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Abstract

Sparse Coding of Speech Data Predicts Properties of the Early Auditory System

by

Nicole Liu Carlson

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Michael R. DeWeese, chair

I have developed a sparse mathematical representation of speech that minimizes the number of
active model neurons needed to represent typical speech sounds. The model learns several well-
known acoustic features of speech such as harmonic stacks, formants, onsets and terminations,
but I also find more exotic structures in the spectrogram representation of sound such as local-
ized checkerboard patterns and frequency-modulated excitatory subregions flanked by suppressive
sidebands. Moreover, several of these novel features resemble neuronal receptive fields reported
in the Inferior Colliculus (IC), as well as auditory thalamus and cortex, and my model neurons
exhibit the same tradeoff in spectrotemporal resolution as has been observed in IC. To my knowl-
edge, this is the first demonstration that receptive fields of neurons in the ascending mammalian
auditory pathway beyond the auditory nerve can be predicted based on coding principles and the
statistical properties of recorded sounds. In my second study, I look at linear filter estimation by
creating spike-triggered averages for my model neurons. Surprisingly, whitening does not remove
the effect of choosing different probe stimulus sets. This suggests that the type of probe stimulus
is very important for uncovering the true receptive field of a neuron.
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Chapter 1

Introduction

The brain is constantly inundated by sounds rich with information. Our notable ability to in-
terpret the sounds around us suggest the brain must have developed a method for processing and
encoding these sounds. It has been postulated that the brain tries to transmit and encode informa-
tion efficiently, so as to minimize the energy expended [1], reduce redundancy [2, 3, 4], maximize
information flow [5, 6, 7, 8], or facilitate computations at later stages of processing [9], among
other possible objectives. One way to create an efficient code is to enforce population sparseness,
having only a few active neurons at a time. Sparse coding schemes pick out the statistically impor-
tant features of a signal — those features that occur much more often than chance — which can
then be used to efficiently represent a complex signal with few active neurons. Such a represen-
tation is robust against noise as well as revealing the underlying structure of the natural stimuli.
Additionally, sparse codes are more energy efficient [10]. There is a trade-off between increasing
the representational capacity of the network against the energy expended to keep neurons active.
Maximizing the ratio of the representational capacity against the energy reveals that the optimum
firing rate is low.

The principle of sparse coding has led to important discoveries in vision for the neural encoding
of the visual sensory scene. Sparse coding of natural images revealed local, oriented edge-detectors
that qualitatively match the receptive fields (RF, the stimulus which most strongly drives a neuron)
of simple cells in primary visual cortex (V1) [11]. More recently, overcomplete sparse coding
schemes have uncovered a greater diversity of features that more closely matches the full range
of simple cell receptive field shapes found in V1 [12]. An encoding is called overcomplete if the
number of neurons available to represent the stimulus is larger than the dimensionality of the input.
This is a biologically realistic property for a model of sensory processing because information is
encoded by increasing numbers of neurons as it travels from the optic nerve to higher stages in the
visual pathway [13]. The same is true for the auditory pathway.

Despite experimental evidence for sparse coding in the auditory system [14, 15], there have
been fewer theoretical sparse coding studies in audition than in vision. However, there has been
progress, particularly for the earliest stages of auditory processing. Sparse coding of raw sound
pressure level waveforms of natural sounds produced a “dictionary” of acoustic filters closely
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resembling the impulse response functions of auditory nerve fibers [16, 17]. Acoustic features
learned by this model were best fit to the neural data for a particular combination of animal vo-
calizations and two subclasses of environmental sounds. Intriguingly, they found that training on
speech alone produced features that were just as well-fit to the neural data as the optimal combi-
nation of natural sounds, suggesting that speech provides the right mixture of acoustic features for
probing and predicting the properties of the mammalian auditory system.

Another pioneering sparse coding study [18] took as its starting point speech that was first
preprocessed using a model of the cochlea — one of several so-called cochleogram representations
of sound. This group found relatively simple acoustic features that were fairly localized in time
and frequency as well as some temporally localized harmonic stacks. These results were roughly
consistent with some properties of receptive fields in primary auditory cortex (A1), but modeled
responses did not capture the specific shapes of reported neuronal spectrotemporal receptive fields
(STRFs; [19]). That study only considered undercomplete dictionaries, and it focused solely on a
“soft” sparse coding model that minimized the mean activity of the model’s neurons, as opposed to
“hard” sparse models that minimize the number of active neurons. The same group also considered
undercomplete, soft sparse coding of spectrograms of speech [20], which did yield some STRFs
showing multiple subfields and temporally modulated harmonic stacks, but the range of STRF
shapes they reported was still modest compared with what has been seen experimentally in auditory
midbrain, thalamus, or cortex. Another recent study considered sparse coding of music [21] in
order to develop automated genre classifiers.

To my knowledge, there are no published studies of complete or overcomplete, sparse coding of
either spectrograms or cochleograms of speech or natural sounds. I note that one preliminary sparse
coding study utilizing a complete dictionary trained on spectrograms did find STRFs resembling
formants, onset-sensitive neurons, and harmonic stacks [46] but they did not obtain novel acoustic
features, nor any that closely resembled STRFs from the auditory system.

My goal is two-fold. First, I test whether an overcomplete, hard sparse coding model trained
on spectrograms of speech can more fully reveal the structure of natural sounds than previous
models. Second, I ask whether my model can accurately predict receptive fields in the ascending
auditory pathway beyond the auditory nerve. I have found that, when trained on spectrograms of
human speech, an overcomplete, hard sparse coding model does learn features resembling those
of STRF shapes previously reported in the Inferior Colliculus (IC), as well as auditory thalamus
and cortex. Moreover, my model exhibits a similar tradeoff in spectrotemporal resolution as pre-
viously reported in IC. Finally, my model has identified novel acoustic features for probing the
response properties of neurons in the auditory pathway that have thus far resisted classification and
meaningful analysis.

The second part of my research involved probing my theoretical basis functions in the same
way experimentalists treat real neurons. A sensory neuron is characterized via its RF; an experi-
mental construct defined as the stimulus that most strongly causes the neuron to fire. The simplest
method of estimating a receptive field is through the spike-triggered average (STA) [22, 6, 23];
the average of all stimuli immediately preceding spikes. The STA is equivalent to the first-term
in the Volterra kernel or Wiener kernel expansions, and this technique is also called reverse cor-
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relation [24]. Additionally, this is the maximum likelihood estimate for the RF. The STA is valid
if the relationship between stimulus and spiking is linear. This method has been used to esti-
mate tuning curves in the auditory system and receptive fields in the visual system [25, 26, 27].
More recently, researchers have estimated STRFs in the auditory system using STAs and related
measures [28, 29, 30, 31, 32, 33] Technically, the STA is only accurate for white noise so this
method is strongly stimulus dependent. A more sophisticated approach is the linear filter estimate
or whitened spike-triggered average in which stimulus correlations are removed [34, 35, 36, 37].

Theoretically, these methods are only guaranteed to provide accurate predictions in the limit of
infinite stimuli. There are many caveats about the experiments as well. An auditory recording ex-
periment might only last for half an hour depending on the type of electrode, the type of anesthesia
if any, or whether or not the animal was awake and behaving. The neurons sometimes fire at very
low rates so if the stimulus that matches the receptive field of the neuron is not found, the estimate
will be really noisy. This is a particular problem in the case of auditory neurons which typically
have lower firing rates than vision neurons.

A well-known result is that different stimulus sets produce different receptive fields for the
same neuron [19]. Historically, it has been difficult to determine whether these differences are
actually due to the stimulus sets and if so which stimulus sets are actually uncovering the true RF
structure or to the aforementioned experimental difficulties. I am in a unique position to test these
two effects because my sparse coding model of auditory receptive fields provides me with ground
truth.

I treated my model neurons as real neurons and “played” various probe stimulus sets to the
neurons and used them to produce linear filter estimates. I compared STAs from the different
probe stimulus sets with and without correcting for stimulus correlations (whitened STAs). For
some cell-types, all stimuli can uncover the underlying auditory feature. Other cell-types have
different estimations depending on the stimulus.

This unified work in the sparse coding of speech sounds has produced some remarkable com-
parisons to experimental data. I believe that my research has demonstrated that some features of
the auditory system can be predicting by using the principles of efficient coding.

The dissertation is organized as follows. I discuss previous research (Ch. 2) with a literature
review of both theoretical and experimental work. The methods chapter (Ch. 3) describes my
model and analyses. I discuss my results in Ch. 4, and finish with conclusions and future work in
Ch. 5.
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Chapter 2

Previous Research

2.1 Efficient Coding

For almost sixty years, scientists have postulated that the brain tries to encode sensory infor-
mation efficiently. In 1954, Attneave [2] asserted that a major function of the sensory system is to
remove the redundancy of stimuli by looking for correlations in the stimuli. One analogy is that if
lower-level neurons fire for letters than a higher-level neuron might encode for a single word. In
this case, there is not much information in a single letter; the redundancy is that all of the letters are
needed to understand the meaning of the word. He considered the information theoretic efficient
way to transmit images as an example of this principle. Another pioneer, Barlow [3] argued that
to understand the brain, we need to study the natural environment, and he organized the ideas into
five principles [38]:
1. It is important to look at the interactions on the cellular level instead of a more macroscopic or
microscopic scale.
2. The sensory system is organized to completely represent the sensory input with as few active
neurons as possible.
3. The stimuli contain trigger features that are matched to redundant patterns of stimulation.
4. Perception is due to the activity of a small number of high-level neurons from a much larger
population.
5. The more frequently the neuron fires, the more certainty that the trigger feature is present.
Barlow codified this framework in terms of the capacity of a channel to transmit information.

These principles were implemented in neural networks starting in the 1990s. Typically, asso-
ciative neural networks follow Hebb’s rule [39] commonly stated as: ’fire together, wire together’
meaning that if two neurons are active at the same time, then the connection between them is
strengthened. This rule allows a neural network to store patterns, but many stimuli will cause large
numbers of neurons to be active. Foldiak [9] created a network that was capable of storing patterns
sparsely, having only a few neurons active. This was achieved by having an anti-Hebbian learn-
ing rule in which neurons that fired together inhibited one another, and the one with the strongest
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activation inhibited the others the most. Importantly though, the inhibition was not complete mak-
ing this different from a winner-take-all rule in which the most active neuron completely shuts
down the other neurons. Foldiak’s network could store a large number of patterns while balanc-
ing the battle between small memory capacity where each unit stores one item (also known as a
grandmother cell), and the large capacity that arises when many cells are active. This first imple-
mentation of sparse coding had the inhibition put in ad hoc.

Levy and Baxter [10] studied energy efficient neural codes by examining coding efficiency as
well as the metabolic cost of active neurons. There is an intrinsic cost of a neuron recovering
from spiking compared to a neuron that stayed inactive. They examined a theoretical ratio of the
information capacity of a set of neurons and the energy cost of having a certain fraction of active
neurons. They found that even for different spike cost functions, the optimal active fraction is quite
low. Importantly, their result was independent of the number of neurons. For binary neurons, they
found that having 2-16% of the neurons active is the most energy efficient.

2.2 Sparse Coding in Vision

A study of the statistics of images of natural scenes [40] found that the amplitude spectra of
any set of natural images falls as the reciprocal of the spatial frequency. Moreover, the response
properties of visual cortical cells, Gabor functions (Gaussians multiplied by a sinusoids) were
found to be well-suited to the statistics of natural images [40]. However, there was no explanation
of why V1 RFs should be Gabor functions.

A review of the literature [41] on the statistics of natural images noted that the most important
result is that images are scale invariant meaning that images contain structure at every scale. In
other words, natural images contain higher-order structure and are not Gaussian (containing only
second-order structure). A common approach to analyzing data is Principal Components Analysis
(PCA). However, PCA inherently assumes Gaussian data. The principal components of images are
non-localized basis functions which do not resemble the experimentally found V1 receptive field
shapes. Based on efficient coding, the brain will take advantage of the higher-order structure so a
sparse coding scheme should perform better than PCA.

The first principled explanation for Gabor filter shapes was sparse coding. Neural responses
were predicted based on the structure of natural images (photographs) [11], [42]. Sparse coding
creates a representation which has high fidelity balanced with having only a few active coeffi-
cients. An early method was a linear generative model called Sparsenet [11] which created an
L1-sparse (minimizing the average activity of the units) complete dictionary. The dictionary el-
ements resembled V1 RFs and were parameterized with Gabor functions. The parameter values
of the model elements had a similar distribution of that from experimentally measured receptive
fields in the mammalian visual cortex. Specifically, Sparsenet reproduced those receptive fields
which resembled edge detectors; they are spatially localized, oriented, and bandpass filtered.

An extension of this was work was a study of sparse overcomplete representations [43]; a
representation in which there are more basis functions than the dimensionality of the input. Unlike
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a complete representation, there is no longer a unique encoding of each input. An overcomplete
basis can give a better approximation of the statistical distribution of the data as well as greater
coding efficiency.

One experimental group [44] found that Sparsenet did not capture the full distribution of the
experimental receptive fields. In particular, Sparsenet missed some types of receptive fields, such
as those which were blob-like or which contained many subfields. A more recent model, Sparse
Set Coding [12], created an L0-sparse three-times overcomplete dictionary whose properties more
closely matched the full range of experimental shapes. This dictionary produced receptive fields
which more strongly resembled real visual receptive fields (as examined by the distributions of
Gabor function parameters). Additionally, another new algorithm was developed that allows an
approximation to L0-norm sparse coding [45].

2.3 Sparse Coding in Audition

Initial work in auditory sparse coding focused on modeling the Auditory Nerve (AN) (Fig-
ure 2.4.1) [17], [16]. The initial study [16] used Independent Components Analysis (ICA) with a
fixed number of time samples on either a mixture of environmental sounds and animal vocaliza-
tions or speech data to produce filters that qualitatively matched experimental AN reverse correla-
tion filters, the average stimuli that precede neuronal spikes. Lewicki noted that only the mixture
of natural sounds or speech produced filters that matched the physiological shapes. Training only
on environmental sounds produced a wavelet-like basis, and only on animal vocalizations pro-
duced a Fourier basis. A subsequent study [17] extended this work by allowing the time length of
each filter to change during the learning process. Smith and Lewicki utilized raw sound pressure
waveforms and trained on natural sounds or speech. The resulting basis functions quantitatively
matched experimental auditory reverse correlation filters. The research confirmed quantitatively
that a certain ratio of transient and ambient environmental sounds and animal vocalizations pro-
duced kernels that matched those trained solely on speech. Examining plots of bandwidth versus
center frequency showed that the model filter properties were almost identical to the experimental
data. They also noted that their spike code was more efficient at encoding the data than a Fourier
or wavelet basis.

One study [20] modeled A1 receptive fields by forming a sparse representation of speech data
that had been pre-processed by a filterbank designed to mimic the properties of the early auditory
system. They found that their STRFs were time-frequency localized with some qualitative agree-
ment with A1 STRF properties, but no detailed matches. Later, Klein et al. [18] encoded speech
data with an L1-sparse, half-complete basis using a cochleogram representation. A cochleogram
is a frequency decomposition of a waveform in which the properties of the frequency filters mimic
those of the cochlea. Their dictionary elements were generally highly localized in frequency and
slightly less-localized in time. The typical extent of their STRFs was 100-200 ms for the temporal
localization and 0.5-3 octaves in spectral localization. These receptive fields included harmonic
stacks and formants, resonances of the human vocal tract (basically a modulation of a harmonic
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stack) that produce characteristic shapes in a spectrogram. Again, there was some qualitative
agreement with A1 STRFs but no detailed matches. Replication of this study was the starting
point of my research.

One more recent work examined correlated subspaces of the higher-level features of sound [46].
They trained waveform, spectrogram, and cochleogram dictionaries. Different filters of the wave-
form dictionary exhibited phase invariance, shift invariance, or bandwidth invariance. The spectro-
gram dictionary displayed elements that coded for onsets or offsets, harmonic stacks, and formants.

2.4 Experimental Work in Audition

I now review the anatomy of the mammalian auditory pathway before describing experimental
work which characterizes the auditory system.

2.4.1 Auditory Pathway

Sound enters the ear as a raw sound pressure waveform. The signal is transformed from air
vibrations to vibrations in fluid. The mechanical vibrations are transmitted into an electrical signal
through the hair cells of the cochlea (Fig. 2.4.1). These hair cells are all triggered by specific
frequencies which preserves the information in the sound. In humans, there are approximately
3500 inner hair cells and 12,000 outer hair cells. This signal is carried by 30,000 auditory nerve
fibers which perform a frequency decomposition of the sound. The information passes through the
cochlear nucleus to the superior olive where information from both ears is combined. This feeds
into 392,000 midbrain neurons (Inferior Colliculus (IC)). The midbrain connects to the thalamus
(ventral division of the Medial Geniculate Body (MGBv)). The information is then passed into the
primary auditory cortex (A1) which contains approximately 100 million neurons. An important
feature is that the information is represented by increasing numbers of neurons at each stage in this
process. Although I have described this is a linear pathway, there is feedback between almost all
of the areas mentioned [47]

Neurons in IC, MGBv, and A1 have recently been characterized via STRFs with a variety of
stimuli. Original work used simple stimuli like pure tones and white noise. To drive the neurons
strongly, experimentalists developed more complicated stimuli like natural sounds and dynamic
moving ripples (to be described below).

Features of Auditory Receptive Fields

I first review the types of features found in RFs. Many groups have found vastly different and
sometimes contradictory results.

To find evidence for the efficient coding hypothesis, Rieke [48] investigated if the auditory
system preferentially encodes natural stimuli. For bullfrog auditory nerves, naturalistic stimuli
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Figure 2.1: Diagram of Auditory Pathway. Sound enters the ear and is then transmitted into the cochlea. From the
cochlea, the signal travels along the cochlear nerve to the cochlear nucleus and superior olive where sound is combined
from both ears. The next stage is the Inferior Colliculus (IC) followed by the Medial Geninculate Body (MGB). After
some processing, the signal is sent to the primary auditory cortex (AC) where higher-level processing occurs. Red and
blue represent signal from the separate ears, and purple indicates that information from both ears has been combined.

8



but not white noise stimulated the auditory nerve fibers close to the physical limits for maximum
information transmission. This suggests that the auditory system’s properties are matched to the
statistics of natural sounds. In a related study, one group [49] found that A1 neurons tended to
exhibit ’envelope locking’ where they match the co-modulations of different frequency bands. This
means that they modulate their firing rates coherently with the temporal envelope. Unmodulated
noise bands did not show the same result. Perceptually, co-modulated noise helps listeners to detect
tones in noise. Their result suggests that A1 neurons can detect tones better with co-modulated
noise. They argued that regularities in the auditory environment should be reflected in the way
auditory neurons respond.

One initial A1 STRF study [33] discovered that neurons respond to ‘edges’ in the spectrogram
representation. Their stimuli were random chords in time or asynchronous Poisson tone trains
instead of more natural sounds. They claimed that the cortex decomposes the auditory scene into
component parts like the visual cortex.

STRFs can change with specific task demands and salient sensory cues [50]. They trained
ferrets to detect a target tone, and found that during the task, there were localized changes in the
STRF shape that sometimes lasted for hours. The most common STRF change was facilitation
by enhanced excitation or decreased inhibition of the target tone implying that it was additive
facilitative gain. This study suggests cortical RFs are not fixed but may be constantly adapting and
reorganizing.

A1 neurons responded to wideband sounds with either low or high spectral contrast (this refers
to the sound level distribution across different frequencies) [51]. High contrast neurons are like
linear filters, but low contrast neurons had nonlinear selectivity to spectral properties. This suggests
that there are strong nonlinearities in A1.

Nelken [52] described the diverse properties of A1 neurons including their precision and the
linearity. He argues that the role of A1 is to detect objects by organizing the distinctive features
of an object. Because of this, he believes that IC should be considered the auditory analog of V1
because IC and thalamus seem to do feature detection in the auditory pathway.

Escabı́ and Read [53] reviewed properties of the auditory midbrain, thalamus, and cortex. They
noted that cochleotopy (topographic organization of frequency sensitivity) is a fundamental aspect
of the lemniscal auditory system from CN to IC. Neurons can be monotonic or non-monotonic to
sound level dependence. Inhibitory processes are established early on in the Cochlear Nucleus and
further refined at more central centers. Spectral tuning is shaped by flanking inhibition. Temporal
modulation rates are higher in IC and lower in thalamus and cortex. There is a trade-off between
spectral and temporal integration resolution.

One of the only studies to find high firing rates in A1 [54] found that this occurs when neurons
are driven with their preferred stimuli. They argued that a subset of the neuronal population fires
strongly during the entire stimulus while others only have transient responses. Most A1 neurons
were driven more strongly by amplitude or frequency modulated tones than by pure tones and had
well-defined best modulation frequencies.

In bat IC neurons, STRFs revealed selectivity for spectral motion [55]. Most neurons were se-
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lective for downward Frequency-Modulated (FM) sweeps which reflects the fact that most species
calls have downward-sweeping FM components. The most common STRF shape was a clear ex-
citatory region surrounded by inhibition. The group used the STRFs to predict the calls to which
neurons respond. The main contributor to direction selectivity was spectrum-time inseparability.

Nagel and Doupe [56] calculated STRFs in the primary auditory field L (analogous to A1 in
mammals) of unanesthetized zebra finches. At low sound intensities, the neurons behaved like
simple detectors for specific spectral and temporal modulation frequencies. At high intensities
however, the neurons responded to differences in sound energies along their preferred direction.
Unlike the previous study, they found few cells with direction selectivity, which might reflect the
over-representation of sweeps in bats due to the nature of their communications.

To find experimental evidence for A1 using a sparse representation, one group [15] did cell-
attached recordings in A1. For most sounds only 5% of neurons were active and that their activities
followed a log-normal distribution instead of the typical exponential one. This matches a model
in which neurons are silent most of the time and the sound is represented with a small subset of
highly active neurons. Even though only a few were active, this can lead to as much as a 50%
increase in the mean activity. They used tones, sweeps, white noise bursts, and natural sounds.
This method didn’t have the bias of choosing highly active neurons, but rather neurons based on
their ‘patchability’.

Schecter et al. [57] looked at two neuron subpopulations in IC. Lagged cells which had inhi-
bition preceding exhibition, and non-lagged cells which have excitation first. They predict that
lagged cells have inhibitory feedback mediated by cortical feedback projects. The distributions of
latencies of the two groups overlapped. They also noted that combining the output of these two
groups in A1 could produce direction selective cells.

Lesica and Grothe [30] examined dynamic spectrotemporal feature selectivity in the auditory
midbrain. They investigated the effect of high and low SPL on gerbil IC neurons with the sound
of rain. They found that for a given stimulus, the STRF provides an accurate characterization
of the feature selectivity of a neuron. At higher SPL, neurons displayed more inhibition. They
hypothesized that the change was due to an operation of a static nonlinear system.

Auditory thalamic neurons respond to more complex features than midbrain neurons [58]. The
auditory thalamic circuity plays an important role in generating novel complex representations for
specific features found in natural sounds.

I report on one study in an area lower than IC as it will later relate to my results. Clopton and
Backoff [59] discovered harmonic stacks in the STRFs of guinea pig Dorsal Cochlear Nucleus (see
Fig. 5 of their paper), a feature which has yet to be reported in higher levels.

STRF Estimation Methods and the Linearity of Auditory Neurons

A common caveat given about a STRF is that it only reflect the linear part of a neuron’s response
function. It is well-known that the linear model is not a complete description of the neuron, but
some portion of the neuron’s response can be explained.Over time, many groups have refined STRF
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estimation methods as well as assessing the linearity of auditory neurons. The STRF is equivalent
to the STA if 1) the stimulus space includes all stimuli that make the neuron fire, 2) there is random
and uniform sampling of the space and 3) the multiple dimensions used to represent the stimuli are
independent.

STRFs from the avian auditory forebrain found by natural sounds are better response predictors
than those from other sound sets [29].

Qiu et al [60] modeled IC STRFs as time-frequency separable Gabor functions. The param-
eterizations were good descriptions for about 60% of the neurons, and most of their cells were
either purely separable or weakly inseparable. However, the model could not fully account for
multiple excitatory spectral peaks such as those that would be found in harmonic stacks. None
of the neurons had highpass response properties as predicted by Singh and Thenissen [61]. The
stimulus they used were dynamic moving ripples. Each ripple is a spectrotemporal modulation fre-
quency. This probes the relevant range of temporal and spectral modulations in a random fashion.
They look like moving gratings in spectrogram space. These sounds fully span the temporal and
spectral modulation space of natural sounds, and thus any sound can be expressed as a linear sum
of ripples.

Machens et al. [62] examined the linearity of auditory neuron receptive fields, and found that
only 11% of the response power of the subthreshold membrane potential can be predicted by the
STRF. This implies that A1 neurons are highly nonlinear. They used natural sounds including
animal sounds, environmental sounds, and Jimi Hendrix. The paper also developed a new STRF
estimation technique in which STRFs had the correlations removed and were regularized with two
constraints. Regularization penalizes the STRF parameters when they stray from zero or when
neighboring ones are far from each other. The study also showed subthreshold STRFs are typically
more extended temporally and spectrally than spiking STRFs.

An A1 STRF is a robust linear predictor of the cell [63]. They looked at three stimuli: dynamic
moving ripples, spectrotemporal white noise, and Temporally Orthogonal Ripple Combinations
(TORCs, these consist of several spectrotemporal modulation frequencies and span the entire mod-
ulation space like DMR). They looked at 250ms STRFs, and found that STRFs from all three of
these stimuli were ‘remarkably similar’. For predictions, TORCs were the best. DMR had high
Signal-to-Noise Ratio (SNR), but required many stimulus presentations to be calculated.

Another recent study [64] looked at methods of STRF estimation and compared four different
factors in the estimation: 1) the choice of logarithmic or linear filter frequency spacing, 2) the
time-frequency scale, 3) the stimulus amplitude compression (for example, putting all of the val-
ues through a logarimthm function), and 4) the inclusion of adaptive gain control (AGC). AGC
simulates the way that the ear keeps cochlear outputs at set levels. The latter two were found to
be the most important factors. One thing to note is that the estimated STRF will depend on the
stimulus unless the cell has no odd-order nonlinearities. They looked at STRFs from adult male
zebra finch songs and samples of synthetic noise. Overall, the logarithmic amplitude scale was the
best as it more closely matched a spectrogram. The AGC was always important.

Atencio et. al [65] categorized STRFs by looking for the stimulus dimensions with the maxi-

11



mum mutual information between the stimulus and response. They found that the first maximally
informative dimension (MID) matched well with the STA. Taken together, the joint nonlinearity be-
tween the first two MIDs showed that they were synergistic. This method works for non-Gaussian
stimuli, and they claimed that MIDs are more likely to be stable across stimuli than STAs.

Modulations

Another area of study are the modulations of STRFs. The Modulation Power Spectra (MPS) is
found by taking the 2D Fourier Transform of a STRF. It is often analyzed in terms of the peak or
best spectral or temporal modulations as well as its separability. This refers to an MPS that can be
described as a spectral modulation function (SMF) multiplied by a temporal modulation function
(TMF).

Miller et al. [32] used DMR while recording simultaneously in the auditory thalamus and cortex
in anesthetized cats. They compared STRF population properties of the two areas. The upper cutoff
for spectral modulations was 1.3 cycles per octave (cyc/oct) in thalamus and 1.37 cyc/oct in A1.
For temporal modulations, the mean rate in the thalamus was 32.4 Hz and 16.6 Hz in A1. The upper
cutoff for temporal modulations was thalamus 62.9 Hz and 37.4 Hz in A1. The populations showed
no directional bias towards positive or negative asymmetries. A neuron is often characterized by
its best frequency (BF), the frequency that elicits the strongest response. These can be found using
tuning curves or taken as the maximal value of a STRF. The best frequencies of both areas showed
similar ranges, and there was a slight preference for stimulus energy onsets. The thalamus was
more sharply tuned for temporal modulations whereas cortical cells were more low-pass. This
work demonstrated that the cortex does not just inherit the properties of the thalamus

The MPS of natural sounds [61] has also been examined to make predictions about the auditory
system. Because of the uncertainty principle, sounds cannot have rapid temporal and spectral
modulations simultaneously. However, natural sounds have a characteristic shape even beyond
this limit. Natural sounds are typically low-passed in temporal modulations and low for spectral
modulations. The researchers postulated the STRFs should reflect these properties and have mostly
low best spectral and temporal modulations. Most power is in the lower modulation frequencies
and the power decays along the modulation axes following a power law.

Another study [66] looked at the ability of midbrain STRFs to encode birdsong versus modulation-
limited noise (ML-noise). ML-noise is white noise where the spectral and temporal modulations
are limited by the maximal spectral and temporal modulations of the song data. Of the neurons,
91% had different STRFs depending on which stimulus was used to create the STRF. Natural-like
sounds had responses with higher information rates. Frequency tuning was broader and temporal
tuning more precise during song processing. The neurons that were similar under both stimuli
had extremely tight frequency tuning, although the best frequencies were not stimulus dependent.
At the population level, the STRFs were able to capture the majority of the response behavior in
midbrain neurons.

A more recent study looked at the comprehension of speech by human listeners by altering
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its modulations [67]. Comprehension was impaired when temporal modulations below 12 Hz and
spectral modulations below 4 cyc/kHz were removed. Gender characteristics were most important
between 3-7 cyc/kHz. This suggests that some neurons must respond to those frequencies for
human comprehension.

Rodriguez et al. [31] looked at the spectral and temporal modulation tradeoff in the IC. They
found that the tradeoff is topographically ordered in the IC, and that the properties were not just in-
herited from the AN. Faster temporal modulations were found for low BFs and slower for high BF.
Low-frequency sites had short integration times and spectrally broad STRFs. For high frequency
BF, the STRFs had longer integration times and were spectrally narrow. For the vast majority of
IC units, the time-frequency resolution product was greater than for AN fibers and more than an
order of magnitude from the theoretical limit from the uncertainty principle. AN fibers exhibit
only low-pass TM tuning, and IC has both band-pass and low-pass tMTFs. Clearly, some other
mechanism must be taking phase to account for the changed properties in IC relative to AN.

Separability

Another major subject of research is the separability of the MPS.

A more recent study [28] quantified the separability of receptive fields; that is whether the
STRF can be expressed as a spectral transfer function multiplied by a temporal transfer function. If
a STRF is separable, then the neuron responds equally to upward and downward ripples. A related
property is quadrant separability in which the MPS is separable in either the upward or downward
spectral quandrant. Quadrant separable neurons have an asymmetric response to direction, and can
code for direction selectivity. STRFs commonly had excitatory and inhibitory regions usually with
side inhibition. Some neurons were inseparable, but there was no clear cutoff between separable
and inseparable neurons; rather there was a continuum of separability. The best RFs typically had
temporal modulations between 4-16 Hz and spectral modulations lower than 2 cycles per octave.
Temporal but not spectral transfer functions were relatively symmetric so it appears that most
inseparability is due to the spectral transfer function.

Auditory neurons respond to features that enhance the acoustic differences between classes
of natural sounds [68]. For this group, the linear portions of responses ranged between 30-81%.
The modulation tuning helps efficient coding in four ways: 1) The midbrain and forebrain neurons
selectively filter spectral modulations such that the modulations relevant to natural sounds, the
lower ones, are encoded. 2) The tuning attenuates the low frequencies that are redundant in natural
sounds. 3) The maximal gain sensitivity of temporal modulation frequencies are those that vary
the most among classes of natural sounds. 4) The ensemble temporal tuning whitens the temporal
modulation power function which increases the bandwidth of the neural response to signals from
within a natural sound class.
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Chapter 3

Methods

This chapter describes the model used to encode speech data sparsely and the analysis I per-
formed on my results.

An overview of the model is illustrated in Fig. 3.1, and more details of all steps will be given
in subsequent sections. Raw sound pressure level waveforms of recorded human speech are first
preprocessed by one of two simple models of the peripheral auditory system. The first of these
preprocessing models is the spectrogram, which is the power spectrum of short segments of the
original waveform at each moment in time. The alternative preprocessing step used is meant to
more accurately model the cochlea [69, 70]; the original waveform is sent through a filter bank
whose center frequencies are based on the properties of cochlear nerve fibers. Both models pro-
duce representations of the waveform as power at different frequencies over time. The spectro-
grams (or cochleograms) are then separated into segments of length 216 ms (250 ms). Because of
the high dimensionality of the data, I perform principal components analysis and retain the first
two hundred components to reduce the dimensionality. I then train a dictionary that can encode this
data using the Local Thresholding Circuit (LTC), a sparse encoding algorithm [45]. The flexible
algorithm allows us to enforce either L0 sparseness (minimizing the number of active dictionary
units) or L1 sparseness (minimizing the absolute activity of all of the dictionary elements) during
encoding by choice of thresholding function. Additionally, I explore the effect of dictionary over-
completeness (with respect to the number of principal components) by training dictionaries which
are half-complete, complete, or over-complete (two or four times). Following training, the various
resulting dictionaries were analyzed for cell-types and compared to experimental receptive fields
reported in the literature.

3.1 Sparse Coding

In sparse coding, the input y (spectrogram or cochleogram) is encoded as a matrix A multiplied
by a vector of weighting coefficients s: y = As + ε where ε is the error. Each column of A
represents one dictionary element or receptive field, the stimulus that most strongly drives the unit.
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Figure 3.1: Schematic illustration of our sparse coding model. (a) Stimuli used to train the model consisted of
examples of recorded speech. The blue curve represents the raw sound pressure waveform of a woman saying, “The
north wind and the sun were disputing which was the stronger, when a traveler came along wrapped in a warm cloak.”
(b) The raw waveforms were put through either a spectrogram or a “cochleogram” (not shown; see Methods for
details). In either case, the power spectrum across acoustic frequencies is displayed as a function of time, with warmer
colors indicating high power content and cooler colors indicating low power. (c) The spectrograms were then divided
into overlapping 216 ms segments. (d) Subsequently, principle components analysis (PCA) was used to project each
segment onto the space of the first two hundred principal components (first ten shown). (e) These projections were
then input to a sparse coding network in order to learn a “dictionary” of basis elements analogous to neuronal receptive
fields, which can then be used to form a representations of any given stimulus (i.e., to perform inference).
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If there are more columns in A than elements in y, this will be an overcomplete representation. I
defined the degree of overcompleteness relative to the number of principal components. I learned
the dictionary and inferred the coefficients by descending an energy function that minimizes the
mean squared error of reconstruction under a sparsity constraint.

E(t) =
1

2
||y(t)−As(t)||2 + λ

∑
m

C(sm(t)). (3.1)

Here λ controls the relative weighting of the two terms and C represents the sparsity constraint
or cost function (Fig. 3.3).

The sparsity constraint requires the column vector s to be sparse by some definition. I focus
on the L0-norm, minimizing the number of non-zero coefficients in s (or equivalently the number
of active neurons in a network). Another norm I have investigated is the L1-norm, minimizing the
absolute activity of all of the neurons.

3.1.1 Inference: Local Thresholding Circuit

I performed inference of the coefficients with a recently developed algorithm, the Local Thresh-
olding Circuit [45], which minimizes close approximations of either the L0- or L1-norms (Fig. 3.2).
Each basis function Ai is correlated with a computing neuron defined by an internal variable ui
as well as the output coefficient si. All of the units begin with the coefficients set to zero. These
values change over time depending on the input. A unit ui increases by an amount bi if the in-
put overlaps with the receptive field of the neuron: bi(t) = 〈Ai,y(t)〉. The neurons evolve as a
group following dynamics in which the units compete with one another to represent the input. The
units inhibit each other with the strength of the inhibition increasing as the overlap of their recep-
tive fields and the output coefficient values increase. This internal variable is then put through a
thresholding function Tλ to produce the output value: si = Tλ(ui).

In vector notation, the full dynamic equation of inference is:

u̇(t) = f(u(t)) =
1

τ
[b(t)− u(t)− (ATA− I)s(t)],

s(t) = Tλ(u(t)). (3.2)

The variable τ sets the time-scale of the dynamics.

The thresholding function Tλ is determined by the sparsity constraint C. It is specified via the
following equation:

λ
dC(sm)

dsm
= um − sm = um − Tλ(um). (3.3)

16



Figure 3.2: Diagram of the Local Thresholding Circuit. The input y is sent into the u level of the network. Internal
coefficients u (initialized to zero) build up as their overlap with the signal bi(t) = 〈Ai,y(t)〉 increases. These internal
values are transformed via a thresholding function to the external ones s provided that they pass a certain threshold.
The units inhibit one another with the strength given by s〈AT ,A〉. Here I show the second unit inhibiting the other
two as an example.

Figure 3.3: Various Cost (Sparsity Constraints) and Thresholding functions of the Local Thresholding Circuit. Left:
Cauchy Prior Cost Function, a soft form of sparseness. This is the type of sparseness used in Sparsenet. Middle: L0
Threshold and Cost Functions. Right: L1 Threshold and Cost Functions. Note that the latter two have values of ui

that produce zero-values of si. With the Cauchy prior cost function, the values of si are always non-zero.
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3.1.2 Sparsenet

I have also trained dictionaries using the original sparse coding network: Sparsenet. Sparsenet
is similar to LTC, but there are no internal coefficients, and the form of sparseness is softer. They
tested cost functions including an exponential, sigmoid, and absolute value. MATLAB code is
available online from Bruno Olshausen’s website (www.redwood.berkeley.edu). Here, I used a
sigmoid function to approximate the L1-norm.

3.2 Learning

Learning is done via gradient descent on the energy function:

r(t) = y(t)−As(t),

A = A + ηA(r(t)sT (t)) + θ(A−AATA). (3.4)

The θ term is a device for increasing orthogonality between basis functions [71]. This is equiv-
alent to adding in a prior that the basis functions are unique.

3.3 Stimuli

I used two corpora of speech recordings from the handbook of the International Phonetic Asso-
ciation (http://ww2.arts.gla.ac.uk/IPA/sndfiles.html)and TIMIT [72]. These
consist of people telling narratives in approximately thirty different languages. We resampled all
waveforms to 16000 Hz, and then converted them into spectrograms by taking the squared Fourier
Transform of the raw waveforms. I sampled at 256 frequencies logarithmically spaced between
100 and 4000 Hz. I monotonically transformed the output with the logarithm function, resulting
in the log-power of the sound at specified frequencies over time. I sample following a log distribu-
tion of frequencies because humans perceive the pitch of sound following a relatively logarithmic
distribution [73].

The data was then divided into segments covering all frequencies and 25 overlapping time
points (16 ms each) representing 216 ms total. Subsequently, I performed principal components
analysis on the samples to whiten the data as well as reduce the dimensionality. I retained the first
200 principal components as this captured over 93% of the variance in the spectrograms and low-
ered the simulation time. During analysis, the dictionaries were dewhitened back into spectrogram
space.

I also trained with another type of input, cochleograms [69, 70]. These are similar to spectro-
grams, but the frequency filters mimic known properties of the cochlea via a cochlear model [69].
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The cochlear model sampled at 86 frequencies between 73 and 7629 Hz. For this input, the total
time for each sample was 250 ms (still 25 time points), and the first 200 principal components
captured over 98% of the variance.

3.3.1 Whitening

Whitened data, Ỹ , has a covariance matrix whose expectation is the identity.

E[Ỹ Ỹ T ] = I. (3.5)

To transform my data into this space, I perform an eigen-decomposition of the covariance of
my data, Y.

E[Y Y T ] = EDET . (3.6)

where E is a matrix whose columns are the eigenvectors, and D is a diagonal matrix whose entries
are the ordered eigenvalues of the covariance matrix. In order to whiten my data, I can define a
whitening matrix W as follows:

W = D−
1
2ET ,

Ỹ = WY. (3.7)

where D−
1
2 is a diagonal matrix whose elements are the inverse square roots of the eigenvalues.

Similarly to transform back into the original space, I define a dewhitening matrix De:

De = ED
1
2 . (3.8)

I truncate the whitening and dewhitening matrices to only keep the first two hundred principal
components as explained earlier. Therefore, I whiten and project down to 200 principal compo-
nents in the same step.

3.4 Analysis

I now describe the analysis and characterization of my dictionaries.
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3.4.1 Presentation of Dictionaries

All dictionary units were scaled to be between negative one and one when displayed. The
coefficients in the encoding can take on positive or negative values during encoding. To reflect
this, I looked at the skewness of each dictionary element. If the skewness was negative, the colors
of the dictionary element were inverted when being displayed to reflect the way that element was
actually being used.

3.4.2 Presentation of Experimental Data

Data from [30] was given to me in raw STRF format. Each was interpolated by a factor of
three, but no noise was removed. Data from [31, 55, 60, 53, 62] were given to me in the same
format as they were originally published.

3.4.3 Usage

I plot all dictionaries in order of their usage. To calculate this for each fixed dictionary, I used
LCA to perform inference on the full set of training speech data. Then I ordered the elements by
the number of times each was used for all of the data. Note that there are many different encodings
one could use depending on how the parameter values are set. I generally kept the parameter values
the same as they were during the actual learning.

3.4.4 Modulation Power Spectra

To calculate the modulation power spectra, I took a 2D Fourier Transform of each basis func-
tion. For each element, I plotted the peak of the temporal and spectral modulation transfer func-
tions. For the cochleogram-trained basis functions, I approximated the cochleogram frequency
spacing as being log-spaced to allow comparison with the spectrogram-trained dictionaries.

3.5 Linear Filters

To connect with experimental results, I also did linear filter estimations with my model dic-
tionary elements once learning was complete. The most basic model is a standard spike-triggered
average. This is the average stimulus before a spike.

Standard Spike-Triggered Average [6]:

Φ̂ =
p · a′

σ2
p

(3.9)
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Φ̂ is the filter estimate of the receptive field. p is the probe stimuli. a are the algorithmic
coefficients calculated from the LTC. σp is the stimulus variance.

An improved estimation method is the whitened Spike-Triggered Average. This removes the
stimulus correlations from the estimate which means the estimate will reflect the underlying recep-
tive field structure rather than structure in the stimulus.

Φ̂ = (pp′)−1p · a′ (3.10)

3.5.1 Probe Stimulus Sets

I now describe the different types of probe stimulus sets. Abbreviations in parentheses repre-
sent how stimuli are referenced in subsequent chapters and figures.

My first set was a holdout group of speech data (HS): This is a set of clips of vowels and
phonemes that were not used in the original training. Since this set of speech has the same structure
as the training dating, it is mathematically guaranteed to give back the original receptive field [6].

Following Smith and Lewicki [17], I also used natural scenes (NS). This set consisted of record-
ings of animal vocalizations, environmental sounds, auditory scenes, and man-made objects such
as blinds, zippers, planes etc.

I also used two types of music since music tends to be very complex and covers the input
space fully. The first was a set of classical music (CM); Forty-six tracks from various composers
including Bach, Beethoven, Chopin, Grieg, and Rachmaninoff. The second was indie rock music
(IRM), one fifty-minute CD ”Cloak and Cipher” by Land of Talk.

Three types of white noises were used. Because Gaussian stimuli are uncorrelated, they the-
oretically should be able to uncover the structure of the model receptive fields. The first type
was waveform white noise (WWN), five second samples of mean-zero white noise generated in
MATLAB that were attenuated at 20 dB to prevent clipping. Secondly, image white noise (IWN),
Gaussian white noise images generated in MATLAB and treated as spectrograms. Finally, I used
a stimulus set commonly used in experiments. White noise bursts (WNB) were 100 ms clips of
broadband white noise that occurs randomly within a 250 ms window, generated in MATLAB.

My final two stimulus sets are often used in experiments to generate STRFs. Dynamic Mov-
ing Ripples (DMR) are a set of ripples in spectrogram space that spanned the space of temporal
modulations between -65 and 65 Hz (discrete integers) and spectral modulations between 0 and
4 cycles/octave (continuously sampled). The most standard stimulus set is pure tones (PT), ten
second clips of a single integer frequency randomly chosen between 0 and 4000 Hz, generated in
MATLAB.
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Chapter 4

Results/Discussion

I first discuss the types of dictionaries and the effects of the different model parameters. The
second part details my comparisons with experimental data. Finally, I examine linear filter estima-
tion.

4.1 Cochleogram Dictionaries

In general, training my network on cochleogram representations of speech resulted in smooth
and simple shapes for the learned receptive fields of model neurons. Klein et al. [18] used a
sparse coding algorithm that imposed an L1-like sparseness constraint to learn a half-complete
dictionary trained on speech cochleograms. Their dictionary elements consisted of harmonic stacks
at the lower frequencies and localized elements at the higher frequencies. To make contact with
these results, I also trained a half-complete L0-sparse dictionary on cochleograms. The resulting
dictionary (Fig. 4.1) consists of similar shapes to this previous work with the exception of one
“onset element” in the upper left (this is the least used of all of the elements from this dictionary).
Subsequent simulations revealed that the form of the dictionary is strongly dependent on the degree
of overcompleteness. Even a complete dictionary exhibits a greater diversity of shapes than this
half-complete dictionary (Fig. 4.2). I found this to be true both for L1-sparse dictionaries trained
with LCA or with standard Sparsenet (Figs. 4.6 and 4.10). Since the representation of sound in
the brain appears to be highly overcomplete, with many more neurons present at each subsequent
stage of the ascending auditory pathway, the inability of the half-complete dictionary to produce
the more complex and diverse receptive field shapes, like those measured in IC, MGBv, or A1,
suggests overcompleteness in those regions is crucial to the flexibility of their auditory codes. I
explore this further below.
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Figure 4.1: A half-complete sparse coding dictionary trained on cochleogram representations of speech exhibits a lim-
ited range of shapes. The full set of 100 elements from a half-complete, L0-sparse dictionary trained on cochleograms
of human speech resemble those found in a previous study [18]. Nearly all elements are extremely smooth, with most
consisting of a single frequency subfield or an unmodulated harmonic stack. Each rectangle can be thought of as rep-
resenting the spectro-temporal receptive field (STRF) of a single element in the dictionary (see Methods for details);
time is plotted along the horizontal axis (from 0 to 250 ms), and log frequency is plotted along the vertical axis, with
frequencies ranging from 73 Hz to 7630 Hz. Color indicates the amount of power present at each frequency at each
moment in time, with warm colors representing high power and cool colors representing low power. Each element has
been normalized to have unit Euclidean length. Elements are arranged in order of their usage during inference (i.e.,
when used to represent individual sounds drawn from the training set) with usage increasing from left to right along
each row, and all elements of lower rows used more than those of higher rows.
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4.1.1 L0-sparse Cochleogram Dictionaries

Analogous to previous sparse coding studies in vision [12, 75], I find that the degree of over-
completeness is a crucial factor for determining the range and complexity of shapes of dictionary
elements, whether they are trained on cochleograms or spectrograms. The number of types of
STRFs increases when the degree of overcompleteness is increased (Figs. 4.2, 4.3, 4.4). For
example, with more overcomplete dictionaries, some neurons have subfields spanning all frequen-
cies or the full time-window within the cochleogram. Additionally, I find neurons that exhibit both
excitation and suppression in complex patterns, though the detailed shapes differ from the shapes
I find for the dictionaries trained on spectrograms. An L0-sparse complete dictionary (Fig. 4.2)
displays elements similar to those of the half-complete dictionary. The sole onset element is still
the least used during inference. This is followed by a series of harmonic stacks; many of which are
time-shifted versions of another. There are formants interspersed among the most active elements.
Formants are modulations “on top of” the underlying harmonic stack, which often contain pairs
of subfields that diverge or converge over time in a manner that is not consistent with a pair of
harmonics changing in time due to a temporary rise or fall of the fundamental frequency of the
speaker’s voice. A new receptive field shape is highly localized excitation that is sometimes iso-
lated or either preceded/followed by inhibition at the same frequency. This feature is reminiscent
of experimental receptive fields. Four dictionary elements that are similar to onsets or offsets at
almost all of the frequencies are also highly active elements. They occur at different latencies
suggesting that it is easier to encode onsets when there are more basis functions.

A two-times overcomplete dictionary with four hundred elements (Fig. 4.3) has the charac-
teristic offset element found in the cochleogram dictionaries followed by the harmonic stacks as
the least active dictionary elements. At this level of completeness, it does not seem as if there are
additional basis function shapes. Instead, the same shapes from less complete dictionaries are seen
at different delays or frequencies.

On the other hand, a four-times overcomplete dictionary (Fig. 4.4) has a myriad of more com-
plicated shapes, and this is the first dictionary where the offset is not the least frequently used
element. In fact, this dictionary has almost no broadband onset or offset elements. Perhaps, the
number of basis functions makes it possible to encode an onset or offset with a few dictionary
elements instead of just one. The increased precision in encoding the onset shape may compensate
for having to use more neurons for one input. The plot of the usage shows that all of the elements
are active for some sounds so the elements are not just encoding the noise, but for the actual signal
in the data. Overcompleteness for cochleograms leads to specialization of the dictionary elements.

It is interesting to note that unlike the spectrogram dictionaries, the elements never strongly
resemble experimental receptive fields. The cochleogram is not the correct representation to use
with sparse coding to uncover the structure of speech. A cochlear model removes many of the
redundancies found in the speech and has an implicit infinite precision assumption built-in. Sparse
coding exploits the redundancies of the input to encode the data so there might not be enough
structure left in the data after going through the cochlear model. In comparison, the spectrogram’s
redundancy is more like that of the noise-reduction that finite-precision neural systems use. There-
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fore, it is not surprising that the cochleogram model does a poor job of matching experimental
receptive fields. I postulate that no cochlear model will do a good job of predicting experimental
receptive fields (see Sec. 4.1.4 for further discussion).
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Figure 4.2: The full set of elements from a complete, L0-sparse dictionary trained using LCA [45] on cochleograms
of speech. Same conventions as Fig. 4.1.
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Figure 4.3: The full set of elements from a two-times overcomplete, L0-sparse dictionary trained with LCA [45] on
cochleograms of speech. Same conventions as Fig. 4.1.
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Figure 4.4: The full set of elements from a four-times overcomplete, L0-sparse dictionary trained with LCA [45] on
cochleograms of speech. Same conventions as Fig. 4.1.

28



4.1.2 L1-sparse Cochleogram Dictionaries

I wondered to what extent the specific form of sparseness I imposed on the representation was
affecting the particular features learned by my network. I tested two alternatives to L0-sparseness.
The first is L1-sparseness with LCA. A half-complete dictionary (Fig. 4.5) looks very similar to the
L0-sparse version except the offset element is not present in this dictionary. Thus, this dictionary
appears qualitatively the same as the dictionary of Klein et al. [18] with harmonic stacks, localized
frequency units, and a few formants. This group did not display their entire dictionary so i is not
possible to compare the actual numbers of cell-types. This is not surprising since both models use
the same type of sparseness.

A complete dictionary (Fig. 4.6) has the offset element and the “standard cochleogram” recep-
tive field shapes. The more specialized and less smooth shapes are the most active units. There
appear to be units with FM direction selectivity, a feature found in experimental STRFs although
the individual shapes are not a perfect match.

The two-times overcomplete dictionary (Fig. 4.7) has two offset elements that are least active.
This dictionary has the same shapes as less complete dictionaries but with different distributions.
This dictionary also demonstrates one of the problems sometimes found in training. If the learning
rate is too high, then some elements appeared twice in the dictionary, i.e. the elements were
identical to MATLAB precision levels. Having a smaller learning rate and more iterations will
negate this effect, but this dictionary took many simulations to train. This demonstrates that the
dictionaries can sometimes be very sensitive to learning rate values.

The four-times overcomplete dictionary (Fig. 4.8) illustrates how the parameters can effect the
encoding. The usage plots demonstrates that harmonic stacks are the most used elements and the
complex shapes are the least used, unlike the other dictionaries. This can occur when the inference
parameters are set to different values. Rather than change the parameters to look more like the other
dictionaries, I left this dictionary as it was to illustrate this effect. Also, the cochleogram trained
dictionaries did not match experimental data so less time was spent analyzing these dictionaries.
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Figure 4.5: The full set of elements from a half-complete, L1-sparse dictionary trained with LCA [45] on cochleograms
of speech. Same conventions as Fig. 4.1.
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Figure 4.6: The full set of elements from a complete, L1-sparse dictionary trained with LCA [45] on cochleograms of
speech. Same conventions as Fig. 4.1.
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Figure 4.7: The full set of elements from a two-times overcomplete, L1-sparse dictionary trained with LCA [45] on
cochleograms of speech. Same conventions as Fig. 4.1.
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Figure 4.8: The full set of elements from a four-times overcomplete, L1-sparse dictionary trained with LCA [45] on
cochleograms of speech. Same conventions as Fig. 4.1.
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4.1.3 Sparsenet-trained Cochleogram Dictionaries

Figure 4.9: The full set of elements from a half-complete, L1-sparse dictionary trained with Sparsenet [11] on
cochleograms of speech. Same conventions as Fig. 4.1.

The dictionaries trained with Sparsenet (Figs. 4.9 and 4.10) share the same characteristics
as those dictionaries trained with LCA. The different cell-types are not as well separated. This is
probably because Sparsenet uses an approximation to the L1-norm This control shows that LCA is
working as well as Sparsenet. Additionally, it is exciting that this type of training matches closely
with the dictionary of Klein et al. [18].
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Figure 4.10: The full set of elements from a complete, L1-sparse dictionary trained with Sparsenet [11] on
cochleograms of speech. Same conventions as Fig. 4.1.
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4.1.4 Cochleogram timescale

A common criticism of the cochleogram dictionaries is that the timescale has been decimated
by such a large number. Thus, it would not be possible for these dictionaries to uncover results
similar to the spectrogram dictionaries or experimental data. To test this, I ran simulations of
L0-sparse dictionaries that were four times as fine as my original set of cochleogram dictionaries.
In the original set, twenty-five time points represent 250 ms. In my new simulations, fifty time
points represent 125 ms. I exhibit both a two-times overcomplete dictionary (Fig. 4.11) and a four-
times overcomplete dictionary (Fig. 4.12). The figures demonstrate that even these dictionaries do
not exhibit shapes that resemble experimental STRFs. Instead, the STRF shapes resemble those
found in the coarser cochleogram dictionaries, namely harmonic stacks at the lower frequencies,
localized units at higher frequencies, some formants, and some “on/off” elements. The distribution
of these cell-types is different from the original dictionaries, but the same was also true for L0-
sparse vs. L1-sparse dictionaries. My conclusion from these simulations is that sparse coding on
cochleograms will never be able to replicate experimental STRFs no matter how fine the timescale.
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Figure 4.11: A two-times overcomplete L0-sparse coding dictionary trained on cochleogram representations of speech
exhibits a limited range of shapes even with a finer timescale. Here, fifty time points represent 125 ms.
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Figure 4.12: A four-times overcomplete L0-sparse coding dictionary trained on cochleogram representations of speech
exhibits a limited range of shapes even with a finer timescale. Here, fifty time points represent 125 ms.

38



4.2 Spectrogram Dictionaries

4.2.1 L0-sparse Spectrogram Dictionaries

The spectrogram-trained dictionaries provide a richer and more diverse set of dictionary ele-
ments than those trained on cochleograms. I display representative elements of the different cate-
gories of shapes found in a half-complete L0-sparse spectrogram dictionary (Fig. 4.13a-f, the full
dictionary is shown in Fig. 4.14) along with a plot of the usage of the elements during inference
(Fig. 4.13g). Interestingly, I find that the different qualitative types of neurons separate according
to their usage into a series of rises and plateaus. The least used elements are the harmonic stacks
(Fig. 4.13a), which is unsurprising since only one of them needs to be active at any given time for
a typical epoch of a recording from a single human speaker. Harmonic stacks are the least used
for both the cochleogram and spectrogram dictionaries. The neighboring flat region consists of
onset elements (Fig. 4.13b), which contain broad frequency subfields that change abruptly at one
moment in time. These neurons were all used approximately equally often across the training set
since it is equally probable that a stimulus transient will occur any time during the 216 ms time
window.

The third region consists of more complex harmonic stacks that contain low power subfields on
the sides (Fig. 4.13c), a feature sometimes referred to as “temporal inhibition” when observed in
neural receptive fields; I will refer to this as “suppression” rather than inhibition to indicate that the
model is agnostic as to whether these suppressed regions reflect actual direct synaptic inhibition
to the recorded neuron, rather than a decrease in excitatory synaptic input, for example. The next
flat region represents stimulus onsets, or ON-type cells, that tend to be more localized in frequency
(Fig. 4.13d). The fifth group of elements is reminiscent of formants (Fig. 4.13e), which are reso-
nances of the vocal tract that appear as characteristic frequency modulations common in speech.
The final region consists of the most active neurons, which are highly localized in time and fre-
quency and exhibit tight checkerboard-like patterns of excitatory and suppressive subfields, some-
times including diagonally oriented (time-frequency inseparable) subfields (Fig. 4.13f). These
features are exciting because they are similar to experimentally measured receptive field shapes
that to my knowledge have not previously been theoretically predicted, as discussed below.
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Figure 4.13: A half-complete, L0-sparse dictionary trained on spectrograms of speech exhibits a variety of distinct
shapes that capture several classes of acoustic features present in speech and other natural sounds. (a-f) Selected
elements from the dictionary that are representative of different types of receptive fields: (a) a harmonic stack; (b) an
onset element; (c) a harmonic stack with flanking suppression; (d) a more localized onset/termination element; (e) a
formant; (f) a tight checkerboard pattern (see Fig. 4.14 for the full dictionary). Each rectangle represents the spectro-
temporal receptive field (STRF) of a single element in the dictionary; time is plotted along the horizontal axis (from 0
to 216 msec) and log frequency is plotted along the vertical axis, with frequencies ranging from 100 Hz to 4000 Hz.
(g) A graph of the usage of the dictionary elements showing that the different types of receptive field shapes separate
based on usage into a series of rises and plateaus; red symbols indicate where each of the examples from panels a-f
fall on the graph. The vertical axis represents the number of stimuli that required a given dictionary element in order
to be represented accurately during inference.

The complete dictionary (Fig. 4.15) possesses many of the same receptive field cell-types as
the half-complete dictionary. The checkerboard shapes that are characteristic of IC begin appear-
ing as the most active elements. While the shapes become more complicated and localized in
this dictionary, they still do not resemble the cochleogram dictionaries. As mentioned earlier, the
spectrogram representation retains more correlations (redundancy) than the cochleogram dictio-
nary. This might explain why the two representations produce such different results. The majority
of the FM direction selectivity receptive fields are selective for downward sweeps which matches
experimental work [55] as well as the type of sweeps that are in speech.

The two-times overcomplete dictionary (Fig. 4.16) displays the same cell-types as less com-
plete dictionaries. The checkerboard units extend for more cycles in time, which is a trend as
overcompleteness increases. Such extended checkerboard shapes have not yet been found in real
cells.

I show representative examples of essentially all distinct cell types found in a four-times over-
complete L0-sparse dictionary trained on spectrograms (Fig. 4.17, the full dictionary is shown in
Fig. 4.18). With increased levels of overcompleteness, the learned features become more complex,
exhibiting richer patterns of excitatory and suppressive subfields. Features in the half-complete
dictionary do appear as subsets of the larger dictionaries (Fig. 4.17a, c, e, g, l), but the more
complex and biologically interesting features are not unique to overcomplete training.

Novel features that were not observed in smaller dictionaries include: an excitatory harmonic
stack flanked by a suppressive harmonic stack (Fig. 4.17b); a neuron excited by low frequencies
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(Fig. 4.17d); a neuron sensitive to two middle frequencies (Fig. 4.17f); a localized but complex
excitatory subregion followed by a suppressive subregion that is strongest for high frequencies
(Fig. 4.17h); a checkerboard pattern with roughly eight distinct subregions (Fig. 4.17i); a highly
temporally localized OFF-type neuron (Fig. 4.17j); and a broadband checkerboard pattern that
extends for many cycles in time (Fig. 4.17k).

As in the case of the half-complete dictionary (Fig. 4.13), the different classes of receptive field
shapes segregate as a function of usage even as more intermediary shapes appear (see Fig. 4.18
for the full four-times overcomplete dictionary). However, the plateaus and rises seen for the
usage plot for the half-complete dictionary (Fig. 4.13g) are no longer distinct for this four-times
overcomplete representation (Fig. 4.17m).

Figure 4.14: The full set of elements from a half-complete, L0-sparse dictionary trained with LCA [45] on spectro-
grams of speech. Each rectangle represents the spectrotemporal receptive field of a single element in the dictionary;
time is plotted along the horizontal axis (from 0 to 216 msec), and log frequency is plotted along the vertical axis, with
frequencies ranging from 100 Hz to 4000 Hz. Color indicates the amount of power present at each frequency at each
moment in time, with warm colors representing high power and cool colors representing low power. Each element has
been normalized to have unit Euclidean length. Elements are arranged in order of their usage during inference with
usage increasing from left to right along each row, and all elements of lower rows used more than those of higher rows.
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Figure 4.15: The full set of elements from a complete, L0-sparse dictionary trained with LCA [45] on spectrograms
of speech. Same conventions as Fig. 4.14.
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Figure 4.16: The full set of elements from a two-times overcomplete, L0-sparse dictionary trained with LCA [45] on
spectrograms of speech. Same conventions as Fig. 4.14.
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Figure 4.17: Representative elements from the four-times overcomplete L0-sparse spectrogram-trained dictionary. a,
c, e, g, j, and l resemble those of the half-complete dictionary (see Fig. 4.13). Other neurons display more complex
shapes than those found in less overcomplete dictionaries: (b) a harmonic stack with larger flanking suppressive
subregions; (d) a neuron sensitive to lower frequencies; (f) a short harmonic stack; (h) a localized but complex pattern
of excitation with flanking suppression; (i) a localized checkerboard with larger excitatory and suppressive subregions
than those in panel l; (k) a checkerboard pattern that extends for many cycles in time. Several of these patterns
resemble neural spectro-temporal receptive fields (STRFs) reported in various stages of the auditory pathway that
have not been predicted by previous theoretical models (see text and Figs. 4.30, 4.31, and 4.32). (m) A graph of
usage of the dictionary elements during inference. The different classes of dictionary elements still separate according
to usage (see Fig. 4.18 for the full dictionary) although the notable rises and plateaus as seen in Fig. 4.13g are less
apparent in this larger dictionary.
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Figure 4.18: The full set of elements from a four-times overcomplete, L0-sparse dictionary trained with LCA [45] on
spectrograms of speech. Same conventions as Fig. 4.14.
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4.2.2 L1-sparse Spectrogram Dictionaries

Like the cochleogram representation, I tested the form of sparseness. I used the LCA algo-
rithm [45] to find the soft sparse solution (i.e., one that minimizes the L1 norm), and obtained
similar results to what I found for the hard sparse cases, with increasing overcompleteness result-
ing in greater diversity and complexity of learned features (see Figs. 4.19-4.22).

The L1-sparse half-complete spectrogram trained dictionary (Fig. 4.19) is qualitatively similar
to the L0-sparse dictionary (Fig. 4.14) in terms of the cell-types. The distributions are different,
e.g. there are three checkerboard elements instead of just one. However, no new shapes appeared,
only the relative proportion of each cell-type changed.

Similarly, the complete dictionary (Fig. 4.20) has more checkerboard shapes than its L0-sparse
counterpart. The checkerboard shapes also last for more cycles in time than elements from the
half-complete dictionary as well as the complete L0-sparse dictionary.

The two-times overcomplete dictionary (Fig. 4.21) and four-times overcomplete dictionary
(Fig. 4.22) followed the same trends as their L0-sparse counterparts; more complex shapes appear.

Figure 4.19: The full set of elements from a half-complete, L1-sparse dictionary trained with LCA [45] on spectro-
grams of speech. Same conventions as Fig. 4.14.
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Figure 4.20: The full set of elements from a complete, L1-sparse dictionary trained with LCA [45] on spectrograms
of speech. Same conventions as Fig. 4.14.
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Figure 4.21: The full set of elements from a two-times overcomplete, L1-sparse dictionary trained with LCA [45] on
spectrograms of speech. Same conventions as Fig. 4.14.
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Figure 4.22: The full set of elements from a four-times overcomplete, L1-sparse dictionary trained with LCA [45] on
spectrograms of speech. Same conventions as Fig. 4.14.
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4.2.3 Sparsenet-trained Spectrogram Dictionaries

Figure 4.23: The full set of elements from a half-complete, L1-sparse dictionary trained with Sparsenet [11] on
spectrograms of speech. Same conventions as Fig. 4.14.

I also trained some networks using Sparsenet [11] to produce soft sparse dictionaries, and again
I obtained similar results as for our hard sparse dictionaries (Figs. 4.23 and 4.24). It has been
proven mathematically [76] that signals that are actually L0-sparse can be uncovered effectively
by L1-sparse coding algorithms, which might suggest that speech is indeed L0-sparse signal given
that I find similar features using algorithms designed to maximize either L1 or L0 sparseness.

Thus, preprocessing with spectrograms, rather than a more nuanced cochlear model, and the
degree of overcompleteness, greatly influenced the dictionaries produced by all of the sparse cod-
ing algorithms I explored, and both factors were stronger determinants of what shapes appear than
the specific sparseness penalty I employed. Although I obtained similarly shaped STRFs for the
various types of sparse penalties I employed, there were differences in the performance of the var-
ious dictionaries. In particular, the level of sparseness achieved across the population of model
neurons exhibited different relationships with the fidelity of their representations, suggesting that
some model choices resulted in population codes that were more efficient at using small numbers
of neurons to represent stimuli efficiently, while others were more effective at increasing their
representational power when incorporating more active neurons.
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Figure 4.24: The full set of elements from a complete, L1-sparse dictionary trained with Sparsenet [11] on spectro-
grams of speech. Same conventions as Fig. 4.14.
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4.3 Performance

The dependence of the signal-to-noise ratio (SNR) on the degree of sparseness for the dictio-
naries trained on spectrograms (Fig. 4.25) demonstrates that the sparse encoding algorithm exhibits
a trade-off between reconstruction quality and sparseness, as one would expect. A few other gen-
eral trends are evident as well. Most notably, the L0-sparse dictionaries have higher SNRs than the
L1-sparse dictionaries for similar levels of sparseness. Also, the more overcomplete dictionaries
have higher SNRs than half-complete ones, even with the same absolute number of active neurons.
The half-complete and complete dictionaries do not show much improvement in performance even
as the number of active neurons increases. Interestingly, we find that the performance of the L0-
sparse dictionaries tend to saturate as the fraction of active neurons approaches unity whereas the
corresponding curves for the L1-sparse dictionaries tend to curve upwards.

Figure 4.25: The signal to noise ratio (SNR) of sparse coding dictionaries trained on spectrograms increases with
overcompleteness and with increasing numbers of active elements. Blue lines with triangles represent L0-sparse
dictionaries, whereas green lines represent L1-sparse dictionaries. As expected, representations are more accurate
with increasing numbers of active neurons and also when the level of overcompleteness is increased.
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4.4 Modulation Power Spectra

My four-times overcomplete, spectrogram-trained dictionary exhibits a clear tradeoff in spec-
trotemporal resolution (red points, Fig. 4.26), similar to what has been found experimentally in
IC [31]. This trend is not present in the half-complete cochleogram-trained dictionary (blue open
circles, Fig. 4.26). Rather, these elements display a limited range of temporal modulations, but they
span nearly the full range of possible spectral modulations. Thus, by this measure the spectrogram-
trained dictionary is a better model of IC than the cochleogram-trained model. In a later section, I
compare the shapes of the various classes of model STRFs with individual neuronal STRFs from
IC, and again find good agreement between my overcomplete spectrogram-trained model and the
neural data.

Figure 4.26: The four-times overcomplete spectrogram-trained dictionary elements (red dots; same dictionary as in
Fig. 4.17) display a clear tradeoff between spectral and temporal modulations, similar to what has been reported
for Inferior Colliculus (IC) [31]. By contrast, the half-complete cochleogram-trained dictionary (blue circles; same
dictionary as in Fig. 4.1) exhibits a much more limited range of temporal modulations, with no such tradeoff in
spectrotemporal resolution. Each data point represents the centroid of the modulation spectrum of the corresponding
element. The elements shown in Fig. 4.17 are indicated on the graph with the same symbols as before.

One might ask if the spectral and temporal tradeoff is simply due to the uncertainty principle
as is the case in the auditory nerve. An issue that arose was how the uncertainty principle applied
to my data. The uncertainty principle for Fourier Transformed signals is that the product of the
frequency bandwidth σf and the duration of the windowed signal σt is constrained [74].

σfσt ≥
1

4π
(4.1)
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Figure 4.27: The four-times overcomplete spectrogram-trained dictionary elements (red dots; same dictionary as in
Fig. 4.17) and the half-complete cochleogram-trained dictionary (blue circles; same dictionary as in Fig. 4.1). Each
data point represents the centroid of the modulation spectrum of the corresponding element. The elements shown in
Fig. 4.17 are indicated on the graph with the same symbols as in that figure. As described in the text, the three colored
lines represent different manifestations of the uncertainty principle. The green line is the principle applied at the lowest
frequencies (100 Hz), magenta at the middle frequencies (619 Hz), and the cyan line for the highest frequencies (4000
Hz).

I can use this to limit the modulation frequencies of my dictionary units by looking at the
maximum values for the modulation frequencies which are: max(ωt) = 1

2σt
and max(ωf ) = 1

2σf
.

If I invert this, the range of modulation frequencies possible is |ωt · ωf | ≤ π.

My processing of the waveforms used log-spaced frequencies which is not compatible with
that form of the uncertainty principle since I measure my spectral cycles in octaves instead of Hz.
If I multiple my spectral and temporal modulation frequencies, the product would not be unitless.
There is not a clear analogous formulation for log-spaced frequencies. I found the limit at the top,
middle, and bottom frequencies of my spectrograms.

To calculate these three lines (Fig. 4.27), I looked at three areas of the frequency range and
treated them as if they were linearly spaced.

At the lowest frequencies, the fastest possible linear frequency modulation would be 1 cycle
going from 100 to 102.9355 Hz, which equals 340.7 cyc/kHz. In our log-spacing, these three
frequencies cover 0.0126 decades. For all frequencies, the fastest possible spectral frequency mod-
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ulation would be 1 cyc/0.0126 decades. Combined with the unit factor (0.301 decades= 1 octave),
the fastest modulation is 23.8889 cyc/octave. Altogether, the uncertainty principle with my units:

ωf · ωt ·
23.8889

340.7
≤ π → ωf · ωt ≤ 44.8

Hz · cyc
oct

(4.2)

This equation is the green line represented in the figure. For the middle frequencies (618.8795
to 637.0647 Hz, magenta line), the resulting equation was ωt · ωf ≤ 7.2330 Hz · cyc/oct. For
the top frequencies (3885.9 to 4000 Hz, cyan line) the resulting equation was ωt · ωf ≤ 1.1573
Hz · cyc/oct. Similar results were obtained for the cochleogram frequencies where I looked at
the bottom frequencies for comparison, ωt · ωf ≤ 44.6318 Hz · cyc/oct (green line as well). If
the bottom frequency line is used, then clearly all data points are almost an order of magnitude
away from the uncertainty principle. This would imply that the tradeoff is due to more than just
the uncertainty principle. At the lower frequency line, the majority of the points are above the
line. This is clearly a violation of the uncertainty principle so it cannot possibly be the right
measure for the majority of the points. Unfortunately, there is no simple way to characterize
where a modulation is taking place, especially since each STRF can have modulations at multiple
frequencies.
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4.5 Analysis of Best Frequencies

In order to match the properties of experimental STRFs, I performed another population anal-
ysis. I examined the relationship between best frequency and temporal modulation frequency. The
previous section demonstrated the trade-off between spectral and temporal modulation frequency.
There is also an anti-correlation between best frequency and temporal modulation frequency: lower
best frequency is linked to higher temporal modulation frequency. I first looked into this based on
the analysis of [31]. Rodriguez et al. found that best frequency increased orthogonal to the isofre-
quency lamina of IC. These same neurons also showed an increase in temporal extent as the best
frequency increased (see Fig. 1 of [31]). Qualitatively, I observed this in Fig. 4.28 which shows
forty-five hand-chosen elements that match the experimental pattern of localized excitation pre-
ceded or followed by inhibition. The STRFs with high best frequencies are broad in time whereas
those at the lowest frequencies are very narrow in time

Figure 4.28: The selected forty-five elements demonstrate a relationship between temporal extent and best frequency.
Units with lower best frequencies have short temporal extents and vice versa. All elements are from the four-times
overcomplete L0-sparse spectrogram-trained dictionary ordered from highest to lowest best frequency. Best Frequency
is defined by the overall maximum value in the STRF.

To quantify my results, I examined all eight hundred model STRFs and organized them by their
best frequencies. I put all elements into one of four equally spaced frequency groups (each spanned
1.3 octaves): 100-249, 249-628, 628-1585, and 1585-4000 Hz with 132, 429, 130, and 109 units
respectively. I calculated the median values of all four groups for the best temporal modulation
frequency and spectral modulation frequency and plotted them in bar charts (Fig. 4.29(a) and
4.29(b)). There is a decrease in the median values of the best temporal modulation frequencies
as the best frequencies increase. Additionally, there is a slight correlation between best spectral
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modulation frequency and best frequency. This mimics the results seen in [31].

The opposite trend is found in the auditory nerve [77]. In AN, the fibers are efficient for
encoding the lower-order statistics of sound [78]; the temporal modulations are enhanced at the
cost of fine spectral modulations so temporal modulations increase with best frequency. Since
the opposite trend is found in IC, IC is not just inheriting the properties of the AN. Perhaps,
IC is optimized for the higher-order statistics of natural sounds [78]. It is interesting to note
that sparse coding predicts both of these trends depending on the input to the encoding network.
Sparse coding of waveforms [17] predicts the shapes of AN fibers so the model elements show the
same trend viewed in experimental AN fibers. In my case, sparse coding of spectrograms predicts
the STRF shapes and trends seen in IC. This suggests that the auditory system is in some way
taking advantage of the structure of natural sounds since sparse coding can predict these seemingly
opposing trends.
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(a)

(b)

Figure 4.29: Median values of dictionary subsets binned into equal-spaced best frequency bands (each represents 1.3
octaves). The elements are from the four-times overcomplete L0-sparse spectrogram-trained dictionary. (a) Median
values of best temporal modulation frequency. (b) Median values of best spectral modulation frequency (cyc/oct).
Asterisks signify significance based on the Mann-Whitney-Wilcox rank-sum test (p < 0.05), and error bars represent
median absolute deviation. Analysis inspired by [31].
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4.6 Comparison to Experimental Data

Sparse coding models of natural scenes have produced visual features that closely match ex-
perimentally measured neural receptive fields found in primary visual cortex [11, 12, 75]. In
the present study, my model’s STRFs resemble those of neurons recorded in multiple areas in
the auditory pathway. Specifically, I find features that correspond to receptive fields found in
IC [31, 30, 55, 60], MGBv [32], and A1 [53, 62, 50]. I am unaware of any previous theoretical
work that has provided accurate predictions for receptive fields in these areas.

Figs. 4.30, 4.31, and 4.32 present several examples of previously reported experimental recep-
tive fields that qualitatively match some of my model’s dictionary elements.

IC neurons often exhibit highly localized inhibition and suppression patterns (Fig. 4.30), some-
times referred to as “ON” or “OFF” responses, depending on the temporal order of excitation and
suppression. I show multiple examples drawn from the complete, two-times overcomplete, and
four-times overcomplete dictionaries, trained on spectrograms, that exhibit these patterns. The re-
ceptive fields of three neurons recorded in gerbil IC exhibit suppression at a particular frequency
followed by excitation at the same frequency (Fig. 4.30a). Such neurons are found in my model
dictionaries (Fig. 4.30b). The reverse pattern is also found in which inhibition follows excitation
as shown in two cat IC STRFs (Fig. 4.30c) with matching theoretical examples from our model
dictionaries (Fig. 4.30d). Note that the experimental receptive fields extend to higher frequencies
because the studies were done in cats and gerbils, which are sensitive to higher frequencies than
we were probing with my human speech training set. In addition, note the difference in time-scales
between my spectrogram representation and the experimental STRFs. One possible explanation
for this is the different timescales of speech and sounds which are behaviorally relevant to cats and
rodents.
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Figure 4.30: Complete and overcomplete sparse coding models trained on spectrograms of speech predict Inferior Col-
liculus (IC) spectro-temporal receptive field (STRF) shapes with excitatory and inhibitory subfields that are localized
in frequency but separated in time. (a) Two examples of Gerbil IC neural STRFs [30] exhibiting ON-type response
patterns with excitation following suppression; data courtesy of N.A. Lesica. (b) Representative model dictionary
elements from each of three dictionaries that match this pattern of excitation and suppression. The three dictionaries
were all trained on spectrogram representations of speech, using a hard sparseness (L0) penalty; the representations
were complete (left column; Fig. 4.15), two-times overcomplete (middle column; Fig. 4.16), and four-times overcom-
plete (right column; Fig. 4.18). (c) Two example neuronal STRFs from cat IC [31] exhibiting OFF-type patterns with
excitation preceding suppression; data courtesy of M.A. Escabı́. (d) Other model neurons from the same set of three
dictionaries as in panel b also exhibit this OFF-type pattern.

A common feature of thalamic and midbrain neural receptive fields is a localized checkerboard
pattern of excitation and inhibition (Fig. 4.31), typically containing between four to 12 prominent
subfields. I present experimental gerbil IC, cat IC and cat MGBv STRF’s of this type in Fig. 4.31a
beside similar examples from my model (Fig. 4.31b). This pattern is displayed by many elements
in my sparse coding dictionaries, but to my knowledge it has not been predicted by previous theo-
ries.

Finally, I also find some less localized receptive fields that strongly resemble experimental
data. Some model neurons (Fig. 4.32b) consist of an inhibition/excitation pattern that extends
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Figure 4.31: Neuronal midbrain and thalamus receptive fields and model comparisons. An overcomplete sparse coding
model trained on spectrograms of speech predicts Inferior Colliculus (IC) and auditory thalamus (ventral division of
the medial geniculate body; MGBv) spectro-temporal receptive fields (STRFs) consisting of localized checkerboard
patterns containing roughly four to nine distinct subfields. (a) Example STRFs of localized checkerboard patterns from
two Gerbil IC neurons [30], one cat IC neuron [60], and one cat MGBv neuron [53] (top to bottom). Data courtesy
of N.A. Lesica (top two cells) and M.A. Escabı́ (bottom two cells). (b) Elements from the four-times overcomplete,
L0-sparse, spectrogram-trained dictionary with similar checkerboard patterns as the neurons in panel a.
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across most frequencies, reminiscent of broadband OFF and ON responses as reported in cat IC
and rat A1 (Fig. 4.32a).

Another shape seen in experimental STRF’s of bat IC (top), and cat A1 (bottom; Fig. 4.32c)
is a diagonal pattern of excitation flanked by inhibition at the higher frequencies. This pattern
of excitation flanked by inhibition is present in my dictionaries (Fig. 4.32d), also at the highest
frequencies probed. These resemble the FM sweeps that are over-represented in the bat auditory
system and are sometimes found in speech.
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Figure 4.32: Neuronal midbrain and thalamus receptive fields and model comparisons on spectrograms of speech
predicts several classes of broadband spectro-temporal receptive field (STRF) shapes found in Inferior Colliculus (IC)
and primary auditory cortex (A1). (a,b) An example broadband OFF-type STRF from cat IC [53] (top; data courtesy of
M.A. Escabı́) and an example broadband ON-type subthreshold STRF from rat A1 [62] (bottom; data courtesy of M.
Wehr) shown in panel a resemble example elements from a four-times overcomplete, L0-sparse, spectrogram-trained
dictionary shown in panel b. (c) STRFs from a bat IC neuron [55] (top; data courtesy of S. Andoni) and a cat A1
neuron [53] (bottom; data courtesy of M.A. Escabı́) each consist of a primary excitatory subfield that is modulated in
frequency over time, flanked by similarly angled suppressive subfields. (d) Example STRFs from four elements taken
from the same dictionary as in panels b exhibit similar patterns as the neuronal STRFs in panel c.
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4.7 Linear Filters

My final analysis was linear filter estimation (STA). I worked exclusively with the four-times
overcomplete L0-sparse spectrogram-trained dictionary.

4.7.1 The Model

I treated my model elements as if they are the receptive fields of real auditory neurons, and
probed them with nine different stimulus sets (see Sec. 3.5 for full description of each category) by
using the original dictionary to encode these new sounds using the LCA algorithm. The inferred
coefficients are the correlates to spikes from neurons or the subthreshold membrane potential.
Using the encodings, I averaged over all the probe stimuli in a stimulus set to get linear filter
estimates for each model neuron; either standard STAs or whitened STAs.

4.7.2 Standard Spike-Triggered Average

I first studied standard STAs in which the stimulus correlations were not removed. As expected,
not accounting for stimulus correlations typically produces worse estimates (measured by mean
absolute error). I show one example neuron (Fig. 4.33) of a checkerboard pattern of excitation
and inhibition (a hallmark of IC neurons [53, 30, 31]). The original is seen in the top left of the
figure (red box). Some of the probe stimulus sets such as the White Noise (WWN), Classical
Music (CM), Dynamic Moving Ripples (DMR), Natural Scenes (NS), and Image White Noise
(IWN) qualitatively capture the main features of the original receptive field. The other types poorly
represent the original receptive field by not exhibiting the featured checkerboard pattern. As a
population, the eight hundred model neurons were poorly estimated by the probe stimuli using
standard STAs. Main features of receptive fields were distorted or completely absent.
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Figure 4.33: Different probe stimulus sets produce different standard spike-triggered averages for a checkerboard pat-
tern with correlations intact. (a) The original receptive field from the four-times overcomplete L0-sparse spectrogram-
trained dictionary. (b) Estimate from white noise. (c) Estimate from classical music. (d) Estimate from dynamic
moving ripples. (e) Estimate from a holdout speech of set. (f) Estimate from indie rock music. (g) Estimate from
natural scenes. (h) Estimate from white noise bursts. (i) Estimate from pure tones. (j) Estimate from image white
noise. Each rectangle represents the spectro-temporal receptive field (STRF) of a single element in the dictionary;
time is plotted along the horizontal axis (from 0 to 216 msec) and log frequency is plotted along the vertical axis, with
frequencies ranging from 100 Hz to 4000 Hz.
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4.7.3 Whitened Spike-Triggered Average

I then examined whitened STAs of my model neurons. Fig. 4.34 shows the same original
receptive field as Fig. 4.33 along with linear filter estimates where stimulus correlations have been
removed. Unlike the previous figure, a different group of probe stimuli provide the best estimates:
CM, HS, and NS. For certain receptive fields taking stimulus correlations into effect can have a
negative effect for some probe stimulus sets. It’s unclear why this would be the case. On average,
there was great improvement of STRF estimation when the correlations were taken into account,
both visually and in terms of mean absolute error.

Figure 4.34: Different probe stimulus sets produce different whitened spike-triggered averages for the same checker-
board pattern as Fig. 4.33 with correlations removed. (a) The original receptive field from the four-times overcomplete
L0-sparse spectrogram-trained dictionary. (b) Estimate from white noise. (c) Estimate from classical music. (d) Esti-
mate from dynamic moving ripples. (e) Estimate from a holdout speech of set. (f) Estimate from indie rock music. (g)
Estimate from natural scenes. (h) Estimate from white noise bursts. (i) Estimate from pure tones. (j) Estimate from
image white noise.

Fig. 4.35 shows a harmonic stack, a shape that has not been reported as a receptive field shape
in the mammalian auditory midbrain, thalamus, and cortex. My results suggest that this auditory
feature cannot be recovered with traditional stimulus sets such as PT, WN, and DMR. Another
reason that these broadband shapes might not have been reported is because experimentalists probe
around the frequency area to which the neuron most strongly responds (the so-called ‘Frequency
Response Area’). This could make finding broadband sounds impossible.

Fig. 4.36 shows a tightly bound on/off set response localized to a few frequencies. These have
been seen at low best frequencies as found in an experiment with DMR [31]. Only CM, HS, IRM,
and NS were able to pick up on this feature using my simple whitened STA.

The final shape is a tight on/off pattern that lasts for many cycles in time (Fig. 4.37). A feature
with such extended temporal modulations has not been reported before. Again only a few probe
stimulus sets were able to capture this type of shape. Though I show only five out of eight hundred
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Figure 4.35: Different probe stimulus sets produce different receptive field estimates for a harmonic stack with cor-
relations removed. (a) The original receptive field from the four-times overcomplete L0-sparse spectrogram-trained
dictionary. (b) Estimate from white noise. (c) Estimate from classical music. (d) Estimate from dynamic moving
ripples. (e) Estimate from a holdout speech of set. (f) Estimate from indie rock music. (g) Estimate from natural
scenes. (h) Estimate from white noise bursts. (i) Estimate from pure tones. (j) Estimate from image white noise.

units, these trends existed for the majority of the dictionary.

Examining the dictionary as a whole, some cell-types were easily uncovered. One surprise was
that DMR could only uncover a subset of the model auditory features even though they are often
used as experimental stimuli. Part of the reason for these issues might be because I did not do any
regularization. DMR often uncovered a noisy version of the main feature. Since experimentalists
often do some kind-of thresholding or smoothing of their STRFs, the features might be more
apparent.
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Figure 4.36: Different probe stimulus sets produce different receptive field estimates for a tightly localized on/off
pattern with correlations removed. (a) The original receptive field from the four-times overcomplete L0-sparse
spectrogram-trained dictionary. (b) Estimate from white noise. (c) Estimate from classical music. (d) Estimate
from dynamic moving ripples. (e) Estimate from a holdout speech of set. (f) Estimate from indie rock music. (g)
Estimate from natural scenes. (h) Estimate from white noise bursts. (i) Estimate from pure tones. (j) Estimate from
image white noise.

4.7.4 Mean Absolute Error

To quantify the global performance of the different probe stimulus sets over all model neurons,
I calculated the mean absolute error (MAE) by treating the original basis function as ground truth
and the linear filter estimates as predictions. For each probe stimulus set, I then averaged over all
eight hundred predictions.

Almost all of the probe stimulus sets showed decreases in MAE once stimuli correlations were
removed (Fig. 4.38). The stimulus sets that performed best over all cell types were CM, HS, and
NS. This is reflected in the specific examples shown above. Of these, HS is guaranteed to do a good
job since probing the dictionary with the same type of stimulus used for training is mathematically
proven to uncover the original dictionary. The other two types probably do a good job since they
contain the full range of complexity of natural sounds.

Pure tones are the least accurate out of all of the stimuli which makes sense as they have no
way of accurately capturing the temporal structure of the data. Additionally, the pure tones were
only active at a single frequency so concurring frequencies would be impossible to fully capture.

The different types of white noise also failed despite the fact that mathematically uncorrelated
stimuli such as Gaussian white noise should be able to capture the full system. However, the
previous statement is only true in the case of infinite stimuli. Both in this model work and real
experimental work, there is no way to fully explore the stimulus space sufficiently to be able to
estimate receptive fields.
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Figure 4.37: Different probe stimulus sets produce different receptive field estimates for a tightly localized on/off
pattern that lasts for many cycles in time with correlations removed. (a) The original receptive field from the four
times overcomplete L0-sparse spectrogram-trained dictionary. (b) Estimate from white noise. (c) Estimate from
classical music. (d) Estimate from dynamic moving ripples. (e) Estimate from a holdout speech of set. (f) Estimate
from indie rock music. (g) Estimate from natural scenes. (h) Estimate from white noise bursts. (i) Estimate from pure
tones. (j) Estimate from image white noise.

Figure 4.38: Removing stimulus correlations lowers the mean absolute error (MAE) of most probe stimulus sets.
(Red) MAE for standard spike-triggered average for all nine probe stimuli averaged over all eight hundred estimates.
(Blue) MAE for whitened spike-triggered average for all nine probe stimuli averaged over all eight hundred estimates.
WWN: Waveform White Noise; CM: Classical Music; DMR: Dynamic Moving Ripples; HS: Holdout set of speech;
IRM: Indie Rock Music; NS: Natural Scenes; WNB: White Noise Bursts; PT: Pure Tones; IWN: Image White Noise.
Bars indicate standard error and asterisks indicate significance.
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Chapter 5

Conclusions

I have applied the principle of sparse coding to spectrogram and cochleogram representations of
human speech recordings in order to uncover some important features of natural sounds. Of the var-
ious models I considered, I have found that the specific form of preprocessing (i.e., cochleograms
vs. spectrograms) and the degree of overcompleteness are the most significant factors in deter-
mining the complexity and diversity of receptive field shapes. Importantly, I have also found that
features learned by my sparse coding model resemble a diverse set of receptive field shapes in IC,
as well as MGBv and A1. Even though a spectrogram may not provide as accurate a representa-
tion of the output of the cochlea as a more explicit cochleogram model, such as the one I explored
here, I have found that sparse coding of spectrograms yields closer agreement to experimentally
measured receptive fields, demonstrating that we can infer important aspects of sensory processing
in the brain by identifying the statistically important features of natural sounds without having to
impose many constraints from biology into my models from the outset.

Indeed, it is worth emphasizing that the agreement I have found did not result from fitting the
data, per se; it emerged naturally from the statistics of the speech data we used to train my model.
Specifically, the model parameters I explored — undercomplete vs. overcomplete representation,
L0 vs. L1 sparseness penalty, and cochleogram vs. spectrogram preprocessing — represent a low-
dimensional space of essentially eight different choices compared with the rich, high-dimensional
space of potential STRF shapes I could have obtained.

Intriguingly, while I have emphasized the agreement between my model and IC, the receptive
fields I have found resemble experimental data from multiple levels of the mammalian ascending
auditory pathway. This may reflect the possibility that the auditory pathway is not strictly hierar-
chical, so that neurons in different anatomical locations may perform similar roles, and thus are
represented by neurons from the same sparse coding dictionary.

This view is consistent with the well-known observation that there is a great deal of feedback
from higher to lower stages of processing in the sub-cortical auditory pathway [79], as compared
with the visual pathway, for example. The tradeoff in spectrotemporal resolution we have found
in our model resembles that of IC, which is the lowest stage of the ascending auditory pathway
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to exhibit a tradeoff that cannot be accounted for by the uncertainty principle, as is the case for
auditory nerve fibers [31], but it remains to be seen if such a tradeoff also exists in MGBv or A1.

A related issue is that an individual neuron might play different roles depending on the stimulus
ensemble being presented to the nervous system. In fact, changing the contrast level of the acoustic
stimuli used to probe individual IC neurons can affect the number of prominent subfields in the
measured STRF of the neuron [30]. My model does not specify which neuron should represent
any given feature, it just predicts the STRFs that should be represented in the neural population in
order to achieve a sparse encoding of the stimulus.

Moreover, for even moderate levels of overcompleteness, my sparse coding dictionaries include
categories of features that have not been reported in the experimental literature. For example, the
STRF shown in Fig. 4.17k represents a well-defined class of elements in my sparse dictionaries,
but I am unaware of reports of this type of STRF in the auditory pathway. One thing to note is
that harmonic stacks are the least active elements in my model. If these are represented in the
auditory system, there would be a selection bias against them since these neurons would not fire
that much. A typical experiment might only uncover one or two examples of such STRFs so they
might not make it into publication. Thus, my theoretical receptive fields could be used to develop
acoustic stimuli that might drive auditory neurons that do not respond to traditional probe stimuli.
In particular, my dictionaries contain many broadband STRFs with complex structures. These
broadband neurons may not have been found experimentally since by necessity researchers often
probe neurons extensively with stimuli that are concentrated around the neuron’s best frequency.

I have presented several classes of STRFs from my model that qualitatively match the shapes
of neural receptive fields, but in many cases the neurons are sensitive to higher frequencies than the
model neurons. This is likely due to the fact that I trained my network on human speech, which has
its greatest power in the low kHz range, whereas the example neural data available in the literature
come from animals with hearing that extends to much higher acoustic frequencies, and with much
higher-pitched vocalizations, than humans.

Even if sparse coding is, indeed, a central organizing principle throughout the nervous system,
it could still be that the sparse representations I predict with my model correspond best to the sub-
threshold, postsynaptic responses of the membrane potentials of neurons, rather than their spiking
outputs. In fact, I show an example of a subthreshold STRF (Fig. 4.32 bottom) that agrees well
with one class of broadband model STRFs (Fig. 4.32). The tuning properties of postsynaptic re-
sponses are typically broader than spiking responses, as one would expect, which could offer a clue
as to which is more naturally associated with model dictionary elements. If my model elements are
to be interpreted as subthreshold responses, then the profoundly unresponsive regions surrounding
the active subfields of the neuronal STRFs could be more accurately fit by my model STRFs after
they are post-processed by being passed through a model of a spiking neuron with a finite spike
threshold.

It is encouraging that sparse encoding of speech can identify acoustic features that resemble
neuronal STRFs from auditory midbrain, as well as those in thalamus and cortex, and it is notable
that the majority of these features bear little resemblance to the Gabor-like shapes and elongated
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edge detectors that have been predicted by sparse coding representations of natural images. Clearly,
my results are not an unavoidable consequence of the sparse coding procedure itself, but instead
reflect the structure of the speech spectrograms and cochleograms I have used to train my model.
Previous work to categorize receptive fields in A1 has often focused on oriented features that are
localized in time and frequency [28, 80], and some authors have suggested that such Gabor-like
features are the primary cell types in A1 [33], but the emerging picture of the panoply of STRF
shapes in IC, MGBv, and A1 is much more complex, with several distinct classes of features, just
as I have found with my model. An important next step will be to develop parameterized functional
forms for the various classes of STRFs I have found, which can assume the role that Gabor wavelets
have played in visual studies. I hope that this approach will continue to yield insights into sensory
processing in the ascending auditory pathway.

My linear filter estimation study has yielded some interesting results on the effects of probe
stimulus sets on STRF estimation. Here I have shown that the probe stimuli do make a huge
difference in receptive field estimation.

As expected, removing stimulus correlations vastly improves receptive field estimation, but
does not fully correct the STRF estimation. Even with correlations removed, some probe stimulus
sets still outperform others. However, Klein et. al [63] suggests that too many dynamic moving
ripples are needed to give an accurate estimate for a typical experiment. This could explain why
the ripples could not uncover some cell shapes.

Additionally, it is surprising that filter estimates occasionally appear worse when they are
whitened. Qualitatively, the receptive fields can appear worse even though quantitatively the error
is smaller. This is because the algorithm picks the best global solution so the overall error can
decrease although auditory features that are salient to human eyes may look worse.

Many probe stimulus sets could give different estimators because the whitened STA is still
a biased estimator even in the limit of infinite data if certain conditions are not met [81]. For
example, the estimator is only unbiased if the distribution is radially symmetric. If this were true,
then the standard STA would be the same as the whitened STA. Since this is not the case for most
stimuli, the linear filter estimate is not a full description of the neuron.

Another issue I did not explore was regularization. This is more of an issue with experiments
where there is a limit to the amount of data taken. In that case, the autocovariance matrix may have
eigenvalues that are close to zero resulting in a noisy pseudoinverse [62]. Regularization constrains
parameter values to alleviate this issue [82]. This is a direction for future work.

My results suggest that some stimuli do give better STAs than others particularly classical
music, human speech, and natural scenes. I hope that my work will be useful to experimentalists
when they are choosing their stimuli.

Overall, I have shown that sparse coding of speech data can predict some properties of the
auditory system, which supports the efficient coding hypothesis. It is also telling that my work on
speech was able to uncover features in many different animals, suggesting that speech spans the
full space of natural sounds and that brains are adapted to have some general features in common.
There are many possible future directions for this work. The first would be to find some automated
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way to cluster the different cell-types found in my dictionary. I also hope that someday there will
be parameterizations for all of the different shapes, in the same way that the canonical parameter-
ization for V1 RFs is a Gabor function. It will also be interesting to someday invert these STRFs
and listen to the sounds that they represent. The linear filter estimation work can also be continued
by looking at issues of regularization as well as more complicated measures like spike-triggered
covariance or maximally informative dimensions.
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Appendix A

List of Abbreviations

Abbreviation Term

A1 Primary Auditory Cortex
AGC Adaptive Gain Control
AN Auditory Nerve
BF Best Frequency
CM Classical Music
DMR Dynamic Moving Ripples
FM Frequency-Modulated
IC Inferior Colliculus
ICA Independent Components Analysis
IRM Indie Rock Music
IWN Image White Noise
LCA Locally Competitive Algorithm
LTC Local Thresholding Circuit
MAE Mean Absolute Error
MGBv ventral division of the Medial Geninculate Body
MID Maximally Informative Dimension
ML Modulated-limited
MPS Modulation Power Spectrum
MTF Modulated Transfer Function
PCA Principal Components Analysis
PT Pure Tones
RF Receptive Field
SNR Signal-to-Noise Ratio
SPL Sound Pressure Level
STA Spike-Triggered Average
STRF Spectro-Temporal Receptive Field
TM Temporally-Modulated
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TORC Temporally-Orthogonal Ripple Combination
V1 Primary Visual Cortex
WNB White Noise Bursts
WWN Waveform White Noise
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