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Abstract

Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation (BMT). Upregulation
of inflammatory cytokines precedes the clinical presentation of GVHD and predicts its severity. In this report, thiol/redox
metabolomics was used to identify metabolic perturbations associated with early preclinical (Day+4) and clinical (Day+10)
stages of GVHD by comparing effects in Syngeneic (Syn; major histocompatibility complex- identical) and allogeneic
transplant recipients (Allo BMT) in experimental models. While most metabolic changes were similar in both groups, plasma
glutathione (GSH) was significantly decreased, and GSH disulfide (GSSG) was increased after allogeneic compared to
syngeneic recipient and non-transplant controls. The early oxidation of the plasma GSH/GSSG redox couple was also
observed irrespective of radiation conditioning treatment and was accompanied by significant rise in hepatic protein
oxidative damage and ROS generation. Despite a significant rise in oxidative stress, compensatory increase in hepatic GSH
synthesis was absent following Allo BMT. Early shifts in hepatic oxidative stress and plasma GSH loss preceded a statistically
significant rise in TNF-a. To identify metabolomic biomarkers of hepatic GVHD injury, plasma metabolite concentrations
analyzed at Day+10 were correlated with hepatic organ injury. GSSG (oxidized GSH) and b-alanine, were positively
correlated, and plasma GSH cysteinylglycine, and branched chain amino acids were inversely correlated with hepatic injury.
Although changes in plasma concentrations of cysteine, cystathionine (GSH precursors) and cysteinylglycine (a GSH
catabolite) were not significant by univariate analysis, principal component analysis (PCA) indicated that accumulation of
these metabolites after Allo BMT contributed significantly to early GVHD in contrast to Syn BMT. In conclusion, thiol/redox
metabolomic profiling implicates that early dysregulation of host hepatic GSH metabolism and oxidative stress in sub-
clinical GVHD before elevated TNF-a levels is associated with GVHD pathogenesis. Future studies will probe the mechanisms
for these changes and examine the potential of antioxidant intervention strategies to modulate GVHD.
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Introduction

Graft-versus-host disease (GVHD) is an important complication

of allogeneic hematopoietic stem cell transplantation (HSCT), and

it limits the wider application of this curative treatment option

[1,2]. The pathogenesis of GVHD classically occurs in 4 distinct

phases: 1) a first phase initiated by tissue injury that accompanies

pre-transplant conditioning, 2) employment of host antigen

presenting cells (APC) during an activation phase, 3) a donor T

cell activation phase culminating in a cytokine storm, and 4) an

effector phase during which activated effector T cells, natural killer

(NK) cells, macrophages, and cytokines cause end-organ damage

[1,2]. Inflammatory cytokines, such as IL-1 [3], IL-2 [4], TNF-a
[4] and IFN-c [5], are elevated after allogeneic HSCT and

perpetuate GVHD through direct cytotoxic effects on host tissues

and by priming and activating immune effector cells [6]. The

immunological mediators of GVHD have been investigated

extensively, however biochemical and sub-cellular changes that

precede and are mechanistically linked to T cell activation and

cytokine dysregulation are not well characterized.

Oxidative stress is an unavoidable consequence of HSCT and

may be an important exacerbating factor in GVHD. Owing to the

contributions of pre-existing disease conditions and the require-

ment for conditioning regimens that increase cellular reactive

oxygen species (ROS), oxidative stress is elevated in all HSCT

recipients [1,2,7,8]. Oxidatively modified membrane lipids,

proteins and nucleic acids are known ligands for innate immune

cell activation. Triggering damage-associated molecular pattern

(DAMP) receptors may facilitate alloantigen presentation and

donor T-cell activation required for GVHD initiation [1,2].

Conditions that increase oxidative stress, such as iron-overload,

are associated with increased risk for complications of HSCT,
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including GVHD [3,9,10]. Furthermore, in a study of Allo BMT

recipients, there was a significant correlation between urinary F2-

isoprostanes (an in vivo biomarker of lipid oxidation) and activation

status of nuclear factor-kappa B (NFkB), a key transcription factor

controlling the expression of inflammatory mediators and cyto-

kines [4,11,12].

Allogeneic BMT is associated with increased oxidative stress

during the active effector phase of GVHD [4,5,13–16]. Excess NO

production was previously observed in both clinical GVHD

[4,13,14] and experimental models [5,15,16]. Interestingly, two

case studies reported that increases in serum nitrate/nitrite

concentration indicative of inducible nitric oxide synthase

activation, preceded clinical onset of GVHD [13,14]. Alloanti-

gen-activated T cells exhibit higher cellular mitochondrial ROS

generation and contain less glutathione (GSH) than their

syngeneic counterparts [6,17]. Alloreactive T cells also induce

epithelial genomic instability through generation of oxidative stress

in vitro, which could explain why GVHD is associated with

increased epithelial genomic instability in patients [18].

In addition to increased ROS generation, impaired antioxidant

defense capacity following Allo BMT could also contribute to

oxidative stress. Glutathione (GSH) is an endogenously synthe-

sized sulfur amino acid (SAA)-containing tripeptide, which plays a

principal role in cellular redox regulation. GSH synthesis is

coordinately regulated through four sequentially interconnected

pathways: transmethylation (TM); transsulfuration (TS); glutathi-

one synthesis (GS); and glutathione recycling (GR) [5,19]. These

pathways generate homocysteine (Hcy), cysteine (Cys), GSH, and

cysteinylglycine (Cysgly), all of which have labile sulfhydryl groups.

Cys and GSH are the two most abundant plasma SAA compounds

and are reversibly oxidized and reduced in cells by NADPH-

driven processes [6,20]. Thus, quantification of Cys/CySS and

GSH/GSSG redox potentials provides accurate measures of

balance between oxidative and anti-oxidative processes in

biological systems [20,21].

The redox state of the GSH/GSSG redox couple is normally

tightly regulated (67%) but it decreases in response to tissue

injury, inflammation, and exposures to toxicants [20]. For

example, in humans, plasma GSH/GSSG redox potentials decline

by ,15–20% following chemotherapy, and also in smokers, and

patients suffering from diabetes and sepsis [20,22]. In mouse

models, similar oxidation of plasma GSH occurs during acute

endotoxin-mediated lung injury [22,23]. Independent of their

cellular antioxidant effects, altered extracellular GSH oxidation

states have been shown to enhance expression of adhesion

molecules (VCAM, ICAM), mitochondrial and NADPH oxi-

dase–dependent ROS generation, and IL-1B-mediated inflamma-

tory signaling [24–26].

Although the importance of GSH in modulating inflammation

has been established, it is not clear how GSH metabolism changes

early after GVHD initiation and might mediate tissue injury.

Clinical studies have shown that plasma and erythrocyte GSH and

antioxidant enzymes activities decline after HSCT [7,8], but how

the plasma antioxidant defense system might relate to GVHD

progression is not known. In experimental rodent models,

pulmonary and hepatic GSH loss was observed in Allo BMT

models of idiopathic pneumonia syndrome (IPS) [27]. A more

recent study of experimental GVHD reported that GVHD

increases erythrocyte oxidant generation and intracellular GSH

relative to normal controls [28]. However, the absence of Syn

controls, and single time point design together makes it difficult to

ascertain the role of GSH perturbation in early GVHD

pathogenesis.

Given the multidimensional roles of SAA and other amino acid

metabolites in processes directly related to GVHD pathology, we

hypothesized that comprehensive profiling of these compounds

during the development of GVHD would provide new mechanis-

tic insights into its complex pathobiology, particularly in its early

phases. In this report, a thiol/redox metabolomics assay [29,30]

was used to simultaneously quantify redox states of SAAs and

other amino acid metabolites in plasma and target organs during

the development of experimental GVHD. These SAA-derived

metabolites have an important regulatory function during

inflammation by acting as ROS-scavenging antioxidants and by

modulating redox states of protein thiols [3,25,31]. Depletion of

tissue and systemic SAA-derived metabolites may promote cellular

injury and apoptosis and also trigger a series of events that up-

regulate inflammatory pathways [4,32]. The possible involvement

of SAA redox metabolism in GVHD has not been investigated,

but the important role that it plays in early inflammatory signaling

in other disease models [4,32–34] suggests that it could play a

critical role in the early stages of GVHD.

Our results demonstrate that oxidation of the host GSH-

regulated redox system and failure of compensatory upregulation

of GSH-synthesis enzymes occur prior to any evidence of change

in amino acids known to be sensitive to inflammation. These

results also indicate that this early shift in redox regulation

precedes GVHD initiation as established by rise in circulating

TNF-a. Lastly, the utility of plasma metabolomics to identify

biomarkers of hepatic injury during the early clinical phase of

GVHD is demonstrated.

Materials and Methods

Ethics Statement
All procedures were performed in compliance with the

recommendations in the Guide and the US Government Principles for

the Utilization and Care of Vertebrate Animals Used in Testing, Research,

and Training. The protocol was approved by the CHORI

Institutional Animal Care and Use Committee (IACUC Assurance

No: A3631-01). All invasive procedures were performed under

isofurane anesthesia, and efforts were made to minimize suffering

at all times. Sacrifice procedures were performed in the morning

following overnight fasting. Animals were sacrificed in their home

cage by CO2 inhalation to effect and followed by exsanguination

by cardiac puncture to obtain blood. All other tissues were

harvested in sterile hood following cardiac puncture.

Mice
Female mice C57BL/6 (B6: H-2b/CD45.2+, Thy1.2), BALB/c

(H-2d/CD45.2+), B6D2F1 (H-2bxd, CD45.2+, Thy1.2+), and

B6.PL-Thy1a (B6. Thy1.1: H-2b, CD45.2+, Thy1.1+) were

purchased from The Jackson Laboratories (Bar Harbor, ME,

USA) and/or inbred at the animal facility of Children’s Hospital

Oakland Research Institute (CHORI) (Oakland, CA, USA). All

animals were 8–12 weeks of age at the time of transplantation.

Following transplantation, animals were fed standard fat-chow and

maintained in micro-isolator cages in pathogen free environment.

Animals were given Pen/Strep antibiotic water at a dose of 100

units/ml following lethal-radiation.

Bone Marrow Transplantation and GVHD Assessment
Mice underwent transplantation in accordance with the

protocol described previously [17,35,36]. Briefly, recipient mice

received lethal (1100 cGy) x-ray irradiation using RS-2000 x-ray

biological irradiator (160 kV, 4.2 kW, radiation dose of 96 rads/

mt) (RadSource Technologies, Inc., Alpharetta, GA, USA).

Glutathione Dysregulation in Early GVHD
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Radiation was administered as two fractions, 4 hours apart, to

minimize gastrointestinal toxicity. T cell-depleted (TCD) bone

marrow (BM) cells (106106) plus either CD90+ (56106) or CD4+

(36106) T cells from respective allogeneic (BALB/c) or syngeneic

(B6. Thy1.1) donors were injected intravenously into recipient

animals on day 0. To induce GVHD in unirradiated host, 506106

whole splenocytes from B6 Thy1.1 donor mice were infused into

allogeneic (B6D2F1) and syngeneic (B6) mice. Survival was

monitored daily, and body weights and GVHD clinical scores of

recipients were measured thrice weekly, up to 30 days post-

transplantation and then weekly for 6 months. The degree of

systemic acute GVHD was assessed by a scoring system that

incorporates 5 clinical parameters–weight loss, posture (hunching),

activity, fur texture, and skin integrity, as described previously

[37]. The mice exhibiting signs of severe GVHD (.6) were

euthanized and the gut, liver, lungs and skin were harvested.

Histologic Analysis
Representative samples from the liver, gut and lungs were

placed in 10% phosphate buffered formalin, embedded in paraffin,

cut into 5 mm sections and stained with hematoxylin and eosin for

histopathological examination. A pathologist reviewed histopa-

thology sections in a blinded manner to assess for GVHD. A semi-

quantitative system of scoring was used as previously described

[5,19,37]. This scoring evaluated apoptosis, portal infiltrates,

lobular infiltrates, bile duct damage and vascular endothelialitis.

The scoring system for each of these parameters denoted 0 as

normal, 1 as mild, 2 as moderate and 3 as severe. The percentage

of mice suffering from moderate to severe GVHD at the time of

euthanasia was noted.

Cytokine Analysis
Plasma samples from transplanted animals were aliquoted and

batched analysis was performed using FlowCytomix bead based

immunoassay (eBioscience, San Diego, CA) in 96 well microplate

format, in accordance with manufacturer’s instructions. The

standard curves were created using 5-fold dilution of appropriate

standard in culture medium and serum samples were analyzed

using mouse Th1/Th2 10 plex kit flowcytomix.

Protein Carbonyl Analysis
Protein carbonyls were measured as a biomarker of hepatic

protein oxidation by using the OxiSelectTM Protein Carbonyl

ELISA Kit (Cell Biolabs Inc, San Diego, CA). Briefly, flash-frozen

liver tissues (25 mg) were homogenized in 1 ml of phosphate-

Figure 1. Survival and clinical course following major histocompatibility complex mismatched bone marrow transplantation (BMT).
A) Survival analysis of C57BL/6 mice following lethal radiation (XRT) alone, allogeneic (Allo) BMT (BALB/c (H-2d/CD45.2+)R C57BL/6 (Thy1.2: H-2b/CD45.2+))
and syngeneic (Syn) BMT (C57BL/6 (Thy1.1: H-2b/CD45.2+)R C57BL/6 (Thy1.2: H-2b/CD45.2+)). B) A time course of GVHD score changes in Allo and Syn BMT
mice. Based on this time course, we chose post-transplant Day+4 (pre-clinical) and Day +10 (clinical onset) time-points (arrows) for metabolomic
analysis in subsequent experiments.
doi:10.1371/journal.pone.0088868.g001

Table 1. Description of Experimental BMT Model.

Donor Strain Recipient Strain
Mismatch
Type

Conditioning
Regimen

Major T-cell
Type Cell Type & Dosage

Model 1. GVHD with Conditioning Regimen

Syngeneic
(Syn)

C57/Bl6
(Thy1.1: H-2b)

C57/Bl6
(Thy1.2: H-2b/CD45.2+)

1100 cGy CD4+ and
CD8+

TCD-BM cells (106106) with CD4+

Allogeneic
(Allo)

Balb/C
(H-2d/CD45.2+)

C57/Bl6
(Thy1.2: H-2b/CD45.2+)

MHC-I, -II,
and miHAs

1100 cGy CD4+ and
CD8+

TCD-BM cells (106106) with CD4+

Model 2. GVHD without Conditioning Regimen

Syngeneic
(Syn)

C57/Bl6
(Thy1.1: H-2b/
CD45.2+)

C57/Bl6
(Thy1.2: H-2b/CD45.2+)

None Whole Splenocytes (506106 cells)

Allogeneic
(Allo)

C57/Bl6
(Thy1.1: H-2b/
CD45.2+)

B6D2F1
(H-2bxd, CD45.2+,
Thy1.2+)

MHC-I, -II,
and miHAs

None CD4+ and
CD8+

Whole Splenocytes (506106 cells)

MHC – Major histocompatibility complex.
MiHAs – Minor histocompatibility antigens.
doi:10.1371/journal.pone.0088868.t001
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buffered saline solution by using the Fastprep FP120 centrifuge

homogenizer (Qbiogene, Inc, Carlsbad, CA). Homogenized

samples were subsequently centrifuged at 20,000 x g to obtain

cytosolic protein fraction. Protein carbonyls in hepatic cytosolic

fraction (100 mg protein/ml) were quantified by dinitrophenylhy-

drazine (DNPH) derivatization followed by specific detection by

anti-DNP antibody in accordance with manufacturer’s instruc-

tions.

Fluorescence Activated Cell Sorter (FACS) Analysis
Hepatocytes were stained with CellROXTM (5 mM) and Thiol

Tracker Violet (TTV; 20 mM) (Invitrogen) per manufacturers

instructions. FACS analysis was performed using LSR Fortessa

(BD Biosciences). Data was analyzed using Flowjo software

(Treestar, Ashland, OR).

Redox Metabolomics
Plasma and hepatic SAA and other amino acid metabolites

were quantified using a liquid chromatography linked tandem

mass-spectrometry (LC/MS/MS) assay [6,20,29,30].

Redox Calculation
The plasma redox potential for glutathione (GSH) was

calculated using the Nernst equation [20,21]; Eh = (redox poten-

tial at pH 7.4) +30 log ([oxidized disulfide]/[reduced thiol]2). The

standard redox potential used was 2264 mV.

Quantitative Real Time PCR of Phase II Genes
A portion of each liver was excised, flash frozen in liquid

nitrogen, stored at 280uC and homogenized using a Fast Prep

system (MP Biomedicals). Total RNA was isolated from mouse

livers using an RNeasy Mini Kit (Qiagen, Valencia, CA). cDNA

was prepared from 1 mg of total RNA per group using QuantiTect

Reverse Transcription Kit (Qiagen). Relative transcript amounts

of c-Glutamylcysteine Ligase Catalytic Subunit (GCLC) was

quantified using the [delta][delta] Ct method with 18S rRNA as

a control. PCR reactions were carried out using the ABI 7900

Real Time qPCR system (Life Technologies, Fredrick, MD) under

following cycling conditions: 95uC for 10 mins, and 40 cycles at

95uC for 10 mins and 60uC for 1 min. The primers used for

GCLC were: FP 59CCACTGAGCTGGGAAGAGAC-39 and RP

59-TCATGATCGAAGGACACCAA-39 and for 18S ribosomal

RNA were: FP59-GTAACCCGTTGAACCCCATT-39 and RP

59-CCATCCAATCGGTAGTAGCG-39.

Table 2. Change in metabolite concentrations following allogeneic and syngeneic bone marrow transplantation.

Metabolite Control
Syngeneic
Day+4

Syngeneic
Day +10

Allogeneic
Day+4

Allogeneic
Day+10 p FDR6

Metabolites that are differentially changed in Allo versus Syn BMT

F.GSH1 47.364.6a 41.7611.4a 42.961.2a 15.264.6b 15.664.0b 0.001 0.005

GSSG2 3.461.7a 5.760.6a 5.361.5a 18.968b 8.166.7a 0.000 0.003

GSH/GSSG (mV)3 2148.065.3a 2158.066.7b 2160.662.8b 2116.765.8c 2128.9611.3a,c 0.000 0.000

Metabolites that are differentially changed relative to baseline control in Allo and in Syn BMT

Ergothioneine 0.360.2a 6.261.5b 8.761.1b 5.661.0b 8.263.6b 0.000 0.000

T. Homocysteine4 6.363.2a 19.266.4b 6.963.4a 17.865.7b 10.862.1a 0.001 0.005

Phenylalanine 38.9615.1a 100.8630.7b 147.7623.9b 87.0617.3a,b 98.7638.2b 0.001 0.005

Tryptophan 73.7621.0a 107.6626.8a 159.3638.6b 123.7626.4a 160.2624.5b 0.001 0.006

Glutamate 41.365.0a 51.7618.2a 107.1622.7b 48.7615.2a 100.2637.7b 0.001 0.006

Isoleucine 86.5648.8a 248.3689.7b 263.661.0b 219.2627.4b 225.2690.3b 0.003 0.011

Beta-alanine 1.160.8a 1.960.3a 3.460.2c 1.860.4a 2.660.8b 0.009 0.026

Citrulline 55.1622.2a 17.467.3b 10.365.6b 16.267.5b 31.9632.4b 0.009 0.026

Aspartate 3.060.7a 1.860.4b 2.460.1a,b 1.960.2b 2.060.5b 0.010 0.029

Histidine 62.9627.0a 33.967.9b 38.3610.3b 28.365.2b 39.269.7b 0.019 0.049

Ornithine 43.5612.5a 19.868.7b 40.9610.5a 30.5613.3a,b 41.34613.5b 0.026 0.063

Valine 112.1624.9a 130.4640.3a 234.1626.3b 151.1641.2a,b 160.5667.8a,b 0.037 0.079

Tyrosine 58.5630.5a 113.5632.9b 102.567.5a,b 101.6619.6a,b 80.1623.5a,b 0.035 0.079

T. Cysteine5 167.5657.6a 233.0692.1a,b 251.7652.7a,b 223.4663.0a,b 305.3614.4b 0.049 0.098

Lethally irradiated B6 recipients (Irradiated) were transplanted with 56106 T-cell depleted bone marrow cells (TCD-BM) and 36106 CD90+ T-cells from B6 Thy1.1
(Syngeneic) or Balb/C (Allogeneic) donor mice.
All units are mmol/L unless otherwise noted and values are expressed as Mean6SD.
Statistical Analysis of Microarray with Tukey’s post hoc test was used to determine statistical differences between groups.
Different letters denote significant differences among treatment groups (e.g. a versus b).
1F. GSH - non-protein bound Free GSH.
2GSSG – glutathione disulfide.
3GSH/GSSG (mV) – GSH/GSSG redox potential was calculated using the Nernst Equation as described in methods.
4T. Homocysteine – Total Homocysteine concentration obtained following plasma reduction with dithiothreitol (DTT).
5Cysteine – Total Cysteine concentration obtained following plasma reduction with dithiothreitol (DTT).
6FDR- False discovery rate.
doi:10.1371/journal.pone.0088868.t002
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Survival, Clinical GVHD Score and Serum Cytokine
Analysis

Survival data in each group were generated using Kaplan–

Meier lifetime survival probability methodology and the log-rank

(Mantel–Cox) test. GVHD scores and serum cytokine concentra-

tions were analyzed by ANOVA with Tukey’s Honest Significance

Test (HSD) post-hoc tests. PRISM software (SAS Institute, Cary,

NC, USA) was used for these tests and a p value ,0.05 was

considered statistically significant.

Statistical Analysis of Metabolomic Data
All of the metabolomic statistical tests described below were

performed using the Metaboanalyst software platform [20,38].

Metabolite concentrations were normalized by the median

concentration quantified from untreated control samples (N = 5).

Table 3. Metabolomic Changes in the liver following syngeneic and allogeneic bone marrow transplantation.

Metabolite Control
Syngeneic
Day+4

Syngeneic
Day +10

Allogeneic
Day+4

Allogeneic
Day+10 p FDR4

Metabolites that are differentially changed in Allo versus Syn BMT

T.GSH1 40.3614.1a 68.0616.3b 32.364.9a 43.2612.6a 25.666.8c 1.2E-02 1.8E-02

F.GSH2 25.965.6a 28.1612.8a 12.963.0a,b 29.2611.6a 4.964.0b 4.9E-04 1.1E-03

GSH/GSSG ratio 25.465.6a 9.668.9b 1.760.6b 3.861.6b 0.560.5c 1.1E-04 3.3E-04

AdoHcy 5.862.4a 0.160.04b 0.160.02b 0.260.1c 0.760.03d 3.5E-09 1.5E-07

Metabolites that are differentially changed relative to baseline control in Allo and in Syn BMT

AdoMet 8.467.4a 4.662.7a,c 0.360.04b 2.561.1a,c,d 0.160.1b 1.2E-08 2.7E-07

Thiaproline 0.0360.02a 0.760.3b 0.660.2b 0.660.2b 0.660.1b 1.2E-07 1.7E-06

a-aminoadipate 0.560.3a 4.761.7b 0.460.2a 4.362.5b 0.360.1a 4.9E-07 5.4E-06

Aspartate 3.762.5a 29.8610.8b 31.0615.0b 22.767.0b 28.362.7b 7.8E-06 6.8E-05

Cystine 0.0360.0a 0.260.1b 0.0860.05a 0.360.2b 0.160.0a 1.3E-05 7.6E-05

Ophthalmate 0.0460.0a 0.660.2b 0.560.4a,b 0.760.2b 0.460.4a,b 1.4E-05 7.6E-05

Methionine 2.160.5a 3.260.8a 6.061.5b 3.960.6a 6.161.2b 2.1E-05 9.3E-05

3-methylhistidine 0.0260.00a 0.260.1b 0.2660.1b 0.360.2b 0.360.1b 2.1E-05 9.3E-05

Cys/CySS ratio 13.063.1a 5.162.8b 2.561.4b 4.863.3b 1.060.4b 2.8E-05 1.1E-04

T.Homocysteine3 0.360.1a 2.561.6b 0.360.0a 4.162.7b 0.360.1a 2.9E-05 1.1E-04

Proline 2.861.5a 14.965.5b 21.667.1b 14.262.4b 21.163.6b 3.3E-05 1.1E-04

Glutamine 10.269.2a 42.0613.9b 29.061.4a,b 39.867.0b 30.8613.7b 4.7E-05 1.5E-04

Cysteine 0.460.1a 2.361.2b 0.3620.04a 3.564.2b 0.260.1a 3.1E-04 8.4E-04

Serine 12.866.7a 32.9610.0b 53.669.4b 41.765.7b 54.368.7b 3.7E-04 9.5E-04

Spermine 19.967.2a 7.261.1b 6.062.4b 10.063.3b 8.963.7b 4.3E-04 1.1E-03

Asparagine 5.762.5a 16.666.0b 19.565.5b 20.562.8b 22.165.4b 5.9E-04 1.2E-03

Ergothioneine 0.160.1a 1.2860.5a,c 3.160.0b,c 3.062.5b,c 5.060.4b 5.5E-04 1.2E-03

Alanine 32.8614.9a 75.2625.3b 81.5615.8b 82.269.7b 74.2611.2b 1.4E-03 2.8E-03

Threonine 6.062.6a 2.560.6a,c 14.266.5a,b 8.566.2a,c,d 17.964.9b,d 1.6E-03 3.0E-03

Glutamate 25.469.8a 78.5629b 68.1637.1b 66.3615.7b 59.4611.7b 2.3E-03 4.3E-03

GSSG5 1.060.2a 2.561.6a,b 4.262.4a,b 4.262.7a,b 5.862.0b 5.0E-03 8.8E-03

Ornithine 6.361.5a 15.266.0b 14.264.2b 12.962.5b 15.463.8b 6.1E-03 1.0E-02

Valine 8.660.8a 17.467.0b 16.663.0a,b 14.663.9a,b 16.962.1b 1.1E-02 1.7E-02

Arginine 0.160.0a 1.260.4b 0.260.2a 0.860.3b 1.160.5b 1.4E-02 2.1E-02

Tryptophan 3.461.7a 2.560.5a,b 1.660.4b 1.961.0a,b 1.560.3b 1.5E-02 2.2E-02

Phenylalanine 6.461.6a 13.864.5b 11.461.7a,b 10.563.8a,b 10.962.1a,b 3.3E-02 4.3E-02

Lysine 16.963.3a 35.6615.4a,b 31.9610.6a,b 25.265.3a,b 33.967.4b 3.3E-02 4.3E-02

Sarcosine 0.460.3a 1.060.5b 0.860.7a,b 0.860.3a,b 0.660.4a,b 4.0E-02 5.0E-02

Lethally irradiated B6 recipients (Irradiated) were transplanted with 56106 T-cell depleted bone marrow cells (TCD-BM) and 36106 CD90+ T-cells from B6 Thy1.1
(Syngeneic) or Balb/C (Allogeneic) donor mice.
All units are mmol/L unless otherwise noted and values are expressed as Mean6SD.
Statistical analysis of microarray with Tukey’s post hoc tests was used to determine statistical differences between the groups. Different letters denote significant
differences among treatment groups (e.g. a versus b).
1T. GSH – Total GSH (non-protein bound Free GSH +2GSSG+GSH-mixed disulfides).
2F. GSH - non-protein bound Free GSH.
3T. Homocysteine – Total Homocysteine concentration obtained following plasma reduction with dithiothreitol (DTT).
4FDR - False Discovery Rate.
doi:10.1371/journal.pone.0088868.t003
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Normalized values were cube root transformed, Pareto scaled and

mean-centered prior to statistical testing.

Univariate Analysis
For univariate analysis of data obtained from baseline controls,

Syn, Allo BMT at Day+4 and +10 time points, statistical analysis

of microarray (SAM) was performed with Delta values adjusted to

minimize false discovery rate below 10%. Tukey’s Honestly

Significant (Tukey’s HSD) was used to further quantify the

differences between the groups.

Principal Component Analysis (PCA)
PCA is an unsupervised classification method that projects high-

density data to new coordinated system with much smaller sets of

variables (principal components; PC), which describe the variabil-

ity in the data. Each principal component is orthogonal to each

other and each PC explains the greatest source of variance

remaining after previous PCs have been established. PCA

produces two plots; 1) scores plot: projects each sample on a

new coordinate system composed of PCs and are used to reveal the

intrinsic structure of data set in terms of variance, 2) loading plot:

displays variables that contributes to the group separation.

Partial-Least-Squares Discriminant Analysis (PLS-DA)
PLS-DA is a supervised technique where the discriminant

model is built with a prior knowledge of the group membership of

set of samples and is created to best explain the group

memberships of individual samples. PLS-DA has two outputs: 1)

score plot shows the sample distribution in the coordinate system

composed to the components selected, 2) Variable importance in

Projection (VIP) values which is a computation of influence of

every x term in the model on the group classification and larger

VIP values indicate a greater influence of x on group discrimi-

nation and generally, a VIP value of $ 1 are considered

significant. Because PLS-DA is prone to over-fitting errors, the

significance of group discrimination by multivariate models was

cross-validated with the use of ‘‘leave-one-out’’ and permutation

testing.

Hierarchical Clustering Analysis (HCA) and Heat-map
Generation

Variables that were found to contribute most to the group

discrimination were used for hierarchical clustering analysis (HCA)

using Pearson’s test for distance measures and Ward’s minimum

variance method was used for clustering. Samples are in rows and

variables are in columns. The colors vary from deep blue to dark

brown to indicate data values change from very low to extremely

high.

Results

Establishment of the GVHD Time Course
GVHD was induced in the fully MHC-mismatched model

consisting of BALB/c R B6 following lethal irradiation (Table 1,

Model 1). The survival time course (Figure 1; Panel A) monitored

over 60 days shows that mice receiving the lethal radiation

conditioning regimen alone (XRT; N = 8) had a median survival of

11.5 days (100% mortality at 18 days), while 87.5% of Syn BMT

recipients (Syn; N = 8) survived during the first 60 days following

transplantation. Allo BMT recipients (N = 8) had a median

survival of 23.5 days. The clinical GVHD score in the Allo group

started to increase significantly at post-transplant Day 7 (Figure 1,

Panel B). Based on this time course, post-transplant Day+4 (pre-

clinical) and Day +10 (clinical GVHD expressed) time points were

chosen for metabolomic analysis.

Amino Acid Metabolite Profiles Following Allo
Transplantation Indicate Early Failure of the GSH
Antioxidant Defense System

Plasma amino acid metabolomic changes following Syn and

Allo BMT at post-transplantation Days +4 and +10 were

compared to baseline wild-type (WT) controls. Of the 40

metabolites measured, 16 metabolites changed significantly

compared to baseline and are shown in Table 2. The most

striking change occurred at Day+4 in the GSH concentrations

where the Syn mice maintained adequate levels even after lethal

irradiation, but levels were severely depleted in the Allo mice. This

Table 4. Plasma and liver GSH Changes following syngeneic and allogeneic bone marrow transplantation without conditioning
regimen.

Metabolite Control
Syngeneic
Day+4

Syngeneic
Day +10

Allogeneic
Day+4

Allogeneic
Day+10 p FDR4

Plasma GSH, GSSG and redox potential

F.GSH1 47.364.6a 46.260.4a 39.465.8a 21.766.7b 21.4610.7b 0.001 0.004

GSSG2 3.461.7a 7.361.0b 7.763.5b 7.761.4b 14.9611.3c 0.008 0.01

GSH/GSSG (mV)3 2148.065.3a 2158.062.2b 2154.167.8b 2136.866.3a,c 2127.969.4a,c 0.04 0.05

Liver GSH, GSSG and GSH/GSSG ratio

F.GSH 25.965.6a 36.364.5b 29.365.3a 24.7619.5a 14.2612.9c 0.001 0.006

GSSG 1.0460.2a 4.563.7b 1.360.9a 12.269.9b 1.561.0a 0.001 0.006

GSH/GSSG Ratio 24.961.2a 8.260.7b 22.664.7a 2.164.3c 9.564.8b 0.003 0.011

GVHD was induced without conditioning in paternal in F1 hydrid (C57BL/6 R B6DBA2F1) model.
SAM analysis with Tukey’s HSD post hoc analysis was used to determine statistical differences among group.
All units are mmol/L unless otherwise noted and values are expressed as Mean6SD.
Different letters denote significant differences among treatment groups (e.g. a versus b).
1F.GSH - non-protein bound Free GSH.
2GSSG – glutathione disulfide.
3GSH/GSSG (mV) – GSH/GSSG redox potential was calculated using the Nernst Equation as described in methods.
4FDR - False Discovery Rate.
doi:10.1371/journal.pone.0088868.t004
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result suggests that the antioxidant response mechanism is

impaired in Allo but not Syn animals during this early phase.

Consequences of these changes were reflected in the more

oxidized GSH/GSSG redox potential (more positive = more

oxidized) (Table 2).

The liver is the major site for GSH synthesis and is also a target

organ of GVHD [20,22,39]. As in the plasma, GSH was the only

metabolite in liver homogenates in which the concentration

significantly decreased in Allo BMT mice compared to Syn mice

at Day+4 (Table 3). As shown, hepatic total GSH in Syn BMT

was initially elevated at Day +4 and subsequently decreased to

baseline WT values. In contrast, the hepatic GSH did not increase

in Allo BMT mice relative to baseline at Day +4 (Table 3). By

Day+10, the liver GSH concentration had decreased to values

significantly lower than baseline (Table 3). These results suggest

that failure of Allo BMT hosts to increase hepatic GSH synthesis

during early GVHD is the cause of the depletion of plasma GSH

and a higher GSSG level.

To determine whether the observed decline in GSH is due to

GVHD rather than to the conditioning regimen, GVHD was

induced in unirradiated recipients using a paternal to F1 hybrid

(B6 R B6D2F1) transplantation model (Table 1; Model 2). The

B6 R B6D2F1 is a well-established model where lethal GVHD

develops over the course of several months [22,23,40]. It has been

noted that 33% of the B6D2F1 recipients challenged with B6

splenocytes develop bone marrow failure induced by acute

GVHD. The remaining animals exhibited signs of subclinical

GVHD with protracted immune system insufficiency [24–26,41].

Comparison of plasma GSH and GSSG concentrations in

controls, Syn and Allo BMT recipients at days +4 and +10 post

T cell infusion showed significant alterations (Table 4). Despite

the lack of radiation injury, adoptively transferred Allo splenocytes

caused a significant decrease in plasma GSH concentration at

Days +4 and +10 compared to both baseline controls and the Syn

group. GSSG levels were significantly increased in Allo compared

to Syn recipients, but only at Day+10. The plasma GSH/GSSG

redox state as calculated by the Nernst equation showed a

significant loss in antioxidant capacity at both Days +4 and +10

(Table 4). However, the extent of plasma GSH/GSSG redox

potential loss was more modest than in the BALB/c RB6 model

following lethal radiation (Table 2). Interestingly, analysis of

hepatic GSH showed significant 40% increase in Syn mice while

the levels in Allo did not change relative to baseline controls

(Table 4). Hepatic GSSG levels in Allo mice were also

significantly higher at Day+4. In the Syn group, hepatic GSH

and GSSG levels had returned to baseline levels by Day+10

(Table 4). However, in the Allo group, hepatic GSH levels were

significantly lower compared to Syn and to untreated controls

(Table 4). These results suggest that a compensatory increase in

hepatic GSH is impaired in the Allo group, irrespective of whether

a conditioning regimen was applied.

A Blunted GSH Antioxidant Defense System Response
Involves Impaired Transcriptional Upregulation of c-
glutamylcysteine Ligase (GCL), the Rate-Limiting Enzyme
in GSH Biosynthesis

Due to the central role of GSH in cellular antioxidant protective

mechanisms, the induction of enzymes responsible for its synthesis

represents a key adaptive response to oxidative injury. The

synthesis of GSH from precursor amino acids requires c-

glutamylcysteine ligase (GCL) and GSH synthetase. GCL cata-

lyzes the rate-limiting step. It is a heterodimer composed of

catalytic (GCLC) and regulatory (GCLM) subunits. GCLC

transcription is upregulated in response to increased oxidative

stress or xenobiotic exposure. An inadequate GCLC transcrip-

tional induction in response to a cellular ROS burden would result

in oxidative stress. At post-transplant Day+4, hepatocytes from

Allo BMT mice were freshly isolated and the cellular oxidant

burden and relative abundance of GCLC mRNA were estimated

by CellROXTM Deep Red reagent (CDRR) flow cytometric and

RT-PCR assay, respectively. As shown in Figure 2A, cellular

ROS levels increased by ,4-fold at post-transplant Day+4 in Allo

mice compared to the Syn BMT group, and the relative GCLC

RNA transcript abundance was decreased by ,50%. These results

strongly suggest that transcriptional responses required for

maintaining adequate cellular GSH levels, as occurred in the

Syn BMT mice, are impaired early following Allo transplantation

and before clinical GVHD develops.

Protein carbonyls are formed as a consequence of ROS-

dependent protein oxidative modification and are stable biomark-

ers of oxidative stress. As shown in Figure 2B, hepatic protein

Figure 2. Decreased expression of the c-glutamylcysteine
ligase and increased hepatic oxidant generation and protein
oxidative damage at Day+4 in Allo BMT. Panel A: At post-
transplant day 4, hepatocytes from Syn (B6RB6) and Allo (Balb/CRB6)
mice (N = 4 per group) were freshly isolated and the mRNA transcripta
of the catalytic sub-unit of c-glutamylcysteine ligase (GCLC; Green, left
axis), were quantified by RT-PCR and normalized to 18S mRNA levels.
Cellular reactive oxygen species (ROS) levels were estimated by flow-
cytometric detection of CellRox Deep Red Reagent (CDRR) fluorescence.
Results are Mean6SD. * = p,0.05. Panel B: Hepatic protein oxidative
damage levels in non-transplanted controls (Day 0; N = 4), Syn (B6RB6;
N = 3 per time point; Gray bar) and Allo (Balb/CRB6; N = 5 per time
point; Black bar) BMT mice were measured by protein carbonyl ELISA
assay as described in methods. Results are mean6SD. * = p,0.05 and
** = p,0.01.
doi:10.1371/journal.pone.0088868.g002
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carbonyl concentrations were significantly (p,0.05) higher in Allo

BMT (15.562.5 ng/ml) as compared to both baseline controls

(Day 0; 1.360.5 ng/ml) and Syn BMT (8.964.3 ng/ml) at Day +
4 and was remained elevated at Day +10.

Plasma and Hepatic Glutathione Depletion Precede Up-
regulation of Inflammatory Cytokines

To establish the temporal relationship between plasma GSH/

GSSG redox potential change and inflammatory cytokine

upregulation characteristic of GVHD, serum concentrations of

IL-2, IFN-c, and TNF-a were measured at post-transplant Days +
4 and +10. Figure 3A shows the Allo/Syn ratios of baseline

normalized values for the different end-points measured, whereas

Figure 3B shows the fold-change from baseline values for Syn and

Allo groups plotted separately for each of the endpoints measured.

As shown in Figure 3, the control-normalized serum IFN-c Allo/

Syn ratio was not significantly different at the time points. Serum

TNF-a concentrations were increased relative to baseline levels to

a similar extent in both Syn and Allo mice at Day+4 (Figure 3A

and B). However, at post-transplant Day+10, serum TNF-a in Allo

was significantly elevated relative to both non-transplant control

and Syn mice (Figure 3A and B). Divergent changes in plasma

GSH and GSSG were observed at Day+4 post-transplant

(Figure 3A and B). Mean plasma GSH decreased by approxi-

mately 60% from baseline values in the Allo mice group at Day+4

and was maintained at this reduced level at Day+10 (Figure 3B).

In the Syn group, mean plasma GSH concentrations were

maintained at levels similar to controls at both time points.

Plasma GSSG concentrations in the Allo group increased by ,6

fold at Day+4 and while it decreased by Day+10, the level was still

significantly higher than in the Syn and non-transplant controls

(Figure 3A and B). In contrast, GSSG levels were only slightly

Figure 3. Temporal change in GSH oxidation and loss precedes the rise in TNF-a. Lethally irradiated B6 recipients (Irradiated) were
transplanted with 56106 T-cell depleted bone marrow cells (TCD-BM) and 36106 CD90+ T-cells from B6 Thy1.1 (Syngeneic) or Balb/C (Allogeneic)
donor mice (N = 4 per group). Serum TNF-a, plasma GSH and GSSG concentrations were normalized to average control values. Panel A shows the
temporal patterns of mean Allo/Syn ratios of control-normalized serum TNF-a (left axis; circle dotted line), plasma GSH (open triangle, right y axis) and
GSSG (open diamond right axis). Panel B shows the temporal changes in serum TNF-a, plasma GSH and GSSG for Allo and Syn groups separately and
values are expressed as fold-change over baseline control mean. *Denotes significant differences between Allo and Syn BMT mice. Data represents
mean 6 SD.
doi:10.1371/journal.pone.0088868.g003
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elevated in the Syn group at Days +4 and +10. However, it should

be noted that even with this small decline in GSSG, the plasma

GSH/GSSG redox potential remained low (Table 2), primarily

because plasma GSH is the major determinant of the GSH/GSSG

redox potential. These data suggest that impaired GSH antiox-

idant defense compensation in Allo mice occurs before TNF-a
upregulation at Day+10.

Plasma GSH Depletion at Day+10 Correlates with Hepatic
GVHD Severity

The correlation between plasma GSH and hepatic GVHD

severity was determined using the paternal to F1 hybrid model

(Table 1, model 2). This model was chosen because inter-animal

variations in GSH and hepatic GVHD were greater than in model

1, and thus this model provided an opportunity to examine

potential correlations between plasma metabolites and the severity

of GVHD in the liver. As shown (Figure 4), histopathological

scores and plasma GSSG were strongly and positively correlated

(r2 = 0.65; p = 0.002). Significant positive correlations were also

were observed in the GSH/GSSG redox potential (more

positive = more oxidized). Significant inverse correlations were

also observed between liver histopathological damage and plasma

total cysteinylglycine (T. Cysgly; GSH catabolite), GSH, and total

GSH (T. GSH), suggesting that concurrent plasma GSH/GSSG

oxidation state reflects the extent of GVHD injury in the liver.

Several metabolites unrelated to GSH metabolism also were

significantly correlated with histopathological changes in the liver

(Figure 4). These metabolites include: (a) b-alanine, a degradation

product of dipeptides, carnosine, anserine, and pantothenic acid

(vitamin B5); (b) S-adenosylhomocysteine (AdoHcy), a product of

S-adenosylmethionine (AdoMet) methylation; (c) Leucine/isoleu-

cine, branched chain amino acids.

Interestingly, plasma Arg, a requisite precursor for NO

synthesis, and Cit, also generated by iNOS enzymes, failed to

correlate with liver histopathology. Plasma Trp, which is a

substrate of IDO enzymes previously implicated in GVHD, also

did not correlate with liver histopathology.

Increased GSH Metabolic Precursors and Catabolites in
Allo BMT Mice Suggest Both Impaired GSH Synthesis and
Enhanced Turnover

Supervised Principle Component Analysis (PCA) and unsuper-

vised (PLS-DA) modeling permit identification of subtle metabolic

shifts that may not achieve statistical significance in univariate

analyses. These techniques were used to examine the metabolomic

separation of the Allo and Syn BMT and baseline control groups.

The PCA scores plot (Figure 5: Panel A) displays each mouse

sample as a point on the plot (Figure 5A) and shows the intrinsic

segregation patterns of individual samples and group variances. An

overview of the PCA score matrix using the first five principal

components indicated that the best separation of Allo and Syn

Figure 4. Significant correlations between hepatic GVHD scores and changes in plasma metabolite concentrations at Day +10. GVHD
was induced without conditioning in paternal in the F1 hybrid (C57BL/6 R B6DBA2F1) model. Pearson correlation coefficient analysis was used to
calculate the correlation between plasma metabolite concentrations and hepatic GVHD histopathological severity scoring obtained at Day+10.
*Denotes metabolites that showed significant correlations to hepatic GVHD severity scores. Abbreviations: Leu – Leucine, Ile - Isoleucine, T. cysgly-
Total cysteinylglycine, GSH-Free GSH, T.GSH- Total GSH, Gly-Glycine, Arg-Arginine, Met-Methionine, Ser-Serine, Cit-Citrulline, T.Cys-Total cysteine,
MetSO-Methionine sulfoxide, T. Hcy-Total homocysteine, Cysgly-Cysteinylglycine, Sar-Sarcosine, Thr-Threonine, His-Histidine, Tyr-Tyrosine, Glu-
Glutamate, CySS-Cystine, Orn-Ornithine, Lys-Lysine, Cys Redox-Cysteine redox potential (mV), Cys-Cysteine, 3MH-3-Methylhistidine, Asp-Aspartate,
Phe-Phenylanine, Trp-Tryptophan, Asn-Asparagine, Ala-Alanine, Pro-Proline, Erg-Ergothioneine, B.Ala-b-Alanine, GSH Redox –GSH/GSSG redox
potential (mV), AdoHcy - S-adenosylhomocysteine, GSSG - GSH disulfide.
doi:10.1371/journal.pone.0088868.g004
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BMT mice was achieved when principal components 1 and 3 were

used (data not shown). The first PC (PC 1, x-axis), which explained

26% of the variability in the data, separated the controls (A) from

the other 4 groups: Syn BMT Day+4 (B) and +10 (C) and Allo

BMT Day+4 (D) and +10 (E). The separation of Syn and Allo

BMT groups at different time points is seen along the y-axis (PC

3), which is marked by the solid line (Figure 5: Panel A). As

shown, Syn D+4 (B) and D+10 (C) had similar metabolomic

compositions and closely overlapped with each other. Allo D+4

samples (D) segregated below the two Syn groups with a more

significant separation being achieved with Allo D+10 (E) samples.

In the PC1 versus PC3 loading plot (Figure 5), Panel B

illustrates that the plasma levels of Total Cys, Cysgly, GSH, Trp

and Cysth were key segregating features that discriminated Allo

D+10 from Syn groups. Accumulation of plasma GSH precursors

(Cysth, Cys) and its catabolite (Cysgly) implicate impaired GSH

synthesis in early GVHD. This is further supported by the GCL

mRNA data shown in Figure 2. Although Total Cys, Cysgly, Trp

and Cysth were not significantly different by univariate analysis,

the PCA results suggest that these variables collectively discrim-

inate between Allo and Syn groups, and demonstrate that early

GVHD is associated with broad perturbations in sulfur amino acid

metabolism in Allo mice.

Figure 5. Plasma metabolome discriminates Allo from Syn BMT and untreated controls at Day+4. Lethally irradiated B6 recipients were
transplanted with 56106 T-cell depleted bone marrow cells and 36106 CD90+ T-cells from B6 Thy1.1 (Syngeneic) or Balb/C (Allogeneic) donor mice
(N = 4 per group). Principal component analysis (PCA) and partial-least squares discriminant analysis (PLS-DA) was performed using plasma
metabolite concentrations quantified at Day+4. Panel A shows the PCA scores plot. The different colors and letters signify the five groups in the
study: Healthy controls (A; red), Syn Day+4 (B; Green), Syn Day+10 (C; Blue), Allo Day+4 (D; Cyan), and Allo Day+10 (E; Purple). Untreated controls and
the BMT groups are separated along the PC1 axis whereas Allo are separated from the Syn group along the PC 3 y-axis. Solid line shows the direction
of Allo separation from Syn. Panel B shows the corresponding PCA loading plot for PC1 and PC3 shown in panel A. Total Cysgly, GSH, Cys, Trp and
Cysth were variables that contributed the most to the separation of groups identified by the PCA analysis. Panel C shows the PLS-DA scores plot. The
group IDs are represented by letters and colors described in Panel A. Panel D shows the heat-map generated from the top 10 metabolites
contributing to group discrimination as identified by PLS-DA analysis. Each metabolite is arranged in columns and the individual concentrations
within a column are normalized by respective median concentrations. Rows represent different mice and their group ID is shown on the right side of
each row. These group IDs are represented by different colors on the left side that correspond to the same color codes in Panels A and C.
Concentrations that are two fold above or below the mean are highlighted in amber or in blue, respectively. Dendogram and the 3 nodes (1–3)
classified by hierarchical clustering analysis are shown on the left.
doi:10.1371/journal.pone.0088868.g005
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Supervised PLS-DA analysis (Figure 5C and D) was performed

to confirm the class separation revealed by the PCA modeling. A

five-class model was built to differentiate the five groups defined in

Panel A: baseline controls (A), Syn (Day+4 (B), Day+10 (C)) and

Allo (Day+4) (D), Day+10 (E)). As with results of the PCA analysis,

segregation of the different BMT groups from the baseline controls

occurred in the direction of Component 1, which explained 25%

of the variance in the data set (Figure 5C). Syn Day+4 and +10

showed overlapping metabolomic profiles and no separation was

observed within the Syn group. Significant separation of Allo

groups is evident in Day +4 and +10 groups with +10 groups

showing a more profound separation from Syn groups. In PLS-DA

analysis, both R2 and Q2 are used to test the predictive power of

the model. A ‘‘Leave-One-Out’’ cross-validation test using a 3

component model gave an R2(Y) = 0.98 and Q2(cum) = 0.8,

indicating that the PLS-DA model explains 98% of response

variability. Q2 is an estimate of the predictive ability of the model

and a value greater than 0.5 is regarded as good [42]. A

permutation test with 2000 permutations and separation distance

as a test statistic was significant (p = 0.025) and confirmed that this

model had greater Q2 and R2 values than distributions calculated

from permuted data.

To investigate additional group segregation, the top variables

identified by PLS-DA analysis were subjected to hierarchical

cluster analysis (HCA) to generate a heat-map shown in

Figure 5D. As shown, all the metabolites used in the HCA

analysis had Variable Importance in Projection (VIP) values .1.

The VIP is a computation of influence of every x term in the

model on the group classification and larger VIP values indicate a

greater influence of x on group discrimination; a VIP value of $ 1

is considered significant. In Figure 4D, the rows represent each

sample and the columns show the respective metabolite concen-

trations. The colors in each cell range from dark blue to brown

and represent concentration changes from extreme low to high.

The dendogram tree shown on the left (Figure 5D) reveals three

main clusters composed of baseline controls (Cluster 1; A), Allo

(Cluster 2; D and E) and Syn (Cluster 3; B and C). Note that GSH

and GSSG cells from Allo mice have a very distinct distribution

compared to the Syn group. PLS-DA analysis also identified His,

Cit and branched chain amino acids (Ile, Val), and aromatic

Figure 6. GVHD associated shifts in GSH metabolism in Allo relative to Syn BMT at Day+4. The pathway map of GSH-synthesis related
metabolites are shown. The significance (p value) and the trends for the mean concentration differences between Allo and Syn mice are denoted by
different colors. Green represents metabolites with mean concentrations in Allo mice that are significantly (p.0.5) increased (.25%) over syn mice.
Yellow represents metabolites that are increased (.25%) in Allo, but was not statistically significant (p.0.05). White denotes metabolites that did not
change greater 625%. Orange represents metabolites whose mean concentration in Allo decreased by more than 25%, but did not reach significance
(p.0.05). Red identifies metabolites that decreased in Allo by more than 25% and was also significant (p,0.05).
doi:10.1371/journal.pone.0088868.g006
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amino acids (Phe, Tyr) but as shown in Figure 5D, these variables

were useful in discriminating the baseline controls from BMT

recipients but not for segregating Allo from Syn BMT group.

A summary of changes in the GSH metabolic pathway on Day+
4 is presented in Figure 6. The significant decline in plasma GSH

and rise in GSSG is noted by red and green respectively. Despite

low GSH in Allo mice, the concentrations of its rate-limiting

substrate, Cys, trended upward (p = 0.3), suggesting it was not

limiting. Intermediates (S-adenosylmethionine, Cysth, Ser) that

lead to endogenous Cys production were all elevated in Allo mice,

which suggests that Allo perturbations specifically impair GSH

homeostasis without altering the upstream pathways that supply

Cys required for its synthesis (Figure 6).

Discussion

The major aims of the current work were to identify metabolic

pathways and metabolites that are perturbed early in the course of

developing GVHD after Allo BMT transplantation. Additionally,

we aimed to identify plasma metabolic correlates of hepatic

GVHD injury during the early clinical stages of GVHD. Using

both conditioning-dependent and independent models of GVHD,

rapid loss of plasma GSH and accumulation of its oxidized form

occurs in early stages (Day +4) (Tables 2, 4). These effects on the

plasma GSH/GSSG redox state preceded the TNF-a induction

that is associated with clinical GVHD (Figure 3), suggesting that

oxidative stress is an upstream-event in the pathogenesis of

GVHD. This was further confirmed by our data that showed early

(Day +4) rise in hepatic oxidant production and protein carbonyl

formation in Allo relative to Syn mice (Figure 2.). Despite

significant increase in liver oxidative stress, cellular GSH synthesis

enzyme expression was lower in Allo when compared to Syn group

(Figure 2). Decreased hepatic GSH synthetic activity during early

GVHD was further corroborated by our observation of lowered

hepatic GSH and increased accumulation of its precursor

metabolites in Allo animals (Table 3 and 4). Collectively, these

data establish that a compensatory GSH antioxidant defense

response observed in the Syn group (Table 3 and 4) is largely

absent in Allo mice and is apparent very early in GVHD

pathogenesis. Correlation analysis of hepatic histopathological

scores with plasma metabolites at Day+10 in the paternal into F1

GVHD model also showed that the severity of hepatic injury is

correlated with increased oxidation of plasma GSH. The

implications of these results are discussed below.

Sensitive Plasma and Hepatic GSH Depletion during Early
GVHD

Comprehensive analysis of the major plasma amino acids and

secondary metabolites of arginine catabolism allowed us to

establish the relative sensitivity of plasma and hepatic GSH

changes compared to other amino acid catabolic pathways. The

panel of 40 analytes quantified included the 20 major amino acids,

secondary metabolites produced from Arg catabolism and SAA-

derived metabolites. Arg catabolism to citrulline and ornithine is

increased during inflammation and we have shown previously in

RAW macrophage cells that Arg loss and increased formation of

its products are most sensitive biomarkers of macrophage

activation [30]. Increases in urinary kynurenine which is

synthesized from Trp by the enzyme indoleamine 2,3-dioxygenase

(IDO) has been implicated as early biomarker of GVHD [43].

Despite their known involvement in GVHD, our data suggest that

plasma and hepatic GSH and GSSG are more sensitive than Arg

or Trp-related metabolites in detecting early hepatic oxidative

stress injury.

To the best of our knowledge, acute changes in plasma and liver

GSH metabolism following Allo and Syn BMT and during the

early GVHD period have not been systematically examined. Sari

and co-workers reported decreases in plasma antioxidant enzyme

activities and increases in plasma lipid oxidation in Allo BMT

patients 30 days post-HSCT [44]. Using a murine model of

GVHD, Amer and co-workers reported an increased cellular

oxidant burden and decreased GSH status in erythrocytes and in

lymphocytes in GVHD mice 5 weeks following transplantation

[28]. While results of these studies [3,25,28,31,44] are consistent

with findings reported here, because these earlier studies do not

focus on the early GVHD initiation period, it was unclear whether

GSH depletion and oxidation are secondary consequences of

inflammation or are preceding events that are involved in the

initiation of alloreactivity. By comprehensively measuring GSH

pathway metabolites and GSSG, our results establishes that

depletion of GSH occurs prior to TNF-a induction and implicate

them in the GVHD initiation process. Studies using a murine

model of transplant associated Idiopathic Pneumonia Syndrome

(IPS) [4,27,32], found that Allo BMT caused early depletion of

lung and hepatic GSH. Because assessments of inflammation and

histopathology were not performed in this report, the temporal

relationship between GSH depletion, cytokine upregulation, and

subsequent tissue damage was not established.

Hepatic Oxidative Stress is an Early Event that Precede
systemic Rise in TNF-a

Liver has one of the highest tissue concentrations of GSH.

Plasma GSH concentrations are primarily determined by hepatic

GSH biosynthesis and efflux [39,45]. Hepatic GSH efflux into the

plasma decreases proportionally when liver GSH declines [46].

GSSG efflux also increases in accordance with intrahepatic

concentrations [47]. Oxidative stress increases liver GSSG, leading

to its increased export through multi-drug resistant protein (MRP)

transporters [48–50]. A previous study has shown that initial signal

for T-cell infiltration can be detected as early as Day+3 following

transplantation [51]. Consistent with this finding, evidence for

significant rise in hepatic oxidative stress was obtained as early as

Day +4 following Allo BMT. As presented in figure 2, hepatocytes

isolated from Allo hosts at Day+4 exhibited a significantly higher

ROS burden and accumulated more protein oxidation than those

from Syn mice. GSSG concentrations in livers of Allo mice were

significantly higher than livers of both baseline and Syn mice

(Figure 3 and Table 2). Thus, increased plasma GSSG may in

part be due to increases in hepatic GSSG export. Protein carbonyl

concentrations that are formed as a consequence of protein

oxidation also increased in Allo BMT at Day+4 and clearly

establish that liver oxidative stress and damage occurs prior to the

rise in circulating TNF- a.

Despite an early increase in hepatic oxidative stress, mRNA

abundance of GCLC, the rate-limiting enzyme in GSH synthesis,

and total GSH were significantly lower in Allo mice in comparison

to the Syn group. Total hepatic GSH concentrations in Syn mice

were increased by ,70% relative to baseline (Table 4), suggesting

that transcriptional upregulation of the GSH antioxidant defense

system may be responsible for decreased ROS in Syn hepatocytes.

The mechanism underlying an Allo-specific dysregulation of the

cellular antioxidant response remains unclear. It is possible that

alloreactive T cells secrete cytokines or factors that dysregulate

GSH homeostasis. Changes in localized cytokine levels within

tissues such as the liver may not be detected in plasma, whereas,

acute changes in liver GSH metabolism may be more sensitively

reflected in the plasma compartment during early GVHD.

Glutathione Dysregulation in Early GVHD

PLOS ONE | www.plosone.org 12 February 2014 | Volume 9 | Issue 2 | e88868



Early GSH/GSSG Redox Dysregulation may Increase
Severity of Inflammation and GVHD Through NFkB
Dependent and Independent Mechanisms

Key findings in this study are that the GVHD-associated plasma

GSH/GSSG ratio declines at Day+4 before TNF-a induction, and

that plasma GSH depletion and oxidation at Day+10 correlates

with hepatic GVHD severity. Though potential cause-and-effect

relationships between early plasma GSH loss and subsequent

cytokine elevation or GVHD severity were not addressed in this

study, several precedents suggest such a causal relationship is

plausible. (a) Host GSH/GSSG redox potential change may

impact NFkB-dependent inflammatory signaling [52–54]. Cellular

GSH depletion leads to sensitization of peroxide or reactive

nitrogen species-dependent activation of NFkB [53,54]. Although

cellular mechanisms are incompletely understood, GSH depletion

may potentiate NFkB activation through potentiating oxidation of

tyrosine phosphatases such as Map Kinase Phosphatase-1 (MKP-

1) [55] and Dynein light chain (LC8) [56]. (b) In addition to direct

involvement in NFkB, accumulation of extracellular GSSG and

protein oxidation may enhance Damage-Associated Molecular

Pattern (DAMP)-mediated inflammatory signaling through S-

glutathionylation of DAMP molecules such as high mobility group

protein B1 (HMGB1) [57,58]. (c) GSSG has been shown to

enhance activities of cell surface leukocyte adhesion molecules,

such as vascular adhesion molecule-1 (VCAM-1) and Intercellular

adhesion molecule 21 (ICAM-1) [59–61] resulting in increased

inflammation.

Addressing the Impaired GSH Biosynthetic Pathway: A
Therapeutic Target for GVHD Prevention?

These results emphasize the importance of understanding the

mechanisms that lead to increased oxidative stress during GVHD

pathogenesis, and also point to GSH biosynthesis as a potential

target for GVHD prevention. How this might be accomplished

depends on which component of the GSH homeostatic system is

impaired in the early stages after transplantation. GSH is an

endogenously synthesized compound, which is poorly taken up

through diet. Clinical approaches to raise GSH have predomi-

nantly been focused on N-acetylcysteine (NAC) as a cysteine pro-

drug to boost cellular GSH synthesis. However, the metabolic data

presented here indicate that loss of GSH during early GVHD is

not due to limited cysteine availability, and therefore suggest that

such an approach might not be efficacious. Consistent with this

idea, a clinical intervention with a moderate dose (100 mg/kg per

day) of NAC increased rather than decreased the prevalence of

GVHD and veno-occulusive disease of the liver (VOD) in Allo

BMT patients [62,63]. Another contributing factor in the failure of

NAC to prevent GVHD is that NAC may exert non-GSH

dependent immune-stimulating effects on Allo T cells [62].

Evidence presented in this paper suggests that an alternative

intervention aimed at increasing cellular GSH synthesis capacity

may be effective in relieving the initial oxidative stress associated

with GVHD.

Conclusion

This report utilizes a metabolomics approach to demonstrate

that oxidative stress driven by impaired hepatic GSH biosynthesis

occurs early in GVHD and precedes cytokine upregulation is the

hallmark of the onset of GVHD. Results help to clarify the

mechanisms resulting in oxidative stress during early GVHD.

They also identify hepatic ROS generation and the GSH synthesis

pathway as potential targets for early intervention. Plasma GSH

and GSSG may also be clinically useful biomarkers for early

GVHD prediction. Future work will be directed at investigating

upstream events following transplantation that culminate in

disruption of the GSH biosynthetic pathway.
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