

 Using six San Diego solar resource stations, clear-sky indices at 1-sec resolution were 

computed for one site and for the average of six sites separated by less than 3 km to estimate the 

smoothing of aggregated power output due to geographic dispersion in a distribution feeder. 

Ramp rate (RR) analysis was conducted on the 1-sec timeseries, including moving averages to 

simulate a large PV plant with energy storage. Annual maximum RRs of up to 60% per second 

were observed, and the largest 1-sec ramp rates were enhanced over 40% by cloud reflection. 

However, 5% per second ramps never occurred for a simulated 10 MW power plant. Applying a 

wavelet transform to both the clear-sky index at one site and the average of six sites showed a 

strong reduction in variability at timescales shorter than 5-min, with a lesser decrease at longer 

timescales. Comparing these variability reductions to the Hoff and Perez [1] model, good 

agreement was observed at high dispersion factors (short timescales), but our analysis shows 

larger reductions in variability than the model at smaller dispersion factors (long timescales).   

 Introduction 4.1.

 The variable nature of solar radiation is a concern in realizing high penetrations of solar 

photovoltaics (PV) into an electric grid. High frequency fluctuations of irradiance caused by fast 

moving clouds can lead to unpredictable variations in power output on short timescales. Short-

term irradiance fluctuations can cause voltage flicker and voltage fluctuations that can trigger 

automated line equipment (e.g. tap changers) on distribution feeders leading to larger 

maintenance costs for utilities. Given constant load, counteracting such fluctuations would 

require dynamic inverter VAR control or a secondary power source (e.g. energy storage) that 



49 

 

 

 

could ramp up or down at high frequencies to provide load following services. Such ancillary 

services are costly to operate, so reducing short-term variation is essential. Longer scale 

variations caused by cloud groups or weather fronts are also problematic as they lead to a large 

reduction in power generation over a large area. These long-term fluctuations are easier to 

forecast and can be mitigated by slower ramping (but larger) supplementary power sources, but 

the ramping and scheduling of power plants also adds costs to the operation of the electric grid. 

Grid operators are often concerned with worst-case scenarios, and it is important to understand 

the behavior of PV power output fluctuations over various timescales. 

 Many previous studies have shown the benefit of high-frequency irradiance data. 

Suehrcke and McCormick [2] and Gansler et al. (1995) [3] found 1-min data to have different 

statistics from lower-frequency data, including a much more bi-modal distribution than 1-hour or 

1-day data. Gansler et al.[3] mention that while using 1-hour data may be acceptable for space 

and water heating systems, where the thermal capacitance effects dampen out short-term 

variations, the time response of PV systems is much faster and using 1-hour data will likely lead 

to errors.   

 Understanding that high-frequency fluctuations are important, further studies have looked 

to characterize these fluctuations, often by comparing fluctuations at one site to fluctuations at the 

average of multiple sites. Otani et al. [4] use a fluctuation factor defined as the root mean squared 

(RMS) value of a high-pass filtered 1-min time series of solar irradiance to demonstrate a 2-5 

times reduction in variability when considering 9 sites located within a 4 km by 4 km grid. 

Curtright and Apt [5] and Lave and Kleissl [6] used 1-min timeseries to show reductions in the 

mean, maximum, and standard deviation of ramp rates (RRs) when considering the average of 

three or four sites versus only one site. Power spectral densities (PSDs) presented in Otani et al. 

[4], Curtright and Apt [5], and Lave and Kleissl [6] all show strong reductions in power content 

of fluctuations of the average of multiple sites versus the power content of fluctuations at one site. 
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Lave and Kleissl [6] also present coherence spectra which show that the sites in Colorado which 

were 60 km or more apart were uncorrelated on timescales shorter than 12-hours. Two sites that 

were only 19 km apart were uncorrelated on timescales shorter than 3-hours. 

 Wiemken et al. [7] used 5-min normalized output from 100 PV sites spread throughout 

Germany. They found the standard deviation of the average of 100 sites to be 0.61 that of 1 site 

for the month of June, and that 5-min fluctuations of ±5% of power output at nameplate capacity 

are virtually nonexistent in the average, yet single sites have fluctuations larger than ±50%. Also 

included in that paper is a figure from Beyer et al. [8], which shows exponential decay of cross-

correlation as a function of distance for hourly irradiance data from six sites in Germany which 

can be used to estimate the reduction in standard deviation when averaging sites. Murata et al. [9] 

analyzed 1-min data from 52 PV systems spread across Japan to determine the “smoothing effect” 

of aggregating multiple systems. The authors introduce a fluctuation index, which is the 

maximum difference in aggregated power output over a given time interval. They found that over 

1-min, sites more than about 50-100 km apart were uncorrelated and thus that there was a limit 

reached whereby adding more PV sites had no effect on reducing variability, since the variability 

introduced by the diurnal cycle eventually becomes larger than the cloud-induced variability. For 

times greater than 10-min, however, they reject the hypothesis that sites within 1000 km are 

independent, though some of the dependence may be due to diurnal solar cycles and could be 

eliminated by using a normalized solar radiation.   

 Hoff and Perez [1] (hereafter HP10) present a framework to estimate the decrease in 

standard deviation of irradiance achieved by aggregating PV sites. The reduction in standard 

deviation is a function of the number of PV sites and a dispersion factor,  , defined as the 

number of time intervals it takes for a cloud to pass over all PV sites across the region being 

considered. The dispersion factor is useful in determining when the transition from PV sites being 

uncorrelated to correlated occurs. They predict a factor of √  reduction in standard deviation of 
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the average of N sites compared to the standard deviation of one site for the “spacious region,” 

where the number of sites is much less than the dispersion factor,     . This corresponds to 

the sites being fully independent of one another, and is a known result from statistics on 

independent random variables. At an “optimal point” where the number of sites equals the 

dispersion factor,    , they derive a factor of   reduction in standard deviation. At this point, 

sites would be perfectly correlated when shifted by an appropriate timestep (the dispersion factor 

divided by the number of sites), and the standard deviation of the average of all sites will be 

reduced more than would be expected if the sites were entirely independent. HP10 also define a 

“limited region,” between the “spacious region” and the “optimal point,”    . In the “crowded 

region” where the number of sites is larger than the dispersion factor,    , they propose that 

the standard deviation will be reduced by a factor of  , since the sites are at least partially 

dependent, and adding additional sites will not reduce the standard deviation of the average since 

the reduction is only a function of the dispersion factor, and not the number of sites. HP10 

perform a limited model validation by simulating a fleet of PV systems based on measured 

irradiance at only one site. In the simulated system, the irradiance at the non-measured sites was 

found by shifting the timestamp but otherwise maintaining the measured data, thus simulating an 

equally spaced system in which frozen clouds move at a constant speed along a line containing all 

sites.  

 Woyte et al. [10] present a unique study in that they use very high frequency data (1-sec, 

5-sec, or 1-min depending on the site) collected for up to 2-years, instantaneous clearness index, 

and a wavelet transform to analyze fluctuations of all scales in time, from very short to very long. 

The Haar wavelet was applied to each clearness index dataset to detect fluctuations over various 

timescales.  They introduce a fluctuation power index, which is the sum of the square of the 

wavelet mode at each timescale, and is used to quantify the amplitude and frequency of 

occurrence of fluctuations on a specific timescale. In other wavelet studies, Kawasaki et. al [11] 
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applied the Daubechies 4 wavelet to 1-min irradiance 2-year timeseries from nine sites in a 4x4 

km grid, and Perpinan and Lorenzo [12] applied the MODWT wavelet to 1-sec solar irradiance 

timeseries from a few days in October, 2009.   

 This paper builds on these previous works by using 1-sec clear-sky index (Kc) data from 

6 sites on a microgrid similar to urban distribution feeders (Section 4.2) to quantify extreme ramp 

rates (RRs). Methods are described in Section 4.3. RRs were analyzed by computing statistics at 

different time steps and by using varying moving average intervals to represent large PV plants or 

storage (Section 4.4.1). Coherence spectra are employed in Section 4.4.2 to analyze the 

correlation between six sites at different time scales. We apply a wavelet to detect variability over 

various timescales relevant to the operation of a power grid (Section 4.4.3). Wavelet analysis 

allowed for a localized study of the power content of variations over various timescales. The 

power content of variations at one site was compared to the power content of variations at the 

average of six sites in close proximity to study the reduction in variability over various timescales 

achieved by using multiple site locations (Section 4.4.4) and to test the model of HP10 (Section 

4.4.5). Conclusions are presented in Section 4.5. 

 Data 4.2.

 Global Horizontal Irradiance (GHI) was recorded once per second at sites throughout the 

University of California, San Diego (UCSD) campus as part of the UCSD Decision Making using 

Real-time Observations for Environmental Sustainability (DEMROES) network of sensors [13] 

(Fig. 1). All sites employ a LICOR Li-200SZ silicon pyranometer sampling at 1Hz. The 

collection of 1-sec data proved to be a challenge of both data storage on the datalogger and sensor 

reliability, and so data availability is inconsistent. While there are 8 sites maintained as part of the 

DEMROES network, at any given time a maximum of 6 sites recorded 1-sec data.  

 The main site used in this paper was the Engineering Building II (EBU2, 32.8813⁰N, 

117.2329⁰W), for which data was available for all of 2009 except for May 23 through June 4. We 
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do not expect for the 13 days of missing data to lead to a strong seasonal or other bias, and 

therefore will refer to this as 1-year of data. Five other sites also recorded data from July 31 to 

August 25, 2009, and are used to study the benefits of aggregating sites. These five sites ranged 

from Hubbs Hall (HUBB, 32.8670⁰N, -117.2533⁰W) which is 0.1 km from the Pacific Ocean to 

Moores Cancer Center (MOCC, 32.8782⁰N,-117.2229⁰W) 3km to the east. The Biomedical 

Science Building (BMSB, 32.8758⁰N, 117.2362⁰W), RIMAC Arena (RIMC, 32.8852⁰N, 

117.2402⁰W), and Tioga Residence Hall (TIOG, 32.8790⁰N 117.2434⁰W) are more centrally 

located (Fig. 4.1). Since these data covers nearly the entire month of August, we will refer to this 

as a 1-month dataset.  

 After applying the factory calibration, clear days were used (assuming identical 

atmospheric composition) to create linear fits against RIMC, and each site was cross-calibrated 

by this linear fit. In addition, careful quality control was carried out by visually examining each 

site for shading and other errors. We noticed 5 occurrences at EBU2 and 15 at RIMC of greater 

than 400 W m
-2

 decreases lasting less than 3-sec during otherwise clear periods. We suspect that 

these were due to birds or airplanes instantaneously shading our sensors, and not cloud effects 

which were the focus of this study. Therefore, such dips were removed from the data using a 

linear interpolation plus characteristic variance to maintain statistics, which should be appropriate 

over such a short time. It is possible that such events also occurred during cloudy conditions, but 

is not clear how to detect such events then without possibly removing real variability.  

 To eliminate the deterministic effect of diurnal cycles, GHI measurements (in W m
-2

) 

were converted into a dimensionless clear-sky index by dividing the measured GHI by the clear-

sky irradiance. We used the Sunny Days model [14] based on Long and Ackerman [15], which 

uses input GHI and diffuse horizontal irradiance (DHI, measured by a Dynamax SPN1 

pyranometer at EBU2) to calculate clear-sky irradiance. Since Sunny Days is locally calibrated 

day-by-day it was found to be more accurate than the Ineichen and Perez [16] climatological 
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clear-sky model especially for mornings and evenings. Times when the solar altitude angle was 

less than 10° were removed to eliminate both nighttime values when the clearness index is 

expected to always be zero and early morning and late evening periods when the pyranometer is 

subject to errors in cosine response. 

 

Fig. 4.1: Map of the UCSD solar resource sites, showing proximity to the Pacific Ocean (left), and 

Interstate 5 (center). From EBU2, distances and headings are: BMSB(0.69km, 205⁰), HUBB (2.47km, 

230⁰), MOCC (0.95km, 105⁰), RIMC (0.80km, 300⁰), and TIOG (1.00km, 255⁰). Map © 2010 Google – 

Image © 2010 TerraMetrics. 

 Methods 4.3.

4.3.1. 1-Year Analysis at One Site: Ramp Rate Analysis 

 The frequency of occurrence and magnitude of RRs of solar PV are of critical interest to 

power system operators. From the 1-sec clear-sky indices, we can extract two different averages 

which have different practical relevance.  

First, block averages were taken on time intervals varying from 1-sec to 1-hour, which shows the 

difference in statistics over various data averaging intervals. Typically irradiance or power output 

data are averaged over longer periods and our analysis allows comparison to such data. The block 

average method produces fewer data points as the block size increases.  
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 Second, moving averages over intervals of        sec (          corresponding to 

            sec) were computed at time steps of 1-sec such that the average at any given 

time, t, is the average of values        seconds before and    seconds after t.  Intervals of    

seconds were chosen to be consistent with wavelet analysis presented later. No moving average 

was computed when          or                 , where TOD is the time of day, 

such that the moving average would not be complete. Since this clipping removes more data at 

the beginning and end of the day for larger   reducing the available data, no analysis was 

performed for timescales larger than 4096-sec. Moving averages at different   are representative 

of power sampled every second, but averaged spatially over the dimensions of a solar power plant 

or by using energy storage. 

 From either the block average or the moving average, RRs were computed as the 

difference between successive clear-sky indices. Cumulative distribution functions (cdf) of RRs 

show the statistical distributions and extreme values. Additionally, we computed the averages of 

1-sec ramps with magnitude greater than 0.25 to show the typical behavior before large positive 

or negative ramps. RRs of clear sky indices give the percent change (as a fraction of clear-sky 

irradiance) over one timestep, regardless of the TOD when that change occurred. The clear sky 

index provides the best measure to compare cloud induced solar variability analyses between 

different sites. If the occurrence of clouds is independent of TOD, it also provides the most 

relevant measure to characterize solar energy variability at a site, especially for 2D tracking 

power plants (whose output fluctuates less over a clear day). However, if clouds occur 

preferentially over certain TODs and a fixed-tilt plant is considered, then clear sky index 

variability does not translate directly to power output variability of a PV plant.  
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4.3.2. Geographic smoothing at six sites over one month 

4.3.2.1. Coherence spectrum 

 As a measure of spatial correlation of the clear-sky index over various time scales, we 

calculated the coherence spectrum between EBU2 and the other 5 sites. The coherence spectrum 

provides normalized covariance at each frequency, allowing for visualization of correlation over 

various timescales. The coherence is expected to be large at long timescales as large weather 

systems will lead to similar clear-sky indices for all the sites. Note, however, that solar cycles 

have been removed by using the clear-sky index and thus the coherence will not be as large as if 

irradiances had been used. The timescale at which sites become weakly correlated is an indication 

of the longest timescale on which the sites are nearly independent and will dampen aggregate 

variability. Although negative correlation would reduce variability more than zero correlation, 

negative correlation is not expected physically. 

4.3.2.2. Wavelet Analysis 

 The stationary or dyadic wavelet transform, W, of a signal      is (Mallat [17]): 

 
  
  ∫     
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)   

 

  

 4.1 

where             is the time offset from the beginning of the day,   is the wave used to produced 

the wavelet transform, and   is the scaling factor. Since we used a real wavelet and a discrete 

transform, we required that j be a positive integer. Although Woyte et al [10] used the Haar 

wavelet to detect dips and compute power content at each timescale, we found the Haar wavelet 

to be lacking in that large wavelet coefficients exist only at sharp signal transitions. This means 

that changes from one state to another (e.g. a step from cloudy to clear) are detected by the Haar 

wavelet rather than the duration of an up or down fluctuation (a top hat). 

 We instead chose to employ the top hat wavelet as the basis function of our analysis of 

clear-sky index timeseries. The top hat wavelet is defined as 
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and is shown in Fig. 4.2. Although typically in wavelet analysis s      is used in Eq. 4.1, we 

chose to define        instead, so Eq. 4.1 becomes 
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This altered definition allows for the timescale,    seconds, to describe the duration of the clear 

or cloudy period of interest rather than the duration of the entire wavelet. Substituting the clear-

sky index,             , into Eq. 4.3 will result in a separate timeseries       for each j value 

(mode), where       is defined such that 
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   4.4 

 Just as for the moving averages, we chose to limit our analysis to      (corresponding 

to 1.1 hours or less), and only   values for which data were available over the entire interval of 

size      around   were retained. As such, early morning and late evening periods are not 

resolved at the longer modes. It is common in wavelet transforms to extend the original timeseries 

using either a periodic extension or zero padding, but we feel that neither is appropriate in this 

situation as they will both introduce effects that were not present in the original timeseries.  

 
Fig. 4.2: Top hat wavelet      (solid line) and the scaled and translated wavelet         (dashed line). This 

scaled wavelet would capture a clear period of duration    bordered by cloudy periods. 
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 The power content of each timeseries      , can be found by calculating the wavelet 

periodogram I. Following the definition of the Fourier periodogram, the wavelet periodogram is 

the square of the coefficients of the wavelet transform, normalized by the length over which the 

wavelet was applied, which in this case is 2
j+1

: 

      
 

    
|     |

 
 4.5 

4.3.2.3. Application of Wavelet Analysis to Determine Reduction in Variability from 

Averaging 6 Sites 

 The wavelet periodograms are still timeseries, and are difficult to examine visually for 

periods longer than one day. Therefore, we use the ‘fluctuation power index,’ as described by 

Woyte et al. (2007) to quantify the power contained in fluctuations at each timescale. The 

fluctuation power index, fpi, is: 

       
 

  
∫        

  

 
, 4.6 

where Tj is the length of the timeseries      , which decreases as j increases due to unresolved 

periods of the higher modes. Using Tj instead of a constant value based on the length of the 

original Kc(t) timeseries means that fpi(j) is an average value, which allows for comparison of fpi 

at different j values. 

 The fpi is essentially variance at each timescale (is variance if              ), so we 

used fpi to evaluate the reduction in variability achieved by averaging six sites versus the 

variability at EBU2 alone and to compare our results to the HP10 model. HP10 define a 

dispersion factor   
 

   
, where   is the length of the region with the PV sites,   is the cloud 

velocity, and   is the relevant timescale. Although   and   remain constant for a given area and 

time, varying the timescale changes  . Since variability at multiple timescales was calculated 

through the fpi, we were able to test the HP10 model over various dispersion factors for the 1-

month data. 
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 Results 4.4.

4.4.1. Ramp Rate Analysis 

 The cdf of the absolute value of step sizes (SS) for Kc averaged over blocks of 1-sec, 10-

sec, 1-min, 10-min, and 1-hr simulating data averaged over and sampled at those intervals are 

shown in Fig. 4.3. The probability of occurrence of SSs greater than 5%, 10%, and 25% are 

shown in Table 4.1. Both Fig. 4.3 and Table 4.1 show SS statistics vary significantly over all 

timescales, which is consistent with previous findings that 1-min and 1-hr data have different 

statistics (i.e., Suehrcke and McCormick [2], Gansler [3]et al). These variations in statistics of 

SSs down to 1-sec show the importance of sampling data as frequently as possible when studying 

irradiance fluctuations. Large step sizes have a much greater probability of occurring when using 

1-hr averages than when using 1-sec averages. However, due to the nature of block averaging, at 

longer time intervals, the sample size is small and events with high probabilities of occurrence do 

not happen very often in a day (Table 4.1). Still, the cdf of SSs shows a trend toward SS 

magnitude decreasing as the averaging time decreases – short-time steps will not be as extreme as 

long-time steps.  
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Fig. 4.3: Cumulative distribution function of SSs for block averages over 1-sec to 1-h at EBU2 for 2009. 

The probability of occurrence of a certain SS (or larger SSs) can be determined by locating the SS on the x-

axis and going up to intercept the line of the desired block averages. The y-value at that point provides the 

probability. For example, a 25% SS for 1-h block averages occurs 11% of the time or about once per day, 

on average. The 1-hr curve is based on a smaller sample (the number of 1-hr blocks contained in the 1-year 

of data) compared to the other curves. For example, the 10-min curve is based on a sample that is 6x larger. 

This explains why the 1-hr curve is slightly different in shape and slightly more irregular than the other 

curves. 

Table 4.1: Probabilities of SSs larger than 10%, 25% or 50% at each timescale of block averages 

along with approximate number of occurrences per day. Occurrences per day were found using an 

estimated annual average of 10-hours per day when solar altitude angle is greater than 10⁰. 

Block 

average 

interval 

abs(SS)>0.10 abs(SS)>0.25 abs(SS)>0.50 

P(abs(SS)>0.10) #/day P(abs(SS)>0.25) #/day P(abs(SS)>0.50) #/day 

1-sec 0.37% 132 0.02% 6.3 0.0002% 0.1 

10-sec 4.29% 155 1.07% 38.4 0.10% 3.5 

1-min 9.96% 59.8 3.48% 20.9 0.63% 3.8 

10-min 18.39% 11.0 5.26% 3.2 0.85% 0.5 

1-hr 35.22% 3.5 11.23% 1.1 0.91% 0.1 

 While block averages represent sampling data at certain periods where the actual 

variability is unaffected, moving averages can be used to simulate the effects of fast-ramping 

energy storage (e.g. flywheels). If the length of the moving average is equal to the time over 

which energy storage has the capacity to eliminate fluctuations through charging or discharging, 

then a moving average timeseries will be representative of the PV + storage output timeseries. 

Moving averages are also relevant to simulating power output of a large PV array or a fleet of PV 
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sites that all sit along the cloud motion vector and are spaced evenly, as used in HP10. In this 

case, a longer moving average interval will simulate the output of a larger PV plant, since large 

systems will ideally average over a timescale of           where      is the square root of the 

area of the array and   is the cloud velocity. Moving averages at various timescales are shown in 

Fig. 4.4 for August 22, 2009.  

 

Fig. 4.4: Moving averages of the clear-sky index,   , over various averaging intervals for EBU2 on August 

22, 2009. 

 The cdf of RRs for various moving averages is shown in Fig. 4.5, and specific values are 

shown in Table 4.2. For the moving averages, increasing the averaging time decreases the 

probability of a large ramp. For example, for a 4096-sec (about 1-hour) moving average, the 

probability of a ramp larger than 0.1% s
-1

 is zero.  This is intuitive, since the change in the 

moving average is the change in the step size divided by the averaging interval. Since a 1-sec 

average under both the block and moving averages simply represents the original timeseries, the 

1-sec cdf which appears in both Figs. 4.3 and 4.5 and Tables 4.1 and 4.2 serves as a reference for 

comparison between the two averaging methods. To create the power plant size column Table 4.2, 
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we assumed that the 1-sec data was representative of the fluctuations of a typical household PV 

installation of 2.5kW. Then, using the          relation mentioned earlier, we determined the 

relationship between moving average intervals and PV plant sizes. This assumed a frozen cloud 

field traveling at a constant speed,    over the entire PV plant. While this is unlikely physically, it 

givens an indication of the best-case scenario and allows for a comparison of fluctuations over 

various PV plant sizes.  

 

Fig. 4.5: Cumulative distribution function of 1-sec RRs and RRs of moving averages over various 

timescales (representing large PV plants or plants with energy storage) at EBU2 for 2009. The 1-sec value 

at        is 0.75 and not 1.0 due to the very small changes that can occur over 1-sec resulting in 

         . For all other timescales,            never occur. 

Table 4.2: Probabilities of RRs exceeding 0.1%, 1%, or 5% s
-1

 at moving average timescales along 

with approximate number of occurrences per day. Occurrences per day are based on a 10 sunlight-

hour day.  

Moving 

average 

interval 

Power 

plant size 

RR>0.001 s
-1 

 

RR>0.01 s
-1

 RR>0.05 s
-1

 

P(RR>0.001) #/day P(RR>0.01) #/day P(RR>0.05) #/day 

1-sec 2.5 kW 42.98% 15,472 6.55% 2,359 1.35% 486 

4-sec 40 kW 23.57% 8,486 5.90% 2,125 0.81% 292 

16-sec 640 kW 19.53% 7,031 42.98% 1,511 0.04% 15 

64-sec 10.2 MW 15.46% 5,564 1.03% 370 0% 0 

256-sec 164 MW 8.84% 3,181 0% 0 0% 0 
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 In order to examine the typical behavior leading up to and after the largest 1-sec ramps, 

Fig. 4.6 displays the mean (or conditional average) of all 1-sec ramp events greater than 25%, 

separated into positive and negative ramps. An ‘ideal’ ramp would simply be a step function from 

a small Kc to a large Kc or vice versa. However, in practice Kc is variable before or after large 

ramps as the clear or cloudy period before or after the ramp is often shorter than one minute. For 

the negative (or clear to cloudy) ramp, there is successive enhancement in clear-sky index in the 

1-min before the ramp. This is a manifestation of short clear periods but also of cloud edge 

enhancement; as a cloud nears the path between the sun and the sensor, some sunlight is reflected 

off the near edge of the cloud and down to the sensor, while the sun-sensor path is mostly 

unobstructed. Cloud enhancement leads to irradiances larger than the clear-sky model due to 

additional diffuse irradiance, resulting in a clear-sky index greater than 1 (Fig. 4.6). A similar but 

opposite behavior is observed for the up-ramp. The change in mean clear-sky index from one 

minute before a large negative ramp to one minute after is about 10%, which indicates a change 

of state from clear to cloudy. For large positive ramps, this change is only about 3%, and so 

represents a much smaller change in average state of the sky.  

 

Fig. 4.6: Means of all ramps at EBU2 in 2009 that were greater than 25% s
-1

, separated into positive and 

negative ramps. The red line shows the mean of 1006 timeseries starting 1-min before and ending 1-min 

after a ramp that was more than a 25% s
-1

 decrease in clear-sky index. The black line shows the mean of 

511 such timeseries that were centered around a greater than 25% s
-1

 increase in clear-sky index.  
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 Over the entire year, there were five 1-sec ramps up (probability of          s
-1

) and 

17 1-sec ramps down (probability of           s
-1

) with magnitudes greater than 50%. The 

maximum up ramp was 58% s
-1

 and maximum down ramp was 59% s
-1

. Thus, as an absolute 

worst case scenario, a maximum change of 60% over 1-sec can be assumed. The worst irradiance 

fluctuations were 432 W m
-2

 for an up ramp (June 5, 14:01:42) and 516 W m
-2

 for a down ramp 

(April 15, 13:33:42), which corresponded to 45% and 54% clear-sky index ramps, respectively. 

We emphasize, however, that this applies only for one point sensor, and when sites are averaged 

or PV arrays are considered, these maximum ramps are expected to be strongly reduced.  

4.4.2. Coherence spectra 

 The coherence spectra over 1-month showing the coherence between EBU2 and the other 

5 sites are shown in Fig. 4.7. At long timescales, the coherence spectra all approach 1. This is 

expected since hourly and longer weather phenomena such as changes in synoptic cloudiness and 

atmospheric composition changes affect all sites. Since the coherence spectra were calculated 

using clear-sky indices, the spectra do not approach 1 as quickly as would be expected with 

irradiances since the daily cycle of the sun rising and setting is (mostly) removed. The sites are 

uncorrelated for time scales shorter than 10 min. BMSB, RIMC, and TIOG have the highest 

coherence values against EBU2 at long timescales. HUBB and MOCC have consistently lower 

coherence values for timescales longer than 10-min. While it is expected that HUBB will have 

lower coherence due to it being at the coast and more than twice as far away from EBU2 than the 

other sites, it is somewhat surprising that MOCC also has such low coherence. MOCC (~1km 

ESE) and TIOG (~1km WSW) are almost the same distance away from EBU2, albeit in nearly 

opposite directions, and yet the coherence spectra for each is markedly different. This indicates 

different weather patterns to the west of EBU2 as to the east. Anecdotal sky observations have 

confirmed that clouds often evaporate as they move eastward which would result in a smaller 

coherence.  
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Fig. 4.7: Coherence spectra for EBU2 and each of the other 5 sites for July 31 through August 25, 2009. 

Each spectrum is smoothed by a moving average smoothing filter for clarity. The apparent vertical lines at 

the far right of the plot are fluctuations that were not dampened by the smoothing filter since they are too 

close to the boundary. Different time scales are marked through vertical lines. 

4.4.3. Wavelet decomposition 

 Wavelet periodograms were computed from the clear-sky index for EBU2 as well as 

from the clear-sky index for the average of 6 sites for each timescale       to 12 for the month 

when 6 sites were simultaneously available. The periodograms from August 22, 2009 over modes 

    (about 1-min) to      (about 1-hr) are shown in Fig. 4.8. August 22 was chosen because 

it has both cloudy and clear periods and because it has a distinct clear period followed by a 

distinct overcast period both lasting about 30-min. This serves as a validation of our application 

of wavelets, as we expect this period to produce two peaks at the       mode (34-min). Indeed, 

the most distinct peaks in the wavelet periodogram shown in Fig. 4.8 are on the      mode, and 

occur at about 10:30 and 11:00. We can also see from the periodogram that the dominant 

timescale of fluctuations between 16:30 and 18:00 was 256-sec (   ). This was not obvious by 

inspecting the original timeseries, but rather is a useful result found through wavelet 

decomposition. 
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Fig. 4.8: Clear-sky index (blue and green thin lines) and wavelet periodogram (black and red thick lines) of 

modes     through      for EBU2 and the average of all 6 sites on August 22, 2009.  

 Inspection of the wavelet periodogram shows that the amplitude is only slightly reduced 

for the average versus EBU2 at high modes (    ), but the average amplitude is much smaller 

at modes corresponding to shorter timescales. Since the amplitude of the periodogram at each 

scale is the variance at that scale, this allows quantifying how averaging multiple sites will lead to 

a stronger reduction in variability at shorter timescales. 

 

4.4.4. Fluctuation power index 

 The reduction in variability as a function of timescale due to averaging sites for the 1-

month period is shown in Fig. 4.9, by plotting the fpi for each timescale. Fig. 4.9 also shows the 
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ratio fpiEBU2/fpiAVG, which we will call the variability ratio (VR), for each timescale. The VR is a 

measure of the reduction in the power (or variance) of fluctuations. A higher VR means a larger 

reduction in fluctuations, while a variability ratio of 1 means no reduction in variability compared 

to a single site. For timescales shorter than 256s (about 4-min), VR was close to 6 for the average 

of the 6 sites. This is consistent with the factor of 6 reduction in variance that we would expect 

for 6 sites spread far enough apart such that their clear-sky indices can be considered independent 

of one another (or uncorrelated). At timescales longer than 128s, the fpi ratio decreased in an 

exponential fashion as the sites become more and more correlated. Eventually, at 4096-sec, the 

VR was nearly one, indicating that on timescales longer than 1-hour, the clear-sky indices at these 

6 sites are too correlated to cause significant reductions in variability. 

 

Fig. 4.9: Fluctuation power index for EBU2 and the average of 6 (AVG) sites over 1-month. The numbers 

above the EBU2 black line are the ratio of fpiEBU2/fpiAVG for each timescale. 

4.4.5. Comparison to Hoff and Perez model 

 The VR at each timescale was used to test the Hoff and Perez [1] (hereafter HP10) 

theoretical model for the decrease in variability at various dispersion factors   for our six sites. 

To compute  , cloud speed   and the distance   that clouds must travel in the direction of cloud 
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movement to pass over all sites are required. We estimated distance by assuming that clouds 

typically travel from west to east over our campus, which was consistent with sky imagery 

analysis. The east-west distance between HUBB and MOCC, the furthest west and the furthest 

east sites, respectively, is 2.75 km. We assumed a 5 m s
-1

 cloud velocity given analysis from total 

sky imagery (Chow et al.[18]), such that   
 

    
 

    

  
, with    = 2

j
. Since HP10 modeled the 

ratio of standard deviation at the average of all sites to the standard deviation at one site 

(“relative output variability,” ROV), for comparison we take the inverse of the square root of the 

VR (Fig. 4.10). In order to plot a single curve for the HP10 ROV, we assumed the lower bound 

(    
 

√ 
) for the reduction in variability in the “limited region.” At long timescales (in the 

“crowded region”, expected     
 

 
),   became less than 1 and would have led to an increase 

in variability at the average versus just one site. This does not make physical sense, and thus the 

ROV was capped at 1.  

 

Fig. 4.10: Relative output variability (ROV) for various dispersion factors calculated at each of the 

timescales used in the wavelet decomposition compared to the Hoff and Perez (2010) model. Hoff and 

Perez model values greater than 1 were set equal to 1, and the lower limit of   √  for the “limited region” 

was used. AVG is the average of 6 sites. 
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 At large   corresponding to short timescales, the sites are indeed independent, and our 

variability reductions fit the HP10 model. However, the agreement is worse at smaller   

corresponding to longer timescales. Our data show no signs of an optimal point in the “limited 

region”. In calculating the optimum point, HP10 assumed that each pair of sites was perfectly 

correlated (with some timeshift), but we suspect that small lateral dimensions of clouds and cloud 

condensation / evaporation cause each site to experience a different cloud pattern. Even for two 

sites only 10 m apart (not shown in Fig. 4.1), on a highly variable day (November 4, 2008) we 

calculated a maximum time-shifted correlation of only 0.94 (4-sec time shift). In the “crowded 

region” the ROV increases with increasing time scale, but the HP10 increase is much sharper than 

the increase found in our data, again presumably due to decorrelation in the cloud fields. Overall, 

our data indicate a model for the ROV that starts at 1 for very long timescales and then follows an 

exponential decay that asymptotically approaches    √  for very short timescales.  

 

 Conclusion 4.5.

 Clear-sky indices at 1-sec resolution from a solar resource station at UC San Diego were 

used to compute statistics over an entire year, showing the benefits of high-frequency data to 

obtain accurate irradiance statistics. Two types of averages were applied to the 1-year data: a 

block average representing different temporal resolutions of averaged solar radiation data, and a 

moving average. For the block averages, the probability of a large SS increases with increasing 

averaging time, but the number of occurrences per day decreases. This was consistent with Fig. 

4.3 in Mills and Wiser [19] where 10-min and 1-hour block averages had increasingly higher 

probabilities at any given ramp than the 1-min block average.  This same trend was also seen 

down to 1-sec resolution for one day in Fig. 4 in Mills et. al [20]. 

 With moving averages, the probability and number of occurrences per day of large RRs 

both decrease with increasing averaging interval. Using storage with a certain capacity solely for 
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RR reduction will result in a PV power output similar to the moving average over an interval 

equivalent to the storage-time capacity, and will therefore lead to a reduction in both magnitude 

and occurrence of extreme RRs. Likewise large solar systems will ideally average irradiance over 

a time scale of           where      is the square root of the area of the array (which is a proxy 

for array length in the direction of the cloud velocity  ) and a frozen cloud field with infinite 

lateral dimension is assumed (similar as in HP10). This leads to RR reductions at short time 

scales.   

 A new framework for quantifying geographic smoothing was presented through 

coherence spectra and wavelet analysis of 1-sec    data over one month at six sites within 3 km 

distance. Comparisons of clear-sky indices showed the reduction in variability when averaging 6 

sites. Coherence spectra indicated strong correlations between sites up to timescales as short as 

10-min and the correlation at longer timescales decreased with distance but not isotropically. A 

top hat wavelet transform was applied to both EBU2 and the average of the 6 sites. At timescales 

of 256-sec and shorter, there was approximately a factor of 6 reduction in variance for the 

average versus just the one site. This indicates that all 6 sites were independent at timescales 

shorter than about 5-min, reducing variability. At longer timescales, however, the reduction in 

variance became smaller, and there was almost no reduction in variance at 4096-sec. The 

variability reductions were compared to the theoretical model presented by HP10. While there 

was strong agreement between the model and our data at high dispersion factors (short 

timescales), there was good qualitative but poor quantitative agreement at smaller dispersion 

factors (long timescales). We suspect that the HP10 assumption that sites are perfectly correlated 

when time-shifted does not apply for real data. Instead, our data suggests an exponential decay of 

the relative output variability as a function of dispersion factor.  

 As PV gains higher and higher penetration, it is important to understand the typical 

fluctuations on various timescales, as well as the potential for storage, PV array size, and 
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geographic dispersion to dampen these fluctuations. The top hat wavelet transform is a novel 

approach to deconstruct clear-sky indices into separate timescale components, and was very 

useful in determining the benefits of storage and geographic averaging. However, cloud statistics 

depend on local meteorological conditions so more tests in different regions are required to 

ensure applicability of our results.  
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Abstract 

 A wavelet variability model (WVM) for simulating solar photovoltaic (PV) power plant 

output given a single irradiance point sensor timeseries using spatio-temporal correlations is 

presented. The variability reduction (VR) that occurs in upscaling from the single point sensor to 

the entire PV plant at each timescale is simulated, then combined with the wavelet transform of 

the point sensor timeseries to produce a simulated power plant output. The WVM is validated 

against measurements at a 2MW residential rooftop distributed PV power plant in Ota City, Japan 

and at a 48MW utility-scale  power plant in Copper Mountain, NV. The WVM simulation match 

the actual power output well for all variability timescales, and the WVM compares well against 

other simulation methods. 

 Introduction 5.1.

 High penetration of solar power is highly desirable from an environmental point of view, 

but the variability of solar photovoltaic (PV) power is considered an obstacle to managing the 

electrical distribution and transmission system. Solar PV power production is variable due to the 

rising and setting of the sun, cloud shadows, changes in composition of the clear atmosphere 

(e.g., dust, smoke, humidity), and system-specific variables such as inverter performance, module 

temperature, and soiling. Cloud-induced fluctuations have the highest potential to affect the 

electric grid since they introduce changes in power production at short timescales (<1-hr). The 

other causes of variability typically change over longer timescales (>1-hr) and are often more 

predictable than clouds. Fortunately, though, since clouds are not homogeneous, geographic 

smoothing reduces short timescale variability for a fleet of PV systems.  
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 We define the variability reduction (VR) as the ratio of variance in a time-varying 

quantity (e.g., normalized irradiance or PV power output) at one site to the variance of the 

average of all sites in a network (i.e., a PV power plant). Defined this way, an increase in VR will 

indicate a decrease in the aggregate variability. Values of VR depend on the correlation between 

sites:      for perfectly correlated sites and      for independent sites. VR values of  2.8 

for 1-min irradiance timeseries of 9 sites in a 4 km by 4 km grid in Tsukuba, Japan [1], 1.7 to 3.3 

for 1-min steps of power output of 3 sites in 100s of km apart in Arizona [2], 2.4 to 4.1 for 5-min 

clear-sky index timeseries of 4 sites 100s of km apart in Colorado [3], and 2.7 for 5-min power 

output of 100 sites spread throughout Germany [4] have been found.  

 Other studies have shown the decorrelation of PV system output as a function of distance 

[5-7]. Hoff and Perez [8] showed that the correlation values collapse onto a line when the 

distance is divided by timescale. Accounting for cloud speed as determined from satellite further 

decreased the scatter, suggesting a universal correlation law.  

 With a similar objective to the present study, Marcos et al. [9] used a solar irradiance 

point sensor timeseries to simulate variability of a larger power plant using a transfer function 

based on a low pass filter which is scaled by the power plant area. Here, we describe a wavelet 

variability model that will help system planners gain an understanding of the variability of a 

potential power plant (i.e., largest ramp rates and how often they occur) with only limited data 

required as input. We describe the steps of the model in Section 5.2, Section 5.3 demonstrates and 

validates use of the model at two test sites, and Section 5.4 presents the conclusions.  

 Methods 5.2.

 We propose a wavelet variability model (WVM) for simulating power plant output given 

(1) measurements from a single irradiance point sensor, (2) knowledge of the power plant 

footprint and PV density (Watts of installed capacity per m
2
), and (3) a correlation scaling 

coefficient (Section 5.2.3) by determining the geographic smoothing that will occur over the area 
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of the plant (Fig. 5.1). The simulated power plant may have any density of PV coverage: it may 

be distributed generation (i.e., a neighborhood with rooftop PV) with low PV density, centrally 

located PV as in a utility-scale power plant with high PV density, or any combination of both. In 

the WVM, we assume a statistically invariant irradiance field both spatially and in time over the 

day (i.e., stationary), and we assume that correlations between sites are isotropic: they depend 

only on distance, not direction.  

 

Fig. 5.1. Diagram showing the inputs and outputs for the WVM. 

 The WVM is designed to provide simulated power plant output to grid integration studies 

which test the effects of adding PV to existing electric feeders. These studies are done 

historically, after load and irradiance have been measured, and show the potential impacts of PV 

variability had PV been installed on the feeder being studied. 

 While the WVM is not a stand-alone forecasting model, it could be integrated into 

forecasting methods if spatially-distributed forecasted irradiances were available at high temporal 

resolution. However, satellite and numerical weather prediction forecast models typically only 

output at a temporal resolution of 30 minutes such that an upscaling method such as the WVM is 

not required since essentially no geographic smoothing occurs over power plant length scales 

(O~10 km) at such long timescales. 

 The main steps to the WVM are detailed in the sections below. 

PV Plant Footprint

Point Sensor 
Timeseries

Density of PV

WVM Inputs WVM Outputs

Plant Areal Average 
Irradiance

determine variability 
reduction (smoothing) at 
each wavelet timescale

Location/Day 
Dependent “ ” 

Coefficient Plant Power Output

irradiance to 
power model
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5.2.1. Wavelet Decomposition 

 We decompose the input irradiance point sensor timeseries into its components at various 

timescales by using a wavelet transform. 

 To obtain a stationary signal, the irradiance timeseries is normalized such that output during clear 

conditions is 1.  

                           , 
5.1 

where            is the normalized signal, and           is the clear-sky model (here the 

Ineichen model [10]). For simplicity of notation, we here assume that the point sensor is a global 

horizontal irradiance (GHI) sensor. If instead a plane of array (POA) sensor were used, a POA 

clear-sky model would be required. 

 The wavelet transform of the clear-sky index,           , is:   

  ̅    ∫            
 

√ ̅
 (

    

 ̅
)       

      
, 

5.2 

where the wavelet timescale (duration of fluctuations) is  ̅,        and      designate the start and 

end of the GHI timeseries, and    is a variable of integration. For the discrete wavelet transform,  ̅ 

is increased by factors of 2, such that values of  ̅ are defined by  ̅    . We used the top hat 

wavelet, defined by: 

     {

               
 

 
      

                 
 

 
     ||     

 

 
    

                    

, 
5.3 

because of its simplicity and similarity to the shape of solar power fluctuations [11]. For 1-day at 1-sec 

resolution, we compute wavelet modes (timeseries) for  ̅ values ranging from 2-sec (   ) to 4096-sec 

(    ), thus decomposing the            timeseries into 12 modes   ̅    showing fluctuations at these 

various timescales. Symmetric signal extension is used to ensure resolution at endpoints. The largest 

timescale over which correlations are considered is 4096 sec (j = 12) because over the spatial scales of 

interest (O~10 km) the amount of smoothing that occurs at longer time scales is insignificant. In addition, 

modes for      require such significant signal extension that they are no longer representative of true 
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fluctuations in the irradiance timeseries. We adopt a special definition for the highest wavelet mode, 

defining   ̅        to be the moving average with window 4096-sec. By doing so, we achieve the property 

that the sum of all wavelet modes equals the original input signal: 

∑   ̅         
             . 

5.4 

5.2.2. Distances 

 We next discretize the power plant into individual ‘sites’. A single site is chosen to be an 

area over which  (      ̅)    for the timescales of interest. For distributed plants, a single site 

is one rooftop PV system. For utility-scale plants, a single site is a small container of PV 

modules, as dictated by computational limitations. When using larger containers, a correction is 

applied for the in-container smoothing. Once discrete sites have been defined, the distance 

between each pair of sites is computed.  

5.2.3. Correlations 

 To determine correlations between sites we assume that correlation is a function of 

distance divided by timescale [8]: 

 (      ̅)        
 

 

    

 ̅
 , 

5.5 

where   is the correlation between sites,       is the distance between sites   and  ,  ̅ is the 

timescale, and   is a correlation scaling factor. The   value can be found using a small network 

of irradiance sensors (at least ~4-6 sites) where the correlations, distances, and timescales are 

known and   may be solved for using Eq. 5.5. The   value varies day-by-day and by location due 

to changing cloud speed. Smaller   values (1-3, typically observed at coastal sites with low, slow 

clouds) result in lower correlations between sites, while large   values (>4, typical of inland sites 

with high, fast-moving clouds) mean higher correlations. Through future work, we will create a 

closed form solution where   can be determined from geographic and meteorological variables 

and multiple irradiance sensors are not required. 



78 

 

 

 

5.2.4. Variability Reduction 

 The variability reduction as a function of timescale,     ̅ , is defined as the variance of 

the point sensor divided by the variance of the entire PV power plant at each timescale. VR can 

be expressed as the inverse of the average of all correlations modeled in Eq. 5.5:  

    ̅  
  

∑ ∑  (      ̅) 
   

 
   

 , 
5.6 

where   is the total number of sites. Defined this way,      for entirely independent sites 

(       ), and      for entirely dependent sites. 

5.2.5. Simulate Wavelet Modes of Power Plant 

 By combining the wavelet modes   ̅    found in Section 5.2.1 with the variability 

reductions     ̅  from Section 5.2.4, we simulate the wavelet modes of the power plant. The 

simulated wavelet modes of normalized power are reduced in magnitude by the square root of 

VR: 

  ̅
       

  ̅   

√    ̅ 
, 

5.7 

where   ̅
       are the simulated power plant wavelet modes. We can sum the simulated wavelet 

modes (inverse wavelet transform) to create a simulated clear-sky index of area-averaged     

over the power plant: 

        
          ∑  

 ̅   
        

   . 
5.8 

5.2.6. Convert to Power Output 

 Power output is obtained by multiplying the spatially averaged irradiance (Section 5.2.6) 

by a clear-sky power output model,        . 

                
                  

5.9 

        is created by combining a plane of array irradiance clear-sky model with the plant’s 

capacity,   , and a constant conversion factor,  .  
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5.10 

 To obtain          , we apply the Page Model [12] to          . Since the Page Model 

requires GHI and diffuse irradiance as inputs, diffuse fraction was estimated as in [13]. The 

constant conversion factor,  , is determined based on the power plant’s conversion efficiency.   

 Since PV plant power output is nearly linearly proportional to spatially averaged 

irradiance [14], using only a constant multiplier ( ) is a reasonable approximation for this 

application. In practice, though, more sophisticated performance models [15] should be used that 

depend on ambient temperature, wind speed, and module specifications. The improvement in 

accuracy of power output achieved by using such a non-linear model depends on how far 

variables such as temperature deviate from standard test conditions (STC), but is expected to 

usually be less than 10%. Errors in estimating the variability at short timescales will be even 

smaller, since most of the non-linear irradiance to power effects occur over long timescales. 

 Results/Application to Ota City and Copper Mountain Power plants 5.3.

 To demonstrate the WVM model, we use the 2.13MWp distributed generation (residential 

rooftop) plant in Ota City, Japan, and the Copper Mountain 48MWp utility scale PV power plant 

in Boulder City, NV. Footprints of each plant are shown in Fig. 5.2. For both, the results of the 

WVM simulation were compared to the actual measured power output for the whole plant.  
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Fig. 5.2. Polygons showing the footprints of the (a) Ota City and (b) Copper Mountain power plants. The 

red shading shows the polygon footprints, while the blue dots show the simulation containers representing 

either houses (Ota City), or small groups of PV modules (Copper Mountain). The large yellow dots 

indicate the location of the GHI point sensors used as input. The Ota City map shows approximately 

    km, while the Copper Mountain map is approximately     km.  Maps © Google Maps. 

 The Ota City (OC) plant consists of 550 houses, most with polycrystalline silicon PV 

systems ranging from 3-5kW, at varying tilts and azimuths. The average orientation of all PV 

modules producing power at OC on the test day was found to be 15° tilt from horizontal and 10° 

azimuth east of south.  

 GHI recorded once per second using an EKO instruments ML-020VM silicon 

pyranometer (expected uncertainty   ) was used as input to the WVM, and power output of 

the entire neighborhood also at 1-sec resolution was used for validation. The total power output 

was simply the sum of the output of each house, so ignored transmission losses. Results for a 

typically variable day (October 12, 2007) in OC (Fig.5.3a) will be presented. 

 The Sempra Generation Copper Mountain (CM) plant contains ground-mounted 

cadmium telluride (CdTe) thin-film PV at a fixed tilt of 25°. GHI at 1-sec resolution from a Kipp 

& Zonen CMP11 (expected daily uncertainty    ) was input to the WVM model, and the 

output was compared to power output of the entire plant also measured at 1-sec. Total power 

output was the sum of all inverter power outputs, so ignores AC transmission losses. October 1, 

2011 was chosen as a typically variable test day at CM (Fig.5.3b).  
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Fig.5.3. GHI at 1-sec resolution at (a) Ota City on October 12th, 2007, and at (b) Copper Mountain on 

October 1, 2011. X-axis is time in [HH:MM]. 

 For purposes of validating the WVM, we will use irradiances at a point, area-averaged 

irradiances, and power output (for nomenclature see Table 5.1). For validation, the simulated 

power output (    ) is compared to the actual power output ( ). The point sensor is included in 

some comparisons to show how the WVM output has improved from the input GHI.  

Table 5.1: Nomenclature for GHI, simulated power output, and actual power output. Angle brackets 

denote averaging.          is the clear-sky index, while              is the ratio of actual to 

clear-sky output power. Since the later does not align with the definition of the clear-sky index, the 

         notation was chosen. 

 

GHI units 

[W m
-2

] 

Clear-sky index 

[-] 

Power units 

[MW] 

measured point sensor               

simulated power plant output                    
            

actual power plant output                       

5.3.1. Inputs and Running the Model 

 The layouts of OC and CM were input and the WVM picked discrete points inside these 

footprints to use as “sites” in the simulation, as shown in Fig. 5.2. The spacing of sites was 

chosen based on the density of the plant. For OC, discrete sites were spaced roughly 20m apart 

such that each site represented a single house with rooftop PV. For CM, sites were closer together 
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(a few meters), with each site representing a sufficiently small group of PV modules that can be 

assumed to have a correlation coefficient of 1.  

 Also input to the WVM were the GHI measurement vectors, as well as latitude, 

longitude, and UTC offset (for creating the clear-sky model,       ). The test day at OC contains 

large cloud-induced irradiance fluctuations throughout the day. The test day at CM has some 

large irradiance fluctuations as well as a few clear periods (e.g., 10:00-12:00). Thus, the WVM 

model will be tested at two different sites and types of daily cloud conditions (highly variable and 

partly variable).  

 For OC on the test day,      , as found from 6 GHI point sensors. Similarly, 15 plane-

of-array reference cells at CM were used to determine        on October 1 (Fig.5.4). The small 

scatter of correlation points (black dots) around the best-fit curve, most noticeable at CM, is 

likely due to small anisotropic effects (i.e., pairs of sensors arranged in a certain direction may 

have higher correlation for all timescales).  

  

Fig.5.4. Correlations of wavelet modes for pairs of point sensors (a) at Ota City on October 12th, 2007 and 

(b) Copper Mountain on October 1, 2011.  The x-axis is       
    

  ̅
  to show the exponential relationship 

between correlation and the quantity distance divided by timescale. Six GHI point sensors were used at 

Ota City, and 15 plane-of-array reference cells were used at Copper Mountain. Time scales range from 2-

sec to 2048-sec. Dots to the far left have large 
    

  ̅
 ratios meaning either very short timescales or very long 

distances, while dots to the far right have small 
    

  ̅
 ratios so either very long timescales or very short 

distances. The red line is the line of best fit and corresponds to using       (Ota City) or       

(Copper Mountain) in Eq. 5.5. 
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 Following steps A-E (Section 5.2), a simulated normalized irradiance (similar to a clear-

sky index, see Table 5.1) timeseries for the entire Ota City and Copper Mountain power plants 

was created,          
         . Fig.5.5a shows the effect of spatial averaging on the 

(simulated) reduction in variability. Fluctuations on timescales less than 8-sec are essentially zero 

and the fluctuations are reduced for timescales of 64-sec and shorter. At longer time scales, 

though, the wavelet modes between the GHI point sensor and the simulation are essentially 

identical. The power plant output ‘clear-sky index’ agrees with the simulation results across all 

timescales (Fig.5.5b).  

  

Fig.5.5. [top most plots] Clear-sky index timeseries, and [bottom 12 plots] wavelet modes for Ota City on 

the test day. [Left] Clear-sky index measured (        , black) and simulated spatially averaged across 

the power plant (        
       , magenta). [Right] Power plant output ‘clear-sky index’ measured 

(           , blue) and simulated (         
      , magenta).  
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5.3.2. Validation of Simulated Power plant Output 

 Here we present comparisons between the simulated and actual power output using the 

fluctuation power index (   ) and ramp rate (RR) distributions. The    , which is the power 

content of fluctuations in the wavelet modes at each timescale, is used as a variability metric to 

test the WVM. The goal of the WVM is to create simulated power output that statistically has the 

same variability distribution across timescales as the actual power output. The main output of the 

WVM is the VR as a function of timescale, but small errors in VR are irrelevant if the     is 

small (such as on clear days or at very short timescales when fluctuations have tiny magnitudes), 

as errors will also be very small. However, when the     is large (such as on cloudy days or at 

long timescales), errors in VR can lead to significant errors in    . Additionally,     and total 

power output can be slightly offset in time based on the direction of cloud movement and the 

location of the GHI sensor versus the centroid of the power plant. Since the     describes the 

variability content (and total variance) rather than the time of occurrence, it allows measuring the 

accuracy of the WVM independent of these geographic limitations. 

 Fig.5.6 shows the    s of        ,            , and         
       for both OC 

and CM. As expected based on Fig.5.5, the      of the irradiance at a point sensor,        , 

deviates from the     of the spatial average,            , at short timescales due to 

geographic smoothing. There is good agreement between simulated and actual    s of the power 

output ‘clear-sky index’ at all timescales. The variability at CM at timescales of 2 to 8-sec is 

higher than estimated by the WVM, though this may be caused by differences in sensor response 

times between the GHI and power measurements. Since the power content is so small at these 

timescales (      compared to       at longer timescales), though, there is little effect on 

simulated power output. At both sites, the WVM (        
       ) significantly improved over 

its input (        ) at quantifying the fluctuation power content of the actual power output .  
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 Another validation of the model is to compare the irradiance profile of the input GHI 

point sensor, WVM output areal averaged irradiance, and the ‘actual’ area-averaged irradiance 

derived from the power output. To obtain the actual area-averaged irradiance, we multiply the 

power output clear-sky index by the GHI clear-sky model:  

                                   . 
5.11 

 The simulated area-averaged irradiance clear-sky index must also be multiplied by the 

GHI clear-sky model to obtain simulated areal averaged irradiance: 

                          
                . 5.12 

Fig.5.7 shows that               is essentially a filtered version of      ); during long clear 

or cloudy periods the area-averaged GHI approaches the point sensor while short fluctuations 

e.g., at 09:09, are more strongly reduced. The timeseries of fluctuations,            and 

              are not expected to match perfectly, since only a single point sensor is used as 

input, but the statistics of the fluctuations are expected to agree. For the eight minute segment 

shown in Fig.5.7a, the ‘upper envelope’ of area-averaged irradiance is accurately simulated. 

However, especially during long cloud events (large timescales), the lower envelope of the power 

plant is as small as or even smaller than the envelope of the point sensor. Physically this could 

mean that the optical depth of the cloud at the point sensor was less than the average of the cloud 

  

Fig.5.6.  Fluctuation power index (   ) for the GHI point sensor (black), actual power output of (red), 

and simulated power output (blue line) at (a) Ota City on October 12, 2007 and (b) Copper Mountain 

on October 1, 2011. 
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system over the power plant (spatial heterogeneity); it could also mean that the tilt and azimuth of 

the PV modules comprising the plant (versus the horizontal GHI) resulted in a smaller diffuse 

irradiance at the power plant during these morning hours. 

 

Fig.5.7. Point sensor GHI (black), power plant area-averaged GHI (red), and simulated area-averaged 

GHI (blue) for Ota City on October 12, 2007. (a) Zoomed in to eight minutes in the morning, and (b) the 

entire day. 

 While the WVM has been shown to match     (Fig.5.6) and smoothing of area-averaged 

irradiance (Fig.5.7), ramp rate statistics are often of greater interest to power plant and grid 

operators. Fig.5.8 shows the cdf of ramp rates at 1s, 10s, 30s, and 1-min, for both OC and CM.   

and      show similar RR distributions at all of these timescales. The match between RRs is 

slightly worse at CM, but this is expected since CM is a larger area than OC. Over the larger area, 

the irradiance statistics may be less homogenous and lead to error in the WVM output. For 

example, half of CM could be consistently experiencing partly cloudy conditions while the other 

half is under clear skies. If the sensor used as input to the WVM were in the clear-sky section, the 

WVM would under predict the variability of the total plant. This scenario is less likely to happen 

at OC, since the distance across the plant is shorter (~1km at OC vs. ~2km at CM).  

5.3.3. Comparison to Other Upscaling Methods 

 To evaluate the performance of the WVM, we compare it to other methods for simulating power 

plant output. We chose to compare to 3 other methods that have been applied for upscaling. (1) A primitive 

method is to simply linearly scale the irradiance measured by a single point sensor as       , where CF 
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is a constant factor related to the plant area. This assumes identical relative variability between the point 

sensor and the whole plant, strongly overestimating variability for all but the smallest of PV plants. (2) 

Since geographic smoothing occurs over certain time scales (Fig.5.5), a moving average (or box filter) can 

be applied to an irradiance timeseries. The timescale of the moving average can be physically motivated 

from the relation      
    

 
, where   is the plant area and    is the cloud velocity. While fundamentally 

similar to the WVM, this moving average method is restricted to smoothing at  a single timescale (     ), 

and so cannot take into effect different amounts of smoothing at different timescales.  (3) A third method is 

to average the timeseries from all available irradiance sensors. This method becomes more accurate as 

more sensors are added and in the extreme case of e.g. one sensor per PV panel would be exact.  It requires 

the PV sensors to be representative of the actual plant layout: for best results, sensors should be equally 

spaced and cover the entire plant footprint (but not extend past the footprint, or smoothing will be 

overestimated).  

  

Fig.5.8.  Extreme (    percentile) ramp rate distributions at 1-sec (a, e), 10-sec (b, f), 30-sec (c, g), 

and 1-min (d, h) for   and      for Ota City (a-d) and Copper Mountain (e-h). X-axis units are 

multiplied by an arbitrary scaling factor to protect the confidentiality of the power data. 

 In Fig.5.9, the extreme RRs of CM power output for these 3 methods are compared to the 

WVM on the test day. For method 2, the plant area is 1.33km, and a cloud speed of 10 m s
-1

 was 

assumed, resulting in a moving average timescale          . For method 3, the 15 reference 

cells available at CM were averaged.  
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Fig.5.9.  Extreme (>90th percentile) ramp rate cumulative distribution functions at CM on October 1, 2011  

at 1-sec (a), 10-sec (b), 30-sec (c), and 1-min (d) for measured power output (solid red), and for different 

methods of simulating PV power plant output: WVM (dashed blue), method 1: linearly scaling from a point 

sensor (dashed black), method 2: a moving average of 115s corresponding to      
    

 
  (dashed green 

line), and method 3: averaging all 15 reference cells (dashed magenta line).  

 Method 1 overestimated the RRs at all timescales, since geographic smoothing is ignored. 

Method 2 also overestimated most RRs at all timescales (maximum RRs were underestimated), 

but performed markedly better than method 1. Method 2 could be improved by using measured 

cloud velocity instead of an assumed value. Method 3 overestimated RRs at shorter timescales (1s 

and 10s), but was more accurate at longer timescales (30s and 60s). At short timescales when 

short-distance changes are important, 15 sensors will not be enough to accurately represent all of 

the PV modules. As the timescale increases, the distances over which changes are important will 

increase, and this 15 sensor network will be more accurate in representing the entire plant. 

 Since grid operators are often concerned about worst-case scenarios, it is important that 

these simulation methods also produce reasonable maximum RRs. Table 5.2 shows the maximum 

RRs by timescale for each of the simulation methods. The WVM showed small percentage errors 

(-8% to -20%) at all timescales. Methods 1 and 3 will always overestimate the maximum RRs, 
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since at 1 and 15 point measurements, respectively, they both underrepresent the actual diversity 

of the plant. As expected, Method 3 outperformed Method 1 with a range of errors of 8% to 38%. 

Method 2, always overestimated the maximum RRs, and had moderate errors at most timescales 

(-0% to -45%).  

Table 5.2: Maximum RRs for CM on the test day compared to maximum RRs simulated using 

other methods described in Section 5.3.3. Relative units are used for RRs to protect 

confidential data. 

  P WVM method 

    1 2 3 

1s 
max RR 0.50 0.46 4.08 0.28 0.68 

% error  -8% 723% -45% 38% 

10s 
max RR 4.29 3.79 21.80 2.70 4.70 

% error  -12% 408% -37% 9% 

30s 
max RR 11.19 8.92 24.95 7.88 12.11 

% error  -20% 123% -30% 8% 

60s 
max RR 15.29 13.70 28.17 15.28 18.02 

% error  -10% 84% -0% 18% 

 It is also worth noting the data requirements of each method. Aside from method 1 

(which requires only a single sensor), the WVM has the simplest input requirements, needing just 

a single irradiance sensor and an   value. The   value can either be determined from a small 

network of irradiance sensors (~4-6), or reasonably estimated based on observed trends in   

values. Method 2 requires the cloud velocity, which is difficult to determine since ground wind 

speeds are not well correlated with cloud speeds, and only sparse measurements exist of cloud 

height and winds aloft. Method 3 performs best with a high-density sensor network. When such a 

network is not available, the accuracy of method 3 will decrease towards that of method 1. 

Overall, the WVM has simple input requirements and is best at simulating extreme and maximum 

RRs.  
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 Conclusion 5.4.

 A wavelet-based variability model (WVM) for simulating the power output of a solar 

photovoltaic (PV) plant was presented and tested. The WVM uses the plant footprint, density of 

PV modules in the plant, and the timeseries measurements from a single point sensor to create a 

simulated power output timeseries. First, correlations between sites (i.e., houses or small groups 

of PV modules) within the power plant are determined using an equation based on the distance 

between sites, timescales, and a correlation scaling coefficient (  value). From these correlations, 

variability reductions (VRs), or the ratio of variability of a single point sensor to the variability of 

the entire PV plant, at each fluctuation timescale are found. Wavelet decomposition is then used 

to separate the normalized input point sensor timeseries by fluctuation timescale. By combining 

the wavelet modes at each timescale with the VRs at each timescale, the normalized plant power 

output is simulated. Actual power output (in MW) is then obtained by using a clear-sky model for 

power output. 

 The WVM was validated at the 2MW distributed residential rooftop plant in Ota City, 

Japan, and the Copper Mountain, NV 48MW central power plant. For both test cases, the WVM 

simulation matched the statistics of the actual power output well. Fluctuation power index (   ) 

comparisons showed that the WVM accurately represented variability by timescale at both Ota 

City and Copper Mountain. Ramp rates (RRs) at 1-sec, 10-sec, 30-sec, and 60-sec were also 

compared between simulated and actual power, and again, the WVM fared well at both test sites.  

 Comparison between the WVM and other power plant simulation methods highlighted 

the benefits of using the WVM. The WVM has reasonable input requirements (single sensor and 

  value), while other methods required harder to obtain inputs such as cloud velocity or 

irradiance from a dense sensor network. The WVM was best at matching extreme and maximum 

RRs for the test day at Copper Mountain.  
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 Future work will concentrate on characterizing the   values used in the correlation 

equation in Section 5.2.3. Currently,   values are determined form a small network of irradiance 

sensors. To allow for broader application of the WVM, we will determine how   values vary 

based on geographic region and meteorological condition. Then, a closed form WVM program 

will be created which will estimate the variability of potential PV plants for grid integration and 

siting studies without requiring a sensor network.    
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Abstract 

 The wavelet variability model (WVM) for simulating solar photovoltaic (PV) powerplant 

output given a single irradiance sensor as input has been developed and validated previously. 

Central to the WVM method is a correlation scaling coefficient ( ) that calibrates the decay of 

correlation of the clear sky index as a function of distance and timescale, and which varies by day 

and geographic location. Previously, a local irradiance sensor network was required to derive  . 

In this work, we determine   from cloud speeds. Cloud simulator results indicated that the   

value is linearly proportional to the cloud speed (  ):   
 

 
  . Cloud speeds from a numerical 

weather model (NWM) were then used to create a database of daily   values for North America. 

For validation, the WVM was run to simulate a 48MW PV plant with both NWM   values and 

with ground   values found from a sensor network. Both WVM methods closely matched the 

distribution of RRs of measured power, and were a strong improvement over linearly scaling up a 

point sensor. The incremental error in using NWM   values over ground   values was small. The 

ability to use NWM-derived   values means that the WVM can be used to simulate a PV plant 

anywhere a single high-frequency irradiance sensor exits. This can greatly assist in module siting, 

plant sizing, and storage decisions for prospective PV plants.  

 Introduction 6.1.

 The variable nature of power produced by PV power plants can be of concern to electric 

operators. For example, the Puerto Rico Electric Power Authority (PREPA) requires that utility-

scale PV plants in Puerto Rico limit ramps (both up and down) to 10% of capacity per minute [1]. 

At short timescales such as 1-minute, the variability of solar PV power production is mostly 
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caused by the movement of clouds across the PV plant. While a single PV module can produce 

highly variable output due to the instantaneous crossing of cloud edges, geographic diversity of 

modules within a PV plant will lead to smoothing of the total power output. Geographic diversity 

can be quantified through the correlation coefficients between the timeseries of power output of 

different PV modules within the plant. This correlation generally decreases with distance and 

increases with fluctuation timescale.  

 Irradiance and power measurements have been used to quantify the relative reduction in 

aggregate variability for a combination of sites. Sites a few to hundreds of kilometers apart were 

shown to lead to a smoothed aggregate output and the amount of smoothing varied based on the 

distances between sites and local meteorological conditions [2-5].  Other investigators [6-8] 

calculated the correlation of irradiance fluctuations between sites and found decorrelation 

distances – the distances over which sites become independent of one another – to vary based on 

fluctuation timescale and distance between sites.  Accounting for cloud speed further enhanced 

the accuracy of these correlation models [9]. Correlation was also shown to depend on orientation 

relative to the direction of cloud motion [10].   

 Wavelet analysis has been used to decompose solar fluctuations into different timescales 

and measure the variability at that timescale [11-13]. The wavelet transform and a smoothing 

factor that varies by timescale were then used to simulate the variability reduction in going from a 

single site to a powerplant [14, 15]. In this paper, we build on the wavelet-variability model 

(WVM) presented in [15] by using cloud speeds to make the model more generally applicable. 

The WVM and its correlation equation are described in Section 6.2, the relationship between 

cloud speed and the correlation scaling coefficient (  value) is shown in Section 6.3, a method for 

determining cloud speeds and converting to   values is presented in Section 6.4, and in Section 

6.5 we apply and validate the WVM with cloud-speed derived   values at a 48MW PV plant.  
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 The Wavelet Variability Model (WVM) 6.2.

6.2.1. WVM Description 

 To estimate the smoothing achieved over a solar power plant due to decorrelation within 

the plant, we have developed the WVM. The WVM is described in full in [15]. In short, the 

WVM takes as inputs a local irradiance point sensor, the PV plant footprint, PV plant capacity, 

and a correlation-scaling   value, and outputs a simulated plant power output timeseries. The 

simplified WVM procedure is: 

1) Apply a wavelet transform to decompose the clear-sky index of the original irradiance 

timeseries into wavelet modes   ̅    at various timescales,  ̅, which represent cloud-induced 

fluctuations at each timescale.  

2) Determine the distances,     , between all pairs of ‘sites’ in the PV power plant;   
     ,        . A site represents a single PV module.  

3) Determine the correlations,  (      ̅) , between the wavelet modes at different sites. A 

location/day dependent correlation scaling coefficient ( ) is needed to account for cloud 

speed (Section 6.2.2).     

4) Use  (      ̅) to find the variability reduction,      ̅ , at each timescale:     ̅  
  

∑ ∑  (      ̅) 
   

 
   

. 

5) Divide each   ̅    by the square root of the corresponding     ̅  to create simulated wavelet 

modes of the entire power plant. Apply an inverse wavelet transform to these scaled wavelet 

modes to yield the simulated clear-sky index of areal-averaged irradiance over the whole 

power plant. 

6) Convert this area-averaged clear-sky index into power output,         by multiplying by a 

clear-sky power model e.g. determined from panel type, tilt and azimuth, and temperature. 

The temporal resolution of the simulated power output is the same as the temporal resolution 

of the original irradiance timeseries (e.g., 1s in, 1s out).  

 

 The WVM can be a valuable tool for simulating how often certain size RRs will occur. 

For example, it can be used to estimate the number of RRs per day exceeding 10% of capacity (as 

is of special interest in Puerto Rico).  The WVM has been limited, though, by the need for a local 

sensor network to derive   values (Step 3 above). In this paper, we present a method for 

determining   values based on cloud speeds from numerical weather forecasts, eliminating the 

need for a local sensor network. The motivation for introducing cloud speed is both mathematical 

and physical. Mathematically, dimensional analysis shows that the   value must have units of m 
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s
-1

 (Eq. 6.1), and the only relevant speed is the cloud speed. Physically, the ratio of distance 

between sites to the distance traveled by the clouds is important for determining correlations. The 

distance traveled by the clouds is the cloud speed multiplied by the timescale. 

6.2.2. Space-Time Correlations and   values 

 Estimating the correlations between the wavelet modes at different locations (step 3) is 

perhaps the most important step of the WVM. Based on previous works [6-8, 16], it is clear that 

correlations between sites depend on both      and  . The WVM models correlation between 

wavelet modes at different sites using the equation  

 (      ̅)     ( 
    

   ̅
). 6.1 

Eq. 6.1 assumes that correlations are isotropic, i.e. they do not depend on direction but merely the 

magnitude of distance between sites. Therefore it is meant to represent the average correlation for 

all site pairs in a powerplant.  

6.2.3. Correlation Model Limitations 

 The assumption of isotropy in Eq. 6.1 is violated for two specific cases: 

A. Along-wind sites can become negatively correlated when          ̅, where    is the 

cloud speed;     ̅ is the distance traveled by the clouds. The correlation can even reach -1 

if there is frozen cloud field advection and if clouds of length       are spaced       

apart. Then, the same cloud or set of clouds that affects site   at time   affects site   at 

time     ̅. Negative correlation was demonstrated experimentally in the virtual network 

in [7] and in the along-wind direction in [10]. This negative correlation is caused by the 

time offset in “seeing” the cloud feature. At time    ̅, the top hat wavelet scaling 

function      will have a value of    when multiplying the cloud feature at site  , and 

a value of   when multiplying that same cloud feature at site  . These opposite signs 

usually lead to negative correlation of wavelet modes, depending on the surrounding 

cloud features. 

B. Sites can become uncorrelated when the cross-wind distance between them,     
         , 

is greater than the cross-wind cloud feature size,   . A cloud feature does not have to be 

one single cloud, but can also be a cloud band or cloud front that is highly correlated 

along the cross-wind direction. For example, a cloud front may contain many individual 

clouds among which there is high correlation in the cross-wind direction. 

When 
    

         

  
   sites   and   will see the same clouds features (but possibly at 

different onset times), and Eq. 6.1 applies.  However, when 
    

         

  
  , the two sites 
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are never affected by the same cloud feature. Thus, correlations for the cases where 
    

         

  
   do not depend on distance or timescale, but only on the correlation 

between random pixels the cloud field.  

 In both limitations A and B, Eq. 6.1 will tend to overestimate correlations. However, in 

simulating PV powerplants, we expect the errors to be small. Limitation A will only affect sites at 

the timescale  ̅  
     

  
, and at that primarily affects sites aligned close to the along-wind 

direction. When many timescales and pairs of sites with different orientations are averaged over a 

powerplant, the error caused by limitation A will be minimal. Limitation B can have a significant 

effect if the distances across the powerplant are on the same order as the typical cross-wind cloud 

size. However, since powerplant length scales (meters to a few kilometers) are small relative to 

mesoscale weather effects, we expect the ratio 
    

         

  
 to be sufficiently small across the 

powerplant such that limitation B also has a minimal effect on correlations. 

6.2.4. Calculating the   Value from a Sensor Network 

 When an irradiance sensor network exists near the powerplant to be simulated, the value 

of   can be found by back solving Eq. 6.1. Distance, timescale, and correlation are known from 

measurements in the network and a best fit   value can be determined (Fig. 6.1). The slight 

variation of correlations above and below the   value best fit in Fig. 6.1 are likely due to 

limitations A and B.   
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Fig. 6.1: Correlations between wavelet modes of clear sky indices measured in a sensor network. The x-axis 

is       
    

 ̅
  to show the exponential decay of correlation as a function of distance and timescale. The red 

line is the correlation modeled using Eq. 6.1, where the   value (3.19) was fit.  The plot in the bottom right 

shows the plane-of-array (POA) irradiance profile on this day. 

This method requires a sensor network measuring at high frequency collocated with the 

powerplant to be simulated. This severely limits the application of the WVM as very few sensor 

networks currently exist at prospective sites for which WVM simulations are desired.   

 A Values and Cloud Speed from a Cloud Field Simulator  6.3.

6.3.1. Cloud Field Simulation Method 

 To better understand the dependence of the   value on the physical variables of cloud 

size and cloud speed, we created a simple cloud simulator. Simulated cloud fields were created by 

first using a coarse grid, where one pixel was the size of one cloud. To simulate 1000 m clouds, 

for example, 1000 by 1000 m pixels were used. A uniformly distributed ([0 1]) random number 

was assigned to each pixel in the coarse grid. All coarse grid pixel values less than the specified 

cloud cover fraction were set to one to represent clouds, and all other pixels were set to zero to 

represent clear-sky. This procedure was used as a way to control the cloud size and reduced 

processing time over other methods such as randomly drawing circles in the field.  In this way, a 

coarse cloud field was created, such as the one shown in Fig. 6.2a. The coarse field was then 

converted into a smooth cloud field at high resolution using a 2D spline interpolation. In the fine 
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cloud field, each pixel was 1 by 1m, regardless of the cloud size. To maintain cloud cover 

fraction, after interpolation, values less than 0.5 were set to zero and greater than 0.5 were set to 

one. An example fine cloud field is shown in Fig. 6.2b.  

 

 

Fig. 6.2: Snapshot of the domain for (a) the coarse cloud field and (b) the fine cloud field. White 

represents clouds and black represent clear-sky. The blue arrow shows the direction of cloud motion, the 

green dots (at ~ x=0, y=500) show an example sensor network, and the red lines show the range of 

locations for the top edge of the sensor networks. These images were created for the case where the 

cloud size was 1000m, and the cloud cover fraction was 0.7.  

 To determine   values, a virtual sensor network was set up in the cloud field. To simulate 

cloud motion, the cloud field was advected in the negative x direction with the cloud speed. The 

simulated clear-sky index timeseries       for a sensor at position       was then          

       , where    is the cloud speed. For simplicity, we assumed a    value of 0 for cloudy 

pixels and 1 for clear pixels. As described in Section 6.2.4, the correlations of wavelet modes of 

      for various sensor pairs were found, and Eq. 6.1 was back solved to determine the   value 

for the specified cloud size and speed. Due to computational limitations, the length of the cloud 

field in the x-direction was always 12,800 m. This meant that the length of the timeseries    
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was              . The shortest timeseries (          ) was        s long, allowing for 

resolution of 9 wavelet modes. This is a sufficient range of timescales to produce accurate   

value results. 

 The virtual sensor network was made up of 3 x 3 points spaced across a Cartesian grid 

with 50 m spacing. The location of the sensor network in the y-direction was varied to account for 

all possible sensor-cloud positions (i.e., sensor field in center of cloud, at edge of cloud, etc.). For 

each cloud size, 10 different sensor positions were used. Assuming periodicity of the statistics 

with a period equal to the cloud size, the y-offset ranged from 
 

 
 the cloud size to 

 

 
 the cloud size 

in steps of 1/10
th
 the cloud size (500 to 1500 m in Fig. 6.2). The offsets were started at 

 

 
 the cloud 

size to eliminate edge effects caused by the spline interpolation at the boundary of the cloud field 

(   ). We ran this cloud simulation for cloud sizes of 100 to 3000 m and cloud speeds of 1 to 

25 m s
-1

, all with a cloud fraction of 0.7. 

6.3.2. Relating A Value and Cloud Speed 

 The cloud simulator domain was setup 200 times for each cloud speed and cloud size pair 

to ensure that results were statistically representative. Simulations that yielded a relative root 

mean squared error (rRMSE) of the fit of the   value to the simulated correlations greater than 

15% were not used. The mean of the remaining   values for each cloud speed and cloud size pair 

are shown in Fig. 6.3a. Fig. 6.3b shows the   value as a function of cloud speed.  
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a)

 

b) 

 

Fig. 6.3:   values determined through cloud field simulation: (a) on a 2D plot showing the   value as a 

function of cloud speed and cloud size, and (b) on a line graph showing the   value as a function only of 

cloud speed. Most of the   value fits for the 100 m cloud size had errors larger than the 15% threshold, 

resulting in the white unresolved area in (a) and short blue line in (b). The three lines in (b) that diverge 

from other lines are for the 100m (blue), 200m (green), and 300m (red) cloud sizes.     

 Since   is close to linearly proportional to cloud speed (Fig. 6.3b), we define: 

       . 6.2 

However,    was not constant at slow cloud speeds or small cloud sizes. For example, the    

value at 2 m s
-1

 cloud speed was on average 20% lower than the    value at 25 m s
-1

 cloud speed. 

However, as cloud speed increased,    quickly converged; the difference between the    value at 

5 m s
-1

 cloud speed and the    value at 25 m s
-1

 cloud speed was only 0.6%.  

 This decrease in    at slow cloud speeds is caused by limitation A. Fig. 6.4 shows how 

correlations change as a function of the angle between the pair of sites and the wind direction, and 

as a function of timescale. When the cloud speed is slow, the timescale at which limitation A has 

the largest impact is longer: the 32s timescale for 2 m s
-1

 cloud speed versus the 2s timescale for 

25 m s
-1

 cloud speed. This is consistent with the claim in Section 6.2.3 that limitation A has the 

strongest effect when          ̅, since the average distance between site pairs oriented in the 

along-wind direction is 66 m. When limitation A affects a longer timescale (i.e. for smaller cloud 

speed), it more strongly reduces the average correlations across the entire sensor network. At fast 
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cloud speeds, limitation A only affects the shortest timescales when correlations would have been 

nearly zero anyway, and its effect in determining   values is negligible.  

a) 

 

b) 

 

Fig. 6.4: Correlations from one run of the cloud simulator with 1000 m clouds and 0.7 cloud cover, 

averaged over all 10 sensor network offset positions. The plots show the dependence of correlations on 

the angle between the sites and the wind direction and on the timescale for (a) 2 m s
-1 

cloud speed and (b) 

25 m s
-1

 cloud speed. The white x’s mark locations of minimum correlation, showing where the effect of 

limitation A is strongest.   

 At small cloud sizes (
  

    
<5),    increases significantly with cloud size due to limitation 

B. For small cloud sizes, some of the cross-wind distances between sites in the virtual sensor 

network are on the same order as the cloud size, and so correlations are smaller than at larger 

cloud sizes. Smaller correlations lead to smaller   values (Eq. 6.1), and hence a smaller   . As 

cloud size increases, though, the effect of limitation B vanishes, and    becomes a constant.  

 Fig. 6.5 shows the effect of limitation B on the correlations. At 200 m cloud size, 

correlations in the along-wind direction (red dots in Fig. 6.5a) which limitation B has no effect 

on, are larger than correlations in all other directions. These along-wind correlations follow the 

scaling (     ) found for larger cloud sizes. Limitation B is responsible for the reduced 

correlations at all other site pair angles. As cloud size increases, though, the effect of limitation B 

goes away (Fig. 6.5b).  
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a) 

 

b) 

 

Fig. 6.5: Correlations from one run of the cloud simulator with 10 m s-1 cloud speed and 0.7 cloud 

fraction, averaged over all 10 sensor network offset positions, for (a) 200m cloud size and (b) 3000m 

cloud size. The black dots show all correlations, while the red dots show correlations between sites 

along the wind direction. The blue line is the best fit line      , which fits the 3000 m cloud size 

correlations well, and is included in (a) for reference.  

 For sufficiently fast cloud speeds and large cloud sizes (400-3000m cloud sizes and 5-25 

m/s cloud speeds)          resulted in the best fit to the data. Since the cloud simulator 

assumes uniform cloud optical depth in time and space          is an upper limit. While we 

assume the linear relationship of Eq. 6.2 to hold, empirical evidence (e.g., Fig. 6.8a) suggests 

that        , and Eq. 6.2 becomes:  

  
 

 
     6.3 

 Determining Cloud Speeds and Converting to A values 6.4.

 Eq. 6.3 is only useful if cloud speeds are known. Unfortunately, cloud speeds are very 

difficult to measure. Atmospheric radiosonde measurements from the National Oceanic and 

Atmospheric Administration (NOAA) [17] can be used to determine cloud speeds, but locations 

are sparse and measurements are only taken at most twice per day. Satellite cloud speeds are 

often not representative of individual clouds but rather larger weather systems [18]. Techniques 

for measuring cloud speed exist [19, 20], but only a limited amount of suitable sensors are 

deployed. Here, we use the NOAA North American Mesoscale (NAM) numerical weather 
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forecast [21], which has both a higher spatial (~12x12 km grids covering continental North 

America) and temporal (once per hour) resolution than radiosonde measurements.    

6.4.1. Determining NAM Cloud Speed 

 NAM forecasts contain, among other variables, relative humidity and wind vectors at 39 

different pressure levels. Cloud heights were determined from the relative humidity profiles (Fig. 

6.6). We assumed that the dominant cloud layer was located at the height where the relative 

humidity was highest, provided that the relative humidity at that height was greater than 90%. A 

threshold lower than 100% must be used to resolve cloud layers that are smaller than the model 

vertical grid spacing.  The wind speed at the cloud height was recorded as the cloud speed.  

 

Fig. 6.6: Example plot of relative humidity and wind speed on July 26, 2011 at Copper Mountain, NV. 

In this case, the cloud was found to be at about 5km, with a speed of 4.03 m s-1.  

6.4.2.   Values for North America 

 Cloud speeds at each NAM grid point were computed every three hours. Although hourly 

data is available, using three hour data should be adequate for determining daily trends in cloud 

speeds and was a significant savings in both processing time and data storage requirements. The 

cloud speeds were converted into   values using Eq. 6.3. From the eight   values per day, we 
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found the NAM GHI variance-weighted mean, which was recorded as the daily NAM   value. 

GHI was found hourly, and the variance of the clear-sky index during the 3-hour period 

containing the   value was used as the weight. This served to both eliminate nighttime   values 

which are meaningless in the context of solar radiation variability, and to place larger weight on   

values during highly variable time periods that cause the largest ramp rates. Fig. 6.7 shows the 

seasonal averages of these daily   values. These seasonal averages were also found using a GHI 

daily variance-weighted mean.  

 We observe some interesting seasonal trends in Fig. 6.7. Nearly all locations within the 

NAM coverage area have small   values during the summer months (June-August). The other 

three seasons have areas with much larger   values, though the specific areas with large   values 

change by season. Large   values roughly follow the seasonal path of the Jet stream, since   

values are derived from wind speeds. Some areas, such as coastal California and the Caribbean, 

have small   values (    ) year-round presumably due to low-level clouds in slower sea-breeze 

circulations. For otherwise identical conditions, small   values lead to small correlations and 

more smoothing across the plant. However, for the overall ramp rate distribution, the local 

variability in irradiance (i.e., the length of partly cloudy conditions), will usually dominate over 

smoothing due to a low   value.  
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6.4.3. Comparison of NAM   to Ground   

 As a primary validation of the NAM   values, we compare NAM   values to ground   

values from a network of irradiance sensors at the Copper Mountain site in southern Nevada 

(described in Section 6.5). Fig. 6.8 shows both a scatterplot and a comparison of cumulative 

distributions for the ground and NAM   values. These NAM   values were computed day-by-

day for the time period during which CM reported data: August 2011 through July 2012. Since 

CM features an excellent solar resource, during this one year period there were only 40 days 

where clouds existed in the NAM, and hence there are 40 NAM   values to compare to ground   

values. The scatterplot shows a high correlation (      ) between ground   and NAM   

values. Fig. 6.8b shows that the cumulative distribution of NAM   values is similar to the 

cumulative distribution of actual   values.  

 

Fig. 6.7: GHI variance-weighted   values for the NAM coverage area by season.   
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a)  

 

b)  

 

Fig. 6.8: Comparison of ground   and NAM   values during the time period August 1st, 2011 through July 

31st, 2012. (a) scatter plot with 1:1 line, and (b) cumulative distribution functions (cdfs).  

6.4.4.   Values for Any Day 

 The NAM does not simulate clouds at every site on every day, either because clouds did 

not exist or because the NAM failed to simulate them. On days when no clouds existed (and 

consequently no   value could be computed), both an irradiance point sensor and a powerplant 

will experience only minimal fluctuations away from their clear-sky profiles, and the   value is 

irrelevant. However, on days when clouds did exist but the NAM did not resolve them, it will be 

important to use a reasonable   value.  

 To allow for universal applicability,   values on any given day are determined by 

sampling from a distribution of NAM   values from the 90 days surrounding that day. We will 

refer to these as NAM-cdf   values to distinguish from the NAM   values found directly on the 

day of interest (Section 6.4.4).  

 To create NAM-cdf   values, cloud speeds for the year 2011 were processed. We assume 

that the year 2011 is representative of the seasonal distributions of   values, such that 2011 

values may be applied to any other year. To allow for complete resolution of NAM-cdf   values, 

late 2011 values are included in the 90 day NAM-cdf window for early 2011 and vice versa. In 
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this way, a complete, year-long record of NAM-cdf   values can be created for any site within 

the NAM coverage area. For example, to determine the NAM-cdf   value for February 14
th
 2012 

in Copper Mountain, for example, we would sample from a distribution of the NAM   values in 

Copper Mountain from January 1st through March 31
st
 2011. 

 When using NAM-cdf   values to run the WVM, we expect larger errors on a day-by-

day basis, due to the nature of   values being randomly selected from seasonal values. However, 

when daily results are aggregated over a season or a year, NAM-cdf WVM simulations should 

closely match distributions of seasonal or annual ramp rates in power output. 

 Application  6.5.

 In this section, we provide an example of how the WVM performs at simulating 

powerplant output given only a single irradiance sensor as input and using NAM-cdf   values. 

For this example, we use the 48MW Sempra US Gas & Power Copper Mountain (CM) utility 

scale PV power plant in Boulder City, NV. Irradiance measured once per second at an NREL 

calibrated plane-of-array reference cell was used as input to the WVM, and power output of the 

entire plant, also measured once per second, was compared to the output of the WVM. 

Additionally, CM contains a network of 15 reference cells, such that the ground   value can be 

determined through Eq. 6.1 as in Fig. 6.1. We analyze the year-long period of August 1
st
, 2011 

through July 31
st
, 2012. 33 days from this period were eliminated due to errors in irradiance 

measurements, power measurements, or both. However, the 333 remaining days are well 

representative of annual trends.       

6.5.1. Cumulative Distribution Functions of Ramp Rates 

 The WVM was run at CM for the 1-year period. The inputs to the WVM are: PV plant 

footprint, density of PV (in Watts of AC rated installed power per square meter), an irradiance 

point sensor timeseries, and a daily   value. The PV plant footprint and density of PV at CM are 

always fixed. The irradiance timeseries was from the same point sensor for all simulations. For 
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each day, we ran three   values: the ground   value, the NAM-cdf   value, and    , which 

represents linearly scaling up a point sensor. This last scenario was included to show how the 

relative variability of the point sensor compared to the measured and simulated power outputs. 

Since the input irradiance timeseries was at 1-sec resolution, daily power output profiles at 1-sec 

resolution for each of the three scenarios were created. Yearly statistics are presented in Figs. 6.7 

and 6.8.  

 As described in Section 6.4.4,   values were created based on 2011 NAM cdf; they were 

not NAM   values directly sampled on the days when CM recorded data. Better results would be 

obtained by using the NAM data from August 2011 through July 2012, but we chose to only use 

2011 data to demonstrate the ability of the NAM-cdf method to simulate a plant using the 

representative 2011 data when NAM data is not available during for the time of interest. 

 The goal of the WVM is to accurately simulate the variability of the actual plant power 

output. The exact timing of fluctuations will not be perfectly matched, because the point sensor 

will “see” clouds at different onset times than the total plant aggregate, but the statistics of 

variability should match. To test this, we use the cumulative distribution function (cdf) of RRs as 

a metric. Fig. 6.9 shows the large (>90
th
 percentile) RRs of actual power output and the three 

WVM scenarios.  



111 

 

 

 

 

Fig. 6.9: Cumulative distribution of ramp rates in power output for the 1-year period from August 1, 2011 

through July 31
st
, 2012. Ramp rates are shown at various timescales: 1s (top left), 10s (top right), 30s 

(bottom left), and 60s (bottom right). At each timescale, the ramp rates of  measured power output (thick 

blue line), WVM run with ground   values (dashed green line), WVM run with NAM-cdf   values 

(dashed red line), and a point sensor with no smoothing (A = inf, dashed magenta line) are shown. The x-

axis is the RR in [MW/timescale] multiplied by an arbitrary scaling factor to protect the confidentiality of 

the power data.    

 The cdfs of RRs match well between the measured power output and the ground   and 

NAM-cdf   WVM methods, as seen qualitatively in Fig. 6.9. Simply scaling up the point sensor 

(    ) is inaccurate. Scaling up assumes that sites are always perfectly correlated, and so 

correlations and hence RRs will always be overestimated. The other two methods (ground and 

NAM-cdf) slightly overestimate the most extreme RRs (i.e., they are slightly shifted to the right 

in Fig. 6.9 for >98
th
 percentile), meaning they slightly overestimate the correlations during the 

times when these RRs occur. Limitations A and B, both cause the WVM to overestimate 

correlation, and may explain part of the difference. Overall, though, errors in estimating the RR 

distributions of the actual power output are small when using either ground   or NAM-cdf   

values.    
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6.5.2. Quantification of WVM Accuracy 

 To quantitatively compare the different methods, we find the sum of the squared errors, 

  , between the cdfs of power RRs simulated with the various WVM methods and the cdfs of the 

measured power RRs using the Cramer–von Mises criterion: 

   ∫ |                               |
                  

 

 
. 6.4 

 Values of    for each method at 1s, 10s, 30s, 1-min, 5-min, and 10-min are shown in 

Fig. 6.10. Due to different maximum RRs at each timescale, the Cramer–von Mises criterion is 

best used to compare errors between the different methods at the same timescale than to compare 

errors over different timescales (i.e., it is not normalized by timescale). The ground   WVM 

method is most accurate at simulating the RRs of measured power output at all timescales. The 

WVM using NAM-cdf  , though, causes only slightly larger errors. Scaling up the point sensor 

has the highest errors, especially at short timescales where the assumption that variability is the 

same at a point and over the whole powerplant is worst. At longer timescales (e.g., 10-min), 

errors between the three methods become comparable, as all PV modules within the powerplant 

have well-correlated output over long timescales, so the scaled point sensor becomes more 

accurate.  

 

Fig. 6.10: Cramer-von Mises criterion (  ) showing the difference between the cumulative distribution of 

measured ramp rates and WVM ramp rates found using ground A values (blue), NAM A values (green), and 

the un-smoothed point sensor (A=inf, red).  
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 Discussion and Conclusions 6.6.

 The Wavelet Variability Model (WVM) has shown great promise in simulating the output 

of PV powerplants. Previously, to apply the WVM an irradiance sensor network collocated with 

the PV plant to be simulated was required to determine the correlation scaling coefficient ( ). In 

this work, we demonstrated that   is directly related to cloud speeds and present a method for 

determining cloud speeds from numerical weather forecasts. This allows for much broader 

application of the WVM. 

 By employing a cloud simulator, the dependence of correlation on cloud speeds, in 

addition to distance and timescale, was motivated. The correlation equation used in the WVM 

was reduced to:      ( 
    
 

 
     ̅

). This is similar to the correlation model proposed by Perez et. 

al in [9] (Eq. 9):   
 

  
    
     ̅

. As expected, both models predict nearly zero correlation at very 

long distances or very short timescales, and nearly perfect correlation at short distances or long 

timescales. In between these two limits, the differences between the two models are small; the 

exponential model presented here decays slightly faster than the fractional model proposed in [9]. 

In [9], distances between sites were on the scale of kilometers and timescales were on the order of 

hours. In this work, distances were on the scale of meters and timescales on the order of seconds, 

yet very similar correlation models were found in both works. The agreement in correlation 

models between the two works shows that the nondimensional quantity 
    

     ̅
 is the dominant 

quantity for determining correlations between sites, regardless of the magnitude of the distance or 

timescale being considered. In other words, the process is scale invariant. 

 These correlation models assume correlations are isotropic: they do not depend on 

direction between sites. In practice, though, there is a small directional dependence to correlation 

between two sites, which leads to slight limitations of isotropic correlation models. [10] showed 

that correlations can vary depending on the orientation of sites relative to the cloud motion 
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direction. Negative correlations were observed in the along-wind direction at certain timescales 

both in [10] and in the cloud simulator used in this work. In the cloud simulator, we also noticed a 

decorrelation in the cross-wind direction when the distance between sites was comparable to the 

cloud size. For WVM applications, we assume that cloud speeds and sizes will be large enough 

that the effect of these limitations will be small. Results from the cross-wind correlations in [10] 

support the assumption that cloud sizes are large relative to distances between sites, as no sharp 

dropoff of correlations  – which would occur if sites were further apart than the cloud size such 

that they were never covered by the same cloud – is seen in the cross-wind direction.  

 The use of cloud speeds to eliminate the need for a local sensor network when running 

the WVM opens many more possible applications. Solar developers who have high frequency 

irradiance point measurements on site can use the WVM to estimate the RRs that will occur at the 

plant. Module siting, plant sizing, and forecasting and storage requirements can be simulated 

before the plant is installed. This will be especially important for PV plants installed in locations 

(typically islands) that have RR restrictions (e.g., Puerto Rico).   
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7. Conclusion and Example of Future Work: WVM simulation in 

Puerto Rico 

  PREPA 10% RR Requirement 7.1.

 The enhancement of incorporating cloud speeds in the WVM (Chapter 6) has greatly 

increased the number of locations where the WVM can be run to simulate PV powerplant output. 

One such particularly important location is Puerto Rico. Because of the Puerto Rico Electric 

Power Authority (PREPA) requirement that all PV plants on Puerto Rico limit ramps to less than 

10% of capacity per minute [1], there is strong interest in estimating the RRs that PV plants being 

installed or considered in Puerto Rico will produce.  

  Data Availability 7.2.

 As of summer 2012, no high-frequency irradiance or power data measured anywhere on 

the island of Puerto Rico was publically available. Because of this, in August 2012 the Kleissl 

Lab Group installed three irradiance sensor in close proximity (a few meters) on a rooftop at the 

University of Puerto Rico, Mayaguez [2]. These sensors not only give a high-frequency 

irradiance input to the WVM, but also allow for resolution of cloud speed based on methods 

described in [3]. By using the cloud-speed enhanced WVM presented in Chapter 6, the WVM can 

be run to simulate powerplant RRs in Mayaguez.  

 At the time of writing this dissertation, only data from the month of September, 2012 is 

available from the irradiance sensors in Mayaguez. The GHI for each day is shown in Fig. 7.1. 

Many days at Mayaguez are clear in the morning but become highly variable by midday (with 

changes in irradiance exceeding 50% in 1-minute). However, since only one month of data is 

available this may not be representative of yearly trends at Mayaguez. Additionally, the 

Mayaguez data may not accurately represent other locations in Puerto Rico. Mayaguez is on the 

western coast of Puerto Rico. Locations further inland or on different coasts may have different 

irradiance statistics due to different weather patterns. The analysis presented in this chapter is 
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meant to be illustrative and to give a broad understanding of the variability of PV plants in Puerto 

Rico.  

 

Fig. 7.1: Calendar showing the daily GHI profiles at Mayaguez, PR in September 2012. 

  WVM Simulation 7.3.

 For the one month of data, the WVM was used to simulate 5, 10, 20, 40, and 60MW 

square-shaped PV powerplants in Mayaguez with typical utility-scale PV density of 30 W m
-2

. 

Particular attention was paid to the number of RRs greater than 10% of capacity (“violations”), 

due to the PREPA requirement. Table 7.1 shows the number of violations simulated by the WVM 

for each size of PV plant. By increasing plant size (and, hence, increasing geographic diversity), 

there is a noticeable decrease in violations: 737 for the 60MW plant versus 1322 for the 5MW 

plant. However, this decrease in violations does not scale linearly with increasing plant size. In all 

cases (5-60MW), the number of violations is significant, averaging at least 44 per day.  
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Table 7.1: RRs larger than 10% of capacity (“violations”) in September 2012. 

Plant Size 5MW 10MW 20MW 40MW 60MW 

Violations in 

September 2012 
1322 1192 1051 873 737 

 The number of violations per day changes depending on the variability of each day. Fig. 

7.2 shows the timeseries of RRs and number of violations per day for the 60MW plant. The 

number of violations changes substantially by day, from a maximum of 110 violations on 

September 1
st
 to having no violations on 6 other days. This shows the strong impact of 

meteorology. 

 

Fig. 7.2: RRs for 60MW plant. Violations are highlighted by red dots, and the total number of violations 

per day is shown in red at the bottom right of each plot. 

 To compare the different PV plant sizes, we can examine how many days a certain 

number of violations occurred per day. Fig. 7.3 shows these distributions. The 5MW plant had a 

maximum of 160 violations per day, while the 60MW plant had a maximum of only 110 

violations. All but the 60MW plant had more than 5 days with more than 50 violations. The 
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number of violations on the most extreme days is likely the most important factor for sizing and 

controlling storage at these PV sites.  

 

Fig. 7.3: Distributions showing how many days per month each number of violations per day will occur. 

For example, the 5MW plant had 5 days with 70 or more violations.   

 It is important to not just look at how many violations occur, but also how large the 1-

minute RRs were, since that will influence the amount of storage and the control algorithms 

needed to comply with the PREPA requirement. Fig. 7.4 shows the number of occurrences of 

large 1-minute RRs. In the month, the 60MW plant had no RR larger than 30% of capacity, while 

the 5MW plant had 272. The maximum RR had the 5MW plant was over 50% of capacity. It is 

worth remembering, though, that in MWs, the maximum RR at the 60MW plant will still be 

much larger than the maximum RR at the 5MW plant: 18MW versus 2.5MW. As such, even 

though the 60MW plant will have less violations, and violations will tend to be less severe, it will 

still require a larger storage system (in terms of energy capacity) than the 5MW plant.  

5 10 15 20 25 30
0

25

50

75

100

125

150

days per month

v
io

la
ti
o
n
s
 p

e
r 

d
a
y

 

 

5MW

10MW

20MW

40MW

60MW



121 

 

 

 

 

Fig. 7.4: Number of occurrence of large 1-minute RRs in September 2012.  

 The results presented here have important implications for Puerto Rico: PV plants in 

Mayaguez, PR will very often produce RRs larger than 10% of capacity. The number of 

violations per day can exceed 100, or nearly once per 5-minutes. In order to comply with the 

PREPA requirement, large amounts of batteries or other storage will be required, which will 

considerably increases the cost of installing PV systems in Puerto Rico.  

 The WVM developed in the dissertation research has proved very useful for PV plant and 

grid operators Solar developers can use the WVM to estimate the RRs that will occur at their 

plant, and module siting, plant sizing, and forecasting and storage requirements can be 

investigated and adjusted before the plant is installed. This has proven especially useful for PV 

plants that are given RR restrictions by electric authorities during their permitting.  

  Future Work 7.4.

 Future work should focus on both modifying the WVM to apply over larger areas and on 

running electric grid simulations with WVM simulated data to test the impact of powerplant 

variability to the electric grid.  
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 Currently, the WVM assumes statistical homogeneity: that all sites simulated have the 

same irradiance statistics. This limits the application of the WVM to short lengthscales (e.g., a 

few kilometers). Over longer lengthscales, irradiance statistics will vary from site to site. To 

simulate the combination of different powerplants, the additional smoothing due to varying 

irradiance statistics over long distances should be further investigated.  

 While the WVM has been used to effectively estimate PV powerplant RRs, the effect of 

these RRs on the electric grid is not well known. Variables such as feeder or substation capacity, 

length, and customer locations as well as the location of the PV powerplant will all impact the 

effect that RRs have on voltage fluctuations and grid stability. Using grid simulation tools such as 

OpenDSS, the impact of PV RRs should be examined in detail (e.g., as presented in [4, 5]). In this 

way, the true impact of PV powerplant variability on the electric grid can be understood.  
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