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Nesić at The University of Melbourne. I am grateful for his comments and view

points on the theoretical expansion of the Newton-based Extremum seeking.

I also would like to thank my Doctoral Committee members to their time,

effort, and willing to read this dissertation.

To Donovan Geiger, thank you for your help and advise in the JDP.

My words are speechless in response to the unconditional love and friendship

I have received from Farinaz, my wife. We have been students together in these

years and she showed a great deal of courage and hardworking both in her school

and in our life.

My mother, Khadijeh, and my sister, Golaleh, are both deserved special

thanks for their unexpected supports during this work. Farinaz’s Father, Ebrahim,

is obviously one of those people who cannot be found very often. I would like to

thank them for their endless favors in our support which we will never forget.

I would like to extend my gratitude to my friend, Aziz Rasouli, whom is

like an older brother and a source of wisdom to me.

This dissertation includes reprints or adaptations of the following papers:
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ABSTRACT OF THE DISSERTATION

Power Control and Optimization of Photovoltaic and Wind Energy
Conversion Systems

by

Azad Ghaffari

Doctor of Philosophy in Engineering Science (Mechanical and Aerospace
Engineering)

University of California, San Diego, 2013
San Diego State University, 2013

Professor Miroslav Krstić, Chair
Professor Sridhar Seshagiri, Co-Chair

Power map and Maximum Power Point (MPP) of Photovoltaic (PV) and

Wind Energy Conversion Systems (WECS) highly depend on system dynamics and

environmental parameters, e.g., solar irradiance, temperature, and wind speed.

Power optimization algorithms for PV systems and WECS are collectively known

as Maximum Power Point Tracking (MPPT) algorithm. Gradient-based Extremum

Seeking (ES), as a non-model-based MPPT algorithm, governs the system to its

peak point on the steepest descent curve regardless of changes of the system dy-

namics and variations of the environmental parameters. Since the power map

xv



shape defines the gradient vector, then a close estimate of the power map shape is

needed to create user assignable transients in the MPPT algorithm. The Hessian

gives a precise estimate of the power map in a neighborhood around the MPP.

The estimate of the inverse of the Hessian in combination with the estimate of the

gradient vector are the key parts to implement the Newton-based ES algorithm.

Hence, we generate an estimate of the Hessian using our proposed perturbation

matrix. Also, we introduce a dynamic estimator to calculate the inverse of the

Hessian which is an essential part of our algorithm. We present various simula-

tions and experiments on the micro-converter PV systems to verify the validity of

our proposed algorithm.

The ES scheme can also be used in combination with other control algo-

rithms to achieve desired closed-loop performance. The WECS dynamics is slow

which causes even slower response time for the MPPT based on the ES. Hence, we

present a control scheme, extended from Field-Oriented Control (FOC), in combi-

nation with feedback linearization to reduce the convergence time of the closed-loop

system. Furthermore, the nonlinear control prevents magnetic saturation of the

stator of the Induction Generator (IG). The proposed control algorithm in com-

bination with the ES guarantees the closed-loop system robustness with respect

to high level parameter uncertainty in the IG dynamics. The simulation results

verify the effectiveness of the proposed algorithm.

xvi



Chapter 1

Introduction

Environmental parameters and systems dynamics are two main factors

which affect the power map of Distributed Generators (DG), including Photo-

voltaic (PV) and Wind Energy Conversion Systems (WECS). Since the DG sys-

tems are exposed to the sun and wind for a long period of time they experience

degradation in addition to normal wear and tear, which cause variation of the

power map in unpredictable ways. Also the DG systems have a peak power point

which moves with system degradation and environmental parameters. Figure 1.1

shows a typical power map of the PV and WECS under a wide range of tempera-

ture, solar irradiance, and wind speed. Maximum Power Point Tracking (MPPT)

algorithms are designed to guarantee maximum power extraction independent of

system dynamics or environmental parameters.

1.1 Model-Free Gradient-Based Optimization Al-

gorithms

One of the most common algorithms to MPPT in the DG systems are

based on the idea of Perturb and Observe (P& O) which has other derivations like

Hill Climbing (HC) and Increment Conductance (IC) methods. More details and

thorough investigation on these methods can be found in [25, 32, 35]. A basic HC

algorithm is shown in Fig. 1.2. This algorithm moves the system to its peak point

1
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Figure 1.1: Typical power map of PV and WECS under different environmental

conditions.

by detecting the gradient of the cost function. There is not a generalization of

the P& O techniques for cost functions with input vector parameter, multivariable

maps, which motivates the researcher to employ other techniques, among which

we refer the reader to [53, 63]. Reference [53] uses Particle Swarm Optimization

(PSO), which is an algorithm that employs multiple agents to “search” for the

peak power. When applying this technique for MPPT of a PV system including a

group of PV modules in series and parallel, the process of reinitialization and the

tracking performance depend strongly on variable conditions like environmental

factors, the nature of the PV modules, and the shading area. The method also

has a lengthy adaptation time. The presented algorithm in [63] computes the

optimal parameter at each dimension of the input vector parameter, one after the

other one. Obviously, because the latter algorithm does not give an estimate of

the gradient vector of the cost function, then this so-called multivariable P& O

technique may fail to find the Maximum Power Point (MPP) of a PV system under

partial shading or sudden changes in solar irradiance.

Among the gradient-based MPPT algorithm we select Extremum Seeking

(ES) which its local stability has been analytically proved and its expansion to
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Figure 1.2: Hill climbing algorithm to MPPT in DG systems.
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Figure 1.3: Scalar extremum seeking for a static cost function.
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MPPT of multivariable cost functions is fairly straight forward. Figure 1.3 shows

a basic scheme of the gradient-based ES for a static map Q(θ) with peak value Q∗

at θ∗. Suppose that we have the following quadratic cost function

Q(θ) = Q∗ +
1

2
h(θ − θ∗)2, h < 0, (1.1)

where h is the Hessian of the cost function and its gradient is g = h(θ − θ∗).

By injecting a perturbation signal with low amplitude and low frequency and

multiplying the output of the system by the same perturbation with a properly

scaled amplitude, we can calculate the estimate of the gradient of the cost function

as follows

Q(θ) = Q∗ +
1

2
h
(

θ̃ + a sin(ωt)
)

, θ̃ = θ̂ − θ∗ (1.2)

ĝ =
2

a
sin(ωt)× y (1.3)

= hθ̃ +
2

a
Q∗ sin(ωt) +

h

a
sin(ωt)θ̃2 − h cos(2ωt)θ̃ + ha sin3(ωt) (1.4)

The average value of ĝ over one period of the probing function equals to the average

value of the gradient

ĝave =
1

T

∫ T

0

ĝdt, T =
2π

ω
(1.5)

= hθ̃. (1.6)

Since ˙̃θ =
˙̂
θ, then ˙̃θ = khθ̃, which shows that the Hessian defines transient of

the closed-loop system. A simple simulation can explain this issue more clearly.

Applying the gradient-based ES to a scalar non-symmetric cost function as shown

in Fig. 1.4 results in vastly different transients for different initial conditions.

Clearly, the shape of the cost function has a great impact on the convergence rate

of the parameter. This issue can create more complicated transient performances

in a multivariable cost functions. Newton algorithm is an apparent option to

overcome the challenges of the gradient-based algorithm for which we need the

estimate of the Hessian and its inverse.
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Figure 1.4: (left) A sample non-symmetric cost function and (right) the

adaptation process using gradient-based ES for two different initial conditions.

1.2 Newton-based ES

First we develop theoretical basis of Newton-based ES for multivariable cost

functions with dynamic systems. The traditional ES is based on the estimate of

the gradient vector of the cost function which causes the dependence of the con-

vergence rate on the cost function shape. For non-symmetric cost functions which

are elongated in one direction the governing process is non-uniform which creates a

lengthy adaptation process including a wide range of transients for different param-

eters. To maintain the same transient and to guarantee a reasonable convergence

time, the designer needs to select the gain matrix cautiously with an eye on the

selected perturbation frequencies for the gradient-based ES. The Newton-based ES

uses the estimate of the Hessian which is an indication of the cost function shape

to create a uniform transient in all channels of the ES algorithm. The proposed

scheme includes two main parts: first we present an estimate of the Hessian by

generating a perturbation matrix which includes sinusoidal signals, then we de-

velop a dynamic matrix inverter algorithm to ensure avoiding singularities in the

inverse of the Hessian. The presented nonlinear filter is in the shape of a Riccati

equation.
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1.3 Maximum Power Point Tracking

Since PV and WECS power level are defined by the environmental param-

eters like solar irradiance and wind speed, we use ES which is a non-model-based

power optimization algorithm to remove the obstacle of working with an unknown

system model. Extremum seeking has the ability to deal with unknown dynam-

ics by reducing the design requirements to two basic assumptions about the cost

function, namely zero gradient vector and negative definite Hessian matrix around

the peak point.

Photovoltaic systems include an arbitrary combination of series and parallel

PV modules to create a desired power and voltage level. In order to extract

power from PV modules we construct our system based on the micro-converter

scheme (DC power optimizer) which involves one DC/DC converter per each PV

module. The micro-converter architecture guarantees the highest economical level

of power extraction from PV systems. Each DC/DC converter has two roles: first it

regulates the voltage level to a constant value and second it implements the MPPT

algorithm to ensure power maximization. Conventionally, one MPPT algorithm

is employed per each module in the micro-converter scheme which requires two

sensors per each PV module, one for current and one for voltage measurement.

Also this distributed MPPT structure gives no consideration to the interaction

between modules and creates vastly different transients under sudden changes in

irradiance level or partial shading. We present a centralized MPPT algorithm using

multivariable ES to keep all the PV modules under the same transient. Since the

centralized algorithm uses the total generated power of the PV system for MPPT,

then the number of sensors reduces to two for the entire system, one for current and

one for voltage measurement. We also develop an experimental setup to validate

our proposed MPPT algorithm.

As shown in Fig. 1.1 the WECS shows different peak points under various

wind speeds. In order to find the optimal shaft speed of the WECS under any wind

speed regime, a close estimate of the WECS power map and wind speed measure-

ment are required. Nevertheless, non-model-based optimization algorithms like the

ES do not require the information about system power map and wind speed mea-
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surement. Hence, we employ a gradient-based ES for MPPT of the WECS. The

system includes a Matrix Converter (MC) as the control actuator which governs

the electrical frequency and voltage amplitude of the Induction Generator (IG) to

desired values. The open-loop dynamics of the WECS is stable with left half-plane

poles in the linearized model. In order to improve the transient of the WECS and

and to encompass other control features like v/f or Field-Oriented Control (FOC),

a controller needs to be included in the system. We employ a nonlinear control

developed based on the FOC to achieve a fast transient and to prevent magnetic

saturation of the IG stator. The proposed controller in combination with the ES

is highly robust with respect to the variation in the IG parameters.

1.4 Thesis Overview

The contents of this thesis are as follows.

Chapter 2 develops the theoretical basis of multivariable Newton-based

ES using the averaging and singular perturbation analysis.

Chapter 3 describes the fundamentals of PV module modeling based on

the manufacturer’s data sheet. This chapter also provides the design guidelines for

buck and boost DC/DC power converters for MPPT in PV systems.

Chapter 4 is dedicated to MPPT of PV systems using the ES including

multivariable Newton-based, multivariable gradient-based, and distributed ES. We

present the simulation and experimental results to show the effectiveness of the

proposed algorithms.

Chapter 5 concentrates on the WECS modeling and its MPPT. We em-

ploy a nonlinear transformation and feedback linearization based on the concept

of the FOC to achieve desired closed-loop performance. Power optimization is

implemented using ES.

Chapter 6 presents a summary of this dissertation and presents an overview

of the future work direction.



Chapter 2

Multivariable Newton-Based

Extremum Seeking

In this chapter we develop the theoretical basis of the Newton-based ES

using the averaging and singular perturbation analysis. Our main contributions

are presenting a disturbance matrix to create a precise estimate of the Hessian and

providing the estimate of the inverse of the Hessian using a dynamic filter in form

of a Riccati equation. User assignable transient performance occurs in all channels

of the input vector parameter.

2.1 Introduction

Dramatic advances have occurred over the past decade both in the theory

[5, 6, 20, 45, 66, 70–73, 76] and in applications [7, 10, 17, 21, 22, 31, 41, 51, 77, 81] of

Extremum Seeking (ES) control. All these references employ gradient-based ES.

A Newton-based ES algorithm was introduced in [54] where, for the single-

input case, an estimate of the second derivative of the map was employed in a

Newton-like continuous-time algorithm. A generalization, employing a different

approach than in [54], was presented in [56], where a methodology for generating

estimates of higher-order derivatives of the unknown single-input map was intro-

duced, for emulating more general continuous-time optimization algorithms, with

a Newton algorithm being a special case.

8
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The key distinction of the Newton algorithm relative to the gradient algo-

rithm is that, while the convergence of the gradient algorithm is dictated by the

second derivative (Hessian) of the map, the convergence of the Newton algorithm

is independent of the Hessian and can be arbitrarily assigned. This is particu-

larly important in non-model based algorithms, like extremum seeking, where the

Hessian is unknown.

The power of the Newton algorithm is particularly evident in multi-input

optimization problems. With the Hessian being a matrix in this case, and with

it being typically very different from the identity matrix, the gradient algorithm

typically results in different elements of the input vector converging at vastly dif-

ferent speeds. This problem is inherent to gradient-based schemes. To rectify it

one would need to modify the algorithm using the inverse of the Hessian matrix

which is not available as the model of the system is assumed to be unavailable. On

the other hand, the Newton algorithm, if equipped with a convergent estimator of

the Hessian matrix, achieves convergence of all the elements of the input vector at

the same, or at arbitrarily assignable, rates.

We present a multivariable Newton-based ES algorithm, which yields arbi-

trarily assignable convergence rates for each of the elements of the input vector.

We generate the estimate of the Hessian matrix by generalizing the idea proposed

in [56] for the scalar case.

Generating an estimate of the Hessian matrix in non-model-based optimiza-

tion is not the only challenge. The other challenge is that the Newton algorithm

requires an inverse of the Hessian matrix. The estimate of this matrix, as it evolves

in continuous time, need not necessarily remain invertible. We tackle this challenge

by employing a dynamic system for generating the inverse asymptotically. This

dynamic system is a filter in the form of a Riccati differential equation. When

fed with a positive/negative-definite estimate of the Hessian matrix over a longer

period of time, this filter converges to a positive/negative-definite inverse of the

Hessian matrix. Hence, after a transient, our non-model-based algorithm behaves

(on average) as a model-based Newton algorithm.

While the basic idea of our algorithm is developed for static maps, we pro-
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vide the analysis of convergence when the algorithm is applied to general nonlinear

systems, as in [45]. We apply classical averaging and singular perturbation meth-

ods, so our stability result is local—the parameter estimates start not too far from

the true parameters and the estimate of the Hessian matrix starts not too far from

the true Hessian matrix. It is also possible to prove non-local stability of the pro-

posed scheme in a similar manner as [72] where a gradient-based algorithm was

investigated.

The continuous-time Newton algorithm that we propose is novel, to our

knowledge, even in the case when the cost function being optimized is known.

The state-of-the-art continuous-time Newton algorithm in [3] employs a Lyapunov

differential equation for estimating the inverse of the Hessian matrix—see (3.2)

in [3]. The convergence of this estimator is actually governed by the Hessian

matrix itself. This means that the algorithm in [3] removes the difficulty with

inverting the estimate of the Hessian, but does not achieve independence of the

convergence rate from the Hessian. In contrast, our algorithm’s convergence rate

is independent from the Hessian and is user-assignable.

We state the problem and review the gradient-based ES algorithm for a

static map in Section 2.2. Section 2.3 presents our Newton-based scheme for the

static map. In this section we explain how we generate the estimate of the Hessian

matrix and the estimate of its inverse. A generalization of the Newton-based

scheme to dynamic plants is introduced in Section 2.4. The main stability result

is stated in Section 2.5. Stability analysis based on the averaging and singular

perturbation methods is presented, respectively, in Section 2.6 and Section 2.7.

Section 2.8 presents an illustrative example to highlight the difference between the

proposed scheme and the standard gradient-based ES.
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2.2 Review of the Gradient Algorithm for Static

Map

Consider a convex static map

y = Q(θ), θ =
[

θ1 θ2 · · · θn

]T

, (2.1)

with a local maximum at θ∗. The cost function is not known in (2.1), but we

can measure y and we can manipulate θ. The gradient-based ES scheme for this

multivariable static map is shown in Fig. 2.1, whereK is a positive diagonal matrix,

and the perturbation signals are defined as

S(t) =
[

a1 sin(ω1t) · · · an sin(ωnt)
]T

, (2.2)

M(t) =

[

2

a1
sin(ω1t) · · · 2

an
sin(ωnt)

]T

, (2.3)

where ωi/ωj are rational and ai are real numbers, with the frequencies chosen such

that ωi 6= ωj and ωi + ωj 6= ωk for distinct i, j, and k.

Remark 1 A gradient-based ES for the static map (2.1) is given by
˙̂
θ = KM(t)y,

θ = θ̂+S(t). In the parameter error variable θ̃ = θ̂− θ∗, the closed-loop system in

Fig. 2.1 is given by ˙̃θ = KM(t)Q
(

θ∗ + S(t) + θ̃
)

. The basic idea of the scheme,

as well as of the choice of the perturbation signals, is understood by noting that,

for the case of a quadratic map, Q(θ) = Q∗ + 1
2
(θ − θ∗)TH(θ − θ∗), the averaged

system is given by
˙̃θ = KHθ̃, (2.4)

where H is the Hessian of the static map, and it is negative definite. This observa-

tion reveals two things: (i) the gradient-based ES algorithm is locally convergent,

and (ii) the convergence rate is governed by the unknown Hessian matrix H. One

of the features of the Newton algorithm presented in the next section is to eliminate

the dependence of the convergence rate on the unknown H.
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Figure 2.1: Gradient-based ES for a static map.
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Figure 2.2: Newton-based ES for a static map.

2.3 Newton Algorithm for Static Map

The Newton-based ES algorithm for a static map is shown in Fig. 2.2,

where β is a positive real number. There are two vital parts in the Newton-

based algorithm: the perturbation matrix N(t), which generates an estimate of

the Hessian, and the Riccati equation, which generates an estimate of the inverse

of Hessian matrix, even when the estimate of the Hessian is singular.

The idea for producing the estimate of the Hessian matrixH := ∂2Q(θ∗)/∂θ2

is borrowed from the scalar design in [56]. Referring to the Taylor series expansion
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of the cost function around the peak, we have

y = Q(θ∗ + θ̃ + S(t))

= Q(θ∗)+
1

2

(

θ̃+S(t)
)T

H
(

θ̃+S(t)
)

+R(θ̃ + S(t)), (2.5)

where ∂Q(θ∗)/∂θ = 0 and R(θ̃ + S(t)) stands for higher order terms in θ̃ + S(t).

Product of N(t) and y needs to generate an estimate of the Hessian in an average

sense. We show that by an appropriate selection of matrix N(t), the average value

of Ĥ = N(t)y over the period Π, which is related to ωi’s (see (2.10)), is an estimate

of the Hessian. We start with

1

Π

∫ Π

0

N(σ)ydσ =

= I + J + H̄ +
1

Π

∫ Π

0

R(θ̃ + S(σ))N(σ)dσ, (2.6)

I :=
1

Π

∫ Π

0

(

Q(θ∗) +
1

2
θ̃THθ̃

)

N(σ)dσ, (2.7)

J :=
1

Π

∫ Π

0

θ̃THS(σ)N(σ)dσ, (2.8)

H̄ :=
1

Π

∫ Π

0

1

2
S(σ)THS(σ)N(σ)dσ

=
1

Π

∫ Π

0

1

2

n
∑

i=1

n
∑

j=1

Hi,j sin(ωiσ) sin(ωjσ)N(σ)dσ. (2.9)

By taking Π as

Π = 2π × LCM
{ 1

ωi

}

, i ∈ {1, 2, · · · , n}, (2.10)

where LCM stands for the least common multiple, we have I = 0 if N has zero

average over Π. Also, taking N such that

1

Π

∫ Π

0

sin(ωiσ)Nj,k(σ)dσ = 0, (2.11)

holds for all i, j, and k ∈ {1, 2, · · · , n}, makes the integral J equal to zero.
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Furthermore, H̄ is equal to H if we choose N such that

1

Π

∫ Π

0

sin2(ωiσ)Ni,i(σ)dσ 6= 0 (2.12)

1

Π

∫ Π

0

sin(ωiσ) sin(ωjσ)Ni,j(σ)dσ 6= 0 (2.13)

1

Π

∫ Π

0

sin2(ωiσ)Ni,j(σ)dσ = 0 (2.14)

1

Π

∫ Π

0

sin(ωiσ) sin(ωjσ)Ni,i(σ)dσ = 0, (2.15)

for all distinct i and j. Noting that Π is the common period of the probing

frequencies we have

1

Π

∫ Π

0

sin2(ωiσ) cos(2ωiσ)dσ = −1

4
(2.16)

1

Π

∫ Π

0

sin2(ωiσ) sin
2(ωjσ)dσ =

1

4
(2.17)

1

Π

∫ Π

0

sin3(ωi) sin(ωj)dσ = 0 (2.18)

1

Π

∫ Π

0

sin(ωiσ) sin(ωjσ) cos(2ωiσ)dσ = 0, (2.19)

for all i 6= j. Hence, one possible choice of elements of the n×n matrix N(t) that

satisfy all of the aforementioned constraints is given by

Ni,i =
16

a2i

(

sin2(ωit)−
1

2

)

(2.20)

Ni,j =
4

aiaj
sin(ωit) sin(ωjt), i 6= j, (2.21)

where NT (t) = N(t). Based on this selection, we have

1

Π

∫ Π

0

N(σ)ydσ = H +
1

Π

∫ Π

0

R(θ̃ + S(σ))N(σ)dσ. (2.22)

In Section 2.6 we show that this averaged value converges to the actual value of

the Hessian, under specific conditions on ωi and ai.

Computing the inverse of the Hessian matrix is the next step. Calculating Γ,

the estimate of the inverse of the Hessian, in an algebraic fashion creates difficulties

when the matrix Ĥ is close to singularity, or it is indefinite. To deal with this
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problem, a dynamic estimator is employed to calculate the inverse of Ĥ using a

Riccati equation. Consider the following filter

Ḣ = −βH + βĤ. (2.23)

Note that the state of this filter converges to Ĥ, an estimate of H. Denote Γ=H−1.

Since Γ̇ = −ΓḢΓ, then equation (2.23) is transformed to the differential Riccati

equation

Γ̇ = βΓ− βΓĤΓ. (2.24)

The equilibria of the Riccati equation (2.24) are Γ∗ = 0n×n and Γ∗ = Ĥ−1, pro-

vided Ĥ settles to a constant. Since β > 0, the equilibrium Γ∗ = 0 is unstable,

whereas the linearization of (2.24) around Γ∗ = Ĥ−1 has the Jacobian −βI, so the

equilibrium at Γ∗ = Ĥ−1 is locally exponentially stable. This shows that, after

a transient, the Riccati equation converges to the actual value of the inverse of

Hessian matrix if Ĥ is a good estimate of H.

A good estimate of the region of attraction of the exponentially stable equi-

librium Γ∗ = Ĥ−1 of (2.24) is difficult to obtain. An easy but conservative estimate

makes the region of attraction inversely proportional to the largest eigenvalue of

Ĥ, which, due to the convergence of Ĥ to H, which we shall prove to be achieved

locally (in an average sense), means that an estimate of the region of attraction of

Γ∗ = H−1 is 1/λmax{H}.

Remark 2 To highlight the contrast between the Newton and gradient algo-

rithms, we refer to Remark 1 where the average behavior of the gradient algorithm

is discussed. For the Newton algorithm in Fig. 2.2, the algorithm is given by

˙̂
θ = −KΓM(t)y (2.25)

Γ̇ = βΓ− βΓN(t)yΓ, (2.26)

where θ = θ̂+ S(t). In the error variables θ̃ = θ̂− θ∗, Γ̃ = Γ−H−1, when the map

is quadratic, Q(θ) = Q∗ + 1
2
(θ− θ∗)TH(θ− θ∗), the averaged closed-loop system is

given by

˙̃θ = −Kθ̃ −KΓ̃Hθ̃ (2.27)

˙̃Γ = −βΓ̃− βΓ̃HΓ̃, (2.28)
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where KΓ̃Hθ̃ is quadratic in (Γ̃, θ̃), and βΓ̃HΓ̃ is quadratic in Γ̃. The linearization

of this system has all of its eigenvalues at −K and −β. Hence, unlike the gradient

algorithm, whose convergence is governed by the unknown Hessian H, the con-

vergence rate of the Newton algorithm can be arbitrarily assigned by the designer

with an appropriate choice of K and β.

2.4 Newton Algorithm for Dynamic Systems

Consider a general Multi-Input-Single-Output (MISO) nonlinear model

ẋ = f(x, u), (2.29)

y = h(x), (2.30)

where x ∈ R
m is the state, u ∈ R

n is the input, y ∈ R is the output, and

f : Rm ×R
n → R

m and h : Rm → R are smooth. Suppose that we know a smooth

control law u = α(x, θ) parametrized by a vector parameter θ ∈ R
n. The closed

loop system ẋ = f(x, α(x, θ)) then has equilibria parametrized by θ. We make the

following assumptions about the closed-loop system, as in [45].

Assumption 1 There exists a smooth function l:Rn→R
m such that f(x, α(x, θ)) =

0 if and only if x = l(θ).

Assumption 2 For each θ ∈ R
n, the equilibrium x = l(θ) of the system ẋ =

f(x, α(x, θ)) is locally exponentially stable uniformly in θ.

Assumption 3 There exists θ∗ ∈ R
n such that

∂

∂θ
(h◦l)(θ∗)=0, (2.31)

∂2

∂θ2
(h◦l)(θ∗)=H < 0, H = HT . (2.32)

Our objective is to develop a feedback mechanism which maximizes the

steady-state value of y but without requiring the knowledge of either θ∗ or the

functions h and l. The gradient-based ES design that achieves this objective,

suitably adapted from [45] to the multivariable case, is shown schematically in
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Figure 2.3: Gradient-based ES.
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Figure 2.4: Newton-based ES. The initial condition Γ(0) should be chosen

negative definite and symmetric.
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Fig. 2.3. Parallel to this, we present the generalized scheme for multivariable

Newton-based ES as shown in Fig. 2.4.

The perturbation signals are defined by equations (2.2), (2.3), (2.20) and

(2.21). The probing frequencies ωi’s, the filter coefficients ωh, ωl, and β and gain

K are selected as

ωi = ǫω′
i = O(ǫ), i ∈ {1, 2, · · · , n} (2.33)

ωh = ǫω′
h = ǫδω′′

h = O(ǫδ) (2.34)

ωl = ǫω′
l = ǫδω′′

l = O(ǫδ) (2.35)

β = ǫβ′ = ǫδβ′′ = O(ǫδ) (2.36)

K = ǫK ′ = ǫδK ′′ = O(ǫδ), (2.37)

where ǫ and δ are small positive constants, ω′
i is a rational number, ω′′

h, ω
′′
l , and β′′

are O(1) positive constants, and K ′′ is a n× n diagonal matrix with O(1) positive

elements.

The analysis of [5, 45, 66] shows that, in the gradient-based scheme, for

“sufficiently small” ǫ and |a|, where a = [a1 a2 · · · an]
T , and sufficiently small

δ, which imply small filter cut-off frequencies, the states (x, θ̂) of the closed-loop

system exponentially converge to an O(ǫ+ δ+ |a|)-neighborhood of (l(θ∗), θ∗), and

the output y converges to an O(ǫ+ δ + |a|)-neighborhood of the optimum output

y∗ = (h◦l)(θ∗).
In Section 2.6 we prove that the average value of Σ(t) over the period Π

is close enough to the actual value of the Hessian, under specific conditions on ǫ,

δ and a. Since we are integrating over a finite time period, and we set the phase

delays of the periodic perturbation signals equal to zero, it is possible to exclude

condition ωi 6= ωj + ωk. The probing frequencies need to satisfy

ω′
i /∈
{

ω′
j,
1

2
(ω′

j+ ω′
k),ω

′
j+2ω′

k, ω
′
j+ω′

k ± ω′
m

}

, (2.38)

for all distinct i, j, k, andm. As we see in section 2.6, ignoring the conditions (2.38)

is shifting the estimate of the parameter away from its true value, and leading to

inaccurate estimates of the gradient vector and Hessian matrix.
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2.5 Stability of the Closed-Loop System with the

Newton-Based ES Algorithm

We summarize the system in Fig. 2.4 as

d

dt

























x

θ̃

Ĝ

Γ̃

H̃

η̃

























=



























f(x, α(x, θ∗ + θ̃ + S(t)))

−K(Γ̃ +H−1)Ĝ

−ωlĜ+ ωl

(

y − h◦l(θ∗)− η̃
)

M(t)

β(Γ̃ +H−1)
(

I − (H̃ +H)(Γ̃ +H−1)
)

−ωlH̃ − ωlH + ωl

(

y − h◦l(θ∗)− η̃
)

N(t)

−ωhη̃ + ωh

(

y − h◦l(θ∗)
)



























. (2.39)

To conduct a stability analysis we have introduced error variables θ̃ = θ̂ − θ∗,

θ = θ̂+ S(t), η̃ = η− h◦l(θ∗), Γ̃ = Γ−H−1, and H̃ = Ĥ −H, where η is governed

by η̇ = −ωhη + ωhy. We perform a slight abuse of notation by stacking matrix

quantities Γ̃ and H̃ along with vector quantities, as alternative notational choices

would be more cumbersome.

Our main stability result is stated in the following theorem.

Theorem 1 Consider the feedback system (2.39) under Assumptions 1, 2 and

3. There exists ǭ > 0 and for any ǫ ∈ (0, ǭ) there exist δ̄, ā > 0 such that for

the given ǫ and any |a| ∈ (0, ā) and δ ∈ (0, δ̄) there exists a neighborhood of

the point (x, θ̂, Ĝ,Γ, Ĥ, η) = (l(θ∗), θ∗, 0, H−1, H, h◦l(θ∗)) such that any solution of

systems (2.39) from the neighborhood exponentially converges to an O(ǫ+ δ+ |a|)-
neighborhood of that point. Furthermore, y(t) converges to an O(ǫ + δ + |a|)-
neighborhood of h◦l(θ∗).

To prepare for the proof of Theorem 1, which is given in Sections 2.6 and
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2.7, we summarize the system (2.39) in the time scale τ = ǫt as

ǫ
dx

dτ
= f(x, α(x, θ∗ + θ̃ + S̄(τ))) (2.40)

d

dτ





















θ̃

Ĝ

Γ̃

H̃

η̃





















= δ























−K ′′(Γ̃ +H−1)Ĝ

−ω′′
l Ĝ+ ω′′

l

(

y − h◦l(θ∗)− η̃
)

M̄(τ)

β′′(Γ̃ +H−1)
(

I − (H̃ +H)(Γ̃ +H−1)
)

−ω′′
l (H̃ +H) + ω′′

l

(

y − h◦l(θ∗)− η̃
)

N̄(τ)

−ω′′
hη̃ + ω′′

h

(

y − h◦l(θ∗)
)























, (2.41)

where S̄(τ)=S(t/ǫ), M̄(τ)=M(t/ǫ) and N̄(τ)=N(t/ǫ).

2.6 Averaging Analysis

The first step in our analysis is to study the system in Fig. 2.4. We “freeze”

x in (2.40) at its equilibrium value x = l(θ∗ + θ̃ + S̄(τ)) and substitute it into

(2.41), getting the reduced system

d

dτ





















θ̃r

Ĝr

Γ̃r

H̃r

η̃r





















= δ





















−K ′′(Γ̃r +H−1)Ĝr

−ω′′
l Ĝr + ω′′

l

(

ν(θ̃r + S̄(τ))− η̃r

)

M̄(τ)

β′′(Γ̃r +H−1)
(

I + (H̃r +H)(Γ̃r +H−1)
)

−ω′′
l H̃r − ω′′

l H + ω′′
l

(

ν(θ̃r + S̄(τ))− η̃r

)

N̄(τ)

−ω′′
hη̃r + ω′′

hν(θ̃r + S̄(τ))





















, (2.42)

where ν(z) = h◦l(θ∗+z)−h◦l(θ∗). In view of Assumption 3, ν(0) = 0, ∂ν(0)/∂z =

0, and ∂2ν(0)/∂z2 = H < 0.

To prove the overall stability of (2.39), first we show that the reduced system

(2.42) has a unique exponentially stable periodic solution around its equilibrium.

Theorem 2 Consider system (2.42) under Assumption 3. There exist δ̄, ā > 0

such that for all δ ∈ (0, δ̄) and |a| ∈ (0, ā) system (2.42) has a unique exponentially

stable periodic solution
(

θ̃Πr (τ), Ĝ
Π
r (τ), Γ̃

Π
r (τ), H̃

Π
r (τ), η̃

Π
r (τ)

)

of period Π and this
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solution satisfies

∣

∣

∣
θ̃Πr,i(τ)−

n
∑

j=1

cij,ja
2
j

∣

∣

∣
≤ O(δ + |a|3) (2.43)

∣

∣

∣
ĜΠ

r (τ)
∣

∣

∣
≤ O(δ) (2.44)

∣

∣

∣
Γ̃Π
r (τ)+

n
∑

i=1

n
∑

j=1

H−1W iH−1cij,ja
2
j

∣

∣

∣
≤ O(δ + |a|3) (2.45)

∣

∣

∣
H̃Π

r (τ)−
n
∑

i=1

n
∑

j=1

W icij,ja
2
j

∣

∣

∣
≤ O(δ + |a|3) (2.46)

∣

∣

∣
η̃Πr (τ)−

1

4

n
∑

i=1

Hi,ia
2
i

∣

∣

∣
≤ O(δ + |a|4) (2.47)

for all τ ≥ 0, where











































c1j,j
...

ci−1
j,j

cij,j

ci+1
j,j

...

cnj,j











































= − 1

12
H−1













































∂3ν
∂zj∂z

2
1

(0)
...

∂3ν
∂zj∂z

2
j−1

(0)

3
2
∂3ν
∂z3j

(0)

∂3ν
∂zj∂z

2
j+1

(0)

...

∂3ν
∂zj∂z2n

(0)













































, ∀i, j ∈ {1, 2, · · · , n} (2.48)

(

W i
)

j,k
=

∂3ν(0)

∂zi∂zj∂zk
, ∀i, j, and k ∈ {1, 2, · · · , n}. (2.49)

System (2.42) is in the form to which the averaging method is applicable.

The average model of (2.42) is

d

dτ

[

θ̃aTr ĜaT
r Γ̃aT

r H̃aT
r η̃ar

]T

=

δ





















−K ′′(Γ̃a
r +H−1)Ĝa

r

−ω′′
l Ĝ

a
r + ω′′

l
1
Π

∫ Π

0
ν(θ̃ar + S̄(σ))M̄(σ)dσ

β′′(Γ̃a
r +H−1)

(

I − (H̃a
r +H)(Γ̃a

r +H−1)
)

−ω′′
l H̃

a
r − ω′′

l H + ω′′
l
1
Π

∫ Π

0
ν(θ̃ar + S̄(σ))N̄(σ)dσ

−ω′′
hη̃

a
r + ω′′

h
1
Π

∫ Π

0
ν(θ̃ar + S̄(σ))dσ





















. (2.50)
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Average equilibrium
(

θ̃a,er , Ĝa,e
r , Γ̃a,e

r , H̃a,e
r , η̃a,er

)

satisfies

Ĝa,e
r = 0 (2.51)
∫ Π

0

ν(θ̃a,er + S̄(σ))M̄(σ)dσ = 0 (2.52)

η̃a,er =
1

Π

∫ Π

0

ν(θ̃a,er + S̄(σ))dσ (2.53)

H̃a,e
r +H =

1

Π

∫ Π

0

ν(θ̃a,er + S̄(σ))N̄(σ)dσ (2.54)

(H̃a,e
r +H)(Γ̃a,e

r +H−1) = I. (2.55)

As we shall see, for small |a|, Γ̃a,e
r +H−1<0. By postulating θ̃a,er,i in the form

θ̃a,er,i =
n
∑

j=1

bijaj +
n
∑

j=1

n
∑

k=1

cij,kajak +O(|a|3), (2.56)

where bij and cij,k are real numbers, substituting (2.56) in (2.51)-(2.55) and equating

the like powers of aj, we get bij = 0, for all i, j ∈ {1, 2, · · · , n}, cij,k = 0, for all

i, j 6=k ∈ {1, 2, · · · , n}, and (2.48). The equilibrium of the average system is:

θ̃a,er,i =
n
∑

j=1

cij,ja
2
j +O(|a|3)

Ĝa,e
r = 0n×1

Γ̃a,e
r = −

n
∑

i=1

n
∑

j=1

H−1W iH−1cij,ja
2
j +

[

O(|a|3)
]

n×n

H̃a,e
r =

n
∑

i=1

n
∑

j=1

W icij,ja
2
j +

[

O(|a|3)
]

n×n

η̃a,er =
1

4

n
∑

i=1

Hi,ia
2
i +O(|a|4), (2.57)



23

where W i is a n×n matrix defined by (2.49). The Jacobian of the average system

at the equilibrium is

Ja,e
r = δ

[

A2n×2n 02n×(2n+1)

B(2n+1)×2n C(2n+1)×(2n+1)

]

, (2.58)

A =





0n×n −K ′′
(

H−1 + Γ̃a,e
r

)

ω′′

l

Π

∫ Π

0
∂

∂θ̃
(νM̄)dσ −ω′′

l In×n



 ,

B =









0n×n 0n×n

ω′′
l
1
Π

∫ Π

0
∂

∂θ̃
(νN̄)dσ 0n×n

ω′′
h
1
Π

∫ Π

0
∂

∂θ̃
(ν)dσ 01×n









,

C =









−β′′In×n +O1 −β′′H−2+O2 0n×1

0n×n −ω′′
l In×n 0n×1

01×n 01×n −ω′′
h









,

O1 = β′′
n
∑

i=1

n
∑

j=1

H−1W icij,ja
2
j +
[

O(|a|3)
]

,

O2 = β′′
n
∑

i=1

n
∑

j=1

H−1
(

W iH−1 −H−1W i
)

H−1cij,ja
2
j +

+
[

O(|a|3)
]

.

Since Ja,e
r is block-lower-triangular, it is Hurwitz if and only if

A21 :=
ω′′
l

Π

∫ Π

0

M̄(σ)
∂

∂θ̃
ν(θ̃a,er + S̄(σ))dσ < 0. (2.59)

With a Taylor expansion we get that A21 = ω′′
l H +O(|a|). We then have

det(λI2n×2n − δA) =

= det
(

λ(λ+ ω′′
l δ)In×n + δ2K ′′(H−1 + Γ̃a,e

r )A21)
)

= det
(

(λ2 + ω′′
l δλ)In×n +

+δ2K ′′(H−1 + [O(|a|2)])(ω′′
l H + [O(|a|)])

)

= det
(

(λ2+ω′′
l δλ)In×n+ω′′

l δ
2K ′′+[O(δ2 |a|)]n×n

)

, (2.60)

which, in view of H < 0, proves that Ja,e
r is Hurwitz for a that is sufficiently small

in norm. This implies that the equilibrium (2.57) of the average system (2.50)
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is exponentially stable if all elements of vector a are sufficiently small. Then,

according to the averaging theorem [40], the proof is completed.

2.7 Singular Perturbation Analysis

Now, we address the full system in Fig. 2.4 whose state space model is

given by (2.40) and (2.41) in the time scale τ= ǫ t. To make the notation in our

further analysis compact, we write (2.41) as

dξ

dτ
= δE(τ, x, ξ), (2.61)

where ξ = (θ̃, Ĝ, Γ̃, H̃, η̃). By Theorem 2, there exists an exponentially stable

periodic solution ξΠr (τ) such that

dξΠr (τ)

dτ
= δE(τ, L(τ, ξΠr (τ)), ξ

Π
r (τ)), (2.62)

where L(τ, ξ) = l(θ∗ + θ̃ + S̄(τ)). To bring the system (2.40) and (2.61) into the

standard singular perturbation form,we shift the state ξ using the transformation

ξ̃ = ξ − ξΠr (τ) and get

dξ̃

dτ
= δẼ(τ, x, ξ̃) (2.63)

ǫ
dx

dτ
= F̃ (τ, x, ξ̃) (2.64)

where

Ẽ(τ, x, ξ̃) = E(τ, x, ξ̃ + ξΠr (τ))− E(τ, L(τ, ξΠr (τ)), ξ
Π
r (τ)) (2.65)

F̃ (τ, x, ξ̃) = f
(

x, α
(

x, ξ̃1 + θ∗ + θ̃Πr (τ) + S̄(τ)
)

)

. (2.66)

We note that x = L(τ, ξ̃r + ξΠr (τ)) is the quasi-steady state, and that the reduced

model
dξ̃r
dτ

= δẼ
(

τ, L
(

τ, ξ̃r + ξΠr (τ)
)

, ξ̃r + ξΠr (τ)
)

(2.67)

has an equilibrium at the origin ξ̃r = 0. This equilibrium has been shown in Section

2.6 to be exponentially stable for a small |a|.
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To complete the singular perturbation analysis, we also study the boundary

layer model (in the time scale t−t0=τ/ǫ):

dxb

dt
= F̃ (τ, xb + L(τ, ξ̃ + ξΠr (τ)), ξ̃),

= f(xb + l(θ), α(xb + l(θ), θ)), (2.68)

where θ = θ∗ + θ̃ + S̄(τ) should be viewed as a parameter independent from

the time variable t. Since f(l(θ), α(l(θ), θ)) ≡ 0, then xb ≡ 0 is an equilibrium of

(2.68). By Assumption 2, this equilibrium is locally exponentially stable uniformly

in θ (and hence l(θ)).

By combining exponential stability of the reduced model (2.67) with the ex-

ponential stability of the boundary layer model (2.68), using Tikhonov’s Theorem

on the Infinite Interval (Theorem 9.4 in [40]), we conclude the following:

a) The solution ξ(τ) of (2.61) is O(ǫ)-close to the solution ξr(τ) of (2.67),

and therefore, it exponentially converges to an O(ǫ)-neighborhood of the periodic

solution ξΠr (τ), which is O(δ)-close to the equilibrium ξa,er . This, in turn, implies

that the solution θ̃(τ) of (2.41) exponentially converges to an O(ǫ+δ)-neighborhood

of
n
∑

j=1

[

c1j,j c2j,j · · · cnj,j

]T

a2j + [O(|a|3)]n×1. (2.69)

It follows then that θ(τ) = θ∗ + θ̃(τ) + S̄(τ) exponentially converges to an O(ǫ +

δ + |a|)-neighborhood of θ∗.

b) The solution x(τ) of (2.64) satisfies

x(τ)− l(θ∗ + θ̃r(τ) + S̄(τ))− xb(t) = O(ǫ), (2.70)

where θ̃r(τ) is the solution of the reduced model (2.42) and xb(t) is the solution of

the boundary layer model (2.68). From (2.70) we get

x(τ)− l(θ∗) = O(ǫ) + l(θ∗ + θ̃r(τ) + S̄(t))− l(θ∗) + xb(t). (2.71)

Since θ̃r(τ) exponentially converges to the periodic solution θ̃Πr (τ), which is O(δ)-

close to the average equilibrium (2.69), and since the solution xb(t) of (2.68) is

exponentially decaying, then by (2.71), x(τ)− l(θ∗) exponentially converges to an
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O(ǫ+δ+|a|)-neighborhood of zero. Consequently, y = h(x) exponentially converges

to an O(ǫ+ δ + |a|)-neighborhood of its maximal equilibrium value h◦l(θ∗).
This completes the proof of Theorem 1.

2.8 Simulation Results

To illustrate the results and highlight the difference between the gradient-

based and Newton-based ES methods, the following static quadratic input-output

map is considered:

y = Q(θ) = Q∗ +
1

2
(θ − θ∗)TH(θ − θ∗). (2.72)

To make a fair comparison between the two methods, all parameters are chosen

the same except the gain matrix. Before selecting matrix K we investigate the

performance of the gradient-based scheme versus the Newton-based scheme.

Recall (2.27) and (2.28). The initial convergence rate for the Newton-based

scheme is governed by the time-varying matrix −KnΓ(t)H. Equation (2.4) shows

that in the gradient-based scheme the convergence depends on the eigenvalues of

KgH. This means that, to have a fair comparison between the two methods, we

should select Kg and Kn such that Kg = −KnΓ(0).

We perform our tests with the following parameters, δ = 0.1, ǫ = 0.1,

ω′
1 = 70 rad/s, ω′

2 = 50 rad/s, ω′′
l = 10 rad/s, ω′′

h = 8 rad/s, β′′ = 10, a = [0.1 0.1]T ,

K ′′
g = 10−4diag([25 25]), K ′′

n = diag([1 1]), Γ−1
0 = −400diag([1 1]), θ̂0 = [2.5 5]T ,

Q∗ = 100, θ∗ = [2 4]T , H11 = −100, H12 = H21 = −30, and H22 = −20.

Fig. 2.5 illustrates the estimate of the maximum. Evolution of the pa-

rameters is depicted in Fig. 2.6. Since the initial estimate of the Hessian is not

true, each parameter starts to update with a different rate. As seen in Fig. 2.7,

after 40 seconds the estimate of the Hessian is close enough to its actual value.

Hence, the convergence rates of both parameters are the same after 40 seconds.

Furthermore, Fig. 2.6(c) shows that, except for a short initial transient that is

due to the estimation of the inverse of the Hessian, the Newton-based ES moves

the parameters to the peak along a straight trajectory. In contrast, the trajectory

of the gradient-based algorithm is curved and of greater length. Figs. 2.6(a) and
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Figure 2.5: The estimate of the maximum versus time.

2.6(c) show that the gradient algorithm, which follows the steepest-descent path,

results in the parameter θ̂1 undershooting below its true value, which is not the

case with the Newton algorithm whose parameter transients are monotonic. The

Hessian matrix converges to its actual value as depicted in Fig. 2.7. Also it is

worth noting that the Hessian converges faster to its actual value than Ĝ and θ̂.

As illustrated in Fig. 2.8 the estimate of the gradient vector converges to zero after

Hessian matrix finds its true value.

2.9 Conclusions

Using the gradient-based ES in the multivariable case without having a

good information about the curvature of the cost function, namely, the Hessian

matrix, may result inappropriate performance. With a growing number of the

parameters, it is almost impossible to tune the convergence rate of all parameters

in a desirable fashion. The Newton-based ES, which relies on the estimation of the

gradient and Hessian matrix of the cost function at the same time, removes the trial

and error process to update all parameters uniformly. Furthermore, the proposed

Newton scheme eliminates the concern about the inversion of the Hessian estimate
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Figure 2.6: Parameter estimates. (a and b) time responses. (c) phase portrait.

The Newton trajectory is straight to the extremum, whereas the gradient

trajectory follows the curved, steepest-descent path.
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Figure 2.7: Time evolution of the Hessian matrix estimator Γ−1. The true value

of H is reached in 40 seconds. Note in Fig. 2.6 that the Newton and gradient

trajectories coincide for the first 40 seconds, after which, Newton takes a straight

path.
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Figure 2.8: The estimate of the gradient vector versus time.

matrix by performing the inversion dynamically using a Riccati equation filter.

The convergence rates of both the parameter and of the estimator of the Hessian

inverse are independent of the unknown Hessian and can be assigned arbitrary by

the user.

This chapter contains material from Aazad Ghaffari, Miroslav Krstić, and

Dragan Nesić,“Multivariable Newton-Based Extremum Seeking,” Automatica, vol.

48, pp. 1759-1767, 2012. Of which the dissertation author was the primary author.



Chapter 3

Photovoltaic Modules and Power

Extraction

In order to perform simulations to verify the analytical results of our pro-

posed Newton-based ES algorithm for power optimization of a Photovoltaic (PV)

system, we need an accurate mode for the PV module and a reliable method to

design the DC/DC converters. The converters are assumed to work in Continu-

ous Conduction Mode (CCM) and the DC bus voltage is held constant with an

appropriate controller which is out of the scope of this work.

3.1 Introduction

Photovoltaic (PV) modules show variable peak power under different solar

irradiance and environmental temperature. Also module degradation and partial

shading have dramatic effect on the generated power by a specific PV module.

Furthermore, Manufacturers install bypass diodes to protect PV modules from

over current conditions which create multiple maxima for the power curve of a

PV module. While several papers have discussed PV models, for example, [18,62,

68, 74], we believe the modeling results that we present (a) are comprehensive in

that they present all the information required to build and simulate PV modules

based on manufacturer datasheet information, and (b) allow for simulation of non-

unimodal power characteristics, i.e., multiple local maxima in the power-voltage

30
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curve as a result of partial shading.

In the literature different topologies of DC/DC converters and DC/AC in-

verters have been employed to harvest power from PV modules for various target

applications. We assume that we have access to a DC bus with controlled voltage

with an acceptable percentage ripple which allows us to select DC/DC converter

as our main power stage instrument to extract power form PV modules. In this

Chapter we provide guidelines for the selection of the power electronics compo-

nents (in our review of the literature, we found that this was not done at all, or

at best glossed over, with the reader referred to textbooks such as [24,38], and/or

technical reports such as [64, 65]).

While power electronics models have normally been simulated using SPICE,

since we are planning to develop our control and optimization algorithms using

MATLAB, we use SimPowerSystemsTM as the development platform, which is an

add-on that extends MATLAB and Simulink R© with tools for modeling and simu-

lating power electronics/systems, and is hence ideally suited to seamlessly modeling

and simulating control and power electronics interaction and performance.

The rest of this chapter is organized as follows: first we present equivalent

electrical circuit of a PV module and its relevant mathematical equations in Section

3.2, then PV module modeling, along with the estimation of module parameters

based on technical data presented in datasheet information, is discussed in detail

in Section 3.3. in Section 3.4, we present detailed guidelines for the selection of

the power-MOSFET and the other DC/DC converter parameters. This is done for

the both buck as well as boost converters, with a tabulation of all the associated

losses. Our results can be extended to other DC/DC stages such as the Ćuk and

SEPIC converters. The concluding remarks is presented in Section3.5.

3.2 PV Module Equivalent Circuit

Our design and analysis are based on the standard PV module model de-

scribed for example in [74], and shown schematically in Fig. 3.1. Each PV cell

is modeled as an ideal current source of value Iph in parallel with an ideal diode
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Figure 3.1: Equivalent circuit of a PV module.

with voltage VD. Electrical losses and contactor resistance are accounted for by

the inclusion of the parallel and series resistances Rs and Rp respectively. The

amount of generated current Iph is dependent on the solar irradiance S and the

temperature T through the following equation

Iph =
(

Irph + ki(T − Tr)
)

( S
1000

)

, (3.1)

where Irph is a reference short-circuit current, Tr a reference temperature, and

ki the short-circuit temperature coefficient. The diode models the effect of the

semiconductor material and its I-V characteristics are given by

ID=I0

(

exp

(

VD

NVt

)

− 1

)

, (3.2)

I0=Ir0

( T
Tr

)3

exp

[

Eg

NVt

( T
Tr

− 1

)]

, Vt =

(

kT
q

)

(3.3)

where ns, I
r
0 , Eg and N are respectively the number of series PV cells in the mod-

ule, the diode reference reverse saturation current, the semiconductor bandgap

voltage (barrier height), and the emission coefficient, all three being cell ma-

terial/construction dependent, Vt is the thermal cell voltage, and k = 1.38 ×
10−23 J/K and q = 1.6 × 10−19 C are Boltzman’s constant and the charge on an
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Figure 3.2: Current (black) and power (blue) characteristics for PV module

UD6 from Mitsubishi Electric.

electron respectively. The PV model described by the above equations along with

KCL/KVL: I = Iph − ID − VD/Rp, VD = V/ns + RsI, represent a PV module by

considering ns cells in series (each having thermal voltage Vt), so that the terminal

I-V relationship for the PV module is given by

I = Iph−I0
[

exp

(

V
ns

+RsI

NVt

)

− 1

]

−
[

( V
ns

+RsI)

Rp

]

. (3.4)

3.3 PV Model Based on Manufacturer Data

Sample P -V and I-V characteristics for PV module model UD6 from Mit-

subishi Electric with maximum power 190 W are shown in Fig. 3.2. Simulation of a

PV cell/module requires numerical values for Ir0 , I
r
ph, N , Eg, Rs, and Rp. PV man-

ufacturers do not provide these parameters, instead they provide other technical

data measured under “Standard Test Conditions” (STC), namely S = 1000W/m2,

T = 25◦C, that includes Maximum Power Point (MPP) voltage V ∗, MPP current

I∗, open circuit voltage Voc, short circuit current Isc, temperature coefficient for

MPP kp, temperature coefficient for open circuit voltage kv, temperature coeffi-

cient for short circuit current ki, number of PV cells ns. The relationship between
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a PV cell and PV module current and voltage is simply Ic = I, and Vc = V/ns

where subscript c shows the PV cell parameter.

We briefly describe how to obtain the required numerical values for simu-

lation from manufacturer provided data. Short-circuit quantities Isc and Vsc = 0,

and open-circuit quantities Ioc = 0 and Voc are related as

Iph =
RIsc
Rp

(3.5)

I0 =

(

RIsc − Voc

ns

Rp

)

exp

(

− Voc

nsNV r
t

)

, (3.6)

where R := Rp + Rs, V
r
t := kTr/q, and Tr = 298.15 K is the module junction

temperature under STC. Replacing I∗ and V ∗ in (3.4), and using (3.5) and (3.6)

results in

(RIsc −
Voc

ns

)exp

(

V ∗

ns
− Voc

ns
+RsI

∗

NV r
t

)

+R(I∗ − Isc) +
V ∗

ns

= 0. (3.7)

Making use of the fact that a PV module has a unique maximum point (V ∗, P ∗)

for its P -V characteristic, at which

dP

dV

∣

∣

∣

V=V ∗

I=I∗

= I∗ +
dI

dV

∣

∣

∣

V=V ∗

I=I∗

V ∗ = 0, (3.8)

along with I = F(I, V ) so that

dF(I, V ) =
∂F(I, V )

∂I
dI +

∂F(I, V )

∂V
dV, (3.9)

and substituting in (3.8) and simplifying, leads to

(RsI
∗−V ∗

ns

)(RIsc−
Voc

ns

)exp
(V ∗−VocRsI

∗

nsNV r
t

)

+(RI∗−V ∗

ns
)NV r

t =0. (3.10)

The short-circuit I-V relationship can be shown (see [18] for example) to be

dI

dV

∣

∣

∣

V=0
I=Isc

= − 1

nsRp

. (3.11)

Using this, along with (3.9), and more steps of simplification results in

NV r
t Rs + (Rs −Rp)(RIsc −

Voc

ns

)exp
(RsIsc − Voc

ns

NV r
t

)

= 0. (3.12)
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Figure 3.3: Sanyo PV module 215N model verification.

It is possible to solve (3.7), (3.10), and (3.12) using a numerical approach like

Newton-Raphson to obtain the values ofRs, Rp, andN . The procedure is described

in other references (see, for example, [14]), and we use the same method here.

It is well known that the variation of short-circuit current with respect to

temperature and irradiance follows

Isc(T ,S) = (Irsc + ki(T − Tr))
S
Sr

, (3.13)

while the variation of the open-circuit voltage with respect to irradiance can be

neglected, and its temperature dependence given by

Voc(T ) = Voc + kv(T − Tr). (3.14)

Using (3.5), (3.6), (3.13), and (3.14), we get

Iph(T ,S)= R

Rp

Isc(T ,S) (3.15)

I0(T ,S)=
(

Iph(T ,S)− Voc(T )

nsRp

)

exp
(

− Voc(T )

nsNV r
t

)

(3.16)

which along with (3.3) can be used to compute Eg.

The modeling for a PV module can be extended to PV strings, where a

cascade collection of cells within the module are supported by a bypass diode. As-

sume each PV string has na cells, then (3.4) with ns = na describes the relationship

between voltage and current for each string.
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Figure 3.4: Equivalent circuit for PV module 215N from Sanyo including three
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Figure 3.5: Non-unimodal P -V due to partial shading.

For the numerical PV model, we present our validation results for the PV

module model 215N from Sanyo with P ∗ = 215 W, V ∗ = 42 V, I∗ = 5.13 A,

Voc = 51.6 V,Isc = 5.61 A, kv = −0.143 V/◦C, ki = 1.96 mA/◦C, ns = 72, and

na = 24 under STC. The estimates of the unknown parameters using the procedure

described above are: Rs = 2.46 mΩ, Rp = 8.7 Ω, N = 1.81, Ir0 = 1.13 × 10−6 A,

and Eg = 1.16 eV. The result of the model verification is shown in Fig. 3.3. The

derived model fits the actual data almost everywhere. The largest error happens

when temperature is 0 ◦C.

As previously mentioned, an important feature of this model is its ability

to simulate the effects of partial shading. The schematic for this module is shown

in Fig. 3.4, i.e., the module has 3 strings, with 24 cells in each string. A plot of

the variation of current and power of the PV module under two different partial

shading conditions is shown in Fig. 3.5. Since the selected module has three bypass

diodes, the power curve shows three distinct local maxima.
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Figure 3.6: (above) Boost and (below) buck DC/DC converters.

3.4 DC/DC Converter Design and Parameter Se-

lection

PV modules are often grid-connected through a DC/DC stage followed by

an inverter, with the DC/DC converter performing the Maximum Power Point

Tracking (MPPT) algorithm. The two most basic DC/DC converters are the

buck and boost power stages shown in Fig. 3.6. We provide design guidelines

for choosing the parameters of these two converters to fit our MPPT algorithm

assuming that the DC bus has a constant voltage. Our method is based primarily

on references [38, 64, 65].

3.4.1 DC/DC Buck Converter

Fig. 3.6(below) shows a simplified schematic of the buck power stage [38].

The power switch is an n-channel MOSFET. The diode is usually called the catch

diode, or freewheeling diode. The inductor, L, and capacitor, C, make up the

output filter. The Equivalent Series Resistance (ESR) of the capacitor, rC , and

the inductor DC resistance, rL, are included in the analysis. The output of the
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converter is connected to a DC bus with constant voltage. The control signal d is

the duty ratio, applied to the gate of the switch and controlled using Pulse-Width

Modulation (PWM). We design the parameters so that the converter works in

Continuous Conduction Mode (CCM). Assume the converter efficiency is η̄, the

input and output currents and voltages are related by

Ai =
Io
Ii

=
1

d
, Av =

Vo

Vi

= η̄d, (3.17)

where 0 ≤ d ≤ 1. Since the output voltage Vo is held constant, the input voltage

Vi is governed by (3.17). Let P ∗ and Voc denote respectively the MPP and open

circuit voltage of the PV module under the STC. In order to design the controller

parameters, we assume that the power and voltage of PV module are bounded as

assumed below

0.2P ∗ ≤ Pi ≤ 1.2P ∗ (3.18)

0.5Voc ≤ Vi ≤ 1.1Voc. (3.19)

The pulse duration and current supplied to the DC bus are then bounded as follows

Vo

1.1η̄Voc

≤ d ≤ Vo

0.5η̄Voc

(3.20)

0.2η̄P ∗

Vo

≤ Io ≤ 1.2η̄P ∗

Vo

. (3.21)

Assuming the switching frequency is fs, the minimum inductance that is required

to maintain the converter in CCM is

L ≥ max

{

(1− d)Ro

2fs

}

, (3.22)

where Ro = Vo/Io. The maximum inductor ripple current is

∆IL ≤ max

{

(1− d)Vo

fsL

}

. (3.23)

The ripple voltage Vr, if the filter capacitance is large enough, is Vr = max{rC∆IL},
and the maximum ESR of C is

rC ≤ min

{

Vr

∆IL

}

. (3.24)
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The minimum value of the C at which the ripple voltage is determined by the

ripple voltage across the ESR is

C ≥ max

{

d

2fsrC
,
1− d

2fsrC

}

. (3.25)

The switch and diode voltage stress is equal to 1.1Voc. The current stress of diode

and switch is max{Io + ∆IL/2}. The selected MOSFET should also have an ID

rating of at least two times the maximum power stage output current. The upper

limit of RMS values of the currents are

Irms
L ≤ max{Io} (3.26)

Irms
Q ≤ max{Io

√
d} (3.27)

Irms
D ≤ max{Io

√
1− d} (3.28)

Irms
C ≤ max

{

∆IL√
12

}

. (3.29)

The catch rectifier conducts when the power switch turns off and provides a path

for the inductor current. Important criteria for selecting the rectifier include: fast

switching, breakdown voltage, current rating, low-forward voltage drop to minimize

power dissipation, and appropriate packaging. Unless the application justifies the

expense and complexity of a synchronous rectifier, the best solution for low-voltage

outputs is usually a Schottky rectifier. The breakdown voltage must be greater

than the maximum input voltage, and some margin should be added for transients

and spikes. The current rating should be at least two times the maximum power

stage output current (normally the current rating will be much higher than the

output current because power and junction temperature limitations dominate the

device selection).

3.4.2 DC/DC Boost Converter

The boost power stage is depicted in Fig. 3.6(above). The input-output

relations corresponding to (3.17) now are

Ai =
Io
Ii

= 1− d, Av =
Vo

Vi

=
η̄

1− d
. (3.30)
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Assuming the bounds in (3.18) and (3.19) for the voltage and power variation to

still hold, the pulse duration and output (DC bus) current are then bounded as

1− 1.1η̄Voc

Vo

≤ d ≤ 1− 0.5η̄Voc

Vo

(3.31)

0.2η̄P ∗

Vo

≤ Io ≤ 1.2η̄P ∗

Vo

. (3.32)

The minimum inductance that ensures CCM operation at any duty cycle d then is

L ≥ max{Ro}
13.5fs

, (3.33)

where Ro = Vo/Io. The maximum inductor peak-to-peak current of the AC com-

ponent is

∆IL ≤ max

{

(1− d)dVo

fsL

}

. (3.34)

The current and voltage stresses of the MOSFET and the diode are max{Io/(1−
d) + d(1− d)Vo/(2fsL)} and Vo, respectively. The selected MOSFET should also

have a maximum drain current rating ID of at least two times the maximum

power stage output current so as diode. Let us assume that the ripple voltage,

Vr, is equally divided between the capacitance and the ESR. Hence, the maximum

ESR and the minimum filter capacitance are respectively shown by

rC ≤ 0.5
Vr

max{ID}
(3.35)

C ≥ max

{

2dVo

fsRoVr

}

. (3.36)

The upper limit of RMS values of the currents are

Irms
L ≤ max

{

Io
1− d

}

(3.37)

Irms
Q ≤ max

{

Io
√
d

1− d

}

(3.38)

Irms
D ≤ max

{

Io√
1− d

}

(3.39)

Irms
C ≤ max

{

Io

√

d

1− d

}

. (3.40)

The power loss contributions from the different components for both converters

are tabulated in Table 3.1.
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Table 3.1: Power losses in buck and boost converters.

Power loss Buck Boost

Q-conduction RDS max{Irms
Q }2 RDS max{Irms

Q }2
Q-switching 0.5fsCmax{Vi}2 0.5fsCV 2

o

D-Vf Vf max{(1− d)Io} Vf max{Io}
D-conduction Rf max{Irms

D }2 Rf max{Irms
D }2

C-ESR rC max{Irms
C }2 rC max{Irms

C }2
L-ESR rL max{Io}2 rL max{Irms

L }2

Table 3.2: Design details for buck and boost converters.

Element Buck Boost Unit

Switch IRFU3607 IRFI540N –
Diode DSSS 35-008AR DSS 16-01A –
L 15 150 µH
rL 6 25 mΩ
C 270 680 µF
rC 11 28 mΩ

DC bus voltage 24 84 V
η̄ 93 94 %

The parameter selection is based in part on the PV module, which in our

case is the 215N from Sanyo. According to the design criteria described for a

targeted efficiency of η̄ = 95% for both the boost as well as the buck configuration,

we select the components of the buck and boost converters as shown in Table 3.2.

Clearly the actual design efficiency is very close to what was designed for.

3.5 Conclusions

In conclusion we have presented high-fidelity PV and Power Electronic (PE)

models to start with the MPPT, and provide numerically accurate estimates of

power losses and efficiencies in actual hardware implementations. The numerical

models we develop are versatile, i.e, can be tuned for a variety of PV modules

and converters, and have been successfully validated against manufacturer data.

The modeling effort is also valuable in its own right in that it presents a designer

with high-fidelity PV/PE models for SimPowerSystemsTM, traditionally developed

using SPICE, with the advantage that they can be convenient integrated with

control design for such systems.

This chapter contains material from A. Ghaffari, S. Seshagiri, and M. Krstić,

“High-fidelity PV module modeling for advanced MPPT design,” in Proc. of IEEE
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Canadian Conference on Electrical and Computer Engineering, 2012 and A. Ghaf-

fari, S. Seshagiri, and M. Krstić, “High-fidelity DC-DC converter modeling for

advanced MPPT design,” in Proc. of IEEE Canadian Conference on Electrical

and Computer Engineering, 2012. Of which the dissertation author was the pri-

mary author.



Chapter 4

Maximum Power Point Tracking

in Photovoltaic Systems

In Chapter 2 we developed the Newton-based ES algorithm for peak seek-

ing of a multivariable cost function joint with a dynamic system for which we do

not have the system dynamics and cost function model. But the cost function

is measurable and we can reach its peak point by manipulating the input vector,

appropriately. We apply the Newton-based ES algorithm to maximize the gener-

ated power by a PV system. In Chapter 3 we presented high-fidelity models for

PV modules and DC/DC power stages. Also, we provided detailed guide lines to

design a DC/DC power stage in CCM for an arbitrary PV module. In this chapter

we combine the results of Chapter 2 and 3 for power optimization of a PV system.

4.1 Introduction

Maximum Power Point Tracking (MPPT) algorithms for extracting the

maximum achievable power from a Photovoltaic (PV) system have been studied

by several researchers [23, 53, 58, 61, 63], with detailed comparisons presented in

[25, 32, 35]. Several recent works [12, 15, 47, 55] have focused on the application of

gradient-based Extremum Seeking (ES) [6] to MPPT design.

To the best of our knowledge, there are a limited number of multivari-

able MPPT schemes described in the literature, among which we refer the reader

43
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to [53, 61, 63]. The last of these references [63] uses a multivariable version of

the popular Perturb and Observe (P&O) algorithm. Unlike scalar designs which

require one current sensor for each module, the algorithm only requires a single

current sensor on the DC bus. The operating point of the DC/DC converters

are perturbed asynchronously, to minimize the possibility of converter interaction

having a detrimental effect on the other modules. Closely related to [63] is the

work in [61], where “extra variables” are employed in the classical P&O algorithm

to overcome the limitation of scalar designs, which the authors say fail when the

feasibility region is nonconvex. It is unclear how [61] compares with distributed

architectures, with respect to power loss recovery in the case of module mismatch.

Reference [53] uses Particle Swarm Optimization (PSO), which is an algorithm

that employs multiple agents to “search” for the peak power. The paper does not

describe the specific criteria used to select the number of agents and parameters of

the PSO, nor the conditions on the voltage and power boundary limits to stop the

algorithm at Maximum Power Point (MPP). Also, in a PV system with a higher

number of PV modules, the process of reinitialization and the tracking performance

depend strongly on variable conditions like environmental factors, the nature of

the PV modules, and the shading area. The authors claim that the required num-

ber of sensors are reduced to two, but to compute the pulse duration, the output

voltage of each boost converter needs to be monitored by a separate sensor.

Expansion of the conventional P&O MPPT methods to the case of cascade

PV modules with micro-converters (one DC-DC converter for each module) as pre-

sented in [63] requires a step-by-step perturb and observe, namely the core part of

the algorithm is a scalar P&O which finds the MPP of each PV module at a time.

This results in a longer conversion time. Furthermore, non-unimodal power char-

acteristics which mainly arise from partial shading and model mismatch cannot be

treated which cause non-uniform transient responses under different environmental

conditions. This problems holds in the PSO method of [53]. Multivariable ES, un-

like the other MPPT approaches, treats the entire cascade PV system as a whole

and it simply fits every PV system architecture without any need to redesign the

control loop.
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In [29], we presented a multivariable gradient-based ES MPPT design for

the micro-converter architecture, where each PV module is coupled with its own

DC-DC converter. The design reduced the balance-of-system cost by reducing the

number of required sensors (hardware reduction), and was shown to result in more

uniform transients under sudden changes in solar irradiance and environmental

temperature in comparison to a scalar gradient-based ES for each PV module.

However, the convergence to the MPP is dependent on the unknown Hessian, which

varies with irradiance, temperature, and module degradation and mismatch.

In order to alleviate the issue of unknown Hessian dependent convergence

of a gradient-based ES algorithm, we presented a multivariable Newton-based ES

design for general nonlinear system in [28]. In comparison with the standard

gradient-based multivariable ES, the algorithm in [28] removes the dependence of

the convergence rate on the unknown Hessian and makes the convergence rate

of the parameter estimates user-assignable. In particular, all the parameters can

be designed to converge with the same speed, yielding straight trajectories to the

extremum even with maps that have highly elongated level sets. When applied

to the MPPT problem in PV systems, the method offers the benefit of uniform

convergence behavior under a wide range of working conditions, that includes

temperature and irradiance variations, and the non-symmetric power generation

of the neighboring PV modules as a result of module degradation or mismatch.

We present a multivariable Newton-based ES scheme with the following fea-

tures: (1) It is applied to micro-converter systems, and hence deals with the case of

non-unimodal power characteristics, and deals specifically with the issue of module

mismatch (for example, possibly different irradiance levels as a result of partially

shaded conditions). (2) The use of the non-model-based ES technique makes the

design robust to partial knowledge of the system parameters and operating con-

ditions. (3) As opposed to gradient-based designs, our proposed Newton-based

design removes the dependence of the transient on the working condition and po-

tential mismatch in PV modules. (4) Lastly, the multivariable design requires

fewer sensors, which reduces the hardware cost compared to scalar designs.

Section 4.2 presents an MPPT algorithm based on extremum seeking for a
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Figure 4.1: Characteristic (a) I-V and (b) P -V for varying temperature,

S=1000W/m2. Characteristic (c) I-V and (d) P -V for varying irradiance,

T=25◦C, PV module 215N from Sanyo.

single PV module. In Section 4.3 we present the idea of micro-converter architec-

ture. Section 4.4 summarizes the multivariable gradient-based ES scheme in [29],

and allows us to present key distinctions with the proposed design. Our proposed

multivariable Newton-based ES is presented and discussed in Section 4.5. Some

simulation results are presented in Section 4.6. The experimental verification of

the proposed algorithms are presented in Section 4.7 and our work is summarized

and some concluding remarks made in Section 4.8.

4.2 Power Optimization of a Single Photovoltaic

Module

As is clear from Fig. 4.1(b,d), the power-voltage (P -V ) characteristic has a

unique but (T ,S) dependent peak (V ∗, P ∗). It is the job of the MPPT algorithm

to automatically track this peak. In many grid-tied PV systems (including our

current work), this is done by means of a separate DC/DC power electronics stage

that serves two functions: (i) regulating the output DC voltage at a (near) constant
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Figure 4.2: DC/DC converter for PV module supplying power to DC bus.

value, and (ii) extracting maximum power by forcing the PV module output V to

equal V ∗. Fig. 4.2 shows this setup for a DC/DC boost converter stage, whose

output voltage is maintained constant as Vdc. The ratio between the input voltage

V and output voltage Vdc can be controlled by changing the duty cycle of the

transistor switch, which serves as the control input d. Under the assumption that

the boost converter is working in Continuous Current Mode (CCM), and that the

switching Pulse Width Modulation (PWM) frequency fs is significantly higher

than the bandwidth of the control loop, the boost converter input-output voltage

relationship is given by the following (averaged) relations:

V = (1− d)η̄Vdc (4.1)

Idc = (1− d)I, (4.2)

where η̄ is the power efficiency of the boost converter.

From (3.4), (4.1) and Fig. 4.1(b,d), it follows that at the MPP (V ∗,P ∗),

the power P = IV = F (V )V
def
= J(V ), satisfies

g =
∂J

∂V
(V ∗) = 0 (4.3)

h =
∂2J

∂V 2
(V ∗) < 0. (4.4)

Also we have ∂V/∂d = −η̄Vdc then

ḡ =
∂J

∂d
(d∗) = −gη̄Vdc = 0 (4.5)

h̄ =
∂2J

∂d2
(d∗) = hη̄2V 2

dc < 0. (4.6)

Many MPPT techniques, including the P&O class of methods, and the ES tech-

niques, are based on detecting the sign of the power gradient.
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Figure 4.3: Scalar ES for MPPT of a PV module.

Several authors have considered to use scalar gradient-based ES for the

MPPT problem [12, 15, 47, 48, 55]. Fig. 4.3 shows the basic setup of the scheme

for the case of a single PV module, and its principal features have been explained

fairly clearly in the aforementioned references, but we reproduce them here for the

sake of completeness/clarity.

The injection of the small periodic perturbation a sin(ωt) to the estimate d̂

of the optimal pulse duration d∗ results in a periodic power output P , whose DC

component is removed by the wash-out filter s/(s+ ωh), with the resultant signal

being in phase or out of phase with the perturbation according to whether d̂ is

greater than or less than d∗ respectively. Multiplication of this signal by 2 sin(ωt)/a

and extracting the DC component of the product using the lowpass filter ωl/(s+ωl)

results in an estimate of the gradient of the cost function. Defining d̃ = d̂ − d∗,

and expanding P about its optimal value and using (4.3), (4.4), we see that the

ES design of Fig. 4.3 implements the gradient update law

˙̃d = kgh̄d̃ = kgη̄
2V 2

dchd̃, (4.7)

where h is the Hessian. Design guidelines for selecting the parameters a, ω, ωh,

ωl, and kg can be found in [45], but are mentioned here for sake of completeness.

The frequency ω must be chosen small enough to ensure that the plant dynamics

appear as a static nonlinearity from the viewpoint of the ES loop, and the filter

frequencies chosen such that ωh ≤ ωl ≪ ω, so that the low pass filter attenuates

the perturbation frequency, whereas the highpass filter does not. The adaptation
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Figure 4.4: Microconverter architecture. PV system including m parallel

strings. Each string has n PV modules in cascade.

gain kg and the amplitude a of the probing signal need to be “sufficiently small”.

Define

ωl=ǫδω′
l (4.8)

ωh=ǫδω′
h (4.9)

kg=ǫδk′
g, (4.10)

where ǫ and δ are small positive real numbers, and ω′
h, ω

′
l and k′

g are O(1) positive

real parameters. The analysis of [45] shows that for sufficiently small ǫ, a, and δ,

the output P converges to an O(ǫ+ δ + a)-neighborhood of the MPP P ∗.

4.3 Micro-Converter Architecture

The above design for a single module can be extended to the PV system

shown in Fig. 4.4, that has m parallel strings, with each string having n modules
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in cascade (series). Since irradiance (and temperature to a lower extent) may

vary between the modules, the peak power is not necessarily the same for all of

them. This “module mismatch” therefore results in maximum powers for string

architectures that are lower than the sum of the individual maximum powers of

the modules, which in turn has led to the use of micro-converters, where each

module is coupled with its own DC/DC converter. Micro-converter architectures

can recover between 10%-30% of annual performance loss caused due to module

mismatch. The conventional way to implement the MPPT algorithm in micro-

converters is to simply extend the preceding (scalar) MPPT design to each PV

module, as shown in Fig. 4.5 for one string. We therefore have n separate control

loops, with no consideration to the interaction between the series modules. We also

still have two sensors per module, that measure the module voltage and current.

The multivariable control algorithm that we present in the next section alleviates

both these issues; on the one hand, it considers the interaction between modules,

resulting in better performance, and in addition, uses just two sensors for the

overall system. The details of the actual design are presented in the next section.

A DC/DC boost converter is assigned to each PV module to extract maxi-

mum power from the PV system. The output side of the converters are connected

in series. The PV system is connected to the power grid through a DC/AC inverter

which has its separate controller. A popular scheme to control the voltage of DC

bus and the power factor at the connection of the grid is shown in Fig. 4.6. This

scheme uses the famous Park’s transformation to convert the three-phase parame-

ters to two dimensional synchronous reference frame. In this reference frame q-axis

affects the reactive power and the d−axis deals with the variation of the DC bus

voltage [19].

It is assumed that the DC voltage at the input side of the inverter is held

constant at Vdc. Assume that the voltage and current ripple at the output side of

converters are negligible. Applying electrical rules on the input side of the inverter
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gives

n
∑

i=1

Voi = Vdc (4.11)

Ioi = Idc, ∀i ∈ {1, 2, · · · , n}. (4.12)

From (4.1), (4.2), and the I-V functional dependence Ii = Fi(Vi), the relation

between the voltage V = [V1 V2 · · · Vn]
T of PV modules and the pulse duration

D = [D1 D2 · · · Dn]
T is defined by n independent equations

n
∑

i=1

Vi

1−Di

= Vdc (4.13)

(1−Di)Fi(Vi) = Idc, ∀j ∈ {1, 2, · · · , n}. (4.14)

This means that for each set of pulse duration we have a unique set of voltages

for PV modules. Assuming lossless converters results in Poi = VoiIoi = Pi for all

i ∈ {1, 2, · · · , n}. Using (4.12) we obtain

Voi =
Pi

∑n

j=1 Pj

Vdc, (4.15)

which means that the share of the output voltage of each converter from DC bus

voltage is defined by the generated power of its relevant PV module.

We want to maximize the power generated by all PV modules which is equal

P =
n
∑

i=1

Pi = VdcIdc. (4.16)

The following observation is valid about the power.

Remark 3 From (4.13)-(4.16), it follows that there exists D∗ ∈ R
n such that

∂P

∂D
(D∗) = 0 (4.17)

∂2P

∂D2
(D∗) = H < 0, H = HT . (4.18)

The next section discusses gradient-based ES for the micro-converter archi-

tecture in Fig. 4.4, and is extracted from [29].
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Figure 4.7: Our proposed centralized MPPT for PV system, just one

multivariable ES loop is employed for all PV modules.

4.4 Multivariable Gradient-Based ES

A block schematic of our proposed multivariable gradient-based ES is shown

in Fig. 4.7. As is clear from the schematic, the design employs just one ES loop

with two sensors for the overall system, one each for the DC bus voltage Vdc and

the overall current Idc.

Fig. 4.8 shows the multivariable gradient-based ES design, where Kg is a

positive diagonal matrix, and the perturbation signals are defined as

S(t) = a
[

sin(ω1t) · · · sin(ωnt)
]T

(4.19)

M(t) =
2

a

[

sin(ω1t) · · · sin(ωnt)
]T

, (4.20)

where ωi/ωj are rational for all i and j, and a is a real number, with the frequencies

chosen such that ωi 6= ωj and ωi + ωj 6= ωk for distinct j, k, and m.

In particular, the design derives an estimate Ĝ of the gradient vector by

adding a probing signal to the estimate D̂ = [D̂1 D̂2 · · · D̂n]
T of the pulse duration

vector (of all the DC/DC converters). With no additional information on the
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Figure 4.8: Multivariable gradient-based ES for MPPT of a PV system.

Hessian (and also for simplicity), we choose the amplitudes of the probing signals

to all be the same value a. Smallness of the probing frequencies and the matrix

gain Kg are ensured by selecting these as

ωi = ǫω′
i, i ∈ {1, 2, · · · , n} (4.21)

ωh = ǫδω′
h (4.22)

ωl = ǫδω′
l (4.23)

Kg = ǫδK ′
g (4.24)

where ǫ and δ are small positive constants, and ω′
i, ω′

h, ω′
l and elements of K ′

g

are O(1) positive real parameters. It can be shown that for sufficiently small ǫ,

δ, and a, and with Kg > 0, the estimate D̂ of the pulse duration vector and the

output P converge to O(ω + δ + a)-neighborhoods of the optimal pulse duration

D∗ = [D∗
1 D∗

2 · · · D∗
n]

T and the peak power P (D∗) respectively.

Applying Taylor series expansion to P (D, t) at its maximum point, and

noting that D = D∗ + D̃ + S(t), we have

P =P ∗+
1

2

(

D̃+S(t)
)T

H
(

D̃+S(t)
)

+R(D̃+S(t)), (4.25)

where ∂P (D∗)/∂D = 0 and R(D̃+S(t)) stands for higher order terms in D̃+S(t).

We separate (4.25) to averaged, DC-part, and oscillatory, AC-part, as follows

P = Pdc + Pac, (4.26)
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where

Pdc=P ∗ +
1

2
D̃THD̃ +Rdc(D̃) (4.27)

Pac=ST (t)HD̃+
1

2
ST (t)HS(t)+Rac(D̃+S(t)), (4.28)

where Rdc(D̃) and Rac(D̃+S(t)) are higher order DC and AC terms, respectively.

The highpass filter attenuates the DC-part of the power signal while keeps the high

frequency part. Denoting

M(t)ST (t) = In×n + Zn×n, (4.29)

where

Zii=− cos(2ωit) (4.30)

Zij=cos
(

(ωi − ωj)t
)

− cos
(

(ωi + ωj)t
)

, i 6= j, (4.31)

we obtain

M(t)Pac = HD̃ + ZHD̃ +O(a), (4.32)

where O(a) contains terms of the order of a. From (4.25) we know that the

gradient vector of the cost function is G = ∂P/∂D̃ = HD̃. Hence, the DC-part

of the multiplication of M(t) and Pac which equals to HD̃ is the estimate of the

gradient vector of the cost function. An appropriate selection of the lowpass filter

removes the oscillatory part of M(t)Pac. Regardless of the vector length, n, the

same lowpass filter on every channel of the gradient vector guarantees the averaging

process and proper attenuation of the high frequency terms. Referring to (4.30),

(4.31), and (4.32) it is clear that the main harmonics in the estimate of the gradient

vector are 2ωi, ωi ± ωj for all distinct i and j. Following condition is assumed for

the lowpass filter to estimate the gradient vector enough precise

ωl ≪ {|ωi − ωj|} , ∀i 6= j. (4.33)

Our analytical results for MPPT of PV systems using the multivariable

gradient-based ES are summarized in the theorem below, the proof of which follows

from [45].
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Theorem 3 For the system in Fig. 4.8, with Remark 3, there exist δ̄, ā > 0 and for

any |a| ∈ (0, ā) and δ ∈ (0, δ̄), there exists ǭ > 0 such that for any given a and δ and

any ǫ ∈ (0, ǭ) there exists a neighborhood of the point (D̂, Ĝ, Pdc) = (D∗, 0, P (D∗))

such that any solution of the gradient-based ES from the neighborhood exponentially

converges to an O(ǫ + δ + |a|)-neighborhood of that point. Furthermore, P (D, t)

converges to an O(ǫ+ δ + |a|)-neighborhood of P (D∗).

The differences between the scalar and multivariable designs become clear

when one considers the update equations for the estimation error D̃ = D̂−D∗. In

the multivariable case, we have

˙̃D = KgHD̃, H :=
∂2P

∂D2
(D∗) (4.34)

where H is the (negative definite) Hessian and P = VdcIdc. In the scalar ES design

of Fig. 4.5 however, the above equation is replaced by

˙̃D = kgHD̃ (4.35)

H :=















h̄PV1
0 0 · · · 0

0 h̄PV2
0 · · · 0

...
...

...
. . .

...

0 0 0 · · · h̄PVn















, (4.36)

where h̄PVi
= ∂2Pi/∂d

2
i and Pi = ViIi for all i (see Fig. 4.5), so that the equations

are decoupled, and there is no way to affect the power extraction in one module

by changing the pulse duration of the DC/DC converter of another module. In

addition, the diagonal structure of H in the scalar case, coupled with the fact

that this varies with irradiance, means that in the scalar design, the convergence

rate of the parameters is very sensitive to partial shading, where the irradiance

varies strongly from one module to another. The multivariable scheme, on the

other hand, is less sensitive to the changes in the power-voltage characteristic of a

specific module which results from variation of temperature or irradiance.

In order to alleviate the issue of unknown Hessian dependent convergence,

we present in the next section a modified version of a multivariable Newton-based

ES design that we developed in [28].
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Figure 4.9: Cost function shape defines the convergence trajectory of the

gradient-based ES scheme.

4.5 Multivariable Newton-Based ES

In comparison with the gradient-based multivariable ES presented in Sec-

tion 4.4, the Newton-based algorithm makes the convergence rate of the parameter

estimates user-assignable. In particular, all the parameters can be designed to con-

verge with the same speed, yielding straight trajectories to the extremum even with

maps that have highly elongated level sets. As shown in Fig. 4.9 the cost function

shape defines the convergence trajectories of the gradient-based scheme. It is clear

that the gradient method governs the system to its steepest-decent curve. The

Newton scheme moves the system on a direct path to its peak point independent

of the cost function shape which results in uniform transients for any initial condi-

tions. When applied to the MPPT problem in PV systems, the method offers the

benefit of uniform convergence behavior under a wide range of working conditions,

that include temperature and irradiance variations, and the non-symmetric power

generation of the neighboring PV modules as a result of module degradation or

mismatch.

The multivariable Newton-based ES that we propose is shown schematically

in Fig. 4.10. As is clear from the figure, the proposed scheme extends gradient-

based ES with estimate of the Hessian. The perturbation matrix N(t) is defined
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as follows

Nii =
16

a2

(

sin2(ωjt)−
1

2

)

(4.37)

Nij =
4

a2
sin(ωjt) sin(ωkt), i 6= j (4.38)

where i, j ∈ {1, 2, · · · , n}. The product of N(t) and Pac generates an initial esti-

mate of the Hessian

N(t)Pac =
1

2
NSTHS +NSTHD̃ +O(a). (4.39)

While the elements of NSTHD̃ are of the order of O(1/a) and have the harmonics

of ωi, ωi±ωj ±ωk, and 2ωi±ωj for all distinct values of i, j, and k, the first term,

NSTHS/2, is of the order of O(1) and generates a DC value equal to the Hessian,

H. The reminders are oscillatory parts of the order of O(a) which can be neglected

in comparison to the other two parts. Since a is a small value, then it is critical to

remove O(1/a) terms from the initial estimate of the Hessian, N(t)Pac, to achieve a

reliable estimate of the Hessian. For this purpose, we design the lowpass filter with

respect to the lowest harmonic of ωi, ωi−ωj−ωk, and 2ωi−ωj for all distinct i, j,

and k. Also we remind the reader that lowpass filter which estimates the gradient

vector needs to alleviate the harmonics at 2ωj and ωi − ωj for all distinct i and

j. High band-width lowpass filters do not attenuate the AC-part of N(t)Pac with

enough precision, then the estimate of the Hessian may be an indefinite matrix

which results in the failure of the Newton algorithm. For this reason we suggest

to design the lowpass filters based on the following criteria

ωl ≪ min {ωi, |ωi−ωj|, |ωi−ωj−ωk|, |2ωi−ωj|} (4.40)

for all distinct i, j, and k. The corner frequency of the lowpass filter which is

designed with respect to the probing frequencies and their least difference affects

the convergence rate of the ES algorithm. We advise the same adaptation rate for

the estimate of the gradient vector and the Hessian matrix.

The inverse of the Hessian that is needed to implement the Newton algo-

rithm, is estimated by a dynamic filter that has the form of a Riccati equation,

and avoids the possible problem in inverting the Hessian if the estimate Ĥ is close
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Figure 4.10: Multivariable Newton-based ES for MPPT of a PV system. The

red dashed part is added to the gradient-based ES to estimate the Hessian.

to singularity. Calculating Γ, the estimate of the inverse of the Hessian, in an

algebraic fashion creates difficulties when the matrix Ĥ is close to singularity, or

it is indefinite. To deal with this problem, a dynamic estimator is employed to

calculate the inverse of Ĥ using a Riccati equation. Consider the following filter

Ḣ = −βH + βĤ, β = ǫδβ′, (4.41)

where β′ is of the order of O(1).

Note that the state of this filter converges to Ĥ, an estimate of H. Denote

Γ=H−1. Since Γ̇ = −ΓḢΓ, then equation (4.41) is transformed to the differential

Riccati equation

Γ̇ = βΓ− βΓĤΓ. (4.42)

The equilibria of the Riccati equation (4.42) are Γ∗ = 0n×n and Γ∗ = Ĥ−1, provided

Ĥ settles to a constant. Since β > 0, the equilibrium Γ∗ = 0 is unstable, whereas

the linearization of (4.42) around Γ∗ = Ĥ−1 has the Jacobian −βIn×n, so the

equilibrium at Γ∗ = Ĥ−1 is locally exponentially stable. This shows that, after

a transient, the Riccati equation converges to the actual value of the inverse of

Hessian matrix if Ĥ is a good estimate of H.

Since we are integrating over a finite time period, and we set the phase

delays of the periodic perturbation signals equal to zero, it is possible to exclude
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the condition ωi 6= ωj + ωk for all distinct i, j, and k. The probing frequencies

need to satisfy (see [28] for more details)

ωi /∈
{

ωj,
1

2
(ωj+ ωk),ωj+2ωk, ωj+ωk ± ω′

m

}

, (4.43)

for all distinct i, j, k, and m.

Linearization of the update law for the error variable D̃ = D̂ −D∗ results

in
˙̃D = −KnD̃, Kn = ǫδK ′

n > 0, (4.44)

where elements of K ′
n are O(1) positive real numbers. According to (4.44) the

convergence rate of the parameter is independent of the shape of the cost function,

and consequently, after transient, when the Hessian is close enough to its actual

value, the output power converges to the MPP with the same performance regard-

less of environmental or mismatch conditions. The analytical results for MPPT of

PV systems using multivariable Newton-based ES are summarized in the theorem

below, the proof of which follows from Chapter 2.

Theorem 4 For the system in Fig. 4.10, with Remark 3, there exist δ̄, ā > 0 and

for any |a| ∈ (0, ā) and δ ∈ (0, δ̄), there exists ǭ > 0 such that for any given a and

δ and any ǫ ∈ (0, ǭ) there exists a neighborhood of the point (D̂, Ĝ,Γ, Ĥ, Pdc) =

(D∗, 0, H−1, H, P (D∗)) such that any solution of the Newton-based ES from the

neighborhood exponentially converges to an O(ǫ + δ + |a|)-neighborhood of that

point. Furthermore, P (D, t) converges to an O(ǫ+ δ+ |a|)-neighborhood of P (D∗).

4.6 Simulation Results

We present our simulation results in 2 parts. First, we show the valid-

ity of the theoretical analysis behind the multivariable gradient-based ES and its

improvement over the scalar gradient-based ES for MPPT of a PV system includ-

ing 2 strings of 3 cascade PV modules. Second, we show that the multivariable

Newton-based ES successfully removes dependence of the adaptation process on

the cost function shape which raises from the variation of solar irradiance and

environmental temperature in PV systems.
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Table 4.1: Parameters used in the simulations.

Parameter Value Unit Parameter Value Unit

fs 100 kHz Vdc 300 V
Ci 3 µF Co 220 µF
L 220 µH d0 0.5 –
Kg 0.01I6×6 – kg 0.01 –
ω 7000 rad/s a 0.01 –
ωl 50 rad/s ωh 45 rad/s
ω1 4500 rad/s ω4 5500 rad/s
ω2 6500 rad/s ω5 7500 rad/s
ω3 8500 rad/s ω6 9500 rad/s
m 2 – n 3 –

4.6.1 Multivariable Gradient-Based ES versus Distributed

MPPT

To show the effectiveness of the proposed multivariable design in Fig. 4.7,

and compare its performance with that of the scalar design in Fig. 4.5, we simulate

a PV system with m = 2 parallel strings and n = 3 cascade modules in each string.

The PV modules are model 215N from Sanyo, with datasheet parameters presented

in Section 3.3.

Selecting all the frequencies in a narrow range creates large overshoots and

steady state errors in parameter estimation. However, choosing the frequencies

in a wide range causes very different convergence rates in each channel. Since

we set the lowpass filter frequency equal for all the channels, the amplitude of

the perturbation signal with the lowest frequency reduces less than that with the

highest frequency, which in turn results in a higher feedback gain for the low

frequency channel, which derives the parameter faster to the optimal value. It is

possible to tune the matrix gain elements with respect to the selected frequencies.

What this means is that in order to have the same convergence rate for a wide

range of selected frequencies, we can choose a higher gain for higher frequencies

to compensate the effect of lowpass filter. We prefer to select the frequencies in a

reasonable range, between 50% up and down of the central frequency.The central

frequency is small enough in comparison to the PWM frequency. We suggest that

this be of the order of 1% of the PWM frequency, ǫ <≤ 0.01. The transient for

the estimate of the gradient vector contains frequencies that include harmonics of
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ωi − ωj, for all distinct i and j. The bandwidth of the lowpass filter needs to be

designed with respect to these values. We suggest selecting ωl to be of the order

of 5% of the least difference between the probing frequencies, δ ≤ 0.05. The final

step is selecting the cut-off frequency of the highpass filter, which we simply choose

to be smaller than or equal to ωl. Based on the preceding remarks, the numerical

values of the design parameters are as presented in Table 4.1.

The temperature T is assumed to be equal to 25 ◦C for all modules through-

out. The irradiance S is assumed to be equal to 1000 W/m2 initially, with a step

change to 500 W/m2 for modules PV12 and PV23 at t = 0.5 s and then back to

1000 W/m2 at 1 s, so as to simulate partial shading on some modules. The output

power of the entire system is shown in Fig. 4.14, with the estimate of the pulse

duration for each module shown in Fig. 2.6. It is clear from Fig. 4.14 that the

multivariable algorithm performs a uniform and faster transient against step up or

step down changes in the generated power.

At the beginning all PV modules and converters have the same settings,

gains, and initial conditions. Also all modules are under the same irradiance and

temperature. Hence, the transient of the scalar ES for all parameters is the same

as shown in Fig. 4.12. On the other hand, multivariable ES shows different

transient for each parameter which is happening because of different frequencies of

the perturbation function in each channel. The lowest frequency shows the fastest

response, along with a correspondingly larger overshoot. It is possible to tune

matrix Kg such that all transients look the same.

When the modules in each string are partially shaded, the overall power

level decreases. The multivariable ES design recovers from this power level change

faster than the scalar version. As clear from Fig. 4.11, the power goes to the MPP

in less than half the time needed for the scalar scheme.

The irradiance level of the partially shaded modules is returned to 1000

W/m2 at t = 1 s. At this point both schemes show a similar transient. It is

concluded that the convergence rate of the multivariable scheme does not vary

largely from step up to step down in power generation, which is not true for the

scalar ES. It is clear that in the step down situation the scalar scheme shows a
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Figure 4.11: Generated power in a partial shading scenario. (solid red)

Multivariable gradient-based ES and (dashed blue) distributed ES.

slower performance than the step up case.

4.6.2 Multivariable Newton-Based ES versus Multivariable

Gradient-Based ES

To show the effectiveness of the proposed Newton-based design in Fig. 4.10,

and compare its performance with that of the gradient-based design in Fig. 4.8,

we simulate a PV system with n = 2 cascade modules. The PV modules are

model 215N from Sanyo, with datasheet parameters presented in Section 3.3. The

variation of the generated power of a PV system including two series module from

Sanyo connected to a DC bus with VDC = 200 V under standard test condition,

S=1000 W/m2 and T =25 ◦C, is shown in Fig. 4.13. The MPP happens at

D = [%57 %57]T .

Parameter selection has an important rule in the performance of the multi-

variable ES. Selecting all the frequencies in a narrow range creates large overshoots

and steady state errors in parameter estimation. However, choosing the frequen-

cies in a wide range causes very different convergence rates in each channel of the

gradient-based ES which is not the case in Newton-based method. Since we set



64

0 0.5 1 1.5

50

60

70

D̂
1
1
(%

)

0 0.5 1 1.5
20

40

60

D̂
1
2
(%

)

0 0.5 1 1.5

50

60

70

Time(s)

D̂
1
3
(%

)

0 0.5 1 1.5

50

60

70

D̂
2
1
(%

)

0 0.5 1 1.5

50

60

70

D̂
2
2
(%

)
0 0.5 1 1.5

20

40

60

Time(s)

D̂
2
3
(%

)

Figure 4.12: Adaptation of the pulse duration. (solid red) Multivariable

gradient-based ES and (dashed blue) distributed ES.
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the lowpass filter frequency equal for all the channels, then in the gradient-based

scheme the amplitude of the perturbation signal with the lowest frequency reduces

less than that with the highest frequency, which in turn results in a higher feed-

back gain for the low frequency channel, which derives the parameter faster to the

optimal value. It is possible to tune the matrix gain elements with respect to the

selected frequencies. This means that in order to have the same convergence rate

for a wide range of selected frequencies in gradient method, we can choose a higher

gain for higher frequencies to compensate the effect of the lowpass filter.

The Newton-based ES removes the dependence of the convergence rate on

the shape of the cost function and the selected frequencies for probing vector. This

creates a uniform convergence rate in all channels of the Newton-based scheme. We

select the probing frequencies small enough in comparison to the PWM frequency.

We suggest that these be of the order of 1–2% of the PWM frequency ,ǫ ≤ 0.01).

The transient for the estimate of the gradient vector contains frequencies that

include harmonics of ωi−ωj, for all distinct i and j. The bandwidth of the lowpass

filter needs to be designed with respect to these values. We concluded from (4.39)

that the raw estimate of the Hessian, N(t)Pac, has harmonics of the order of 1/a

which should be alleviated dramatically with proper selection of ωl which reduces

the fluctuation in the estimate of the Hessian, Ĥ. We suggest selecting ωl to be

of the order of 5% of the least difference of harmonics in (4.40), δ ≤ 0.05. The

final step is selecting the cut-off frequency of the highpass filter, which we simply

choose to be smaller than ωl.

Based on the preceding remarks, the numerical values of the design parame-

ters are: ω1 = 5000 rad/s, ω2 = 6000 rad/s, a = 0.01, ωl = 10 rad/s, ωh = 7 rad/s,

H0 = −105diag([1 1]), D0 = [0.5 0.5]T , β = 10, and Kn = diag([1 1]). To make a

fair comparison between gradient-based algorithm and Newton scheme Kg should

be in order of KnΓ0, where Γ0 = H−1
0 . However, we select Kg = −30KnΓ0 to

make the comparison more strict for the Newton algorithm. The temperature T

is assumed to be equal to 25 ◦C for all modules throughout. The irradiance S is

assumed to be equal to 1000 W/m2 initially, with a step change to 400 W/m2 for

modules PV2 at t = 10 s and then back to 1000 W/m2 at 20 s, so as to simulate
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Figure 4.14: Generated power in a partial shading scenario. Newton-based ES

governs the system to its MPP with a uniform transient less than 5 s.
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Figure 4.15: Adaptation of the pulse duration. Newton-based ES shows a

similar convergence rate for all parameters. The convergence rate of the

gradient-based ES varies with power level and direction of its variation.

partial shading. Modulation frequency of PWM is fs = 100 kHz.

Fig. 4.14 shows the output power of the entire system, and the estimates of

the pulse duration and Hessian are shown in Fig. 4.15 and Fig. 4.16, respectively.

It is clear from Fig. 4.14 that after the initial transient (roughly the first 5 s),

the Newton-based algorithm performs a uniform and faster transient against step

down (at 10 s) or step up (at 20 s) changes in the generated power. The transient

of the gradient ES for all parameters is slightly faster than the Newton at the

beginning as shown in Fig. 4.15, resulting in the faster transient performance

initially1. However, the transient behavior of the Newton-based ES is more uniform

in response to sudden changes in power level, while the gradient-based ES has

1We remind the reader that at the beginning of the adaptation process, the estimate of Γ−1

is far from its actual value, which affects the transient convergence rate.
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Figure 4.17: Phase-portrait of the adaptation process. (a) MPP before and (b)

MPP after changing irradiance. D0 indicates the initial condition.
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different convergence rates for every parameter which varies with the power level.

Lastly, as mentioned in Section 4.5, the Newton-based design moves the system

in almost a straight line between extrema, in contrast to curved steepest descent

trajectories of the gradient algorithm. This observation is demonstrated clearly in

Fig. 4.17.

4.7 Experimental results

Our hardware setup consists of 2 cascade PV modules connected to an ac-

tive load which plays the role of the DC bus with Vdc = 5V, as shown in Fig 4.21.

The PV modules are custom-made including 12 PV cells shown in Fig. 4.18, with

P -V and I-V characteristics shown in Fig. 4.19. We use dSPACE Control Desk

Next Generation software and the DS1104 R&D Controller Board to implement

our MPPT algorithms inside Simulink and interact with the DC/DC converters

through Connector Panel CP1104. Also we use the “Power-Pole Boards” devel-

oped by the University of Minnesota for educational purposes shown in Fig. 4.20,

that are general purpose DC/DC converter boards, configured as a DC/DC buck

converter, with external PWM signals generated by the DS1104. Each Power-pole

board has a current sensor LA 25-NP to measure the inductor current which we

use along with the capacitor ripple current measurement to calculate the DC bus

current. We employ the DC bus current and DC bus voltage to measure the power

supplied to the DC bus. The hardware setup is shown in Fig. 4.22. The numerical

values of the parameters are as follows: ω = 100π rad/s, ω1 = 0.9ω, ω2 = ω, ωl =

ωh = ω/20, kg = 2.5× 10−3, Kg = kgI2×2, Kn = 0.08I2×2, H0 = −400I2×2, a = 0.05,

and D0 = [%70 %70]T . Also we use high order Bessel filters instead of the first

order lowpass and highpass filters to separate the AC and DC parts of the power

signals and to create a smooth estimate of the gradient vector and the Hessain

matrix. The PWM frequency is 100 kHz and the sampling time of the MPPT

algorithm is 0.3 ms. The temperature of PV modules is 25◦C and the modules are

fully exposed to the sun from time 0–60 s and from 120–180 s. To simulate the

effect of partial shading, PV1 is covered with a plastic mat from time 60–120 s.
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Figure 4.18: Custom-made PV module.

When one module is partially shaded, the overall power level decreases. As clear

from Fig. 4.23, the Newton algorithm recovers from this power level change faster

than the other 2 algorithms. While the Newton method has the least steady-state

error and uniform response under step down and step up power scenarios, the

distributed method has the highest steady-state error and large response time in

face of power decrease. The multivariable gradient-based ES performs better than

the distributed MPPT under partial shading conditions. Furthermore, Fig. 4.24

shows that the adaptation process of the pulse duration in the Newton method is

uniform and faster than the 2 other designs.

The irradiance level of the partially shaded module is returned to normal

level at t = 120 s. At this point the Newton scheme show faster transient in

comparison to the similar transient of the multivariable gradient-based ES and the

distributed ES. It is concluded that the convergence rate of the Newton scheme

does not vary largely from step up to step down in power generation, which is

not true for the gradient-based and distributed MPPT schemes. It is clear that in

the step down situation the distributed scheme shows a slower performance than

the step up case. As expected, the experimental results are in keeping with the

analytical and simulation results. The estimate of the Hessian is shown in Fig.

4.26. The MPPT process is depicted in Fig. 4.25 which shows a large steady-state

error for the distributed scheme.
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Figure 4.19: Power and current maps of the custom-made PV modules used in

the experiments for T = 25◦ C. (solid line) S = 1000 W/m2, (dashed)

S = 520 W/m2, and (dash-dot) S = 190 W/m2.

Figure 4.20: “Power-Pole Board” developed by the University of Minnesota for

educational purposes. We configure it as a DC/DC buck converter in our

experiments.
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Figure 4.22: Experimental setup
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Figure 4.23: Variation of power versus time. The Newton algorithm shows

uniform and fast transient with low steady-state error.
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the slowest transient.
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Figure 4.26: The estimate of the Hessian for Newton-based ES. The arrays are

normalized with respect to (Γ−1)11 at t=40 s.

4.8 Conclusions

Using extremum seeking in a micro-converter configuration is a promising

way to extract maximum power from a PV system. Conventionally used scalar

gradient-based designs do so based on the generated power of each module. On

the one hand, this requires two sensors per module, and on the other, the de-

pendence on the level and direction of changes of the individual powers causes

different transients in the parameter updates, particularly in response to sudden

irradiance changes caused by partial shading. The multivariable gradient-based ES

design removes some of these drawbacks. However, it still depends on the shape

and curvature of the cost function. Since the Hessian of the entire system (and

not individual modules) defines the performance of the parameter update, we can

use the estimate of the Hessian to eliminate the dependence of the ES algorithm

on environmental conditions that the Hessian depends upon. The Newton-based

algorithm that we have presented does so, resulting in more uniform transients

in response to irradiance and temperature changes, and improved overall perfor-

mance. The scheme also only uses two sensors for the overall system, resulting
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in lower hardware cost. The dual advantages contribute towards reduced average

cost/watt, enhancing the economic viability of solar.

This chapter contains material from A. Ghaffari, M. Krstić, and S. Sesha-

giri, “Power Optimization for Photovoltaic Micro-Converters using Multivariable

Newton-Based Extremum-Seeking,” in Proc. of IEEE Conference on Decision and

Control, 2012 and A. Ghaffari, S. Seshagiri, and M. Krstić, “Power Optimization

for Photovoltaic Micro-Converters using Multivariable Gradient-Based Extremum-

Seeking,” Submitted to the IEEE Transactions on Industrial Electronics. Of which

the dissertation author was the primary author.



Chapter 5

Power Optimization and Control

in Wind Energy Conversion

Systems using Extremum Seeking

Wind turbines (WTs) are a promising source of sustainable power which

bring different technologies together to harness the vast wind energy resources

close to the ground. The generated power by a WT is a function of the rotor shaft

speed and the blade pitch angle. During the low to medium wind speeds, below

the rated speed, the blade pitch angle is set to zero and the rotor shaft speed is

manipulated to achieve the peak power. When wind speed increases beyond the

rated wind speed the variable speed control algorithm is replaced by a variable

pitch control algorithm—the rotor shaft speed is fixed and the blade pitch angle

is controlled to limit the WT power to its rated level. In this chapter we focus

on the sub-rated region and we develop a variable speed control technique using

the ES for MPPT of the WT. Also, we present a nonlinear control based on the

idea of Field-Oriented Control (FOC) to achieve desired transient and to prevent

magnetic saturation of the Induction Generator (IG) stator.

76
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5.1 Introduction

A variable speed wind turbine generates power in two different regions,

sub-rated power region and rated power region. In the sub-rated power region,

the maximum achievable mechanical power of a WT is a function of its shaft

speed at any given wind velocity. To achieve Maximum Power Point Track-

ing (MPPT), i.e., extract maximum power, an optimization algorithm is needed

[9, 13, 36, 39, 43, 46, 59, 60, 67], and is often used in conjunction with a controller

that guarantees other closed-loop desired performance specifications. In our cur-

rent work, we focus on the optimization and control of a Wind Energy Conversion

System (WECS) composed of a WT, a squirrel-cage induction generator, and a

Matrix Converter (MC). The matrix converter, which is a replacement for the con-

ventional rectifier-inverter combination (AC-DC-AC), features no energy storage

components, has bidirectional power flow capability and controllable input power

factor [82]. It connects the IG to the power grid, and along with the presented

control/optimization design, steers the WT to its Maximum Power Point (MPP)

by controlling the electrical frequency and voltage amplitude of the stator of IG,

which in turn leads to a speed variation in the turbine shaft. It also assists in volt-

age regulation or power factor correction by controlling the reactive power transfer

to the grid.

A design for a system similar to the one we consider here has been presented

in [9], and is based on a standard Perturb and Observe (P&O) algorithm. The P&O

algorithm uses look-up table values that are dependent on the system model and

parameter values. Furthermore, the control design employs Jacobian lineariza-

tion, and uncertainty in the system dynamics and/or variations in the working

conditions cause the system to move away from its MPP. Another method based

on fuzzy logic principles and four-leg-improved MC model, used for performance

enhancement and efficiency optimization, is presented in [46], and is also highly

model-dependent. Model-dependent designs have the drawback that the optimiza-

tion algorithm and controller need to be redesigned carefully for each WECS. To

overcome these difficulties we present an extremum seeking (ES) algorithm, which

is (i) non-model-based, and (ii) is easily tunable [6, 7, 45, 70–73]. Furthermore, ES
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shows promising results for a wide variety of applications [10, 17, 31, 42, 51, 77].

ES designs for MPPT of WECS are also presented in [13, 43, 59], but differ from

the design in this paper in several respects, including assumptions on the system

model, transient performance, and performance robustness.

With the exception of [9], none of the previous works on the power extrac-

tion have focused on the transient performance, and the model in [9], unlike ours,

is based on linearization and is highly model dependent and non-robust to model-

ing errors. While the ES design we present alleviates this problem, a requirement

for the design is that its dynamics be slower than that of the WECS. While the

WECS system is stable by itself, its linearization has “slow poles”, which conse-

quently limits the convergence rate for the ES algorithm. To improve the transient

response, we propose an inner-loop inductor generator control based on FOC, the

elements of which can be found in [49] and [52]. The inner-loop control we present

is robust to machine parameters; and while based on feedback linearization, can

easily be modified to robustify performance to machine parameter variations. Its

role in this work is limited to emphasizing the effect on the convergence of the ES,

and is not the particular focus of this paper. For the ES design, the shaft speed of

the WT is considered as the variable parameter to tune MPP. The generated me-

chanical power is the cost function for the ES algorithm, and electrical frequency

and voltage amplitude of the stator of IG are controlled through the MC to reach

desired closed-loop performance. As a result of including the inner-loop, overall

design has faster response time, with other benefits such as avoidance of magnetic

saturation. In comparison to model-based designs, ES better handles model un-

certainty in the turbine power map, resulting in improved power extraction. To

the best of our knowledge, this is the first work in the literature that combines

the MPPT with nonlinear control design that has good performance robustness to

uncertainty, and faster transient performance, allowing for power tracking under

rapidly varying wind conditions.

The rest of this chapter is organized as follows: An introduction to modeling

of the WECS with concentration on the squirrel-cage IG dynamics in stationary

reference frame and the MC is discussed in Section 5.2. We explain the conven-
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Figure 5.1: WECS including WT, gear box, IG, and MC.

tional direct FOC in Section 5.3. Our nonlinear controller design is discussed in

Section 5.4, and the ES algorithm in Section 5.5. Simulation results to verify the

effectiveness of the proposed scheme are presented in Section 5.6, and our conclu-

sions are presented in Section 5.7.

5.2 Wind Energy Conversion System

A schematic of a WECS including WT, IG, and MC is shown in Fig. 5.1.

Wind turbines work in four different regions as depicted in Fig. 5.2. In Region I,

the wind speed is too low for the turbine to generate power. Region II, also called

the sub-rated power region, lies between the cut-in speed and rated speed. Here

the generator operates at below rated power. The theoretical shape of this curve

reflects the basic law of power production, where power is proportional to the cube

of the wind speed. In Region III, the power output is limited by the turbine; this

occurs when the wind is sufficient for the turbine to reach its rated output power.

Region IV is the period of stronger winds, where the power in the wind is so great

that it could be detrimental to the turbine, so the turbine shuts down [37].

The wind power available on the blade impact area is defined as

Pw =
1

2
ρAV 3

w , A = πR2, (5.1)
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where R is the blade length and Vw is wind speed. The mechanical power generated

by the WT is expressed as

Pt = ωtTt = Cp(Vw, ̟, ωt)Pw, (5.2)

where Tt is the rotor torque, ωt is the shaft speed of the WT, and Cp is the

non-dimensional power coefficient, which is a measure of the ratio of the rotor

power to the wind power. The power coefficient is a function of wind speed, WT

shaft speed, and the blade pitch angle, ̟. The theoretical limit for Cp is 0.59

according to Betz’s law, but its practical range of variation is 0.2–0.4 [46]. The

power coefficient has been approximated numerically in several references, e.g., [4]

and [69]. One of the most common equations used for power coefficient is

Cp(Vw, ̟, ωt) =
0.73

e18.4ς

(

151ς − 29̟

50
− ̟2.14

500
− 13.2

)

, (5.3)

where ς = 1/(̺− 0.02̟)− 0.003/(̟3 + 1) and

̺ =
ωtR

Vw

(5.4)

is tip-speed-ratio. Variable pitch control algorithms govern the blade pitch angle

in the Region III to maintain the generated power at the rated level when wind

speed is higher than rated speed and less than cut-out speed as shown in Fig. 5.2.

Since a non-zero blade pitch angle reduces the peak power of the WT, and MPPT
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wind speeds where ̟ = 0. The maximum value of the power coefficient is C∗
p .

in Region II is our main control objective, then in this study we assume ̟ = 0

which results in

Cp(Vw, ωt) = 0.73
151 Vw

Rωt
− 13.635

exp
(

Vw

Rωt
− 0.003

) . (5.5)

Power coefficient (5.5) depends on the WT shaft speed which can be used for

power control and optimization. Wind speed plays the role of a disturbance input

and affects the generated power by the WT. The MPPT algorithm in sub-rated

power region should be able to govern the WT to its peak power regardless of

the variations of the wind speed. As shown in Fig. 5.3 the maximum value of the

power coefficient happens at different shaft speeds when wind speed is varying, but

the maximum value stays at the same level of C∗
p . For future analysis we assume

that the power coefficient and wind speed function satisfy following assumption.

Assumption 4 The power coefficient Cp(ωt, Vw) and wind speed function Vw(t)

are bounded C3 functions with bounded derivatives.

From (5.2) and (5.5), and considering the fact that the blade pitch angle is
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Figure 5.4: Variation of mechanical power captured by WT versus turbine shaft

speed for different wind speeds where ̟ = 0. The MPP moves on C∗
pPw curve

which shows the characteristic of the sub-rated region of WECS.

zero, we have

Pt(Vw, ωt) = 55.115ρA
Vw

Rωt
− 0.09

exp
(

Vw

Rωt
− 0.003

)V 3
w , (5.6)

which shows that the power captured by the WT is defined by the wind speed,

Vw, and the shaft speed of the WT. However, the wind speed is a disturbance

input and we can manipulate the shaft speed to govern the mechanical power to

its maximum value in sub-rated region. The variation of mechanical power versus

turbine shaft speed is shown in Fig. 5.4 for different wind speeds. It is clear that

under a constant wind speed the relevant power curve has a unique maximum

which is defined by a specific shaft speed. Also the maximum point moves on a

third order curve which defines the maximum mechanical power captured by the

WT.

Assumption 5 The following holds for the WT mechanical power around its peak
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point for every wind speed (see Fig. 5.4)

∂Pt(Vw, ωt)

∂ωt

(ω∗
t ) = 0 (5.7)

∂2Pt(Vw, ωt)

∂ω2
t

(ω∗
t ) < 0. (5.8)

As shown in Fig. 5.1 the WT shaft is modeled as a spring-damper. The

dynamic equations of the turbine, the shaft, and the gearbox are

d

dt
θ̃ = ωt −

ωr

pn
, θ̃ = θt −

θr
pn

(5.9)

d

dt
ωt =

1

Jt
(−Tt − TL) , Tt =

Pt(Vw, ωt)

ωt

, (5.10)

where ωr is the angular electrical frequency of the rotor of IG, θt is wind turbine

angular position, θr is the electrical angle of the rotor of IG, p is the number of

pole pairs of the IG, n is the gearbox ratio, Tt is the turbine torque generated by

mechanical power, TL is the load torque created by the spring-damper model of

the the shaft

TL = Ksθ̃ + B

(

ωt −
ωr

pn

)

, (5.11)

where Ks is the stiffness coefficient of the spring and B is the damping ratio. The

generator rotor angular speed equals ωr/p. The numerical values of the parameters

are given in Table 5.1.

Squirrel-cage IG’s are relatively inexpensive, robust, and require little main-

tenance. When operated using vector control techniques, fast dynamic response,

and accurate torque control is obtained [16]. From [44], the (α, β) model equations

for the squirrel-cage IG are as follows:

d

dt
iα=−a0iα + a1λα − a2ωrλβ +

vα
σLs

(5.12)

d

dt
iβ=−a0iβ + a2ωrλα + a1λβ +

vβ
σLs

(5.13)

d

dt
λα=a3iα − a4λα + ωrλβ (5.14)

d

dt
λβ=a3iβ − a4λβ − ωrλα (5.15)

d

dt
ωr=

p

J

(

Te −
TL

n

)

, (5.16)
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Table 5.1: Definitions of parameters and their numerical values.

Parameter Definition Value Unit

R Blade length 10 m
β Blade pitch angle 0 rad
A Blade impact area πR2 m2

Vw Wind speed – m/s
ρ Air density 1.25 kg/m3

Jt Rotor inertia of WT 100 Kgm2

ωt Rotational speed of WT – rad/s
θt Shaft angel of WT – rad
n Gear box ratio 20 –
Ks Stiffness coefficient 2× 106 Nm/rad
B Damping coefficient 5× 105 Nm/rad/s
p Number of pole pairs of SCIG 2 –
Lls Stator leakage inductance 3.2 mH
Llr Rotor leakage inductance 3.2 mH
Lm Magnetizing inductance 143.36 mH
J Moment of inertia of SCIG 11.06 Kgm2

Rs Stator resistance 0.262 Ω
Rr Rotor resistance 0.187 Ω
ωr Rotor electrical frequency – rad/s
ωo Stator electrical frequency – rad/s
Vim Input voltage peak amplitude 1880 V

Table 5.2: Constant Parameters

a0 a2a3 +Rs/ (σLs) b0 a5a9/ (pn)
a1 a2a4 b1 a8/a9 + a7/ (pn)− a9
a2 Lm/ (σLsLr) b2 a28/a9
a3 LmRr/Lr b3 a8/a9 + a7/ (pn)
a4 Rr/Lr b4 b1 − a0 − a4
a5 3p2Lm/ (2JLr) b5 a0b1 + a4b1 − b2/a9
a6 pKs/(Jn) b6 a0b2 + a4b2 − a8b2/a9
a7 pB/(Jn) b7 a2b0 + a4b0/a3
a8 Ks/Jt b8 b0/ (2a3)
a9 B/Jt b9 a0b3 + a4b3 − b2/a9
c0 a9 − c3 b10 b3 − a0 − a4
c1 K2

s/(BJt) b11 a0 + 3a4
c2 a5B/ (npJt) b12 2a1a3 − 2a0a4 − 2a24
c3 Ks/B +B/(n2J) b13 2a3/b0



85

where iα and iβ are stator currents, λα and λβ are rotor flux linkages, vα and vβ

are stator voltages, and the electromagnetic torque generated by the IG is

Te =
3

2
p
Lm

Lr

(iαλβ − iβλα) , (5.17)

where Lm is the mutual inductance, Ls = Lls + Lm is stator inductance, Lr =

Llr+Lm is rotor inductance, and σ = 1−L2
m/ (LrLs). The numerical values of the

parameters are defined in Table 5.1 and 5.2. Furthermore, the generated active

and reactive power can be expressed as follows

Pe =
3

2
(vαiα + vβiβ) (5.18)

Qe =
3

2
(vαiβ − vβiα) . (5.19)

As shown in Fig. 5.1 the generator is connected to the AC grid through

a MC which includes 9 bidirectional switches operating in 27 different combina-

tions. Matrix converters provide bidirectional power flow, sinusoidal input/output

currents, and controllable input power factor. Due to the absence of components

with significant wear out characteristics (such as electrolytic capacitors), MC can

potentially be very robust and reliable. The amount of space saved by an MC,

when compared to a conventional back-to-back converter, has been estimated as a

factor of three. Therefore, due to its small size, in some applications, the MC can

be embedded in the machine.

Furthermore, there is no intrinsic limitation to the power rating of an MC

[16]. Consequently, we use MCs instead of conventional back-to-back converters.

The model for MCs that we use is based on [8,33,78]. The input phase voltage of

MC, which is connected to the AC grid, is given by

vi = Vim

[

cos θi cos

(

θi −
2π

3

)

cos

(

θi +
2π

3

)]T

, (5.20)

where Vim is the peak value of the input voltage amplitude and

θi =

∫ t

0

ωidτ (5.21)

is the input electrical angle where ωi = 2πfi is the input electrical frequency of the

MC. In this case, due to the inductive nature of the IG, the output phase current
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can be assumed sinusoidal, and hence given by

io = Iom









cos (θo + φo)

cos
(

θo + φo − 2π
3

)

cos
(

θo + φo +
2π
3

)









, (5.22)

where Iom is the peak value of the output current amplitude, φo is the load dis-

placement angle at the output frequency ωo = 2πfo, and

θo =

∫ t

0

ωodτ (5.23)

is the output electrical angle.

It is desired that the local-averaged output phase voltage (the stator volt-

age of IG), and the local-averaged input phase current (the AC grid current) be

sinusoidal

v̄o=Vom

[

cos θo cos

(

θo +
2π

3

)

cos

(

θo +
2π

3

)]T

, (5.24)

īi=Iim









cos (θi + φi)

cos
(

θi + φi − 2π
3

)

cos
(

θi + φi +
2π
3

)









, (5.25)

where φi is the input displacement angle which controls the power factor at the

grid connection. We are interested in finding modulation matrices such that

v̄o = S × vi (5.26)

īi = ST × io. (5.27)

The solutions to the modulation problem should satisfy: (1) restrictions on the

duty cycle of the MC switches that prevent short circuit of the input sources and

open-circuit of the inductive load, (2) sinusoidal output voltages with controllable

frequency and magnitude, (3) sinusoidal input currents, and (4) desired input
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displacement power factor [8]. There are two basic solutions which satisfy (1)–(3)

S1 =
1

3









1 1 1

1 1 1

1 1 1









+
2

3
mT1 (5.28)

S2 =
1

3









1 1 1

1 1 1

1 1 1









+
2

3
mT2 (5.29)

where

m =
Vom

Vim

, 0 ≤ m ≤
√
3

2
(5.30)

is the MC output-to-input voltage gain and

T1=









cos θ1 cos
(

θ1 − 2π
3

)

cos
(

θ1 +
2π
3

)

cos
(

θ1 +
2π
3

)

cos θ1 cos
(

θ1 − 2π
3

)

cos
(

θ1 − 2π
3

)

cos
(

θ1 +
2π
3

)

cos θ1









(5.31)

T2=









cos θ2 cos
(

θ2 − 2π
3

)

cos
(

θ2 +
2π
3

)

cos
(

θ2 − 2π
3

)

cos
(

θ2 +
2π
3

)

cos θ2

cos
(

θ2 +
2π
3

)

cos θ2 cos
(

θ2 − 2π
3

)









, (5.32)

where θ1 = θi − θo and θ2 = θi + θo. The solution in (5.28) yields φi = φo, giving

the same phase displacement at the input and output ports, whereas the solution

in (5.29) yields φi = −φo, giving reversed phase displacement. Combining the two

solutions provides the means for input displacement factor control [8, 78]

S = c× S1 + (1− c)× S2, 0 ≤ c ≤ 1, (5.33)

where c controls the power factor at the grid side. Reactive power control is not

the focus of this research, so we simply set c = 0.5 to obtain unity displacement

power factor at the MC input terminals. However, this does not result in a unity

displacement power factor at input source terminals.

Considering zero losses in MC, the input and output powers are equal and

related as follows:

Pi ≡ 3
2
VimIim cosφi (5.34)

Po ≡ 3
2
VomIom cosφo. (5.35)
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From (5.30) and equating (5.34) and (5.35) we have

Iim = m
cosφo

cosφi

Iom. (5.36)

We perform our design in the (α, β) framework. We need to transform the grid

voltage to the stationary frame and calculate the supplied current to the grid based

on the stator current. The local-averaged voltage of the stator is v̄o = S × vi.

Three-phase variables are transformed to two-phase stationary frame [57]

[

vα

vβ

]

=

[

1 0 0

0− 1√
3

1√
3

]

v̄o =

[

Vom cos θo

−Vom sin θo

]

. (5.37)

Some designs use vα and vβ as inputs instead of ωo and Vom. We remind the reader

that the output electrical angle and the peak amplitude of the output voltage can

be calculated from vα and vβ as

Vom =
√

v2α + v2β (5.38)

θo = − arctan

(

vβ
vα

)

. (5.39)

To calculate the local averaged current supplied to the grid we use (5.27) where

io = −1

2









−2 0

1
√
3

1 −
√
3









[

iα

iβ

]

. (5.40)

Denoting (5.9), (5.10), (5.12)–(5.16), and (5.23) we summarize the state
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space dynamics of WECS as follows

d

dt
iα=−a0iα + a1λα − a2ωrλβ +

cos θo
σLs

Vom (5.41)

d

dt
iβ=−a0iβ + a2ωrλα + a1λβ −

sin θo
σLs

Vom (5.42)

d

dt
λα=a3iα − a4λα + ωrλβ (5.43)

d

dt
λβ=a3iβ − a4λβ − ωrλα (5.44)

d

dt
ωr=

3p2Lm

2LrJ
(iαλβ−iβλα)−

pKs

nJ
θ̃− pB

nJ

(

ωt−
ωr

pn

)

(5.45)

d

dt
θo=ωo (5.46)

d

dt
θ̃ =ωt −

ωr

pn
(5.47)

d

dt
ωt=−Pt(Vw, ωt)

Jtωt

− Ks

Jt
θ̃ − B

Jt

(

ωt −
ωr

pn

)

, (5.48)

where ωo and Vom are actuated by the MC. The wind speed Vw is an unknown

disturbance that determines the maximum power level of the WT. A block diagram

of WECS that highlights the structure of the state space model (5.41)–(5.48) is

shown in Fig. 5.5. Assuming that the blade pitch angle is zero, we can employ the

shaft speed of the WT, ωt, for MPPT of the WT for wind speeds between cut-in

and rated wind speed.

5.3 Conventional Direct Field-Oriented Control

In many motor drive systems, it is desirable to make the drive act as a

torque transducer wherein the electromagnetic torque can nearly instantaneously

be made equal to a torque command. In such a system, speed or position control

is dramatically simplified because the electrical dynamics of the drive become ir-

relevant to the speed or position control problem. In the case of induction machine

drives, such performance can be achieved using a class of algorithms collectively

known as field-oriented control (FOC) [44]. There are three main categories of

FOC known as stator flux, air-gap flux, and rotor flux orientations. The rotor

flux scheme is easy to implement and popular in both AC drives and wind energy
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Figure 5.5: Block diagram of WECS.

systems. The FOC decouples the rotor flux

|λ| =
√

λ2
α + λ2

β (5.49)

and electromagnetic torque Te of the generator to achieve high dynamic perfor-

mance. Using the rotor flux orientation, the stator current of the generator can

be decomposed into a flux-producing component, which produces the rotor flux

|λ|, and a torque-producing component, which produces the torque Te. These two

components are then controlled independently [80].

The FOC is designed in synchronous reference frame which is introduced

as (q, d) frame or dynamic equivalent framework. Aligning the d-axis of the syn-

chronous reference frame with the rotor flux vector results in λq = 0 and λd = |λ|,
where |λ| is the magnitude of the flux vector. From (5.17) we have

Te =
3

2
p
Lm

Lr

iqλd, (5.50)

which shows that a constant rotor flux results in direct changes of torque by the

q-axis stator current, iq. The d-axis current in synchronous reference frame, id, is

the flux-producing current, whereas the q-axis current iq is the torque-producing

current. In FOC, id is normally kept at its rated value while iq is controlled

independently. The stator current vector rotates in space at the synchronous speed

and therefore id and iq are DC currents in steady state.
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To achieve these conditions we introduce the position of synchronous refer-

ence frame as follows

ϕ =
π

2
− arctan

(

λβ

λα

)

. (5.51)

The estimate of the rotor flux angle ϕ is a key issue for field orientation. If the

angle is obtained through the measurement of generator terminal voltages and

currents, the method is known as direct field-oriented control [80]. To apply the

FOC we introduce the following transformations

[

iq

id

]

=

[

cosϕ − sinϕ

sinϕ cosϕ

][

iα

iβ

]

(5.52)

[

λq

λd

]

=

[

cosϕ − sinϕ

sinϕ cosϕ

][

λα

λβ

]

. (5.53)

Since cosϕ = λβ/|λ| and sinϕ = λα/|λ| from (5.52) and (5.53) we have

iq =
λβiα − λαiβ

|λ| (5.54)

id =
λαiα + λβiβ

|λ| (5.55)

λq = 0 (5.56)

λd =
√

λ2
α + λ2

β = |λ|. (5.57)

Here we use vα and vβ as inputs. We show FOC as a state feedback transformation

of a simpler form using the following state space change of coordination

id =
λαiα + λβiβ

λd

(5.58)

λd =
√

λ2
α + λ2

β (5.59)

iq =
λβiα − λαiβ

λd

(5.60)

ωt = ωt (5.61)

αt =
d

dt
ωt (5.62)

θ̃ = θ̃ (5.63)

ϕ =
π

2
− arctan

(

λβ

λα

)

(5.64)
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and the state feedback
[

vα

vβ

]

= |λ|
[

λβ −λα

λα λβ

]−1 [

uq

ud

]

(5.65)

under which the system (5.9), (5.10), and (5.12)–(5.16) becomes

d

dt
id=−a0id + a1λd + ωriq + a3

i2q
λd

+
ud

σLs

(5.66)

d

dt
λd=−a4λd + a3id (5.67)

d

dt
iq=−a0iq − (id + a2λd)ωr − a3

idiq
λd

+
uq

σLs

(5.68)

d

dt
ωt=αt (5.69)

d

dt
αt=−c0αt + c1θ̃ + c2iqλd + c3

Tt

Jt
− Ṫt

Jt
(5.70)

d

dt
θ̃=−Ks

B
θ̃ − Jt

B
αt −

Tt

B
(5.71)

d

dt
ϕ=ωr + a3

iq
λd

(5.72)

where

ωr = pn

(

ωt +
Jt
B
αt +

Ks

B
θ̃ +

Tt

B

)

. (5.73)

Defining the nonlinear state feedback control
[

uq

ud

]

= σLs

[

ωrid + a2ωrλd + a3
idiq
λd

+ wq

−a1λd − ωriq − a3
i2q
λd

+ wd

]

(5.74)

the following closed-loop system

d

dt
id=−a0id + wd (5.75)

d

dt
λd=−a4λd + a3id (5.76)

d

dt
iq=−a0iq + wq (5.77)

d

dt
ωt=αt (5.78)

d

dt
αt=−c0αt + c1θ̃ + c2iqλd + c3

Tt

Jt
− Ṫt

Jt
(5.79)

d

dt
θ̃=−Ks

B
θ̃ − Jt

B
αt −

Tt

B
(5.80)

d

dt
ϕ=ωr + a3

iq
λd

(5.81)
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is obtained. When flux amplitude, λd, is regulated to a constant reference value,

and considering the fact that the dynamics of ωt are considerably slower than

the electrical dynamics, we can assume that the dynamics are linear, but during

flux transient the system has nonlinear terms and it is coupled. This method can

be improved by achieving exact input-output decoupling and linearization via a

nonlinear state feedback that is not more complex than the conventional field-

oriented control [52]. In the next section we present our decoupling control based

on FOC method.

5.4 Controller Design

As shown in Fig. 5.5 one can manipulate stator voltage amplitude, Vom,

and its frequency, ωo, through the matrix converter to obtain the desired closed-

loop performance for WECS. Referring to [49, 50, 52] and employing FOC idea

we introduce an integrator and an auxiliary input, u2, to achieve input-output

decoupling in WECS dynamics. Using (5.41)–(5.48) and one step of integration in

front of Vom the extended equations of WECS are introduced as follows:

ẋ1=−a0x1 + a1x3 − a2x4x7 +
x6 cos x5

σLs

(5.82)

ẋ2=−a0x2 + a2x3x7 + a1x4 −
x6 sin x5

σLs

(5.83)

ẋ3=a3x1 − a4x3 + x4x7 (5.84)

ẋ4=a3x2 − a4x4 − x3x7 (5.85)

ẋ5=u1 (5.86)

ẋ6=u2 (5.87)

ẋ7=a5 (x1x4 − x2x3)− a6x8 − a7

(

x9 −
x7

pn

)

(5.88)

ẋ8=x9 −
x7

pn
(5.89)

ẋ9=−a9

(

x9 −
x7

pn

)

− a8x8 −
Tt

Jt
, (5.90)

where x =
[

iα, iβ, λα, λβ, θo, Vom, ωr, θ̃, ωt

]T

, u1 is the electrical frequency

of the stator, ωo , and u2 is an auxiliary input (voltage amplitude rate) which
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generates the voltage amplitude of the stator. The constant parameters are defined

in the Table 5.2. The extended dynamics of the WECS are of the form

ẋ = f(x) + g1u1 + g2u2, x ∈ R
9, u ∈ R

2, (5.91)

where

f(x)=











































−a0x1 + a1x3 − a2x4x7 +
x6 cosx5

σLs

−a0x2 + a2x3x7 + a1x4 − x6 sinx5

σLs

a3x1 − a4x3 + x4x7

a3x2 − a4x4 − x3x7

0

0

a5 (x1x4 − x2x3)− a6x8 − a7

(

x9 − x7

pn

)

x9 − x7

pn

−a9

(

x9 − x7

pn

)

− a8x8 − Tt

Jt











































(5.92)

g1=[0 0 0 0 1 0 0 0 0]T (5.93)

g2=[0 0 0 0 0 1 0 0 0]T . (5.94)

From (5.6) and Fig. 5.4 we know that the turbine shaft speed controls the power

generation. Also we are interested in decoupling the rotor flux and electromagnetic

torque to obtain the benefits of FOC. For these reasons, we introduce wind turbine

speed, y1 = ωt, and flux amplitude, η1 = |λ|2, as measurable outputs. Based on

the selected outputs and following the idea of feedback linearization, the following
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change of variables is applied to WECS dynamics

y1=Ψ1(x) = x9 (5.95)

y2=LfΨ1(x) = −a9

(

x9 −
x7

pn

)

− a8x8 −
Tt

Jt
(5.96)

y3=L2
fΨ1(x)=b0ξ1+b1LfΨ1(x)+b2x8+b3

Tt

Jt
− Ṫt

Jt
(5.97)

y4=L3
fΨ1(x) = b4L2

fΨ1(x) + b5LfΨ1(x) + b6x8 +

+
b0
σLs

x6λd − x7

(

b7Ψ2(x) + b8LfΨ2(x)
)

+

+b9
Tt

Jt
+ b10

Ṫt

Jt
− T̈t

Jt
(5.98)

η1=Ψ2(x) = x2
3 + x2

4 (5.99)

η2=LfΨ2(x) = 2a3ξ2 − 2a4Ψ2(x) (5.100)

η3=L2
fΨ2(x) = b12Ψ2(x)− b11LfΨ2(x) +

+b13x7

(

L2
fΨ1(x)−b1LfΨ1(x)−b2x8−b3

Tt

Jt
+
Ṫt

Jt

)

+

+2a23
ξ21 + ξ22
Ψ2(x)

+
2a3
σLs

x6λq (5.101)

θ̃=x8 (5.102)

ϕ=
π

2
− arctan

(

x4

x3

)

, (5.103)

where ξ1 = x1x4 − x2x3, ξ2 = x1x3 + x2x4, and

[

λq

λd

]

=

[

cos x5 − sin x5

sin x5 cos x5

][

x3

x4

]

. (5.104)

The change of variables (5.95)–(5.103) is one to one in X = {x ∈ R
9 : x2

3 + x2
4 6=

0, x9 6= 0} and onto Y = {(y, η, θ̃, ϕ) ∈ R
9 : η1 > 0, 0 ≤ ϕ ≤ π}. The inverse
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transformation of (5.95)–(5.103) is

x1=
−Υ1 sinϕ+Υ2 cosϕ√

η1
(5.105)

x2=
Υ1 cosϕ+Υ2 sinϕ√

η1
(5.106)

x3=
√
η1 cosϕ (5.107)

x4=
√
η1 sinϕ (5.108)

x5=arctan

(

Υ4

Υ3

)

(5.109)

x6=
√

Υ2
3 +Υ2

4 (5.110)

x7=pn

(

y1 +
y2
a9

+
a8
a9

θ̃ +
Tt

a9Jt

)

(5.111)

x8=θ̃ (5.112)

x9=y1 (5.113)

where

Υ1=
1

b0

(

y3 − b1y2 − b2θ̃ − b3
Tt

Jt
+

Ṫt

Jt

)

(5.114)

Υ2=
η2 + 2a4η1

2a3
(5.115)

Υ3=
Φ1 cosϕ+ Φ2 sinϕ√

η1
(5.116)

Υ4=
−Φ1 sinϕ+ Φ2 cosϕ√

η1
, (5.117)

with

Φ1=
σLs

2a3

(

η3 + b11η2 − b12η1 − 2a23
Υ2

1 +Υ2
2

η1
−

−b13x7

(

y3 − b1y2 − b2θ̃ − b3
Tt

Jt
+

Ṫt

Jt

))

(5.118)

Φ2=
σLs

b0

(

y4 − b4y3 − b5y2 − b6θ̃ + x7 (b7η1 + b8η2)−

−b9
Tt

Jt
− b10

Ṫt

Jt
+

T̈t

Jt

)

. (5.119)
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The change of variables results in the following equations:

ẏ1=y2 (5.120)

ẏ2=y3 (5.121)

ẏ3=y4 (5.122)

ẏ4=g1 +
b0λq

σLs

x6u1 +
b0λd

σLs

u2 (5.123)

η̇1=η2 (5.124)

η̇2=η3 (5.125)

η̇3=g2 −
2a3λd

σLs

x6u1 +
2a3λq

σLs

u2 (5.126)

˙̃θ=−y2
a9

− a8
a9

θ̃ − Tt

a9Jt
(5.127)

ϕ̇=ωr +
a3

b0|λ|

(

y3 − b1y2 − b2θ̃ − b3
Tt

Jt
+

Ṫt

Jt

)

, (5.128)

where (5.127) and (5.128) are zero dynamics of the system and

g1=b4y4 + b5y3 −
b6
a9

y2 −
a8b6
a9

θ̃ +

+
b0x6

σLs

(a3id − a4λd − x7λq) +

+ f7(x) (b7η1 + b8η2)− x7 (b7η2 + b8η3)−

− b6
a9

Tt

Jt
+ b9

Ṫt

Jt
+ b10

T̈t

Jt
−

...
T t

Jt
(5.129)

g2=−b11η3 + b12η2 + b0b13f7(x)ξ1 +

+ b13x7

(

y4 − b1y3 − b2f8(x)− b3
Ṫt

Jt
+

T̈t

Jt

)

+

+ 2a23

(

2a1ξ3 − 2a0ξ2 − 2a2x7ξ1 +
2x6

σLs

iq

)

+

+
2a3x6

σLs

(a3iq − a4λq + x7λd) , (5.130)

where
[

iq

id

]

=

[

cos x5 − sin x5

sin x5 cos x5

][

x1

x2

]

. (5.131)

When the system settles down to a constant y1 and η1 under a constant wind

speed, we have y2 = y3 = y4 = 0, η2 = η3 = 0, and (5.127) gives

θ̃ = − Tt

a8Jt
. (5.132)
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Then (5.128) results in

ϕ̇ = ωr +
a3(a8 − b3)

b0Jt

Tt

|λ| . (5.133)

The difference between flux angular speed, ϕ̇, and rotor electrical speed, ωr, is

usually called slip speed, ωsl, which can be expressed as

ωsl = ϕ̇− ωr =
a3(a8 − b3)

b0Jt

Tt

|λ| (5.134)

which shows that a constant rotor flux amplitude causes direct changes of the slip

with the variations of the mechanical torque. By defining control signals as follows









u2

x6u1









=
σLs√
η1









cos(ϕ− θo) − sin(ϕ− θo)

sin(ϕ− θo) cos(ϕ− θo)

















v1−g1
b0

g2−v2
2a3









,

(5.135)

and applying another step of change of variables

z =
[

y1 − ωref
t , y2, y3, y4

]T

(5.136)

ζ =
[

η1 −
(

|λ|ref
)2

, η2, η3

]T

(5.137)

we obtain

ż1=z2 (5.138)

ż2=z3 (5.139)

ż3=z4 (5.140)

ż4=v1 (5.141)

ζ̇1=ζ2 (5.142)

ζ̇2=ζ3 (5.143)

ζ̇3=v2 (5.144)

˙̃θ=−z2
a9

− a8
a9

θ̃ − Tt

a9Jt
(5.145)

ϕ̇=ωr +
a3

b0|λ|

(

z3−b1z2−b2θ̃−b3
Tt

Jt
+
Ṫt

Jt

)

. (5.146)
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Linear state feedback

v1 = −k′
1z1 − k′

2z2 − k′
3z3 − k′

4z4 (5.147)

v2 = −k′′
1ζ1 − k′′

2ζ2 − k′′
3ζ3 (5.148)

stabilizes this system which results in the regulation of wind turbine speed, ωt = y1,

to its reference value ωref
t while amplitude of rotor flux, |λ| = √

η1, has converged

to its desired value, |λ|ref .

Remark 4 The closed-loop system (5.138)–(5.146) is input-output decoupled and

linear. The input-output map consists of fourth-order and third-order systems.

This allows for an independent regulation (or tracking) of the outputs using control

signals (5.147) and (5.148). Transient response are now decoupled also when |λ|ref

is varied, even independently of ωref
t . This is an improvement over FOC.

Remark 5 State space change of coordinates both in the FOC and in the decou-

pling control are valid when λ2
α+λ2

β 6= 0 and ωt 6= 0 which is a physical singularity

of WECS in starting conditions.

Remark 6 As in FOC, while measurements of (iα, iβ, ωr) are available, measure-

ments of (λα, λβ) require installing flux sensing coils or Hall effect transducers in

the stator which is not realistic in general purpose squirrel cage machines. But,

(λα, λβ) flux components can be reconstructed by means of an asymptotic observer

of reduced order as shown in [11].

Remark 7 The torque-speed characteristic of an induction machine is normally

quite steep in the neighborhood of synchronous speed and so the electrical rotor

speed will be near the electrical frequency. This means that changing the reference

value of the wind turbine speed which translates in variation of the rotor speed

eventually results in changing the electrical frequency of the stator [44]. Thus, by

controlling the frequency one can approximately control the speed or vice versa.

Furthermore, the a-phase voltage equation can be expressed as

vas = Rsias +
d

dt
λas. (5.149)
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For steady-state conditions at intermediate to high speeds wherein the flux linkage

term dominates the resistive term in the voltage equation, the magnitude of the

applied voltage is related to the magnitude of the stator flux linkage by

Vs = ωoΛs (5.150)

which suggests that in order to maintain constant flux linkage (to avoid satura-

tion), the stator voltage magnitude should be proportional to frequency [44]. Since

we regulate the flux to a constant value, the voltage will be proportional to the

electrical frequency. In the next section we use our designed controller combined

with an ES algorithm to extract maximum power from WECS under various wind

speeds.

5.5 Maximum Power Point Tracking using ES

There are three main MPPT techniques for WECS: Wind Speed Measure-

ment (WSM), P&O, and Power Signal Feedback (PSF). Measurement of wind ve-

locity is required in WSM method. It is clear that accurate measurement of wind

velocity is complicated and increases the system cost. Since the P&O method

adds delay, it is not practical for medium- and large-inertia wind turbine systems.

To implement PSF control, maximum power curve (maximum power versus shaft

speed) is required. The maximum power is then tracked by shaft speed control [9].

Figure 5.6 shows a typical block diagram of WSM using direct FOC for the

induction generator [16,80]. To implement FOC scheme, the rotor flux magnitude

|λ| and its angle ϕ are identified by the rotor flux calculator based on the measured

stator voltage (vo) and current (io). The torque reference T
ref
e is generated by the

MPPT scheme. The q-axis stator current reference can then be calculated by

irefq =
2Lr

3pLm

T ref
e

λd

. (5.151)

Model-based MPPT algorithms require reliable and up-to-date information about

the WT. In the simplest case they are look-up tables which link the proper reference

value of electrical torque, T ref
e , to the relevant turbine speed or wind speed. System
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Figure 5.6: MPPT for a WECS based on WSM using conventional direct FOC.

identification and data acquisition are necessary on a per turbine basis prior to

operating.

To overcome these challenges and remove the dependence of the MPPT

algorithm on the system modeling and identification we propose extremum seeking

algorithm which is a non-model-based real-time optimization technique to MPPT

of WECS. First we try ES without the inner-loop control to clarify the advantages

of the proposed controller on the closed-loop performance of the system. According

to Remark 7, changes in the stator electrical frequency have the same effect as the

changes in the rotor speed on the power generation. Consequently, Assumption 5

can be rephrased as follows:

Assumption 6 The following holds for the turbine mechanical power around its
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peak point for every wind speed

∂Pt(Vw, ωo)

∂ωo

(ω∗
o) = 0 (5.152)

∂2Pt(Vw, ωo)

∂ω2
o

(ω∗
o) < 0. (5.153)

Also we know that the the Jacobian of WECS has left-half plane poles at each

working point which makes the system exponentially stable. According to [45]

these conditions are sufficient for convergence of an ES algorithm to the peak point

of the cost function, P ∗
t , when the initial condition is close enough to its optimal

value, ω∗
t . A schematic of MPPT for WECS with extremum seeking without

inner-loop nonlinear control is shown in Fig. 5.7. It is clear that the power is

parametrized by ωo, which is estimated by ES loop. The other input for WECS

which generates the voltage amplitude has been set to zero which means the stator

voltage has a constant peak amplitude. The parameters of the ES loop are defined

as follows:

Ω = ǫΩ′ (5.154)

ΩH = ǫΩ′
H = ǫδΩ′′

H = O(ǫδ) (5.155)

ΩL = ǫΩ′
L = ǫδΩ′′

L = O(ǫδ) (5.156)

k = ǫk′ = ǫδk′′ = O(ǫδ), (5.157)

where Ω′ is a rational number, ǫ and δ are small positive constants, and Ω′′
H ,Ω

′′
L,

and k′′ are O(1) positive constants. Also a needs to be small.

Our analytical results for this case (no inner-loop control) are summarized

in the theorem below, the proof of which follows from [45].

Theorem 5 Consider the system (5.91) with u2 = 0 under Assumption 6 and

recall that for any fixed electrical frequency u1 = ωo system (5.91) is exponentially

stable. For the system in Fig. 5.7 there exists a ball of initial conditions around

the point (x, ω̂o, ĝ, p̄) = (l(ω∗
o), ω

∗
o , 0, P

∗
t ) and constants ǭ, δ̄ , and ā such that

for all ǫ ∈ (0, ǭ), δ ∈ (0, δ̄), and a ∈ (0, ā), the solution (x(t), ω̂o(t), ĝ(t), p̄(t))

exponentially converges to an O(ǫ+δ+a)-neighborhood of that point. Furthermore,

Pt(t) converges to an O(ǫ+ δ + a)-neighborhood of P ∗
t .
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Figure 5.8: Extremum seeking for MPPT in WECS with the inner-loop control.
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We use the mechanical power at the wind turbine shaft as the cost func-

tion as the input of ES scheme. The optimization parameter for ES without the

inner-loop control is the electrical frequency of IG stator, ωo. Stability of system

dynamics is a sufficient condition for convergence of ES algorithm to its peak point.

It is also required that the ES algorithm works more slowly than the WECS system

dynamics. As previously mentioned, since WECS in Fig. 5.7 without the inner-

loop controller shows a slow transient, the entire system has a lengthy convergence

process.

To overcome these issues we propose to employ the nonlinear control from

Section 5.4 to achieve the desired closed-loop performance, including faster re-

sponse time, and preventing magnetic saturation. In this case, the reference inputs

of the inner-loop control are ωref
t and |λ|ref . From Assumption 5, we know that

the peak power is defined by the optimal shaft speed at each wind speed which is

estimated by the ES loop. The other control input, |λ|ref defines the level of the

flux linkage of the rotor which prevents IG from magnetic saturation.

Remark 8 From (5.5) and (5.6) we observe that the torque on the wind turbine

shaft depends on the wind speed and shaft speed. Also to implement the controller

in Section 5.4 we need to have access to the first, second, and third order derivatives

of the torque. Because of the separation of time scales in the dynamics of the

inner-loop and the wind turbine, it is reasonable to assume that (for the inner-

loop design) variation of the wind speed is negligible in comparison to the dynamics

of WECS and controller. Since the convergence time of the estimate of the shaft

speed generated by ES loop is considerably slower than the response time of the

combination of WECS and controller we can assume that the derivatives of the

torque are zero. Using this observation, the inner-loop becomes independent of the

turbine power map, but it still relies on the IG dynamics and measurements of the

turbine power, the shaft speed (ωt), and angle displacement caused by the shaft

model (θ̃). The ES algorithm generates the estimate of the shaft speed which is

the reference input for the inner-loop and maximizes the power generated by the

WT, and governs the system to its peak power, despite high uncertainty in the

turbine power map.
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The ES scheme of [45] is shown in Fig. 5.8. Combination of the Controller

and WECS includes fast dynamics and ES algorithm contains slow and medium

speed dynamics. The ES algorithm estimates the optimal turbine speed, ωref
t = ω∗

t

which can be considered as a constant value with respect to the fast dynamics of

the controller-system. The ES scheme estimates the gradient of the cost function,

Pt, by injecting a small perturbation, a sin(Ωt), which is very slow with respect to

the dynamics of the WECS and its amplitude is enough small in comparison to ωt.

The highpass filter removes the DC part of the signal. The multiplication of the

resulting signal by sin(Ωt) creates an estimate of the gradient of the cost function,

which is smoothed using a lowpass filter. When ωt is larger than its optimal value

the estimate of the gradient, ĝ, is negative and causes ωt to decrease. On the other

hand, when ωt is smaller than ω∗
t then ĝ > 0 which increases the ωt toward ω∗

t . It

should be noted that Ω is small enough in comparison to the slowest dynamic of

the system-controller, with an order less than 10%.

The analytical results for the closed-loop system with the ES design are

summarized in the theorem below, the proof of which also follows from [45].

Theorem 6 Consider the feedback system in Fig. 5.8 which includes the plant

(5.91) under Assumption 5 with control input (5.135) where v1 and v2 are de-

fined as (5.147) and (5.148). There exists a ball of initial conditions around the

point (x, ω̂t, ĝ, p̄) = (l(ω∗
t ), ω

∗
t , 0, P

∗
t ) and constants ǭ, δ̄ , and ā such that for all

ǫ ∈ (0, ǭ), δ ∈ (0, δ̄), and a ∈ (0, ā), the solution (x(t), ω̂t(t), ĝ(t), p̄(t)) exponen-

tially converges to an O(ǫ+ δ + a)-neighborhood of that point. Furthermore, Pt(t)

converges to an O(ǫ+ δ + a)-neighborhood of P ∗
t . Also the magnetic saturation is

avoided by selecting a constant reference for the flux amplitude, |λ|ref .

5.6 Simulation Results

First, we simulate the ES without the inner-loop control, according to the

scheme in Fig. 5.7. The open-loop response time of the system with the selected

parameters in Table 5.1 is about 500 ms. We know that the ES loop has to be

considerably slower than the main dynamics with an order about 10 which results
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Figure 5.9: Variation of wind speed versus time.

in low probing frequency for the perturbation signal. We select Ω = 20 rad/s,

ΩL = 2 rad/s, and ΩH = 1 rad/s. Denoting the fact that the ES convergence

time is about 30 cycles of the probing function oscillation, the system reaches its

peak point in 10 s. Figure 5.9 shows the wind regime applied to the WECS. The

wind speed changes happen at time 29 s and 59 s with a duration of 1 s. In this

simulation (no inner-loop control) the peak amplitude of the stator is fixed at 1000

V which force u2 = 0 and the ES gain is k = 0.02. The MPPT process is shown

in Fig. 5.10. It is clear from Fig. 5.10 (portions in blue) that during wind speed

increases, the MPPT responds slowly, and the efficiency of WECS reduces. The

recovery time is also considerable when the wind speed drops.

To improve the response time of the MPPT, we add the inner-loop control

shown in Fig. 5.8, and repeat the above simulation. By appropriate selection

of the feedback gains in (5.147) and (5.148) and using (5.135) we can obtain the

desired closed loop response time. Control signals are designed such that the poles

of z-error subsystem (5.138)–(5.141) and ζ-error subsystems (5.142)–(5.144) move

to Pz = [−550 −600 −650 −700] and Pζ = [−570 −620 −670], respectively. The

response time of the closed-loop system is about 20 ms which is 25 times faster

than the open-loop system. We select the parameters of the extremum seeking

loop as follows: Ω = 100 rad/s, ΩL = 6 rad/s, ΩH = 5 rad/s, a = 0.1, and

k = 0.004. The amplitude of the perturbation function is selected proportional

to the wind turbine shaft speed. Higher values of a reduce the precision of the

MPPT, as shown in Theorem 6. For the same wind speed profile in Fig. 5.9, our

simulation results, shown in Fig. 5.10 (in red) show that the MPPT with the inner

loop converges to its optimal value in less than 10 cycles of the probing function,
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Figure 5.10: MPPT, (solid red) with and (dashed- blue) without the inner-loop

control.

resulting in near instant tracking of the MPP. Consequently, the performance of

the MPPT in response to the sudden changes in wind speed is dramatically better

with the inner-loop control than without.

We argued that the inner-loop control can regulate the rotor flux amplitude

to a constant value which provides the system with the extra benefit of constant

v/f . Fig. 5.11 shows that for the constant flux amplitude, |λ|ref =
√
10 Vs, the

ratio of voltage to frequency in the MPPT with the inner-loop control is almost

constant, despite wind speed variation, which implies that magnetic saturation is

prevented. On the other hand, without inner-loop control, the system exhibits

variations of v/f when wind speed changes, as is seen in Fig. 5.11, that might

cause flux saturation.

5.7 Conclusions

We presented an extremum-seeking algorithm to extract maximum power

from a WECS for wind speed from cut-in wind speed to rated wind speed. The de-

sign employed an inner-loop nonlinear controller based on field-oriented approach
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Figure 5.11: Variation of v/f for MPPT, (solid red) with and (dashed blue)

without the inner-loop control.

and feedback linearization technique to control the closed-loop transient perfor-

mance, with respect to which the ES had to be tuned. Without this inner-loop

control, the convergence rate of the closed-loop system would be much slower.

This optimization/control algorithm can readily be extended to other classes of

WECS without major changes. The main parameters that need to be adjusted are

the probing frequency and amplitude of the perturbation signal. Furthermore, the

proposed control strategy prevents magnetic saturation in the induction generator.

This chapter contains material from A. Ghaffari, M. Krstić, and S. Sesha-

giri, “Power Optimization and Control in Wind Energy Conversion Systems using

Extremum Seeking,” Submitted to the IEEE Transactions on Control Systems

Technology. Of which the dissertation author was the primary author.



Chapter 6

Summary and Suggestions for

Future Work

Since environmental parameters like solar irradiance and wind speed de-

fine the power map and peak power of Photovoltaic modules and Wind Energy

Conversion Systems (WECS), we propose Extremum Seeking (ES), which is a non-

model-based optimization algorithm, for power maximization of PV modules and

WECS. The conventional Maximum Power Point Tracking (MPPT) algorithm in

a micro-converter architecture uses one scalar MPPT for each PV module. The

scalar algorithm gives no consideration to the interaction between the PV mod-

ules and it requires two measurements per each module. On the other hand, the

existing MPPT algorithms, including the ES, work based on the estimate of the

gradient of the power map. Hence, a non-symmetric power map creates vastly dif-

ferent transients depending on the initial condition and direction of power changes

in the system. From the analysis of the multivariable gradient-based ES algorithm

we realize that the Hessian of the power map has a dominant role in the closed-loop

performance. The Newton algorithm removes the performance dependence on the

Hessian. We develop the Newton algorithm based on the ES scheme which includes

two main parts: the perturbation matrix to generate the estimate of the Hessian

and the dynamic filter to estimate the inverse of the Hessian. We developed the

theoretical basis for the multivariable Newton-based ES using the averaging and

singular perturbation analysis. We successfully verified the effectiveness of our

109
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proposed algorithm on the experimental setup.

Our proposed WECS includes four different parts: (1) wind turbine , (2)

gearbox, (3) Induction Generator (IG), and (4) matrix converter. The open-loop

dynamics of the WECS has left half-plane poles, but they are very slow which

make the response time of the ES even slower. In order to achieve fast closed-loop

response and extra features like constant v/f or vector control in the system, we

design an inner-loop control based on the concept of Field-Oriented Control (FOC).

The combination of the inner-loop controller and the ES algorithm improves the

performance of the WECS.

6.1 Towards the Future

Computed power densities in high altitude winds exceed a 10 kW/m2 sea-

sonal average at the jet streams typical latitudes and altitudes. This is the highest

power density for a large renewable energy resource anywhere on Earth. It exceeds

the power densities of sunlight, near surface winds, ocean currents, hydropower,

tides, geothermal, and other large-scale renewable resources. For comparison,

Earth surface solar energy is typically about 0.24 kW/m2, and Photovoltaic (PV)

systems electrical efficiency is several times less than that of wind power. Various

systems have been examined to capture this energy, and these include tethered

balloons, tethered fixed-winged craft, tethered kites, and rotorcraft.

The wind energy potential is a function of the height above the ground due

to the presence of the so-called “wind shear”, i.e., the growth of wind speed with

elevation. An example of wind shear curve is shown in Figure 6.1. High power den-

sities would be uninteresting if only a small amount of total power were available.

However, wind power is roughly 100 times the power used by all human civiliza-

tion. Removing 1% of high altitude winds available energy is not expected to have

adverse environmental consequences. High altitude winds are a very attractive

potential power source, because this vast energy is high density and persistent.

Furthermore, high altitude winds are typically just a few kilometers away from

energy users. No other energy source combines potential resource size, density,
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Figure 6.1: A typical wind shear model (asterisks) experimental data and (sloid

line) wind shear model [27].

and proximity so attractively.

Because High Altitude Wind Generators (HAWGs) could move north or

south to follow seasonal shifts in wind patterns or power demand, it could be

advantageous to have “plug-in” HAWGs at pre-arranged sites along an existing

grid 33 kV. The HAWGs envisioned for commercial power production have a rated

capacity in the 3–30 MW range. To supply all the US energy needs, airspace for

power generation is calculated to restrict far less airspace than is already restricted

from civil aviation for other purposes.

6.2 History

The idea of using airborne windmills for electricity generation was inves-

tigated at least as far back as the 1930s. The company Sheldahl, Inc., placed a

French-made generator (4-blade, 2 m diameter) on a tethered balloon in the late

1960s and generated about 350 W of power. The idea of harnessing high altitude

wind power using a tethered aircraft is as old as the 1970s. Several proposals were

placed to the National Science Foundation and the Energy Resources Development

Administration in the US in the mid-70s to research the possibility of generating
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power from an airborne windmill. These were denied because of possible hazards

to aircraft and were deemed not to be economical.

6.3 Tethered Kite Generator

The concept of Tethered Kite Generator (TKG) is to use wings, linked to

the ground by two cables, to extract energy from wind blowing at higher heights

with respect to those of the Wind Turbines (WTs). The flight of the wings is

suitably driven by an automatic control unit. Wind energy is collected at ground

level by converting the traction forces acting on the wing lines into electrical power

with the use of suitable rotating mechanisms and electric generators placed on the

ground. The wings are able to exploit wind flows at higher altitudes than those

of the WTs (up to 1000 m, using 1200–1500 m cables), where stronger and more

constant wind can be found basically everywhere in the world. In this way, high

altitude wind energy can be harvested with the minimal effort in terms of generator

structure, cost, and land occupation.

In wind turbines, the outermost 30% of the blade surface approximately

contributes for 80% of the generated power. The main reason is that the effective

wind speed on the blade is higher in the outer part, and wind power grows with the

cube of the effective wind speed. Yet, the structure of the WT determines most of

its cost and imposes a limit to the elevation that can be reached. To understand

the concept of tethered kite, one can imagine removing all the bulky structure of a

WT and just keeps the outer part of the blades, which becomes a much lighter wing

flying fast in crosswind conditions (Figure 6.2), connected to the ground by the

cables. Thus, the rotor and the tower of the present wind technology are replaced

by the wing and its cables, realizing a wind generator that is largely lighter and

cheaper. For example, in a 2 MW wind turbine, the weight of the rotor and the

tower is typically about 300 tons. A TKG of the same rated power can be obtained

using a 500 m2 wing and 1000 m cables, with a total weight of about 2–3 tons only.

The TKG operating principle is to mechanically drive a ground-based elec-
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Figure 6.2: Basic concept of TKG technology [27].

tric generator using a tethered kite, instead of attempting to locate a WT system

at high altitudes. On the ground-station the lower portion of the tether is wound

around a drum connected to the generator. Energy is extracted from high altitude

by letting the kite fly at a lying-eight orbit with high crosswind speed (Figure 6.3).

During the fast crosswind motion the kite develops a large pulling force, and thus

the generator generates electricity while the kite pulls the tether out of the ground-

station. Then the kite is controlled so, that the pulling force is reduced, and the

lower part of the tether is wound back onto the drum using the generator as a

motor. This cycle is repeated, and thus the system is called a pumping kite gen-

erator. It should be emphasized that the requirement for energy generation with

this system is that the kite dynamics must be controlled to get large and small

pulling force alternately.

Figure 6.4 shows a comparison between the power curves of a 2 MW, 500

m2 TKG and a 2 MW, 90 m diameter WT. The rated power is reached with 9 m/s

wind speed by the TKG, while about 13 m/s are needed by the WT. Moreover,

the WT cut-out speed is about 25 m/s, while about 40 m/s is obtained for the

TKG.
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Figure 6.3: Wing glide maneuver (solid) traction and (dashed) passive phases.

The kite is kept inside a polyhedral space region whose dimensions are

(a× a×∆r) meters [27].
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Figure 6.4: Typical power curve of (solid line) TKG and (dashed) WT [27].

6.4 Energy Storage Systems

High altitude wind generators will have a relatively high availability, around

80%. Reliability and peak premium sales could be enhanced by a link to a pumped

storage facility for off-peak filling/storage and peak-release energy sales and de-

livery. Energy could be stored as hydrogen gas produced from electrolysis, or as

water pumped-back and re-released for hydroelectric generation.

Electric utilities want constantly available “dispatchable” power, which can-

not be provided economically if capacity factors are low, such as the 30% that is

typical of the WT sites. However, with the high capacity factors, such as 80%, that

are expected at average HAWG sites in the US and many other places in the world

(especially in the mid-latitudes), this dispatchable electricity becomes economical.

This is because the expected storage requirement in connection with HAWG de-

rived electrical energy is required for only the shorter periods when HAWGs are

grounded due to inadequate winds or bad storms. Pumped water storage, where

available, is a very economical means used now for such temporary storage. A

well known example is used by Pacific Gas and Electric Company in California to

pump water up to a high lake during low demand hours and then have that water

generate electricity at high demand times on the way back to a lower lake.

Existing hydroelectric power at dams may be considered to be the equivalent
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of pumped water storage facilities by deliberately phasing in and out generation

in complementary fashion to wind availability at a nearby HAWG. In that com-

bination the combined output could be dispatchable power with as much as four

times the capacity of the existing hydroelectric site.

Compressed Air Energy Storage (CAES) is another energy storage means

presently coming into use. In special circumstances, where pumping compressed air

into existing large caves or porous rock strata is feasible, it may well be especially

economic. Commercial tanks built for the purpose may be the most economic

storage means where very short-term energy storage is needed.

6.5 Economical Considerations

Annual Operating Expenses (AOE) includes Land Lease Costs (LLC), Op-

erations &Maintenance (O&M) and Levelized Replacement/Overhaul Costs (LRC).

AOE projections are necessarily subjective, since no plant like this currently ex-

ists. O&M costs are derived from an $82,000/yr estimate for a 3.4 MW HAWG,

multiplied by 29.4 HAWGs for a 100 MW plant. Life-limited components are

anticipated to require replacement at 10 years and 20 years. Tether longevity is

a risk. Replacement cost is estimated at 80% of the initial capital cost for the

whole system. Expressed in per kWh terms, the AOE for the Topeka, Detroit, and

San Diego sites are estimated at $0.0102/kWh, $0.0103/kWh, and $0.0129/kWh,

respectively.

Wind industry has the largest share of renewable energy generation, apart

from hydropower, with a yearly global growth of the installed capacity of about

30% in the last years. Indeed, only by exploiting 20% of the world land sites

that are profitable for the actual wind technology, based on WTs, in principle, the

global energy demand could be supplied. However, the current wind technology

has limitations in terms of energy production costs, which are still too high with

respect to fossil sources, and in terms of land occupation, because wind farms

based on modern WTs with 2–3 MW rated power have an average power density

of 3.5–4 MW/km2, about 200–300 times lower than that of large thermal plants.
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Table 6.1: Projected cost in 2030 of energy from different sources [27].

Minimal Maximal Averaged
Source estimated estimated estimated

($/MWh) ($/MWh) ($/MWh)

Coal 25 50 34
Gas 37 60 47
Nuclear 21 31 29
WT 35 95 57
PV 180 500 325
TKG 10 48 20

Wind turbines already operate at a height of about 150 m over the ground, a value

hardly improvable, because of structural constraints that give rise to technological

and economical limits. Yet the wind speed generally increases with the height

above the ground: for example, at the height of 500–1000 m, the mean wind

power density is about four times the one at 50–150 m. This point suggests that a

breakthrough in wind energy generation can be realized by capturing wind power

at altitudes over the ground that cannot be reached by wind turbines.

The content of this chapter is borrowed from [1,2, 26, 27, 30, 34,75,79]
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