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Abstract

During pancreatic development, insulin-producing beta cells, glucagon-producing alpha cells, and
somatostatin-producing delta cells differentiate from a common endocrine progenitor. While these cells
have been considered terminally differentiated, over the last several years it has become evident that
pancreatic islet cellular identity is more plastic than previously appreciated. A cell’s transcriptome is the
final outcome that stems from the interactions of both genomic and epigenomic components. Dynamic
changes in chromatin accessibility alongside the recruitment of histone marks that either facilitate or
repress gene transcription in tandem with transcription factor co-localization come together to define and
maintain cellular identity through gene expression. Understanding of each of these components sheds
further light on understanding cellular identity, with profiling the transcriptome providing signature
patterns that are responsible for the functional behavior of these cells. Building on this through the
interrogation of chromatin accessibility similarities and differences provides further insight into the
mechanisms that govern cellular identity when coupled with the appropriate histone modification and
transcription factor data. Ultimately, genomic and epigenomic characterizations of these major islet
endocrine cell types can provide an avenue to further understanding the complex regulatory mechanisms
that define and maintain cellular identity. Furthermore, these characterizations provide a resource for

answering outstanding questions in the field.
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I. Chapter 1: Introduction

The study of pancreatic islet biology can ultimately contribute to innovative treatment for Type 1
(T1D) and Type 2 (T2D) Diabetes, a disease that impacts roughly 1 in every 7 US adults [1]. Both diseases
are driven by beta cell loss or deficiency, with autoimmune components driving T1D, and environment-
gene interactions that damage or de-differentiate beta cells in T2D [2, 3]. Waddington’s concept of the
developmental epigenetic landscape proposes that dynamic gene regulation modulates progressive
differentiation along a cell lineage with increasing irreversibility towards a stable cell fate [4]. However, as
the breakthrough achievements of Yamanaka demonstrated, even stably differentiated cells retain the ability
to adopt a different cell fate [S]. Although the field of pancreatic islet biology has made considerable
progress in untangling the successive waves of transcription factors (TF) that guide beta cell identity during
development, there is still an unexplored area of epigenetic and regulatory changes associated with beta
cell maturation and maintenance [6]. While a handful of studies have examined different angles to beta cell
maturation and regeneration—progenitor stem cell source [7], TF co-regulation in maintaining identity [8],
and cell fate reprogramming [9]—no clinically established regeneration of human beta cell mass via

proliferation has been achieved.

During pancreatic development, insulin-producing beta cells, glucagon producing alpha cells, and
somatostatin-producing delta cells differentiate from a common endocrine progenitor. While these cells
were previously deemed terminally differentiated, it is now evident that cell fate is more plastic than
previously anticipated. Cell fate switching and maintenance between pancreatic islet cells has been
established within both healthy and Type 2 Diabetic (T2D) mouse and human species, across development.
While initially beta cell regeneration and maintenance was believed to occur primarily through self-
reflection [10], alpha cells were observe to spontaneously transdifferentiate, switching fate to beta cells
after beta cell ablation [11]. Further research in the field then identified that beta cell ablation was not
required for this to occur, and that ~0.2 — 1.5% of beta cells — termed ‘virgin beta cells’ at any given time

stem from alpha cells [12]. To a lesser extent, delta cell transdifferentiation has been identified upon beta



cell ablation, as well as a source of beta cells in juveniles [13]. Understanding the transcriptional nature and
identities of these major endocrine cell types, along with that of the more rare and transient populations of
virgin or transdifferentiated beta cells, can help provide an understanding of the functional differences and
similarities. The ability to explore (some of) these cell types via their epigenomic profiles can help further

this understanding.

The dynamic ability for chromatin accessibility to remodel between euchromatin and
heterochromatin, along with nucleosome occupancy changes, states plays a vital role in epigenetic
regulation behind cell fate switching and maintenance [14-18], and in in tissue- and cell-specific gene
expression and regulatory activity [14, 19, 20]. Chromatin stability is required in order to effectively
maintain healthy islet cell identity, with changes underlying dysregulation leading to disease [21-23].
Furthermore, chromatin accessibility is a requirement for other epigenetic factors to interact, such as
transcription factor recruitment at enhancers to facilitate either the activation or repression of near and distal
genes [24-26]. Previous studies have explored pancreatic islet cellular identity by evaluating epigenomic
features such as methylation [27-29], histone modifications [9, 30-32], non-coding RNA [33-36], and
enhancer regulatory regions [17, 23, 37-39]. While each of these factors contributes to defining and
maintaining cell fate and identity, connecting chromatin accessibility differences to some of these

epigenetic factors promises to provide further insight into outstanding questions within the field.

To better understand and characterize endocrine islet cell identity, we applied complementary
chromatin accessibility and transcriptomes approach of FACS-purified mouse alpha, beta, and delta cells.
In order to achieve this, we turned to triple-transgenic reporter mice - mins1-H2b-mCherry beta cells
crossed to mice with alpha or delta cells marked by YFP in a Cre-dependent fashion - previously used to
evaluate these cells’ transcriptional landscape, allowing us to directly link these two datasets [40, 41].
Through this, we provide a comprehensive characterization of the transcriptomic landscape of alpha, beta,
and delta cells, alongside the similarities and differences that characterize immature ‘virgin’ beta cells. This

theme is continued in the transcriptomic evaluation of alpha- or delta- origin transdifferentiated beta cells,



with ‘virgin’ beta cells believed to represent a transient intermediate in this shift. Finally, these
transcriptomic findings are tied to epigenomic characterizations of alpha, beta, and delta cells evaluating
chromatin accessibility via ATAC-Seq and linking chromatin availability with aggregated transcription
factor and histone mark data that promises to elucidate the regulatory networks the drive and maintain cell

identity.

To this end, the following research describes (1) the comprehensive transcriptomic evaluation of
alpha, beta, and delta cells within pancreatic islets [40] (Chapter 2); (2) with a companion, easy to use R
package developed to visualize calcium-signaling data, initially devised for Chapter 2 but later utilized in
several publications (Chapter 3); (3) the novel identification and characterization of the rare population
of virgin and transdifferentiated beta cells through bulk RNA sequencing [12] (Chapter 4); (4) followed
with an analysis on reproducibility in science, directly refuting a manuscript which claimed an FDA-
approved drug could trigger alpha to beta cell transdifferentiation [42] (Chapter 5); (5) a meta-analysis
and review of single-cell sequencing, done initially with the interest of isolating virgin beta cells in both
mouse and human populations without the need for transgenic mouse lines or antibodies [43] (Chapter
6); and finally, (6) a characterization of the epigenomic landscape to the transcriptomic analysis of alpha,
beta, and delta cells (Chapter 7), utilizing a novel R package designed to integrate multiple layers of -

omics, and identity putative enhancer regions [44] (Chapter 8).
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II. Chapter 2: Comprehensive alpha, beta and delta cell transcriptomes reveal
that ghrelin selectively activates delta cells and promotes somatostatin release
from pancreatic islets
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Christopher Cowing-Zitron, Talitha van der Meulen, Mark O. Huising
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analysis into meaningful biology. I was also responsible for creating and maintain the genome browser for
these data through our lab website so other colleagues in our field can visualize the findings highlighted in
the paper, and use these data as a resource to reference in their own studies.

Significance of Research: This manuscript provided a novel and comprehensive portrait of the
transcriptomic landscape of delta cells and identified the ghrelin receptor as a pertinent aspect of regulating
cross-talk between alpha, beta, and delta cells. This paper was also featured in an editorial by Molecular
Metabolism.
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ABSTRACT

Objective: Complexlocal crosstalk amongst endocrine cells within the islet ensures tight coordination of their endocrine output. This isillustrated by the
recent demonstration that the negative feedback control by delta cells within pancreatic islets determines the homeostatic set-point for plasma glucose
during mouse postnatal development. However, the close association of islet endocrine cells that facilitates paracrine crosstalk also complicates the
distinction between effects mediated directly on beta cells from indirect effects mediated via local intermediates, such as somatostatin from delta cells.
Methods: To resolve this problem, we generated reporter mice that allow collection of pure pancreatic delta cells along with alpha and beta cells from
the same islets and generated comprehensive transcriptomes for each islet endocrine cell type. These transcriptomes afford an unparalleled view of
the receptors expressed by delta, alpha and beta cells, and allow the prediction of which signal targets which endocrine cell type with great accuracy.
Results: From these transcriptomes, we discovered that the ghrelin receptor is expressed exclusively by delta cells within the islet, which was
confirmed by fluorescent in situ hybridization and gPCR. Indeed, ghrelin increases intracellular calcium in delta cells in intact mouse islets,
measured by GCaMP6 and robustly potentiates glucose-stimulated somatostatin secretion on mouse and human islets in both static and
perfusion assays. In contrast, des-acyl-ghrelin at the same dose had no effect on somatostatin secretion and did not block the actions of ghrelin.
Conclusions: These results offer a straightforward explanation for the well-known insulinostatic actions of ghrelin. Rather than engaging beta
cells directly, ghrelin engages delta cells to promote local inhibitory feedback that attenuates insulin release. These findings illustrate the power of
our approach to resolve some of the long-standing conundrums with regard to the rich feedback that occurs within the islet that is integral to islet

physiology and therefore highly relevant to diabetes.
© 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Ghrelin; Delta cell; Somatostatin release; Transcriptome; Beta cell; Alpha cell

1. INTRODUCTION neural interactions takes place within the islet to ensure tight control

over their release [1—3]. Pancreatic delta cells are the third-most

Pancreatic alpha and beta cells co-localize in an arrangement that
facilitates accurate coordination of glucagon and insulin release from
islets. While glucagon and insulin, along with Islet amyloid polypeptide
(lapp), are among the few islet signals that meet the classic definition
of a hormone as a ‘factor that is released into the general circulation to
signal at a distant site in the body’, a rich constellation of paracrine and

common endocrine cell type in the islets, and the somatostatin they
release is an important inhibitor of both insulin and glucagon [4—6].
We recently described a novel negative feedback loop where the
paracrine peptide Urocortin 3 (Ucn3) is co-released with insulin from
beta cells and promotes glucose-stimulated somatostatin release via
the type 2 corticotropin-releasing hormone (Crhr2) receptor expressed

The transcriptome data reported in this paper can be accessed at http://huisinglab.com/islet_txomes_2016/ and have been deposited in the Gene Expression Omnibus (GEO)

repository under accession number GSE80673.
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by delta cells [7]. Somatostatin then attenuates further insulin secre-
tion and helps to maintain stable and tight control over plasma glucose.
The appearance of Ucn3 across the beta cell mass correlates with the
well-known uptick in plasma glucose levels [8—10]. The onset of Ucn3
is directly responsible for this phenomenon by initiating delta cell-
dependent feedback on insulin release, thus determining the ho-
meostatic set-point for plasma glucose [7]. Delta cell-mediated
feedback breaks down early in diabetes, which leads to marked in-
creases in plasma glucose fluctuations that resemble the glycemic
volatility that impacts patients across the diabetes spectrum [7].
While these observations highlight the physiological importance of
delta cell-dependent feedback, we know relatively little about the cues
that control delta cells. The intimate co-localization of islet endocrine
cells has also made it difficult to distinguish direct effects on beta cells
from indirect actions that are mediated by locally produced in-
termediaries. We previously generated a transgenic mins1-H2b-
mCherry reporter mouse in which beta cells are labeled by the nuclear
expression of mCherry driven by the mins1 promoter and crossed
these to S100b-eGFP reporter mice that we serendipitously discovered
to label alpha cells [11]. These reporter mice enabled the comparison
of mouse and human beta cell transcriptomes but did not fully resolve
the transcriptomes of pancreatic alpha and delta cells. To improve
substantially on these prior observations and to determine the factors
that directly engage delta cells, we now generated a set of triple
transgenic mouse models in which mins1-H2b-mCherry [11] beta cells
are crossed to mice with alpha or delta cells are marked by YFP in a
Cre-dependent fashion. We used these reporter mice to generate
unbiased and comprehensive transcriptomes of pancreatic delta and
alpha cells, along with beta cells from the same islets. Our tran-
scriptomes are validated by the strong enrichment for a large panel of
known alpha, beta, and delta cell markers in the appropriate cell type.
We then use this information to determine the signals that directly
engage the delta cell by virtue of selectively expressed receptors and
analyze ghrelin stimulation of delta cells as an example to highlight the
utility of our approach. We discovered that ghrelin acts directly on
mouse and human delta cells to promote somatostatin release. Our
observations offer a straightforward explanation for the well-known
insulinostatic actions of ghrelin (e.g. [12—16]) and illustrate the
physiological importance of delta cell-mediated feedback within
pancreatic islets. An accurate understanding of ghrelin’s mechanism of
action within pancreatic islets is highly relevant given ghrelin’s central
role in the regulation of energy and glucose metabolism [17].

2. RESEARCH DESIGN AND METHODS

2.1. Biological materials and ethics statements

All mouse procedures were approved by the UC Davis or the Salk
Institute for Biological Studies Institutional Animals Care and Use
Committee and were performed in compliance with the Animal Welfare
Act and the Institute for Laboratory Animal Research (ILAR) Guide to the
Care and Use of Laboratory Animals. Animals were maintained on a
12-h light/12-h dark cycle with free access to water and standard
rodent chow. Static and dynamic hormone secretion experiments were
carried out on C57BL/6NHsd mice, between 8 and 16 weeks of age,
from Harlan (Indianapolis, IN). We obtained human islets via the In-
tegrated Islet Distribution Program; the receipt was declared exempt
from IRB review under 45 CRR 46.101 (b) category (4).

2.2. Immunofluorescence and FISH
Immunofluorescence was conducted as previously described [7,8].
Insulin was detected using guinea pig anti-insulin (Dako #A0564;
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1:500), somatostatin using sheep anti-somatostatin (American
Research Products Inc. #13-2366, 1:1000), Ucn3 using rabbit anti-
Ucn3 (#6570; in house, 1:2000), Glucagon using rabbit anti-
glucagon (Abcam #ab11022-1; 1:200), and YFP using goat anti-GFP
(Rockland 600-101-215; 1:1000). All secondary antibodies were ob-
tained from Jackson Laboratories Inc. RNA FISH was conducted using
RNAscope probes for Ghsr and Sst (Advanced Cell Diagnostics) ac-
cording to the manufacturers instructions.

2.3. Islet isolation and FACS sorting

Islet isolation was conducted as previously described [7,11,18]. Islets
from mins1-H2b-mCherry [11] (deposited with the Jackson labora-
tories as strain #28589) x Rosa-LSL-YFP [19] x Sst-Cre [20] or Gcg-
Cre [21] triple transgenic animals were pooled by sex in 2 (Sst-Cre) or
3 (Gcg-Cre) replicate groups of a dozen animals. FACS sorting was
conducted as described previously [7,11] with each sample collected
directly in Trizol to ensure immediate cell lysis and preservation of RNA
integrity.

2.4. Next generation sequencing and bioinformatics

RNA was isolated from Trizol-preserved samples by chloroform
extraction and cleaned up over an RNeasy microcolumn essentially as
previously described [11]. RNA quality was verified by Tapestation
(Agilent, Santa Clara, CA). Indexed sequencing libraries were con-
structed using the TruSeq RNA sample Prep Kit v2 (lllumina Inc. San
Diego, CA), sequenced at 50 cycles, and single read on an lllumina
HiSeq 2000 platform. Results were validated by gPCR using Sybr
chemistry and the primers listed in Table 1. Sequencing reads were
mapped to the mouse genome version GenCode M5 (GRCm38.p3)
using STAR v2.4 [22]. On average over 33 million reads were
sequenced for each library with 89.9% of sequenced reads aligning
(>63% unique alignment overall). FeatureCounts [23] was used to
create count tables of the sorted bam files using reads aligning to
RefSeq-defined exons. EdgeR version 3.12.0 [24] was used to conduct
pairwise statistical comparisons. Wordles of transcript abundance
were generated on wordle.net. Single cell RNAseq data from [25] were
used to generate the violin plots in Figure 2C. Cells that had an RPKM
value > 10 k of either Sst, or Ins2, or Gcg were defined as delta, beta,
or alpha cells, respectively.

2.5. Functional imaging by GCaMP6

Sst-Cre mice and LSL-GCaMP6 mice (Jackson laboratories strain
#24106) were crossed for functional imaging. Intact islets from
bitransgenic offspring were plated on poly-D lysine-coated number 1.5
35 mm glass cover slip tissue culture dishes (Mattek) and maintained
at 37 °C 5% CO, in RPMI 10% FBS, 5.5 mM glucose with pen/strep.

Table 1 — gPCR primer information.

Ref Seq ID Gene  Primer Sequence 5' — 3’ Amplicon
size (bp)
NM_008100 Geg  grodGeg.fwul TCACAGGGCACATTCACCAG 121
grodGeg.rvul  CATCATGACGTTTGGCAATGTT
NM_001185084 Ins2  grodins2.fwul GCTCTCTACCTGGTGTGTGGG 128
grodins2.rvul  CAAGGTCTGAAGGTCACCTGC
NM_009215 Sst  qgrodSst.fwul  GACCCCAGACTCCGTCAGTTT 112
grodSst.rvul  TCTCTGTCTGGTTGGGCTCG
NM_021488 Ghsr  gmGhsr.fwul GACCAGAACCACAAACAGACAG 113
gmGhsr.rvul  GGCTCGAAAGACTTGGAAAA
NM_013556 Hprt  gmHPRT.fwu  TCCTCCTCAGACCGCTTTT 90
gmHPRT.vu ~ CCTGGTTCATCATCGCTAATC
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Islets were allowed to adhere for 24 h prior to imaging using a Nikon
A1R confocal microscope. During live cell fluorescence acquisition,
islets were continuously superfused with 37 °C KRB bubbled with 95%
0, and 5% CO,. To measure baseline, high glucose, glucose plus
ghrelin, and control responses, buffers were switched at the indicated
time points. The position of delta cells within the islet in X, Y, and Z
were first identified during a brief pulse with 16.8 mM glucose. Af-
terwards, islets were washed with 2.8 mM glucose for 30 min to allow
fluorescence to return to baseline. For fluorescence intensity analysis,
GCaMP6 glucose responsive regions of interest corresponding to single
delta cells were identified and defined during the maximal depolari-
zation by 30 mM KCl. Data analysis was performed using Nikon Ele-
ments software.

2.6. Hormone secretion

Secretion experiments were conducted in Krebs—Ringer Buffer (KRB).
We hand-picked the required number of islets from a pool of all islets
and assigned these as the next replicate to each subsequent treat-
ment. Static somatostatin secretion was carried out using 50 or 100
islets per well for mouse islets under high or low glucose, respectively.
100 islets/well were used for human islet release. Dynamic somato-
statin release was determined using a custom-built perfusion setup
using 200 islets in 6 parallel chambers. We measured somatostatin by
RIA [26] using anti-Sst14 antiserum (S201; diluted 1:50,000) [27] as
described [7]. EC50 and minimal detectable dose are 12 pg/tube and
1 pg/tube, respectively. Insulin was measured by commercial RIA
(Millipore) as previously described [18]. Ghrelin, des-acyl-ghrelin,
Astressin2b, and the Sstr3 antagonist Sst3—ODN—8 (Carba-
moyl—des—AA"24512130,_cys3 Tyr p—Agl®  (Me,2—napthoyl)]—
SS; #315—-260—15) [28] were generously synthesized and provided
by Drs. Michael Beyermann and Jean Rivier.

2.7. Statistical analyses

Statistical analyses were carried out in Prism 6.0e for Mac
(GraphPad Software, Inc.). We reported all values as mean values
across bio-logical replicates and assumed normality, unless other-
wise noted. We evaluated experiments with more than two treat-
ments by ANOVA followed by Student’s t-test to determine which
means differed statistically, and we applied Welch’s correction for
unequal variance when necessary. We evaluated perfusion data by
two-way ANOVA for treatment and the interaction of treatment and
time for each block.

3. RESULTS

3.1. Generation and validation of alpha, beta and delta cell
transcriptomes

To obtain transcriptomes of mouse alpha, beta and delta cells, we
crossed our mins1-H2b-mCherry mice [11] to either Sst-Cre [20] or
Gcg-Cre [21] mice and a Rosa-LSL-YFP reporter [19] (Figure 1A—D).
The resulting triple transgenic offspring enabled FACS purification of
highly pure beta cells and delta or alpha cells that we used to generate
comprehensive transcriptomes of mouse delta, beta, and alpha cells.
Beta cell transcriptomes were markedly enriched for mCherry
expression (Figure 1E), while alpha and delta cell transcriptomes were
each marked by strong enrichment for YFP (Figure 1F), underpinning
our robust FACS-based purification. Alpha, beta, and delta cells are all
endocrine cells most noted for the release of glucagon, insulin, and
somatostatin, respectively. Indeed, somatostatin transcripts are by far
the most abundant transcripts in delta cells and account for
3.4 + 0.25% of all aligned reads in delta cells (Figure 1G). Insulin
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(encoded by Ins2 and Ins1 genes in mouse) makes up 18.9 + 2.4% of
all reads in the beta cell transcriptome (Figure 1H), while glucagon
transcripts make up 27.8 + 0.9% of all reads in alpha cells (Figure 1l).
lapp is the second-most abundant transcript in our delta cell tran-
scriptomes and while lapp is best-known as a beta cell hormone, delta
cells also express lapp [29].

3.2. Transcriptome validation

We observed on average 1369 genes that were differentially enriched
in each pairwise comparison, as defined by a Log2-fold
expression > 1 or < —1 and a FDR < 0.00001. Known delta cell
markers such as Sst, Rbp4, and Hhex [30,31] were highly enriched in
pairwise comparisons to beta and alpha cells (Figure 1J,K). Known
beta cell markers such as Ucn3, Mafa, Ins1, Ins2, and Nkx6-1 [11]
were markedly enriched in beta compared to delta and alpha cells
(Figure 1J,L). Alpha cell markers such as Gcg, Ttr, Irx1, Irx2, Arx, and
Mafb [30,32,33] were enriched in alpha cells compared to delta and
beta cells (Figure 1K,L). As Pdx1 is expressed in beta and delta cells
(Figure 1M), it was enriched in neither cell type upon pairwise com-
parison (Figure 1J).

3.3. Islet cell transcriptomes reveal GPCR expression profiles

Given the importance of paracrine interactions to control islet insulin
and glucagon output [7], we assessed the expression of GPCRs in our
islet transcriptomes in more detail. As noted, Crhr2 is expressed
exclusively by delta cells, but several GPCRs that are well-known for
their beta cell expression are also expressed to a lesser extent by
delta cells but absent from alpha cells (Figure 2A). This group in-
cludes glucagon-like peptide 1 receptor (Glp1r), the alpha 2 adren-
ergic receptor (Adra2a), and the glucagon receptor (Gcgn. In contrast,
the gastric inhibitory polypeptide receptor (Gipn is ubiquitously
expressed in the islet and is detected in approximately equal mea-
sures by alpha and delta cells as well. In contrast, the galanin re-
ceptor 1 (Galr1) is expressed selectively in beta cells. In searching for
GPCRs that, like Crhr2, are expressed selectively by delta cells, we
noted the delta cell-specific expression of Sstr1. Alpha cells selec-
tively express Sstr2, while Sstr3is expressed by alpha, beta and delta
cells. There is no detectable expression of Sstr4 or Sstr5in any of the
endocrine cells of the mouse islets. Another example of a GPCR that
caught our attention as expressed selectively by delta cells is the
growth hormone secretagogue receptor (Ghsn, which encodes the
GHS-1R that responds to ghrelin (Figure 2A). We validated the se-
lective expression of Ghsr in delta cells by qPCR (Figure 2B). A
recently published data set of high quality, single cell RNAseq of
dissociated wild type mouse islets that contains populations of Sst-
expression delta cells, Ins2-expression beta cells and Gcg-expression
alpha cells [25] supported these observations, as Ghsr in these data
was also detectable only in delta cells (Figure 2C). We further
confirmed Ghsr mRNA expression in delta cells by FISH. We found
that Ghsr mRNA (green) colocalizes with Sst mRNA (red) in cells at the
islet periphery that co-express SST peptide (white) (Figure 2D) but not
GCG peptide (white) (Figure 2E).

3.4. Ghrelin directly activates calcium in delta cells

GHS-1R primarily couples through Gag [34], which results in phos-
pholipase C-mediated intracellular calcium release. Thus, we evalu-
ated the calcium response of delta cells to ghrelin in intact islets. We
used islets from bitransgenic Sst-Cre [20] x LSL-GCaMP6 mice that
express the Ca®* sensor GCaMP6 [35] specifically and selectively in
delta cells. After establishing baseline fluorescence under KRB with
2.8 mM glucose, increasing glucose to 16.8 mM glucose led to a
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Figure 2: Delta cells selectively express Ghsr. A: Normalized browser plots illustrating the expression of a series of GPCRs in delta, beta and alpha cells of the mouse islet. B:
Confirmation by gPCR that Ghsr message is selectively expressed by pancreatic delta cells. C: Violin plots of single cell RNA-seq of wild type mouse pancreatic islet cells [25]
confirms that Ghsr expression is detectable only in delta cells. D: FISH confirmation of the expression of Ghsr gene (green dots) in pancreatic delta cells of wild type mice,
colocalized with Sst message (red dots) and Sst peptide (white). E: mRNA for Ghsr (green dots) and Sst (red dots) co-localizes in a peripheral islet population that does not express
Geg peptide (white). *P < 0.05; **P < 0.01; **P < 0.001.

marked increase in delta cell GCaMP6 fluorescence intensity, which
gradually tapered down (Figure 3; Supplementary Video 1). Upon
subsequent addition of 100 nM ghrelin delta cells responded with a
large initial Ca?t peak that was followed by a distinct oscillatory
response (Figure 3). The Ca®* signal returned to baseline upon
cessation of stimulation. Ghrelin stimulation under 2.8 mM glucose
produced no increases GCaMP6 signal (not shown). Depolarization by
30 mM KCI at the conclusion of the experiment resulted in a robust
GCaMP6 calcium peak, confirming delta cell viability and respon-
siveness throughout the experiment.

3.5. Ghrelin promotes somatostatin secretion

Given the increase in intracellular calcium upon activation of GHS-1R
on delta cells and the importance of calcium in hormone secretion,
we proceeded to determine if ghrelin promotes somatostatin secretion.
Indeed, stimulation with ghrelin strongly potentiated glucose-
stimulated somatostatin  secretion (GSSS) in mouse islets
(Figure 4A). Des-acyl-ghrelin, which lacks the octanyl post-translation
modification at the Ser3 position and does not activate GHS-1R, did not
potentiate GSSS. To determine if the actions ghrelin depended on the
feedback mediated by beta cell-derived Ucn3 [7], we blocked the

Figure 1: Generation and validation of the delta, beta, and alpha cell transcriptomes. A: Islet of a mins1-H2b-mCherry x Sst-Cre x LSL-YFP triple transgenic mouse labels
all beta cells with nuclear mCherry (counterstained in white with Ucn3) and labels all delta with YFP (stained in green). B: FACS plots of dissociated beta and delta cells from this
same cross. C: Islet of a mins1-H2b-mCherry x Gcg-Cre x LSL-YFP triple transgenic mouse labels all beta cells with nuclear mCherry (counterstained in white with Ucn3) and
labels alpha cells with YFP (stained in green). D: FACS plots of dissociated alpha and delta cells from this same cross. E, F: Beta cell transcriptomes are highly enriched for mCherry
reads while delta and alpha cell transcriptomes are highly enriched for YFP reads, confirming our transgenic purification strategy. RPKM = reads per kilobase gene model per
million reads sequenced. G—I: Graphical representation of the relative expression of the 100 most-abundantly detected transcripts in each cell type. Note that most of these genes
are expressed at levels that are so much lower compared to the most abundant transcript in each endocrine cell type that they were magnified 12x to maintain legibility. J—L:
Volcano plots listing the number of significantly enriched genes for each pairwise comparison. Selected markers of alpha, beta, and delta cell identity are highlighted for visual
reference. M: Genome browser plots comparing the expression of a large panel of markers with well-established expression patterns validate the high degree of purity achieved in
these delta, beta, and alpha cells transcriptomes.
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GCaMP6 fluorescene (a.u.)

an i
the genetically encoded calcium sensor GCaMP6 expressed selectively in delta cells (Sst-Cre x LSL-GCaMP6). Calcium traces of two representative cells in response to changes in
glucose concentration and stimulation with 100 nM ghrelin or 30 mM KCl, as indicated. Thumbnails of the islet at the indicated time points in each graph are given, with the top
and bottom region of interest corresponding to the top and bottom trace, respectively. Movie of the full calcium trace for this figure is included as Supplemental Video 1.

Figure 3: Ghrelin

actions of endogenous Ucn3 with the CRHR2-selective antagonist
Astressin2b. Astressin2b attenuated GSSS as previously reported [7],
but did not prevent the ghrelin-induced potentiation of GSSS
(Figure 4B). This indicates that ghrelin engages delta cells directly,
independent of Ucn3-mediated potentiation of GSSS [7]. Ghrelin, but
not des-acyl-ghrelin, robustly potentiated GSSS from human islets
in vitro, confirming that its actions are similar across rodents and
primates (Figure 4C). We next tested the actions of ghrelin on so-
matostatin secretion in an islet perfusion setup and observed that islets
demonstrated robust potentiation of GSSS in response to 100 nM
ghrelin. Islets that did not receive ghrelin continued to maintain
glucose-stimulated somatostatin levels (Figure 4D). Des-acyl-ghrelin
did not elicit any response following a 15-minute pre-incubation and
did not block the potentiation of GSSS by ghrelin (Figure 4E). Islets in all
perfusion experiments responded to brief depolarization with 30 mM
KCI with a strong somatostatin peak, confirming islet viability.

3.6. Ghrelin attenuates insulin release in a somatostatin-dependent
manner

We next assessed whether the insulinostatic effect of ghrelin depended
on intact somatostatin-mediated feedback within the islet. Stimulation
of wild type mouse islets with ghrelin attenuated glucose-stimulated
insulin secretion (Figure 5), in line with most published reports. Co-
administration with an antagonist to the Sstr3 receptor [28], which
is the only Sst receptor that is detectably expressed by primary mouse
beta cells (Figure 2A), blocked the insulinostatic actions of ghrelin
completely (Figure 5). These observations demonstrate that ghrelin’s
insulinostatic actions depend on intact Sstr3-dependent feedback
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as measured by GCaMP6 in intact islets. A: Calcium responses were measured over time in intact islets using

within the islet. The fact that Sstr3 blockade promoted glucose-
stimulated insulin secretion suggest that this Sstr3-mediated feed-
back exerts a tonic inhibitory effect on glucose-stimulated somato-
statin secretion.

4. DISCUSSION

The importance of the neural, endocrine, and paracrine inputs to
pancreatic islets that collectively determine the output of insulin and
glucagon has long been recognized. However, the tools and techniques
at our disposal to map this complex local crosstalk have lacked the
resolution and specificity to accurately determine the origin of many
signals and the identity of the islet cell receptive to its message. The
recent onset of next-generation sequencing approaches has now made
it attainable to conduct an unbiased evaluation of the expression of all
genes in any given tissue that is quantitative over many orders of
magnitude. The purity and quality of the input sample has become the
factor limiting the usefulness of the data achieved in this way. For
pancreatic islets, which are often equated with beta cells, but which
contain many additional endocrine and non-endocrine cells, we
resolved this issue by generating triple transgenic reporter mice that
collectively enable the FACS-purification of alpha, beta, and delta cells
from the same islets. From these highly pure input samples, we
generated comprehensive gene expression compendia of the three
principal endocrine cells within the islets. This now enables us to
unravel with great accuracy some of the crosstalk pathways that had to
date been unknown. Our current transcriptome data are a distinct
improvement over the work we published previously [11] and offer a
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the ability of ghrelin to potentiate glucose-stimulated somatostatin secretion. All mice were wild type, and all peptides were applied at 100 nM final concentration. Values represent
the mean + SEM for 8 (A), 7 (B) or 6 (C) wells per group (A—C) or 3 parallel perfusion chambers (D, E). *P < 0.05; **P < 0.01; ***P < 0.001.

significantly better resolution between pancreatic alpha and delta cells.
Our data sets complement a recent, high quality single cell RNAseq
data set of dissociated mouse islets [25]. The single cell approach
offers valuable insight into the heterogeneity of gene expression
amongst the different endocrine populations in the islet and comple-
ment our transcriptomes from FACS-purified populations of alpha,
beta, and delta cells that demonstrate a far greater depth and dynamic
range and therefore reliably detect the expression of a far greater
number of genes, as expected.

While the most prevalent transcript in alpha, beta, and delta cell
transcriptomes was Gcg, Ins2, and Sst, respectively, the relative
abundance of Gcg in alpha cells (27.8%) and /ns2in beta cells (18.9%)
was much greater than the relative abundance of Sst in delta cells,
which made up merely 3.5% of all aligned reads. As our transgenic
reporter strategy is very similar for delta and alpha cells (Figure 1),
there is no technical reason for delta cells to exhibit such a relatively
modest gene expression of their principal endocrine signal Sst, in
comparison to the expression of Gcg and /ns2 in alpha and beta cells,
respectively. Instead, we think that this is a direct reflection of the fact
that insulin and glucagon are hormones released into the systemic
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circulation to act at sites throughout the body, while somatostatin is
responsible for local feedback within the islet.

Our transcriptome analyses reinforce the view that delta cells are
similar to beta cells. This extends from the mechanistically similar
control of glucose-stimulated exocytosis in both beta and delta cells
that proceeds via K,;, channels, voltage-gated sodium, and calcium
channels [7,36] to include GPCR control that can potentiate glucose-
stimulated exocytosis in both cell types. Some of these GPCRs, such
as Crhr2 and Ghsron delta cells and Galr7 on beta cells, are selectively
expressed by only one cell type. In contrast, a series of other GPCRs
that are routinely associated with beta cells, including Glp7r, Adra2a,
and Gegr, are expressed by delta cells at likely physiologically
meaningful levels. We do not think that these reflect contamination by
beta cells, as many known beta cell-specific genes are indeed highly
selectively detected in our beta cell transcriptomes only and do not
demonstrate similar levels of expression by delta cells (Figure 1).
These observations betray significant overlap in delta and beta cell
transcriptional programs, possibly afforded in part by the shared
expression of Pdx1. These similarities likely reflect the close ontoge-
netic origins of beta and delta cells and are in line with observations
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Figure 5: Attenuation of glucose-stimulated somatostatin secretion by ghrelin
depends on local feedback mediated by Sst and Sst3r. Ghrelin significantly
attenuates glucose-stimulated insulin secretion from wild type mouse islets in vitro.
Co-stimulation with an Sstr3 antagonist fully prevents the insulinostatic actions of
ghrelin. All peptides were applied at 100 nM final concentration. Values represent the
mean + SEM for 4 wells per group. *P < 0.05; **P < 0.01; **P < 0.001.

that perturbation of a single transcription factor, Nkx6-1, suffices to
turn beta cells into delta-like cells [37]. Their overlapping tran-
scriptomes may contribute to the participation of beta and delta cells in
a common functional unit that responds in unison to increases over
resting glucose with increased exocytosis. This enables pulsatile, delta
cell-mediated feedback to oscillate with insulin release, antiparallel to
glucagon [38].

The transcriptomes we report here constitute an invaluable repository
that informs on the expression, or lack thereof, of all genes in each of
the main endocrine cell types of the islet, including delta cells. In
addition to confirming that Crhr2 is selectively expressed by delta cells
[7], we discovered that the Ghsr gene is abundantly and selectively
expressed in delta cells (Figure 2). Stimulation of mouse and human
islets with ghrelin indeed leads to a robust increase in somatostatin
secretion (Figure 4) and stimulates calcium responses in delta cells in
intact islets (Figure 3). Furthermore, at equimolar concentrations, des-
acyl-ghrelin in intact islets does not affect somatostatin secretion and
does not block ghrelin-induced somatostatin release, in agreement
with prior observations that des-acyl-ghrelin is a full agonist of the
GHS-R1 only at very high concentrations [39] and does not block
ghrelin [40].

Most studies to date have assumed that the Ghsr within islets is
expressed by beta cells and thereby inhibits insulin release [41]. This
impligs that GHS-R1 in islets is not coupled to its canonical Gog/11
signaling cascade [42], as this would enhance rather than attenuate
insulin secretion. Moreover, the insulinostatic effects of ghrelin are
pertussis toxin-sensitive [43], indicative of the involvement of Ga;. Our
findings resolve this long-standing paradox [17] by demonstrating that
ghrelin promotes somatostatin release, likely by engaging the ca-
nonical Gotg/11 and Ca" cascade in delta cells, which would then
inhibit insulin via beta cell somatostatin receptors coupled to Ga;. Such
a model is in good agreement with the preponderance of published
data on the mechanism by which ghrelin inhibits insulin secretion, but
offers a more parsimonious explanation compared to some of the prior
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models that have been proposed to resolve the discrepancy between
ghrelin’s well-accepted insulinostatic actions and the fact that its
canonical signaling cascade would promote, not inhibit, exocytosis.
It has been suggested that Ghsr is expressed by alpha cells and
promotes glucagon release [44]. This was based on Ghsr detection
by in situ hybridization at the islet periphery, where alpha cells are
intimately associated with delta cells [44], experiments on the alpha-
TC-1 alpha cell line in which expression of Ghsr need not imply
similar Ghsr expression by primary alpha cells, and studies on iso-
lated islets under 12 mM glucose, a concentration not typically
associated with highest alpha cell activity. More importantly, in-
creases in glucagon stimulate insulin [45,46] and, therefore, cannot
explain the insulinostatic actions of ghrelin that are generally
accepted [12—16]. Hetero-dimerization between GHS-R1 and SSTR5
on the beta cell surface has been offered to explain how ghrelin
inhibits insulin release in a Goi-dependent manner [47]. The fact that
Ghsr is expressed by delta cells and that Sstr5 is not detected in any
mouse islet endocrine cell (Figure 2) makes this model untenable.
More recently, coupling of the GHS-1R with transient receptor po-
tential melastatin 2 (TRPM2) was suggested as an alternate expla-
nation to reconcile ghrelin’s insulin inhibition with Go.g1 and
phospholipase C-mediated increases in Ca®* [48]. Attenuation by
ghrelin of non-selective glucose-induced cation currents via TRPM2
that promote insulin release led to a model in which TRPM2 was
placed downstream of Ghrelin/GHSR-1R on beta cells [48]. The fact
that we demonstrate that Ghsr is expressed exclusively by delta not
by beta cells would not alter the hierarchy of Trmp2 downstream of
ghrelin/GHS-1R but would merely insert somatostatin as an inter-
mediate factor between ghrelin and Trpm2.

Our observation that beta cells do not express Ghsr is in agreement
with a prior report that detected no Ghsr on HIT-T15 beta cells [49].
This study observed that ghrelin promotes beta cell proliferation and
prevents beta cell apoptosis. Since these effects were also observed in
response to des-acyl-ghrelin and depended on adenyl cyclase and
protein kinase A, it was suggested that they are mediated via an as yet
unidentified receptor distinct from GHS-R1 [49]. This is certainly an
intriguing possibility, and we do not rule out the presence of an
alternate receptor with high affinity for ghrelin and des-acyl-ghrelin in
the islet. If an alternate ghrelin receptor indeed exists within the islet,
this suggests the possibility of secondary effects of ghrelin stimulation
that are mediated indirectly via local intermediates. Nevertheless, we
report here that the actions of ghrelin (and not des-acyl-ghrelin) are in
full agreement with the selective activation of delta cell GHS-R1 by
ghrelin. There has been a prior report that suggested ghrelin had no
effect on basal somatostatin release but modestly inhibited arginine-
induced somatostatin secretion in perfused rat pancreas [50]. We
are unable to offer an explanation that reconciles this observation with
our current data.

We think that many of the discrepancies with regard to the mechanistic
understanding of ghrelin’s insulinostatic actions can be traced to ob-
servations that place Ghsr expression on alpha or beta cell lines. As the
canonical signaling cascade in response to ghrelin would promote
exocytosis, stimulation of insulin (from beta cell lines) or glucagon
(from alpha cell lines) in response to ghrelin is the default response.
However, caution should be exercised when extrapolating these ob-
servations on cell lines to the primary endocrine cells they resemble
most closely. All islet endocrine cells derive from a common lineage.
Key characteristics of primary islet endocrine cells are often lost in cell
lines, with traits normally restricted to one particular cell type reap-
pearing in cell lines that are thought to resemble another islet endo-
crine cell. The transcriptomes we report here constitute a valuable

© 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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repository to validate the cell type that expresses any gene that is
detectably expressed within pancreatic islets.

5. CONCLUSIONS

We contribute significantly to the understanding of the physiological
role of ghrelin by offering an alternate mechanistic explanation how
ghrelin achieves its well-known insulinostatic actions, which is rele-
vant given ghrelin’s central role in metabolism [17]. Moreover, our
observations underscore that delta cells play an underappreciated but
important physiological role in controlling insulin output by local
feedback within pancreatic islets [7]. The high quality transcriptomes
from delta, beta, and alpha cells that were instrumental in this dis-
covery will be invaluable to unravel the complex crosstalk that tightly
balances insulin and glucagon release from healthy islets and breaks
down in diabetes.
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III. Chapter 3: RoiViz: an R package for visualizing ROI intensity from
GCAMP6 calcium imaging

Alex M. Mawla & Mark O. Huising
Pre-print on BiorXiv. Advanced draft in process of submission.

Contributions to Jointly Authored Works: As first author of this manuscript, I created and programmed this
approach, developed the R package, and wrote the manuscript. This was intended to act as a simple and
quick method to appropriately translate and then visualize calcium-imaging data produced in the lab of Dr.
Mark O. Huising.

Significance of Research: Currently, this package has been used to generate and present visuals in at least
five well-received papers, as well as in conference talks and poster presentations. This is intended to act as
a short manuscript to share the application of this package so that it may be used by other researchers who
utilize calcium imaging data.
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Abstract

Summary: RoiViz is an R package designed to seamlessly visualize region of interest (ROI) intensity data
derived from utilizing reporter line signaling, such as GCAMP6 calcium imaging acquired using the
genetically encoded calcium reporter GCaMP6 [1]. Its sole purpose is to contextualize tabular data of
relative intensity values as a function of time, and generates high-resolution, publication-quality eps files
that can be saved in a portable document format or edited further as needed using off the shelf graphics

software.

Availability and Implementation: RoiViz is released under Artistic-2.0 License. The source code and

documents are freely available through Github (https://github.com/Huising-Lab/RoiViz).

Contact: mhuising@ucdavis.edu or ammawla@ucdavis.edu

Supplementary information: Supplementary data are available at BiorXiv online or Github.
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Introduction

Microscopy coupled with the use of genetically-encoded or dye-based fluorescent reporter lines for
imaging is a widely-used approach to ascertain the functional profile of different cell types over time and
in response to different stimuli. In the context of pancreatic endocrine islet biology, where RoiViz was
originally developed, such approaches can be used to reflect patterns of beta, alpha, or delta cells response
to glucose, various hormones, or exogeneous drugs. The functional profiling of these cells is intricate and
is characterized by beta cells some respond in gap junction-coordinated synchronous responses, while

others respond in short, asynchronous bursts. Please see  http:/huisinglab.com/wp-

content/movies/Alpha to beta_calcium.mp4 or supplemental data for a visual illustration.

Calcium signaling as a secondary messenger acts as a useful proxy to identify changes in cell
function; for example, in pancreatic islet beta cells, calcium is required for insulin release [2-4]. GCAMP6
[1] is a widely used genetically encoded calcium indicator through the combination of calmodulin, green
fluorescence protein (GFP), and M13 — a myosin light-chain kinase peptide sequence. Its use in transgenic
lines allows for high-resolution tracking of a cell’s intracellular calcium response [5, 6]. This can be finely
tuned by inserting GCAMP6 under promoter control, to define cell-specificity [7]. In the context of
pancreatic islet biology, for instance, floxed alleles of GCaMP6 are now routinely used in conjunction with
cell type-specific Cre driver strains to direct the expression of GCaMP6 specifically in the islet cell type of

interest [8-11]

Data such as this has been generated to elucidate the behavior of neuronal cells and complex
neuronal circuitry [5, 12-15], cardiac muscle [16], or G protein-coupled receptor (GPCR) activation via
olfactory responses [17]. Our ability to track and quantify the calcium behavior across populations of cells
is rapidly increasing, and it is now entirely feasible to visualize calcium responses of hundreds or even
thousands of cells over time. However, while tabular data can be utilized in diverse ways to track behavior

of cells, a gap exists in visualizing these data in a succinct manner without a loss of the single cell resolution
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at which the data were originally acquired. We developed RoiViz to visualize calcium responses quickly
and seamlessly across populations of cells with minimal programming skills required. To date, RoiViz has
been used and optimized in the generation of high-resolution, publication quality visuals in several papers
[8, 11, 18-20]. Here, we provide this tool as an open-source package available on GitHub, and for later
availability on the R BioConductor repository for ease of use and access. The tool was developed to
visualize calcium responses detected using GCaMP6. This tool should also be usable with data acquired
using calcium dyes or dyes or genetically encoded biosensors that report on changes in the concentration

of other metabolites or second messengers, provided that the data demonstrate a good signal to noise ratio.

Functions

RoiViz takes in a user-provided comma-separated values (csv) file containing intensity imaging
data, originally designed for use with GCAMP6 calcium responses. The tool is designed to interpret data
providing each cell type represented as a column, as a function of time across rows. The tool is quick and
easy to implement, using a function of the same name - RoiViz, which will quickly generate three, high-
resolution publication quality encapsulated postscript (eps) files in three main color schemes [green, grey
scale, and black inverted]. The tool will also cluster cells of similar behavior, accepting different methods
of association, such as Euclidean distance. The user can then track individual cells, labeled by column
name, and add annotated data of substance exposure across time using commercially available third-party

graphics software packages.

This tool was designed to allow visualization of biological relevance of the same, or combined, cell
types’ responses to exogenous substance exposure, without the need for programming skills, and to generate

high-quality images for use later.

Results

RoiViz is developed as an R package to be made available through BioConductor [21], and is

available under Artistic-2.0 License. RoiViz is designed to take in tabular data of intensity values derived
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from microscopy tracking reporter line fluorescence, such as GCAMP6 calcium imaging, and generate
visualizations of cell behavior in response to exogenous substance exposure. RoiViz has routinely been
used in previously cited research and is now available in open source. Finally, RoiViz is easy to use, with

a full walkthrough with sample data accessible through its companion vignette.
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Summary

Postnatal maintenance or regeneration of pancreatic beta cells is considered to occur exclusively
via the replication of existing beta cells, but clinically meaningful restoration of human beta

cell mass by proliferation has never been achieved. We discovered a population of immature

beta cells that is present throughout life and forms from non-beta precursors at a specialized
micro-environment or ‘neogenic niche’ at the islet periphery. These cells express insulin, but lack
other key beta cell markers, are transcriptionally immature, incapable of sensing glucose and
unable to support calcium influx. They constitute an intermediate stage in the transdifferentiation
of alpha cells to cells that are functionally indistinguishable from conventional beta cells. We
thus identified a lifelong source of new beta cells at a specialized site within healthy islets. By
comparing co-existing immature and mature beta cells within healthy islets we stand to learn how
to mature insulin-expressing cells into functional beta cells.
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Introduction

The insulin deficiency that characterizes Type 1 Diabetes (T1D) and Type 2 Diabetes

(T2D) has led to strong interest in processes that control beta cell mass. The current

view is that beta cell mass is determined by the net effect of islet neogenesis, beta cell
proliferation and hyperplasia, balanced by dedifferentiation and beta cell death through
apoptosis (Bonner-Weir et al., 2010). Mice increase beta cell mass by self-replication to
compensate for increased metabolic demand in the context of obesity or pregnancy (Cox et
al., 2016; Parsons et al., 1992), although beta cell proliferation rates decline sharply with age
(Brennand et al., 2007; Teta et al., 2005). In humans, increases in beta cell mass in response
to similar conditions are modest at best. The mechanisms responsible for this increase are
not fully understood. They have long been considered less reliant on beta cell replication
(Butler et al., 2010), although standard replication markers may underestimate human beta
cell proliferation rates during post-mortem conditions (Sullivan et al., 2015). Regardless, the
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existence of progenitors within the pancreas that support the regeneration of functional beta
cells is a highly relevant - but controversial - topic in diabetes.

Several recent reports demonstrate that forced expression of lineage-inappropriate
transcription factors causes islet cells to switch identity (Collombat et al., 2007; Collombat
et al., 2009; Gao et al., 2014; Papizan et al., 2011; van der Meulen and Huising, 2015),
which has been attributed to the similar chromatin states of alpha and beta cells (Bramswig
et al., 2013). This establishes that beta cells can arise from non-beta endocrine cells in

the islet via direct transdifferentiation. Indeed, near-complete ablation of pre-existing beta
cells is eventually followed by the restoration of beta cell mass via transdifferentiation

of non-beta endocrine cells in mice (Chera et al., 2014; Thorel et al., 2010). These

studies provided important proof of principle that insulin independence can be regained

by transdifferentiation, but have also led to the notion that it is triggered by severe beta cell
ablation and the associated pancreas remodeling (Habener and Stanojevic, 2012).

Instead, we demonstrate here that the islet periphery contains a ‘neogenic niche’; a
privileged microenvironment that supports lifelong conversion between alpha and beta cells.
This is evident from the presence of a distinct population of immature beta cells at the islet
periphery that does not yet express the late maturation marker Urocortin3 (Ucn3) (Blum

et al., 2012; van der Meulen and Huising, 2014; van der Meulen et al., 2012). Similar
Ucn3-negative beta cells are readily identifiable in human pancreas of different ages and

in donors with T1D. Ucn3 negative beta cells are transcriptionally immature, lack cell
surface Glut2, cannot sense glucose, and do not support calcium influx in response to
depolarization. By lineage tracing we demonstrate that these Ucn3-negative beta cells are
‘virgin’ beta cells that represent an intermediate stage in the transdifferentiation of alpha
cells into mature beta cells. On the basis of their transcriptional signature and functional
responses within intact islets, we demonstrate that beta cells that arise from alpha cells at
the islet edge are functionally indistinguishable from conventional beta cells. Conversely, we
also observe mature beta cells that adopt an alpha cell fate and function at the islet edge. We
propose that this ongoing plasticity within the neogenic niche can be targeted to regenerate
beta cells.

Ucn3-negative immature beta cells persist throughout life

Ucn3 is a late maturation marker for primary and stem cell-derived beta cells (Blum et al.,
2012; van der Meulen et al., 2012) that continued to increase progressively weeks after beta
cell expression of Nkx6—1 and Mafa reached steady state, and coincided with the gradual
loss of Mafb from beta cells (Figure 1A) (Artner et al., 2010). However, Ucn3-negative beta
cells persisted in islets of adult mice (Figure 1B). The fraction of beta cells that did not

yet co-express Ucn3 comprised 15% of all beta cells at postnatal day 2 before stabilizing

at approximately 1 — 2 % of all beta cells from 3 weeks to 14 months of age (Figure 1C).
Ucn3-negative beta cells did not reflect proliferating beta cells that had transiently down
regulated Ucn3, as Ki67-postive beta cells continued to stain for Ucn3 (Figure 1D).
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Immature beta cells are located at the islet edge

A striking aspect unique to Ucn3-negative immature beta cells was their frequent proximity
to the islet edge. We therefore quantified the relative position of approximately 17,000
individual islet cells across hundreds of islets from 23 individual animals across a range

of ages, normalized for islet size (Figure 1E). Identity of each cell was assigned manually.
Most cells were either alpha or mature beta cells (Figure 1F, G). We reserved the designation
of immaturity for only those insulin+ cells where no Ucn3 was detected (Figure 1H)

and separately quantified the distribution of insulin+ beta cells with weak, but detectable,
Ucn3 (Ucn3-low beta cells). We reasoned that the latter cells may reflect maturing beta
cells, or may have resulted from the inherent limitations in quantifying gradual increases

in signal intensities by antibody-based methods and concluded that the prudent approach
was to account for these cells separately (Figure 1I). We then compared the normalized
cumulative distribution of each population (Figure 1J). Mature beta and alpha cells
distributed preferentially at the islet core and periphery, respectively, which recapitulated
the characteristic mouse islet architecture and validated our approach. Both Ucn3 low and
Ucn3 negative beta cells localized peripherally, just internally from alpha cells in the mouse
islet (Figure 1J). When broken down by age, immature and mature beta cell populations

in the first postnatal week distributed in proximity, but segregated as adult architecture is
established (Shih et al., 2013) (Figure S1).

To confirm these findings independent of staining we crossed mIns1-H2b-mCherry (Benner
et al., 2014) and Ucn3-eGFP reporter mice (Figure S2A, B). Islets from bitransgenic
offspring revealed a small population of mCherry single positive beta cells at the islet
periphery, while beta cells in the rest of the islet were consistently co-positive for eGFP and
mCherry (Figure 2A, B; Movie S1).

Ucn3-negative beta cells at the islet edge are ‘virgin’ beta cells

While Ucn3 is an excellent beta cell maturation marker, dedifferentiating beta cells also lose
Ucn3 (Blum et al., 2014; van der Meulen et al., 2015). Therefore, Ucn3 negative beta cells
at the islet edge could either be new beta cells or have lost Ucn3 expression secondary to
dedifferentiation. To distinguish between both scenarios, we lineage-traced mature beta cells
by crossing Ucn3-Cre (Figure S2C-F) to the mT/mG reporter mouse that switches from
membrane-tdTomato (mT) to membrane-eGFP (mG) upon Cre expression (Muzumdar et
al.,2007). Ucn3-negative beta cells at the islet periphery had not acquired a green mature
beta lineage-label and instead retained mT (Figure 1K). This ruled out that these were

once mature beta cells that dedifferentiated, but is entirely consistent with the scenario that
peripheral Ucn3-negative cells are ‘virgin’ beta cells that arose from a peripheral non-beta
precursor within the islet.

Expression profile of the immature beta cells at the neogenic niche

We then purified mCherry positive immature beta cells and mCherry/eGFP co-positive
mature beta cells (Figure 2C) from the same islets by FACS (Figure 2D) for transcriptome
analysis. Overall, immature and mature beta cells were more similar to each other than

to non-beta cells from the same islets (Figure 2E) and revealed no differential expression
for 75% of detectable genes (Figure 2F). The remaining genes contained several clusters
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that were selectively enriched in either immature or mature beta cells (Figure 2G). Ucn3
and several transcription factors associated with beta cell identity, such as Pdx1, Nkx6-1,
Insm1, Mnx1, Neurod1, Pax6, and Mafa were enriched in mature beta cells. (Figure 2H).

In contrast, Mafb and Neurog3 were enriched in immature beta cells (Figure 2H). This was
confirmed by immunofluorescence, where a majority of Ucn3-negative immature beta cells
did not yet stain for Mafa and retained Mafb (Figure 21, J). A minority of Ucn3-negative
immature beta cells lacked nuclear Pdx1, but most immature cells already showed nuclear
staining for Nkx6-1 (Figure 2K, L). On the basis of their transcriptome, immature beta cells
resembled peri- and early post-natal time points, while mature beta cells resembled the later
post-natal stages (Figure S3).

Ucn3 negative beta cells are transcriptionally immature

We next addressed if Ucn3 negative beta cells were functional. We observed significant
reductions in immature cells of essential beta cell genes, including many genes required for
glucose-stimulated insulin secretion, the TCA cycle and oxidative phosphorylation (Figure
3A-D). In contrast, key metabolic genes that are either considered ‘disallowed’ or contribute
to their regulation (Dhawan et al., 2015; Martinez-Sanchez et al., 2016; Piccand et al., 2014;
Pullen and Rutter, 2013) were enriched in immature beta cells (Figure 3E). Islets were also
co-stained for insulin, Ucn3, and G6pc2, which hydrolyzes glucose-6-phosphate (Pound et
al., 2013) or the oxidoreductase Erollb, which is required for disulfide bond formation in
pro-insulin (Zito et al., 2010). Both markers co-labeled Ucn3-positive mature beta cells,

and the majority of Ucn3 negative beta cells did not express G6pc2 or Erollb (Figure

3F-I). We did not observe G6pc2-negative beta cells with Ucn3, but detected a minority

of Ucn3-positive beta cells without Erollb. This indicates that G6pc2 expression generally
preceded Erollb and Ucn3.

Ucn3 negative beta cells are functionally immature

The reduced expression of genes encoding critical insulin secretion components, including
Slc2a2, established that Ucn3 negative beta cells are transcriptionally immature, but did not
directly demonstrate their functional status. We determined that Ucn3-negative peripheral
beta cells lacked cell-surface expression of the essential Glut2 glucose transporter that is
encoded by Slc2a2 (Figure 4A, B, S4), which suggested they were incapable of sensing
glucose. Indeed, glucose uptake experiments in intact mIns1-H2b-mCherry islets using

the fluorescent non-hydrolysable glucose analog 6-NBDG revealed rapid glucose uptake
across the entire extracellular and intracellular space of the islet after 50 minutes, with the
exception of a small number of mIns-H2b-mCherry positive beta cells at the islet periphery
(Figure 4C, D; Movie S2).

We next administered the beta cell toxin Streptozotocin (STZ; 120 mg/kg on 2 consecutive
days), which is taken up specifically by beta cells in a Glut2-dependent manner, to

acutely ablate beta cells. While STZ treatment kills a large fraction of beta cells, beta

cells that survive STZ treatment dedifferentiate, downregulate Ucn3, and are therefore
difficult to distinguish from immature beta cells. We therefore used Ucn3-Cre x mT/mG
bitransgenic mice where immature beta cells would remain Ucn3 lineage-negative (red),
while dedifferentiated beta cells remain Ucn3 lineage-positive (green) despite the down
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regulation of Ucn3 expression. Indeed, STZ treatment killed most mature beta cells, leading
to a collapse in islet architecture with remaining Ucn3 lineage-positive beta cells down
regulating insulin at 48 hours after the second STZ injection. Ucn3 lineage-negative beta
cells on the other hand persisted and continued to show normal insulin expression (Figure
4E). Citrate controls once again revealed clusters of Ucn3 lineage-negative immature beta
cells at the periphery of otherwise uniformly Ucn3 lineage-positive islets (Figure 4F). As
the purpose of this experiment was to test the ability of immature beta cells to resist acute
STZ-mediated cell death, we did not track their fate long-term.

As STZ administration iz vivo provides only a snapshot of the islet at the conclusion of

the experiment, we applied STZ (5 mM) ex vivoto Ucn3-eGFP x mlns1-H2b-mCherry
bitransgenic islets, while imaging continuously in the presence of the nuclear dead cell
marker Sytox Blue. STZ proceeded to kill all Ucn3-eGFP positive beta cells over the course
of the 10-hour treatment (Figure 4G). In contrast, mCherry single positive immature beta
cells are among the last beta cells to take up Sytox Blue (Movie S3). Collectively, these three
experiments demonstrate that immature beta cells have impaired glucose uptake and are
protected from STZ-mediated beta cell death, in line with their lack of cell-surface Glut2.

As ATP generated by glycolytic flux triggers beta cell depolarization downstream of Glut2,
this experiment did not address if immature beta cells were capable of supporting voltage-
triggered inward calcium currents. We therefore directly recorded these cells in voltage-
clamp mode and observed that immature beta cells were unable to respond to stepwise
depolarization with the opening of L-type voltage-gated calcium channels (Figure 4H, I).

Immature beta cells are present in human islets

In human neonatal islets, Ucn3-negative beta cells preferentially localize to the interface
between clusters of alpha and beta cells or to the periphery. (Figure SA-B). This suggests
that a spatially distinct neogenic niche exists at an early age in human islets before alpha and
beta cells progressively intermingle into the adult human islet architecture. Moreover, we
observed residual insulin-positive, Ucn3-negative beta cells in human donors with diagnosed
Type 1 Diabetes (Figure 5D, E), although it is impossible to know without lineage tracing
whether these cells reflect regeneration of new beta cells or dedifferentiation of existing
ones.

Immature beta cells are an intermediate stage in alpha to beta transdifferentiation

The location of immature beta cells at the neogenic niche suggested the presence of a
local precursor distinct from existing mature beta cells. This may be a progenitor sensu
strictu that is destined to become a beta cell, or it could be another differentiated cell

type that, under the right circumstances, becomes a beta cell. This led us to hypothesize
that the persistent population of immature beta cells we discovered reflects an intermediate
stage in the transdifferentiation of alpha to mature beta cells. We therefore lineage-labeled
alpha cells using bitransgenic offspring of a cross between Gcg-Cre (Herrera, 2000) and
mT/mG reporter mice and readily observed cells with an alpha cell lineage-label (green)
that expressed Ucn3 instead of glucagon (Figure 6A). The acquisition of an alpha cell
lineage-label by beta cells could reflect an artifact of transgenesis. Under such a stochastic
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scenario, one would expect lineage-labeled beta cells to occur randomly across the cross-
sectional area of the islet (Figure 6B). Alternatively, beta cells may acquire an alpha cell
lineage-label if they go through an insulin/glucagon bi-hormonal progenitor stage during
embryonic development. As beta cell mass increases rapidly in early postnatal life by clonal
expansion, this would lead to clusters of clonally related beta cells with an alpha cell
lineage-label. Indeed, such a distribution was observed in adult islets of a Geg-Cre line that
labeled bi-hormonal cells during pancreas development (Shiota et al., 2013), but is never
observed in the line we used (Herrera, 2000). However, if beta cells that carry an alpha cell
lineage-label reflect transdifferentiation of alpha to beta cells at the periphery of adult islets,
one would expect that beta cells with an alpha cell lineage-label preferentially co-distribute
with alpha cells (Figure 6B). Indeed, we observed these cells to be peripherally distributed
just internally from the alpha cell population (Figure 6C). Moreover, we occasionally
observed immature beta cells with an alpha cell lineage-label that did not yet co-express
Ucn3 at the islet edge (Figure 6D). Nevertheless, to more firmly establish that alpha to beta
transdifferentiation takes place in adult islets at the neogenic niche, we used Geg-CreER

x Isl-eYFP bitransgenic reporter mice (Ackermann et al., 2017) in a pulse-chase approach
to lineage-label all alpha cells at 2 months of age. Two days after the lineage-labeling, the
fraction of beta cells with an alpha cell lineage-label was < 0.2%, but this fraction had
increased significantly 4 months after tamoxifen (Figure 6E, F). This is consistent with a
scenario where alpha cells transdifferentiate via a transient, immature stage that expresses
insulin, but not Ucn3. Interestingly, the total fraction of glucagon-positive cells that carries
an alpha cell lineage-label also dropped from nearly 100% to slightly less than 97% over
the same period (Figure 6G), suggesting that new alpha cells arose from a non-alpha source
during the same window.

Based on the absence of mT/mG co-positive ‘yellow’ cells in the pancreas of bitransgenic
Ins-Cre x LSL-mT/mG reporter mice it had previously been concluded that there was

no postnatal contribution of non-beta cells to the beta cell mass (Xiao et al., 2013); a
conclusion that appears to contradict our current observations. However, beta cells are only
(mT/mG co-positive) for a short, 4-day window after activation of Ins1-CreER with a single
tamoxifen pulse (Figure S5). Moreover, this study attempted to detect this transient ‘yellow’
intermediate stage in dissociated whole pancreas (which consists of >98% non-islet cells)
and was by design underpowered to detect a relatively small but ongoing contribution of
non-beta cells to the beta cell mass. By using isolated islets and a constitutive Cre to
accumulate transdifferentiation events, we achieved a markedly better sensitivity.

Beta cells of alpha cell descent are transcriptionally similar to conventional beta cells

We compared the transcriptomes of beta cells of alpha cell descent with conventional beta
cells from the same islets, using mIns1-H2b-mCherry mice crossed to Geg-Cre and Isl-YFP
mice (DiGruccio et al., 2016). In this strategy, alpha cells that transdifferentiated into beta
cells acquired mCherry, but maintained the YFP lineage-label and can be FACS-sorted
accordingly (Figure 6H, I, Movie S4). We applied a stringent doublet exclusion strategy to
ensure that the 0.3% mCherry/YFP co-positive events did not reflect doublets. We validated
this by imaging cytometry and confirmed that transdifferentiated cells expressed mRNA for
both mCherry and YFP (Figure S6). Approximately 81% of all detectable genes were shared

Cell Metab. Author manuscript; available in PMC 2021 November 12.

34



1duosnuely Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

duosnuey Joyiny

van der Meulen et al.

Page 8

by all three cell populations. The remaining 19% of detectable genes were split between
alpha and beta cells. Less than 1% of all genes were enriched in trans-differentiated cells
(Figure 6J). This is relevant, as these genes may contain markers to identify beta cells from
alpha cell descent in human islets, where lineage-tracing is not possible. Transdifferentiated
cells more closely resembled beta cells, but clustered intermediate from the alpha cells that
they once were and the beta cells that they became (Figure 6K, L).

Beta cells that arise via transdifferentiation from alpha cells are functionally mature

To determine whether transdifferentiation from alpha cells at the neogenic niche generates
functionally mature beta cells, we assessed their ability to respond to glucose stimulation
using a floxed allele of the genetically encoded calcium indicator GCaMP6. This strategy
served the dual purpose of a traditional Cre-dependent lineage-labeling approach with the
ability to dynamically record the behavior of the lineage-labeled cells within intact islets
in real time. We conducted these experiments on the mIns1-H2b-mCherry background

to distinguish beta from non-beta cells. We first established the prototypical responses

of alpha and beta cells to known alpha and beta cell-selective cues. To selectively
stimulate alpha cells, we applied the peptide hormone AVP, which activates V1b receptors
that are selectively expressed by alpha cells (DiGruccio et al., 2016) (Figure 7A)

and dose-dependently stimulated glucagon release (Dunning et al., 1984) (Figure 7B).
Alpha cells within intact islets responded simultaneously with a calcium response to

the initial application of each escalating dose of AVP, which was followed by a period

of uncoordinated, alpha cell-autonomous calcium activity (Figure 7C; Movie S5). To
selectively stimulate beta cells, we continuously perfused with 16.8 mM glucose, which
activated a pulsatile, synchronized calcium response uniquely characteristic of healthy beta
cells (Figure 7D; Movie S5). To establish the functional responses of transdifferentiated
cells at the neogenic niche, we used Geg-Cre to lineage-label alpha cells with GCaMP6.
As before, AVP stimulated an alpha cell-autonomous response. However, upon switching
to 16.8 mM glucose, a new population of cells at the islet surface that had not responded
to AVP now started firing in the synchronized, pulsatile fashion that is characteristic of
functionally mature beta cells (Figure 7E; Movie S6). While their GCaMP6 expression
indicated alpha cell lineage history, their functional behavior and Ins1-dependent expression
of nuclear mCherry each confirmed current beta cell identity; AVP-responsive alpha cells
maintained a dark nuclear shade (Figure 7E, F). A brief depolarization (30 mM KCI)
activated all GCaMP6-expressing cells, regardless of current identity to indicate cell
viability throughout the experiment.

Mature beta cells transdifferentiate into alpha cells at the islet edge

Our findings thus far raised the question whether the privileged micro-environment of

the neogenic niche specifically supports the conversion of alpha cells into beta cells, or
supports lineage plasticity in general. The observation that new lineage-negative alpha
cells appeared during the 4 months following the tamoxifen-induced labeling of the entire
alpha cells (Figure 6G) suggests that new alpha cells are continuously generated from a
non-alpha progenitor. Indeed, when we used Ucn3-Cre to lineage-label mature beta cells,
we observed Ucn3 lineage-labeled cells at the islet edge that expressed glucagon instead of
Ucn3 (Figure 7G). To determine if such alpha cells of mature beta descent fully completed
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their transdifferentiation, islets from mIns1-H2b-mCherry mice that expressed GCaMP6 in
the alpha (Gcg-Cre) or mature beta lineage (Ucn3-Cre) were simultaneously subjected to the
same set of alpha and beta cell-specific stimuli as before (Movie S7). We readily identified
Ucn3 lineage-labeled GCaMP6-positive cells that nevertheless responded in typical alpha
cell fashion to AVP under basal glucose conditions and were indistinguishable from
conventional Geg-Cre-expressing alpha cells in the adjacent islet (Figure 7H). These cells
no longer participated in the synchronized pulsatile calcium response following subsequent
stimulation with 16.8 mM glucose, which implies that they were no longer coupled to

the beta cell mass via gap junctions. They also no longer had an mCherry+ nucleus, but
responded robustly to depolarization by KCI (Figure 7H, I). This established that alpha cells
can transdifferentiate from mature beta cells at the edge of healthy islets.

Discussion

Here we describe a novel population of Ucn3-negative beta cells that occurs throughout life
at a spatially distinct ‘neogenic niche’ at the islet periphery. These cells express insulin,

but are transcriptionally immature and lack key beta cell markers such as G6pc2, Erollb
and cell-surface Glut2. Indeed, these beta cells do not sense glucose and cannot support
calcium influx following depolarization, indicating that they are functionally immature.
They represent virgin beta cells that constitute a transitional stage in the transdifferentiation
from alpha into mature, functional beta cells. We also observe the converse transition from
mature beta into functional alpha cells. Based on the totality of these observations, we
propose that the islet periphery contains a specialized ‘neogenic niche’; a specific micro-
environment where the necessary cues and conditions to facilitate islet cell plasticity are
met. The differentiation of pancreatic beta cells during embryonic development is driven by
spatio-temporal gradients that determine the formation of endocrine progenitors at the trunk
of the budding ducts followed by their delamination from the ductal epithelia to eventually
cluster into islets (Shih et al., 2013). Our discovery suggests the continued importance of the
3-dimensional environment in determining the plasticity and maintenance of islet cell fate.

The continuous formation of new beta cells from a progenitor pool in adult islets is a
distinct departure from the long-standing paradigm that maintenance of beta cell mass
occurs exclusively through beta cell self-replication (Brennand et al., 2007; Dor et al., 2004).
However, since the latter study was conducted using a low-efficiency (30%) lineage-labeling
strategy dependent on the rat insulin promoter, it was underpowered to rule out a relatively
small contribution from non-beta cells. Moreover, this strategy could not have differentiated
between the immature and mature beta cells we report here, as both express insulin. Our
observations are easily reconciled with the common view that beta cell self-renewal is the
major mechanism to regenerate or expand beta cell mass in mice, provided sufficient beta
cells remain (Cox et al., 2016). Our discovery of the neogenic niche extends this model

to establish that beta cells can and do arise via alternative paths within islets of healthy, non-
diabetic individuals. This is particularly relevant to established T1D, where proliferation of
any residual beta cells by itself is unlikely to support meaningful regeneration of functional
beta cell mass, given that human beta cells rarely proliferate (Meier et al., 2008). This
emphasizes the need to pursue alternative beta cell sources to restore functional beta cell
mass.

Cell Metab. Author manuscript; available in PMC 2021 November 12.

36



1duosnuely Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

duosnuey Joyiny

van der Meulen et al.

Page 10

Transdifferentiation from alpha to beta cells without genetic perturbation of transcription
factor expression was first described following near-complete beta cell ablation in mice
(Thorel et al., 2010). The process is commonly presumed to be induced by insulin deficiency
or pancreatic injury and remodeling (Chera et al., 2014; Habener and Stanojevic, 2012).
Instead, our observations demonstrate that transdifferentiation between alpha and beta cells
takes place within a specialized niche at the periphery of healthy islets. It follows that

the near-complete removal of existing beta cells as the predominant source of beta cell
regeneration may have merely unmasked transdifferentiation as an alternate contributor to
beta cell regeneration. This represents an important conceptual shift: it suggests that the
signal(s) that control plasticity at the neogenic niche are associated with the constellation of
cell types and autonomic nerves that converge at the periphery of healthy islets instead of
being induced in response to major pancreas remodeling. Of course, this does not rule out

a scenario where transdifferentiation is further stimulated under certain (patho)physiological
circumstances, as was recently demonstrated when blockade of glucagon-dependent amino
acid clearance by the liver promoted alpha cell proliferation, accompanied by increased
alpha to beta transdifferentiation (Solloway et al., 2015).

Islet architecture differs markedly between adult human and mouse islets (Brissova et al.,
2005; Cabrera et al., 2006; Dolensek et al., 2015; Kim et al., 2009). However, in younger
human donor islets, alpha and beta cells segregate into distinct areas or adopt a mantle/core
topology similar to mouse islets (Figure 5). We readily observe Ucn3-negative beta cells at
the alpha/beta interface in islets of neonatal and infant pancreas donors and can also identify
such cells in adult human pancreas. This suggests that a neogenic niche similar to the one
we discovered in mice may exist in human islets, at least in younger ages. Moreover, we
continue to observe Ucn3 negative beta cells within islets of patients with decades-long
history of Type 1 Diabetes, possibly reflecting subclinical beta cell regeneration supported
by the islet plasticity we describe here. However, human islet architecture becomes less
defined with age and Ucn3 expression is lost from beta cells in diabetes (Blum et al.,

2014; van der Meulen et al., 2015). The fact that a lack of Ucn3 marks both immature and
de-differentiated beta cells complicates its utility as a marker to establish whether immature
beta cells continue to congregate in a spatially distinct niche. Nevertheless, our observations
could indicate human alpha cell-autonomous potential to adopt a beta cell identity that may
be re-engaged by recreating the appropriate conditions that converge at the neogenic niche.

Our discovery that a population of immature beta cells persists in the islets of healthy adult
mice and, possibly, humans, is also a strong testament to the significant heterogeneity that
has long been known amongst beta cells (Giordano et al., 1991; Kiekens et al., 1992).
Insulin-expressing Pancreatic Multipotent Progenitor cells (PMPs) were reported that are
capable of extensive self-replication, self-renewal and contribute to multiple pancreatic and
neural cell types (Smukler et al., 2011). These and similar cells found in small clusters
outside of normal islets (Beamish et al., 2016) share a lack of cell-surface Glut2 with the
immature beta cells we discovered at the niche. However, the genes enriched in the PMP
transcriptome (Razavi et al., 2015) demonstrate virtually no overlap with those enriched in
immature beta cells (Figure S4). Moreover, while we consider Ucn3-negative immature beta
cells to be a reservoir of beta cell progenitors, we do not have evidence to suggest that

they possess the multipotent progenitor properties described for PMPs. Recently, a distinct
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population of approximately 15% of all beta cells was described to resist immune attack in
non-obese diabetic (NOD) mice. These beta cells are characterized by reduced expression of
beta cell identity genes including Glut2 and likely reflect the de-differentiation of existing
beta cells (Rui et al., 2017). While these cells are distinct from the virgin beta cells that we
describe, these observations nevertheless suggest that immature beta cells by virtue of their
reduced expression of beta cell identity genes — including the major auto-antigens insulin
and G6pc2 — may escape auto-immune diabetes like they resist STZ-mediated beta cell
death.

Other recent papers describe a distinct population of beta ‘hub’ cells that control the
response of islets to stimulation (Johnston et al., 2016) or report heterogeneity based on

a transgenic reporter strain for Flattop (Bader et al., 2016). However, based on several

lines of evidence, it is clear that the Ucn3-negative immature beta cells we discovered are
completely distinct from both. Flattop negative beta cells constitute approximately 20% of
the total beta cell mass and hub cells make up 5 — 10% of the beta cells, with both beta

cell types found throughout the islet (Figure S4). This contrasts with the 1.5% of beta cell
number and the peripheral location of Ucn3-negative immature beta cells. Moreover, Flattop
positive and negative beta cells both robustly express Ucn3 protein (Bader et al., 2016); vice
versa Ucn3-negative immature and Ucn3-expressing mature beta cells express similar levels
of Flattop mRNA (Figure S4), indicating that Flattop and Ucn3 do not mark the same beta
cell population. In human islets four sub-populations of beta cells were recently described
based on the expression of STSSIA1 and CD9 (Dorrell et al., 2016). ST8SIA1 positive

cells share traits with the immature beta cells we describe here (Figure S4), although others
(including ST8SIAL itself) are distinct between these beta cell sub-populations.

In summary, the plasticity of beta cell identity is a double-edged sword that provides an
opportunity to regenerate beta cells from endogenous progenitors, while contributing to their
dedifferentiation in diabetes (Jonas et al., 1999; Talchai et al., 2012). The lessons we learn
from beta cell maturation at the neogenic niche will be widely applicable under different
scenarios where beta cell maturity is either desired or compromised. This includes the
generation of functionally mature human beta cells from stem cells to alleviate the pressing
need for an unlimited source of human beta cells to cure T1D - a feat that despite impressive
recent progress in the field (Pagliuca et al., 2014; Rezania et al., 2014; Russ et al., 2015) -
has not been achieved. We envision that the signaling responses and epigenetic mechanisms
that underlie beta cell maturation at the niche overlap with those that are impaired when beta
cells dedifferentiate in diabetes. It follows that the discovery of the specific spatio-temporal
cues that govern islet cell fate at the neogenic niche can be wielded to take advantage of

the significant plasticity in beta cell regeneration. These insights could apply to generate
functionally mature beta cells from endogenous sources or stem cell-derived progenitors and
to block the adverse consequences of the beta cell identity crisis in diabetes.

STAR Methods
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Mark Huising (mhuising@ucdavis.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals —Commercial male C57BL6/NHsd mice were obtained from Harlan
(Indianapolis, IN; now Envigo) at 3, 6 and 9 weeks and 3, 8 and 14

months of age and used immediately for pancreas collection. A number of

transgenic mouse lines were employed. The dual color Isl-mT/mG reporter mouse
(GHROSA)26Sor"mA(ACTB-tdTomato,-eGFP)Luojy JAX strain 007576) (Muzumdar et al., 2007).
The Isl-eYFP reporter mouse (B6.129X1-Gt(ROSA)26Sor" ™ (EYFP)CosT) (Srinivas et al.,
2001). Calcium levels in the cell were visualized using the 1sl-GCaMP6 mouse line
(B6;129S6- Gt(ROSA)26Sor"m96(CAG-GCaMP6s)Hzel ) (Madisen et al., 2015). Two Ucn3 BAC
transgenic reporter mice were used that are based on BAC clone RP23-332L13, which
contains the Ucn3 gene flanked by more than 197 kb of genomic context: the Ucn3-

Cre line (B6.FVB(Cg)-Tg(Ucn3-cre)KF43Gsat/Mmucd and the Ucn3-eGFP line (Tg(Ucn3-
eGFP)HY36Gsat/Mmucd). For alpha cell labeling we employed a Geg-Cre mouse line
(Herrera, 2000) or a Geg-CreER line (Ackermann et al., 2017). To label beta cells we used
the B6.Cg-Tg(Ins1-HIST1H2BB/mCherry)5091Mhsg/J mouse line (Benner et al., 2014). To
lineage label beta cells in Figure S6, we used the Ins1-CreER mouse line (B6.Cg-Tg(Ins1-
cre/ERT)1Lphi/J) (Wicksteed et al., 2010). All transgenic lines are maintained by back
crossing to commercially obtained C57BL6/NHsd (Envigo). Unless indicated otherwise,
adult mice of both sexes were used between 3 and 9 months of age. Animals were
maintained in group-housing on a 12-h light/12-h dark cycle with free access to water

and standard rodent chow. All animal procedures were approved by the Salk Institute

for Biological Studies and UC Davis Institutional Animal Care and Use Committees and
performed in compliance with the Animal Welfare Act and the ILAR Guide to the Care and
Use of Laboratory Animals.

Validation of novel transgenic mouse models —We observed close overlap between
the expression of Ucn3 peptide and the expression of GFP in the Ucn3-eGFP mouse

line Tg(Ucn3-eGFP)HY 36Gsat/Mmucd (Figure S2). We evaluated two distinct Ucn3-Cre
lines and validated the Ucn3-Cre(KF43) line to selectively and specifically label the Ucn3
expression domain in within the islets (Figure S2). In this line, over 98% of all insulin-
positive beta cells in bitransgenic offspring from the Ucn3-Cre x mT/mG cross carries

the mG lineage-label, validating this reporter line. We also tested the B6.FVB(Cg)-Tg(Ucn3-
cre)KF31Gsat/Mmucd) line, but found the efficiency and specificity of this line to be
undesirable (Figure S2).

Primary cell cultures —Primary islets were cultured in RPMI (5.5 mM glucose, 10%
FBS, pen/strep) under 5% CO, at 37° C in 10 cm petri dishes (i.e. not tissue culture
treated). Islets for microscopy or dissociated islet cells for electrophysiology experiments
were cultured overnight on uncoated #1.5 glass-bottom 35 mM culture dishes (MatTek
Corporation, Ashland, MA). No cell lines were used in this study.

Human Subjects —Human donor pancreata were obtained via the Network of Pancreatic
Islet Donors with Diabetes (nPOD). Gender and age are indicated in the figure legend. The
UC Davis Institutional Review Board declared the human pancreas histological specimens
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used in this study exempt from IRB review under 45 CFR 46.101 (b) Category (4) on
December 11, 2014.

METHOD DETAILS

Islet isolation —Islets were isolated by injecting collagenaseP (0.8 mg/mL in HBSS;
Roche Diagnostics) (Invitrogen) via the common bile duct while the ampulla of Vater was
clamped (Huising et al., 2010). The entire pancreas was collected following the injection
of 2mL collagenase solution and, after addition of 2 more ml of collagenase solution, was
incubated at 37°C for 13 min. Pancreata were dissociated by gentle manual shaking followed
by three washes with cold HBSS containing 5% NCS. The digested suspension was passed
through a nylon mesh (pore size 425 ym; Small Parts Inc.), and islets were isolated by
density gradient centrifugation on a Histopaque gradient (1.077 g/mL density; Sigma) for
20 min at 1400 x g without brake. Islets were collected from the interface, washed once
with cold HBSS containing 5% NCS, and hand-picked several times under a dissecting
microscope prior to culture in RPMI (5.5 mM glucose, 10% FBS, pen/strep).

Flow and imaging cytometry —Islets were dissociated by incubation in 0.25% trypsin/
EDTA for 2 minutes complemented by gentle trituration with a p200 pipette, washed once in
RPMI (5.5 mM glucose, 10% FBS, pen/strep) and immediately processed on the cytometer.
Conventional FACS separation was conducted based on red and green fluorescence, using

1 pg/ml Dapi for live/dead exclusion, as previously described (DiGruccio et al., 2016;

van der Meulen et al., 2015) and samples were collected directly in Trizol reagent for
library preparation. Samples for imaging cytometry were run on an Amnis Imagestream
Markll imaging cytometer (EMD Millipore, Billerica, MA) at the Gladstone Institutes in
San Francisco.

Next generation sequencing—FACS-sorted samples were collected directly into Trizol
reagent. RNA isolation and library construction was done by Illumina’s TruSeq RNA sample
Prep Kit v2 (Illumina Inc. San Diego, CA), sequenced at 50 cycles, and single read on an
Illumina HiSeq 2000 platform as previously described (DiGruccio et al., 2016).

Immunohistochemistry —Immunohistochemistry was conducted as follows: slides were
washed 3 times for 5 minutes each in KPBS, antibodies were diluted in KPBS supplemented
with 2% donkey serum and 0.4% Triton-X100 and applied overnight at 4 degrees Celsius.
After 3 more washes in KPBS, slides were incubated with secondary antibodies (obtained
from Jackson ImmunoResearch (Westgrove, PA) and used at 1:600 final dilution), also in
donkey block, now for 45 minutes at room temperature. Three more washes completed

the procedure. Where applicable, nuclei were counterstained by Dapi at 1 pg/ml final
concentration and slides were embedded in Prolong Gold Antifade (Thermo Fisher
Scientific, Waltham, MA) and imaged on either a Zeiss LSM780 confocal microscope or

a Nikon A1R+ confocal microscope. The antiserum for Erollb (Zito et al., 2010) was
generously provided by Dr. David Ron, the antiserum for G6pc2 (Hutton and Eisenbarth,
2003) was originally generated by the late Dr. John Hutton and generously provided by Drs.
Jay Walters and Howard Davidson.
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Glucose uptake—To measure glucose uptake, we incubated intact islets from freshly
isolated mIns1-H2b-mCherry reporter mice overnight on uncoated #1.5 glass-bottom 35
mM culture dishes (MatTek Corporation, Ashland, MA) in RPMI (10% FBS, 5.5 mM
glucose, pen/strep). The next day, Z-stacks of islets were continuously acquired as the non-
hydrolysable glucose analog 6-NBDG (6-(/N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-
Deoxyglucose; Thermo Fisher Scientific, Waltham, MA) was added at a final concentration
of 0.3 mM, using a Nikon AR+ confocal microscope in resonant scanning mode. The
relative rate of glucose uptake was determined by drawing ROIs of individual mIns1-H2b-
mCherry+ beta cells that either had or had not taken up glucose.

Streptozotocin treatment—Ucn3-Cre x mTmG mice were treated with two doses of
120 mg/kg of streptozotocin (EMD Millipore, Billerica MA) dissolved fresh in 100 mM
sodium citrate (pH 4.5) on consecutive days. Citrate controls were included and animals
were monitored closely around the clock to prevent hypoglycemia from STZ-induced insulin
release. Mice were euthanized 48 hours after the second STZ injection when hyperglycemia
indicated the destruction of most beta cells and processed for immunohistochemistry. To
study streptozotocin-induced beta cell death ex vivo, we cultured mIns1-H2b-mCherry x
Ucn3-eGFP bitransgenic islets as described above and followed them for 15 hours in the
presence of 5 mM STZ and the nuclear dead cell marker Sytox Blue (500 nM, Thermo
Fisher Scientific, Waltham, MA) while acquiring a Z-stack every 30 minutes on a Nikon
A1R+ confocal microscope in resonant scanning mode.

Pulse-chase of Gcg-CreER mice—Gceg-CreER x Isl-e YFP bitransgenic mice were
treated at 2 months of age with tamoxifen (100 ug/g BW) 3 times over the course of 5

days and collected 2 days (pulse) or 4 months (chase) after the last injection. These samples
were embedded in paraffin and a GFP antiserum was used to detect eYFP protein following
antigen retrieval by microwave in 10 mM sodium citrate pH 6.0.

Electrophysiology —Dispersed immature and mature beta cells from mIns1-H2b-
mCherry x Ucn3-eGFP bitransgenic islets were patched in the whole cell configuration and
held at =70 mV. All cells were subjected to the voltage clamp protocol depicted in Figure
4H. Recordings were performed using the following internal solution: (mM) Cs-aspartate
87, CsCl 20, MgCl, 1, MgATP 5, HEPES 10 pH 7.2, EGTA 10 and external solution:
(mM) NaCl 138, KCl 5.4, MgCl, 1, CaCl,10, HEPES 10 pH 7 4, glucose 2.8. Glass
capillary electrodes (Suttter Instruments) were pulled to have a resistance of 7-12 MQ. All
electrical signals were acquired using a HEKA EPC 10 USB dual head stage amplifier.
Each head stage was mounted on a single Sutter micromanipulator driven by the MPC 225
controller. All cells were visualized using a Zeiss Axiovert inverted microscope with 10x,
40x and 63x objectives with filters for blue, GFP, YFP, and red fluorophores. The scope was
mounted upon a Siskiyou x y translator bolted to a TMC anti-vibration table. All islet cells
were continuously perfused with external solution maintained at 33°C via a stage mounted
incubation system. Temperature control was achieved with a SF-20 in line heater (Harvard
Apparatus). Data was acquired using HEKA Patchmaster software version 2x90.2. Signal
data was analyzed using Clampfit 10 (Molecular devices).
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Glucagon secretion—Static glucagon secretion experiments were carried out on 30 wild
type mouse islets per well in Krebs Ringer Buffer (KRB). Islets were isolated the day

prior to the secretion assay, cultured overnight in RPMI (5.5 mM glucose, 10% FBS,
pen/strep) and transferred to KRB containing 5.5 mM glucose an hour before the start

of the assay. Islets were picked to the wells plate for final secretion in 10% of the final
assay volume. The remaining 90% of volume consisted of KRB without glucose, with the
indicated concentration of AVP added, to effectively reduce the final glucose concentration
to 0.5 mM at the start of the secretion assay. AVP peptide was synthesized in-house and
generously provided by Dr. Jean Rivier (Salk Institute).

Calcium responses in intact islets —We used islets from a triple transgenic offspring
of a cross between mIns1-H2b-mCherry, Is-GCaMP6 and either Geg-Cre or Ucn3-Cre to
label the alpha or mature beta cell lineages, respectively. Live islets were cultured overnight
after the islet prep, placed on 35mm dishes with glass bottom (#1.5; MatTek Corporation),
allowed to attach overnight and imaged in X, y, z and t on a Nikon A1R+ confocal
microscope using a 40x lens with a long working distance. Treatments were continuously
perfused over the islets using a Masterflex peristaltic pump at 2.5 ml per minute. Each
protocol concluded with a 30 mM potassium chloride pulse to demonstrate viability and
responsiveness throughout the treatment. Individual cells in individual z-planes were defined
as regions of interest (ROI) and the green fluorescence intensity within the ROIs was plotted
over time as a measure of calcium activity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Bio-informatics analysis —Read refinement for quality and adapter contamination was
performed using FASTQC, Scythe, and Sickle. After quality control and filtering, the
libraries comparing immature to mature beta cells had an average library size of 21.4 million
reads. The libraries comparing alpha and beta cells to beta cells of alpha cell-descent had

an average library size of 19.2 million reads. The libraries of the postnatal maturation time
series had an average library size of 12.8 million reads. Libraries were then aligned to mouse
genome version GenCode M8 (GRCm38.p4 M8; mm10) using STAR (Dobin et al., 2013)
with the two-pass method with default parameters, with the exception of a tighter mismatch
restriction of no greater than 3% per read. Average unique read alignment was 87.5%,
86.6% and 86.9% for the three sets of libraries, respectively. Bigwigs were generated using
the wiggle output option in STAR and Genome Utilities in the UCSC Genome Browser
(Kent et al., 2002). Gene-level quantification was performed on sorted BAM files using
featureCounts (Liao et al., 2014) with default parameters, counted by Gencode defined
exons, and aggregated to the gene level. Differential expression analyses were performed
using the edgeR generalized linear model approach and maximum likelihood method testing
(Robinson et al., 2010). Results were filtered for statistical significance using the thresholds:
FDR < 0.001 and an absolute logoFC > 1 across all experiments. In comparing immature
and mature beta cells from adult islets, we observed 3394 differentially expressed genes
(2117 Immature enriched, 1277 Mature enriched) that met these thresholds. Using the same
criteria, we observed 2480 genes to be differentially expressed between any of the pair-wise
comparisons in comparing alpha and beta cells with trans-differentiated cells. Heat maps
were generated based on the n most up- and n most down-regulated genes between each
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pairwise comparison, with duplicate genes removed, where n = 750 for Figure 2G and n
=200 for Figure 6K. To enable the most direct comparison, the same analysis pipeline —
from raw sequencing reads, to quantification and differential analyses— was also applied to
compare our data against mouse PMPs (Razavi et al., 2015) and human beta cell subtypes
(Dorrell et al., 2016). Distance matrices for the latter comparison were generated using the R
package lattice, with RPKM values from each experiment used to correlate relatedness.

Bio-informatics visualization— All clustering and heat map visuals were generated
using Gene Cluster 3.0 (de Hoon et al., 2004) on log transformed RPKM values normalized
by the median and hierarchically clustered by the city block distance method. The R-
package ComplexHeatmap (Gu et al., 2016) was used on the clustering output using default
parameters, with the exception of the maturation time series experiment where the Pearson
instead of the Euclidean distance method was used. All Venn diagrams were generated
using the R library package VennDiagram (Chen and Boutros, 2011), using the edgeR
output and our FDR and log,FC filtering criteria for gene selection. We included a lower
RPKM threshold of 1 when comparing our immature beta cell transcriptomes with those

of the PMPs (Razavi et al., 2015). KEGG gene set enrichment testing was performed on
the immature beta data set using the R Bioconductor package GAGE (Luo et al., 2009) on
the edgeR output that met the statistical threshold. Pathway visuals were created using the
R-package Pathview (Luo and Brouwer, 2013).

Distribution algorithm —The distribution algorithm we developed to quantify the
distribution of cell types across the cross-sectional surface of the islet is build up

into three main parts: segmentation, classification, and distribution measurement. All
classification was done manually for each cell by a person. The segmentation and the
distribution measurements are handled using two separate Matlab functions that interface
with Bitplane’s Imaris software. We utilized Imaris in this process to provide an accurate
visual representation of the segmentations for verification and classification. After loading
the data set into Imaris and converting the data to 32-bit float, the segmentation function

is called in to segment the islet volume and nuclear volumes separately using a simple
intensity based threshold for binary segmentation. The user is prompted to input which
channel(s) should be used for each of these segmentation steps. The segmentation function
then creates two surface objects in Imaris, one for the islet sub volume and the second

for the nuclei. Both the islet and nuclei surface objects are visually verified for accuracy,
followed by the manual classification of each individual cell into distinct bins by cell

type. Once the classification is complete, the distribution measurement function is called
to find the distributions of each classified group created by the researcher. The distribution
measurement function creates a new channel that is the distance transformation with respect
to the interior edge of the islet. The distance transformation channel intensity is then
recorded at the center of each classified nucleus. Recorded measurements are written to a
csv file containing all measurements along with the sample information.

Statistical Analysis—Data were analyzed by t-test, corrected for multiple comparisons
using the Holm-Sidak method where appropriate. The distribution of cells across the islet
was tested using a non-parametric Kruskal-Wallis test using Dunn’s multiple comparisons
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test. A post-hoc Kolmogorov-Smirnov test was conducted to compute the D statistic on

the basis of the cumulative frequency distributions computed from raw data. Data are
represented as mean + SEM across, with n defined in the corresponding figure legend.
Differences were considered significant when p<0.05. Statistics were computed using Prism
(GraphPad Software, La Jolla, CA).

DATA AND SOFTWARE AVAILABILITY

Sequencing data sets—Sequencing data associated with this publication have been
deposited in GEO under GSE88778, GSE88779 and GSE90766.

Distribution algorithm —The Matlab routine for the distribution algorithm described in
this paper can be found here: http://huisinglab.com/cell_metabolism_2017/index.html.

ADDITIONAL RESOURCES

A resource website featuring UCSC browser plots searchable by plain text query
for the RNAseq data presented in this paper can be found at: http://huisinglab.com/
cell_metabolism_2017/index .html.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The absence of Ucn3 marks beta cells in the neogenic niche.
(A) Gene expression of Ucn3, Nkx6.1, Mafa and Mafb by RNAseq on FACS sorted beta

cells during perinatal maturation. Gene structure and chromosome number are indicated for
each panel.

(B) Detection of insulin, glucagon and Ucn3 in a 3-month old islet. Insets show Ucn3-
negative beta cells.

(C) Fraction of Ucn3-negative beta cells at different ages (counted n=3 animals per time
point, 10 islets each). Error bars reflect SEM, * P <0.05, ** P < 0.01.

Cell Metab. Author manuscript; available in PMC 2021 November 12.

49



1duosnuely Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

duosnuey Joyiny

van der Meulen et al.

Page 23

(D) Ki67-positive beta cells maintain Ucn3 expression indicating that proliferating beta cells
and Ucn3-negative beta cells are not the same.

(E-I) Image analysis to detect the islet outline and center of mass to compute the position of
a cell relative to the center and nearest edge. Cells are manually classified as (F) mature beta
cell (insulin and Ucn3 co-positive), (G) alpha cell (glucagon positive), (H) immature beta
cell (insulin-positive, Ucn3-negative) or (I) Ucn3 low beta cell (insulin-positive, Ucn3-low).
(J) Normalized cumulative distribution of Ucn3-negative beta cells compared to mature beta
cells of all ages combined (3, 6 and 9 weeks; 3, 8 and 14 months; 3 animals per age, 16,896
cells). See Figure S1 for distributions by age and Table S1A for the P values and D statistics
for each pairwise comparison.

(K) Ucn3-negative, insulin positive beta cells (white, but not blue, indicated by the arrow)

at the islet periphery of Ucn3-Cre x mT/mG mice are Ucn3-lineage negative (they express
mTomato, instead of mGFP). These cells make up 0.75% =+ 0.56% (n = 3) of all insulin-
positive beta cells. See also Figure S2.
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Figure 2. Comparison of mature and immature beta cells from the same islets.
(A) View from two angles of a 3D reconstructed islet expressing mIns1-H2b-mCherry (all

beta cells) and Ucn3-EGFP (mature beta cells only). Arrows indicate immature beta cells.
See also Figure S2.

(B) Immature beta cells (arrows) in the neogenic niche revealed by virtual slicing of a 3D
reconstructed islet. See also Movie S1.

(C) Imaging cytometer analysis of individual immature and mature beta cells.
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(D) FACS strategy to obtain Ucn3-eGFP mIns1-H2b-mCherry co-positive mature and
mCherry single positive immature beta cells from the same islets. Immature beta cells start
expressing Ucn3-eGFP in culture 12 hours after sorting (inset).

(E) Correlation matrix of the 200 top differentially expressed (100 enriched, 100 depleted)
genes between mature and immature cells.

(F) Venn diagram comparing gene expression (RPKM>1 in either population) between
mature and immature beta cells. Expression was considered different when the absolute
log,FC > 1 and FDR < 0.001.

(G) Heat map of the most differentially expressed genes between mature and immature beta
cells.

(H) Expression of key genes in mature and immature beta cells by RNAseq. See also Figure
S3.

(I-L) Colocalization of insulin, Ucn3 and Mafa (I), Mafb (J), Pdx1 (K), or Nkx6-1 (L) in an
adult mouse islet. Arrows indicate immature beta cells.
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Figure 3. Ucn3 negative beta cells are transcriptionally immature.
(A) Gene expression of select genes involved in insulin secretion in mature and immature

beta cells by RNAseq.

(B) Visualization of differential expression of the Kegg pathway analysis for insulin
secretion (FDR < 0.001).

(C) Heat map of the differential expression of tricarboxylic acid (TCA) cycle genes between
immature and mature beta cells.
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(D) Heat map of the differential expression of genes involved in oxidative phosphorylation
between immature and mature beta cells.

(E) Gene expression of ‘disallowed’ genes in mature and immature beta cells by RNAseq.
(F) Immunofluorescence detection of G6pc2 (white), insulin (red) and Ucn3 (green) in a
mouse islet. Arrow indicates an immature beta cell.

(G) Distribution of 2329 G6pc2-positive and negative beta cells within mouse islets (2329
cells). See Table S1B for the P values and D statistics for each pairwise comparison.

(H) Immunofluorescence detection of Erollb (white), insulin (red) and Ucn3 (green) in a
mouse islet. Arrows indicate examples of beta cells with Erollb but not Ucn3 (top) and with
Ucn3 but not Ero1lb (bottom).

(I) Distribution of 2043 Erollb-positive and negative beta cells within mouse islets (2073
cells).
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Figure 4. Ucn3 negative beta cells are functionally immature.
(A) Ucn3-negative beta cells at the periphery (arrows) do not express cell-surface Glut2.

(B) Distribution of Glut2-negative beta cells at the periphery of the islet (6783 cells total).
See Table S1B for the P values and D statistics for each pairwise comparison and Figure S4
for a comparison of immature beta cells with other heterogeneous populations of beta cells.
(C) Uptake of the glucose analog 6-NBDG over time by all beta cells except for immature
beta cells at the periphery of intact islets.

(D) Quantification of 6-NBDG uptake. Numbered lines corresponds to panel C. Data
represent mean = SEM for 3 immature and 7 mature beta cells. * P < 0.05, *** P < 0.001.
See also Movie S2.
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(E) Treatment with a high dose of the Glut2-dependent beta cell toxin streptozotocin ablates
a majority of beta cells. Remaining Ucn3 lineage-positive beta cells are often insulin
negative, while immature beta cells (arrows) survive owing to the lack of cell surface Glut2.
(F) Ucn3 lineage-negative beta cells at the islet edge (arrows) in citrate controls.

(G) STZ-induced death of Ucn3-eGFP x mlns1-H2b-mCherry mature beta cells in intact
islets in real time. The death of beta cells is marked by the acute loss of eGFP protein and
the nuclear uptake of the dead cell marker Sytox Blue. In contrast, mCherry single positive
immature beta cells (numbered) do not take up Sytox Blue. Individual immature beta cells
are labeled for clarity. Note that immature beta cells #4—6 disappear from the Z-stack as the
islet volume expands due to the extensive cell death. See also Movie S3.

(H) Immature beta cells cannot support calcium influx following depolarization.
Representative traces of depolarization-induced inward calcium currents (circled) from
mlIns1-mCherry+ immature beta cells and Ucn3-eGFP positive mature beta cells from the
same preparations.

(1) Full Current-Voltage (I-V) plot contrasting the voltage-dependent inward calcium current
in Ucn3-eGFP positive mature beta cells with the lack thereof in mIns1-mCherry+ immature
beta cells from the same preparations. Data represent mean + SEM for 4 immature and 8
mature beta cells from four individual animals. * P < 0.05, ** P < 0.01, *** P <0.001.
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Figure 5. Ucn3-negative beta cells are present in human islets of young and adult donors and
donors with T1D.

Expression of insulin, glucagon and Ucn3. Arrows indicate Ucn3-negative beta cells.
(A) Neonate, female, no diabetes, nPOD #6200.

(B) Infant, 5 months old, male, no diabetes, nPOD #6115.

(C) Adult, 20 years old, male, no diabetes, nPOD #6238.

(D) Adult, 26 years old, female, 15 years with diagnosed T1D, nPOD #6196.

(E) Adult, 79 years old, female, 56 years with diagnosed T1D (medalist), nPOD #6065.
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Figure 6. Immature beta cells reflect a transient stage in the transdifferentiation between alpha

and beta cells at the islet edge.

(A) A pair of cells at the islet periphery with an alpha lineage mark (arrows) that now

express Ucn3 instead of glucagon.

(B) Three potential scenarios that could account for the detection of beta cells with an alpha

cell lineage-label and their predicted distribution across the cross-sectional islet area: 1)

random labeling of beta cells by the ‘leaky’ expression of Cre recombinase in beta cells,

2) labeling of bi-hormonal progenitors during development is predicted to lead to randomly

localized clusters of lineage-labeled beta cells that expanded from a single bi-hormonal
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progenitor, 3) transdifferentiation of alpha cells into beta cells at the periphery of adult islets.
See also Figure S5.

(C) Observed distribution of alpha lineage-labeled beta cells (3459 cells). See Table S1C for
P values and D statistics for each pairwise comparison.

(D) Alpha lineage-labeled islet, visualized by Isl-YFP, that features two transdifferentiated
cells. One of these co-expresses Ucn3 and is mature (bottom, arrow), the other cell is an
immature beta cell of alpha cell-descent that expresses insulin but not yet Ucn3 (top, arrow).
(E) Lineage-labeling all alpha cells in 2-month old mice via Gcg-CreER followed by a
4-month chase demonstrates that alpha cells continue to transdifferentiate into beta cells.

(F) The fraction of beta cells of alpha cell descent increased significantly four months after
lineage-labeling all alpha cells, as measured relative to either total beta cell or alpha cell
number. * P <0.05, ** P <0.01.

(G) Conversely, the alpha cell fraction, which is nearly completely lineage-labeled
immediately after tamoxifen administration, is notably diluted 4 months later by alpha cells
without a lineage-label.

(H) Islets from triple transgenic offspring of a cross between mIns1-mCherry x Geg-Cre

x 1sl-YFP reveal the presence of mCherry positive beta cells that carry the YFP alpha cell
lineage-label at the edge of the intact islet. Inset shows detail of the same cluster from
different angle to emphasize the nuclear mCherry in transdifferentiated cells. See also Movie
S4.

(I) FACS strategy to isolate transdifferentiated cells along with alpha and beta cells from
dissociated islets of mIns1-mCherry x Geg-Cre x 1sl-YFP triple transgenic islets. See also
Figure S6.

(J) Venn diagram of genes that are detectably expressed (RPKM > 1) among alpha, beta and
transdifferentiated cells. Expression was considered different when the absolute log,FC > 1
and FDR < 0.001.

(K) Heat map of alpha, beta and transdifferentiated cells based on the most differentially
expressed genes from panel 6J.

(L) Expression of key genes in alpha, beta and transdifferentiated cells by RNAseq. Gene
structure and chromosome number are indicated for each panel.
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Figure 7. Transdifferentiated cells are functionally mature
(A) Expression of arginine vasopressin (AVP) receptor Avplrb in alpha, beta and delta cells.

(B) Glucagon secretion in response to AVP. Data represent mean + SEM; n = 4. *¥¥* P <
0.001.

(C) Alpha cell calcium activity in response to brief stimulation with increasing doses of
AVP, indicated by arrows. Depolarization (30 mM KCl) serves as positive control. See also
Movie S5.
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(D) Coordinated beta cell calcium activity in response to continuous stimulation with 16.8
mM glucose. Arrow indicates the start of continuous stimulation. See also Movie S5.

(E) Consecutive stimulation with a brief pulse of AVP (arrow) followed by continuous
stimulation with 16.8 mM glucose in an islet where GCaMP6 expression is restricted to the
alpha cell lineage and nuclear mCherry marks current beta cells. See also Movie S6.

(F) Still images of key frames in at the indicated times in (E). Yellow ellipsoid contains
conventional alpha cells; blue ellipsoid contains alpha-to-beta transdifferentiated cells.

(G) Beta-to-alpha transdifferentiated cells revealed by the absence of Ucn3 and expression
of glucagon in Ucn3-Cre lineage cells at the islet periphery.

(H) Responses of two islets where expression of GCaMP®6 is restricted to the alpha cell
lineage (Gcg-Cre, top) or mature beta cell lineage (Ucn3-Cre; bottom). Stimulation protocol
as in Figure 6E. Both islets were imaged simultaneously in a single recording. See also
Movie S7.

(I) Still images of key frames in (H).
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Summary

Pancreatic alpha cells retain considerable plasticity and can — under the right circumstances —
transdifferentiate into functionally mature beta cells. In search of a targetable mechanistic basis, a
recent paper suggested that the widely used antimalarial drug artemether suppresses the alpha cell
transcription factor Arx to promote transdifferentiation into beta cells. However, key initial
experiments in this paper were carried out in islet cell lines and most subsequent validation
experiments implied transdifferentiation without direct demonstration of alpha to beta cell
conversion. Indeed, we find no evidence that artemether promotes transdifferentiation of primary
alpha cells into beta cells. Moreover, artemether reduces /ns2 expression in primary beta cells
>100-fold, suppresses glucose uptake, and abrogates beta cell calcium responses and insulin
secretion in response to glucose. Our observations suggest that artemether induces general islet
endocrine cell dedifferentiation and call into question the utility of artemisinins to promote alpha
to beta cell transdifferentiation in treating diabetes.

eTOC Blurb

The antimalaria drug artemether has been recently shown to promote transdifferentiation of alpha
cells into beta cells. Van der Meulen et al. now report loss of beta cell gene expression, glucose
uptake, calcium responses and insulin secretion following stimulation in intact islets treated with a
high dose of artemether.
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Introduction

Type 1 and Type 2 diabetes are fundamentally different diseases, yet both are associated
with a deficiency in functional beta cells. This has generated intense interest in any strategy
that could regenerate functional beta cells towards a cure for diabetes. Self-replication has
long been viewed as the principal mechanism of beta cell maintenance and regeneration.
However, beta cell replication declines rapidly with age and no methods to promote
clinically meaningful restoration of beta cell mass via proliferation have been achieved to
date. Recent years have seen a surge of interest into the innate plasticity of islet endocrine
cells. Following near-complete ablation of beta cells, functional beta cell mass partially
recovers by transdifferentiation from alpha or delta cells, depending on the age at which beta
cell ablation occurred (Chera et al., 2014; Thorel et al., 2010). Conversely, beta cells in both
types of diabetes dedifferentiate into a non-functional state that no longer contributes to the
functional beta cell pool, but may escape death by autoimmune destruction or exhaustion
(Rui et al., 2017; Talchai et al., 2012). These observations have changed the perspective on
pancreatic islets that were traditionally considered to consist of terminally differentiated
cells. It is now apparent that islet endocrine cells maintain considerable plasticity and can
change fate from one cell type to another. In further support of such plasticity, we
demonstrated that the periphery of healthy, adult mouse islets constitutes a privileged
‘neogenic niche’ that supports the conversion of alpha cells into functionally mature beta
cells (van der Meulen et al., 2017).

The notion that beta cells can be generated via transdifferentiation of alpha cells has spurred
considerable interest into the underlying mechanisms that establish and control islet cell fate
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that could therefore be targeted to turn alpha cells into beta cells. Understanding these
mechanisms to target the transdifferentiation of alpha to beta cells would serve a dual
purpose by not only regenerating beta cell mass, but simultaneously reducing the number of
alpha cells, which are complicit in diabetic hyperglycemia via excess glucagon secretion
(Unger and Cherrington, 2012). The successive waves of transcription factors that establish
alpha and beta cell identity during embryonic development are well-described (reviewed by
Shih et al., 2013). From these studies, the transcription factors Arx and Pax4 have emerged
as critical determinants of alpha and beta cell identity, respectively. Whole body Arx loss-of-
function leads to a lack of alpha cells that is accompanied by an increase in delta and beta
cells, while Pax4-deficient mice present with the opposite phenotype: a gain of alpha cells at
the expense of beta and delta cells (Collombat et al., 2003; Sosa-Pineda et al., 1997). This
has led to a model where Arx and Pax4 drive opposing transcriptional programs towards
alpha and beta cell identity. Indeed, overexpression of Pax4 (Collombat et al., 2009) or
deletion of Arx in alpha cells (Chakravarthy et al., 2017; Courtney et al., 2013; Wilcox et al.,
2013) both result in alpha to beta cell transdifferentiation. This has made Arx a central target
in efforts to generate beta cells from alpha cells.

The notion that inhibition of Arx suffices to promote beta cell identity was the premise for
one recent study that screened 280 clinically approved drugs and discovered that the anti-
malaria drug artemether suppressed Arx function and promoted the conversion of alpha into
beta cells (Li et al., 2017). However, many of the key observations in this paper were
obtained in experiments that used aTC-1 alpha or Min6 beta cell lines. This is potentially
problematic, as islet tumor cell lines lose properties of the primary cell type they model,
while gaining traits associated with other primary islet cells (Huising et al., 2011; Oie et al.,
1983). Particularly for studies that address the mechanisms underlying the establishment and
maintenance of mature islet cell fate and identity, primary tissues are preferable over cell
lines. Because the ramifications of this study — the repurposing of an approved drug to
promote restoration of beta cells in T1D — are significant, we conducted the pertinent
experiments at the basis of the conclusion that artemether drives transdifferentiation of alpha
to beta cells on primary islets. Following treatment with artemether, we also observed
significant inhibition of Arx expression, as previously reported in human islets (Li et al.,
2017). However, we observed no alpha to beta cell transdifferentiation upon artemether
treatment of intact mouse primary islets. Moreover, the application of artemether at the dose
and duration originally used (Li et al., 2017) reduces /ns2 expression by 100-fold,
downregulates Sic2a2 mRNA (which encodes the beta cell Glut2 glucose transporter),
inhibits glucose uptake, and abolishes glucose-induced Ca2* responses and insulin secretion.
Our observations that artemether 1) does not turn primary alpha cells into beta cells and 2)
severely affects beta cell identity and function cast doubt on the original suggestion that
artemisinins could turn alpha cells into functional beta cells.

Results and discussion

The main finding behind the idea that artemisinins could drive transdifferentiation of alpha
to beta cells was the observation that artemether suppressed glucagon protein content or
otherwise antagonized the effects of Arx (Li et al., 2017). However, these observations were
largely made in aTC-1 alpha or Min6 beta cell lines. Furthermore, artemether was suggested
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to promote restoration of beta cell mass following beta cell ablation in zebrafish or rat and
increase beta cell function in human islets, but none of these experiments offered direct
evidence that alpha to beta transdifferentiation contributed to the observed effect. The direct
evidence that was offered for alpha to beta transdifferentiation — based on lineage tracing
using Gcg-Cre — consisted of an experiment using isolated islets of Geg-Cre x Rosa26-stop-
RFP reporter mice that were dissociated after treatment (Li et al., 2017). Slightly over 1% of
all cells in control cultures was an RFP+ alpha lineage positive cell that stained for insulin,
in line with the frequency of alpha to beta transdifferentiation that accumulates at a
specialized neogenic niche at the periphery of adult islets (van der Meulen et al., 2017). This
fraction of beta cells with an alpha cell lineage marker increased to 4% following 24 hr of
culture with artemether (Li et al., 2017), although the absolute number of beta cells and beta
cells with an alpha cell lineage mark in this experiment was not reported. As the local micro-
environment within the islet is important in establishing and maintaining islet cell fate (van
der Meulen et al., 2017), we treated intact C57BL/6 wild type mouse islets with 10 M
artemether for 72 hr as described by (Li et al., 2017) and assessed whole islet gene
expression by quantitative PCR (qPCR). We observed loss of Arx mRNA expression in
artemether-treated islets compared to untreated control islets cultured in parallel (Figure
1A), consistent with the original observations on human islets (Li et al., 2017). Moreover,
expression of other alpha cell genes, including Gcg, Matb, and Irx1 was also downregulated,
suggesting a general loss of alpha cell identity (Figure 1A).

Artemether inhibits Arx but fails to promote transdifferentiation of primary alpha cells

To determine whether this inhibition of Arx initiated a fate switch of alpha to beta cells in
intact islets, we turned to a lineage labelling strategy combining the /ns/-H2b-mCherry beta
cell reporter (Benner et al., 2014) with alpha lineage labelling using Gcg-Cre (Herrera,
2000) and Rosa26-stop-YFP, similar to what was done in the original paper. In triple
transgenic offspring of these mice all current beta cells express nuclear mCherry, while the
alpha lineage will be indelibly labelled with YFP, as previously reported (van der Meulen et
al.,2017). Any alpha to beta transdifferentiation events induced by artemether in these islets
should therefore present as cells that retain YFP and acquire a red nucleus following
artemether exposure. These mice are thus well-suited to study transdifferentiation from
primary alpha to beta cells within intact islets. We imaged islets of five different mice (3
female, 2 male) in 3D over the course of 72 hr treatment with 10 xM artemether. DMSO-
treated controls cultured in parallel were included. The fact that the islets attach to the glass
coverslip enabled us to re-image the same islets at multiple time points. This allowed us to
track the fate of a large number of alpha cells to detect any that transdifferentiated into beta
cells in response to artemether. We observed alpha to beta transdifferentiated cells at the islet
periphery prior to treatment (Figure 1B), in agreement with our recent description of a
‘neogenic niche’ in the periphery of mouse islets (van der Meulen et al., 2017). However, of
the 2344 conventional alpha cells we observed prior to artemether treatment (n = 5 mice, 8—
17 islets per treatment for each animal), not a single alpha cell acquired a red nucleus that
would indicate induction of /ns/ expression and thus alpha to beta cell transdifferentiation
during the course of 72 hr treatment (Figure 1C-F; movies S1). We verified on the islets we
imaged of two mice (both female) that Arx was inhibited at the conclusion of the experiment
(Supplemental Figure 1).

Cell Metab. Author manuscript; available in PMC 2019 January 09.

66



1duosnuely Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

duosnuey Joyiny

van der Meulen et al. Page 5

Artemether effectively suppresses beta cell identity

Artemether-treated islets showed an obvious pattern of speckles or fragmentation in the red
channel after 72 hr, which was absent prior to treatment or in control islets at 72 hr (compare
Figure 1D, E). We suspected this pattern to reflect a decline in beta cell health. Indeed,
expression of /ns/ and Ins2 was downregulated >10-fold and >100-fold, respectively. Many
mature beta cell markers, including Ucn3, Mafa, Pdx1, and Slc2a2 are also significantly
inhibited by 72 hr of artemether treatment (Figure 1G). Moreover, two delta cell markers,
somatostatin (Ss?) and Hhex, a delta cell-specific transcription factor that is important for
delta cell development and function (Zhang et al., 2014), were both downregulated as well
(Figure 1H). These results establish that artemether does not selectively inhibit Arx, but
instead causes broad inhibition of alpha, beta, and delta cell-specific transcription factors, in
addition to key beta cell maturity genes. These observations suggested the possibility that
the continued presence of artemether had prevented the transdifferentiation of alpha cells
into beta cells following Arx downregulation (Figure 1F). Therefore, we performed a 48 hr
washout after stimulating with 10 uM artemether for 24 or 72 hr, but still did not observe
marked transdifferentiation of alpha cells into beta cells (Supplemental Figure 1).

Li et al. reported significant inhibition of ARX expression by artemether in human islets, but
did not show the effect of artemether treatment on the expression of insulin or any other key
beta cell markers in the same experiment. We therefore reanalyzed their human single islet
cell RNAseq data, which revealed no differences in /NS expression between control and
artemether-treated beta cells. However, ARX expression between control and artemether-
treated alpha cells was also not different (Supplemental Figure 2), which is internally
inconsistent with the robust inhibition of ARX in human islets reported by quantitative PCR
in the same paper (Li et al., 2017).

Inhibition of Ins2 by artemether occurs in excess of its normal therapeutic concentration

Our observations that artemether inhibits expression of key beta cell genes would suggest
that a widely used class of anti-malaria drugs impairs beta cell function. Therefore, we
compared the 10 M dose of artemether that was chosen by Li et al. and thus adopted in our
study, to a 50-fold lower dose of artemether that is representative of the plasma artemether
concentration in patients on a standard Artemether-lumefantrine oral anti-malarial drug
regimen (four or six doses within a 48 hr period) (Lefevre et al., 2001). While artemether
applied directly at islets in vitro at both doses inhibits key beta cell genes, the effects of
artemether at 200 nM are significantly attenuated (Figure 1I) and 72 hr stimulation exceeds
the 48 hr exposure that is common in artemether-based malaria therapies. Therefore, we do
not believe that our observations of the adverse consequences of 72 hr treatment with 10 M
artemether on isolated mouse islets in vitro should give reason for pause for the safety and
efficacy of artemether for the treatment of malaria, its primary indication. Artemisinins save
lives and have been safely prescribed to millions of malaria patients for years (Miller and Su,
2011).

Artemether does not induce beta cell death
To determine if the robust inhibition of beta cell genes by artemether was attributable to beta

cell death, we assessed the expression of a small panel of pro-apoptosis (Bad, Bax and
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Txnip), and anti-apoptosis markers (Bc/2, Belx/ and Bip) (Danial, 2007; Minn et al., 2005)
and observed no consistent changes (Figure 2A). We also did not detect an increase in the
amount of cleaved caspase 3 (Figure 2B) or the number of Sytox Blue-positive dead beta
cells (Figure 2C—H) that would indicate increased beta cell death following 72 hr artemether
treatment.

Artemether suppresses beta cell glucose uptake

Prompted by the consistent downregulation of key beta cell genes in our experiments, we
next set out to establish how 72 hr of artemether treatment would affect beta cell function.
The downregulation of S/c2a2, which encodes the beta cell surface Glut2 glucose
transporter, suggested impairment of beta cell glucose sensing. We therefore compared the
rate of glucose uptake using the fluorescent glucose marker 6-NBDG in islets from /ns/-
H2b-mCherry beta cell reporter mice (van der Meulen et al., 2017). The rate of glucose
uptake was similar in freshly isolated islets and after 72 hr of culture, but was significantly
suppressed in beta cells after 72 hr exposure to artemether (Figure 3, Movie S2).

Artemether inhibits the normal calcium response

Artemisinins have several proposed mechanisms of action. One of those is inactivation of
the Plasmodium falciparum homolog of SERCA (Eckstein-Ludwig et al., 2003), a
Ca2+ATPase that normally transports cytosolic free Ca2* back into the endoplasmic
reticulum. As calcium is required for normal insulin secretion, we sought to determine the
effect of 72 hr artemether exposure to the calcium response of beta cells within primary
islets using triple transgenic offspring of a cross between /ns/-H2b-mCherry x Ucn3-Cre x
Rosa26-stop-GCaMP6. These islets exhibit efficient expression of the genetically encoded
green fluorescent calcium indicator GCaMP6 across the mature beta cell lineage and
independent of current Ucn3 expression status in addition to expression of nuclear mCherry
across all beta cells (van der Meulen et al., 2017). Islets imaged 24 hr after isolation
invariably showed a strong calcium response to an increase in glucose concentration from
5.5 to 16.8 mM, with a majority of islets exhibiting robust pulsatile calcium behavior (Figure
4A, Movie S3). After 72 hr in culture, islets from the same animal continue to respond
robustly to glucose, although the pulsatility of the second phase has been replaced with
sustained, but uncoordinated calcium activity that returns to baseline when ambient glucose
is lowered back to 5.5 mM (Figure 4B). In sharp contrast, 72 hr of continuous treatment with
10 uM artemether completely abolished any detectable calcium response to glucose, leaving
only a muted response to 30 mM KCl-induced depolarization (Figure 4C). Li et al. reported
increased excitability of aTC-1 cells using Fura2 following 72 hr artemether treatment in
response to excitation with 15 or 30 mM KCI (Li et al., 2017), but did not measure the
calcium responses to physiologically relevant cues such as glucose on primary islet cells.
Our observations that calcium responses of artemether-treated primary beta cells within
intact islets to glucose and even KCl all but disappear illustrates the detrimental effect of
prolonged stimulation with 10 M artemether on beta cell function.

Artemether abrogates insulin secretion

As calcium is required for insulin secretion, we followed these functional calcium imaging
experiments with studies to directly measure insulin secretion. Fresh islets secreted
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significantly more insulin in response to 16.8 mM glucose, by itself or in combination with 1
nM Exendin 4, or depolarization with 30 mM KCI (Figure 4D). Islets remain responsive to
these cues after 72 hr in culture (Figure 4E). However, islets from the same animals cultured
in the presence of 10 uM artemether no longer responded to glucose, incretins or even
depolarization by 30 mM KCIl with increased insulin release (Figure 4F). These findings
conflict with the reported effect of artemether on human islets, where 72 hr artemether
treatment of human islets was reported to significantly increase glucose-stimulated insulin
secretion (Li et al., 2017), although it was not explained how a relatively small contribution
of transdifferentiating alpha cells to the existing beta cell mass promoted such a significant
increase in normalized insulin secretion. We therefore repeated the artemether treatment on
human islets and observed robust insulin secretion in response to 16.8 mM glucose and KCl
shortly after receipt of the islets (Figure 4G) and following 72 hr of culture (Figure 4H).
However, insulin secretion after 72 hr of culture in the presence of artemether completely
abrogated normal insulin secretion (Figure 41I). These results are fully in line with the body
of observations we reported here on mouse islets, but do not reproduce the stimulation of
insulin secretion in response to artemether treatment reported previously (Li et al., 2017).

The mechanism of artemether action

Li et al. proposed a model where GABA (from neighboring beta cells) inhibits glucagon
secretion from alpha cells via the artemether-induced upregulation of alpha cell GABA
receptors (Li et al., 2017). Reduced extracellular glucagon concentration then would induce
the loss of alpha cell identity — presumably via glucagon receptors on alpha cells. However,
we did not detect expression of the glucagon receptor (GCGR) or most GABA receptors in
these single alpha cell libraries (Supplemental figure 2), which are key parts of their model.
Furthermore, it is well-known that alpha cells in Gegrnull mice undergo impressive
hyperplasia with only limited evidence of insulin/glucagon co-positive cells (Solloway et al.,
2015). This does not fit a model where loss of glucagon-mediated autocrine signaling causes
alpha cells to transdifferentiate into beta cells. Li et al. also reported that expression of
ABCCS (the sulfonylurea receptor subunit of the KATP channel) is undetectable in most
single alpha cells, but is induced in alpha cells upon artemether treatment. Instead, upon
reanalysis of their data we detect robust expression of ABCCS in all single alpha cells
irrespective of artemether treatment (Supplemental figure 2). This is in keeping with the fact
that KATP channel subunit expression by alpha cells is in fact well established and
supported by transcriptomic analysis (Benner et al., 2014) and direct functional
measurements (MacDonald et al., 2007; Zhang et al., 2013). While the mechanistic basis for
its actions are unresolved, the actions of artemether at high doses could prove to be a useful
tool for the experimental induction of beta cell dedifferentiation in vitro.

Summary and conclusion

The anti-malarial drug artemether was recently reported to inhibit the alpha cell-specific
transcription factor Arx to promote alpha to beta transdifferentiation (Li et al., 2017).
However, this study relied heavily on experiments conducted on immortalized islet cell lines
and was limited in its ability to directly demonstrate transdifferentiation in primary islet
cells. As we have a vested interest in transdifferentiation of islet cells and have developed
state-of-the art tools to follow this process over time (van der Meulen et al., 2017), we set
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out to reproduce the reported effects of artemether on alpha to beta cell transdifferentiation
within intact, live islets. While we were able to reproduce the original observation that
artemether treatment reduces Arx mRNA expression along with the expression of other
alpha cell markers, we observed no evidence that this promotes alpha to beta
transdifferentiation. This is at odds with the notion that Arx deletion in adult alpha cells
leads to the formation of mature beta cells from alpha cells (Chakravarthy et al., 2017;
Courtney et al., 2013), although others have also reported that ablation of Arx in adult alpha
cells was insufficient to promote their transdifferentiation into beta cells (Wilcox et al.,
2013). The lack of alpha to beta cell conversion in our experiments may be attributed to the
fact that artemether inhibited Arx mRNA, but may not have fully ablated its expression.
Moreover, 72 hr artemether treatment on primary islets caused sustained loss of identity
across all islet endocrine cell types including the dedifferentiation of existing beta cells as
evidenced by severe impairments in glucose uptake, calcium responses and insulin secretion.
While artemether at high doses impacts islet cell function in vitro, we find no evidence to
corroborate the key conclusion (Li et al., 2017) that this drug upregulates GABA receptor
expression on alpha cells to inhibit glucagon secretion and thereby promote their conversion
into beta cells. As sustained systemic GABA administration was reported in a separate paper
to drive robust beta cell neogenesis by promoting alpha to beta cell conversions (Ben-
Othman et al., 2017), it will be important to elucidate the mechanisms that explain GABA’s
potent beta cell neogenic actions.

STAR Methods
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Mark Huising (mhuising@ucdavis.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—For in vitro stimulation of islets with artemether for quantitative PCR,
commercial C57BL6/NHsd mice were obtained from Envigo (Indianapolis, IN). A number
of transgenic mouse lines were employed. The Rosa26-stop-e YFP reporter mouse
(B6.129X1-G{(ROSA)26Sor ™! (EYFP)Cos/Ty (Srinivas et al., 2001) was used to label cells for
lineage tracing. Calcium levels in the cell were visualized using the Rosa26-stop-GCaMP6
mouse line (B6;129S6-Gt{(ROSA)26Sortm96(CAG-GCaMP6s)HzelT) (Madisen et al., 2015).
A Ucn3 BAC transgenic reporter mouse based on BAC clone RP23-332L13, which contains
the Ucn3 gene flanked by more than 197 kb of genomic context was used: the Ucn3-Cre line
(B6.FVB(Cg)-Tg(Ucn3-cre)KF43Gsat/Mmucd (van der Meulen et al., 2017). For alpha cell
lineage labeling we employed a Geg-Cre mouse line (Herrera, 2000). To label beta cells we
used the B6.Cg-Tg(/nsI-HIST1H2BB/mCherry)>?91Mhsg/] mouse line (Benner et al., 2014).
All transgenic lines are maintained by back crossing to commercially obtained C57BL6/
NHsd (Envigo). Isolated islets of mice between 3 and 13 months of age were used. Male
islets were used for most experiments, with the following exceptions. The Western blot in
Figure 2B was conducted on islets pooled from 8 animals of mixed sex. The 3D imaging
experiments in Figure 1B-F were conducted on 3 female and 2 male mice. For 2 of these
females, we verified at the conclusion of the imaging experiment that /ns2, Arx and Ucn3
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were reduced (Figure S1A) in line with the rest of the observations we reported. We have
therefore observed no indication that sex was associated with the effects of artemether, but
did not formally test this. Animals were maintained in group-housing on a 12-h light/12-h
dark cycle with free access to water and standard rodent chow. All animal procedures were
approved by the UC Davis Institutional Animal Care and Use Committees and performed in
compliance with the Animal Welfare Act and the ILAR Guide to the Care and Use of
Laboratory Animals.

Primary cell cultures —Primary islets were cultured in RPMI (5.5 mM glucose, 10%
FBS, pen/strep) under 5% CO, at 37° C in 10 cm petri dishes (7.e. not tissue culture treated).
Islets for microscopy experiments were cultured overnight on uncoated #1.5 glass-bottom 35
mM culture dishes (MatTek Corporation, Ashland, MA).

METHOD DETAILS

Islet isolation—Islets were isolated by injecting collagenaseP (0.8 mg/mL in HBSS;
Roche Diagnostics) (Invitrogen) via the common bile duct while the ampulla of Vater was
clamped. The entire pancreas was collected following the injection of 2 mL collagenase
solution and, after addition of an additional 2 mL of collagenase solution, was incubated at
37°C for 13 min. Pancreata were dissociated by gentle manual shaking followed by three
washes with cold HBSS containing 5% NCS. The digested suspension was passed through a
nylon mesh (pore size 425 ym; Small Parts Inc.), and islets were isolated by density gradient
centrifugation on a Histopaque gradient (1.077 g/mL density; Sigma) for 20 min at 1400 x g
without brake. Islets were collected from the interface, washed once with cold HBSS
containing 5% NCS, and hand-picked several times under a dissecting microscope prior to
culture in RPMI (5.5 mM glucose, 10% FBS, pen/strep).

Quantitative PCR—Islets were treated as indicated and then collected in Trizol reagent.
RNA was isolated according to standard protocol and converted into cDNA using the High
Capacity cDNA Archive Kit (Thermo Fisher Scientific, Waltham, MA) per the
manufacturer’s instructions. Primers for quantitative PCR are listed in Table S1.

Western blot—Islets were treated for 72 hr with 10 M artemether, 750 nM thapsigargin,
or DMSO (control). Thirty pl of sample treatment buffer (50 mM Tris (pH 7.5), 100 mM
dithiothreitol, 2% (weight/volume) sodium dodecyl sulfate, 0.1% (weight/volume)
bromophenol blue, and 10% (weight/volume) glycerol) was added to 50 islets. Antibody
9661 (Cell Signaling Technologies; diluted 1:6000) was used to detect cleaved caspase 3 and
was visualized using SuperSignal West Pico Chemiluminescent Substrate (Thermo Fisher
Scientific, Waltham, MA). Total protein in each lane was checked with Ponceau S solution.

3D Imaging of intact islets —To determine if alpha to beta cell transdifferentiation
occurred during artemether treatment, we cultured /ns/-H2b-mCherry x Gcg-Cre x Rosa26-
stop-YFP triple transgenic islets as described above on uncoated #1.5 glass-bottom 35 mm
culture dishes (MatTek Corporation, Ashland, MA) in RPMI (10% FBS, 5.5 mM glucose,
pen/strep) and followed them over a period of 72 hr in the presence or absence of 10 yM
artemether. The live islets were allowed to attach onto the glass bottom overnight and
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imaged in x, y, and z on a Nikon A 1R+ confocal microscope using a 40x objective the next
day before treatment (time = 0) and consecutively every 24 hr for 3 days after the addition of
artemether. Media was also refreshed at 24 hr intervals with artemether or DMSO for control
islets. For the 48 hr washout experiment, the islets were treated similarly, washed out 3x
with fresh RPMI at the end of the 24 or 72 hr artemether treatments, and cultured for another
48 hr in RPMI before imaging. Z stacks of 50 micron thick were captured for each islet in
resonant scanning mode. Artemether-induced beta cell death ex vivo was determined by the
addition of 500 nM of the nuclear dead cell marker Sytox Blue (Thermo Fisher Scientific,
Waltham, MA) 30 minutes prior to imaging. STZ-induced beta cell death was documented
after 6 hr of stimulation with 5 mM Streptozotocin (EMD Millipore, Billerica, MA).

Glucose uptake—To measure glucose uptake, we incubated freshly isolated intact islets
from Ins/-H2b-mCherry reporter mice overnight on uncoated #1.5 glass-bottom 35 mm
culture dishes (MatTek Corporation, Ashland, MA) in RPMI (10% FBS, 5.5 mM glucose,
pen/strep). The next day, Z-stacks of islets were continuously acquired as the non-
hydrolysable glucose analog 6-NBDG (6-(/N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-
Deoxyglucose; Thermo Fisher Scientific, Waltham, MA) was added at a final concentration
of 0.3 mM, using a Nikon A1R+ confocal microscope in resonant scanning mode. The
relative rate of glucose uptake was determined by drawing ROISs of individual /ns/-H2b-
mCherry+ beta cells that either had or had not taken up glucose. In parallel, islets were
cultured for 72 more hr in media with or without 10 M artemether. Media and artemether
were refreshed every 24 hr. Islets were allowed to attach to the glass-bottom culture dishes
for the last 24 hr before applying 6-BNDG and imaging as above.

Insulin secretion—Static insulin secretion experiments were carried out on 10 wild type
mouse islets per well in Krebs Ringer Buffer (KRB). Mouse islets were isolated the day
prior to the secretion assay, cultured overnight in RPMI (5.5 mM glucose, 10% FBS, pen/
strep). Human islets were cultured overnight in CMRL (Thermo Fisher Scientific, Waltham,
MA) after receipt prior to the experiment. Islets were transferred to KRB containing 5.5 mM
glucose an hr before the start of the assay. Islets were picked to a 24-wells plate for final
secretion in 10% of the final assay volume. The other 90% of volume contained
concentrated treatment compounds in KRB (glucose, exendin-4, KCl) as indicated. From the
same batch of islets, two pools were cultured in the presence or absence of 10 uM
artemether for 72 hr, with the media refreshed every 24 hr. They were then subjected to the
same secretion assay as above and in the continued presence of artemether in the case of
artemether-treated islets. Insulin was measured by radioimmunoassay (EMD Millipore).

Calcium responses in intact islets —We used islets from a triple transgenic offspring
of a cross between /ns/-H2b-mCherry, Rosa26-stop-GCaMP6 and Ucn3-Cre to label the
mature beta cell lineage (van der Meulen et al., 2017). Live islets were cultured overnight
after the islet prep, placed on 35 mm dishes with glass bottom (#1.5; MatTek Corporation),
allowed to attach overnight and imaged in x, y, z and t on a Nikon A1R+ confocal
microscope using a 40x objective with a long working distance. Similar to the glucose
uptake experiments, two additional sets of islets were cultured in the presence or absence of
10 #M artemether for 72 hr prior to measurement of calcium activity, with islets transferred
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to fresh media and artemether every 24 hr. Treatments were continuously perfused over the
islets using a Masterflex peristaltic pump at 2.5 mL per minute. Each protocol concluded
with a 30 mM potassium chloride pulse to demonstrate viability and responsiveness of the
islets throughout the treatment. Individual islets in individual z-planes were defined as
regions of interest (ROI) and the green fluorescence intensity within the ROIs was plotted
over time as a measure of calcium activity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis —Data were analyzed by ANOVA followed by Holm-Sidak’s
multiple comparisons test or by t-test and are represented as mean + SEM, with n defined in
the corresponding figure legend. Differences were considered significant when p<0.05.
Statistics were computed using Prism (GraphPad Software, La Jolla, CA).

Counting algorithm —We developed a Matlab algorithm to count the beta cells in Ins/-
H2B-mCherry x Geg-Cre x Rosa26-stop-e YFP islets. This takes the NIS Elements file of the
islet imaged in 3D as its input and uses a combination of automated thresholding and size
and shape exclusions to distinguish the red nuclei from the background. Recorded
measurements are written to a csv file containing all measurements along with the sample
information. We observed a close correlation between manual and automated counts of beta
cells (<5% difference). YFP+ alpha cells and YFP+/mCherry co-positive transdifferentiated
cells were counted manually.

Bioinformatics —Read SRA files were pulled from GEO Datasets GSE73727 and
GSE84714, and converted into fastq format using the NCBI SRA toolkit. Sequence files
were then aligned using STAR (Dobin et al., 2013) with default parameters to the Gencode
GRCh37 24 human genome. Bigwigs were generated using STAR’s wiggle output option
and UCSC’s Genome Ultilities. Gene-level quantification was performed on all samples’
sorted BAM files using featureCounts (Liao et al., 2014) default parameters, counted by
Gencode defined exons, and aggregated to the gene level. Differential expression analyses
were performed with edgeR (Robinson et al., 2010) using the generalized linear model
approach and maximum likelihood method testing. RPKM values were generated using
edgeR’s rpkm function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
O Artemether does not induce the transdifferentiation of a cells into f cells
O High doses of artemether dedifferentiate islet cells without inducing death
O Artemether not only inhibits Arx and Geg, but inhibits Ins2 > 100-fold

O Artemether suppresses glucose uptake and prevents insulin secretion
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Figure 1. Artemether does not promote the transdifferentiation of alpha to beta cells but instead
suppresses overall islet cell identity

(A) Real time quantitative PCR analysis of Arx, Gcg, Mafb, and Irx gene expression in
artemether treated islets (n=4 replicates). *p<0.05.

(B) 3D reconstruction of a representative image of an islet from an /ns/-H2B-mCherry x
Geg-Cre x Rosa26-stop-YFP triple transgenic reporter mouse at the onset of the experiment.
Arrow indicates an mCherry/YFP co-positive cell that represents a spontaneous alpha to beta
transdifferentiated cell.

(C) Islet in (B), re-imaged after 72 hr of incubation. Arrow indicates the same alpha to beta
transdifferentiated cell that was present prior to the 72 hr culture window.

(D) 3D reconstruction of a representative image of another islet from the same mouse as in
(B) prior to artemether treatment.

(E) Islet in (D), re-imaged after 72 hr of culture in the presence of 10 uM artemether. No
alpha to beta transdifferentiated cells are present, note the appearance of a ‘speckled’
background across the entire islet. See also Movie S1.

(F) Quantification of the total number of alpha, beta and alpha to beta transdifferentiated
cells. The same islets were imaged repeatedly in 3D at 24 hr intervals. n = 5 mice, 8—17
islets per animal for each treatment.

(G) Real time quantitative PCR analysis of the expression of a panel of beta cell genes in
artemether treated islets (n=4 replicates). *p<0.05, **p<0.01, ***p<0.001.
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(H) Real time quantitative PCR analysis of the expression of a panel of delta cell genes in
artemether treated islets (n=4 replicates). *p<0.05, **p<0.01, ***p<0.001.

(I) Real time quantitative PCR analysis of a panel of beta cell genes in islets treated for 72 hr
with 200 nM or 10 M artemether (n=4 replicates). *p<0.05, **p<0.01, ***p<0.001.
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Figure 2. Artemether does not induce beta cell death
(A) Real time quantitative PCR analysis of the expression of a panel of pro- and anti-

apoptotic genes in artemether treated islets (n=4 replicates). *p<0.05.

(B) Western blot analysis of the apoptosis marker cleaved caspase 3 in islets treated for 72 hr
with 10 M artemether. Thapsigargin (750 nM) was used as a positive control.

(C) 3D reconstruction of a representative /ns/-H2b-mCherry islet before artemether
treatment.

(D) 3D reconstruction of a representative /ns/-H2b-mCherry control islet before culture.

(E) Islet in (D) re-imaged after 72 hr in culture. The nuclear dead cell marker Sytox Blue
was added at 72 hr.

(F) Islet in (C) re-imaged after 72 hr in culture with 10 #M artemether. The nuclear dead cell
marker Sytox Blue was added at 72 hr.

(G) 3D reconstruction of the same islet as in (E) after 6 hr in the presence of STZ to induce
beta cell death.

(H) Quantification of the fraction of Sytox Blue positive beta cells after 72 hr in control (12
islets), and artemether-treated cultures (16 islets) compared to control islets exposed to STZ
for an additional 6 hr (5 islets). ***p<0.001 compared to control.

Cell Metab. Author manuscript; available in PMC 2019 January 09.

79



1duosnuely Joyiny 1duosnuepy Joyiny 1duosnuepy Joyiny

duosnuey Joyiny

van der Meulen et al.

Page 18

A fresh Ins1-H2b-mCherry islets
(2]

8
S

Ins 1-H2b-mCherry islets, 72 hr control

6-NBDG uptake (a.u.)
(4,
S

Ins1-H2b-mCherry islets, 72 hr artemether

time (minutes)

pre-treatment == 72 hrcontrol
« extra-islet 6-NBDG == 72 hr artemether

Figure 3. Artemether inhibits glucose uptake by beta cells
(A) Comparison of the rate of uptake of the glucose analog 6-NBDG in islets of /ns/-H2b-

mCherry beta cell reporter mice in isolated islets after isolation (black), after 72 hr in culture
in the presence of DMSO (gray) or artemether (red). 6-NBDG signal in the media outside of
the islet is quantified as a reference (green). Averages and 95% confidence intervals are
given for 19-26 individual beta cells of 2-3 islets for each treatment.

(B) Video stills of 6-NBDG uptake in a freshly isolated /ns/-H2b-mCherry islet. See also
Movie S2.

(C) Video stills of 6-NBDG uptake in an /ns/-H2b-mCherry control islet after 72 hr of
culture.

(D) Video stills of 6-NBDG uptake in an /ns/-H2b-mCherry islet after 72 hr of artemether
treatment.
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Figure 4. Artemether abrogates beta cell calcium responses and insulin secretion
(A) The calcium responses of freshly isolated islets from /ns/-H2B-Chy x Ucn3-Cre x

Rosa26-stop-GCaMP6 triple transgenic mice were imaged in 3D during a standard glucose
stimulation protocol from 5.5 to 16.8 to 5.5 mM glucose, followed by a brief depolarization
by 30 mM KCI to demonstrate responsiveness of the islets throughout the experiment. Each
trace represents the combined response of a single islet. Thumbnails provide snapshots of
the calcium response at key points during the trace for 2 of the 5 islets imaged. See also
Movie S3.
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(B) Islets from the same animal and subjected to the same stimulation protocol as in (A), but
after 72 hr in culture. First phase secretion is intact, but the second phase is muted and
pulsatility is lost.

(C) Islets from the same animal and subjected to the same stimulation protocol as in (A), but
after 72 hr in culture in the presence of 10 uM artemether. The glucose response is
completely abolished and only a modest response to forced depolarization with 30 mM KCI
can be detected.

(D) Insulin secretion from freshly isolated mouse islets in response to glucose, glucose +
Exendin 4, or 30 mM KCI (n=4 replicate treatments). *p<0.05, **p<0.01 compared to 5.5
mM glucose. (E) Insulin secretion on islets from the same batch as in (D), but after 72 hr in
culture (n=4 replicate treatments). *p<0.05, **p<0.01 compared to 5.5 mM glucose.

(F) Insulin secretion on islets from the same batch as in (D), but after 72 hr of treatment with
10 uM artemether (n=4 replicate treatments). *p<0.05, **p<0.01 compared to 5.5 mM
glucose.

(G) Insulin secretion from freshly isolated human islets in response to glucose or 30 mM
KCl (n=8 replicate treatments). *p<0.05, **p<0.01, ***p<0.001 compared to 5.5 mM
glucose.

(H) Insulin secretion on islets from the same batch as in (G), but after 72 hr in culture (n=6
replicate treatments). *p<0.05, **p<0.01, ***p<0.001 compared to 5.5 mM glucose.

(I) Insulin secretion on islets from the same batch as in (G), but after 72 hr of treatment with
10 uM artemether (n=6 replicate treatments). *p<0.05, **p<0.001, ***p<0.001 compared to
5.5 mM glucose.
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Islet gene expression has been widely studied to better
understand the transcriptional features that define
a healthy B-cell. Transcriptomes of FACS-purified «-,
B-, and &-cells using bulk RNA-sequencing have facili-
tated our understanding of the complex network of cross
talk between islet cells and its effects on 3-cell function.
However, these approaches were by design not intended
to resolve heterogeneity between individual cells. Sev-
eral recent studies used single-cell RNA sequencing
(scRNA-Seq) to report considerable heterogeneity within
mouse and human B-cells. In this Perspective, we assess
how this newfound ability to assess gene expression at
single-cell resolution has enhanced our understanding of
B-cell heterogeneity. We conduct a comprehensive as-
sessment of several single human p-cell transcriptome
data sets and ask if the heterogeneity reported by these
studies showed overlap and concurred with previously
known examples of B-cell heterogeneity. We also illus-
trate the impact of the inevitable limitations of working
at or below the limit of detection of gene expression at
single cell resolution and their consequences for the
quality of single-islet cell transcriptome data. Finally,
we offer some guidance on when to opt for scRNA-
Seq and when bulk sequencing approaches may be
better suited.

Type 1 diabetes (T1D) and type 2 diabetes (T2D) affect
roughly 14% of the population and are the seventh leading
causes of death in the U.S. (1). T1D is characterized by
autoimmune-mediated -cell destruction within the pan-
creas. T2D is characterized by increased peripheral insulin
resistance, which eventually unmasks and/or precipitates
B-cell dysfunction (2). Consequently, the field has mostly
focused on B-cells, despite the fact that pancreatic islets of

Langerhans contain at least five different hormone-
secreting endocrine cell types, supported by a constellation
of auxiliary cells, whose clustering supports coordinated
secretion of insulin and glucagon to maintain nutrient
homeostasis (3-5). The spatial distribution of these cells
within islets varies between human and mouse models, but
[3-cells are the most abundant endocrine cell type in both
species, followed by a-cells, 8-cells, and a lower number of
vy-/pancreatic polypeptide cells and e-cells (6,7).

While islet isolation is a routine procedure, the close
association of all of these endocrine and auxiliary cell types
within the islet has long complicated the isolation and
purification of homogeneous populations of each islet cell
type. Consequently, changes in gene and protein expres-
sion within intact isolated islets were often attributed
to B-cells, as they are numerically the most abundant islet
cell type within the islet. Clearly, this ignores the fact that
multiple additional endocrine cells, as well as endothelial
cells, macrophages, glia, fibroblasts, and pericytes collec-
tively make up the pancreatic islet (8-11). B-Cell dysre-
gulation and dysfunction are a prominent factor in
disrupted insulin secretion and blood glucose control,
but major functional and transcriptional changes also
occur in a-cells (12,13), as well as vasculature (14), that
are difficult to detect or distinguish from changes to 3-cells
at the level of the intact islet.

RESOLVING DIFFERENCES BETWEEN ISLET
ENDOCRINE CELLS

Purification of B-cells had initially been achieved on the
basis of autofluorescence (15), an approach that works
reasonably well. Subsequent strategies have improved this
approach by generating transgenic reporter lines that
express fluorescent markers such as GFP or mCherry
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specifically in B-cells (16,17). However, neither strategy
can copurify pure a- or d-cells. Several groups have re-
cently resolved this limitation by generating combinations
of transgenic reporter mice that made it possible to isolate
pure populations of a-, B-, and 8-cells from the same islet
by FACS. This has enabled the generation of comprehen-
sive transcriptomes of FACS-purified pools of mouse a-,
B-, and d-cells with >99% purity (17-19). For human
islets, the problem of purifying o- and -cells was resolved
independently by the generation of a panel of antibodies
that enabled the purification of human a- and B-cells with
approximately 90% purity (20-22). The ability to purify
human islet cell types has allowed for further exploration
in human islet transcriptomics and the subsequent iden-
tification of genes that encode proteins exclusively
expressed in -cells (23,24). However, cell-surface markers
are currently unable to isolate human 3-cells or other,
more rare islet endocrine cells with reasonable purity by
flow cytometry.

PREVIOUSLY ESTABLISHED HETEROGENEITY

In addition to the heterogeneity that results from the
clustering of many different cell types within a functional
islet, it has long been evident that considerable heteroge-
neity exists within the (-cell population (21,25-29), and
likely within non- populations of islet cells as well.
Functional heterogeneity among 3-cells occurs with regard
to the glucose threshold and insulin secretory response of
individual B-cells (25,26,30). Heterogeneity in the expres-
sion of a number of markers, such as the peptide hormone
neuropeptide Y (NPY), tyrosine hydroxylase (TH), and
Dickkopf-3, by individual B-cells has also been reported
(31-34).

More recently, a series of articles have rekindled in-
terest in (-cell heterogeneity, with the description of
Flattop (Fltp)-expressing B-cells (27), ST8SIA1/CD9-positive
B-cells (21), Uen3/Glut2-negative “virgin” B-cells (35,36),
“bottom” B-cells (named for the bottom of two FACS gates
used to isolate them [37]), and senescent B-cells (38). This
paints a landscape of B-cell heterogeneity that features
changes in marker expression over the life span of the
B-cell and/or in relation to the functional state of the B-cell
in health and disease. Understanding of this heterogeneity
would benefit greatly from transcriptional read-outs at
single-cell resolution. Indeed, a number of recent articles
have reported on single-cell transcriptomes of mouse and
human primary islet cells (39-49).

The great promise of sequencing at single-cell resolu-
tion is that this should resolve the considerable hetero-
geneity that exists among the individual B-cells that come
together in the islet. Here, we take stock of what these
recent single-cell studies have added to our understanding
of islet cell biology. We do so by asking two basic questions:
1) Have individual single-cell sequencing studies that are
similar in design resulted in comparable outcomes? 2) Did
single-cell approaches recapitulate well-known and vali-
dated examples of (-cell heterogeneity? In addressing
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these two straightforward questions, we discuss areas
where single-cell approaches have made clear and tangible
contributions to our field. However, we also document
examples where single-cell sequencing approaches may
fall short of the unrealistically high expectations that exist
for this approach. We review and clarify some of the
underlying reasons that may have contributed to this
disconnect. Finally, we offer some guidance on when a single-
cell approach is preferred and what question may be better
resolved using a bulk RNA sequencing (RNA-Seq) ap-
proach.

VALIDATION OF NOVEL B-CELL HETEROGENEITY
IDENTIFIED IN SINGLE-CELL RNA-Seq STUDIES

As a first step in assessing the reported heterogeneity by
recent single-cell (sc)RNA-Seq studies of islets, we com-
pared B-cell heterogeneity that was highlighted by the
authors of several recent scRNA-Seq studies of human
pancreatic islets (43,44,46-48). The overall design for each
of these studies was to sequence dissociated islet cells of
human subjects at single-cell resolution, even though each
of these studies inevitably differed in the technical details
and the sequencing methodologies that were used (Sup-
plementary Table 1). Nevertheless, given the agreement in
the overall design, we reasoned that true heterogeneity
should emerge despite the inevitable variations in meth-
odologies and should be reproducible across individual
human donors in each of these studies. After all, if this
were not true, all observations that have emerged from
scRNA-Seq studies of human islets to date would be limited
only to the deceased islet donors who were the subject
of these studies and would not extend to the general
population.

To our surprise, not a single gene was highlighted after
manual annotation by the authors as heterogeneously
expressed across all five studies, and only a few genes
were highlighted independently by up to three scRNA-Seq
studies of human B-cells (Supplementary Fig. 1A and
Supplementary Table 2). This observation can be inter-
preted in two possible ways. It may be that the extent of
B-cell heterogeneity is so great that the human B-cell
scRNA-Seq studies to date have effectively undersampled
this heterogeneity. The alternative explanation is that the
detection of variation in gene expression across single
B-cells is dominated by noise resulting from operating
at or below the limit of detection of gene expression in
single-cell expression, causing false negatives to dominate
the list of heterogeneously detected (-cell genes. Moreover,
the short list of heterogeneously detected genes in -cells
was notably lacking genes encoding proteins known to
demonstrate heterogeneous expression patterns among
B-cells (e.g., NPY, TH, UCN3, DKK3). This raises the
question whether scRNA-Seq approaches were able to ac-
curately detect expression of established markers of het-
erogeneity among (3-cells. While many of these studies have
taken their analyses beyond single-gene transcriptomes,
ie., gene set enrichment and multiparametric pathway
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analyses, our primarily focus was to evaluate whether
heterogeneity could accurately be recapitulated.

VALIDATION OF NOVEL HETEROGENEITY IN
B-CELLS

To determine the degree with which different scRNA-Seq
studies detect overlap in B-cell heterogeneity, we con-
ducted a meta-analysis of the five human scRNA-Seq
studies. Given that the overall design of each of these
studies was essentially the same and that differences
between these studies were limited to the inevitable
variation across human donors and variations in the
sequencing methods and analyses pipelines, we expected
to observe considerable overlap between each data set
(Supplementary Table 1). To further reduce any differ-
ences, we downloaded and reanalyzed the raw data
from each of the studies, generating an integrated
analysis that resolved each of the major pancreas popula-
tions (Fig. 1A-L and Approach & Tools in Supplementary
Data). We also verified that clustering was not driven by
the platform used or by donor (Supplementary Fig. 24
and B).

We identified two subclusters within the B-cell pop-
ulation (Fig. 1A). By differential testing we identified
52 genes that drove variation between the two subpopu-
lations (P = 0.05; Supplementary Table 3). Notably,
G6PC2, MAFA, and NPY were detected within this list,
as were several non-f3 endocrine and acinar cell markers,
such as GCG, SST, PPY, PRSS, SOD2, and PDK4. Among the
52 genes were three genes—retinol-binding protein
4 (RBP4) (46-48), delta-like noncanonical Notch ligand
1 (DLK1) (43,44,46), and homocysteine-responsive
endoplasmic reticulum-resident ubiquitin-like domain
member 1 (HERPUDI) (44)—that had previously been
self-reported as heterogeneously expressed by one of
the original human scRNA-Seq studies. While multiparam-
eter signature analyses, such as gene set pathway testing,
can be a powerful tool to make meaning out of subtle
changes across varying genes, our small list of 52 did not
suffice for further downstream analysis.

Surprised by the fact that only a limited number of
genes drive variation between these two (-cell subpopu-
lations, and the fact that non-f3 markers featured prom-
inently in this list, we limited our analysis on only the
B-cells from healthy donors (Supplementary Fig. 3A).
Because these B-cells are more closely related to each
other than, for example, to a- and 8-cells, clustering is
confounded significantly by study-related confounders
such as sequencing platform, genetic variation among
donors, and variations in islet collection and culture
parameters, suggesting that these contributions out-
weighed the contributions of true biological heterogeneity
to clustering of B-cells (Supplementary Fig. 3B and O).
Indeed, in a Venn diagram of the 2,000 genes that drove
clustering of B-cell subpopulations from healthy donors
for each individual study, only a distinct minority of 24
genes (1.2%) emerged as common drivers of heterogeneous
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expression among [-cells across all five human B-cell
scRNA-Seq studies (Supplementary Table 4 and Supple-
mentary Fig. 3D-F). Moreover, approximately half of the
genes that drove clustering of B-cells were unique to that
particular data set and did not contribute to -cell sub-
population clustering in each of the other human -cell
scRNA-Seq data sets (Supplementary Fig. 3D). NPY was
the only gene encoding a known B-cell heterogeneity
marker on this list.

To confirm these results, we selected 10 of these
24 genes that had a low to high range of abundance to
evaluate how the expression of these genes compared
across the same five studies. We observed varying fractions
of B-cells with detectable expression (counts per million
[CPM] >1) (Supplementary Fig. 3E) and comparable dis-
tribution of gene expression in violin plots (Supplementary
Fig. 3F) for the majority of these 10 genes. Overrepresen-
tation of INS (Supplementary Fig. 4A) may have caused
poor library complexity by reducing the detection of other,
less abundant genes below the detection limit. This is
a general drawback of scRNA-Seq and explains in part
why the number of detectable genes in each single cell is
several-fold lower than the number of detectable genes in
the same sample processed for bulk RNA-Seq (50,51). Two
of the studies in our meta-analysis had the foresight to
include in their experimental design the parallel processing
of bulk samples from the same donors that were used to
generate scRNA-Seq libraries, although cold-ischemic and
postisolation culture times, as well as processing and
dissociation methods, varied between them (43,47). This
revealed that the average number of genes detectably
expressed in whole-islet bulk islet samples (CPM >1)
approximates 15,000, while the number of genes that
are detectably expressed in each single (-cell ranges
from 2,000 to 6,000 (Supplementary Table 1 and Supple-
mentary Fig. 4B and (), with the subset of genes that is
detected in each single B-cell in large part determined by
chance (52). To illustrate this heterogeneous detection, we
plotted the fraction of single human (-cells with detectable
expression for all genes ranked in descending order of
abundance (Fig. 2 and Supplementary Fig. 5A-E). This
revealed a clear correlation between the average level of
gene expression and the rate of detection in single human
B-cells across all five studies, with more abundant genes
detected in a larger fraction of B-cells. However, only an
exceedingly small number of 86 genes (0.46% of all de-
tectable genes; range 1 [0.005%]-153 [0.83%]) on average
was detectable across all single B-cells in any given study.
This is an obvious concern, as even the most conservative
estimates place the number of housekeeping genes—genes
required at all times in each cell—at several hundred (53).
Stated differently, for the large majority of genes
(>99.5%) heterogeneous detection in single B-cells is
the norm (Fig. 2 and Supplementary Fig. 5A-E). It is highly
unlikely that all of these genes are truly heterogeneously
expressed in B-cells. Instead, this observation indicates
that heterogeneous detection of expression in single cells
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Figure 1—Integrated analysis of five human pancreatic islet sScRNA-Seq studies across healthy donors. A: Dimensional reduction through
uniform manifold approximation and projection across the five human studies identified clear clusters based on cell identity (see
Supplementary Data, Approach & Tools for details). Two subpopulation clusters emerged from this analysis within the B-cell group,
prompting for differential expression testing that identified 52 genes as significantly driving heterogeneity between the two (Supplementary
Fig. 3A) (P = 0.05). B-D: Dimensional reduction of our clustered population to confirm -, a-, and -cell clusters based on hallmark hormone
expression. E-L: Exploring gene presence across selected, established markers identified in 3-cell heterogeneity. PP, pancreatic poly-

peptide. Data from 43,44,46-48.

may be a poor predictor of actual single 3-cell expression.
Collectively, these observations suggest that heterogeneity
of detection that is observed across single human B-cells
may largely reflect the low fidelity of detection that is
a consequence of operating at or below the limit of detection
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for a majority of transcripts. This may also have driven the
limited overlap among the shared set of genes that emerged
as common contributors to B-cell clustering across the five
human scRNA-Seq studies we assessed in our analysis.
Nevertheless, accumulated across all cells in a pool of single
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Figure 1—Integrated analysis of five human pancreatic islet sScRNA-Seq studies across healthy donors. A: Dimensional reduction through
uniform manifold approximation and projection across the five human studies identified clear clusters based on cell identity (see
Supplementary Data, Approach & Tools for details). Two subpopulation clusters emerged from this analysis within the B-cell group,
prompting for differential expression testing that identified 52 genes as significantly driving heterogeneity between the two (Supplementary
Fig. 3A) (P = 0.05). B-D: Dimensional reduction of our clustered population to confirm -, a-, and 3-cell clusters based on hallmark hormone
expression. E-L: Exploring gene presence across selected, established markers identified in B-cell heterogeneity. PP, pancreatic poly-

peptide. Data from 43,44,46-48.

may be a poor predictor of actual single B-cell expression.
Collectively, these observations suggest that heterogeneity
of detection that is observed across single human B-cells
may largely reflect the low fidelity of detection that is
a consequence of operating at or below the limit of detection

88

for a majority of transcripts. This may also have driven the
limited overlap among the shared set of genes that emerged
as common contributors to B-cell clustering across the five
human scRNA-Seq studies we assessed in our analysis.
Nevertheless, accumulated across all cells in a pool of single
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Figure 3—Visualizing the detection across the gene model between single and bulk sequencing. A: UCSC Genome Browser comparing the
read coverage of insulin (INS) between the Segerstolpe et al. (47) healthy single B-cell population (n = 161) and their companion bulk islet
libraries. B: MafA is an established B-cell marker that is poorly detected in single human B-cells. C: The highly abundant expression of GCG
uniformly covered in single human a-cells (n = 443). D: The important a-cell transcription factor ARX, in contrast, is captured poorly in healthy

single a-cells.

MAFA capture across all five studies, less than 50% of
cells in the B-cell cluster had detectable expression as
determined through Seurat (56) (Fig. 1G). Using the
same approach across the study’s 443 single a-cell
libraries revealed uniform coverage of the abundant
GCG transcript in each single o-cell library (Fig. 30).
However, the transcription factor ARX, which is required
for a-cell identity (57,58), was not detected at all in 18%
of a-cells with evidence of significant 3’ bias in incomplete
coverage in the a-cells with detectable ARX expression
(Fig. 3D).
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REPRODUCING KNOWN B-CELL GENE
EXPRESSION

These observations raise the question of whether the
heterogeneous detection of mRNA expression in single
B-cells reflects true biological heterogeneity in gene ex-
pression or instead is a product of the inherent limitations
of scRNA-Seq. Therefore, we queried if single B-cell tran-
scriptomes accurately detected genes encoding for proteins
that are required by every single B-cell, as well as genes that
encode for proteins with well-documented and validated
heterogeneous expression across the 3-cell population
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Figure 4—Comparison of detection of established B-cell markers in single B-cells comparing RNA-Seq and immunohistochemistry and
coverage across the gene body of established B-cell markers detected by scRNA-Seq. A: Fraction of single human B-cells with detectable
expression (CPM >1) across five human B-cell scRNA-Seq studies, compared with the fraction of human B-cells reported to express the
corresponding protein (Supplementary Table 5A). The majority of genes are underdetected in human scRNA-Seq compared with the fraction
of human B-cells that express the corresponding protein. B: The approach used in Fig. 4A, applied to established B-cell markers comparing
two mouse scRNA-Seq studies and expression of the proteins encoded by these genes (Supplementary Table 5B). C-V: UCSC Genome
Browser plots of read coverage across these genes, using single—B-cell libraries and companion bulk sequencing across all studies and
platforms, highlighting differences between full-length and 3’-based capture (43,44,46-48).
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(Supplementary Table 5). In addition to INS, examples
include transcription factors such as PDX1 (57), NKX6.1
(59), PAX6 (60), and MAFA (61), as well as proteins
required for normal stimulus-secretion coupling, insulin
processing, and exocytosis such as SLC2A1 (62), GLP1R
(63), ABCC8 (64), KCNJ11 (65), GCK (66), G6PC2
(67), KCNB1 (65), ERO1B (68), VAMP2 (69), SNAP25
(69), and UCN3 (70). With the exception of PDX1, MAFA,
and SLC2A1, all of the proteins encoded by these genes are
detected in more than an estimated 95% of human B-cells
in healthy islets by immunohistochemical techniques. How-
ever, mRNA for all but the most abundantly expressed of
these genes is consistently detected in a decidedly smaller
fraction of B-cells than stain positive for the protein product
they encode (Fig. 44). NKX6.1, UCN3, KCNJ11, and KCNB1
transcripts are detected in a particularly low fraction of
B-cells. One possible explanation for this is intermittent
transcription, where transcription occurs in discrete
bursts that underlies stable protein expression (71). How-
ever, if this is the case, one would expect uniform coverage
gene body capture for the subset of 3-cells that would have
been captured during the burst phase of expression for
that gene. Instead, UCSC Genome Browser plots for these
genes indicate widespread 3’ bias and underrepresentation
of many known [3-cell genes, even those that are expressed
at medium to high transcript levels such as UCN3, MAFA,
and NKX6-1 (Fig. 4H-V). This is a likely consequence of
working at or below the level of detection of scRNA-Seq
approaches. One uncommon example with read coverage
across the full gene model was observed in a distinct subset
of B-cells for DLK1, which reflects a pattern in line with
burst transcription (Supplementary Fig. 6A-E). ST8SIA1
and CDY, two genes that encode protein markers recently
used to distinguish four distinct human B-cell types (21),
are also consistently underdetected in single-human 3-cell
transcriptomes. A similar set of ubiquitous P-cell genes
that are expressed at medium to high levels in mouse 3-cell
transcriptomes are detected in a higher fraction of B-cells,
although large discrepancies remain for Glplr and Mafa
(Fig. 4B).

ASSESSING SINGLE-CELL SEQUENCING QUALITY

Until this point, we have largely used the fraction of 3-cells
with detectable expression (CPM >1) of a given gene as
a metric of the fidelity of scRNA-Seq (Fig. 2, Supplemen-
tary Fig. 1B, and Supplementary Fig. 3E). This revealed
that heterogeneous detection and significant 3’ bias is the
norm for single-human B-cell transcriptomes, irrespective
of investigator, approach, or platform (Supplementary
Table 1). To better quantify the gap in quality of gene
coverage between single-cell and bulk sequencing
approaches, we adopted the transcript integrity number
(TIN) score (72). This metric ranges between 0 and
100 and is calculated after library preparation and se-
quencing to reflect the quality and uniformity of read
coverage across the gene model. A high TIN score for
a gene reflects uniform read coverage across the gene
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model, while a low TIN score reflects uneven coverage
across the gene model owing to 3’ bias, GC bias, or
transcript degradation (Fig. 3 and Supplementary Fig.
7). TIN scores strongly correlate with the RNA integrity
number, a measure of RNA quality used to assess input
RNA quality before library preparation.

To visualize the relationship between gene expression
and quality of its representation in single-cell versus bulk
RNA-Seq approaches, we compared the correlation of TIN
scores and gene expression among five human (43,44,46-48)
and two mouse single-cell studies (42,45) with two mouse
(18,19) and three human bulk islet RNA-Seq data sets
(43,47,73). For bulk RNA-Seq approaches, there is essen-
tially no drop-off in TIN score with lower gene expression
(expressed as CPM) until CPM values are <5 (Fig. 54). In
other words, in bulk RNA-Seq approaches, the quality of
the coverage of gene expression across the gene model
from 5’ to 3’ is both high and independent of transcript
abundance unless gene expression is quite low. In sharp
contrast, in scCRNA-Seq, there is a very clear effect of the
abundance of gene expression on TIN score across the full
range of transcript abundance values. Even at highly
abundant transcripts with CPM values >100, TIN scores
remain well below those of similarly abundant genes
detected via bulk RNA-Seq. This reflects the drop-off in
the quality of sequence coverage that is the consequence of
working at or below the level of detection in scRNA-Seq
approaches. Limiting analysis to only genes with a consis-
tently high TIN score would yield more reliable and re-
producible results but would also drastically undercut the
number of genes that are included in the analysis, as
over half of the genes detected in human B-cell scRNA-
Seq have TIN scores <20. A comparison of TIN score
cutoff versus CPM cutoff to the fraction of remaining
genes suggests that TIN score cutoffs are a better metric
than CPM cutoffs to separate high- and medium-quality
read data (Fig. 5B).

Conversely, for bulk RNA-Seq samples, significant num-
bers of genes are excluded from the analysis only when the
TIN quality threshold is raised over 50 (Fig. 5C).

CROSS-CONTAMINATION IN SINGLE-ISLET CELL
TRANSCRIPTOMES

One question that continues to stir debate in the field is
whether healthy B-cells transcribe GCG at low abundance
and conversely if a-cells transcribe INS. Indeed, the a-cell
cluster in our study clearly contains lower but detectable
levels of INS, and 3-cells had detectable levels of GCG (Fig.
1B and (). While cells that coexpress insulin and glucagon
protein are regularly observed during embryonic devel-
opment and in stem cell-derived B-cell-like cultures
(32,74,75), they are exceedingly rare in healthy adult islets
(76,77). However, this does not rule out translational
inhibition of GCG in B-cells and INS in a-cells. Indeed,
bulk RNA-Seq data of FACS-purified mouse a-cells detect
Ins2 expression at 80- to 170-fold lower than Ins2 in 3-cells
from the same islets (Fig. 64) (18). Similarly, Geg is detected
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Figure 5—Visualization of the difference in sequence quality between single-cell and bulk RNA-Seq. A: Average TIN quality score plotted
against transcript abundance in CPM across five human and two mouse single-cell and bulk RNA-Seq data sets. Note the large difference in
quality between single-cell and bulk RNA-Seq data and that TIN scores in bulk are uniformly high irrespective of transcript abundance. B:
Progressive application of a CPM threshold leads to the exclusion of similar relative numbers of genes between single-cell and bulk data sets
(after correcting for the fact that single-cell libraries detect between 2,000 and 6,000 genes, while bulk libraries detect around 16,000 genes).
C: Progressive application of a TIN threshold leads to the rapid exclusion of genes from single-cell data sets but only effects bulk RNA-Seq
data sets at much more stringent TIN score cutoffs. Data from human (43,44,46-48) and mouse (42,45) scRNA-Seq and human (43,47,73)

and mouse (18,19) bulk RNA-Seq.

in FACS-purified B-cells at 220-fold lower levels than its
expression in a-cells (Fig. 6B) (18). This relatively low level
of detectable reads could be caused by cross-contamination
during FACS purification. While doublets, including those
consisting of an a-cell and a (-cell, are normally gated out
before collection, a well-calibrated FACS running at a con-
servative speed has an error rate less than 1%. In the
context of FACS purification of dissociated islet suspen-
sions, this means that fewer than 1% of the events that are
sorted as (-cells are in fact a non—p-cell, possibly an a-cell.
Since GCG accounts for up to 20% of all reads in the a-cell
pool (17,18), a couple of contaminating a-cells could suffice
to explain the detection of Ge¢g in transcriptomes of bulk
FACS-purified B-cells.

Single-cell approaches ostensibly do not suffer from this
confounder as they assess transcription in individual cells.
Indeed, 0.2-1.5% of all reads in single human [-cells map
to GCG and 0.001-1.109% of reads in single human a-cells
map to INS. These observations at face value have been

suggested as definitive proof that (3-cells express GCG and
a-cells express INS. However, Macosko et al. (78), in their
original article describing the Drop-Seq approach, con-
ducted a key control experiment that is often over-
looked but is of direct relevance in this discussion. They
approached the question of contamination at the single-
cell level by mixing human HEK cells and mouse 3T3 cells
prior to droplet formation and single-cell sequencing. They
observed that an average of 0.26-2.44% of the reads in
each and every single cell mapped uniquely to the genome
of the other species (Fig. 6C). As they demonstrate, this can
only be explained by the integration of free-floating or
naked mRNA derived from cells that were disrupted by
generating cell suspensions into libraries constructed from
single cells that did not actually express the message (78).
This problem is not unique to the Drop-Seq approach but
will affect any procedure where tissues are dissociated into
a single-cell suspension in preparation of single-cell se-
quencing or FACS sorting in bulk RNA-Seq approaches
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Figure 6 —Detection of GCG in B-cells and INS in a-cells in bulk and scRNA-Seq. A: Detection of Ins2 in FACS-purified mouse «-cells at 260-
fold lower levels compared with B-cells from the same islets. Data from DiGruccio et al. (18). B: Detection of Geg in FACS-purified mouse
B-cells at 100-fold lower levels compared with a-cells from the same islets. Data from DiGruccio et al. (18). C: Species mixing experiments
between cell lines of mouse and human origin have illustrated that 0.26-2.44% of all reads detected in single-cell libraries uniquely mapped to
the other species. Data from Macosko et al. (78). D: Fraction of reads within 161 single—B-cell libraries that maps to GCG, and fraction of reads
within 443 single a-cell libraries that maps to INS. Data from Segerstolpe et al. (47). The INS and GCG cross-detection is below the threshold
of species contamination established by Macosko et al. (78). Given the extremely high abundance of INS and GCG, their detection in single
a- and B-cells, respectively, may not be evidence of actual gene expression. E: Coverage of INS across all single 8- and «-cell libraries.
Data from Segerstolpe et al. (47). F: Coverage of GCG across all single a- and B-cell libraries. Data from Segerstolpe et al. (47).

(78). This relatively low level of cross-contamination will
likely not meaningfully affect detection of the large ma-
jority of genes. However, INS and GCG are expressed so
abundantly in B- and a-cells, respectively, that their cross-
detection could be explained entirely by contamination
of free-floating mRNA (Fig. 6D-F). These observations
do not rule out true GCG expression by B-cells. However,
the detection of GCG in single—B-cell transcriptomes
at levels below those estimated through the species

93

cross-contamination paradigm established by Macosko
et al. (78) cannot be taken as proof that B-cells actually
express GCG mRNA.

FUTURE OUTLOOK

The fact that we can now detect and attempt to quantify
gene expression in single cells is in itself a remarkable
achievement. A survey of [B-cell gene expression at single-
cell resolution across hundreds or even thousands of
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Figure 7—Workflow to align the appropriate sequencing approaches with the stated experimental goal. Starting from five common
experimental scenarios, this flowchart offers guidance to the reader to facilitate the choice for the different experimental strategies available,
considering their benefits and drawbacks. FISH, fluorescence in situ hybridization.

individual cells is a very enticing prospect that would
resolve some of the long-known heterogeneity among
{3-cells with regard to their functional state or proliferative
status. However, in attempting to detect gene expression
in single B-cells, it has become obvious that we are
operating at or below the limit of reliable detection for
a large majority of genes. This comes at a steep price with
regard to the quality of the single-cell sequence data that is
obtained, irrespective of the investigating laboratory or
the chosen single-cell approach.

In this Perspective, we have illustrated these inherent
limitations of scRNA-Seq applied to adult human islet cells
by pointing out the underestimation of the number of
detected genes per single cell and by applying TIN scores as
a quantitative measure of the incomplete coverage and 3’
bias that affects all genes, from rare to highly abundant. By
comparison, the quality of the gene coverage in bulk RNA-
Seq samples is so much better that it is quite possible that
the coverage and data quality of scRNA-Seq may not
approach that of bulk RNA-Seq for some time. Therefore,
for each experiment investigators need to determine if
transcript detection at single-cell resolution is worth these

inevitable drawbacks (Fig. 7). Given the large quality gap
between single-cell versus bulk transcriptome data, we
would advocate for a bulk transcriptome approach, if
compatible with your experimental question, in spite of
the perceived novelty of single-cell sequencing. Evidently,
if transcriptional heterogeneity among 3- or a-cells is the
central focus of a study, scRNA-Seq experiments may be
the only choice, unless a known marker for these sub-
populations can be leveraged to isolate these cells by FACS
for bulk sequencing. Nevertheless, our illustration that—
with the exception of a handful of the most highly abun-
dant transcripts—every single gene is detected in only
a fraction of B-cells questions the ability of scRNA-Seq to
discern true heterogeneous expression amid widespread
heterogeneous detection. Case in point is the fact that
none of the many markers of known heterogeneity were
independently identified by any of the “unbiased” scRNA-
Seq approaches, with some acknowledging their inability
to do so (43). Therefore, any observation derived from
single-cell or bulk RNA-Seq experiments should—wherever
possible—be subject to rigorous validation using indepen-
dent approaches that can achieve single-cell resolution, such
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as RNA fluorescence in situ hybridization to detect the
message, immunofluorescence to detect the protein encoded
by that mRNA, and/or live cell functional imaging to corre-
late gene expression with functional readout that indicates
the presence of the corresponding protein.

Our intent in drawing attention to the limitations of
scRNA-Seq approaches applied to islet cells is certainly not
to dissuade our colleagues from relying on observations
obtained by scRNA-Seq approaches in their studies of islet
function. It should not be a surprise that working at the
extreme limits of our technical capabilities comes at a price.
Ongoing improvements in library preparation, including
the generation of protocols that no longer rely on multiple
rounds of PCR amplification, should constitute a significant
improvement (79,80). As tissue collection and processing
time will influence gene expression and mRNA stability,
standardization of the collection of human islets to the
extent possible will increase the conformity of gene rep-
resentation across both bulk and scRNA-Seq studies. New
methods, such as split-pool ligation-based transcriptome
sequencing (SPLiT-Seq) (81), may be able to overcome
some of the limitations of current scRNA-Seq protocols.
While SPLiT-Seq still requires tissue dissociation, it instead
compartmentalizes the RNA into single-cell libraries
within the native cell rather than relying on droplets or
wells. This may help mitigate issues such as poor library
complexity and 3’ bias and may reduce contamination
with naked mRNA (78) (Fig. 6). Spatial transcriptomics
may also provide more reliable avenues for scRNA-Seq, as
they avoid confounders associated with islet dissociation
and would allow the field an unbiased perspective to
determine whether heterogeneity of gene expression is
spatially driven (82), as was recently suggested (35,83).
Newer 3'-based methods that allow for higher throughput,
and greater sample sizes at reasonable cost, have allowed
the identification of rarer populations, such as e-cells (84).
Targeted sequencing approaches, such as droplet-assisted
RNA targeting by single-cell sequencing (DART-Seq), sig-
nificantly improve coverage by targeting the limited depth
of scRNA-Seq to a subset of preselected transcripts of
interest (85). Computational methods are being developed
to take into account and correct for confounding factors,
such as donor genetic variation, dropout, and technical
noise, although avoiding confounders will always be pref-
erable to correcting for them through bioinformatic means
(86,87).

Despite the current limitation of the approach, scRNA-
Seq experiments have successfully resolved gene expres-
sion in human &-cells (47,88), for which purification
methods to obtain bulk samples do not exist. Moreover,
scRNA-Seq has recapitulated known differentiation trajec-
tories in the development of many organs and tissues
(89-93). This includes the pancreas, where scRNA-Seq has
been able to trace Ngn3+ progenitor populations at dif-
ferent embryonic ages to preferentially differentiate into
a- or B-cells (94), thus recapitulating and validating a phe-
nomenon that had previously been independently described
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by careful developmental biology experiments (95,96).
Gjd2, Scg2, Ociad2, and Fev, novel genes whose contribution
to embryonic pancreas development had not been known,
have also emerged from scRNA-Seq efforts (80,94). More-
over, pseudo-time strategies, where single cells are placed on
alineage based on their transcriptional stage instead of their
chronological age, have successfully resolved aspects of
postnatal B-cell maturation (42).

In summary, our goal with this Perspective has been to
raise awareness among a general audience of diabetes
researchers of some of the limitations of scRNA-Seq and
discuss potential solutions to overcome the current lim-
itations. It is amazing that we are now capable of detecting
islet cell gene expression at single-cell resolution. It there-
fore should not come as a surprise that there is inevitably
a price to pay for the benefit of single-cell resolution. The
limitations we discussed should be well known to inves-
tigators who have been at the forefront of single-cell
sequencing. However, they are likely less appreciated by
a general audience of diabetes researchers not as well
versed in bioinformatics, who nevertheless use scRNA-
Seq data generated by others or are adopting scRNA-Seq
for their own future experiments. Next-generation se-
quencing at single-cell resolution has the potential to
reveal unprecedented insight into biological processes
that until recently had remained out of reach. We hope
that the considerations discussed in this Perspective will
help our colleagues align their sequencing approaches with
realistic experimental goals.
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SUPPLEMENTARY DATA

Supplementary Figure S1. Human beta cell heterogeneity as self-identified across five human scRNA-
Seq studies (Table S2). A: Venn diagram illustrating the overlap of genes highlighted for novel
heterogeneity across studies. B: Fraction of single beta cells with detectable (CPM > 1) expression
across twelve genes from Figure S1A. C: Violin plots of log transformed CPM abundance across these
same twelve genes across all five studies.
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SUPPLEMENTARY DATA

Supplementary Figure S2. Dimensional reduction plots from our integrative analysis to confirm the
absence of confounding factors such as donor variation or method of sequencing. A: Dimensional
reduction highlighting the clusters derived based on platform of origin. Each cluster has an intermixed
distribution of cells from all five studies. B: Dimensional reduction highlighting the clusters based on
donor of origin. Again, all clusters contained cells across donors, confirming that clustering was not

driven by these confounding factors.
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SUPPLEMENTARY DATA

Supplementary Figure S3. Integrative analysis as performed earlier (Figure 1A), but now on the
subsetted beta cells from healthy donors. A: Dimensional reduction plots evaluating subpopulations
within the healthy beta cells from all studies. B: Dimensional reduction exploring whether or not
platform used drove subpopulations. C: Dimensional reduction exploring whether or not donor variation
was influencing subpopulation formation. D: Unbiased clustering reveals surprisingly little overlap in
the beta cell heterogeneity detected across five human single beta cell RNA-Seq studies. Venn diagram
of the overlap in the genes that drove unbiased clustering between beta cells in five independent sScRNA-
Seq studies on healthy human islet donors (See Supplemental Approach & Tools for details). Between
43% and 56% of genes in each study were not detected as driving beta cell cluster in any of the four
other studies; only 24 genes overlapped across all five studies (Table S4A). E: Fraction of single beta
cells with detectable (CPM > 1) expression across ten genes selected from the list of 24 from (A). F:
Violin plots of log transformed CPM abundance across these same ten genes across all five studies.
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Supplementary Figure S4. Range of genes detected in single cell libranies across five human single cell
studies and one human bulk data set cormrelated with depth of sequencing and representation of INS. A:
Fraction of insulin (INS) reads per beta cell hibrary across five human single cell studies and one human
bulk data set. Evaluation of the fraction of reads within a single or bulk beta cell hibraries mapping to
INS reveals that up to half of all reads 1n some scRNA-Seq libranies map to INS. No trend is apparent
between platform used (Table S1) and INS over-representation. B: Evaluation of number of genes
within a single or bulk beta cell libranes captured (CPM >=1).C: Depth of sequencing used across
studies (Table S1), transformed by logl0. No trend 1s apparent between platform used (Table S1) and
number of genes captured. D: Correlation of gene expression between bulk (TruSeq) and pooled
(SmartSeq2) single cell hbranes from the same sample. Gene expression is represented as log
transformed RPKM, data from (1). Blue line indicates identity, a hypothetical perfect correlation
between the two. Red line indicates actual cormrelation, which fairs well despite different chemistnes and
methods used.
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Supplementary Figure S5. Transcriptome-wide representation of the fraction of single human beta
cells where each gene is detected. A-E: Genes are ranked in descending order of average expression
level; CPM > 0 was used as the detection threshold. The large majority of genes are heterogeneously
detected, between 0.005% and 0.83% of the 18,485 genes are detected in all beta cells in any given
study.
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SUPPLEMENTARY DATA

Supplementary Figure S6. Coverage across the gene body of two genes that were self-identified in
human beta cell heterogeneity by some of the studies (Table S2). Coverage is shown for each study to
compare full-length and 3’ based scRNA-Seq. A-E: DLK1 capture across the five studies. A rare and
notable example of burst transcription. F-J: RBP4 capture across all studies.
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Supplementary Figure S7. Metrics evaluating GC content against fraction of detection, abundance, and
TIN scores for two human single cell studies. A-B: Loess regression was applied to determine whether a
pattern or trend exists between the three metrics. Kolmogorov-Smirnov testing was applied to evaluate
whether GC content negatively impacted detection and abundance. Genes with a GC content below 50%
performed better than those with a GC content higher.
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SUPPLEMENTARY DATA

Supplementary Table S1. Publication protocol and metrics. A: Details for protocol and metrics across scRNA-

Seq or bulk sequencing studies used, noting the platform, library prep, and depth of sequencing applied, as well as

the number of donors, beta cell libraries generated, and genes captured.
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Supplementary Table S2. Genes highlighted in beta cell heterogeneity within the five human single
cell sequencing studies. A: Table of genes mentioned within each of the five studies. B: Genes
highlighted in more than one publication, and whether they were detected in the five study overlap of
our unbiased meta-analysis.

A
Genes Highlighted in Human Novel Heterogeneity within Single Cell Studies
Baron et al. 2016 | Muraro et al. 2016 | Segerstolpe et al. 2016 | Lawloretal. 2017 | Xinetal 2016
DDIT3 (Chop) FTH1 ADCYAP1 (PACAP) |ADCYAP1 (PACAP)|ADCYAP1 (PACAP)
DLK1 FTH1P3 FFAR4 (GPR120) DLKT1 BMI1
ESR1 FTL FTH1 HADH DDIT3 (Chop)
FFAR4 (GPR120) ID1 ID1 MEG3 DLK1
HERPUD1 PFKFB2 ID2 PFKFB2 HADH
HSPA5 RBP4 ID3 SIX3 MEG3
OLIG1 SIX2 MEG3 RBP4
RXRG SQSTM1 (p26) RBP4 RPL7P19
SIX2 SRXNT1 SIX2
SIX3 SIX3
B
Highlighted Genes Detected by Multiple Studies or Within Meta-Analysis
MEG3 3 No
SIX3 3 No
SIX2 3 No
DLK1 3 Yes
ADCYAP1 3 No
RBP4 3 Yes
PFKFB2 2 No
FTH1 2 No
FFAR4 2 No
DDIT3 2 No
ID1 2 No
HADH 2 No
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SUPPLEMENTARY DATA

Supplementary Table S3. Differentially expressed genes between the two identified beta
subpopulations. A: Table of genes derived from the meta-analysis, a total of 52 identified as significant
(adjusted p-val <= 0.05).

A

Differentially Expressed Genes Between Two Beta Subpopulations

Gene p_val pct.1 pct.2 i

G6PC2 5.96E-166| 0.90525112 0.903 0.47| 1.19E-162
SYT16 4.82E-159 0.510769 0.751 0.273| 9.64E-156
MAFA 2.67E-132| 0.68732461 0.86 0.487| 5.35E-129
TSPAN1 3.43E-88| 0.3537818 0.796 0.418 6.86E-85
ASB9 7.72E-88| 0.2960037 0.548 0.163 1.54E-84
EDN3 9.08E-88| 0.35234138 0.67 0.26 1.82E-84
IGSF1 1.41E-81| 0.25147901 0.595 0.225 2.82E-78
PCSK1 1.31E-79| 0.41436648 0.969 0.76 2.61E-76
IAPP 8.65E-75| 0.60308077 0.998 0.98 1.73E-71
CDKN1C 1.22E-70| 0.38336292 0.911 0.599 2.44E-67
HADH 2.21E-66| 0.30462967 0.984 0.834 4.42E-63
SORL1 4.36E-64| 0.25603155 0.836 0.483 8.71E-61
HSPA6 3.92E-51| -0.2939855 0.492 0.168 7.85E-48
KLHDC8A 9.65E-47| 0.27021187 0.482 0.151 1.93E-43
ACTG1 1.37E-41| -0.9587862 0.961 0.931 2.73E-38
IL11 6.44E-41| -0.3609107 0.143 0.111 1.29E-37
CECR1 5.08E-40| 0.25916099 0.506 0.184 1.02E-36
REG1A 2.96E-34| -0.9130366 0.784 0.818 5.92E-31
PRSS2 2.44E-33| -1.0200428 0.573 0.619 4.88E-30
NPY 5.04E-22| -0.2627741 0.582 0.32 1.01E-18
TRIB3 2.53E-19| -0.5622524 0.326 0.288 5.05E-16
PTGS2 4.70E-19| -0.6123507 0.581 0.313 9.40E-16
BIRC3 1.28E-18| -0.2921015 0.215 0.181 2.56E-15
HS3ST2 2.97E-18| -0.2749683 0.139 0.064 5.94E-15
CTRB2 9.09E-17| -0.6023506 0.633 0.606 1.82E-13
soD2 2.20E-15| -1.7492848 0.579 0.542 4.41E-12
SERPINA1 1.67E-14| -0.5799237 0.495 0.257 3.34E-11
CPA1 6.31E-14| -0.4104326 0.442 0.418 1.26E-10
CELA3A 7.75E-14| -0.7120062 0.598 0.538 1.55E-10
NAMPT 2.08E-13| -0.4521167 0.425 0.41 4.16E-10
SETD7 2.10E-13| -0.262157 0.51 0.269 4.20E-10
TMSB4X 3.81E-13| -0.5192567 0.758 0.684 7.61E-10
PDK4 9.58E-13| -0.4383716 0.713 0.453 1.92E-09
SYNGR4 1.47E-12| -0.5886256 0.776 0.555 2.94E-09
NFKBIA 1.49E-12| -0.7210247 0.473 0.445 2.98E-09
CTRB1 1.83E-11| -0.4127868 0.447 0.401 3.67E-08
PRG4 4.06E-11| -0.5320836 0.245 0.172 8.12E-08
DNAJB1 7.82E-11| -0.2973403 0.644 0.413 1.56E-07
PPY 1.40E-10| -1.1106356 0.628 0.384 2.81E-07
S100A11 1.43E-10| -0.6617551 0.805 0.715 2.86E-07
AQP3 2.08E-10| -0.3636973 0.659 0.422 4.16E-07
HMOX1 2.75E-10| -0.4557159 0.298 0.217 5.50E-07
C100rf10 1.60E-09| -0.312835 0.831 0.617 3.20E-06
CPB1 6.81E-09| -0.4639012 0.355 0.3 1.36E-05
TIMP1 4.17E-08| -0.9600852 0.918 0.831 8.35E-05
GADD45B 4.92E-08| -0.548217 0.579 0.37 9.83E-05
PRSS1 1.38E-07| -0.5119934 0.509 0.441| 0.00027512
PTPRH 1.74E-07| -0.2929226 0.539 0.313| 0.00034756
SST 1.82E-07| -1.5593211 0.985 0.866| 0.00036366
SPP1 1.38E-06| -0.6511131 0.492 0.29] 0.00276214
PDGFA 1.50E-06| -0.292609 0.269 0.175| 0.00300385
SAT1 6.54E-06| -0.4977158 0.524 0.46] 0.01307116
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Supplementary Table S4. Overlapping genes identified when re-analyzing only the healthy beta cells.
A: Only 24 genes were identified by all studies as implicated in heterogeneity.

A

Gene
INHBA

NEAT1
IGFBP5
SPP1
RBP4
TM4SF4
AGT
RGS4
C100rf10
DLK1
NPY
PCDHB11
AKAP12
ITGB8
GCG
TRIB3
CLU
ANXA3
FOS
PEX5L
EXPH5
HERPUD1
ZNF605
EFR3B
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Supplementary Table S5. Protein quantification markers for human and mouse beta cells. A: References used to
quantify protein presence for known human beta cell gene markers. B: References used to quantify protein

presence for known mouse beta cell gene markers.

A
Human Immunostaining References to Estimate Fraction of Detection for Protein of Interest
Protein Journal Author Year DOl
INS Diabetes Okamoto et al. ... Tokunaga 2012 10.2337/db11-1201
ABCC8 Diabetologia Guiot et al. ...Sempoux 2007 10.1007/s00125-007-0731-z
VAMP2 Oncotarget Peart et al. ...Wang 2017 10.18632/oncotarget. 17969
SNAP25 Oncotarget Peart et al. ...Wang 2017 10.18632/oncotarget.17969
PAX6 PLoS ONE Ahmad et al. ...Mansouri 2015 10.1371/journal.pone.0144597
NKX6.1 Cell Reports Taylor et al. ...Sander 2013 10.1016/j.celrep.2013.08.010
KCNJ11 Diabetes Yan et al. ...Kohler 2004 10.2337/diabetes.53.3.597
GLP1R | Joumal of Histochemistry & Cytochemistry Tomehave et al. ...Heller 2008 10.1369/jhc.2008.951319
KCNB1 Diabetes Yan et al. ...Kohler 2004 10.2337/diabetes.53.3.597
G6PC2 PNAS Hutton and Eisenbarth 2003 10.1073/pnas.1633447100
GCK Diabetes Arden et al. ...Agius 2004 10.2337/diabetes.53.9.2346
UCN3 Nature Biotechnology Blum et al. ...Melton 2012 10.1038/nbt.2141
ERO1B Journal of Cell Biology Zito et al. ...Ron 2010 10.1083/jcb.200911086
CHGA Cell Reports Taylor et al. ...Sander 2013 10.1016/j.celrep.2013.08.010
MAFA PL0oS ONE Bonnavion et al. ...Zhang 2013 10.1371/journal.pone.0072194
PDX1 Diabetologia Dai et al. ...Powers 2012 10.1007/s00125-011-2369-0
CHRM3 Diabetes Molina et al. ...Caicedo 2014 10.2337/db13-1371
SLC2A1 Molecular Genetics & Metabolism McCulloch et al. ...Gloyn 2011 10.1016/.ymgme.2011.08.026
CD9 Nature Communications Dorrell et al. ...Grompe 2016 10.1038/ncomms11756
ST8SIA1 Nature Communications Dorrell et al. ...Grompe 2016 10.1038/ncomms11756
B
Mouse Immunostaining References to Estimate Fraction of Detection for Protein of Interest
Protein Journal Author Year DOI
Ins2 Cell Metabolism van der Meulen et al. ...Huising 2017 10.1016/j.cmet.2017.03.017
Pax6 Diabetologia Dai et al. ...Powers 2012 10.1007/s00125-011-2369-0
Glp1r | Joumnal of Histochemistry & Cytochemistry Tomehave et al. ...Heller 2008 10.1369/jhc.2008.951319
G6pc2 PNAS Hutton and Eisenbarth 2003 10.1073/pnas.1633447100
Slc2a2 Nature Genetics Guillam et al. ... Thorens 1997 10.1038/ng1197-327
Ucn3 Nature Biotechnology Blum et al. ...Melton 2012 10.1038/nbt.2141
Ero1lb Journal of Cell Biology Zito et al. ...Ron 2010 10.1083/jcb.200911086
Nkx6.1 Oncotarget Peart et al. ...Wang 2017 10.18632/oncotarget.17969
Snap25 Oncotarget Peart et al. ...Wang 2017 10.18632/oncotarget. 17969
Pdx1 Endocrinology Szabat et al. ...Johnson 2009 10.1210/en.2008-1224
Abcc8 Diabetologia Guiot et al. ...Sempoux 2007 10.1007/s00125-007-0731-z
MafA Diabetes Artner et al. ... Stein 2010 10.2337/db10-0190
Nkx2.2 Oncotarget Peart et al. ...Wang 2017 10.18632/oncotarget.17969
Gck Diabetes Arden et al. ...Agius 2004 10.2337/diabetes.53.9.2346
Vamp2 Oncotarget Peart et al. ...Wang 2017 10.18632/oncotarget.17969
Igfir Cell Metabolism Aguayo-Mazzucato and Bonner-Weir | 2017 10.1016/j.cmet.2017.08.007
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Supplementary Table S6. Accession information for all datasets analyzed. Separated by species and approach

used.

Human Single Cell Accession Information

Xin et al. 2016

Study Accession

Baron et al. 2016 GSE84133
Lawlor et al. 2017 GSE86469
Muraro et al. 2016 GSE85241
Segerstolpe et al. 2016 E-MTAB-5061
GSE81608

Human Bulk Cell Accession Information

Study Accession

Blodgett et al. 2015 GSE67543

Lawlor et al. 2017 GSE86468
E-MTAB-5060

Segerstolpe et al. 2016

Mouse Single Cell Accession Information

Study Accession
Xin et al. 2016 GSE77980
GSE86479

Zeng et al. 2017

Mouse Bulk Cell Accession Information

DiGruccio et al. 2016

Study Accession
Adriaenssens et al. 2016 GSE76017
GSE80673
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SUPPLEMENTARY DATA
Supplemental Computational Approach & Tools

Data Acquisition

Raw Fastq files were pulled from GEO accession numbers for all studies evaluated. A table of datasets
used and where they were retrieved from is located in Table S4. For inDrop (2) and Cel-Seq2 (3),
demultiplexing and barcode identification was required prior to alignment and quantification.
Demultiplexing and barcode splitting was performed as previously described by each respective study.
Alignment & Quantification

All raw Fastq files were aligned using STAR’s (4) default parameters, with the exception of a tighter
mismatch restriction of no greater than 3% per read, to the Gencode GRCm38.p4 M8 (mm10) mouse
genome or GRCh38.p5 (hg38) human genome (5). Bigwigs were generated using STAR’s wiggle output
option and UCSC’s Genome Utilities (6). Gene-level quantification was performed on all samples’
sorted BAM files using featureCounts (7) default parameters, counted by Gencode defined exon’s, and
aggregated to the gene level. TIN scores were derived from BAM files using the RSeQC’s (8) TIN
quantification tool.

Clustering

Unbiased clustering was initially performed on the integrated five study’s’ healthy donors using the R
Bioconductor package Seurat v3 (9), and UMAP dimensional reduction. Clusters were identified for cell
type using known gene markers and validated against each study’s self-assigned labels for each cell. The
two beta cell subpopulations were further analyzed using differential expression testing to identify genes
driving heterogeneity between the two, using an adjusted p-value cutoff <= 0.05. 52 genes were derived
from this list.

Unbiased clustering was performed a second time around on only the healthy beta cells from the same
five studies, using the same approach. The top 2000 highly variable genes that were identified as
clustering driving per study were retrieved through this method. All plots visualizing clustering were
generated through Seurat.

Downstream Analyses

All Venn diagrams were generated using the R library package VennDiagram. All violin plots and
abacus-style plots used to show fraction of genes detected within single cell beta libraries were
generated using ggplot2. KS testing was performed using the R package coin (10). Density plots were
generated using the R package sm.
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VII. Chapter 7: Chromatin accessibility differences between alpha, beta, and
delta cells identifies common endocrine- and cell-specific enhancers

Alex M. Mawla, Talitha van der Meulen, and Mark O. Huising
Final draft, to be submitted for publication in BMC Genomics.

Contributions to Jointly Authored Works: As first author, [ was responsible for the entirety of analysis of
and interpretation of ATAC-Seq and transcriptomic data generated in-house and incorporated into this
manuscript. I was also responsible for the review, selection, and uniform re-analysis of all other aggregated
-omics data (histone and transcription factor) integrated into this manuscript in order to delineate murine
pancreatic enhancers. I interpreted all results, created all figures, and wrote the manuscript. I also am
responsible for creating an interactive resource of these data on our lab website so that colleagues in the
field can query their data against our findings, and also integrate their data to quickly generate high-quality
visuals.

Significance of Research: This manuscript confirmed previous findings in the field suggesting that alpha
cells are epigenetically poised, but repressed, from becoming beta cells. This manuscript is the first to
evaluated murine delta cell chromatin accessibility, and also goes on to suggest the novel finding that delta
cells are also epigenetically poised, much like alpha cells, to become beta cells. This supports previous
research showing that delta cells can spontaneously transdifferentiate and become beta cells in juveniles
and supports previous findings in our lab.
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Abstract

High throughput sequencing has enabled the interrogation of the transcriptomic landscape of
glucagon-secreting alpha cells, insulin-secreting beta cells, and somatostatin-secreting delta cells. These
approaches have furthered our understanding of expression patterns that define healthy or diseased islet cell
types and helped explicate some of the intricacies between major islet cell crosstalk and glucose regulation.
All three endocrine cell types derive from a common pancreatic progenitor, yet alpha and beta cells have
partially opposing functions, and delta cells modulate and control insulin and glucagon release. While gene
signatures that define and maintain cellular identity have been widely explored, the underlying epigenetic
components are incompletely characterized and understood. Chromatin accessibility and remodeling is a
dynamic attribute that plays a critical role to determine and maintain cellular identity. Here, we compare
and contrast the chromatin landscape between mouse alpha, beta, and delta cells using ATAC-Seq to
evaluate the significant differences in chromatin accessibility. The similarities and differences in chromatin
accessibility between these related islet endocrine cells help define their fate in support of their distinct
functional roles. We identify patterns that suggest that both alpha and delta cells are poised, but repressed,
from becoming beta-like. We also identify patterns in differentially enriched chromatin that have
transcription factor motifs preferentially associated with different regions of the genome. Finally, we
identify and visualize both novel and previously discovered common endocrine- and cell specific- enhancer

regions across differentially enriched chromatin.
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Introduction

The evaluation of the transcriptional landscape through high-throughput bulk sequencing (bulkSeq)
in both mouse and human of major islet cell types has granted a deeper understanding of cellular identity
and intercellular crosstalk within the pancreas. This has enabled the detection of distinct gene pattern
signatures between major islet cell types in mouse and human [1-6]. However, gene expression represents
the final outcome of a complex layer of genetic and epigenetic factors that determine islet cell fate [7-9]
and identity [10, 11]. Previous studies have explored pancreatic islet cellular identity by evaluating
epigenomic features such as methylation [12-14], histone modifications [15-18], and enhancer regulatory
regions [19-24]. While each of these factors contributes to defining and maintaining cell fate and identity,
connecting chromatin accessibility differences to epigenetic factors promises to provide further insight into

outstanding questions within the field.

Chromatin remodeling is a central epigenetic regulator that can be surveyed in order to better
understand cell states [20, 25-28]. The accessibility of chromatin via changes between euchromatin and
heterochromatin, and nucleosome occupancy, plays a significant role in cell lineage, and in tissue- and cell-
specific gene expression [11, 25, 29]. Epigenetic stability is required for the maintenance of islet cell
identity, while changes in chromatin accessibility are associated with perturbations in gene expression due
to disease [7, 22, 30]. Chromatin accessibility in tandem with other epigenetic factors at promoter-proximal
regions [29, 31] of a gene allows for direct activation or repression of transcription. In contrast, open
chromatin at exonic [32], intronic [33], or distal-intergenic regions [34] can be accessed by regulatory

factors that act as nearby or distal enhancers that govern lineage branching and stable cell fate.

Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) allows for the unbiased,
modification-independent evaluation of chromatin accessibility within cell types and can be run with
relatively small sample input [30, 35]. Previous studies have explored chromatin accessibility in healthy [5,

11, 36, 37] and T2D [22, 23, 38, 39] islets as well as pancreatic progenitors [9] using bulkSeq through
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human antibody panels alongside FACS-purification or through single-cell sequencing (scATACSeq) [40-
42]. However, none of these studies have explored pancreatic islet cell chromatin accessibility from mouse
FACS-purified alpha, beta, and delta cells. Therefore, to better understand endocrine islet cell identity
between mouse alpha, beta, and delta cells, we compared chromatin accessibility and transcriptome data
for FACS-purified mouse alpha, beta, and delta cells sorted from pancreatic islets from triple transgenic
reporter strains - mIns1-H2b-mCherry beta cells crossed to mice with alpha or delta cells marked by YFP
in a Cre-dependent fashion - that we generated for this purpose [1, 6]. This approach allowed for the direct

comparison between ATAC-Seq and RNA-Seq datasets from alpha, beta, and delta cells from these lines.

We integrated our ATAC-Seq data with high-quality transcription factor and histone binding data
from other mouse pancreatic islet studies to evaluate how transcriptional activators and repressors may
collectively regulate differential gene expression at promoter-proximal regions. To support the visualization
and integration of our ATAC-Seq chromatin data and previously published transcriptome of the FACS-
purified alpha, beta, and delta cells alongside select epigenomic datasets from histone marker and
transcription factor Chromatin Immuno Precipitation (ChIP) data, we developed an R package, epiRomics

[See: https://github.com/Huising-Lab/epiRomics]. This package is a novel, publicly available resource that

is described in detail elsewhere [43]. epiRomics allows for the visualization of integrated epigenomic data
and visualizes putative enhancer regions without the requirement for extensive bio-informatics experience,
with the intent of enabling more of our colleagues to tease apart key regions that may drive cell fate
switching and maintenance between the major islet endocrine cell types. Through this approach we
identified putative enhancer regions at distal-intergenic regions common to all cell types as well as regions
selectively accessible only in a single islet cell type and confirmed previously identified mouse pancreatic

islet enhancers.
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Methods

Islet isolation and FACS sorting

mlIns1-H2b-mCherry [1] x Rosa-LSL-YFP crossed to either Sst-Cre [44] or Geg-Cre [45] triple
transgenic mice were pooled by sex, each sample yielding a median of 20,000 cells, with islet isolation and

FACS-sorting as previously described (Supplemental Fig. 1) [1, 46-48].

Assay for transposase-accessible chromatin using sequencing

Single-end 50 bp reads were generated after library size selection yielded an average of 450 bp

fragments and sequenced as previously described using NexteraDNA library protocol [30].

Alignment and differential peak calling

Reads from each replicate (Supplemental Table 1) were evaluated for quality control and trimmed
using FastQC and Trimmomatic, respectively [49-51]. A modified index of Gencode GRCm38.p4 (mm10)
was built to exclude mitochondrial DNA prior to aligning reads with Bowtie 2 [52, 53]. Post-alignment,
duplicates were marked using Picard Tools, blacklist regions were removed, and BAM files were converted
into tagAlign format for downstream use. Peak calling and bigwig generation was done using MACS?2 [54].

Differential expression testing was performed using DiffBind’s edgeR method [55, 56].

Quality control and validation
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Quality control metrics were evaluated within raw reads as well as peak calls and compared against
ENCODE standards for fraction of reads in peaks (FRiP), leading to the removal of one beta replicate with

a FRiP score far below 0.3 (Supplemental Table 1; Fig. 1A-C) [57, 58].

Downstream analysis

Transcription factor footprinting analysis and validation against existing ChIP data was performed
through a modified script utilizing chromVar [59], regioneR [60], GenomicRanges [61], and motifmatchr
[62] using the HOCOMOCO database [63]. Pathways analysis on differential chromatin accessibility was

performed using the R Bioconductor packages ChlPseeker [64], ReactomePA [65], and clusterProfiler [66].

Enhancer Identification

We developed a novel R package, epiRomics, to integrate our chromatin accessibility data
alongside aggregated pancreatic islet ChIP and histone data to identify putative enhancer regions, as

described [43]. The package, example data, and vignette can be found at: https://github.com/Huising-

Lab/epiRomics and an interactive browser of the results from this manuscript is publicly available at:

https://www.huisinglab.com/epiRomics_2021/index.html.

Integrated data

Mouse alpha, beta, and delta (GEO: GSE80673), alongside alpha- and delta- transdifferentiated
beta (GEO: GSE88778) transcriptomes were integrated into this analysis [6, 67]. Aggregated ChIP datasets
of transcription factors and histone marks were added to the analysis through epiRomics [43] to identify

putative enhancer regions (Supplemental Table 2).
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Results

ATAC-Seq validation

To determine whether chromatin accessibility patterns differed between islet endocrine cell types,
principal component analysis (PCA) was applied to peak calls across all samples. This confirmed that
replicates clustered by cell type (Fig. 1A), a finding that was further validated by heatmaps using all defined
peaks across replicates (Fig. 1B). Alongside quality control applied through the generation and analysis of
this dataset, the fraction of reads in peaks (FRiP) score was in excess of the commonly applied benchmark
of 30% (Fig. 1C). Furthermore, the FRiP score was independent of variability in unique read depth,
indicating that peak calls were reproducible across all replicates within cell types independent of read depth

range.

Validation of islet cell chromatin accessibility data coupled to companion transcriptomes

After preliminary validation of our derived ATAC-Seq data, we checked for the presence of
chromatin peak enrichment for alpha, beta, and delta marker genes that have been previously well-
established and validated through complementary bench-lab or computational methods. We expected that
if a gene is expressed within a cell type, its ATAC signal near the transcription start site (TSS) at promoter-
proximal regions should reflect chromatin accessibility. Indeed, cell type-specific chromatin accessibility
correlated with gene expression of /ns2, Geg, and Sst genes for beta, alpha, and delta cells, respectively
(Fig. 1D-F) [4, 6, 68]. After confirming chromatin accessibility in key cell-identity markers, we sought to

compare and contrast select regions identified from prior groups that evaluated chromatin accessibility in
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human islets [5, 12, 38], as well as to further query whether chromatin was always uniquely enriched on a
panel of cell type-specific genes across alpha (4rx, Ttr, Gc), beta (Ucn3, MafA4, Pdx1), and delta cells
(Pdx1, Hhex, Rbp4, Ghsr) (Fig. 2; Supplemental Fig. 2). Each of these genes demonstrated overall strong
concordance between cell type-enriched gene expression and cell type-specific enrichment of available
chromatin. This validated the utility of ATAC-Seq data to detect epigenetic factors that determine gene

expression.

The chromatin landscape of the annotated genome across cell types

As genes make up a small fraction of the entire genome, we determined the overall distribution of
peaks across the annotated genome within each cell type. We defined five regions of interest to further
explore — promoter-proximal, intronic, exonic, downstream, or distal-intergenic (Fig. 3A). We identified a
consensus set of 124,494 peaks marking open chromatin through the R package DiffBind. This number is
comparable to the number of open regions found in previous studies of pancreatic islet chromatin
accessibility [11, 38-40] (Supplemental Dataset 1). We then evaluated the distribution of called peaks
present in at least one replicate within 3kb upstream of the TSS and confirmed that a majority of genes
enriched in each islet cell type were accompanied by promoter-proximal peaks (Fig. 3B-D). The distribution
of ATAC-Seq peaks across different pre-defined genomic areas was overall similar across alpha, beta, and
delta cells. For each endocrine cell type between 21.98-24.88% of open chromatin was promoter-proximal,
whereas promoter-proximal areas account for 2.41% of the mouse genome. A further 34.92-38.33% of
peaks for all cell types were found on distal-intergenic regions, which was proportional to the fraction of
the genome that falls into this category (Fig. 3E-G). Finally, we noted that between 33.07- 33.65% of peaks
occurred on intronic regions (first or other), relative to the 37.7% of the mouse genome classified as intronic

[69].

121



Regional differences and characteristics of differentially enriched chromatin

As our overall distribution of ATAC-Seq peaks across different genomic regions was consistent
across alpha, beta, and delta cells, we compared differential chromatin accessibility between these cell types
in greater detail. To this end, we performed pairwise differential ATAC-Seq peak enrichment testing across
alpha, beta, and delta cells. Out of 124,494 identified consensus regions of open chromatin across the three
cell types, 18,409 (14.8%) differentially enriched peaks (p-value <= 0.05) were identified between alpha
and beta (Fig. 4A), 12,722 (10.2%) between alpha and delta (Fig. 4B), and 16,913 (14.6%) between beta

and delta cells (Fig. 4C).

After performing differential peak enrichment testing, we discovered that 22.89% of all
differentially enriched peaks between alpha and beta cells were promoter-proximal (0-3kb) (Fig. 5A). A
further 33.22% of differential peaks were linked to distal-intergenic regions and another 33.61% of
differential peaks were intronic (first and other combined) (Fig. 5A). This assessment of differential peaks
without considering the direction of enrichment revealed no major difference with overall peak distribution
described earlier (Fig. 3). However, when factoring in the direction of enrichment we observed that 35.08%
of alpha cell-enriched peaks was promoter-proximal. In contrast, only 12.5 % of beta cell enriched peaks
occurred in promoter-proximal areas (Fig. 5B). Instead, a majority of ATAC peaks enriched in beta cells

were located at distal-intergenic regions (45.41%) (Fig. 5B).

Between alpha and delta cells, we identified that 21.29% of differentially enriched peaks occurred
promoter-proximally. Another 36.4% of peaks occurred on distal intergenic regions and 35.5% on intronic
regions (Fig. 5C). A similar preference of alpha cell-enriched peaks in promotor-proximal regions was
evident when comparing alpha to delta cells, with 30.33% of all enriched alpha peaks occurring promoter-
proximally, but only 9.56% of delta cell peaks. Instead, 38.41% of delta cell enriched peaks were distal-

intergenic (Fig. 5D).
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Lastly, between beta and delta cells, 26.62% of all differentially enriched peaks were promoter-
proximal, 32.2% distal intergenic, and 34.33% on intronic regions (Fig. SE). Further break down revealed
a bias towards distal-intergenic enriched peaks within beta cells (42.86%), as opposed to promoter-proximal

peaks in delta cells (28.20%) (Fig. 5F).

Differential chromatin enrichment in the majority of cases correlates with gene expression

So far, we detected a disproportionate fraction of peaks associated with promoter-proximal regions
in general (Fig. 3). Moreover, ATAC-Seq peaks that were differentially enriched in alpha and - to a lesser
extent - delta cells were considerably more likely to occur at promoter-proximal sites. Instead, peaks
enriched in beta cells more likely occurred at distal intergenic regions (Fig. 5). Therefore, we determined
whether the enrichment of promoter-proximal peaks correlated with increased expression of the
corresponding. Genes with increased expression in a cell type accompanied by a significantly enriched
ATAC-Seq peak proximal to its TSS were considered ‘congruent’ genes (Fig. 6A). The underlying
mechanism in such a scenario might be the presence of transcriptional activators at the promoter-proximal
site that promote gene expression. Conversely, genes with a significantly enriched ATAC-Seq peak
proximal to its TSS accompanying a reduction in corresponding gene expression were considered
‘incongruent’ genes (Fig. 6B). The underlying mechanism for these genes might be the presence of
transcriptional repressors at the promoter that prevent gene expression (Supplemental Dataset 2) [70-73].
Finally, genes that had significantly enriched chromatin in either cell type, but no evidence of mRNA

expression were considered ‘unexpressed’ (Fig. 6C).

When we compared differentially enriched TSS-associated chromatin against corresponding gene
expression between alpha and beta cells, we found that in the majority of cases (86%), differential chromatin
enrichment on TSS regions successfully captured the epigenetics of gene regulation. Exactly, 50% of genes

with differentially enriched chromatin at the TSS had a corresponding increase in gene expression within
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the same cell type (congruent genes). 36% showed TSS chromatin accessibility enrichment, but with a
reduction in gene expression for each cell (incongruent genes - either alpha repressed (33%), or beta
repressed (3%)). Strikingly, a substantial majority of the incongruent genes in this comparison were alpha
repressed. Finally, only 14% of all genes with differentially enriched TSS chromatin showing no expression
in either cell type (unexpressed) (Fig. 6D). A further visualization of select gene expression against TSS-
associated chromatin accessibility indicated the majority as congruent, with a highlighted example of an
incongruent (putatively alpha repressed or alpha cell poised) gene observed in the alpha cell TSS
enrichment for the beta-specific genes Maf4 (Fig. 2E; Supplemental Fig. 3A). MafA4 is a key transcription

factor enriched in beta cells yet shows abundant chromatin accessibility in alpha cells.

We observed a similar distribution between congruent (55%), incongruent (24%), and no
expression genes (20%), between alpha and delta cells. We noted a more uniform distribution between
alpha (14%) and delta (10%) repressed genes. (Fig. 6E). Upon visualizing gene expression and chromatin
accessibility, we confirmed congruent gene expression and TSS chromatin accessibility of key transcription
factors known to regulate both alpha — MafB, Ttr, and Arx — and delta — Pdx] and Hhex — cell fate

(Supplemental Fig. 3B).

For our final pairwise comparison between beta and delta cells, we again found a similar fraction
of congruent (57%), incongruent (32%), and no expression (11%) genes (Fig. 6F). We noted a minor
fraction of repressed genes with open chromatin in beta cells (1.5%), with the overwhelming majority of
repressed genes corresponding to delta cells (30.45%), similar to the pattern seen in alpha repressed genes
between alpha and beta cells. Further visualization of select marker gene expression against chromatin
accessibility showed generally good congruence between chromatin accessibility at the TSS and gene

expression (Supplemental Fig. 3C).

Poised genes are enriched in beta cells with a non-beta cell lineage history
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To further interrogate whether these alpha- or delta- repressed genes could be poised beta cell
genes, we incorporated transcriptome data from beta cells with an alpha- or delta- cell lineage history [67]
—also from our companion RNA-Seq experiment. These cells, termed “transdifferentiated,” are functionally
mature beta cells (defined by the presence of Ucn3), but have either a Gcg- or Sst-Cre lineage label,
reflective of a lineage history as an alpha or delta cell, respectively. We reasoned that if alpha- or delta-
repressed genes are poised beta cell genes, we should expect to observe a stepwise transition in gene
expression levels, showing little or no expression in either alpha or delta cells, to intermediate expression
in alpha- or delta- transdifferentiated cells, and full expression in beta cells. We confirmed that the majority
(83.6%) of alpha-repressed genes showed intermediate expression in the alpha-to-beta-transdifferentiated
population, and the highest expression in beta cells. A subset of genes (16.4%) showed the highest
expression in the alpha-transdifferentiated population (Fig. 7A). We observed a similar pattern between
delta, delta-transdifferentiated, and beta cells; however, only half (50.18%) of delta repressed genes
demonstrated an intermediate expression in the delta-to-beta-transdifferentiated population and the highest
in beta (Fig. 7B). The remainder of the genes showed the highest expression in delta-to-beta-

transdifferentiated cells.

Differential meta-chromatin enrichment testing

Given that in a majority of cases, TSS-associated chromatin recapitulated the underlying regulation
of gene expression, we inquired whether differentially enriched chromatin peaks were associated with genes
concentrated in pathways or gene networks that would better reflect our understanding of the biology across
these different islet endocrine cell types. Between alpha and beta cells, KEGG set pathway testing of
differentially accessible chromatin identified pathways related to protein digestion and absorption and cell
adhesion molecules unique to beta cells, Hippo, Wnt, and ubiquitin-mediated proteolysis unique to alpha
cells, and MAPK, axon guidance, and cAMP pathways enriched within both (Supplemental Fig. 4A-B).

Upon comparing the differentially accessibly chromatin between alpha and delta cells, adherens junctions
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appeared selective to delta cells, while no pathways were enriched specifically in alpha cells. MAPK, axon
guidance, and Ras signaling pathways showed general enrichment of associated peaks within both alpha
and delta cells (Supplemental Fig. 5A-B). Lastly, in beta and delta cells, a pairwise analysis of differentially
accessible chromatin identified the Glycosaminoglycan (GAG) biosynthesis pathway as unique to beta cells
- where GAG metabolism and biosynthesis impairment has been linked to beta cell dysregulation [74],
adherens junctions and Rapl signaling pathways unique to delta cells, and MAPK, axon guidance, and

cAMP signaling pathways enriched within both (Supplemental Fig. 6A-B).

Islet transcription factor ChIP-Seq binding correlates with open chromatin

After exploring the interrelationship between accessible chromatin and gene expression, we
expanded our approach to include additional epigenetic controls to the regulation of islet cell gene
expression. We therefore aggregated high-quality, mouse pancreatic islet transcription factor binding data
via ChIP-Seq - Pdx1 [75], Nkx6-1 [76], Neurodl [77], Insm1 [77], Foxa2 [77], Nkx2-2 [78], Rfx6 [79],
MafA [24], Is11 [80], Kat2b [81], Ldb1 [80], and Gata6 [82] - and asked what fraction of open chromatin —
as defined by our consensus ATAC-Seq peak set — containing binding sites for each respective transcription
factor. The transcription factors Foxa2 (29.07%), Insm1 (28.40%), and Neurod1 (20.09%) had the highest
percentage of ChIP-confirmed binding site overlap with open chromatin. This provided further support that
our ATAC-Seq data was of high quality and suggested that open chromatin is a reliable indicator of
epigenetic regulation (Supplemental Table 3A). To further explore whether these aggregated transcription
factor ChIP data convey epigenetic relevance, we queried what fraction of total ChIP binding sites
overlapped with open chromatin. Indeed, we observed that in several cases, over 50% of transcription factor
ChIP binding sites overlapped with open chromatin, with the transcription factors Nkx2.2 (63.79%),
Neurodl (55.07%), and Insm1 (51.49%) showing the greatest degree of overlap (Supplemental Table 3B).
These results supported our findings that open chromatin reflects epigenetic regulation in alpha, beta, and

delta cells, in part through the binding of transcription factors.
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Transcription factor motif finding suggests genomic preferences at differentially enriched chromatin

between cell types

After observing a strong degree of overlap of known islet transcription factor binding on open
chromatin, we conducted an unbiased evaluation whether DNA motifs for their respective transcription
factor proteins were differentially enriched on ATAC peaks in promoter, intronic, exonic, downstream, or
distal regions. We included transcription factors with known DNA-binding motifs to determine if they were
more likely to occur at specific areas of the genome. We required that the transcription factor associated
with the DNA sequence motif considered is expressed (RPKM>0) in the cell type with chromatin-motif

association.

Motifs for key transcription factors involved in beta cell identity, such as MafA, were present
ubiquitously across most functional regions we defined (promoter-proximal, intronic, exonic, downstream,
and distal intergenic) (Fig. 8A). In contrast, the motifs for cell-identity drivers Irx2 [4] were concentrated
at the promoter-proximal regions of chromatin peaks associated with genes differentially expressed by
alpha cells. Insm1 [77] motifs were concentrated at the promoter-proximal regions of chromatin peaks
associated with genes differentially expressed by beta cells. In another example, DNA-binding motifs

associated with the ubiquitous islet transcription factor Pax6 [83] were concentrated on intronic chromatin.

We performed the same transcription factor footprinting test between alpha and delta cells (Fig.
8B). Of note, the motif for Pbx3, a transcription factor driving Sst expression in delta cells [84], was
enriched in accessible chromatin at promoter-proximal regions. The motif for Stat4, recently implicated in
establishing alpha cell identity [85] was concentrated exonic chromatin. Lastly, the motif for Ptfla, a
transcription factor identified in early pancreatic endocrine cell development [86], was preferentially

associated with areas of open chromatin at distal intergenic regions.
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Between beta and delta cells, no single transcription factor motif overlapped across all five
functional categories, nor were there any unique to downstream or exonic regions, as we observed in the
prior alpha and delta comparisons (Fig. 8C). Of note, the motif for Smad3, a transcription factor important
for islet development [87], as well as the negative regulation of insulin secretion in beta cells via occupancy
of the insulin promoter [88], was concentrated in promoter-proximal accessible chromatin. Motifs for Insm1
[77] and Nkx6.1 [89], both key beta cell identity transcription factors, were preferentially associated with
accessible chromatin at intronic regions. Lastly, motifs for Fev — recently identified as important for the
development and differentiation of the endocrine lineage [90] - and Atf3 — linked to enhancer regions

in EndoC-bH1 cells [11] - were enriched in accessible chromatin at distal regions.

Validating motif calls against aggregated islet ChIP datasets

As we observed motif binding site preferences across promoter, intronic, exonic, downstream, or
distal chromatin regions, we wished to confirm how accurately predictive DNA motif binding sites conveys
true transcription factor binding. To do so, we once again turned to our aggregated pancreatic islet ChIP
datasets. We applied the same motif detection method as above on individual ChIP datasets and on all open
chromatin — as derived from our ATAC-Seq consensus peak set —and assessed how well predicted motif
binding overlapped with true ChIP peaks from our selected list of ChIP-Seq data. We observed strong
(57%) true positive and low (8.34%) false negative values for the Rfx DNA-motif’s ability to predict all
Rfx ChIP binding sites (Supplemental Table 4A). We then limited this same test to Rfx6 ChIP-Seq binding
sites (35.65%) that were shared across 1.19% of all open chromatin ATAC peaks (Supplemental Table 3A-
B). Notably, when comparing DN A-motif predictions for Rfx6 against these shared Rfx6 ChIP-Seq binding
sites, we observed that 65.10% were true positives, while 8.81% were false predictions (Supplemental Table
4B). However, we also observed a broad distribution in true positive values across these DNA-binding

motifs (4.71-65.10%), and also noted a relatively low range of false positives (1.68-8.81%). This is
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reflective of a limitation in the ability for DNA-motif’s to consistently predict true transcription factor

binding.

Determining overlap of differentially enriched chromatin with islet ChIP and histone datasets

Given that may of the DNA-motifs associated with transcription factors do not have available ChIP-
Seq datasets derived from mouse pancreatic islets, we sought to understand whether differential chromatin
between cell types could be associated to transcription factors and histone markers integral to pancreatic
islet cell fate that do have available ChIP data, as opposed to relying only on predictive motifs. As we
previously observed strong enrichment of transcription factor binding sites across all open islet chromatin,
we wanted to confirm if this overlap is augmented in differentially enriched chromatin associated with
pancreatic islet transcription factor binding sites via aggregated islet ChIP data - Pdx1, Nkx6-1, Neurodl,
Insml, Foxa2, Nkx2-2, Rfx6, and MafA - and select, key histone marks — H3K27ac [91], H3K4me3 [91],
and H3K4mel [12]. Our intention in integrating these data was in anticipation that they may help delineate
whether enhancer regions are poised (defined by: H3k4mel) [92], or active (defined by: H3k27ac and
H3k4mel) [93], and whether promoter regions are active (defined by: H3k4me3) [94]. Indeed, we observed
that differentially enriched peaks within our comparisons occurred at much higher rates than random chance
across a majority of transcription factor ChIP data associated with islet cell identity (Supplemental Fig. 7A-
C) as well as all predictive histone marker regions (Supplemental Fig. 7D-F). This further supported our
hypothesis that open chromatin, and now specifically differentially enriched chromatin, would be directly
associated with the transcription factors responsible for shaping islet cell-specific gene expression patterns
and identity. As differentially enriched chromatin is associated with cell-identity regulatory networks, we
inquired to selectively evaluate these regions for enhancers that may be relevant to pancreatic islet cell

identity.
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Identifying and visualizing putative islet cell-type specific enhancers via epiRomics

These transcription factor and histone ChIP datasets were then fed into an R package named
epiRomics that we developed to identify putative enhancer regions involved in pancreatic islet cell identity.
We defined enhancer regions by the co-localization of H3k27ac and H3k4me1 histone modifications within
islet cell chromatin. We stringently narrowed our definition further by requiring these regions to also have
transcription factor binding sites - Pdx1, Nkx6-1, Neurodl, Insm1, Foxa2, Nkx2-2, Rfx6, MafA, Isll,
Kat2b, Ldbl, and Gata6 — defined by islet ChIP data that are either ubiquitously or selectively expressed
across the three islet cell types (Fig. 2E-F; Supplemental Fig. 2E; Supplemental Fig. 8 A-I). This first pass
resulted in 28,647 putative enhancer regions (Supplemental Dataset 3). We then filtered this list against
chromatin accessible regions from our ATAC-Seq data sets of alpha, beta, and delta cells, resulting in
16,651 putative active enhancers (Fig. 9A). To further increase our confidence in these enhancer calls, we
crossed our putative enhancer regions against the curated FANTOMS curated enhancer database [95]. This
resulted in a conservative list of 3,535 putative enhancer regions. Of these 2,347 were inaccessible to at

least two out of three islet endocrine cell types (Fig. 9B) (Supplemental Dataset 4).

In both putative enhancer lists, we found that 39.8-43.2% of the enhancer regions we identified
were common across all cell types, supporting the theory that related cell types of a common origin would
have a sizeable commonality of similar regulatory regions involved in development and maintenance (Fig.
9A-B). Interestingly, between 1.53—10.1% of called enhancers were associated with accessible chromatin
unique to each cell type. Enhancer regions selective to beta cells were identified at the highest frequency

(~10%), while alpha and delta enhancers made up ~2% of the list.

Upon evaluating whether or not our putative enhancer list would recapitulate two previous mouse
pancreatic islet studies delineating enhancers, we confirmed that our approach was able to independently

identify an established intronic enhancer on the Slc30a8 gene, demonstrated to be regulated in part by the
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Pdx1 transcription factor (Fig. 9C) [96]. Our approach also supported a previously identified promoter-
proximal enhancer region targeting Pdxi, with co-occurring binding sites for islet transcription factors

Insm1, Neurodl, and Foxa2 (Fig. 9D) [77].

Given that our approach corroborated enhancers identified through complementary methods in
previous mouse islet studies, we investigated cell-specific or common putative enhancer candidates by
evaluating those with the highest number of transcription factor co-binding sites from our list. One of the
top predicted beta cell-unique putative enhancer regions is located on the sixth exon of the Slc35d2 gene
and aligns with eight different ChIP co-localization binding sites (Fig. 10A). An alpha cell-unique putative
enhancer located at a distal-intergenic region ~30kb upstream of Duspl0, overlapped precisely with six
sites of co-binding from various transcription factors (Fig. 10B). A delta cell-unique region at a distal-
intergenic enhancer region ~21kb upstream of Gm20745 aligned closely with no fewer than 12 sites of co-
binding from multiple transcription factors. (Fig. 10C). And finally, a common enhancer located ~32kb
upstream of Snap25 — a gene expressed in alpha, beta, and delta cells, associated with a total of 17 co-

binding sites of aggregated transcription factors. (Fig. 10D).

We noted further examples of enhancer regions that are inaccessible to beta, but present in both
alpha and delta (Supplemental Fig. 9A) cells, or others with chromatin accessibility across all cell types
with an adjacent, intronic enhancer region uniquely available to beta cells alone (Supplemental Fig. 9B). In
particular, the Slc2a2 gene shares common open chromatin across alpha, beta, and delta cells. However,
beta cells have a gained accessible chromatin region on the first intron identified as a putative enhancer and
which overlaps with six co-binding sites. Finally, we noted more putative regions that were enriched in

both alpha and beta cells, and present in delta cells as well (Supplemental Fig. 9C-D).
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Discussion

The high quality ATAC-Seq data derived from this study is the first dataset of its kind from FACS-
purified mouse alpha, beta, and delta cells. Moreover, while bulk-ATAC-Seq data from human alpha and
beta cells have previously been reported, our data are the first to report on chromatin accessibility of delta
cells and combine these cell’s chromatin landscapes to companion transcriptome data. We believe that our
data will provide a useful resource that complements our companion transcriptome data that we reported
previously using the exact same combination of reporter strains [6]. Leveraging these data allowed us to
confirm previous findings in a human ATAC-Seq study evaluating alpha and beta cells, which suggested
that alpha cells are poised but repressed from becoming beta cells [5], and present evidence that supports
that delta cells might be similarly epigenetically poised to adopt a beta cell like gene expression pattern.
We also now harmonized our ATAC-Seq and RNA-Seq data with a wealth of -omics levels data from our
colleagues, resulting in a comprehensive multi-layered omics overview that includes histone modifications
and transcription factor binding sites. Finally, we made these data accessible through an intuitive interface

that we developed to be navigated without any bioinformatics experience.

In evaluating the chromatin landscape of alpha, beta, and delta cells, we noted that over half of
accessible chromatin in any of the cell types corresponded to promoter-proximal regions (~25%) and
intronic regions (~32%), even though a much smaller fraction of the genome is represented by promoter-
proximal sites. This underscores that a substantial portion of regulatory activity occurs directly at genic
regions themselves. The enrichment of promoter-proximal and intronic open chromatin we observed in
mouse islet cells agrees with previous findings in human studies [5, 38]. The strong presence of intronic
peaks supported previously established findings of how enhancers on introns can act as suppressors [33] or
drivers of gene expression [97] — in one instance, how Pdx/ regulates the expression Slc30a8 through an
intronic enhancer [96] — and suggested that these intron regions of accessible chromatin may play a role in
cell identity (Fig. 8D). Our findings of a large number of peaks residing at distal-intergenic regions (~35%)

agree with previous research identifying and emphasizing the role of distal intergenic regions acting as
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enhancers (Fig. 10C-D, Supplemental Fig. 9C-D) in pancreatic islet identity and functional beta cell
behavior, and through linkage with T2D GWAS studies that link these regions to beta cell dysregulation

[19, 20, 23, 24, 98, 99].

Upon evaluating differences in chromatin accessibility between pairwise comparisons, we
discovered that overall, differentially enriched ATAC-Seq peaks in alpha or delta cells were more likely to
occur at promoter-proximal regions adjacent to the TSS, whereas peaks enriched in beta cells were often
found in distal intergenic or intronic regions, suggesting different mechanisms regulating alpha and delta
cell fate specification (Fig. 5B, 5F). When comparing differentially enriched TSS-associated chromatin and
respective gene expression, we observed a strong association between chromatin accessibility and gene
expression. However, both alpha and delta cells showed a preference in putatively poised genes when either
was compared to beta cells. Of note, Maf4 is a key transcription factor enriched in beta cells that shows
abundant chromatin accessibility in both alpha and delta cells (Fig. 2E) but is only expressed in beta cells.
Another notable example is Pdx/, which shows poised TSS enrichment in alpha cells, but is only expressed

in beta and delta cells (Fig. 2F).

Moreover, a majority of alpha- and delta- repressed genes showed intermediate expression in the
transdifferentiated populations (Fig. 7A-B), further supporting that these are indeed putatively poised.
These observations are in line with prior data that suggest that alpha cells are epigenetically poised to
become beta cells, but are prevented from assuming beta cell transcriptional programs by repressive
regulators at key beta-specific transcription factors [5, 15]. Our observations here also fit reports of adult
or juvenile transdifferentiation of alpha-to-beta, or delta-to-beta, respectively [5, 67, 100], although the

contribution of these processes to beta cell regeneration is uncertain [101].

After evaluated motif binding on differentially enriched chromatin, we found that Irx2 and Insm1
motifs are enriched at promoter-proximal regions of cell-specific alpha peaks when comparing alpha and
beta cells, suggesting that they directly drive gene expression or repression in alpha cells by binding to

uniquely accessible chromatin [4, 77]. For Irx2, this indicates that it directly drives gene expression or
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repression in alpha cells. For Insm1, which is expressed more uniformly in all three endocrine cell types,
the role that it plays at promoter-proximal accessible chromatin is more complex and cannot be as readily
inferred. Between alpha and delta cells, the DNA binding motif for Pbx3, a transcription factor implicated
in driving Sst expression in delta cells, was found preferentially enriched in accessible chromatin associated
with promoter-proximal peaks [84], while the DN A motif for A#/2, identified as an enriched alpha cell motif
in a previous human study, was found to be preferential enriched to chromatin associated with intronic
peaks [5]. Between beta and delta cells, Insm1 and Nkx6.1 had motifs enriched at intronic chromatin regions
[77, 89], while Fev — recently identified in pancreatic islet development - and Atf3 — linked to enhancer
regions in EndoC-bH1 cells - were identified as preferential to chromatin associated with distal-intergenic

regions via their DNA binding motifs [11, 90].

Utilizing the R package epiRomics, we were able to derive a set of 16,651 putative enhancer peaks.
Of these regions, 16.7% of enhancers were shared between beta and alpha cells, and 17.8% were shared
between beta and delta cells, as opposed to the 8.18% shared between alpha and delta cells. Of note, our
approach identified previously identified intronic enhancers, such as the one located on Slc30a8 that is
regulated in part via the binding of the transcription actor Pdx1 and a promoter-proximal enhancer region
upstream of the Pdx1 that is associated with Insm1, Neurodl, and Foxa2 binding, also identified by our
approach (Fig. 9D) [77]. One final example of an enhancer is situated on the first intron of Slc2a2. having
unique chromatin accessibility to beta cells, coupled with multiple transcription factor binding sites,
including Pdx1, MafA, and Nkx6.1, could possibly explain the expression of the gene in beta cells while it
is near undetectable between alpha and delta cells (Supplemental Fig.9B). Slc2a2 plays a necessary role
glucose-stimulated insulin secretion [102], with a recent study identifying a downstream enhancer
regulating Slc2a2 requiring the co-occupancy of both MafA and Neurodl, but also noting that complex

epigenetic interactions occur beyond the scope of this distal region [103].

One limitation of our approach was that we were constrained to using protein data available to the

field. The substantial majority are transcription factors associated with beta cells, with the results reflective
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of this limitation. For instance, 10.1% of the enhancer regions called were unique to beta cells, whereas we
were only able to identify 1.53-2.47% unique to either delta or alpha cells (Fig. 2E-F; Supplemental Fig.
2E; Supplemental Fig. 8A-I). The over-representation of beta cell-specific enhancer regions is probably
explained by the fact that ChIP data for alpha and delta cell-specific enhancers obtained from pure
populations of primary alpha and delta cells does not exist. While the majority of the transcription factors
here are associated with beta cells, these data are still informative as delta and alpha regions with absence
of beta-cell transcription factor binding may be areas regulated through other layers of epigenetics, such as
methylation, or via alpha- or delta- specific transcription factors for which no ChIP data is currently
available [94]. While further validation of these regions lays beyond the scope of this study, such

information would be readily integrated in the future in the multi-omics resource we described here.

In conclusion, we provide a comprehensive snapshot of the characterization of chromatin
similarities and differences between mouse alpha, beta, and delta cells. Here, we identify certain TSS genic
regions that present as putatively poised in either alpha or delta cells and demonstrate intermediate
expression of these genes in beta cells of a non beta-lineage (either alpha or delta transdifferentiated). We
also provide a novel approach to identify active enhancers in these cell types through the use of these data
alongside data integrated from the field using our package, epiRomics, first confirming enhancers identified
in previous studies, and then showcasing novel regions with potential for further exploration. Taken
together, we have demonstrated that the integration of chromatin accessibility data via ATAC-Seq with
other epigenomic data can help further delineate regulatory regions and help answer outstanding questions
in the field. Studies and resources such as these are relevant in such that they also function as a supportive
resource for integrative research. Given this, we have made these data along with those aggregated through

our approach as an interactive resource available on our website.
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Conclusion

Here we have established a comprehensive picture of chromatin accessibility between major islet
endocrine cell types and present the novel chromatin landscape of delta cells. We identified differential
chromatin accessibility at promoter-proximal regions in both alpha cells and delta cells, when compared to
beta cells. This finding was in line with a previous study in human islets, and further builds on previous
literature in the field suggesting that both alpha and delta cells can transdifferentiate into beta cells. We also
identified preferentially binding pattern differences across the annotated genome in transcription factor
DNA-motifs across differentially enriched chromatin. Our evaluation of whether chromatin enrichment at
the gene body is always correlated with gene expression enrichment also demonstrated that transcriptional
regulation plays a role in determining cell fate rather than chromatin dynamics alone. Lastly, we devised
and provided a simple approach to utilize and integrate a subset of these epigenomic datasets — ChIP and
histone - alongside our ATAC-Seq chromatin data integrated with our previously published transcriptome
of the FACS-purified alpha, beta, and delta cells through the development of an R package, epiRomics.
This allowed for the visualization of integrated epigenomic data, and furthermore applies a novel approach
to identify putative enhancer regions, enabling a high-resolution overview of key regions that may be
responsible for driving cell fate decisions in pancreatic islet cell types. We have made this an interactive

resource publicly available at https://www.huisinglab.com/epiRomics_2021/index.html. We believe our

data and the tool we developed to visualize it to be a valuable resource to our field in pursuit of a full

understanding of the epigenetic control over islet gene expression.
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Figure 5
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Figure 6
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Figure 7
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Figure 9
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Figure 10
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Supplemental Table 2

A
ChIP (Transcription Factor) Datasets
Marker Accession Info
MafA GSE30298
Nkx2.2 GSE79785
Rfx6 GSE62844
Neurod1 GSE54046
Foxa2 GSE54046
Isl GSEB84759
Kat2b GSE78860
Ldb1 GSEB84759
Nkx6.1 GSE40975
Pdx1 E-MTAB-1143
Gata6 GSE57090
Insm1 GSE54046
B
ChIP (Histone) Datasets
Marker Accession Info
H3k27ac GSE110648
H3k4me3 GSE110648
H3k4me1 GSE68618
H2ak119ub GSE110648
H3k27me1 GSE110648
H3k36me3 GSE110648
H3K9me3 GSE110648
H3k9ac GSE87530
H3k27me3 GSE110648
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Supplemental Table 3
A

Percent of ATAC Peaks Overlapping with
Transcription Factor Binding Sites

Transcription Factor Percent Overlap
Foxa2 29.07%
Insm1 28.40%

Neurod1 20.09%
Pdx1 19.49%
Nkx6.1 15.44%
Nkx2.2 4.56%
MafA 1.56%
Rfx6 1.19%
Gatab 1.02%
Ldb1 0.41%
Kat2b 0.35%
Isl1 0.31%

B

Percent of Transcription Factor Binding Sites
Overlapping with ATAC Peaks

Transcription Factor Percent Overlap
Nkx2.2 63.79%
Neurod1 55.07%
Insm1 51.49%
Pdx1 50.85%
Nkx6.1 43.56%
Gata6 40.20%
Rfx6 35.65%
Foxa2 34.86%
Isl1 9.95%
Ldb1 5.46%
MafA 3.27%
Kat2b 0.35%
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Supplemental Table 4
A

Transcription Factor Motif Calls against ChIP Peaks Validation

Rfx6 43.00% 57% 8.34% 91.66%
Gatab 77.58% 22.42% 1.78% 98.22%
Foxa2 78.17% 21.83% 6.38% 93.62%
Nkx6.1 82.05% 17.95% 6.89% 93.11%
Nkx2.2 89.48% 10.52% 2.98% 97.02%
Insm1 93.39% 6.61% 3.63% 96.37%
Pdx1 95.51% 4.49% 1.26% 98.74%
Isl 98.33% 1.67% 0.51% 99.49%
MafA 99.41% 0.59% 1.19% 98.81%
B
Transcription Factor Motif Calls against ChIP Peaks (Open ATAC only) Validation
T iption Factor| False Negative | True Positive | False Positive | True Negati
Rfx6 34.90% 65.10% 8.81% 91.19%
Foxa2 80.11% 19.89% 8.92% 91.08%
Gata6 83.80% 16.20% 1.98% 98.02%
Nkx6.1 88.61% 11.39% 8.74% 91.26%
Nkx2.2 90.28% 9.72% 3.69% 96.31%
MafA 91.29% 8.71% 1.73% 98.27%
Insm1 91.74% 8.26% 3.97% 96.03%
Isl1 94.12% 5.88% 0.74% 99.26%
Pdx1 95.30% 4.71% 1.68% 98.32%
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Supplemental Figure 1

A
Beta and Alpha FACS Beta and Delta FACS
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Supplemental Figure 3
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Supplemental Figure 4
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Supplemental Figure 5
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Supplemental Figure 6
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Supplemental Figure 7
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Supplemental Figure 8
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Supplemental Figure 9
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Figure Legends

Main Figures

Figure 1 — Validating alpha, beta, and delta chromatin accessibility ATAC Seq. A: Dimensional
reduction through principal component analysis across seven samples from all three cell types (See
Supplemental Table 1 for details). All three cell type’s replicates clustered closer together and separate
from other cell types. B: Heatmap further confirming quality of replicates and similarity between replicates
within each cell type. C: Fraction of Reads in Peaks (FRiP) score evaluation across samples, confirming
high library complexity irrespective of depth of sequencing. D-F: Confirming chromatin accessibility at the
TSS (arrows) against bulk RNA-Seq expression in key islet cell type-specific marker gene regions - /ns2,

Gcg, and Sst - in beta, alpha, and delta cells, respectively.

Figure 2 - Validating chromatin accessibility ATAC Seq alongside companion RNA-Seq expression
in alpha, beta, and delta cells against hallmark genes governing its respective cell’s identity. All genes
are oriented for 5’ to 3’ end. A-C: Chromatin accessibility and transcript expression across alpha cell
hallmark genes Arx, Ttr, and Gc. D-F: Chromatin accessibility and transcript expression across beta cell
hallmark genes Ucn3, Esrl, and PdxI. G-1: Chromatin accessibility and transcript expression across delta

cell hallmark genes Hhex, Rbp4, and Ghsr.

Figure 3 — Evaluating chromatin accessibility ATAC Seq similarities and differences across all three
cell types. A: Schematic of annotated genomic regions — promoter proximal, intronic, exonic, distal-
intergenic, or downstream. B-D: TSS peak (defined as 3kb up or downstream each respective gene)
chromatin accessibility density across beta, alpha, and delta cells. E-G: Distribution of chromatin peaks

within each cell type across the annotated genome.

Figure 4 — Comparing chromatin accessibility through differential enrichment analysis across alpha,
beta, and delta cells. A: Differential chromatin accessibility peaks between alpha and beta ATAC Seq
data. A total of 18,409 peaks were considered differentially enriched at p-value <= 0.05 (Supplemental
Dataset 1). B: Differential chromatin accessibility peaks between alpha and delta ATAC Seq data. A total
of 12,722 peaks were considered differentially enriched at p-value <= 0.05 (Supplemental Dataset 1). C:
Differential chromatin accessibility peaks between beta and delta ATAC Seq data. A total of 16,913 were
considered differentially enriched at p-value <= 0.05 (Supplemental Dataset 1).

Figure 5 — Regional differences and characteristics of differentially enriched peaks between alpha,
beta, and delta cells. A: Distribution of regional preference across the annotated genome of differentially

enriched peaks between alpha and beta cells. B: Regional preference breakdown of differentially enriched
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peaks between alpha and beta cells, indicating prevalence of enrichment for each cell type and genomic
annotation. Differentially enriched chromatin favored promoter-proximal peaks in alpha cells, and distal-
intergenic regions in beta cells. C: Distribution of regional preference across the annotated genome of
differentially enriched peaks between alpha and delta cells. D: Regional preference breakdown of
differentially enriched peaks between alpha and delta cells, indicating prevalence of enrichment for each
cell type and genomic annotation. Differentially enriched chromatin favored promoter-proximal peaks in
alpha cells, and distal-intergenic regions in delta cells. E: Distribution of regional preference across the
annotated genome of differentially enriched peaks between beta and delta cells. F: Regional preference
breakdown of differentially enriched peaks between beta and delta cells, indicating prevalence of
enrichment for each cell type and genomic annotation. Differentially enriched chromatin favored promoter-

proximal peaks in delta cells, and distal-intergenic regions in beta cells.

Figure 6 — Differentially enriched chromatin at TSS genic regions and their respective gene’s
expression between alpha, beta, and delta cells. A-C: Schematic of ‘congruent’, ‘incongruent’, and
‘unexpressed’ categories used to determine the association of enriched chromatin at TSS genic regions and
respective gene expression. D: Differentially enriched chromatin at TSS genic regions and their respective
gene’s expression between alpha and beta cells. The majority (50%) of genes with enriched chromatin at
promoter-proximal regions around their TSS had correlated gene expression (congruent). Another 36% of
chromatin enriched TSS regions showed repressed gene expression for each cell type (alpha repressed
(33%) or beta repressed (3%)), and finally, 14% were unexpressed. E: Differentially enriched chromatin at
TSS genic regions and their respective gene’s expression between alpha and delta cells. The majority (55%)
of genes with enriched chromatin had correlated gene expression (congruent). Another 24% of chromatin
enriched TSS genic regions showed repressed gene expression for each cell type (alpha repressed (14%) or
delta repressed (10%)), and finally, 20% showed no expression. F: Differentially enriched chromatin at
TSS genic regions and their respective gene’s expression between beta and delta cells. The majority (57%)
of genes with enriched chromatin had correlated gene expression (congruent). Another 32% of chromatin
enriched TSS regions showed repressed gene expression for each cell type (beta repressed (1.5%) or delta

repressed (30.45%)), and finally, 11% showed no difference.

Figure 7 — Gene expression of poised genes enriched in beta cells with a non-beta cell lineage. A:
Evaluating alpha repressed genes (Fig. 6A) across alpha, alpha transdifferentiated, and beta cell
transcriptomes. The great majority (83.6%) of genes repressed in alpha cells showed intermediate
expression in alpha transdifferentiated cells, and highest expression in beta cells, further validating that
alpha cells are poised to become beta cells, with a subset (16.4%) of those genes required for the transition.

B: Evaluating delta repressed genes (Fig. 6C) across delta, delta transdifferentiated, and beta cell
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transcriptomes. Around half (50.18%) of genes repressed in delta cells showed intermediate expression in
delta transdifferentiated cells, and highest expression in beta cells, validating that delta cells — to a lesser
extent than alpha — are also poised to become beta cells, with the remainder of genes (49.82%) required for

the transition.

Figure 8 — Evaluating expressed, cell-specific transcription factor footprints on differentially
enriched peaks across cell types. A: Evaluating cell-specific transcription factor footprints on
differentially enriched peaks for alpha and beta cells, suggesting transcription factor preference for these
peaks across the functionally annotated genome. Notably, three known transcription factors were predicted
to overlap all defined regions of the genome, whereas others showed preference for binding at either
promoter, exon, intron, or distal regions, suggesting different mechanisms of regulation. B: Evaluating cell-
specific transcription factor footprints on differentially enriched peaks for alpha and delta cells, suggesting
transcription factor preference for these peaks across the functionally annotated genome. No known
transcription factor was predicted to bind to all defined regions of the genome, with the majority binding to
either intronic, distal, or promoter areas. C: Evaluating cell-specific transcription factor footprints on
differentially enriched peaks for beta and delta cells, suggesting transcription factor preference for these
peaks across the functionally annotated genome. No known transcription factor was found predicted to bind
to all defined regions of the genome, with the great majority showing a preference for distal, intronic, or

promoter regions.

Figure 9 — Putative enhancer detection overlap between the three cell types. A: First-pass overlap of
unfiltered putative enhancers called with our novel package, epiRomics. Open chromatin regions in at least
one cell type were crossed against two informative histone marks - H3k27ac and H3k4mel — and
transcription factor binding data to call putative enhancer regions. A total of 28,647 regions were identified
(Supplemental Dataset 3). 39.8% of putative enhancer calls had chromatin accessible to all three cell types,
suggestive of pancreatic endocrine cell development and maintenance involvement. The overlap of
enhancer calls with open chromatin between any two cells type was 8.51% - 18.9%. Between 1.89% -
9.94% of calls were unique to one cell type alone. B: First-pass enhancer calls were filtered against the
curated FANTOMS database delineating all identified enhancers in the mouse genome. This resulted in a
much more conservative list of 3,535 regions identified (Supplemental Dataset 4). The distribution of
enhancers unique or common between cell types remained comparable, with 43.2% identified across all
three cell types, and 1.53% - 10.1% unique to a cell type. C: Confirming an enhancer on the second intron
of Slc30a8, identified in a previous study, with 14 sites of co-binding from multiple transcription factors.
D: Confirming an a promoter-proximal enhancer (~1kb upstream) of the gene that codes for the

transcription actor Pdx 1, with 9 sites of co-binding from multiple transcription factors.

163



Figure 10— Visualizing novel, putative enhancer detection between cell types. A: Visualizing a beta-
unique enhancer region. An exonic enhancer region selected from our filtered enhancer call list, with 8§ sites
of co-binding from various transcription factors relevant to pancreatic islet cell identity and maintenance
[1]. B: Visualizing an alpha-unique enhancer region; a distal-intergenic enhancer region (~30kb upstream
of Dusp10) selected from our filtered enhancer call list, with 6 sites of co-binding from various transcription
factors. C: Visualizing a delta-unique enhancer region. A distal-intergenic enhancer region (~21kb
upstream of Gm20745) selected from our filtered enhancer call list, with 12 sites of co-binding from various
transcription factors. D: Visualizing a non-unique enhancer region common across all three cell types. A
distal-intergenic enhancer region (~32kb upstream of Snap25) selected from our filtered enhancer call list,

with 17 sites of co-binding from various transcription factors.
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Supplemental Tables

Supplemental Table 1 — Quality control metrics across all ATAC-Seq replicates described.

Supplemental Table 2 — Aggregated dataset description and reference. A: Pancreatic islet ChIP Seq
transcription factor data aggregated to identify enhancer and enhancer regions. B: Pancreatic islet histone
data aggregated to identify enhancer and enhancer regions. The final approach utilized two histone marks
deemed most relevant at delineating putative enhancer regions while taking into account a risk of both false

positives and false negatives.

Supplemental Table 3 — Validating open chromatin peaks against known pancreatic islet ChIP binding
sites. A: Evaluating the extent of open chromatin— as defined by our ATAC-Seq consensus peak set —
contained binding sites for known, pancreatic islet transcription factors. Percent of open chromatin with
associated binding sites ranged from 0.31-29.07%. The transcription factors Foxa2, Insm1, and Neurod1
had the highest number of binding sites. B: Evaluating the extent of each ChIP-Seq experiment’s binding
site calls overlapped with open chromatin. Percent of overlap ranged from 0.35-63.79%. Nkx2.2, Neurod1,

and Insm1 had the greatest overlap.

Supplemental Table 4 — Validating motif-calling approach against known ChIP binding sites. A:
Pancreatic islet ChIP Seq transcription factor peak calls analyzed by the motif-calling method to determine
sensitivity and specificity. True positive calls ranged from 0.59-57%, and false positives ranged from 1.19-
8.34%. B: Pancreatic islet ChIP Seq transcription factor peak calls limited to open chromatin determined
by the consensus peak set analyzed by the motif-calling method to determine sensitivity and specificity.

True positive calls ranged from 4.71-65.10%, and false positives ranged from 1.68-8.81%.
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Supplemental Figures

Supplemental Figure 1 — FACS sorting gates used to isolate alpha, beta, and delta cells through our
mouse reporter lines. FACS sorting gates isolating beta cells (Ins2-mCherry+) from either alpha (Gcg-
YFP+) or delta cells (Sst-YFP+). Double negatives are non-beta and non-alpha or non-delta cells. Double
positives (mCherry/YFP+) represent cells with both Ins2 expression and Geg or Sst expression, reflective

of transdifferentiated beta cells. These were not included in any of the samples.

Supplemental Figure 2 — Validating more chromatin accessibility ATAC Seq and companion RNA-
Seq expression in alpha, beta, and delta cells against hallmark genes governing its respective cell’s
identity. All genes are oriented for 5’ to 3’ end. A-C: Chromatin accessibility and transcript expression
across alpha cell hallmark genes IrxI, Irx2, and MafB. D-F: Chromatin accessibility and transcript
expression across beta cell hallmark genes AbccS, Nkx6.1, and Slc2a2. G-1: Chromatin accessibility and

transcript expression across delta cell hallmark genes Ffar4, Gabrb3, and Ache.

Supplemental Figure 3 — Chromatin enrichment does not always correlate with associated gene
expression. Select hallmark genes defining demonstrating congruent and incongruent chromatin and
gene enrichment for cell-specific markers. A: Differentially enriched chromatin at TSS regions and
respective gene expression between alpha and beta cells. The majority of cell-specific markers show TSS-
enrichment within the cell type of expression. Notably, Nkx6.! and Maf4 show TSS enrichment in alpha
cells, despite being transcription factors associated with beta cells. B: Differentially enriched chromatin at
TSS regions and respective gene expression between alpha and delta cells. C: Differentially enriched
chromatin at TSS regions and respective gene expression between beta and beta cells. The majority of cell-

specific markers show TSS-enrichment within the cell type of expression.

Supplemental Figure 4 — Evaluating KEGG and gene network enrichment across differentially
enriched peaks between alpha and beta cells. A: KEGG enrichment of differentially enriched peaks
identified pathways common between the two cell types, or unique to one. B: Gene network enrichment

indicative of possible functions of differentially enriched chromatin regions between the two cell types.

Supplemental Figure 5 — Evaluating KEGG and gene network enrichment across differentially
enriched peaks between alpha and delta cells. A: KEGG enrichment of differentially enriched peaks
identified pathways common between the two cell types, or unique to one. B: Gene network enrichment

indicative of possible functions of differentially enriched chromatin regions between the two cell types.

Supplemental Figure 6 — Evaluating KEGG and gene network enrichment across differentially

enriched peaks between beta and delta cells. A: KEGG enrichment of differentially enriched peaks
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identified pathways common between the two cell types, or unique to one. B: Gene network enrichment

indicative of possible functions of differentially enriched chromatin regions between the two cell types.

Supplemental Figure 7 — Verifying transcription factor binding sites and histone mark occurrence at
chromatin peaks to determine significance (observed versus expected). A-C: Transcription factors on
chromatin regions deemed enriched between differentially enriched chromatin across all three pairwise
comparisons.. The majority of transcription factors used in our analysis were deemed statistically significant
when observed compared to predicted. D-F: Histone mark occurrence on chromatin regions deemed
enriched between differentially enriched chromatin across all three pairwise comparisons. All histone marks

used in our analysis were deemed statistically significant when observed compared to predicted.

Supplemental Figure 8 — Aggregated transcription factor ATAC Seq and companion RNA-Seq
expression in alpha, beta, and delta cells. All genes are oriented for 5’ to 3’ end. A-I: Chromatin

accessibility and gene expression for aggregated ChIP datasets.

Supplemental Figure 9 — Further illustration of enhancer calls. A: Visualizing a common alpha and
delta enhancer region, unavailable in beta cells. B: Further illustration of a beta-unique enhancer region,
occurring on the first intron of Slc2a2, with 6 co-binding sites for multiple transcription actors. C-D: Two
examples of called enhancer regions common across all three cell types. Both are in distal-intergenic

regions of the genome and exhibit high transcription factor co-binding activity.
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Supplemental Datasets

Supplemental Dataset 1 — Annotated consensus chromatin peak set across alpha, beta and delta cells,

along with differential enrichment results between the three pairwise comparisons.

Supplemental Dataset 2 — Congruent and incongruent genes of differentially expressed genes between
the three pairwise comparisons. Congruent genes showed gene expression in the same direction as

chromatin accessibility enrichment, whereas incongruent genes had opposing expression and enrichment.

Supplemental Dataset 3 — Unfiltered putative enhancer calls defined by open chromatin region in at
least one of three cell types, overlapping the histone markers H3K27ac and H3K4mel. These regions

were crossed against pancreatic islet transcription factors to identify enhancer regions.

Supplemental Dataset 4 — Filtered putative enhancer calls defined by open chromatin region in at
least one of three cell types, overlapping the histone markers H3K27ac and H3K4mel. These regions
were crossed against pancreatic islet transcription factors to identify enhancer regions. Last, these data were
filtered for regions occurring on curated enhancer calls in the mouse genome using the FANTOMS

database.
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VIII. Chapter 8: epiRomics: a multi-omics R package for identifying and
visualizing enhancers

Alex M. Mawla and Mark O. Huising
Final draft, in process of submission, with pre-print available on biorXiv

Contributions to Jointly Authored Works: As first author of this manuscript, I conceived and devised the
approach, and wrote and currently maintain the R package. I was responsible for pursuing validation using
a previously published dataset in human pancreatic islets, alongside aggregated human transcription factor
and histone mark data, later cross-referencing findings of active enhancers detected against SNP data
associated with diabetes in human subjects. I was also responsible for writing this short manuscript intended
to share the application so that other colleagues in the scientific community may utilize the approach if they
choose so. [ am currently in the process of adding further validation to this approach in order to submit the
manuscript for publication.

Significance of Research: This manuscript details a package I designed intended to provide a
straightforward, and clear solution to integrate multi-omics data and delineate enhancers during the course
of writing Chapter 7.
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Abstract

Summary: epiRomics is an R package designed to integrate multi-omics data in order to identify and
visualize enhancer regions alongside gene expression and other epigenomic modifications. Regulatory
network analysis can be done using combinatory approaches to infer regions of significance such as
enhancers, when combining ChIP and histone data. Downstream analysis can identify co-occurrence of
these regions of interest with other user-supplied data, such as chromatin availability or gene expression.

Finally, this package allows for results to be visualized at high resolution in a stand-alone browser.

Availability and Implementation: epiRomics is released under Artistic-2.0 License. The source code and

documents are freely available through Github (https://github.com/Huising-Lab/epiRomics).

Contact: ammawla@ucdavis.edu or mhuising@ucdavis.edu

Supplementary information: Supplementary data, and methods are available online on biorxiv or Github.
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Introduction

The evaluation of the transcriptional landscape between cell types grants the scientific community
a deeper understanding of cellular identity, and helps paint the underlying mechanisms that drive phenotype
and function [1]. Bulk RNA sequencing has been a gold standard in the field, followed more recently with
the advent of single-omics approaches [2-5]. However, gene expression represents only a single aspect of
what is a sophisticated and interlaced network of genetic and epigenomic regulators that drive and

determine cell identity, with perturbations leading to dysfunction and, sometimes, disease [6].

Chromatin remodeling is a dynamic process that represents one of the epigenetic layers of cell fate
maintenance and identity [7, 8]. Approaches such as DNase I hypersensitive site sequencing (DNASE-Seq)
[9] and Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) [10, 11], are commonly
used to compare chromatin accessibility between cell types and states. Chromatin immunoprecipitation
Sequencing (ChIP-Seq) is another approach used to assess the epigenomic regulators driven by specific
transcription factors acting as either activators or suppressors on the genic region, or at distal-intergenic
regions, associated with enhancer activity [12-16]. Alternatively, ChIP-Seq is used in conjunction with
antibodies that pull down specific histone modifications associated with regions of chromatin, whose
presence can be used to infer whether the region is active, poised or repressed [17, 18]. The interrogation
of transcription factor binding is not enough to infer transcriptional behavior, as whether or not chromatin
is accessible between cell types, and whether the region is active, poised, or repressed, demarked by co-
occurrences of histone marks, must be considered in order to fully evaluate the biology [17, 19]. Lastly,
methylation of DNA, quantifiable through whole-genome bisulfite sequencing analysis (BS-Methyl Seq)
[20], can help determine whether accessible chromatin that has recruited the correct histone marks is even
available for transcription factor binding and recruitment of co-modulators to drive or suppress gene

transcription within cell types [21, 22].
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While tools exist to compare these different layers in a pairwise manner, a gap exists to integrate
multiple omics layers quickly, and easily to generate high resolution visuals in order to derive more
biological meaning behind results. We developed a novel ‘epigenomics in R’, epiRomics, package to solve
this issue. We designed epiRomics to accept either browser extensible data (BED) [23] or bigwig [24] files
as input for any of the aforementioned types of data. Inclusion of functional annotations, i.e. FANTOM
[25], single nucleotide polymorphism (SNP) data from GWAS [26, 27], or Ultra Conserved Non Coding
Elements (UCNESs) [28] is also possible — in order to more fully integrate many slices of the genetic and

epigenetic pie.

Functions

epiRomics takes in a user-submitted comma-separated values (csv) file containing hard paths to all
BED or bigwig formatted files, optional hexadecimal (hex) color code associations for each file and a user-
defined label to group each input data set (e.g, ChIP, ATAC, RNA, functional, etc.). The
epiRomics build dB command quickly generates a comprehensive and easily accessible variable of the
class “epiRomics-class” containing a GenomicRanges (GRanges) object [29] that tracks each of these
submitted data, along with all other data related to the species, pulled automatically from the UCSC genome
database [23]. The epiRomics-class variable can easily be integrated with other packages, and the user can
also save these data in a csv format for further manual exploration in excel, or other comparable third-party

tools.

Putative enhancers can efficiently be called, and then categorized separately — active, poised,
repressed, etc., through the epiRomics putative enhancers function, which will consider user provided
histone data. For example, the histone marks H3K27ac and H3K4mel are commonly used to demark active
enhancer regions [17, 30-32] outputting an epiRomics-class variable for downstream use within the

package, or outside. This variable can be used further to identify key enhanceosome regions with evidence
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of co-binding of multiple user-selected transcription factors by implementing the
epiRomics_putative enhanceosome command. These data can also be filtered against functional data
annotations, such as methylation calls, FANTOM, SNP regions, or UCNEs, through the use of
epiRomics_putative _enhancers_filtered. A side function is provided within the package making use of
decision trees [33] in order to classify which transcription factors were most meaningfully associated with

different enhancer types, through the use of epiRomics_predictors.

For visualization of these differently classified regions, and integration with bigwig data such as
gene expression or chromatin availability between cell types, the tool epiRomics_track layer can be used.
This makes use of the package GViz [34] to generate resolution, publication-quality encapsulated postscript
(eps) files. Specific calls for enhancer regions provided by epiRomics putative enhanceosome can be
visualized. Conversely, if users have specific regions or genes of interest they wish to evaluate, they can do

S0 using epiRomics_region_of interest.

These tools were designed to allow biological relevance to be determined from the integrated multi-
omics data that is available for a particular tissue or cell type. For example, a common enhancer region may
be present between cell types of a common progenitor, with chromatin accessible across all cell types,
methylation may block activity in one cell type, but not the other. Drug treatment, or healthy versus diseased
comparisons can quickly be made, and the multitude of SNPs amassed via GWAS can be seamlessly

connected to narrow in on deleterious variants that may contribute to disease.

Results

epiRomics is developed as an R package to be made available through Bioconductor [35], and is
available under Artistic-2.0 License. epiRomics is designed to integrate a multitude of -omics data — in
either BED or bigwig format — in order to identify regions of regulatory interest, such as enhancers, and
provide sophisticated, high quality resolution visuals in EPS format for use in publications. Users with little

programming experience can use epiRomics to encode colors for individual tracks, cross-reference diverse
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types of -omics data — such as ATAC- and RNA- Seq, and produce strong candidate lists for putative
enhancers common or unique to cell types. Finally, epiRomics is easy to use, with a full walkthrough with

sample data available through its companion vignette.
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Abstract

Summary epiRomics is an R package designed to integrate multi-omics data in order to identify and visualize
enhancer regions alongside gene expression and other epigenomic modifications. Regulatory network analysis
can be done using combinatory approaches to infer regions of significance such as enhancers, when combining
ChIP and histone data. Downstream analysis can identify co-occurrence of these regions of interest with
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other user-supplied data, such as chromatin availability or gene expression. Finally, this package allows for
results to be visualized at high resolution in a stand-alone browser.

Availability and Implementation epiRomics is released under Artistic-2.0 License. The source code and
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Contact ammawl@ucdavis.edu or mhuising@ucdavis.edu
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If you use epiRomics in published research, please cite:

Mawla, AM& Huising, MO. epiRomics: a multi-omics R package to identify and visualize en-
hancers.

biorXiv 2021. doizhttps://doi.org/10.1101/2021.08.19.456732
Loading the epiRomics package and dependencies for vignette

## loading packages
library(epiRomics)
library (TxDb.Hsapiens.UCSC.hg38.knownGene)

library(org.Hs.eg.db)

Brief explanation of example data

This package includes some example data to get you started, delineating human pancreatic islet enhancers
between alpha and beta cells.

Human pancreatic islet alpha and beta ATAC- and companion RNA- Seq data were retrieved from GEO
accession GSE76268 (Ackermann, et al., 2016).

ATAC samples were processed using the ENCODE-DCC ATAC sequencing pipeline, aligning to the hg38
(Harrow, et al., 2012) build of the human genome (Consortium, 2012; Davis, et al., 2018).

Peak calls generated through the pipeline using MACS2 (Zhang, et al., 2008) were analyzed downstream
through the BioConductor package DiffBind (Ross-Innes, et al., 2012) in order to identify differentially
enriched chromatin regions between the two cell types.

RNA samples were quality controlled using the tool fastp (Chen, et al., 2018), and aligned using STAR
(Dobin, et al., 2013) to the hg38 build of the human genome. Wiggle files produced by the STAR aligner
were then merged by cell type using UCSC command line tools.

Bigwigs merged by cell type were subsetted to chromosome 1 using UCSC command line tools (Kent, et al.,
2010).
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ChIP-sequencing peak calls generated using MACS2 for human pancreatic islet transcription factors Foxa2,
MafB, Nkx2.2, Nkx6.1, and Pdx1 were retrieved from the EMBL-EBI repository database E-MTAB-1919
(Pasquali, et al., 2014). All peak calls were lifted over to the hg38 genome build using the UCSC genome
browser liftOver tool (Kent, et al., 2002).

Histone-sequencing peak calls generated using MACS2 for histones H3k27ac and H3k4mel were retrieved
from GEO accession GSE16256 (Bernstein, et al., 2010), and for histone H2A.Z from the EMBL-EBI repos-
itory database E-MTAB-1919 (Pasquali, et al., 2014). All peak calls were lifted over to the hg38 genome
build using the UCSC genome browser liftOver tool.

The FANTOMS5 human enhancer database (Lizio, et al., 2015) was retrieved, and all regions were lifted over
to the hg38 genome build using the UCSC genome browser liftOver tool.

Human ultra-conserved non-coding elements (UCNESs) were retrieved form the UCNE database (Dimitrieva
and Bucher, 2012), and all regions were lifted over to the hg38 genome build using the UCSC genome browser
liftOver tool.

The human islet regulome database was retrieved (Miguel-Escalada, et al., 2019) and all regions were lifted
over to the hg38 genome build using the UCSC genome browser liftOver tool.

How to load and build the database
Lets load and take a look at how to properly format the datasets epiRomics uses to build the initial database.

example_epiRomics_Db_sheet <- read.csv(
file = system.file(
"extdata",
"example_epiRomics_Db_sheet_user_paths.csv",
package = "epiRomics"
)
)

## Required columns are: name, path, genome, format, and type

## The genome must also be in proper format, e.g. mml0 or hg38

## Type of data can be histone, methyl, SNP, or ChIP.
## ChIP is required for some downstream functions to work appropriately.

## Not run
#head (ezample_epiRomics_Db_sheet)

epiRomics_ build__dB constructs a database of class epiRomics with this data sheet

epiRomics_dB <- epiRomics_build_dB(
epiRomics_db_file =
system.file(

"extdata",
"example_epiRomics_Db_sheet_user_paths.csv",
package = "epiRomics"

Do

txdb_organism =
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"TxDb.Hsapiens.UCSC.hg38.knownGene: : TxDb.Hsapiens.UCSC.hg38.knownGene",
epiRomics_genome = "hg38",
epiRomics_organism = "org.Hs.eg.db"

)

#> Building enhancers. ..

#> snapshotDate(): 2021-05-18

#> loading from cache

#> 'select()' returned 1:1 mapping between keys and columns
#> Building promoters...

#> Building 1tobkb upstream of TSS...
#> Building intergenic...

#> Building cds. ..

#> Building 5UTRs. ..

#> Building 3UTRs. ..

#> Building exons...

#> Building first exoms...

#> Building introns...

#> Building intron exon boundaries...
#> Building exzon intron boundaries...
#> Building CpG islands...

#> Building CpG shores...

#> Building CpG shelwes...

#> Building inter-CpG-islands. ..

#> snapshotDate(): 2021-05-18

#> Building lncRNA transcripts...

#> loading from cache

Delineating active enhancers using H3k4mel and H3k27ac marks
as a proxy

There is a lot of flexibility for data exploration here. In this example, we search for putative enhancers using
two histone marks known to co-occur at enhancer regions - h3k4mel & h3k27ac

epiRomics_putative_enhancers <-
epiRomics_enhancers(
epiRomics_dB,
epiRomics_histone_mark_1 =
"h3k4mel",
epiRomics_histone_mark_2 = "h3k27ac"

)
## Taking a look, we see a list of 19,692 putative enhancers

epiRomics_putative_enhancers@annotations
#> GRanges object with 19692 ranges and 0 metadata columns:

#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chri 999886-1000011 *
#> [2] chri 1000228-1000811 *
#> [31 chri 1000850-1001468 *
#> [4] chri 1005007-1006023 *
4
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#> [5] chril 1013701-1013893 *

#> 600 600 600 oo
#> [19688] chrY 12392544-12392994 *
#> [19689] chrY 13282680-13282760 *
#> [19690] chrY 15455449-15455788 *
#> [19691] chrY 19066496-19066508 *
#> [19692] chrY 19075542-19075899 *
#> ——————-

#>  seqinfo: 595 sequences (1 circular) from hg38 genome

Cross-referencing enhancer calls to other databases

FANTOM Enhancer Database

Now we have a list of regions as possible candidates for enhancers, but where do we go from here? One way
to increase confidence of these calls is to cross this list against an enhancer database, for instance, FANTOM.

## NOTE: This option may not be available for all organisms.

epiRomics_putative_enhancers_filtered_fantom <-
epiRomics_enhancers_filter(epiRomics_putative_enhancers, epiRomics_dB,
epiRomics_type =
"hg38_custom_fantom")

## Taking a look, we see a reduced number of 2,749 candidate regions

epiRomics_putative_enhancers_filtered_fantom@annotations
#> GRanges object with 2749 ranges and O metadata columns:

#> seqnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chrl 1021242-1021277 *
#> [2] chri 1021318-1021698 *
#> [3] chrl 1079632-1080061 *
#> [4] chri 1080101-1080628 *
#> [5] chri 1128200-1128445 *
#> S B 000 oo
#> [2745] chrX 154369950-154370183 *
#> [2746] chrX 154371971-154372237 *
#> [2747] chrX 154372350-154372695 *
#> [2748] chrX 154517139-154517596 *
#> [2749] chrX 154734550-154734738 *
#> -

#>  seqinfo: 595 sequences (1 circular) from hg38 genome

Human Pancreatic Islet Regulome Enhancer Database

We can also filter putative enhancer calls against active enhancers from the human islet regulome database

epiRomics_putative_enhancers_filtered_regulome_active <-
epiRomics_enhancers_filter (epiRomics_putative_enhancers,
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epiRomics_dB,
epiRomics_type = "hg38_custom_regulome_active")

epiRomics_putative_enhancers_filtered_regulome_active@annotations
#> GRanges object with 6025 ranges and O metadata columns:

#> seqgnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chri 1068896-1068951 *
#> [2] chri 1069171-1069333 *
#> [3] chri 1079632-1080061 *
#> [47 chri 1080101-1080628 *
#> [57 chri 1158358-1158930 *
#> R - B ..
#> [6021] chrX 153381411-153381523 *
#> [6022] chrX 153381677-153381956 *
#> [6023] chrX 153382322-153382448 *
#> [6024] chrX 153985442-153985689 *
#> [6025] chrX 154091801-154091996 *
#> -

#> seqinfo: 595 sequences (1 circular) from hg38 genome

Human Pancreatic Islet Regulome Super-Enhancer Database

We can also filter putative enhancer calls against super enhancers from human islet regulome database

epiRomics_putative_enhancers_filtered_regulome_super <-
epiRomics_enhancers_filter(epiRomics_putative_enhancers,
epiRomics_dB, epiRomics_type = "hg38_custom_regulome_super")

epiRomics_putative_enhancers_filtered_regulome_super@annotations
#> GRanges object with 2401 ranges and O metadata columns:

#> seqgnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chri 7574092-7574479 *
#> [2] chri 7574640-7575094 *
#> [3] chrl  8169274-8169689 *
#> [47 chrl  8170112-8170857 *
#> [5] chrl  8174089-8174358 *
#>

#>  [2397]  chr22 46109916-46110442

*
#>  [2398] chr22 46115774-46116154 *
#>  [2399] chr22 46116326-46116501 *
#> [2400] chrX 39813348-39813627 *
#>  [2401] chrX 39814304-39814607 *
#>  ——————-

#>  seqinfo: 595 sequences (1 circular) from hg38 genome

Human Ultra-Conserved Non-Coding Elements Database

We can also filter putative enhancer calls against Ultra-Conserved Non-Coding Elements
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epiRomics_putative_enhancers_filtered_ucnes <-
epiRomics_enhancers_filter(epiRomics_putative_enhancers,
epiRomics_dB,
epiRomics_type = "hg38_custom_ucnes")

epiRomics_putative_enhancers_filtered_ucnes@annotations
#> GRanges object with 11 ranges and 0 metadata columns:

#> seqgnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chrl 164635220-164635921 *
#> [2] chrl 164711914-164712296 *
#> [3] chrl 164712350-164713071 *
#> [4]1 chrl 200079185-200079426 *
#> [5] chrl 213585694-213586385 *
#> [6] chr3  71131859-71132164 *
#> [71 chr9 106921420-106921764 *
#> [8] chril 114163425-114164860 *
#> [9] chrils  36903894-36904085 *
#> [10] chrlbs  53447393-53447809 *
#> [11] chr2i 16534340-16534665 *

D oo
#> seqinfo: 595 sequences (1 circular) from hg38 genome

Screening for high transcription factor co-binding sites

Biology has established that enhancers can be quite redundant, and not all play an active role in regulating
a cell’s activity. How can we utilize other epigenomic data in order to identify true enhanceosome regions?
One way is to cross this list against all ChIP data of the cell type. A true enhanceosome region should
have made it through our filtering thus far, and contain several binding sites for known TFs. Co-binding is
expected, and the list is sorted by the highest number of ChIP hits within the region.

epiRomics_putative_enhanceosome_fantom <-
epiRomics_enhanceosome (epiRomics_putative_enhancers_filtered_fantom,
epiRomics_dB)

#> >> preparing features information... 2021-10-05 17:43:33

#> >> ddentifying nearest features... 2021-10-05 17:43:34

#> >> calculating distance from peak to TSS... 2021-10-05 17:43:35
#> >> assigning genomic annotation... 2021-10-05 17:43:35

#> >> adding gene annotation... 2021-10-05 17:44:15

#> 'select()' returned 1:many mapping between keys and columns

#> >> assigning chromosome lengths 2021-10-05 17:44:15

#> >> done. .. 2021-10-05 17:44:15

## Taking a look, we see the top candidates meet the criteria we list as expected

epiRomics_putative_enhanceosome_fantom@annotations
#> GRanges object with 2749 ranges and 19 metadata columns:

#> segnames ranges strand | foxza2 mafb nkz2_2

#> <Rle> <IRanges> <Rle> | <integer> <integer> <integer>

#> 183 chrl 154418514-154419684 * | 2 2 1

#> 1096 chr9 2242369-2242873 * 2 1 1
7
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#>
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#>
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#>
#>
#>
#>
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

## Evaluate calls

2615
34
792
2743
2745
2746
U7
2748

183
1096
2615
34
792
2743
2745
2746
U7
2748

183
1096
2615
34
792
2743
2745
2746
2747
2748

183
1096
2615
34
792
2743
2745
2746
277
2748

seqinfo: 595

chr22  30310745-30311570 * 1 2
chri 10685395-10688670 * 1 0 1
chr6é  30748438-30749427 * 2 1 1
chrX 153927339-153927701 * [ 0 0 0
chrX 154369950-154370183 * |/ 0 0 0
chrX 154371971-154372237 * [ 0 0 0
chrX 154372350-154372695 * 0 0 0
chrX 154517139-154517596 * 0 0 0
nzk6_1 pdzl h2az ChIP_Hits annotation  geneChr
<integer> <integer> <integer> <numeric> <character> <integer>
2 1 2 10 Intron (ENST00000622. . 1
1 2 1 8 Distal Intergenic 9
1 1 1 8 Promoter (2-3kb) 22
1 2 2 7 Intron (ENST00000377.. 1
1 1 1 7 Intron (ENST00000656. .
0 0 0 0 Promoter (<=1kb) 23
0 0 0 0 Promoter (1-2kb) 23
0 0 0 0 Promoter (<=1kb) 23
0 0 0 0 Promoter (1-2kb) 23
0 0 0 0 Promoter (<=1kb) 23
geneStart geneEnd geneLength geneStrand geneld transcriptld
<integer> <integer> <integer> <integer> <character> <character>
154429343 154449979 20637 1 3570 ENST00000476006.5
2181571 2186183 4613 1 6595 ENST00000635392. 1
30292008 30307890 15883 2 83874 ENST00000403362.5
10660737 10693912 33176 2 54897 ENST00000478728.2
30743199 30744547 1349 2 8870 ENST00000259874.6
153920715 153926860 6146 2 393 ENST00000422091 . 1
154348524 154371203 22680 2 2316 ENST00000420627.5
154348529 154371283 22755 2 2316 ENST00000422373.6
154348529 154371283 22755 2 2316 ENST00000422373.6
154506204 154516242 10039 2 60343 ENST00000434658.6
distanceToTSS ENSEMBL SYMBOL GENENAME
<numeric> <character> <character> <character>
-9659 ENSG00000160712 IL6R interleukin 6 receptor
60798 ENSG00000080503 SMARCA2 SWI/SNF related, mat..
-2855 ENSG00000099992 TBC1D10A TBC1 domain family m. .
5242 ENSG00000130940 CASZ1 castor zinc finger 1
-3891 ENSG00000137331 IER3 tmmediate early resp..
=479 ENSG00000089820 ARHGAP4 Rho GTPase activatin..
1020 ENSG00000196924 FLNA filamin A
-688 ENSG0000019692 FLNA filamin A
-1067 ENSG00000196924 FLNA filamin A
-897 ENSG00000071889 FAM3A FAM3 metabolism regu. .

on chromosome 1
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head(as.data.frame(
epiRomics_putative_enhanceosome_fantom@annotations
) [as.data.frame(epiRomics_putative_enhanceosome_fantom@annotations)$seqnames

== "chri1",])
#> seqnames start end width strand foxa2 mafb nkx2_2 nzk6_1 pdzl
#> 183 chrl 154418514 154419684 1171 * 2 2 1 2 1
#> 34 chrl 10685395 10688670 3276 * 1 0 1 1 2
#> 24 chrl 8170112 8170857 146 * 1 1 1 1 1
#> 67 chrl 21638834 21639978 1145 * 1 1 1 1 1
#> 71 chrl 22414515 22414806 292 * 1 1 1 1 1
#> 256 chrl 205318810 205319660 851 * 1 1 2 1 0
#> h2az ChIP_Hits annotation geneChr
#> 183 2 10 Intron (ENST00000622330.4/3570, intron 1 of 6) 1
#> 34 2 7 Intron (ENST00000377022.8/54897, intron 4 of 20) 1
#> 24 1 6 Distal Intergenic 1
#> 67 1 6 Intron (ENST00000290101.8/5909, intron 2 of 26) 1
#> 71 1 6 Distal Intergenic 1
#> 256 1 6 Promoter (2-3kb) 1
#> geneStart geneEnd geneLength geneStrand geneld transcriptld
#> 183 154429343 154449979 20637 1 3570 ENST00000476006.5
#> 34 10660737 10693912 33176 2 54897 ENST00000478728.2
#> 24 8201518 8215207 13690 1 102724539 ENST00000670361.1
#> 67 21596221 21651820 55600 2 5909 ENST00000471600.6
#> 71 22428838 22511763 82926 1 9923 ENST00000650433. 1
#> 256 205302063 205321745 19683 2 81788 ENST00000367157.6
#> distanceToTSS ENSEMBL SYMBOL
#> 183 -9659 ENSG00000160712 IL6R
#> 34 5242 ENSG00000130940 CASZ1
#> 24 -30661 ENSG00000227634 LINC01714
#> 67 11842 ENSG00000076864  RAP1GAP
#> 71 -14032 ENSG0000018467T7 ZBTB40
#> 256 2085 ENSG00000163545 NUAK2
#> GENENAME
#> 183 interleukin 6 receptor
#> 34 castor zinc finger 1
#> 24 long intergenic non-protein coding RNA 1714
#> 67 RAP1 GTPase activating protein
#> 71 zinc finger and BTB domain containing 40
#> 256 NUAK family kinase 2
## Find Index
which(names (epiRomics_putative_enhanceosome_fantom@annotations) == 183)

#> [1] 1

Transcription factor decision trees

ChIP dataset repositories are quite sizeable for many organisms and cell types, with the expectation to
only grow larger. Many different TFs binding to a putative enhancer region may not be that meaningful in
the context of your biological question. A further step would be to ask whether there are co-TFs that pop
up together, and whether this pattern varies across the functional annotation of the genome, i.e. does the
combination of two TFs on enhanceosomes change on the gene body compared to distal intergenic regions?
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plot(epiRomics_predictors(epiRomics_putative_enhanceosome_fantom))
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Intersecting and visualizing ATAC- and RNA-Seq data

What if you wanted to visualize co-binding on your FANTOM filtered putative enhancer region? And do
you have additional data you want to include for visualization, such as ATAC and RNA Seq? Lets take a

look at one of the top hits

## Read in ATAC Seq and RNA Seq track bigwigs

## NOTE: These bigwigs are subsetted to chromosome 1.
## Indices not falling on chromosome 1 will return an error.

epiRomics_track_connection <- read.csv(
system.file(

"extdata",
"example_epiRomics_BW_sheet_user_paths.csv",
package = "epiRomics"
)
)

10
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epiRomics_track_layer_human(
epiRomics_putative_enhanceosome_fantom,
epiRomics_index =
which (
names (epiRomics_putative_enhanceosome_fantom@annotations)
== 183
Do
epiRomics_dB = epiRomics_dB,
epiRomics_track_connection =
epiRomics_track_connection

#> [1] "not empty"
#> [1] 103.678
#> [1] "not empty"
#> [1] 77.5726
#> [1] "not empty"
#> [1] 33.2945
#> [1] "not empty"
#> [1] 50.4959

11
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What about a region that overlapped with active enhancers from the human islet regulome database?

epiRomics_putative_enhanceosome_regulome_active <-
epiRomics_enhanceosome (epiRomics_putative_enhancers_filtered_regulome_active,
epiRomics_dB)

#> >> preparing features information... 2021-10-05 17:46:34

#> >> identifying nearest features... 2021-10-05 17:46:34

#> >> calculating distance from peak to TSS... 2021-10-05 17:46:36
#> >> assigning genomic annotation... 2021-10-05 17:46:36

#> >> adding gene annotation... 2021-10-05 17:46:45

#> 'select()' returned 1:many mapping between keys and columns

#> >> assigning chromosome lengths 2021-10-05 17:46:45

#> >> dome. .. 2021-10-05 17:46:45

epiRomics_putative_enhanceosome_regulome_active@annotations
#> GRanges object with 6025 ranges and 19 metadata columns:

#> segnames ranges strand | foxa2 ma fb nkx2_2

#> <Rle> <IRanges> <Rle> | <integer> <integer> <integer>

#> 456 chrl 154418514-154419684 * [ 2 2 1

#> 2082 chr7 1555599-1556082 * | 1 1 1

#> 2572 chr9 2242369-2242873 * | 2 1 1

#> 3421 chrll  65416576-65419753 * 1 1 2

#> 4709 chr17 7887867-7889135 * 1 0 2

#> 000 600 500 S

#> 5999 chrX 49184194 * 0 0 0

#> 6001 chrX  70478965-70479351 * 0 0 0

#> 6006 chrX 107710676-107711066 * 0 0 0
#6007 chrX 107711430-107711673 * | 0 0 0
#6020 chrX 150874055-150874330 * | 0 0 0

#> nzk6_1 pdzl h2az ChIP_Hits annotation  geneChr
#> <integer> <integer> <integer> <numeric> <character> <integer>
#> 456 2 2 10 Intron (ENST00000622. . 1
#> 2082 2 2 1 8 Promoter (<=1kb) 7
#> 2572 1 2 1 8 Distal Intergenic 9
#> 3421 1 1 2 8 Distal Intergenic 11
#> 4709 2 2 1 8 Promoter (<=1kb) 17
#5999 0 0 0 0 Promoter (<=1kb) 23
#6001 0 0 0 0 Promoter (<=1kb) 23
#> 6006 0 0 0 0 Distal Intergenic 23
#> 6007 0 0 0 0 Distal Intergenic 23
#> 6020 0 0 0 0 Intron (ENST00000370. . 23
#> geneStart  geneEnd geneLength geneStrand geneld transcriptld
#> <integer> <integer> <integer> <integer> <character> <character>
#> 456 154429343 154449979 20637 1 3570 ENST00000476006.5
#> 2082 1550305 1556120 5816 2 202915 ENST00000441933.5
#> 2572 2181571 2186183 4613 1 6595 ENST00000635392. 1
#> 3421 65422798 65445540 22743 1 283131 ENST00000501122.2
#> 4709 7888789 7912755 23967 1 1107 ENST00000330494.12
#> 5999 49175621 49184789 9169 2 4007 ENST00000453382.5
#> 6001 70479118 70499903 20786 1 1741 ENST00000466140.5
#> 6006 107714677 107716401 1725 2 1831 ENST00000486554. 1

13

194



#> 6007 107714677 107716401 1725 2 1831 ENST00000486554. 1

#> 6020 150814900 150898609 83710 2 83692 ENST00000491877.1
#> distanceToTSS ENSEMBL SYMBOL GENENAME
#> <numeric> <character> <character> <character>
#> 456 -9659 ENSG00000160712 IL6R interleukin 6 receptor
#> 2082 38 ENSG00000164855 TMEM184A transmembrane protei..
#> 2572 60798 ENSG00000080503 SMARCA2 SWI/SNF related, mat..
#> 3421 -3045 ENSG00000245532 NEAT1 nuclear paraspeckle ..
#> 4709 0 ENSG00000170004 CHD3 chromodomain helicas..
#> 000 500 coo 000 o0
#5999 595 ENSG00000012211 PRICKLE3 prickle planar cell ..
#6001 0 ENSG00000082458 DLG3 discs large MAGUK sc..
#6006 5335 ENSG00000157514 TSC22D3 TSC22 domain family ..
#> 6007 47728 ENSG00000157514 TSC22D3 TSC22 domain family ..
#6020 24279 ENSG00000102181 CD99L2  CD99 molecule like 2
# -

#>  seqinfo: 595 sequences (1 circular) from hg38 genome
## Evaluate calls on chromosome 1
head(as.data.frame(

epiRomics_putative_enhanceosome_regulome_active@annotations
) [as.data.frame(epiRomics_putative_enhanceosome_regulome_active@annotations)$seqnames

== "chri",])
#> segnames start end width strand foxa2 mafb nkx2_2 nzk6_1 pdzl
#> 456 chrl 154418514 154419684 1171 * 2 2 1 2 1
#> 82 chrl 10685395 10688670 3276 * 1 0 1 1 2
#> 46 chrl 7574092 7574479 388 * 1 1 1 1 1
#> 47 chrl 7574640 7575094 455 * 1 1 1 1 1
#> 49 chrl 8169274 8169689 416 * 1 1 1 1 1
#> 50 chrl 8170112 8170857 746 * 1 1 1 1 1
#> h2az ChIP_Hits annotation geneChr
#> 456 2 10 Intron (ENST00000622330.4/3570, intron 1 of 6) 1
#> 82 2 7 Intron (ENST00000377022.8/54897, intron 4 of 20) 1
#> 46 1 6 Intron (ENST00000303635.12/23261, intron 6 of 22) 1
#> 47 1 6 Intron (ENST00000303635.12/23261, intron 6 of 22) 1
#> 49 1 6 Distal Intergenic 1
#> 50 1 6 Distal Intergenic 1
#> geneStart  geneEnd geneLength geneStrand geneld transcriptld
#> 456 154429343 154449979 20637 1 3570 ENST00000476006.5
#> 82 10660737 10693912 33176 2 54897 ENST00000478728.2
#> 46 7736408 7767856 31449 1 23261 ENST00000495233.5
#> 47 7736408 7767856 31449 1 23261 ENST00000495233.5
#> 49 8201518 8215207 13690 1 102724539 ENST00000670361.1
#> 50 8201518 8215207 13690 1 102724539 ENST00000670361.1
#> distanceToTSS ENSEMBL SYMBOL
#> 456 -9659 ENSG00000160712 IL6R
#> 82 5242 ENSG00000130940 CASZ1
#> 46 -161929 ENSG00000171735 CAMTA1
#> 47 -161314 ENSG00000171735 CAMTA1
#> 49 -31829 ENSG00000227634 LINCO1714
#> 50 -30661 ENSG00000227634 LINCO1714
#> GENENAME
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#> 456 interleukin 6 receptor
#> 82 castor zinc finger 1
#> 46 calmodulin binding transcription activator 1
#> 47 calmodulin binding transcription activator 1
#> 49 long intergenic mnon-protein coding RNA 1714
#> 50 long intergenic non-protein coding RNA 1714

## Find Index

which(names (epiRomics_putative_enhanceosome_regulome_active@annotations) == 82)
#> [1] 7

epiRomics_track_layer_human(
epiRomics_putative_enhanceosome_regulome_active,
epiRomics_index = which(
names (
epiRomics_putative_enhanceosome_regulome_active@annotations
) == 82
Do
epiRomics_dB = epiRomics_dB,
epiRomics_track_connection = epiRomics_track_connection
)
#> [1] "not empty"
#> [1] 36.1883
#> [1] "not empty"
#> [1] 14.7321
#> [1] "not empty"
#> [1] 5.30505
#> [1] "not empty"
#> [1] 2.40628
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What about a region that overlapped with super enhancers from the human islet regulome database?

epiRomics_putative_enhanceosome_regulome_super <-
epiRomics_enhanceosome (epiRomics_putative_enhancers_filtered_regulome_super,
epiRomics_dB)

#> >> preparing features information... 2021-10-05 17:49:52

#> >> identifying nearest features... 2021-10-05 17:49:52

#> >> calculating distance from peak to TSS... 2021-10-05 17:49:53
#> >> assigning genomic annotation... 2021-10-05 17:49:53

#> >> adding gene annotation... 2021-10-05 17:50:00

#> 'select()' returned 1:many mapping between keys and columns

#> >> assigning chromosome lengths 2021-10-05 17:50:01

#> >> dome. .. 2021-10-05 17:50:01

epiRomics_putative_enhanceosome_regulome_super@annotations
#> GRanges object with 2401 ranges and 19 metadata columns:

#> segnames ranges strand | foxa2 ma fb nkx2_2

#> <Rle> <IRanges> <Rle> | <integer> <integer> <integer>

#> 166 chrl 154418514-154419684 * [ 2 2 1

#> 966 chr9 2242369-2242873 * 2 1 1

#> 1422 chrll  65416576-65419753 * | 1 1 2

#> 16 chrl  10685395-10688670 * 1 0 1

#> 764, chr6  30748438-30749427 * 2 1 1

#> 000 600 500 000

#> 2393 chr22  46103687-46105878 * | 0 0 0

#> 2396 chr22  46108912-46109315 * 0 0 0
#2397 chr22  46109916-46110442 * [ 0 0 0

#> 2398 chr22  46115774-46116154 * | 0 0 0
#2399 chr22  46116326-46116501 * | 0 0 0

#> nzk6_1 pdzl h2az ChIP_Hits annotation  geneChr
#> <integer> <integer> <integer> <numeric> <character> <integer>
#> 166 2 1 2 10 Intron (ENST00000622. . 1
#> 966 1 2 1 8 Distal Intergenic 9
#> 1422 1 1 2 8 Distal Intergenic 11
#> 16 1 2 2 7 Intron (ENST00000377.. 1
#> 764 1 1 1 7 Intron (ENST00000656. . 6
#2393 0 0 0 0 Ezon (ENST0000038105. . 22
#> 2396 0 0 0 0 Ezon (ENST0000043543. . 22
#> 2397 0 0 0 0 Promoter (2-3kb) 22
#2398 0 0 0 0 Promoter (2-3kb) 22
#2399 0 0 0 0 Promoter (2-3kb) 22
#> geneStart  geneEnd geneLength geneStrand geneld transcriptld
#> <integer> <integer> <integer> <integer> <character> <character>
#> 166 154429343 154449979 20637 1 3570 ENST00000476006.5
#> 966 2181571 2186183 4613 1 6595 ENST00000635392. 1
#> 1422 65422798 65445540 22743 1 283131 ENST00000501122.2
#> 16 10660737 10693912 33176 2 54897 ENST00000478728.2
#> 764 30743199 30744547 1349 2 8870 ENST0000025987/ .6
#> 2393 46112749 46112822 74 1 406883 ENST00000362116.3
#> 2396 46112749 46112822 74 1 406883 ENST00000362116.3
#> 2397 46112749 46112822 74 1 406883 ENST00000362116.3
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#> 2398 46113686 46113768 83 1 406884 ENST00000385140.1

#> 2399 46113686 46113768 83 1 406884 ENST00000385140.1
#> distanceToTSS ENSEMBL SYMBOL GENENAME
#> <numeric> <character> <character> <character>
#> 166 -9659 ENSG00000160712 IL6R interleukin 6 receptor
#> 966 60798 ENSG00000080503 SMARCA2 SWI/SNF related, mat..
#> 1422 -3045 ENSG00000245532 NEAT1 nuclear paraspeckle ..
#> 16 5242 ENSG00000130940 CASZ1 castor zinc finger 1
#> 764 -3891 ENSG00000137331 IER3 immediate early resp..
#2393 -6871 ENSG00000283990  MIRLET7A3 microRNA let-7a-3
#> 2396 -3434 ENSG00000283990  MIRLET7A3 microRNA let-7a-3
#2397 -2307 ENSG00000283990  MIRLET7A3 microRNA let-7a-3
#> 2398 2088 ENSG00000284520 MIRLET7B microRNA let-7b
#2399 2640 ENSG00000284520 MIRLET7B microRNA let-7b
# -

#>  seqinfo: 595 sequences (1 circular) from hg38 genome
## Evaluate calls on chromosome 1

head(as.data.frame(
epiRomics_putative_enhanceosome_regulome_super@annotations) [as.data.frame(

epiRomics_putative_enhanceosome_regulome_super@annotations)$seqnames == "chril",])
#> segnames start end width strand foxa2 mafb nkzx2_2 nzk6_1 pdzrl
#> 166 chrl 154418514 154419684 1171 * 2 2 1 2 1
#> 16 chrl 10685395 10688670 3276 * 1 0 1 1 2
#> 1 chrl 7574092 7574479 388 * 1 1 1 1 1
#> 2 chrl 7574640 7575094 455 * 1 1 1 1 1
#> 3 chrl 8169274 8169689 416 * 1 1 1 1 1
#> 4 chrl 8170112 8170857 746 * 1 1 1 1 1
#> h2az ChIP_Hits annotation geneChr
#> 166 2 10 Intron (ENST00000622330.4/3570, intron 1 of 6) 1
#> 16 2 7 Intron (ENST00000377022.8/54897, intron 4 of 20) 1
#> 1 1 6 Intron (ENST00000303635.12/23261, intron 6 of 22) 1
#> 2 1 6 Intron (ENST00000303635.12/23261, intron 6 of 22) 1
#> 3 1 6 Distal Intergenic 1
#> 4 1 6 Distal Intergenic 1
#> geneStart  geneEnd geneLength geneStrand geneld transcriptld
#> 166 154429343 154449979 20637 1 3570 ENST00000476006.5
#> 16 10660737 10693912 33176 2 54897 ENST00000478728.2
#> 1 7736408  T767856 31449 1 23261 ENST00000495233.5
#> 2 7736408  T767856 31449 1 23261 ENST00000495233.5
#> 3 8201518 8215207 13690 1 102724539 ENST00000670361. 1
#> 4 8201518 8215207 13690 1 102724539 ENST00000670361. 1
#> distanceToTSS ENSEMBL SYMBOL
#> 166 -9659 ENSG00000160712 IL6R
#> 16 5242 ENSG00000130940 CASZ1
#> 1 -161929 ENSG00000171735 CAMTA1
#> 2 -161314 ENSG00000171735 CAMTA1
#> 3 -31829 ENSG00000227634 LINCO1714
#> 4 -30661 ENSG00000227634 LINC01714
#> GENENAME
#> 166 interleukin 6 receptor
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#> 16 castor zinc finger 1
#> 1 calmodulin binding transcription activator 1
#> 2 calmodulin binding transcription activator 1
#> 3 long intergenic non-protein coding RNA 1714
#> 4 long intergenic non-protein coding RNA 1714

## Find Index

which(names(epiRomics_putative_enhanceosome_regulome_super@annotations) == 1)

#> [1] 14

epiRomics_track_layer_human(
epiRomics_putative_enhanceosome_regulome_super,
epiRomics_index = which(
names (epiRomics_putative_enhanceosome_regulome_super@annotations) ==
),
epiRomics_dB = epiRomics_dB,
epiRomics_track_connection = epiRomics_track_connection
)
#> [1] "not empty"
#> [1] 243.743
#> [1] "not empty"
#> [1] 103.706
#> [1] "not empty"
#> [1] 11.3213
#> [1] "not empty"
#> [1] 22.1498
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Or, about a region that overlapped with ultra-conserved non coding elements?

epiRomics_putative_enhanceosome_ucnes <-
epiRomics_enhanceosome (epiRomics_putative_enhancers_filtered_ucnes, epiRomics_dB)

#> >> preparing features information... 2021-10-05 17:52:00

#> >> identifying nearest features... 2021-10-05 17:52:00

#> >> calculating distance from peak to TSS... 2021-10-05 17:52:01
#> >> assigning genomic annotation... 2021-10-05 17:52:01

#> >> adding gene annotation... 2021-10-05 17:52:08

#> 'select()' returned 1:1 mapping between keys and columns

#> >> assigning chromosome lengths 2021-10-05 17:52:08

#> >> done. .. 2021-10-05 17:52:08

epiRomics_putative_enhanceosome_ucnes@annotations
#> GRanges object with 11 ranges and 19 metadata columns:

#> seqnames ranges strand | foza2 ma fb nkr2_2
#> <Rle> <IRanges> <Rle> | <integer> <integer> <integer>
#> 7 chr9 106921420-106921764 * | 1 1 1
#> 1 chrl 164635220-164635921 * 0 0 2
#> 6 chr3  71131859-71132164 * 1 0 0
#> 2 chrl 164711914-164712296 * 0 0 0
#> 3 chrl 164712350-164713071 * |/ 0 0 0
#> 8 chril 114163425-114164860 * |/ 0 0 0
#> 9 chrls  36903894-36904085 * |/ 0 0 1
#> 11 chr2l  16534340-16534665 * 0 0 0
#> 4 chrl 200079185-200079426 * [ 0 0 0
#> 5 chrl 213585694-213586385 * | 0 0 0
#> 10 chrls  53447393-53447809 * | 0 0 0
#> nzk6_1 pdzl h2az ChIP_Hits annotation  geneChr
#> <integer> <integer> <integer> <numeric> <character> <integer>
#> 7 1 0 1 5 Intron (ENST00000472.. 9
#> 1 0 1 1 4 Intron (ENST00000420. . 1
#> 6 0 0 1 2 Promoter (<=1kb) )
#> 2 0 0 1 1 Intron (ENST00000420. . 1
#> 3 0 0 1 1 Intron (ENST00000420. . 1
#> 8 0 0 1 1 Intron (ENST00000335. . 11
#> 9 0 0 0 1 Promoter (<=1kb) 15
#> 11 0 0 1 1 Promoter (<=1kb) 21
#> 4 0 0 0 0 Intron (ENST00000236. . 1
#> 5 0 0 0 0 Distal Intergenic 1
#> 10 0 0 0 0 Intron (ENST00000662. . 15
#> geneStart  geneEnd geneLength geneStrand geneld transcriptld
#> <integer> <integer> <integer> <integer> <character> <character>
#> 7 106926925 106932462 5538 1 58499 ENST00000480607.5
#> 1 164630981 164799889 168909 1 5087 ENST00000482110.5
#> 6 70959237 71132099 172863 2 27086 ENST00000650188.1
#> 2 164772912 164807571 34660 1 5087 ENST00000558837.5
#> 3 164772912 164807571 34660 1 5087 ENST00000558837.5
#> 8 114180766 114247296 66531 1 7704 ENST00000545851.5
#> 9 36894784 36904067 9284 2 4212 ENST00000559408. 1
#> 11 16534952 16607137 72186 1 388815 ENST00000654245. 1
#> 4 200043810 200058424 14615 1 2494 ENST00000367357.3
#> 5 213832591 213841041 8451 2 100505832 ENST00000609394.5
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

10 53513742 53541080 27339
distanceToTSS ENSEMBL
<numeric> <character>

~

~

SO R O®D WD R

-5161 ENSG00000148143
4239 ENSG00000185630
0 ENSG00000114861
-60616 ENSG00000185630
-59841 ENSG00000185630
-15906 ENSG00000109906
0 ENSG00000134138
-287 ENSG00000215386
356375 ENSG00000116833
254656 ENSG00000230461
93271 ENSG00000166415

2

SYMBOL
<character>
ZNF462
PBX1
FOXP1
PBX1

PBX1
ZBTB16
MEIS2
MIR99AHG
NR5A2
PROX1-AS1
WDR'72

256764 ENST00000614174.4
GENENAME
<character>
zinc finger protein ..
PBX homeobozx 1
forkhead box P1
PBX homeobozx 1
PBX homeobox 1
zinc finger and BTB ..
Meis homeobox 2
mir-99a-let-7c clust..
nuclear rTeceptor sub..
PROX1 antisense RNA 1
WD repeat domain 72

seqinfo: 595 sequences (1 circular) from hg38 genome

epiRomics_track_layer_human(
epiRomics_putative_enhanceosome_ucnes,

#>
#>
#>
#>
#>
#>
#>
#>

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

epiRomics_index = 9,
epiRomics_dB
epiRomics_track_connection = epiRomics_track_connection

= epiRomics_dB,

"not empty"

82.795

"not empty"

62.847

"not empty"

3.55117

"not empty"

3.80884
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How about applying multiple filters to further increase the confidence of calls?

epiRomics_putative_enhancers_filtered_stringent <-
epiRomics_enhancers_filter(
epiRomics_enhancers_filter(
epiRomics_enhancers_filter(
epiRomics_enhancers_filter (epiRomics_putative_enhancers, epiRomics_dB,
epiRomics_type =
"hg38_custom_fantom"),
epiRomics_dB,

epiRomics_type = "hg38_custom_regulome_active"
),
epiRomics_dB,
epiRomics_type = "hg38_custom_regulome_super"

Do
epiRomics_dB,
epiRomics_type = "hg38_custom_ucnes"

## Here, we see a highly conservative list of putative emhancer calls that overlap with four
## different functional annotations, suggesting the lowest hanging fruit for downstream

## bench-lab validation.

## NOTE: The UCNE database filter caused the greatest reduction in enhancer calls.

epiRomics_putative_enhancers_filtered_stringent@annotations
#> GRanges object with 2 ranges and 0 metadata columns:

#> segnames ranges strand
#> <Rle> <IRanges> <Rle>
#> [1] chrl 164711914-164712296 *
#> [2] chrl 164712350-164713071 *
D oo

#> seqinfo: 595 sequences (1 circular) from hg38 genome

epiRomics_putative_enhanceosome_stringent <-
epiRomics_enhanceosome (epiRomics_putative_enhancers_filtered_stringent,
epiRomics_dB)

#> >> preparing features information... 2021-10-05 17:54:01

#> >> didentifying nearest features... 2021-10-05 17:54:01

#> >> calculating distance from peak to TSS... 2021-10-05 17:54:02
#> >> assigning genomic annotation... 2021-10-05 17:54:02

#> >> adding gene annotation... 2021-10-05 17:54:09

#> 'select()' returned 1:1 mapping between keys and columns

#> >> assigning chromosome lengths 2021-10-05 17:54:09

#> >> done. .. 2021-10-05 17:54:09

epiRomics_track_layer_human(
epiRomics_putative_enhanceosome_stringent,
epiRomics_index = 1,
epiRomics_dB = epiRomics_dB,
epiRomics_track_connection = epiRomics_track_connection
)
#> [1] "not empty"
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#>
#>
#>
#>
#>
#>
#>

[1]
[1]
[1]
[1]
[1]
[1]
[1]

233.705
"not empty"
221.083
"not empty"
9.31751
"not empty"
15.8259
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How can we use these putative enhanceosome regions to infer biology between cell states? In this example,
we will integrate ATAC-Seq data differential testing showing differences in chromatin accessibility between
alpha and beta cells

## Read differentially binding data generated with DiffBind.
## DE comparing human alpha and beta cell chromatin.

b.v.a <-
read.csv(system.file("extdata", "DBA_Beta_Versus_Alpha.csv", package = "epiRomics"))
b.v.a <- GRanges(b.v.a)

# Filter for beta enriched chromatin regions
beta.enriched <- b.v.a[b.v.a$Fold >= 1, ]
# Connect to our putative enhanceosomes

beta_enhancer_regions <-
epiRomics_regions_of_interest(epiRomics_putative_enhanceosome_fantom, beta.enriched)

Now, lets visualize the top candidate region we found after connecting our differential chromatin analysis
with the putative enhanceosomes

epiRomics_track_layer_human(
beta_enhancer_regions,
epiRomics_index = 1,
epiRomics_dB = epiRomics_dB,
epiRomics_track_connection = epiRomics_track_connection

#> [1] "not empty"
#> [1] 16.5139
#> [1] "not empty"
# [1] 14.2229
#> [1] "not empty"
#> [1] 2.38379
#> [1] "not empty"
#> [1] 1.29041
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Session Information
Here is the output of sessionInfo() on the system on which this document was compiled:

sessionInfo()

#> R version 4.1.1 (2021-08-10)

#> Platform: x86_64-apple-darwinl7.0 (64-bit)

#> Running under: macOS Catalina 10.15.7

#>

#> Matriz products: default

#> BLAS:  /Library/Frameworks/R.framework/Versions/4.1/Resources/1ib/libRblas.0.dylsib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/1ib/libRlapack.dylsib
#>

#> locale:

#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

#>

#> attached base packages:

#> [1] statsy parallel stats graphics grDevices utils datasets
#> [8] methods  base
#>

#> other attached packages:

#> [1] BSgenome.Hsapiens.UCSC.hg38_1.4.3
#> [2] BSgenome_1.60.0

#> [3] rtracklayer_1.52.1

#> [4] Biostrings_2.60.2

#> [5] XVector_0.32.0

#> [6] org.Hs.eg.db_3.13.0
#> [7] TzDb.Hsapiens.UCSC.hg38.knownGene_3.13.0
#> [8] GenomicFeatures_1.44.2
#> [9] AnnotationDbi_1.54.1
#> [10] Biobase_2.52.0

#> [11] GenomicRanges_1.44.0
#> [12] GenomeInfoDb_1.28.4
#> [13] IRanges_2.26.0

#> [14] S4Vectors_0.30.2

#> [15] BiocGenerics_0.38.0
#> [16] epiRomics_0.1.3

#>

#> loaded via a namespace (and not attached):
#  [1] utf8.1.2.2

#>  [2] tidyselect_1.1.1

#>  [3] RSQLite 2.2.8

#>  [4] htmlwidgets_1.5.4

#>  [5] grid_4.1.1

#> [6] BiocParallel_1.26.2
#> [7] scatterpie_0.1.7

#>  [8] munsell_0.5.0

#>  [9] codetools_0.2-18

#>  [10] withr_2.4.2

#> [11] colorspace_2.0-2

#> [12] GOSemSim_2.18.1

#> [13] filelock_1.0.2

#> [14] knitr_1.36
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[341
[35]
[36]
[37]
[38]
[39]
4071
417
[42]
437
[447
451
[461
471
481
491
[507
[51]
[52]
[53]
[541
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
(647
[65]
[66]
[67]

rstudioapi_0.13
DOSE_3.18.3
MatrizGenerics_1.4.3
GenomelInfoDbData_1.2.6
polyclip_1.10-0
bit64_4.0.5
farver_2.1.0
treeio_1.16.2
vetrs_0.3.8
generics_0.1.0
TH.data_1.1-0
zfun_0.26
biovizBase_1.40.0
BiocFileCache_2.0.0
party_1.3-9
regioneR_1.24.0
R6_2.5.1
graphlayouts_0.7.1
AnnotationFilter_1.16.0
bitops_1.0-7
cachem_1.0.6
fgsea_1.18.0
gridGraphics_0.5-1
DelayedArray_0.18.0
assertthat_0.2.1
vroom_1.5.5
promises_1.2.0.1
BiocIO 1.2.0
scales_1.1.1
multcomp_1.4-17
ggraph_2.0.5
nnet_7.3-16
enrichplot_1.13.1.992
gtable_0.3.0
tidygraph_1.2.0
sandwich_3.0-1
ensembldb_2.16.4
rlang_0.4.11
splines_4.1.1
lazyeval_0.2.2
dichromat_2.0-0
checkmate_2.0.0
BiocManager_1.30.16
yaml_2.2.1
reshape2_1.4.4
backports_1.2.1
httpuv_1.6.3
qualue_2.24.0
Hmisc_4.5-0
tools_4.1.1
ggplotify_0.1.0
ggplot2_3.3.5
gplots_3.1.1
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[68]
[69]
[70]
[71]
[72]
[73]
[74]1
[75]
[76]
[rr]
[78]
[79]
[soj
[81]
[82]1
[83]
(8471
[85]
[86]
[871
[88]1
[89]
[90]
[91]
[92]
[93]
[94]1
[95]
[96]
[977
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]

ellipsis_0.3.2
RColorBrewer_1.1-2
Rcpp_1.0.7
plyr_1.8.6
basebjenc_0.1-3
progress_1.2.2
zlibbioc_1.38.0
purrr_0.3.4
RCurl_1.98-1.5
prettyunits_1.1.1
rpart_4.1-15
viridis_0.6.1
zo00_1.8-9
SummarizedExrperiment_1.22.0
ggrepel_0.9.1
cluster_2.1.2
magritir_2.0.1
data.table_1.14.2
DO.db_2.9
mutnorm_1.1-2
ProtGenerics_1.24.0
matrizStats_0.61.0
hms_1.1.1
patchwork_1.1.1
mime_0.12
evaluate_0.14
ztable_1.8-4
XML_3.99-0.8
Jjpeg_0.1-9
gridEztra_2.3
compiler_4.1.1
biomaRt_2.48.3
tibble_3.1.5
KernSmooth_2.23-20
shadowtexzt_0.0.9
crayon_1.4.1
htmltools_0.5.2
ggfun_0.0.4
later_1.3.0
tzdb_0.1.2
Formula_1.2-4
tidyr_1.1.4
aplot_0.1.1
libcoin_1.0-9
DBI_1.1.1
formatR_1.11
ChIPseeker_1.28.3
tweenr_1.0.2
dbplyr_2.1.1
MASS_7.3-54
rappdirs_0.3.3
boot_1.3-28
Matriz_1.3-4
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#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]
[139]
[140]
[141]
[142]
[143]
[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]
[152]
[153]
[154]
[155]
[156]
[157]
[158]
[159]
[160]
[161]
[162]
[163]
[164]
[165]
[166]
[167]
[168]
[169]
[170]
[171]
[172]
[173]

readr_2.0.2
Guiz_1.36.2
tgraph_1.2.6

TzDb.Hsapiens.UCSC.hg19.knounGene_3.2.2

pkgconfig_2.0.3

GenomicAlignments_1.28.0

coin_1.4-1
foreign_0.8-81
zml2_1.3.2
ggtree_3.0.4

yuladb.utils_0.0.2

stringr_1.4.0

Vartantdnnotation_1.38.0

digest_0.6.28

strucchange_1.5-2

rmarkdown_2.11
fastmatch_1.1-3
tidytree_0.3.5
htmlTable_2.2.1
annotatr_1.18.1
restfulr_0.0.13
curl_4.3.2
gtools_3.9.2
shiny_1.7.1
Rsamtools_2.8.0

modeltools_0.2-23

rjson_0.2.20
jsonlite_1.7.2
lifecycle_1.0.1
nlme_3.1-153

viridisLite_0.4.

fansi_0.5.0
pillar_1.6.3
lattice_0.20-45
plotriz_3.8-2
KEGGREST 1.32.0
fastmap_1.1.0
httr_1.4.2
survival_3.2-13
GO.db_3.13.0

interactiveDisplayBase_1.30.0

glue_1.4.2
png_0.1-7

BiocVersion_3.13.1

bit_4.0.4
ggforce_0.3.3
stringi_1.7.5
blob_1.2.2

AnnotationHub_3.0.1

caTools_1.18.2

latticeExtra_0.6-29

memoise_2.0.0
dplyr_1.0.7

32

213



#> [174] ape_5.5
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