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PREFACE 

On assembling this Dissertation, I realized that the Human Genome Project 

(HGP) has been closely intertwined with many aspects of my academic career. While 

this is in part due to good timing, I have also been fortunate to work with many 

pioneering scientists who have played pivotal roles in various stages of the project. As 

an undergraduate at Boston University (BU), I conducted my senior research thesis 

under the supervision of Dr. Charles DeLisi, who led the effort to launch the HGP 

while he was a scientist at the Department of Energy in the mid-1980s. Dr. DeLisi has 

since received the Presidential Citizens Medal from President Bill Clinton for his HGP 

efforts, and has made significant strides towards training a new generation of 

integrative, multidisciplinary scientists by establishing one of the nation’s first and 

largest bioinformatics graduate programs at BU. The inaugural year of the 

bioinformatics program coincided with my senior year of college, and as a result I had 

the chance to take newly offered graduate courses on biological database analysis as 

well as play an active role in establishing research collaborations between the College 

of Engineering and BU’s School of Medicine.  

The skills I learned at BU proved valuable to a small, San Diego start-up 

company named Egea Biosciences, at which I worked as a Bioinformatics Research 

Specialist from 2001-2002. At the time, the company consisted of less than 15 

employees, all of whom directly reported to President and Chief Executive Officer Dr. 

Glen Evans. Prior to founding Egea, Dr. Evans was a principal investigator in the 

HGP, leading the task force to sequence human chromosome 11 at The University of 

Texas Southwestern Medical Center at Dallas. I can vividly remember Dr. Evans’ 
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excitement on the day that the initial human genome sequence was released, and the 

February 15, 2001 edition of Nature that he gave me retains a prominent spot on my 

bookshelf in honor of his great work and that of hundreds of other scientists 

worldwide. 

It seems only fitting that when I left Egea to return to my graduate studies full-

time, I was immediately drawn to the work of Dr. Bernhard Palsson’s Genetic Circuits 

Research Group (now known as the Systems Biology Research Group or SBRG). 

Their research required my bioinformatic expertise, which included an array of data 

analysis and mining tools, but also included components of mathematical modeling 

and experimental studies, two topics that I was eager to learn more about. While my 

first projects in the SBRG were focused on reconstructing and modeling the yeast 

Saccharomyces cerevisiae, the release of a finished human genome sequence in 2003 

opened up possibilities for new avenues of research, and in November 2004 I was 

asked to organize a team of students to construct the first genome-scale model of 

human metabolism. Thus, this Dissertation reports the first of many milestones in 

human systems biology, which was enabled by an extraordinarily ambitious research 

project prompted by Dr. Charles DeLisi in 1985. 

La Jolla 

November 2006 
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ABSTRACT OF THE DISSERTATION 

GENOME-SCALE RECONSTRUCTION AND ANALYSIS OF EUKARYOTIC 
METABOLIC NETWORKS 

 

by 

 

Natalie Christine Hurlen 

 

Doctor of Philosophy in Bioengineering 

University of California, San Diego, 2006 

Professor Bernhard Ø. Palsson, Chair 

 
 

Cells are comprised of complex, highly integrated networks of genes, proteins, 

and chemical compounds that interact with one another to achieve biological 

functions. A goal of systems biology is to develop comprehensive reconstructions of 

these networks in order to study their emergent properties. With the growing 

availability of whole genome sequences, cellular ‘part lists’ can now be defined for 

many organisms. The procedure for assembling genome-scale microbial networks is 

well established. However, such efforts have been limited for eukaryotes, especially in 

multicellular species. Thus, the overall goal of this Dissertation was to advance the 

reconstruction and analysis of eukaryotic systems by developing genome-scale 

metabolic models of Saccharomyces cerevisiae and a generic human cell. 
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We first describe the reconstruction of S. cerevisiae iND750, a fully 

compartmentalized metabolic network that includes systemic gene-protein 

relationships, pH-specific metabolite formula and charge, and elementally and charge-

balanced reactions. iND750 was manually assembled with component-by-component 

(i.e., bottom-up) approach and then functionally validated by comparing its 

predictions of 4,200 gene deletion phenotypes to in vitro data.  

Next we discuss the human reconstruction project, which required a 

combination of top-down and bottom-up approaches to construct a comprehensive, 

high quality network within a reasonable time frame. This entailed automated 

extraction of a candidate component list from the genome annotation and parallelized, 

manual curation by a team of researchers. The resultant network, named Homo 

sapiens Recon 1, collectively represents 1,497 genes, 2,005 proteins, and 3,311 

reactions found in a variety of human cell types, and is the largest genome-scale 

reconstruction to date. 

Finally, we demonstrate the applications of these networks as mathematical 

models and as a context for high-throughput data analysis. In silico and in vitro 

growth experiments revealed that yeast exhibits few optimal phenotypes over a range 

of glucose and oxygen uptake rates, and that there are distinct combinations of these 

rates that yield maximal biomass and ethanol production. Qualitative assessment of 

gene expression levels in obese skeletal muscle highlighted consistencies between 

metabolic states post-gastric bypass and under caloric restriction. Pathway analysis of 

gene expression data also provided to initial steps towards generating tissue-specific 

metabolic reconstructions. 
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CHAPTER 1: INTRODUCTION 

1.1 What is systems biology? 

The goal of systems science is to integrate information about individual 

components to study how a system behaves as a whole. While this contextual, holistic 

approach is an established practice in many fields, including engineering, sociology, 

political science, and economics [1-3], cell biology has historically favored 

reductionistic methods in which genes and enzymes are independently characterized 

in great detail. However, the advent of new high-throughput technologies has created 

an overwhelming supply of comprehensive, data-rich information that necessitates an 

integrative, multi-disciplinary approach. This has led to the burgeoning field of 

systems biology, in which the mathematical tools of systems science have been used 

to understand biological systems from a network perspective. 

 

1.2 Network reconstruction 

Networks are comprehensive reconstructions of a system’s components and 

their interactions [4]. There are two general strategies for assembling a reconstruction: 

top-down and bottom-up. Top-down approaches rely on inference methods to identify 

and formulate relationships between network components. They are typically 

implemented in a computer, enabling rapid assembly of large, comprehensive 

networks. In contrast, bottom-up networks are manually assembled in a component-

by-component manner based on direct physical evidence from multiple data sources. 
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Manual reconstruction can be a time-consuming and laborious process, but is 

oftentimes favored for modeling applications because it produces self-consistent 

networks. Thus, top-down and bottom-up methods each have distinct advantages and 

disadvantages, and the best choice for reconstructing a network of interest can depend 

on many factors, including time, data availability, and the number of components. 

In systems biology, networks are commonly reconstructed at the cellular level 

and are considered ‘genome-scale’ if they include all of the components encoded by 

an organism’s DNA. The interactions between genes, proteins, and chemical 

compounds constitute the two-dimensional annotation of a genome [5, 6], and there 

are many parallels between their hierarchy and the one-dimensional, sequence-based 

annotation (Figure 1.1). Tools are available for automated, top-down assembly of 

cellular networks [7], and the bottom-up procedure for reconstructing microbial 

networks is well established [6]. However, there has been limited progress in 

extending these methods to eukaryotes, especially mammals. Therefore, the primary 

goals of this Dissertation were: 

1. To develop more advanced representations of eukaryotic metabolic networks, 

first in the unicellular budding yeast S. cerevisiae and then in a generic human 

cell; and 

2.  To use these reconstructions for integrated analysis of metabolic behaviors 

under various genetic and environmental constraints, including single gene 

deletions and pathophysiological states. 
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1.3 Dissertation overview 

This Dissertation begins with a primer on resources available for genome-scale 

reconstruction and analysis (Chapter 2). The following four chapters provide in-depth 

descriptions of our studies in yeast (Chapters 3-4) and humans (Chapters 5-6); detailed 

overviews of these chapters are provided below. Finally, we conclude with a summary 

of my contributions to systems biology and future extensions of this work (Chapter 7). 

 

S. cerevisiae reconstruction and analysis  

Chapter 3 describes the reconstruction and validation of S. cerevisiae iND750, 

a genome-scale model of yeast metabolism with 750 genes, 1149 reactions, and 646 

metabolites. Unlike its predecessor, iND750 is fully compartmentalized, accounting 

for seven intracellular localizations (cytosol, mitochondrion, nucleus, endoplasmic 

reticulum, Golgi apparatus, peroxisome, and vacuole), directly incorporates logical 

relationships between genes and proteins, and contains carefully formulated 

compounds and reactions that satisfy elemental and charge balance constraints at pH 

7.2. The model was functionally validated by comparing its in silico predictions of 

more than 4,200 gene deletion phenotypes to in vitro measurements. 

In Chapter 4, we present an integrated computational and experimental study 

that analyzes yeast’s growth behavior over a range of glucose and oxygen uptake 

conditions. We found that, as compared to Escherichia coli, yeast exhibits relatively 

few distinct metabolic phenotypes under these conditions. This chapter also introduces 

a method for computing in silico secretion profiles, which are convenient, graphical 

descriptions of allowable uptake and secretion rates during optimal growth states. 

 

Human reconstruction and analysis 
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Chapter 5 describes the genome-scale reconstruction of H. sapiens Recon 1, a 

global metabolic network with 1,496 genes, 3,311 reactions, and 2,712 metabolites 

that are collectively found in a variety of human cell types. The network was 

reconstructed by a combination of top-down and bottom-up methods, including an 

exhaustive, manual survey of the scientific literature, and resulted in a detailed, 

quantitative assessment of the human metabolic knowledge landscape.  

In Chapter 6, we provide illustrative examples of how high-throughput data 

(specifically, gene expression profiles) can be integrated with H. sapiens Recon 1 to 

interrogate metabolic states in obese skeletal muscle and generate automated 

reconstructions of cell-specific networks.  
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Figure 1.1: The hierarchical relationship of network components. There are many 
parallels between levels of detail in genome and network annotations. Chromosomes 
are analogous to cellular biochemical networks, which are described in terms of 
reactions. Contigs are delineated by sequence reads, which describe individual base 
pairs, the primary components of a sequence annotation. Similarly, reactions are 
catalyzed by enzymes, which are derived from genes and their transcripts, and act on 
compounds, the primary components in a network annotation. While the scope of 
genome annotation is clearly defined and has been significantly characterized, 
biochemical networks vary across cell types and states and, as a whole, are largely 
uncharacterized.  
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CHAPTER 2: TOOLS FOR GENOME-SCALE 

RECONSTRUCTION AND ANALYSIS 

The wealth of data on metabolic components and their interactions enables 

construction of high confidence, biologically accurate networks that can be used to 

computationally interrogate metabolic states. This chapter introduces key resources 

for collecting these data (2.1) and provides a brief overview of the constraint-based 

modeling tools used in this Dissertation (2.2). 

 

2.1 Reconstruction resources 

Reconstructions rely on many types of biological evidence, including genetic, 

biochemical, and physiological data. While much of this information can be readily 

obtained from online databases (2.1.1 & 2.1.2), detailed, organism-specific data is 

must usually be extracted from the scientific literature (2.1.3). The main references for 

our yeast and human metabolic reconstructions are described here; other relevant 

databases for microbial reconstructions have been discussed elsewhere [6]. 

 

2.1.1 Genome annotation databases 

Genome annotation databases are comprehensive, gene-centric resources that 

provide an abundance of information on gene identifiers (e.g., abbreviations, names, 

and synonyms), gene-protein relationships (e.g., alternative transcripts, isozymes, and 

protein complexes), and protein localization. They also typically contain links to 
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primary research articles in PubMed [8], making them an ideal starting point for 

manual network curation. One of the largest and most widely used annotation 

databases is Entrez Gene [9], which consists of over 3,600 taxa to date. Most model 

organisms have species-specific genome annotation databases that are actively 

updated by their research community, such as the Saccharomyces Genome Database 

[10] and Comprehensive Yeast Genome Database [11]. Several human genome 

annotation databases have been generated computationally using data mining 

algorithms (GeneCards [12]) and high-throughput data (H-Invitational Database [13], 

Kyoto Encyclopedia of Genes and Genomes (KEGG) [14], and HumanCyc [15]). 

 

2.1.2 Enzyme, reaction, and pathway databases 

Metabolism has been extensively studied in a variety of organisms, resulting in 

a collective knowledge base that includes many mechanistic reactions and well-

characterized interactions. Brenda [16] is an enzyme database with extensive records 

of cofactor preferences, kinetic measurements, and reaction stoichiometry for a variety 

of organisms. Entries are organized by Enzyme Commission (E.C.) numbers [17], 

which are universal (non-organism-specific) four digit codes based on enzymatic 

reaction mechanisms. E.C. numbers are also linked to metabolic maps in KEGG 

LIGAND, a suite of databases with detailed information on genes, reactions, and 

compounds involved in a variety of cellular processes [14]. Another universal 

vocabulary for describing gene and protein functions is Gene Ontology (GO) [18]. GO 

is hierarchically organized based on three primary classifications: molecular functions, 

biological processes, and cellular components. A convenient web-based application 

for searching and viewing these hierarchies is the AmiGO browser [18].  

 



8 

 

2.1.3 Textbooks and review articles 

While the internet has facilitated the exchange and archive of tremendous 

amounts of genomic and biochemical data, textbooks and review articles are the most 

useful resources for collecting organism-specific physiological information. 

Biochemistry textbooks by Lubert Stryer [19] and Donald and Judith Voet [20] are 

excellent general resources, providing a basic overview of common metabolic 

functions. We also recommend Biochemical Pathways by Gerhard Michal [21], which 

includes detailed descriptions of Boehringer Mannheim wall charts, and Metabolism 

at a Glance by Jack Salway [22], which provides human-specific genetic and 

physiological data for select metabolic pathways. Additional texts specific to yeast 

and human biochemistry are also available [23-30] 

 

2.2 Constraint-based modeling 

Network reconstructions are the basis of mathematical models used in a variety 

of applications [4]. Constraint-based approaches have been successfully used in 

modeling microbial metabolism [31-33], and here they are used to simulate S. 

cerevisiae growth phenotypes (Chapters 3-4) and nearly 300 metabolic functions 

known to exist in human cells (Chapter 5). The basic premise of constraint-based 

modeling is to generate a solution space that consists of a collection of all possible 

cellular behaviors  [34-38]. This space is defined by many factors, including genetics, 

network stoichiometry, thermodynamics, and environmental conditions, and can be 

further refined as additional constraints are introduced (Figure 2.1).  

This section describes three constraint-based approaches used in this 

Dissertation: flux balance analysis (2.2.1), phenotypic phase plane analysis (2.2.2), 
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and in silico gene deletion analysis (2.2.3). Additional information on the growing 

toolbox for constraint-based analysis can be found in a recent review [31]. 

 

2.2.1 Flux balance analysis 

In flux balance analysis (FBA), stoichiometry of the metabolic reaction 

network and linear programming are used to compute optimal metabolic phenotypes 

[38, 39]. The relationship between metabolite concentrations, x, and reaction 

activities, v, is described by the dynamic mass balance equation [40, 41]: 

 

vS
dt
dx

•=  

 

where S is an m × n matrix of stoichiometric coefficients, x is an m × 1 vector of 

metabolite concentrations, and v is and n × 1 vector of reaction activities. Thus, the 

rows of S correspond to the internal metabolites and the columns represent the 

reactions in the network. Under steady-state conditions, the dynamic mass balance 

equation simplifies to: 

 

0=• vS  

 

Since the number of reactions is often greater than the number of metabolites, 

the dynamic mass balance equation is underdetermined and contains multiple 

solutions. By defining an objective function (such as cellular biomass composition) 

along with a set of inputs and outputs that correspond to growth conditions, one can 

use standard linear programming techniques to determine a flux distribution that 

maximizes cell growth [36]. While the optimal value of the objective function will be 
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unique, this value may be produced by more than one flux distribution. Additional 

methods have been developed to characterize these multiple alternative optima [42-

44]. 

 

2.2.2 Phase planes and shadow price analysis 

Phenotypic phase plane (PhPP) analysis explores how changes in two 

environmental variables, such as oxygen and a carbon uptake rates, affect optimal 

growth rates. Some applications include comparisons of growth phenotypes on 

alternate carbon sources [45], evaluation of microbial adaptability [46, 47], assessment 

of network functions and capacities [48], and investigation of gene regulation effects 

[49]. Thus, PhPP analysis provides a way to guide experiments and analyze 

phenotypic functions based on genome-scale metabolic networks.  

In PhPP analysis, FBA (2.2.1) and linear programming are used to map all of 

the cellular growth conditions represented by two environmental variables onto a two-

dimensional plane and identify phases with distinct metabolic pathway utilization 

patterns. Phases are determined by the calculation of shadow prices [38], which 

describe the sensitivity of the objective function (Z) to changes in the availability of 

each metabolite: 

 

         

 

where bi is the ith  metabolite and γi is the ith shadow price. By definition, phases are 

regions of the PhPP in which all of the points have the same shadow prices. Phase 

boundaries therefore describe transitions between metabolic states, and can oftentimes 

highlight interesting, organism-specific relationships such as the optimal ratios of 

i
i db

dZ−
=γ
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environmental conditions to produce maximal biomass yield (i.e., lines of optimality) 

[38].  

Analyzing the shadow prices of key metabolites across the PhPP can provide 

physiological interpretations of its phases. According to the convention defined in 

[38], a negative shadow price indicates that a metabolite is limiting, e.g, the value of 

the objective function increases if the metabolite’s net production increases or its net 

consumption decreases, and a positive shadow price indicates that a metabolite is 

available in excess. A shadow price equal to zero indicates that a change in the 

availability of the metabolite does not affect the objective value. Secretion profiles can 

be generated for extracellular metabolites with null shadow prices by maximizing and 

minimizing their corresponding exchange fluxes. 

 

2.2.3 In silico gene deletions 

Quantitative data on growth rates of individual gene deletion strains can be 

directly compared to in silico predictions of metabolic phenotypes. Previous studies in 

H. pylori [50], H. influenzae [51], E. coli [52], and S. cerevisiae [53] have typically 

had accuracy rates of 60% to 90% under a variety of experimental conditions. Such 

comparisons enable identification of potential problem areas in the network, allow 

verification of hypothesized metabolic reactions, and suggest specific experiments that 

can be used to verify components of the network, such as the enzymatic function of 

particular genes [6].  

The effects of a single gene deletion are simulated by constraining the flux 

through its corresponding reaction to zero. FBA is then performed to find the 

predicted growth rate of the in silico deletion strain. The deletion is considered 
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deleterious if its optimal growth flux is lower than that of the wild type in silico 

model.  
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The text of this chapter, in part or in full, is a reprint of the material as it 

appears in N.C. Duarte, B.O. Palsson, and P. Fu. 2004. Integrated analysis of 

metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics, 5:63. I was the 

primary author of the publication and the co-authors participated and supervised the 

research which forms the basis for this chapter. 
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 Figure 2.1: Overview of constraint-based modeling. The unconstrained solution 
space is defined by the flux through reactions in the stoichiometric network. Imposing 
steady-state conditions as well as upper and lower flux boundaries eliminates some 
potential cellular behaviors, resulting in an allowable solution space that contains 
many possible solutions. Linear optimization can be used to calculate optimal 
solutions for a defined objective function, which for flux balance analysis (2.2.1) is 
typically cellular biomass.  

Constraints
1) S·v = 0
2) α < vi < β

Optimization
max. objective

Allowable 
Solution Space

Unconstrained 
Solution Space Optimal Solution
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CHAPTER 3: GENOME-SCALE RECONSTRUCTION OF 

THE SACCHAROMYCES CERVISIAE METABOLIC 

NETWORK 

S. cerevisiae, commonly known as baker’s or brewer’s yeast, is an important 

model organism. Many of its cellular processes, including metabolism, cell cycling, 

mRNA processing, and protein sorting, are generally conserved with higher 

eukaryotes. There are several technical advantages that make yeast an ideal 

experimental system, such as its non-pathogenicity, rapid growth, and malleable 

genetics, and this has resulted in a wealth of genetic, biochemical, and physiological 

data [54-56]. 

This chapter reports the reconstruction and validation of an expanded genome-

scale model of S. cerevisiae metabolism [57]. We begin with a discussion of previous 

modeling efforts (3.1), which includes the original yeast reconstruction [58] that 

formed the basis of this work.  

 

3.1 Previous models of S. cerevisiae metabolism 

Several modeling approaches have been used to study yeast metabolism. Most 

flux-balance models (see 2.2.1) use small-scale network reconstructions for specific 

growth conditions, such as anaerobic, glucose-limited metabolism [59], aerobic 

growth on galactose [60] or growth on mixtures of glucose and ethanol [61]. Dynamic 

models of simplified central metabolic networks [62, 63] and full-scale kinetic models 
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of glycolysis [64, 65] and the pentose phosphate pathway [66] have also appeared. 

These small-scale reconstructions have been useful for studying detailed metabolic 

events such as changes in individual metabolite concentrations and key flux splits. 

However, the applications of small-scale reconstructions are limited since many 

cellular processes are dependent on the interaction of components at the whole-cell 

level.  

The sequencing and annotation of the S. cerevisiae genome [67] provided a 

parts list of cellular components and their interactions. This data, together with known 

physiological and biochemical data were used to reconstruct S. cerevisiae iFF708, the 

first genome-scale model of S. cerevisiae metabolism [58]. iFF708 contained a total of 

708 open reading frames, 1175 metabolic reactions, and 733 metabolites 

compartmentalized between the cytosol and mitochondrion. The model was validated 

through in silico gene deletion studies [53] and the calculation of key physiological 

parameters [68]. 

Reconstruction of the S. cerevisiae metabolic network demonstrated that the 

constraint-based approach can be applied to networks of higher complexity, such as 

those with multiple compartments. A goal of this Dissertation was to expand the scope 

of this metabolic network by including a more biologically-accurate description of 

yeast’s cellular components, namely: 1) the logical relationship between genes, 

transcripts, proteins, and reactions, 2) the cell-wide conservation of mass and charge 

through elementally and charge-balanced reactions, and 3) the full 

compartmentalization of yeast’s metabolites and proteins. The expanded yeast 

metabolic network then served as a prototype of a fully compartmentalized, genome-

scale model of human metabolism (Chapter 5). 
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3.2 Reconstruction of S. cerevisiae iND750 

The previous genome-scale metabolic reconstruction of S. cerevisiae (iFF708; 

3.1) was the starting point for reconstructing iND750, a fully compartmentalized yeast 

model that requires a cell-wide proton balance and includes associations between its 

genes, proteins, and reactions (Figure 3.1). This section summarizes the changes made 

to iFF708 as well as key properties of iND750.  

 

3.2.1 Reconstruction procedure 

Starting with the list of ORFs included in iFF708, the corresponding gene 

names, E.C. numbers (2.1.2) [17], and reactions were all re-evaluated to check their 

consistency with genome annotation databases and recently published reports. Special 

attention was given to compartmentalization, elemental and charge balancing of 

reactions, and the relationships between genes, proteins, and reactions, which are 

discussed below. 

 

Compartmentalization 

Since reactions in iFF708 were restricted to only the cytosol, mitochondria, 

and extracellular space, the localization of each gene product was revised to take into 

consideration the five additional compartments included in iND750 (peroxisome, 

endoplasmic reticulum, Golgi apparatus, nucleus, and vacuole). Information on the 

localization of the gene products was primarily taken from the Saccharomyces 

Genome Database [69] and Comprehensive Yeast Genome Database [70]. If there was 

little or no evidence that a gene product was found in a particular compartment, then it 

was assumed to be located in the cytosol. An additional assumption was also needed 

for membrane proteins, since oftentimes there was no evidence regarding the location 
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of their catalytic domains. Unless there was evidence to the contrary, it was assumed 

that reactions catalyzed by membrane proteins occurred in the cytosol. Finally, all of 

the compartments were modeled as if there were only one boundary between the 

cytosol and its lumen. For example, since the mitochondria’s intercompartmental 

space is considered to be equivalent to the cytosol in its metabolite and ion 

concentrations [20], proteins that are localized to these regions are considered 

cytosolic. Similarly, the cell wall and periplasmic space are both treated as part of 

extracellular compartment. 

 

Intercompartmental transport 

Additional transport reactions were needed to describe the exchange of 

compounds between iND750’s eight cellular compartments. The transport processes 

across the plasma membrane have been well studied; many genes have been identified 

that encode transport proteins (see [23] and [26] for comprehensive list). These genes 

and their documented transport mechanisms have been included in iND750. In 

addition, many metabolites are known to diffuse across the yeast cell wall [23, 26]. 

For those compartments in which there was little information about transport 

processes, most of the exchange reactions had to be inferred. A primary assumption 

was that a particular compound was transported across various membranes by a 

similar process. For example, since tyrosine is known to cross the plasma membrane 

via proton symport, it was also assumed to be transported across the peroxisomal 

membrane by the same mechanism. Transport reactions were also inferred based on 

the known characteristics of some membranes, such as the nuclear membrane, which 

contains pores that allow substrates less than 9 nm or 60 kDa to pass freely [71]. 
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Consequently, most of the compounds transported into and out of the nucleus are 

exchanged by simple diffusion.  

 

Elemental and charge balancing 

The reactions in iND740 are elementally and charge balanced. The formula 

and charge of the metabolites were determined based on their ionization state at a pH 

of 7.2. For simplicity, all of the compartments were assumed to have the same pH. By 

introducing ionized compounds, water molecules and protons that participate in the 

reactions are explicitly accounted for so that the reactions had no net charge change 

and obeyed elemental balances. Water molecules were allowed to freely diffuse into 

all of the compartments. However, the protons could only enter and leave the various 

compartments by participating in active transport reactions. Thus, the production and 

consumption of protons had to be balanced within each compartment. 

 

Gene-protein-reaction associations 

Unlike the iFF708, which only considered one-to-one associations between 

genes and reactions, the logical relationship between genes, proteins, and reactions are 

all modeled in iND750. To do this, the entry of each gene was examined to see if there 

was any evidence that its gene product was multifunctional, an isozyme, a protein 

subunit, or a participant in a protein complex. Multifunctional proteins were defined 

as those that can catalyze more than one reaction (Figure 3.2A). Distinct proteins that 

could catalyze the same reaction were labeled as isozymes (Figure 3.2B). Proteins 

were classified as multimeric if more than one transcript was required to catalyze an 

enzymatic function (Figure 3.2C). Key words used to identify multimeric proteins 

were “chains” or “subunits” of proteins. Proteins could also form complexes; this is 
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defined as a functional entity in which proteins from different transcripts must act 

together to catalyze a reaction (Figure 3.2D). There were also more complex cases in 

which a protein belonging to a complex was made up of subunits, such as in the fatty 

acid synthase complex. Boolean logic statements [6] representing these relationships 

were formulated for all of iND750’s genes and reactions. 

 

Network assembly and testing 

The updated metabolic network was constructed using the SimPheny™ 

software package (Genomatica, San Diego, CA). It was verified separately that 

iND750 is capable of predicting whole cell functions such as P/O ratios and byproduct 

secretion rates under a variety of conditions with similar or improved accuracy 

compared to iFF708 [68] (data not shown). 

 

3.2.2 Summary of S. cerevisiae iND750 

S. cerevisiae iND750 describes our current knowledge of yeast metabolism 

and is the first fully compartmentalized genome-scale reconstruction. It includes direct 

representations of gene-protein relationships and accounts for elemental and charge 

balancing. A summary of these new features is provided here. 

 

Updated gene, reaction, and metabolite lists 

The extent of the changes that were made to iFF708 to form iND750 is 

reflected in Table 3.1, which compares the number of genes, reactions, and 

metabolites in the two models. Nearly all of the genes in iFF708 are accounted for in 

iND750. The additional genes primarily encode tRNA synthetases (26 genes) and 

ATPases found in the vacuole and Golgi apparatus (13 genes). Both models also share 



21 

 

a large number of metabolites, although the compartmental location of the metabolites 

has not been considered in this comparison. Most of the metabolites added to iND750 

are found in reactions that have been expanded, i.e., reactions that were lumped in 

iFF708 and are now included as individual steps or with distinct metabolites in the 

new model. For example, the replacement of a generic ceramide metabolite with two 

specific moieties led to the introduction of approximately 20 additional metabolites in 

subsequent reactions. The most notable difference between the models is in their 

reaction sets. Of iND750’s 1149 reactions1, only 56% are the same as those in iFF708 

even after accounting for changes required for elemental and charge balancing. Most 

of these changes are the result of iND750’s five additional compartments; many of the 

reactions that were previously listed as cytosolic were reassigned to a new 

compartment, and more than 80 reactions were added to represent the metabolite 

exchange for these five compartments. Also, as mentioned earlier, many types of 

metabolic reactions were expanded, especially in fatty acid degradation, where four 

individual steps in iND750 replaced the one lumped reaction for each fatty acid 

included in iFF708. Other changes that are not noted in Table 3.1 include: the 

introduction of a systemic definition of the associations between genes, proteins, and 

reactions, the removal of redundant compound abbreviations and duplicated reactions, 

and updates to gene names and E.C. numbers. 

 

Full network compartmentalization 

S. cerevisiae iND750 accounts for eight cellular compartments, three of which 

were included in iFF708 (extracellular space, cytosol, and mitochondria) and five 

                                                 
1 Counting different isozymes as separate reactions, iND750 includes a total of 1489 
reactions.  
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additional compartments (peroxisome, nucleus, Golgi apparatus, endoplasmic 

reticulum, and vacuole). To evaluate the connectivity of these compartments, 

iND750’s 646 distinct metabolites were analyzed according to their compartmental 

location (Figure 3.3). Most notably, almost 90% of the metabolites appear in cytosolic 

reactions. Half of these metabolites are unique to the cytosol; this large percentage is 

not surprising since reactions were assigned to the cytosol by default. The seven other 

compartments vary significantly in their number of metabolites and connectivity. For 

example, more than 75 metabolites can be found in the mitochondria, extracellular 

space, and peroxisome. All of the metabolites in the extracellular space are shared 

with other compartments, whereas the mitochondria and peroxisome have a defined 

set of unique metabolites that do not appear in other compartments. The nucleus, 

Golgi apparatus, endoplasmic reticulum, and vacuole have less than 35 metabolites, 

almost all of which can be found in multiple compartments. 

Developing a fully compartmentalized S. cerevisiae network required the 

addition of many intercompartmental transport reactions. Table 3.2 shows the 297 

transport reactions included in iND750. The majority of these reactions represent 

transport across the plasma and mitochondrial membranes. The primary transport 

mechanisms across the plasma membrane and the intracellular membranes are 

noticeably different. Nearly two-thirds of the metabolites exchanged between the 

cytosol and the extracellular space occur by symport, typically a primary metabolite 

and proton transported in the same direction, whereas most of the metabolites 

exchanged between the intracellular compartments are transported by diffusion. The 

membranes also vary in their number of gene-associated reactions. The plasma 

membrane has the largest proportion of gene-associated reactions (almost 50%), while 

the nuclear, endoplasmic reticular, Golgi apparatus, and vacuolar membranes do not 
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have any. As a result, many of the transport reactions across the intracellular 

membranes had to be inferred based on reactions known to take place in these 

compartments.  

All of the compartments in iND750 were assumed to have a pH of 7.2. 

Consequently, the charge and formulae of all metabolites were determined by their 

ionization form at this pH. By including water molecules and protons in iND750’s 

reactions, more than 99% could be written so that they were both elementally and 

charge-balanced. The few imbalanced reactions are typically those catalyzed by 

enzymes whose mechanism is not fully understood, such as biotin synthase (E.C. 

2.8.1.6). Structuring the reactions in this manner forces the proton production and 

consumption to be balanced within each compartment and thus in the entire cell. This 

global proton balancing has implications for cellular growth, as has been demonstrated 

for E. coli grown on various carbon sources [72]. 

 

Addition of gene-protein-reaction associations 

Unlike iFF708, which does not systematically represent the relationship 

between its genes and reactions, iND750’s gene-protein-reaction associations can be 

viewed as graphical representations of the logical relationships between its ORFs, 

transcripts, proteins, and reactions. For example, proteins classified as multifunctional 

can catalyze more than one reaction (Figure 3.2A). Distinct proteins that can 

individually catalyze a reaction are defined as isozymes (Figure 3.2B). Multimeric 

proteins are defined as those formed by more than one transcript (Figure 3.2C). 

Finally, a protein complex is a set of proteins that are required to catalyze a reaction 

(Figure 3.2D). 
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Reaction and metabolite lists, gene-protein-reaction associations, and 

metabolic maps (Figure 3.4) for S. cerevisiae iND750 are available in Supplement A 

and at http://systemsbiology.ucsd.edu. 

 

3.3 Validation of S. cerevisiae iND750 with a large-scale gene deletion 
study 

Genome-scale networks can be used to predict metabolic phenotypes that can 

be verified experimentally. Comparing these in silico predictions to experimental data 

allows for the identification of possible problem areas in the network and can suggest 

specific experiments to probe network components in detail. Since iND750 represents 

the current understanding of yeast metabolism as completely as possible within a 

stoichiometric framework, analysis of its failure modes is important because they can 

be used to highlight inconsistencies in the body of information used in the 

reconstruction.  

 

3.3.1 Comparison of in silico and in vitro growth phenotypes 

S. cerevisiae iND750 was validated and interrogated in detail by comparing 

model predictions for deletion strain phenotypes with published results from two 

large-scale growth phenotyping studies [73, 74] in seven different media conditions. 

The media conditions included in this study were aerobic growth on glucose minimal 

media (MMD) and on rich media with six different carbon sources: glucose (YPD), 

galactose (YPGal), glucose-ethanol-glycerol mixed media (YPDGE), glycerol (YPG), 

ethanol (YPE), and lactate (YPL). In silico gene deletions were performed using 

established flux balance analysis procedures (2.2.1) [32, 34, 35]. In order to make the 



25 

 

in vivo data and in silico predictions comparable, both were converted from 

continuous-value relative fitness scores to a discrete viable/retarded growth 

assessment for each gene deletion strain and condition (see [57] for detailed methods). 

The in silico phenotype predictions were classified into one of four categories: true 

positive (TP; experimentally and in silico viable), true negative (TN; experimentally 

and in silico growth retarded), false positive (FP; experimentally growth retarded, in 

silico viable), and false negative (FN, experimentally viable, in silico growth 

retarded). Deletion phenotype predictions for at least one condition were done for 682 

of the total of 750 genes in the model and the predictions were classified as described 

above. No experimental deletion data was available for the remaining genes. 

A total of 4,154 comparisons between in silico and in vivo deletions were 

analyzed. The overall correct prediction rate was 82.6%, which is similar to that 

obtained in more limited studies with other organisms as well as yeast [48, 50, 51, 53]. 

The true positive rate (true positive predictions/total number of in vivo normal growth 

phenotypes) was 96.6%, indicating that the model correctly captures the built-in 

redundancy in metabolism in that most gene deletions have no phenotypic effect under 

most conditions. However, the false positive rate (false positive predictions/total 

number of in vivo deleterious phenotypes) was 77.0% showing that less than one 

quarter of slow growth phenotypes were predicted correctly.  

 

3.3.2 Analysis of false predictions by pathway and compartment 

To further investigate the sources of the false predictions, their distribution 

was analyzed with respect to cellular compartments and metabolic subsystems. The 

overall false prediction rates as well as false negative and false positive rates for genes 

in particular cellular compartments are shown in Figure 3.5A. There was surprisingly 
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large variability in the false prediction rates between genes in different compartments. 

The mitochondrial compartment had the highest overall error rate and most of these 

errors were false positive predictions. Since the mitochondria were shown to have a 

distinct set of metabolites (Figure 3.3), it seems surprising that iND750 may not have 

fully captured its unique role in cellular growth. Further analysis of the failure modes 

in terms of pathways (Figure 3.5B) revealed a high percentage of false prediction rates 

for genes in quinone biosynthesis (45.3%) and phospholipid biosynthesis (39.3%), 

suggesting that the model may not accurately represent mitochondrial maintenance. 

Also, in this model, we have assumed that the outer mitochondrial membrane is like a 

sieve allowing free diffusion of metabolites; however, there is evidence to suggest that 

the permeability of outer mitochondrial membrane may be regulated [75]. This 

variation in permeability may have important implications for controlling energy 

metabolism [76]. Other areas which were found to have high false prediction rates 

include oxidative phosphorylation in central metabolism (Figure 3.6) and amino acid 

biosynthesis (Figure 3.7). 

Peroxisomal reactions were one of the most significant additions to iFF708 as 

the peroxisome has its own defined set of metabolites and plays a crucial role in the 

degradation of fatty acids. The high correct prediction rate obtained for peroxisomal 

genes (96.9%) indicates that the model fairly accurately accounts for the metabolic 

function of this important cellular compartment. Low false prediction rates were also 

obtained for genes involved in extracellular transport (3.2%), histidine metabolism 

(5.0%), and glutamate metabolism (5.1%). Overall, the distribution of the false 

predictions can be seen to be quite uneven with a few metabolic subsystems 

accounting for the majority of the problems.  
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3.3.3 Analysis of false predictions by source 

A total of 246 gene knockouts had false predictions under one or more 

conditions. Causes of the false predictions were evaluated by studying the relevant 

literature on previously determined mutant phenotypes for each gene and by 

interrogating its role in the metabolic model. The results of this evaluation for each 

media condition as well as for all false positives and false negatives, for false 

predictions under a unique condition, and for all false predictions together are shown 

in Figure 3.8. The primary sources of false predictions were organized into 10 

different categories (detailed in the caption for Figure 3.8). Overall, more than half of 

the false predictions can be accounted for by the involvement of the genes in other 

cellular processes in addition to metabolism (33.7%) and problems in the biomass 

composition assumed in the in silico deletion study (17.5%). Interestingly, the reasons 

for false positive and false negative predictions were quite different with majority of 

the false positives arising for the above mentioned reasons whereas the majority of 

false negatives could be traced to uncertainty in the in silico media composition 

(50.0%) and issues related to the gene-protein-reaction relationships in the model 

(18.4%). The different media conditions had similar distributions of the sources of 

false predictions, but the majority of the false predictions that arose because of 

missing in silico biomass components were related to essential genes. The sources of 

false predictions for genes with a unique false prediction under one experimental 

condition were also quite different from the overall pattern with a particularly high 

fraction of false predictions with no clear reason for the false assessment (25.5%).  

Specific examples of false predictions in these categories are provided below 

(for a detailed description of all erroneous predictions, please refer to Supplement A). 

In many cases, the false predictions led to direct suggestions of how to potentially 
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improve the model (Table 3.3) or of specific experiments that could be performed to 

further improve our understanding of yeast metabolism.  

 

Model structure 

Analysis of the sources of false predictions revealed five genes for which the 

false predictions are probably due to missing or extraneous functionalities in the 

model. POS5 (coding for a mitochondrial NADH/NADPH kinase) deletion resulted in 

a false positive prediction, because the model can produce NADPH in mitochondria 

using other mechanisms, whereas it has been recently shown experimentally that 

Pos5p is the major source of mitochondrial NADPH [77]. The false positive 

predictions for ERG2, ERG3, and ERG6 are due to a bypass in the model in ergosterol 

metabolism that allows direct synthesis of ergosterol from zymosterol. Although this 

bypass has been suggested to exist in yeast [78], based on the current study it appears 

that this alternate route in yeast does not bypass Erg2p, Erg3p, and Erg6p. The 

mitochondrial pyrophosphatase PPA2 deletion is a false positive, because the model 

can utilize a cytoplasmic pyrophosphatase instead and transport phosphate and 

pyrophosphate between the two compartments. If this transport capacity was limited 

as it is likely to be in vivo the PPA2 deletion would result in a lower growth rate due 

to limitation in mitochondrial metabolism. All these false predictions suggest directly 

potential changes into the actual structure of the model and also possibly re-evaluating 

our understanding of the specific parts of yeast metabolism as in the case of the 

ergosterol biosynthetic pathway.  

 

Gene-protein-reaction associations 
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The false predictions relating to gene-protein-reaction associations are 

primarily due to either potentially missing isozymes (false negatives) or the existence 

of a dominant isozyme whose activity can not be fully compensated for by the other 

isozymes (false positives). The Gal2p galactose transporter is an example of the latter 

class as it is known that other hexose transporters can also transport galactose [79], 

but based on the comparison between simulation results and experimental data it 

appears that these transporters are insufficient to maintain maximal galactose uptake. 

A typical example of the latter class is the false negative prediction for Bat2p 

transaminase, which was found to be due to the lack of valine transamination 

functionality of the Bat1p isozyme in the model. This function has not been 

experimentally proven [80], but based on the results presented here it appears likely 

that BAT1 gene product can catalyze valine transamination in addition to other 

transamination reactions. The false predictions that were due to gene-protein-reaction 

associations suggest modifications to the model that relate to how the gene-to-

enzymatic function mapping occurs in vivo. 

 

Regulatory mechanisms 

The lack of incorporation of regulatory mechanisms in the model could only 

clearly explain false model predictions for two of the genes – CDC19 (pyruvate 

kinase) and ADH1 (alcohol dehydrogenase). Both of these genes have isozymes that 

are capable of catalyzing the same reaction, but are known to be down-regulated under 

the particular condition in which the false positive prediction was done. The lack of 

regulatory restraints in the current model could also partially explain the observed 

general pattern of higher false prediction rates for conditions with glucose as the main 

carbon source as one would expect that the model would otherwise be more accurate 
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for glucose than for less well characterized carbon sources. Due to the extensive 

metabolic reprogramming in glucose-grown cells utilizing different glucose repression 

mechanisms regulation plays a more significant role on glucose containing media than 

on other media conditions. In future generations of constraint-based metabolic models 

transcriptional regulation will be at least qualitatively incorporated in the models [81] 

so that regulatory effects will be more accurately accounted for. 

 

Dead ends in the model 

For eight genes with false positive predictions the reaction catalyzed by the 

gene product leads to a dead end in the model whereas in vivo the product of the 

reaction clearly is necessary for cellular function. This result indicates that either the 

model is missing some metabolic functions or there are gaps in the literature in 

understanding specific metabolic subsystems. Many of the dead ends are in 

phospholipids metabolism where the corresponding genes participate in the 

biosynthesis of complex phospholipids that are not utilized within the model, but that 

are probably converted to essential membrane phospholipids. Not all the dead ends in 

the model result in false predictions so that the eight-gene subset provides direct 

suggestions for further experimental work necessary for understanding the role of the 

currently unutilized metabolites in yeast cellular function. 

 

Accumulation of toxic intermediates 

In few cases the primary reason for a false positive prediction by the model 

appears to be the accumulation of a toxic intermediate in vivo when a particular 

enzyme further down the pathway is removed. For example, although folate 

biosynthesis is not required in rich media, genes involved in the biosynthetic pathway 
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(FOL1/FOL2/FOL3/DFR1) are essential, which is most likely due to toxicity of 

dihydropteorate (DHP), a precursor in the pathway [82]. Similarly in vivo MET22 null 

mutant accumulates phosphoadenylyl sulfate (PAPS), which is cytotoxic [83]. The in 

silico model does not account for non-specific chemical toxicity effects since these are 

usually not directly related to the metabolic function, but it is also possible that the 

model allows balancing of an toxic intermediate even if this would not happen in vivo 

and hence fails to predict the deleterious phenotype. 

 

Media composition 

Uncertainties in the in silico media compositions used to mimic the 

experimental conditions were the primary source of 32 false predictions most of which 

were false negatives. There are two separate sources of errors that can be identified: 1) 

wrong media composition, and 2) incorrect numerical values of maximum uptake rates 

of key nutrients. The former category includes examples such as TPS1/2 (trehalose 6-

phosphate synthase/phosphatase), which both are false positive predictions on rich 

media due to the fact that the in silico YP medium contains trehalose and hence these 

genes that are essential for trehalose biosynthesis are not needed. However, it has been 

shown that trehalose is indeed a major component of the yeast extract medium [84] so 

that the false positive prediction is probably due to the inability of the yeast to utilize 

the trehalose in the media in the experimental deletion studies. The latter category of 

errors is typically manifested as a function of either the major carbon source or 

oxygen uptake rate or both. For many genes involved in mitochondrial respiration 

either lowering or raising the oxygen uptake rate would result in better predictive 

power. However, the maximum oxygen uptake rates in a batch culture are hard to 

estimate as they depend both on the degree of aeration provided and on the growth-
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rate dependent limitations due to the Crabtree effect. Most of the false predictions 

unique to a specific experimental condition could be traced back to uncertainties in the 

in silico media composition  or maximal uptake rates indicating that a more careful 

evaluation of these failure modes would require performing the in vivo deletion 

studies in well defined media conditions that can be reproduced more accurately in 

silico. 

 

Biomass composition 

As noted already in our earlier deletion study utilizing iFF708 [53] the biomass 

composition utilized in the model is a major source of false predictions as it 

determines which metabolites are considered to be essential for cellular function and 

in what relative quantities these metabolites have to be produced. The biomass 

composition is derived primarily from experimental data on the composition of yeast 

cells growing in the exponential phase and it only includes the major biomass 

components as measuring trace components is difficult [58]. Typical examples of false 

positive predictions by the model are all genes involved in heme and quinone 

biosynthesis as these cofactors are obviously essential for cellular function. However, 

while the model utilizes these and other cofactors, they are recycled in the reactions 

and unless there is a drain of cofactors to the biomass they do not need to be 

synthesized de novo. An example of false negative predictions that relate to the in 

silico biomass composition are certain genes in membrane lipid and steroid 

biosynthesis. While some of the lipids are essential they can often be utilized 

interchangeably by the cell so that any particular type of lipid or sterol may not be 

essential as long as sufficient overall amount of e.g. phospholipids is produced. Since 

the model biomass requires fixed amounts of certain types of phospholipids and 
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steroids this leads to false negative predictions. The false predictions due to the 

biomass composition could be easily corrected by including trace amounts of essential 

cofactors in the biomass and allowing more flexible usage of phospholipids and 

steroids, but it would be difficult to estimate exactly the relative amounts of the 

metabolites required without further experimentation. 

 

Other cellular processes 

The single most common source of false predictions in this study was the 

involvement of metabolic genes in other cellular processes that are not accounted for 

in the current model. As mentioned earlier the model does not currently include 

mRNA and protein synthesis and thus all pathways resulting in the biosynthesis of 

various RNA species such as transfer RNAs are dead ends although these functions 

are clearly essential for cellular function. Since methods for incorporating protein 

synthesis into the constraint-based modeling framework have been developed [85, 86] 

in future versions of the model these currently missing functionalities can be 

accounted for. Another type of false positive prediction that arises from the 

involvement of metabolic genes in other cellular processes is the role of these genes in 

overall cellular maintenance. For example, false positive predictions were made for all 

vacuolar ATPase components as their disruption in vivo results in major problems in 

pH balancing and the current model does not yet implement full pH balancing 

between compartments. Similarly, although the model does correctly predict the 

phenotypes for deletions of ATP synthase subunits on non-fermentable carbon 

sources, on fermentable carbon sources the model does not require the mitochondrial 

ATP synthase although in vivo this functionality is required for general mitochondrial 

maintenance. As the constraint-based framework is extended to include other types of 
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cellular processes besides metabolism and regulation it can be expected that many of 

the false predictions will be corrected and that the comparison between in silico and in 

vivo gene deletions will provide valuable assistance for the expanded model building. 

 

Discrepancies in experimental data 

There were 16 genes with false predictions, for which apparent discrepancies 

in experimental data were found. These included cases such as PRO3, which is listed 

as an essential gene in one study [74], but appears to be non-essential in the other 

study [73]. In addition to discrepancies between the two genome-wide deletion studies 

there were also genes whose phenotype in the large-scale studies disagreed with the 

reported phenotype in the literature (e.g. THR1 null mutant should only be a threonine 

auxotroph and should grow on rich media). False predictions for cases where apparent 

discrepancies in experimental data were found were not further analyzed as it was not 

clear which data set would be the most trustworthy. 

 

Unknown sources of false predictions 

There were 31 genes whose predicted false phenotypes could not be explained 

by any of the reasons listed above even after careful evaluation of both the model and 

experimental data. Many of the genes in this list are related to a few separate 

metabolic subsystems with false phenotypic predictions under specific media 

conditions indicating that there may be important unidentified biochemical 

mechanisms present in these systems. An especially interesting example is the high 

number of false predictions related to methionine and homocysteine biosynthesis, 

which have been extensively studied both in yeast and in higher eukaryotes because of 

the role of homocysteine in cardiovascular and neurodegenerative diseases [87, 88]. 
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The key gene in this system is MET6, which codes for the methionine synthetase 

responsible for converting homocysteine into methionine. This deletion has no 

phenotype on rich media in vivo, but the model predicted the deletion to be lethal due 

to inability to balance homocysteine in absence of the methionine synthetase reaction. 

However, the model currently accounts for all the biochemical transformations with 

homocysteine either as a reactant or product that are known to be present in yeast 

indicating that there is may still some unknown mechanisms by which the 

homocysteine balancing is accomplished in vivo. The genes with false predictions 

with no clearly identifiable reason for the false result provide clues to areas where 

further experimental work is clearly needed in order to improve our understanding of 

eukaryotic metabolism.  

 

Model Changes Suggested by Gene Deletion Study  

Detailed analysis of model failures resulted in 27 direct suggestions for 

improving the current model either by changing its reaction structure or the gene-

protein-reaction associations (Table 3.3). Some of these suggestions are 

straightforward, such as making a component of a complex non-essential for the 

enzymatic function, whereas others, such as restricting phosphate transport across the 

mitochondrial membrane, would be somewhat more challenging to implement. For all 

of the 27 cases, the model represents the current knowledge on metabolic 

biochemistry, genetics, and physiology as well as possible, and the changes primarily 

relate to the interpretation of the available information. These suggestions demonstrate 

how model-driven evaluation of experimental gene deletion phenotypes can be used to 

systematically fine tune a model and improve our understanding of the particular 

biological system. 
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3.4 Conclusions 

We have shown that multi-compartmental in silico metabolic models of 

eukaryotic cells with elementally and charge-balanced reactions can be successfully 

built. In addition, these models can be used to compute growth phenotypes of 

organisms with altered genotypes in various media conditions. The growth phenotypes 

computed with the compartmentalized eukaryotic model were found to be consistent 

with 83% of the in vivo results. Detailed case-by-case analysis of the false predictions 

led to the identification of gaps or inconsistencies in our knowledge base that require 

either changes in the model structure or further experimental investigation. This high 

correct prediction rate demonstrates the growing predictive power of constraint-based 

metabolic models even under variable environmental conditions and the overall 

importance of network topology in determining phenotypic consequences of genotypic 

changes. 
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The text of this chapter, in part or in full, is a reprint of the material as it 

appears in N.C. Duarte, M.J. Herrgard, and B.O. Palsson. 2004. Characterization and 

validation of Saccharomyces cerevisiae iND750: a fully compartmentalized genome-

scale metabolic model. Genome Res 14:1298-309. I was the primary author of the 

publication and the co-authors participated and supervised the research which forms 

the basis for this chapter. 
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 Figure 3.1: Overall reconstruction strategy for S. cerevisiae iND750. S. cerevisiae 
iFF708 [58] was used a starting point for building an updated and expanded yeast 
metabolic network. Step 1) Information on localization, database identifiers, and gene-
protein relationships were collected from genome annotation databases. New genes 
and reactions were also identified from the literature. Step 2) Elementally and charge-
balanced reactions were then formulated based on metabolite structures at pH 7.2 and 
used to form a stoichiometric matrix. Step 3) The model’s predictions of physiological 
parameters, such as the P/O ratio, and gene deletion phenotypes were used to verify 
network content. The result is S. cerevisiae iND750, the first fully compartmentalized 
eukaryotic network. The contents of iND750 can be found in Supplement A and 
online at http://systemsbiology.ucsd.edu. 
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Figure 3.2: Gene-protein-reaction associations in S. cerevisiae iND750. Gene-
protein-reaction associations represent the detailed logical relationships between open 
reading frames (ORFs), transcripts, proteins, and reactions in the model. (A) A 
multifunctional protein, such as Ole1, can catalyze more than one reaction. (B) Pyc1 
and Pyc2 are examples of isozymes, or proteins that can catalyze the same reaction 
independently. (C) Idh-m is an example of a multimeric protein; it is formed by the 
association of two transcripts. (D) Proteins Pxa1-p and Pxa2-p form a protein 
complex. Both proteins are required to catalyze the reactions. All the gene-protein-
reaction associations in S. cerevisiae iND750 are available in Supplement A and 
online at http://systemsbiology.ucsd.edu. 
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Figure 3.3: Compartmental distribution of S. cerevisiae iND750's metabolites. 
The number of metabolites found in each compartment is shaded based on its 
connectivity. Metabolites that are unique to a particular compartment are shown in 
white; metabolites found in two compartments are shaded in grey; and metabolites 
found in three or more compartments are shaded in black. 
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Figure 3.4: The complete S. cerevisiae iND750 metabolic map. All of iND750’s 
646 metabolites (nodes) and 1179 reactions (connections) can be visualized on a 
collection of yeast-specific metabolic maps available in Supplement A and at 
http://systemsbiology.ucsd.edu. 
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Figure 3.5: False predictions by compartment (A) and metabolic pathway (B). 
The overall error rate is the percentage of false predictions out of all of the 
predictions. The false-negative (FN) rate is the percentage of FN predictions out of all 
predictions in which the experimental data show normal growth. The false-positive 
(FP) rate is the percentage of FP predictions out of all predictions in which the 
experimental data show retarded growth. Genes that participate in transport functions 
between compartments are classified according to Table 3.2. Compartments with at 
least 10 genes and metabolic subsystems with at least 15 genes are included. 
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Figure 3.6: Mispredicted gene deletion phenotypes in central metabolism. A high 
false prediction rate was found in genes related to oxidative phosphorylation (OxPhos, 
31.4%). Most of the erroneous predictions in glycolysis were false negatives (blue 
circles) whereas those in the tricarboxylic acid (TCA) cycle were false positives (red 
circles). 
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Figure 3.7: Mispredicted gene deletion phenotypes in amino acid metabolism. 
High false prediction rates were obtained for genes in branched chain amino acid 
biosynthesis (37.5%). Several false negative (blue circles) were associated with the 
initial steps in aromatic amino acid biosynthesis whereas genes related to proline 
metabolism were generally false positive predictions (red circles). 
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Figure 3.8: Breakdown of the false predictions by source. The reasons for false 
predictions are: transcriptional regulation (regulation), model structure, accumulation 
of toxic intermediate in vivo (accumulation), dead ends in the model (dead end), 
discrepancy in the experimental data (exp discrepancy), gene–protein-reaction 
associations (isozyme), unknown, in silico media composition (media), in silico 
biomass composition (biomass), and other cellular processes not included in the model 
(other). Results are shown for each experimental condition, including essential genes 
(essential) and slow growth genes (slow) on rich media. In addition, the distributions 
of the sources of false predictions are shown for false-positive (FP), false-negative 
(FN), and unique false predictions (unique) separately. 
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Table 3.1: Comparison of S. cerevisiae iFF708 and iND750. a The total number of 
metabolites irrespective of their compartmental locations. b The number of unique 
reactions (isozymes are not counted as separate reactions).c Reactions that differ in 
protons and water molecules are considered to be conserved. 
 

Network component iFF708 iND750 % Conserved 

Genes 708 750 94 
Metabolitesa 584 646 90 
Unique Reactionsb 842 1149 56c 
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Table 3.2: Comparison of transport reactions in S. cerevisiae iND750. The 
transport mechanisms have been classified as diffusion (exchange of only a primary 
metabolite), symport (a primary and secondary metabolite transported in the same 
direction), antiport (a primary and secondary metabolite transported in opposite 
directions), or other (ABC transporters and ADP/ATP exchange reactions). For each 
membrane/mechanism combination, the number of gene-associated reactions is shown 
in parentheses next to the total number of reactions in that category. 

 
Transport mechanism (# gene associated) 

Transport category 
# of 

reactions Diffusion Symport Antiport Other 
Extracellular 113 36 (9) 74 (46) 3 (1) 0 
Mitochondrial 101 65 (0) 21 (2) 14 (13) 1 (1) 
Peroxisomal 39 19 (2) 6 (0) 5 (0) 9 (9) 
Nuclear 23 18 (0) 5 (0) 0 0 
Endoplasmic Reticular 10 9 (0) 1 (0) 0 0 
Vacuolar 7 5 (0) 2 (0) 0 0 
Golgi Apparatus 4 3 (0) 0 1 (0) 0 

 



48 

 

Table 3.3: Model changes suggested by the gene deletion study. Abbreviations: 
ORF – open reading frame, Gene – gene abbreviation. 
 

ORF Gene 
Reason for 

false prediction Suggested changes and comments 

YPL188W POS5 Model structure 
Change the model so that only Pos5p can provide 
NADPH in mitochondria. 

YMR267W PPA2 Model structure 

Force the model to utilize Ppa2p instead of the 
cytoplasmic isoforms by restricting phosphate 
transport out of the mitochondria. 

YMR202W ERG2 Model structure 
Modify the interconversion between zymosterol and 
ergosterol biosynthesis to require ERG2. 

YLR056W ERG3 Model structure See ERG2. 
YML008C ERG6 Model structure See ERG2. 

YDR178W SDH4 Isozyme 
Make Sdh4p a non-essential part of the succinate 
dehydrogenase complex. 

YML123C PHO84 Isozyme 

There are multiple alternative isozymes for the 
phosphate transporters, but Pho84p should be the 
dominant one. 

YBR069C TAT1 Isozyme 

There are multiple alternative isozymes for amino 
acid transporters in the model, but they need to be 
made less efficient than Tat1p. 

YLR081W GAL2 Isozyme 

Model includes other isozymes (HXT genes) that 
are not nearly as efficient for gal transport so 
disabling their gal transport ability should result 
correct prediction. 

YMR105C PGM2 Isozyme 

Pgm2p is major isoform of phosphoglucomutase. 
Do not allow the minor isoform (Pgm1p) to fully 
compensate for loss of Pgm2p. 

YHR137W ARO9 Isozyme 

Aro8p should be able to compensate for ARO9 
deletion on minimal media – modify the gene-
protein-reaction association to reflect this. 

YGL125W MET13 Isozyme 

Met13p is the dominant isozyme. Do not allow 
isozyme (Met12p) to compensate fully for the loss 
of Met13p. 

YHR046C INM1 Isozyme 
Add the gene product of YDR287W as an isozyme 
for Inm1p. 

YHR001WA QCR10 Isozyme 

This subunit should be made a non-essential part of 
the cytochrome bc1 complex since it only plays 
structural role. 

YFR033C QCR6 Isozyme 

Deletion of QCR6 does not have significant effect 
on the formation or stability of cytochrome bc 
complex so that it should not play an essential role 
in complex formation. 

YKL067W YNK1 Isozyme 

Null mutant retains 10% of nucleoside diphosphate 
kinase activity. Sources of remaining enzyme 
activity are unknown. Reaction without gene 
associations should be added to the model to 
represent these unidentified enzymes. 

YLR304C ACO1 Isozyme 
The isozyme coded by YJL200C should not be able 
to fully compensate for ACO1 deletion. 

YNL052W COX5A Isozyme 
Cox5Ap is the dominant isoform – Cox5Bp should 
not be able to fully compensate. 
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Table 3.3, continued. 
 

ORF Gene 
Reason for 

false prediction Suggested changes and comments 

YKL148C SDH1 Isozyme 
Sdh1p should not be considered to be an essential 
part of the succinate dehydrogenase complex. 

YGL008C PMA1 Isozyme 

This is the major isoform of the cytosolic ATPase, 
but in the model a minor isoform (which contains 
Pma2p instead of Pma1p) can compensate for the 
function. Do not allow the minor isoform to fully 
compensate for the loss of the major isoform. 

YLR342W FKS1 Isozyme 
There are three alternate isozymes in the model, but 
Fks1p should be made the dominant isozyme. 

YHR183W GND1 Isozyme 
This is the major isozyme (80% of activity) – other 
isozymes should be made less efficient. 

YLR044C PDC1 Isozyme 

There are three alternate isozymes in the model, but 
PDC1 deletion alone is sufficient to reduce 
pyruvate decarboxylase activity significantly 
enough to result in a slow growth phenotype. 
Should have Pdc1p as the major isozyme. 

YJR148W BAT2 Isozyme 

BAT2 single deletion should not be lethal as there is 
a mitochondrial isozyme (Bat1p) - double deletion 
should be lethal. Bat1p currently does not catalyze 
valine transamination so this functionality should 
be added. 

YCL009C ILV6 Isozyme 

Ilv6p is the regulatory subunit of phenylalanine 
transaminase. This subunit should be made non-
essential for the enzymatic function. 

YAL038W CDC19 Gene Regulation 
Pyk2p isozyme should only be expressed under 
conditions of very low glycolytic flux. 

YOL086C ADH1 Gene Regulation 
This isozyme (out of five) should be the only one 
active under severely glucose repressed conditions. 
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 CHAPTER 4: INTEGRATED ANALYSIS OF 

SACCHAROMYCES CEREVISIAE METABOLIC 

PHENOTYPES 

Genome-scale metabolic networks of microorganisms, namely Escherichia 

coli, Haemophilus influenzae, and Helicobacter pylori, have led to useful insights into 

substrate preferences, the effects of gene deletions, optimal growth patterns, outcomes 

of adaptive evolution, and shifts in expression profiles [32]. With the recent 

reconstruction of S. cerevisiae’s genome-scale metabolic network [57, 58], these 

analytical techniques can now be applied to the first genome-scale model of a 

eukaryotic cell. In this study, we examine the function and capacity of yeast’s 

metabolic machinery and show that its phenotypic phase plane (2.2.2) can be used to 

accurately predict metabolic phenotypes and to interpret experimental data in the 

context of a genome-scale model. 

 

4.1 In silico characterization of metabolic phenotypes 

In the following sections, we formulate a glucose-oxygen phenotypic phase 

plane for yeast (4.1.1) based on its recent genome-scale metabolic reconstruction [58] 

and calculate respiratory quotients and secretion profiles for a range of oxygenation 

conditions (4.1.2). The growth states predicted by the PhPP are then characterized 

using shadow price analysis (4.1.3), in silico gene deletion simulations (4.1.3), and in 

vivo growth experiments (4.2). 
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4.1.1 S. cerevisiae phenotypic phase plane 

The S. cerevisiae genome-scale metabolic network constructed by Forster et 

al. [58] was used to generate a phenotypic phase plane (PhPP; 2.2.2) [89] that 

describes yeast’s metabolic states at various levels of glucose and oxygen availability 

(Figure 4.1). Points on the surface of the three-dimensional PhPP correspond to 

maximal growth rates allowable for each pair of glucose and oxygen uptake rates in 

the x-y plane (Figure 4.1A). All of the points on or below this three-dimensional 

surface represent feasible metabolic growth behaviors. 

The two-dimensional projection of the PhPP (Figure 4.1B) has been divided 

into seven regions, or “phases,” to allow for qualitative comparisons (P1 – P7). Each 

phase represents a metabolic phenotype with specific pathway utilization. These 

pathway utilization patterns are defined by shadow price analysis (section 1.4.2), 

which uses parameters generated by the linear programming solution (shadow prices) 

to identify how changes in metabolite levels affect biomass formation [89]. Shadow 

prices are constant within a phase and change continuously at the boundary from one 

phase to the next. 

Two regions of the PhPP have infeasible steady-state flux distributions: the 

area along the y-axis and the small square near the origin. Growth is infeasible in the 

region between the ordinate and P1 since yeast cannot use more than six oxygen 

molecules per glucose molecule. The two red lines in Figure 4.1B are lines of 

optimality (LO). LOgrowth represents optimal aerobic glucose-limited growth of S. 

cerevisiae in which substrates are completely oxidized to produce biomass and is 

comparable to the sole line of optimality that has been identified in E. coli [72]. 

LOethanol corresponds to maximum ethanol production under microaerobic conditions 



52 

 

while growth is maximized. In lieu of glycerol production, NADH is reoxidized via 

maximal ethanol formation.  

The phenomenon described by LOethanol is a distinguishing feature of the yeast 

PhPP, and is supported by many research reports in the literature [90-92]. For 

example, Cysewski and Wilke [90] found a sharp stimulation of the specific ethanol 

productivity at a very low but non-zero level of dissolved oxygen. Later studies 

showed that a value of 10 ppb of dissolved oxygen maximized ethanol production in 

yeast chemostat cultures [92]. Thus, LOethanol, the second line of optimality predicted 

by the genome-scale model, is consistent with the experimental observations. 

 

4.1.2 Simulation of optimal metabolic phenotypes 

Flux balance analysis (2.2.1) was used to illustrate how the optimal metabolic 

phenotypes change across the seven phases of the yeast phase plane (Figure 4.1B). For 

the simulations, the glucose uptake rate was arbitrarily set to 5 mmol/gDCW/hr and 

the oxygen uptake rate (OUR) was varied from 0 to 20 mmol/gDCW/hr. This allowed 

us to study the influence of a single environmental variable on cellular metabolism. 

Small amounts of NH3, sulfate and phosphate were introduced for the biomass 

synthesis. During anaerobic conditions (OUR = 0, on the x-axis), the growth rate was 

low and the respiratory quotient (CO2 evolution rate / OUR) was infinite by definition 

(Figure 4.2A). As the oxygen uptake rate increased to 13 mmol/gDCW/hr to reach 

LOgrowth, the growth rate increased to its maximum value and the respiratory quotient 

approached 1.06. Further increasing the oxygen uptake rate caused both the growth 

rate and respiratory quotient to decrease due to futile cycles in which a combination of 

two or more biochemical reactions resulted only in the hydrolysis of ATP or other 

high-energy compounds [89].  
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Metabolic by-product secretion profiles (2.2.2) were also calculated with 

increasing oxygen uptake rates. Since alternative optimal solutions exist in the 

genome-scale metabolic flux models [42], a range of secretion rates can be found 

amongst all of the equivalent optimal solutions for a fixed point in the PhPP. 

Remarkably, there was less than 1% difference between the maximum and minimum 

allowable secretion rates for a fixed maximal growth rate; thus, only the maximum 

predicted secretion fluxes for ethanol, succinate, glycerol, and acetate are shown 

(Figure 4.2B). During anaerobic fermentation, ethanol, glycerol, and succinate were 

produced. Maximum ethanol production occurred at an oxygen uptake rate of 0.5 

mmol/gDCW/hr, a condition defining LOethanol. Glycerol production ceased at this 

point. With a slight increase in oxygen uptake rate above LOethanol, acetate began to be 

secreted but succinate secretion decreased to zero. Ethanol and acetate were no longer 

secreted once the oxygen uptake rate was equal to or greater than 13 mmol/gDCW/hr, 

a point on LOgrowth where the metabolic pathway utilization enables complete aerobic 

growth. 

The results of this analysis suggest that yeast has only a few primary 

phenotypes, designated by the various phases. In P1, the oxygen supply is sufficient 

for growth by aerobic respiration, resulting in carbon dioxide as the sole by-product. 

Phases P2-P6 correspond to states of oxidative-fermentative growth, which is 

characterized by secretion of oxidative and fermentative metabolic by-products, i.e., 

acetate and ethanol, respectively. Finally, P7 represents microaerobic conditions. In 

this environment, yeast grows primarily by fermentation and secretes ethanol, 

glycerol, and succinate. This limited range of metabolic states is strikingly different 

from that found for E. coli, whose glucose-oxygen PhPP has five distinct optimal in 

silico phenotypes [72].  
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4.1.3 Further characterization of oxidative-fermentative phases 

The secretion profile (Figure 4.2B) does not show any phenotypic differences 

between phases P2 – P6. These states are highly similar since the phases are essentially 

co-planar in the 3-dimensional PhPP (Figure 4.1A). However, through the use of 

shadow price analysis and in silico gene deletions, distinct pathway utilization patterns 

could be found for each phase.  

Shadow price analysis (2.2.2) evaluates how small changes in metabolite 

production affect optimal growth rates [89]. A positive shadow price indicated that a 

metabolite was available in excess, meaning that a decrease in its availability would 

increase biomass synthesis, and a negative shadow price indicated that a metabolite 

was limiting such that increasing its availability would increase the biomass synthesis.  

In silico gene deletions (2.2.3) were also performed in order to determine 

which reactions were essential in each phase. This approach was especially useful for 

interpreting the physiological differences between growth states in phases 2 – 6 since 

their phenotypes were indistinguishable in terms of their secretion profiles. 

 

Phase 2 

In phase 2, the ratio of oxygen uptake rate and glucose uptake rate is lower 

than that on the line of optimality. As a result, the cell is oxygen limited and begins to 

ferment. Mitochondrial NAD+ is available in excess, meaning that the biomass 

synthesis would improve if its availability decreased. In order to maintain the cell’s 

redox balance, the excess mitochondrial NAD+ must be reduced. This is done through 

the production of acetate and ethanol, which begin to be secreted in this phase. Thus it 

is the production of acetate and ethanol that makes the optimal growth rate less than 

that defined on the line of optimality.  



55 

 

 

Phase 3 

As the ratio of oxygen and glucose uptake rates is further decreased, three 

lower glycolysis reactions (fructose bis-phosphate aldolase, triose phosphate 

dehydrogenase, and phosphoglycerate kinase) become essential for growth in phase 3. 

These reactions are also essential in subsequent phases as oxygen uptake rate is 

further decreased. Due to the limited oxygen, more carbons “overflows” into the 

fermentation pathway while at the same time oxidative metabolism becomes less 

effective.  

 

Phase 4 

Shifting from phase 3 to phase 4, the pentose phosphate pathway is utilized to 

generate NADPH because not enough NADPH is produced through respiration at the 

lower oxygen uptake rate. The NADPH is then converted to NADH which is 

subsequently used for ATP production.  

 

Phase 5 

Further lowering the ratio of oxygen and glucose uptake rates restricts the 

cell’s ability to produce pyruvate in phase 5. Yeast can no longer utilize the oxidative 

pathways because an insufficient amount of cytosolic NAD+ is produced. When 

comparing phases 4 and 5, all of the metabolites with shadow price sign changes were 

folate intermediates. These are important energy carriers that are directly linked to the 

availability of both cytosolic and mitochondrial NAD+ and NADP+. 

 

Phase 6 
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As you enter phase 6, acetate production completely ceases. Ethanol is 

secreted as the only metabolic by-product to balance the redox potential of the cell.  

 

4.2 Integration of experimental data and in silico predictions 

A useful application of the S. cerevisiae PhPP is to qualitatively classify 

yeast’s metabolic state based on phenotypic observations made in vivo. Three groups 

of experiments were conducted under different growth conditions in the PhPP: 

aerobic, glucose-limited growth (Figure 4.3B), oxidative-fermentative batch growth 

(Figure 4.3C), and microaerobic batch growth (Figure 4.3D) (see [93] for methods). 

These data were then projected on the S. cerevisiae PhPP (Figure 4.3A) using the 

experimentally measured OUR and glucose uptake rates. The metabolite concentration 

profiles obtained from these experiments were found to qualitatively agree with the 

corresponding metabolic states predicted by the PhPP. For example, in growth 

conditions near LOethanol, cells are expected to grow almost entirely by fermentation, 

with significant production of ethanol and lesser amounts of glycerol, acetate and 

succinate secretion. This phenotype is qualitatively similar to experimental 

observation, in which more ethanol is produced than acetate as shown in Figure 4.3D.   

Points representative of each growth state were then used as constraints in 

computer simulations to quantitatively predict yeast’s metabolic phenotype (Table 

4.1). Overall, the experimental observations and the in silico predictions are in good 

agreement. However, the predicted growth rates are slightly higher than the measured 

values. This difference may result from the model’s prediction of optimal performance 

while growth in vivo is actually suboptimal. 
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4.3 Conclusions 

In this study, the S. cerevisiae genome-scale metabolic network was used to 

formulate a phenotypic phase plane that displays the maximum allowable growth rate 

and distinct patterns of metabolic pathway utilization for all combinations of glucose 

and oxygen uptake rates. In silico predictions of growth rate and secretion rates and in 

vivo data for three separate growth conditions (aerobic glucose-limited, oxidative-

fermentative, and microaerobic) were concordant. Thus, constraint-based methods 

such as phase plane analysis can be used to explore in silico the metabolic capabilities 

of microorganisms, generate new hypotheses as to how these organisms operate, and 

highlight the impact of individual cellular components on the organism as a whole. 
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The text of this chapter, in part or in full, is a reprint of the material as it 

appears in N.C. Duarte, B.O. Palsson, and P. Fu. 2004. Integrated analysis of 

metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics, 5:63. I was the 

primary author of the publication and the co-authors participated and supervised the 

research which forms the basis for this chapter. 
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Figure 4.1:  The yeast glucose-oxygen phenotypic phase plane (PhPP). (A) The 
three-dimensional S. cerevisiae PhPP drawn with Statistica™ (Statsoft, Tulsa, OK). 
The x and y axes represent the glucose uptake rate and oxygen uptake rate, 
respectively. The third dimension is the cellular growth rate. (B) A two-dimensional 
projection of the 3-D polytope in panel A. The two lines of optimality are shown in 
red. LOgrowth represents optimal aerobic glucose-limited growth and LOethanol 
corresponds to maximum ethanol production under microaerobic conditions. P1 - P7 
represent phases with various metabolic phenotypes. The shaded regions correspond 
to infeasible growth conditions. The orange line (glucose uptake flux = 5 
mmol/gDCW/hr) represents the conditions which were used for the simulations in 
Figure 4.2. 



60 

 

 
Figure 4.2: Yeast’s optimal growth behaviors as a function of oxygen availability. 
Simulations were performed in conditions ranging from completely anaerobic 
fermentation to completely aerobic growth. The range of oxygen uptake rates used in 
the simulations (orange line, Figure 4.1B) allows for the characterization of the PhPP's 
seven phases (P1 - P7) and two lines of optimality (LOgrowth, LOethanol). (A) Growth rate 
and respiratory quotient (RQ). (B) Secretion profile for acetate, succinate, ethanol, and 
glycerol. 
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Figure 4.3: Growth experiments shown on the phenotypic phase plane. (A) The 
three groups of experimental data displayed on the S. cerevisiae PhPP were used as an 
index for the time course profiles in panels B, C and D. (B) Aerobic glucose-limited 
growth (AGL) controlled by fed-batch operation. (C) Oxidative-fermentative growth 
(OF) with unlimited glucose and oxygen availability. (D) Microaerobic growth (MA) 
with unlimited glucose and very low oxygen availability. The AGL and MA data sets 
are located on lines of optimality and as a result are stable metabolic states with only 
one degree of freedom (glucose for AGL and oxygen for MA). OF is an unstable 
metabolic state with two degrees of freedom (glucose and oxygen), making it more 
difficult to control this type of growth condition. By perturbing the environmental 
conditions, cells in OF can be shifted to either AGL or MA. 
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Table 4.1: Comparison of in silico and in vitro flux measurements. Abbreviations: 
OUR – oxygen uptake rate, GUR – glucose uptake rate. Units: growth rate (1/hr), 
substrate uptake rates and metabolite production rates (mmol/gDCW/hr). 
 

 
 

Microaerobic 
fermentation 

OUR = 1,  GUR = 14 

Oxidative 
fermentation 

OUR = 9,  GUR = 12 

Aerobic growth 
OUR = 8, GUR = 2.5 

 In silico Experimenta
l In silico Experimenta

l In silico Experimenta
l 

Growth 
rate 0.33 0.31 0.53 0.51 0.22 0.20 
Ethanol 21.29 20.08 11.98 11.07 0 0.16 
Acetate 0.26 0.22 2.62 2.57 0 0.31 
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CHAPTER 5: GENOME-SCALE RECONSTRUCTION OF 

THE GLOBAL HUMAN METABOLIC NETWORK 

 

An individual’s metabolism is determined by one’s genetics, environment, and 

nutrition. With the recent sequencing and annotation of the human genome [95-97], 

we can now identify the human body’s complement of metabolic enzymes. An 

extensive knowledge base of human genetic, biochemical, and physiological data also 

exists in the literature from decades worth of scientific studies. The stage has thus 

been set for constructing the first genome-scale reconstructions of human cellular 

processes.  

This chapter begins with a brief history of the Human Genome Project and 

previous models of mammalian metabolism (5.1). This is followed by an in-depth 

description of the reconstruction and validation procedures used to assemble the 

global human metabolic network (5.2), which we have termed H. sapiens Recon 1. 

Finally, we conclude with a discussion of how H. sapiens Recon 1 can be used a 

strategic tool for discovery research (5.3).  

 

5.1 Previous models of mammalian metabolism 

The course of this dissertation has witnessed tremendous growth in the 

analysis and modeling of mammalian systems. For example, the first mammalian 

genome was released in 2002 [94], and since that time more than ten others have been 

completed, including our own [95]. While several small-scale models of mammalian 
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metabolism have appeared, the first genome-scale metabolic networks did not emerge 

until 2005. These efforts are described in greater detail here. 

 

5.1.1 Small-scale, cell-specific metabolic models 

The majority of small-scale, cell-specific models are of hepatocytes and 

myocytes; these cells have clearly defined roles in metabolism, and thus there is great 

interest in understanding their function in health, injury, and disease. Mass-balance 

models of hepatocyte metabolism have been successful in studying the effects of 

severe burn injuries [96], induced liver failure [97], and hypermetabolism [98] in rats 

as well as to simulate fibrosis [99] and von Gierke’s and Hers’ diseases [100] in 

humans. Martin Yarmush and his colleagues have also used their rat model to 

investigate why cultured hepatocytes grow so poorly in plasma [101, 102], which has 

been a major hurdle in the development of extracorporeal blood filtering devices and 

other biotechnological applications. The regulation of ATP-to-ADP concentrations 

[103] and consequences of moderate burn injury [104] have been examined with 

mass-balance models of human skeletal muscle cells. Dynamic [105] and full-kinetic 

models [106] of skeletal myocytes were also used to interrogate the relationship 

between fluxes through the glycogenolytic pathway and oxidative phosphorylation. 

Thermokinetic [107] and flux-balance [108] models of human cardiac mitochondria 

have also appeared. Modeling approaches that have been applied to other cell types 

include metabolic flux analysis of human embryonic kidney cells [109] and a full-

kinetic model of human red blood cell metabolism [110]. These small, cell-specific 

models are useful for studying cellular behaviors under a defined set of conditions. 

However, to fully explore metabolic genotype-phenotype relationships, 

comprehensive reconstructions of the inherently complex metabolic networks that 
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exist in vivo are needed. As described in 1.2, the availability of whole genome 

sequences is central to developing genome-scale metabolic models. 

 

5.1.2 Mammalian genome sequencing and the first genome-scale model 

The Human Genome Project was launched in 1990 with the goal of obtaining a 

high-quality euchromatic sequence of the human genome (Figure 5.1). The widely 

publicized race between the publicly-funded International Human Genome 

Sequencing Consortium (IHGSC) and privately-held Celera Genomics to complete an 

initial draft of the human genome sequence ended in February 2001 when the groups 

simultaneously published their efforts on the covers of Nature [96] and Science [111], 

respectively (Table 5.1). While the IHGSC pushed forward to complete a finished 

human genome sequence, the first high-quality draft of a mammalian genome 

sequence was announced for the laboratory mouse Mus musculus in December 2002 

[94]. The mouse genome sequence was widely recognized as an important tool for 

comparative analysis of human genes, and has subsequently enabled many insights 

into gene assignments, regulation, and evolution [112].  

 

A finished draft of the mouse genome was foundational to constructing the 

first genome-scale model of mammalian metabolism [113]. While the authors faced a 

conceptual leap in modeling a multicellular eukaryotic organism, much of their basic 

reconstruction approach followed directly from their previous work with S. cerevisiae 

([58]; 3.1). Rather than reconstructing a particular cell type, the authors assembled a 

generalized network of mouse metabolism that accounted for 872 metabolites and 

1,220 biochemical reactions globally found across all murine cells. The model’s 

consistency and predictive ability were validated by demonstrating that its in silico 
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predictions of growth, single gene deletion phenotypes, substrate requirements, and 

antibody production were concordant with experimentally measured values from a 

murine hybridoma cell line. This work represents a significant achievement for 

genome-scale, constraint-based modeling, as the authors were able to successfully 

apply reconstruction methods and modeling tools reserved for single-celled 

microorganisms to a multicellular, eukaryotic system.  

 

5.1.3 Top-down reconstructions of human metabolism 

The final draft of the euchromatic human genome sequence was completed in 

October 2004 (Build 35; [114]). Since its release, a handful of top-down 

reconstructions (1.2) of human metabolism have appeared. For example, the 

HumanCyc metabolic database (http://HumanCyc.org) was generated by mapping 

genes from Build 31 of the genome annotation (November 2002) to a universal, multi-

organism pathway database using the PathoLogic algorithm [15]. Similarly, the Kyoto 

Encyclopedia of Genes and Genomes pathway database (KEGG; 2.1.2) contains a 

comprehensive collection of metabolic maps in which enzymes are selectively 

highlighted based on the genome annotation of an organism of interest [14]. As 

described in the next section, these top-down reconstructions can be a valuable 

starting point for building genome-scale models. However, additional data must be 

manually compiled from the scientific literature to ensure that the network 

components and their interactions are based on direct physical evidence and reflect the 

current knowledge of human metabolism. 
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5.2 Manual reconstruction of the global human metabolic network 

The wealth of detailed biochemical information available for humans, 

combined with the recent sequencing and annotation of the human genome [95], 

enabled the first genome-scale, bottom-up reconstruction of the global human 

metabolic network. Its reconstruction and validation is described here; Chapter 6 

discusses how the network can be used a context for interpreting large-scale biological 

data sets and as a basis for developing cell-specific reconstructions. 

 

5.2.1 Overall reconstruction strategy 

The goal of this project was to develop a genome-scale metabolic model that 

comprehensively represents all of the biochemical activities found in human cells. The 

reconstruction procedure and some of potential applications of the global metabolic 

network are outlined in Figure 5.2. Briefly, an initial component list was generated 

using a top-down approach (5.2.2). The network was then manually curated to validate 

the automated content, expand the network scope, fill in pathway gaps, and include 

additional dimensionality to the annotation (5.2.3). Several rounds of reconstruction 

and testing under strict quality control were required to obtain a BiGG, high quality 

network (5.2.4). The resultant network, H. sapiens Recon 1, is the first manually-

curated, bottom-up reconstruction of human metabolism and the largest eukaryotic 

reconstruction to date (5.2.5). The entire contents of Recon 1, including reaction lists, 

metabolic maps, and the stoichiometric matrix, are freely available in a searchable 

database at http://bigg.ucsd.edu. Reconstruction of the global human metabolic 

network has enabled the identification of knowledge gaps (5.3) and provides a context 

for the analysis of genome-scale data, such as gene expression measurements (Chapter 

6). 
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5.2.2 Initial component list 

A well-annotated genome sequence is critical to bottom-up reconstruction 

since it enables the rapid identification of candidate network components [6] and the 

assembly of a preliminary network [15] that can be used as a starting point for manual 

curation (Figure 5.2, Supplement B). We used E.C. numbers [17] and GO terms [115] 

(2.1.2) to identify an initial set of 1,865 human metabolic genes from the November 

2004 (Build 35) annotations of three publicly available genome annotation databases: 

KEGG [14], NCBI’s LocusLink [116] (now Entrez Gene [9]), and the H-Invitational 

Database [13]. These genes were mapped to a rudimentary network of 3,623 metabolic 

enzymes from KEGG Orthology [117], and 3,673 reactions from KEGG’s LIGAND 

database [14] and S. cerevisiae iND750, the compartmentalized yeast metabolic 

reconstruction (see Chapter 3) [57]. 

 

5.2.3 Curation of network content 

In addition to establishing initial network scope, LIGAND’s pathway-based 

organizational structure also facilitated parallel network assembly. The initial 

component list was divided into eight metabolic subsets that were simultaneously 

curated by a team of researchers (Table 5.1). Curation entailed the verification of 

computationally predicted gene assignments, formulation of enzymatic reactions, and 

identification of protein compartmentalization and gene/protein interactions based on 

biological evidence found in literature articles, textbooks, and internet resources (see 

2.1). 
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Verification of gene assignments 

Putative gene assignments were verified based on evidence collected from 

genome annotation databases, namely Entrez Gene [9] and Gene Cards [12], and the 

scientific literature. Genes were not included in the network unless there was 

compelling evidence for their function. At a minimum, this evidence included 

sequence based annotations, such as computationally predicted functional domains or 

high sequence similarity to a well characterized mammalian homolog.  

 

Formulation of metabolites and reactions 

The KEGG and iND750 reactions mapped in the automated procedure were 

thoroughly revised during the manual curation process. Substrate and cofactor 

preferences were identified using BRENDA [16] and published literature. Metabolite 

formulae and charge were calculated based on their ionization state at pH 7.2, which 

for simplicity was presumed to be constant across all compartments. Extensive 

literature surveys were required to identify and formulate compounds with variable, 

organism-specific compositions (e.g., dolichol, phospholipids, quinones). Metabolic 

reactions were formulated based on known stoichiometry and were subjected to mass- 

and charge-balance constraints. Reaction directionality was determined from 

thermodynamic data or inferred from legacy data and textbooks. 

 

Protein compartmentalization 

Protein compartmentalization was entirely determined by manual curation, as 

this information was not captured by the KEGG Ontology. The reactions in Recon 1 

were compartmentalized in the cytosol, mitochondrion, nucleus, endoplasmic 

reticulum, Golgi apparatus, lysosome, peroxisome, and/or extracellular space based on 
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protein localization data, sequence targeting signals, and indirect physiological 

evidence. If this data was unavailable, reactions were modeled as cytosolic. For 

double-membrane organelles such as the nucleus and mitochondrion, the composition 

of the intermembrane space was considered to be equivalent to the cytosol. 

Consequently, proteins identified in the outer membrane and intermembrane space 

were modeled as cytosolic.  

 

Gene-transcript-protein-reaction relationships  

Gene-transcript-protein-reaction relationships [6, 113] were manually 

identified from the literature and formulated as Boolean logic statements (see Figure 

3.2). Isozymes (an “or” relationship) were defined as distinct proteins that catalyze the 

same substrate- and compartment-specific reaction and could arise from one gene due 

to alternative splicing or be encoded by independent genes. All isozymes were 

modeled as having the same reaction rate regardless of known substrate preferences. 

Cases in which a reaction was dependent on the presence of more than one 

gene/protein (an “and” relationship, e.g., proteins with multiple subunits/chains or 

complexes composed of multiple enzymes) were classified as protein complexes. 

These associations are typically composed of both enzymatic and structural or 

regulatory components. More complicated gene and protein interactions also exist; for 

example, the mitochondrial ATP synthase includes an F1 catalytic core with 5 

subunits, an F0 protein channel with 8 subunits, and several assembly proteins. Most 

of the genes are alternatively spliced and some subunits can be encoded by a number 

of genes [118]. 

 

Confidence scores 
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Confidence scores were assigned based on biological evidence associated with 

each reaction. Evidence from classical biochemical or genetic experiments, such as 

gene cloning and protein characterization, were given the highest confidence score (3). 

Mid-level scores (2) were assigned to reactions based on physiological data or 

biochemical/ genetic evidence from non-human mammalian cell (typically mouse, rat, 

or rabbit). Reactions with the lowest confidence score (1) were included solely based 

on in silico modeling because, during the process of model validation, they were 

deemed mandatory for a particular metabolic function. 

 

Network assembly in SimPheny 

The contents of the reconstruction were assembled in the SimPheny™ 

software package (Genomatica, San Diego). A new gene index with more than 16,000 

loci was compiled based on Build 35 of the human genome annotation (Figure 5.3). 

Entrez Gene IDs [9] were used as unique identifiers for genes. Alternative transcripts 

were defined based on known RefSeq mRNA IDs [116] associated with each locus 

and were designated with a numeric suffix after each locus id. For example, the two 

transcripts associated with locus 55902 are recorded as “55902.1” and “55902.2” in 

the gene index. Each gene was automatically associated with at least one transcript, 

even if its RefSeq ID was unknown. Most of the loci (82%) were associated with only 

one transcript and approximately 13% with two transcripts. Only 244 loci had five or 

more transcripts, and these were mainly genes involved in tumorgenesis, cell cycle, 

and signaling. 

An example of how data was extracted from online databases and entered into 

the SimPheny™ software package is provided in Figure 5.4. The contents of the 
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network were fixed after each round of reconstruction and the stoichiometric matrix 

was formulated as previously described [119]. 

 

5.2.4 Functional validation and gap analysis 

Bottom-up reconstructions can be represented mathematically, enabling the 

computational interrogation of their properties [6]. Since the global network accounts 

for all known metabolic enzymes encoded in the human genome, it collectively 

represents metabolic functions found in a variety of cell types. We validated the basic 

functionality of the human metabolic network by using flux balance analysis (2.2.1) 

[120] to simulate over 280 metabolic functions, ranging from simple pathway-level 

objectives to parameter calculations (Table 5.3).  

Comprehensive gap analysis of the stoichiometric matrix was performed after 

each round of functional validation. Each “dead-end” metabolite that could not be 

produced or consumed was manually re-examined by returning to the literature to 

identify possible reactions describing its degradation, production, or transport. A 

description of the 474 unresolved gaps from the final round of validation is provided 

in Supplement B. Gaps were classified as either knowledge base (i.e., ‘dead end’ 

metabolites that require further experimental investigation to be resolved) or model-

scope gaps (i.e., compounds whose metabolism is outside the scope of our 

reconstruction). Examples of each are provided in Table 5.4. 

 

5.2.5 The result, H. sapiens Recon 1 

Like genome sequencing, network reconstruction is an iterative process, 

requiring several rounds of iterative gap analysis and comprehensive revalidation 
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under strict quality control to achieve an accurate, high quality network [4]. It took a 

team of seven researchers nearly 18 months to assemble the final global human 

metabolic network (Figure 5.6), which we have named H. sapiens Recon 1. Recon 1 is 

the largest functionally-validated reconstruction of a multi-cellular eukaryote to date 

(Table 5.5) and is the first human cellular process to be comprehensively modeled at 

this level of detail. It was almost entirely constructed from human-specific data, 

containing over 50 years of biochemical evidence collected from more than 1500 

primary literature articles, reviews, and biochemistry textbooks. Many of its reactions 

were directly extracted from the literature and are not described in any chart or 

database. A complete list of genes, metabolites, reactions, citations, and curator 

comments are available in Supplement B. 

 

Metabolic maps 

Recon 1 also includes a comprehensive collection of high-quality, human 

specific maps (Supplement B) that are useful for navigating its and interpreting cell-

scale data, such as gene expression measurements (Chapter 6) and functionally 

coupled reaction sets [121]. Glycan structures have been included on the maps to 

improve visualization of the glycosylation pathways (Figure 5.7). 

 

BiGG human website 

The Biochemically, Genetically and Genomically integrated (BiGG) Human 

Database (http://bigg.ucsd.edu) was developed as a resource for disseminating the 

contents of H. sapiens Recon 1. The website allows users to perform customizable 

searches on a static, internal database using convenient drop-down menus (Figure 5.8, 

Table 5.6) and contains links to public database entries associated with Recon 1’s 
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genes, proteins, reactions, and metabolites (Table 5.7). Future plans for the expanding 

the website are discussed in Chapter 7. 

Recon 1 summarizes our current knowledge of the human metabolic network 

in a structured, mathematical format that enables systematic studies of human 

metabolism and its properties. Two of its potential research applications include 

global assessment of network confidence (5.3) and interpretation of large-scale data 

sets in the context of a biochemically accurate, genetically and genomically integrated 

database (Chapter 6). 

 

5.3 Knowledge landscapes 

Bottom-up reconstruction of Recon 1 required extensive, manual surveys of 

the primary literature to evaluate biological evidence associated with each gene, 

protein, and reaction. Viewing our confidence (5.2.3) in these individual components 

at the system level reveals a global knowledge landscape with specific “peaks” and 

“valleys” in our understanding of human metabolism (Figure 5.9). Three categories of 

metabolic pathways were identified based on the degree of characterization of their 

corresponding reactions.  

 

Category I Pathways 

Category I pathways represent the “peaks” of our knowledge landscape, with 

roughly 80% or more of the reactions having the highest confidence score. For 

example, genes have been identified for nearly all of the steps in chondroitin sulfate 

catabolism (Figure 5.10) except for its initial proteolysis and final degradation step. 

This pathway also contains a “dead-end” metabolite (5.2.3), as degradation of the 



75 

 

glycosaminoglycan attachment site that is produced in the initial reaction (CBPASEly) 

is outside the scope of the current reconstruction. 

 

Category II Pathways 

Category II pathways, such as glyoxylate metabolism (Figure 5.11), have a 

roughly equal proportion of highly characterized enzymes and those with moderate 

biological evidence. For instance, while the peroxisomal and mitochondrial 

degradation of glyoxylate to L-glycine (AGTix, AGTim, respectively) has been 

extensively studied, the presence of glycerate kinase (GLYCK2) was inferred based 

on the observation that individuals with D-glycericaciduria (who lack this enzyme) 

cannot further metabolize D-glycerate and excrete gram amounts of it in their urine 

[122].  

 

Category III Pathways 

Category III pathways exhibit a wide range of confidence scores and gene 

coverage. The fact that some of these pathways have not been completely elucidated is 

surprising, and arguably these knowledge deficits may not have been identified 

without a systems approach. For example, the mechanism which cycles the end 

products of vitamin C degradation back to the glycolytic pathway appear to be poorly 

understood (Figure 5.12) despite evidence in human erythrocytes that it may be used 

as an energy source [123]. A large number of intracellular transport reactions are also 

included in this category, indicating that as a whole they require considerably more 

investigation to elucidate precise mechanistic reactions. Thus, the reconstruction of H. 

sapiens Recon 1 has resulted in a comprehensive review of our knowledge of human 
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metabolism and has lead to direct suggestions where further experimental studies are 

needed (see Supplement B). 

 

5.4 Conclusions 

H. sapiens Recon 1 is the largest eukaryotic reconstruction to date and the first 

manually assembled, functionally validated model of human metabolism. Recon 1 was 

constructed based on the recent human genome annotation (Build 35) and over 50 

years of genetic, biochemical, and physiological data that was extracted from the 

scientific literature. This work represents a significant milestone in human systems 

biology, and we foresee three primary applications of Recon 1 that will clearly be of 

interest to biomedical community. First, when subjected to genetic and chemical 

constraints, Recon 1 can be used as a mathematical model for computational 

interrogation of healthy and pathophysiological states. Second, Recon 1 is a discovery 

tool, consistently describing known aspects of human metabolism and defining 

knowledge gaps which require future experimental investigation. Third, Recon 1 is a 

comprehensive, high-confidence network that provides a context for mapping 

biological content such as genomic, transcriptomic, and proteomic data. This final 

application is the subject of Chapter 6. 
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The text of this chapter, in part or in full, is a reprint of the material as it 

appears in N.C. Duarte, S.A. Becker, N. Jamshidi, I. Thiele, M.L. Mo, T.D. Vo, R. 

Srivas, and B.O. Palsson. 2006. Global reconstruction of human metabolic network 

based on genomic and bibliomic data. Submitted to Proc Natl Acad Sci U.S.A. I was 

the primary author of the publication and the co-authors participated and supervised 

the research which forms the basis for this chapter. 
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Figure 5.2: The development, dissemination, and possible applications of H. 
sapiens Recon 1. Initial component lists were derived from the genome annotation 
and pathway databases. Iterative rounds of manual reconstruction and gap analysis 
were required to form a functional, predictive model. The result of this procedure is H. 
sapiens Recon 1, a biochemically, genetically, and genomically integrated (BiGG) 
database whose contents are available at http://bigg.ucsd.edu. Recon 1 has many 
potential applications, many of which may aid in the elucidation and treatment of 
human disease. 
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 Figure 5.3: Snapshot of the initial human metabolic component list. Metabolic 
enzymes in KEGG Orthology were used as a scaffold for mapping an initial set of 
1,865 candidate metabolic genes and 3,673 reactions (Supplement B). Metabolite and 
reaction definitions for S. cerevisiae iND750 can be found in Supplement A. The 
complete list can be found in Supplement B. Genes are listed by their unique locus 
identifiers. Abbreviations: KEGG – Kyoto Encyclopedia of Genes and Genomes, EC 
– Enzyme Commission numbers, GO – Gene Ontology terms, HInv-DB – H-
Invitational Database. 
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 Figure 5.4: Snapshot of the human gene index. The human gene index contains 
more than 16,000 genes and includes references to several biological databases. 
Abbreviations: Chr – chromosomal location, Acc – Swiss-Prot Accession number, EC 
– Enzyme Commission number, PubMed – PubMed identifier, OMIM – Online 
Mendelian Inheritance in Man identifier, RefSeq – RefSeq mRNA identifier, Addl 
info – additional information, which include: aliases, locus type, UniProt identifiers, 
Human Genome Organization identifiers (HUGO), Mouse Genome Database (MGD) 
and Mouse Genome Index (MGI) identifiers. 
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Figure 5.5: Assembling reconstruction data in SimPheny. (A) Genome annotation 
databases (2.1.1) are used to review published reports on genes identified in the initial 
component list. (B) Recording this information in SimPheny as gene-protein-reaction 
associations, protein and reaction entries, and on metabolic maps. 
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Figure 5.6: Timeline of the human metabolic reconstruction. The reconstruction 
can be roughly divided into phases of annotation- and literature-based reconstruction. 
Note that there is a rapid increase in the number of components during the annotation 
based phase, in which network content was determined by direct curation of the 
automated component list. Most of the reactions added during the literature-based 
reconstruction were not gene associated, and were typically included to resolve 
network gaps. The overall reconstruction and debugging required 18 months. 
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Figure 5.7: Glycan representations in H. sapiens Recon 1. (A) Glycan structures are 
drawn directly on Recon 1’s metabolic maps according to the convention described in 
Essentials of Glycobiolgy [125]. (B) Compound entries also include molecular 
formula and structural descriptions of glycans. 
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Figure 5.8: Snapshot of the BiGG human database. The BiGG database 
(http://bigg.ucsd.edu) is a website for browsing and searching the contents of H. 
sapiens Recon 1. It also well integrated with a variety of other databases (Table 5.6). 
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Figure 5.9: Global human metabolic knowledge landscape. Colors represent the 
percent of reactions within a pathway which have a confidence score of 3 
(biochemical or genetic evidence), 2 (physiological data or evidence from a non-
human mammalian cell), 1 (modeling evidence), or 0 (unevaluated). Pathways were 
classified into three categories based on their level of characterization (Figures 5.10-
5.12). 
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Figure 5.10: Knowledge landscape for heparan sulfate degradation. Proteoglycans 
presumably undergo initial cleavage extracellularly, producing short peptides with 
single chondroitin sulfate chains (cspg_b). These chains are then endocytosed and 
further degraded by endosomal endoglycosidases to produce free chondroitin sulfate 
chains (cs_b). No biological evidence supporting this mechanism has been identified 
yet [126]. Note that the peptide by-product (Ser-Gly/Ala-X-Gly) is a “dead-end” 
metabolite that is produced but not consumed. Final degradation of the core 
tetrasaccharide linkage (LINKDEG2ly) was inferred based on enzymes identified in 
rabbit [126]. Reactions are color-coded by confidence scores: 3 – red, 2 – green, 1 – 
blue. Gene, metabolite, and reaction abbreviations are defined in Supplement B. 
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Figure 5.11: Knowledge landscape for glyoxylate and dicarboxylate metabolism. 
Category II pathways typically have a combination of well-known functions, such as 
the degradation of glyoxylate (glx) to glycine (gly) in normal physiological conditions 
and overproduction of oxalate (oxa) in oxalosis, and those that are poorly understood, 
such as the feedback of glycolate intermediate hydroxypyruvate (hpyr) to glycolysis. 
Reactions are color-coded by confidence scores: 3 – red, 2 – green, 1 – blue. 
Metabolite and reaction abbreviations are defined in Supplement B. 
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 Figure 5.12: Knowledge landscape for vitamin C metabolism. The degradation of 
2,3-dioxo-L-gulonate (23doguln) to L-xylonate (xylnt), L-lyxonate (lyxnt), and L-
threonate (thrnt) are supported by physiological evidence [123, 127], but the exact 
reaction mechanisms in which these four- and five-carbon sugar acids are converted to 
glycolytic intermediates could not be identified in the literature. Reactions are color-
coded by confidence scores: 3 – red, 2 – green, 1 – blue. Metabolite and reaction 
abbreviations are defined in Supplement B. 
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Table 5.1: Comparison of the initial and finished human genome sequences. 
 
 Draft sequences  [95, 96] Finished sequence [114] 
Date released February 2001 October 2004 
Euchromatin coverage 90% 99% 
Length (bp) 3.08 billion 2.85 billion 
Gaps 150,000 341 
Error rate (events per bp) 1 in 1,000 1 in 100,000 
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Table 5.2: Division of the initial component list for parallel manual curation. 
 

Subset Primary 
researcher(s) 

# of 
enzymes 

% with 
reaction 

% with 
gene 

Carbohydrates Natalie Hurlen 725 96 50 
Glycans Natalie Hurlen 280 90 71 
Nucleotides Ines Thiele 182 94 73 
Vitamins & cofactors Ines Thiele 330 94 42 
Lipids Neema Jamshidi 305 95 71 
Amino acids Scott Becker & 

Monica Mo 
807 97 58 

Secondary 
metabolites 

Scott Becker 123 78 34 

Energy Rohith Srivas & 
Thuy Vo 

680 78 55 
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Table 5.3: Examples of metabolic objectives used for functional validation. A 
complete list is available in Supplement B. 

 
Simple pathway objectives 

 

• Synthesize thyroid hormones from L-tyrosine 
• Synthesize cholesterol from HMG-CoA 
• Degrade heparan sulfate 
• Catabolize histidine to alpha-ketoglutarate 
• Synthesize UMP from L-glutamine 

 

Comprehensive physiological functions 
 

• Simplified cell biomass (as defined in [113]) 
• Synthesize glucose from L-alanine 
• Synthesize ketone bodies from L-leucine and L-isoleucine 
• Degrade glycogen into free glucose 

 

Parameter calculations 
 

• P/O ratio 
• Maximal ATP production 
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Table 5.4: Classification of network gaps. The source of each metabolite gap was 
thoroughly investigated and led to their classification as either knowledge- or model 
scope-limited. A complete list of gaps and their classifications is available in 
Supplement B. 
 

Metabolite Compartment Classification 
Glucaric acid Mitochondria Knowledge-base gap. Seems to be a 

dead-end metabolite in humans [128]. 
Hydroxypyruvate Mitochondria Knowledge-base gap. Very few reports 

describing the properties of the 
corresponding enzyme (hydroxypyruvate 
decarboxylase), none in human tissues. 

Isocitrate Peroxisome Knowledge-base gap. The source of 
peroxisomal isocitrate has not been 
determined [129]. 

Maltotriose Lysosome Model-scope gap. Maltotriose usually 
arises from glycogen degradation, but it 
is not a degradation product of the 
representative glycogen structure 
included in our network. 

Phosphatidylinositol Endoplasmic 
reticulum 

Model-scope gap. This gap is due to 
alternative localization of an enzyme that 
is part of a complete (functional) 
cytosolic pathway.  

Ser-Gly/Ala-X-Gly Endoplasmic 
reticulum 

Model scope gap. Represents peptide 
binding site for glycosaminoglycan 
chains, which is not synthesized in our 
model. 
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Table 5.5: H. sapiens Recon 1 network statistics. * Transcripts, complexes, and 
isozymes are defined in 5.2.3. † Transport reactions describe metabolite transport 
across organellar and plasma membranes, whereas exchange reactions describe 
metabolite transport into and out of the extra-cellular space from the surrounding 
medium. ‡ Number of dead-end metabolites that are only produced or consumed. A 
complete list of Recon 1’s content can be found in Supplement B. 
 

Component Count 
Genes 1,496 
Transcripts* 1,905 
Proteins 2,004 
Complex-associated reactions* 248 
Isozyme-associated reactions* 946 
Intrasystem Reactions 3,311 
Metabolic 2,233 
Transport† 1,078 
Exchange Reactions† 432 
Compartment-specific Metabolites 2,712 
Cytosol 995 
Extra-cellular space 388 
Mitochondrion 383 
Golgi Apparatus 279 
Endoplasmic reticulum 231 
Lysosome 207 
Peroxisome 139 
Nucleus 90 
Citations 1,587 
Primary literature 1,378 
Review articles 188 
Textbooks 21 
Validated metabolic functions 288 
Knowledge gaps‡ 356 
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Table 5.6: Examples of queries available at the BiGG Human Database. 
 

Sample queries 
 

 

• What are all of the peroxisomal transport reactions? 
 

• What are all of the reactions which are not gene associated 
OR are only supported by modeling data? 

 

• What are all of the reactions which are located in the 
cytosol AND are involved in L-alanine metabolism? 
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Table 5.7: The BiGG database links to several public databases. Abbreviations: 
HUGO – Human Genome Organization, KEGG – Kyoto Encyclopedia of Genes and 
Genomes, GO – Gene Ontology, MGD – Mouse Genome Database, OMIM – Online 
Mendelian Inheritance in Man. 

 
Genes Functionality 

Entrez Gene [9] GO [18] 
HUGO [130] Brenda [16] 
Ensembl [131] KEGG [14] 
  

Transcripts Homology 
RefSeq [9] MGD [132] 
  

Proteins Disease 
UniProt [133] OMIM [134] 
Swiss-Prot [135]  
  

Metabolites Literature 
KEGG [14] PubMed [8] 
NIST Chemistry 
Web [136] 
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CHAPTER 6: GENE EXPRESSION ANALYSIS IN THE 

CONTEXT OF A GENOME-SCALE NETWORK 

 
 

Recent advances in high-throughput experimentation have led to an 

accumulation of large data sets that simultaneously measure the state of thousands of 

cellular components. For example, since their development in the early 1990s, more 

than 7,000 scientific publications using Affymetrix’s GeneChip technology have 

appeared [137]. As a result, there has been a growing interest in using these data to 

characterize cellular processes at the system level. In this chapter, we present 

examples of how gene expression data can be used in conjunction with H. sapiens 

Recon 1 (Chapter 5) to interrogate metabolic states (6.1) and to develop cell and tissue 

specific models (6.2). 

 

6.1 Integrated analysis of skeletal muscle metabolism  

Skeletal muscle metabolism is directly linked to its composition, containing a 

mixture of oxidative (Type I) and glycolytic (Type II) fibers (for a review, see [138]). 

The distribution of these fiber types is the result of both genetics and a variety of 

external stimuli such as nutrition, environment, activity, and loading [139-142], and 

varies considerably from person-to-person [143]. There are known differences 

between the relative distribution of these fibers in lean and obese populations [144-

148]. Here we present a case study that explores how dramatic weight loss and 

nutritional restriction effects metabolism in obese skeletal muscle. 



98 

 

 

6.1.1 The obesity epidemic 

Obesity has been named the biggest health problem of the century. Over 1.5 

billion adults and 10% of children worldwide are overweight or obese [149]. The 

prevalence of obesity is especially alarming in industrialized countries, where the 

incidence has doubled over the past decade [150]. In the U.S. alone, 65% of adults are 

overweight [151], and obesity-related conditions result in 300,000 annual deaths 

[152]. The total direct and indirect cost of  obesity-related medical treatments in the 

U.S. was $117 billion for the year 2000 [153]. Clearly, the social and economic effects 

of obesity are staggering, and the effects are being felt worldwide. 

 

Clinical classifications of obesity 

Obesity is typically defined using a using a height-weight metric known as the 

body mass index (BMI): 

 

22 )(
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The range of BMI scores and corresponding weight classifications are shown in Table 

6.1. There has been much discussion about the validity of the BMI scale because 

factors such as body frame and excessive muscularity can skew scores [153]. 

Consequently, modifications have been suggested based on race, sex, and age [154-

159]. Despite these discrepancies, BMI remains to be the industry standard for clinical 

diagnosis of obesity. 

 

Bariatric surgery as a treatment for morbid obesity 
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According to the National Heart, Blood, and Lung Institute Guidelines [160], 

surgical intervention is good option for some patients with clinically severe obesity 

because the benefits of surgical intervention outweigh obesity-associated health risks, 

which include type 2 diabetes, hypertension, coronary artery disease, gallbladder 

disease, osteoarthritis, cancer, and early death [161]. Gastric bypass is quickly 

becoming an established treatment for obesity, with a rise from 16,000 performed 

annually in the early 1990s to more than 103,000 in 2003 [162]. Patients who have 

undergone bypass surgery typically experienced short-term loss of 40-80% of their 

excess body weight [163, 164] and significant improvement in co-morbidities [164].  

The most common form of bariatric surgery performed in the U.S. is Roux-en-

Y gastric bypass [165]. This procedure bypasses the majority of the stomach and 

duodenum, leaving only a small 10 to 30 mL stomach pouch and shortened small 

intestine (Figure 1). The surgery is designed to both reduce stomach capacity and 

restrict absorption of fats. However, it also commonly results in several known 

nutritional and metabolic complications, namely vitamin B12 deficiency, iron 

deficiency, thiamine deficiency, metabolic bone disease, and cholelithiasis [166-168]. 

 

6.1.2 Metabolic gene expression in obese skeletal muscle 

H. sapiens Recon 1 was used to investigate the metabolic effects of gastric 

bypass in human skeletal muscle. Published gene expression data [150] from the 

vastus lateralis muscle of three morbidly obese patients was examined before and one 

year after Roux-en-Y gastric bypass (once weight had stabilized). The patients 

experienced significant reductions in weight (45%) and BMI (46%), with an average 

post-surgery weight of 200 lbs (90.6 kg) and BMI of 32.9. While their weight loss was 

dramatic, it is important to note that the patients were still considered obese one year 
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post-surgery. However, the authors noticed a significant reduction in post-treatment 

insulin levels, which is indicative of improved insulin sensitivity and a decreased risk 

for co-morbidities such as type 2 diabetes. 

 

Mapping gene expression data to H. sapiens Recon 1 

The procedure used to map gene expression measurements to the H. sapiens 

Recon 1 reaction network is outlined here. The gastric bypass study included six gene 

expression data sets (one for each patient pre- and post-surgery) collected with 

Affymetrix U133A Plus 2.0 chips. The data sets were downloaded from Gene 

Expression Omnibus (GEO) (GEO ID: GSE5109; [169]) and normalized by dividing 

signal measurements by the average of all measurements on the chip. The log10 ratio 

of post/pre-surgery expression signals were then calculated for each patient. Probes 

were mapped to Entrez Gene and RefSeq mRNA IDs [9] in H. sapiens Recon 1 based 

on database identifiers in the Affymetrix U133A Plus 2.0 annotation file [170], 

resulting in a set of 2,071 candidate metabolic probes. The probe list was then further 

refined to remove probes whose expression ratio was qualitatively inconsistent across 

all three patients (i.e., not all up or all down). The remaining 516 probes were matched 

with their corresponding genes and an additional 24 were removed due to qualitative 

conflicts at the gene level. The average expression ratio was calculated for each gene 

and then mapped to the reaction network using Recon 1’s gene-transcript-protein-

reaction associations (Supplement B; 5.2.3). 

 

Metabolic gene expression patterns observed pre- and post-gastric bypass surgery 

H. sapiens Recon 1’s comprehensive collection of integrated, genome-scale 

metabolic maps (Supplement B) was used to obtain a pathway-level view of gene 
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expression trends from the gastric bypass data set (Figures 6.2-6.4). We observed a 

general trend of up-regulated anaerobic metabolism and down-regulated oxidative 

phosphorylation post-surgery, with many genes in glycolysis, pentose phosphate 

pathway, methylglyoxal metabolism, and oxidative phosphorylation showing subtle 

but consistent overall patterns of expression change (Tables 6.2-6.4). This pattern 

appears to be consistent with the down-regulation of genes involved in mitochondrial 

bioenergetics that has been observed in the skeletal muscle of rhesus monkeys 

subjected to long-term caloric restriction [171]. Distinct changes in gene expression 

associated with collagen and glycosaminoglycan metabolism were also observed 

(Figure 6.4), suggesting that gastric bypass may lead to extensive remodeling of the 

extracellular matrix and cell surface proteoglycans. These changes may be attributed 

to alterations in hormone levels, which are known to strongly modulate the 

composition of the extracellular matrix [172, 173]. 

Gene expression changes were also examined in the context of reaction 

compartmentalization and metabolite connectivity (Figure 6.5). This was done by 

defining distinct reaction networks based on the up- and down-regulated genes. Genes 

that were more highly expressed pre-surgery (i.e., in the morbidly obese state) 

generally involved a larger number of mitochondrial and peroxisomal functions, 

whereas post-surgery there is a shift towards higher metabolic activity in the cytosol 

and lysosome with a concomitant increase in extracellular metabolite exchange. 

Inspection of these networks at the metabolite level revealed that most 

compartmentalization differences could be attributed to increased oxidative energy 

metabolism and reactive oxygen species production pre-surgery and increased 

glycosaminoglycan degradation and amino acid-sodium co-transport post-surgery. 

The shifts between the types of glycosaminoglycans predominantly metabolized in 
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each state were also apparent, with a decrease in mannose and glucose-6-phosphate 

utilization and an increase galactose and sulfur carriers post-surgery. 

 

Metabolic gene expression patterns observed in lean and morbidly obese populations 

To further investigate which effects were due to weight loss, gene expression 

measurements from the gastric bypass study were compared to published gene 

expression data from a cross-sectional group of eight lean and eight morbidly obese 

subjects (GEO ID: GSE474, [174]). Each of the 16 data sets (one per patient, taken 

from the rectus abdominus muscle and profiled with Affymetrix U133A microarrays) 

was normalized by its signal average, and then individual probe measurements were 

pooled by calculating average values for lean and morbidly obese populations. The 

log10 of the lean-to-obese expression ratio was calculated and reaction mappings for 

central metabolism and oxidative phosphorylation (Figures 6.6-6.7) were compared to 

results from the gastric bypass patients (Figures 6.2-6.3).  

Visual inspection of gene expression patterns in the cross-sectional study 

revealed distinct differences from the gastric bypass patients. For example, genes 

associated with oxidative phosphorylation were more highly expressed in lean 

subjects than morbidly obese, and those involved in ketogenesis and lactate 

metabolism were down-regulated. While these results are consistent with previous 

observations that obese individuals have a smaller percentage of Type I oxidative 

fibers and higher percentage of Type II glycolytic fibers than their lean counterparts 

[144-148], they seem to conflict with the changes we observed in the leaner, post-

gastric bypass data set. Thus, this may suggest that nutrition, not weight loss, is the 

overriding factor in skeletal muscle metabolism one year post-gastric bypass surgery, 
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as the observed metabolic gene expression patterns are generally more consistent with 

caloric restriction than the those in lean versus morbidly obese populations. 

While the work presented here represents only a limited case study, it 

effectively illustrates how H. sapiens Recon 1 can be used as a context for visualizing 

and interpreting genome-scale content. The basic integration method and analysis 

tools developed here can be easily extended to accommodate future studies with larger 

patient populations and more stringent expression thresholds. 

 

 

6.2 Tailoring the global metabolic network with pathway analysis 

The global human metabolic network is a comprehensive representation of the 

metabolic capabilities encoded in the DNA of all human cells. However, gene 

expression is a highly regulated process, and consequently tissues express only a 

subset of their total complement of enzymes at any given time. Thus, refinement of 

network content is needed to perform accurate, quantitative simulations of metabolic 

functions in tissue- and condition-specific states.  

In this study, we employ a top-down strategy (1.2) to rapidly generate rough 

drafts of tissue-specific metabolic networks based on their pathway-level gene 

expression patterns. This strategy employs established pathway analysis statistics 

[175], but is based on present/absent calls rather than raw expression measurements.  

 

Determining whether a gene is “on” or “off” in a particular tissue 

We would ideally like to incorporate all of the genes and reactions known to 

be expressed in a tissue in order to comprehensively model its full range of metabolic 



104 

 

capabilities. Thus, our general strategy for tailoring the global human metabolic 

network is to be inclusive, only eliminating components if they are never present in 

the tissue of interest. However, a major challenge with microarray data is that it can 

only conclusively prove that a gene is expressed in, not absent from, a particular 

sample since it there are many reasons why it might be undetected (e.g., poor probe 

design, insufficient sample size, or low expression levels). The simplest approach for 

determining whether a gene is “on” (present) or “off” (absent) in a particular system is 

to therefore to assume that genes are absent if they are undetected in all replicates 

[176]. Our implementation of this approach using Affymetrix’s present, marginal, and 

absent calls is summarized in Table 6.5.  

 

Statistical assessment of expression patterns in metabolic pathways 

With a metric in place for calling genes on or off, the next step in our analysis 

was to implement a statistical method for assessing the likelihood of finding a certain 

number of genes turned on in a particular pathway (which can be loosely regarded as 

the probability that the pathway is expressed). A combined chi-squared/Fisher Exact 

test was implemented as described in [177]. Briefly, the chi-squared test describes 

how the observed number of hits deviates from what is expected. In terms of pathway 

analysis, the chi-squared test is counting the number of times genes from a specified 

gene list (e.g., those that are up-regulated) occur in a particular pathway. This test 

gives only an approximate p-value and can only be used for cases in which there are 

five or more observations of each type [175]. The Fisher exact test is performed in 

cases with less than five observations and calculates the probability of seeing an 

observed number of hits or more. The null hypothesis in pathway analysis is that the 

relative expression changes of genes in a particular pathway (or pathway enrichment) 
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are a random subset of those observed in the experiment as a whole [175]. Therefore 

the probability represents the chance that a pathway would contain as many or more 

affected genes as actually observed [178]. 

 

Pathway analysis of 79 healthy human tissues 

Our pathway-based approach was used to generate global snapshot of 

metabolic pathway utilization in 79 healthy human tissues [179]. Expression data was 

downloaded from the Genomics Institute of the Novartis Research Foundation [180] 

and mapped to H. sapiens Recon 1 as described in section 6.1.2. A combined chi-

square and Fisher’s exact test was used to calculate p-values for each of H. sapiens 

Recon 1’s 93 metabolic pathways based on its distribution of on/off calls (Figure 6.8). 

A few pathways appear to be “on” in nearly all tissues. These pathways, which 

include glycolysis, oxidative phosphorylation, and propanoate metabolism, have a 

highly significant number of present calls for their associated genes. Several pathways 

were found to be differentially expressed, with some tissues expressing a significantly 

larger percentage of genes than others. Notably, glutamine metabolism was highly 

expressed in the brain, which is consistent with its known role as a prominent 

neurotransmitter. Glycosylation pathways were strongly expressed in blood cell lines, 

which may be indicative of the importance of signaling and communication in these 

tissues. While most samples expressed roughly the same number of metabolic 

pathways, two subgroups appeared to have higher- and lower-than average range of 

metabolic activity. The former category includes the liver, kidney and adipocytes, 

which clearly have distinct roles in general metabolism, while the latter includes the 

appendix, several nervous tissues and surprisingly, skeletal muscle and skin. 
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The results presented here demonstrate the utility of comprehensive, pathway-

level analysis of gene expression data in determining high-level, functional differences 

between tissues. Our pathway analysis strategy was a simple extension of established 

pathway analysis methods [175], using present/absent calls and a highly curated 

reaction network rather than arbitrarily set expression cutoffs and genome annotations. 

Continual development of this method holds the promise of using gene expression 

data to refine the global human metabolic network into cell specific networks (Chapter 

7). 

 

6.3 Conclusions 

Gene expression profiling is an effective tool for collecting comprehensive 

information on a system of interest under controlled conditions. Genome-scale 

networks such as H. sapiens Recon 1 can provide a context for the interpretation of 

such data sets and lead to new hypotheses on cellular function. Expression 

measurements are also useful for top-down tailoring of global networks, providing 

first-pass approximations of specific cell types, conditions, and disease states.  
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The text of this chapter, in part or in full, is a reprint of the material as it 

appears in N.C. Duarte, S.A. Becker, N. Jamshidi, I. Thiele, M.L. Mo, T.D. Vo, R. 

Srivas, and B.O. Palsson. 2006. Global reconstruction of human metabolic network 

based on genomic and bibliomic data. Submitted to Proc Natl Acad Sci U.S.A. I was 

the primary author of the publication and the co-authors participated and supervised 

the research which forms the basis for this chapter. 
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Figure 6.1: Schematic of Roux-en-Y gastric bypass surgery. A small pouch is 
surgically created from the stomach and connected to the jejunum, or mid-region of 
the small intestine. The bypassed stomach and duodenum are reattached in a Y-
connection to the jejunum to allow the flow of digestive juices into the small intestine. 
Modified from [167]. 
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Figure 6.2: Expression changes in central metabolism post-gastric bypass. 
Relative gene expression levels (green – down, red – up, white – no data available or 
reaction level conflict) have been mapped to reactions in the global human metabolic 
network. Arrows next to reaction abbreviations indicate the magnitude of expression 
changes on a log10 scale (grey boxes indicate no data available). Genes in glycolysis, 
methylglyoxal metabolism, and ketogenesis were generally down-regulated, whereas 
those in the pentose phosphate pathway and tricarboxylic acid (TCA) cycle were 
generally up-regulated. Reaction and metabolite abbreviations can be found in 
Supplement B. 
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Figure 6.3: Expression changes in oxidative phosphorylation and reactive oxygen 
species (ROS) detoxification post-gastric bypass. The majority of the genes 
encoding the electron transport chain were observed to be strongly down-regulated 
post-surgery. Please refer to Figure 6.2 for color and symbol definitions and 
Supplement B for reaction and metabolite abbreviations. 
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Figure 6.4: Expression changes in collagen (A) and glycosaminoglycan (B) 
metabolism post-gastric bypass. Expression of genes involved in collagen 
degradation and heparan sulfate biosynthesis decreased post-surgery, whereas those 
associated with chondroitin/dermatan sulfate biosynthesis increased. Other notable 
changes in glycan expression include down-regulation of genes involved in N-glycan 
biosynthesis and up-regulation of those in keratan sulfate degradation and hyaluronan 
biosynthesis (data not shown). Please refer to Figure 6.2 for color and symbol 
definitions and Supplement B for reaction and metabolite abbreviations. 
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Figure 6.5: Compartmentalization and metabolite connectivity of up-regulated 
and down-regulated reaction networks post-gastric bypass. Most down-regulated 
reactions (424 total) relate to mitochondrial bioenergetics and peroxisomal oxidation 
whereas up-regulated reactions (432 total) reflect a shift towards amino acid-sodium 
co-transport and lysosomal degradation. See Supplement B for abbreviations. 
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Figure 6.6: Expression differences in central metabolism in lean versus morbidly 
obese subjects. Relative gene expression levels (green – down, red – up, white – no 
data available or reaction level conflict, yellow – probe level conflict) have been 
mapped to reactions in the global human metabolic network. Genes involved in 
anaerobic metabolism were generally observed to be down-regulated in lean subjects 
whereas the majority of those encoding the electron transport chain were up-regulated. 
Please refer to Figure 6.2 for a symbol definitions and Supplement B for reaction and 
metabolite abbreviations. 



114 

 

 
 
Figure 6.7: Expression differences in oxidative phosphorylation in lean versus 
morbidly obese subjects. Relative gene expression levels (green – down, red – up, 
white – no data available or reaction level conflict, yellow – probe level conflict) have 
been mapped to reactions in the global human metabolic network. Genes involved in 
anaerobic metabolism were generally observed to be down-regulated in lean subjects 
whereas the majority of those encoding the electron transport chain were up-regulated. 
Please refer to Figure 6.2 for a symbol definitions and Supplement B for reaction and 
metabolite abbreviations. 
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Figure 6.8: Hierarchical clustering of pathway analysis for gene expression in 79 
healthy human tissues. Genes have been classified into metabolic pathways 
(columns) based on their annotation in H. sapiens Recon 1. P-values describe the 
likelihood that a pathway is present in a particular tissue (row) based on its 
distribution of present/absent calls and were calculated using a combined Chi-
square/Fisher’s exact test. Only p-values <0.1 are displayed. 
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Table 6.1: Weight classification by body mass index (BMI) [181]. 
 

BMI range Classification 
<20 Underweight 
18.5-24.9 Normal 
25-29.9 Overweight 
30-39.9 Obese 
>40 Morbidly obese 
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Table 6.2: Expression changes in oxidative phosphorylation for the gastric bypass 
study. Negative ratios indicate a decrease in expression post-surgery. Expr ratio – 
average log10 expression ratio (n=3), Reaction –  reaction abbreviation in H. sapiens 
Recon 1 (see Supplement B). 

 

Locus 
Expr 
Ratio 

Fold 
change Gene Putative function Reaction

4694 -0.10133 -1.26278 NDUFA1 

NADH dehydrogenase 
(ubiquinone) 1 alpha 
subcomplex, 1, 7.5kDa 

NADH2-
u10m 

4696 -0.10096 -1.26171 NDUFA3 

NADH dehydrogenase 
(ubiquinone) 1 alpha 
subcomplex, 3, 9kDa 

NADH2-
u10m 

4702 -0.06429 -1.15955 NDUFA8 

NADH dehydrogenase 
(ubiquinone) 1 alpha 
subcomplex, 8, 19kDa 

NADH2-
u10m 

4708 -0.07274 -1.18234 NDUFB2 

NADH dehydrogenase 
(ubiquinone) 1 beta 
subcomplex, 2, 8kDa 

NADH2-
u10m 

4709 -0.0755 -1.18988 NDUFB3 

NADH dehydrogenase 
(ubiquinone) 1 beta 
subcomplex, 3, 12kDa 

NADH2-
u10m 

4711 -0.05262 -1.12881 NDUFB5 

NADH dehydrogenase 
(ubiquinone) 1 beta 
subcomplex, 5, 16kDa 

NADH2-
u10m 

4714 -0.05517 -1.13544 NDUFB8 

NADH dehydrogenase 
(ubiquinone) 1 beta 
subcomplex, 8, 19kDa 

NADH2-
u10m 

4717 -0.09094 -1.23293 NDUFC1 

NADH dehydrogenase 
(ubiquinone) 1, subcomplex 
unknown, 1, 6kDa 

NADH2-
u10m 

4718 -0.08633 -1.21991 NDUFC2 

NADH dehydrogenase 
(ubiquinone) 1, subcomplex 
unknown, 2, 14.5kDa 

NADH2-
u10m 

4719 -0.08673 -1.22105 NDUFS1 

NADH dehydrogenase 
(ubiquinone) Fe-S protein 1, 
75kDa (NADH-coenzyme Q 
reductase) 

NADH2-
u10m 

4728 -0.21907 -1.65604 NDUFS8 

NADH dehydrogenase 
(ubiquinone) Fe-S protein 8, 
23kDa (NADH-coenzyme Q 
reductase) 

NADH2-
u10m 

4729 -0.12911 -1.34621 NDUFV2 

NADH dehydrogenase 
(ubiquinone) flavoprotein 2, 
24kDa 

NADH2-
u10m 

7991 -0.13311 -1.35865 TUSC3 tumor suppressor candidate 3 
NADH2-
u10m 

51079 -0.17639 -1.50105 GRIM19 
cell death-regulatory protein 
GRIM19 

NADH2-
u10m 

4713 0.117673 1.311213 NDUFB7 

NADH dehydrogenase 
(ubiquinone) 1 beta 
subcomplex, 7, 18kDa 

NADH2-
u10m 
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Table 6.2, continued. 
  

Locus 
Expr 
Ratio 

Fold 
change Gene Putative function Reaction

7381 -0.24155 -1.74401 UQCRB 
ubiquinol-cytochrome c 
reductase binding protein 

CYOR-
u10m 

29796 -0.10188 -1.2644 HSPC051 
ubiquinol-cytochrome c 
reductase complex (7.2 kD) 

CYOR-
u10m 

1327 -0.02967 -1.07071 COX4I1 
cytochrome c oxidase subunit 
IV isoform 1 CYOOm3 

1329 -0.2183 -1.65312 COX5B 
cytochrome c oxidase subunit 
Vb CYOOm3 

1339 -0.19251 -1.55779 COX6A2 
cytochrome c oxidase subunit 
VIa polypeptide 2 CYOOm3 

1349 -0.07335 -1.18399 COX7B 
cytochrome c oxidase subunit 
VIIb CYOOm3 

9167 0.04488 1.108869 COX7A2L 
cytochrome c oxidase subunit 
VIIa polypeptide 2 like CYOOm3 

509 -0.03965 -1.09558 ATP5C1 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, 
gamma polypeptide 1 ATPS4m 

514 -0.10436 -1.27163 ATP5E 

ATP synthase, H+ transporting, 
mitochondrial F1 complex, 
epsilon subunit ATPS4m 

516 -0.05736 -1.1412 ATP5G1 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, 
subunit c (subunit 9), isoform 1 ATPS4m 

517 -0.1111 -1.29152 ATP5G2 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, 
subunit c (subunit 9), isoform 2 ATPS4m 

518 -0.10221 -1.26534 ATP5G3 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, 
subunit c (subunit 9) isoform 3 ATPS4m 

521 -0.04207 -1.10171 ATP5I 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, 
subunit e ATPS4m 

522 -0.09347 -1.24013 ATP5J 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, 
subunit F6 ATPS4m 

4905 -0.07962 -1.2012 NSF 
N-ethylmaleimide-sensitive 
factor ATPS4m 

10632 0.201196 1.589264 ATP5L 

ATP synthase, H+ transporting, 
mitochondrial F0 complex, 
subunit g ATPS4m 
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Table 6.3: Expression changes in glycolysis/gluconeogenesis for the gastric bypass 
study. Negative ratios indicate a decrease in expression post-surgery. Expr ratio – 
average log10 expression ratio (n=3), Reaction –  reaction abbreviation in H. sapiens 
Recon 1 (see Supplement B). 

 

Locus 
Expr 
Ratio 

Fold 
change Gene Putative function Reaction 

5211 0.163217 1.456187 PFKL 
phosphofructokinase, 
liver PFK 

229 0.188382 1.543057 ALDOB 
aldolase B, fructose-
bisphosphate 

FBA2, FBA4, 
FBA, FBA5 

5230 0.099133 1.256414 PGK1 phosphoglycerate kinase 1 PGK 

5223 0.125026 1.333602 PGAM1 
phosphoglycerate mutase 
1 (brain) 

DPGase, DPGM, 
PGM 

2023 0.075391 1.189573 ENO1 enolase 1, (alpha) ENO 

26237 0.18623 1.535429 ENO1B 
enolase alpha, lung-
specific ENO 

5315 0.481154 3.027987 PKM2 pyruvate kinase, muscle PYK 

5105 0.567078 3.690443 PCK1 
phosphoenolpyruvate 
carboxykinase 1 (soluble) PEPCK 

98 -0.16043 -1.44689 ACYP2 
acylphosphatase 2, muscle 
type ACYP 
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Table 6.4: Expression changes in pentose phosphate pathway for the gastric 
bypass study. Negative ratios indicate a decrease in expression post-surgery. Expr 
ratio – average log10 expression ratio (n=3), Reaction –  reaction abbreviation in H. 
sapiens Recon 1 (see Supplement B). 

 

Locus 
Expr 
Ratio 

Fold 
change Gene Putative function Reaction 

2539 -0.09416 -1.24211 G6PD 
glucose-6-phosphate 
dehydrogenase G6PDH2r 

8277 -0.06275 -1.15544 TKTL1 transketolase-like 1 TKT2, TKT1 
25796 -0.19013 -1.54927 PGLS 6-phosphogluconolactonase PGL 
64080 -0.13661 -1.36964 RBKS ribokinase DRBK, RBK 
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Table 6.5: Protocol for mapping Affymetrix present/absent calls to on/off calls. 
Genes are only called off if they are absent in all replicates. Since replicates 1 and 2 
are interchangeable, the order of the present/absent calls does not affect the on/off call. 

 
Replicate #1 Replicate #2 Call 
Absent Absent Off 
Marginal Absent On 
Present Absent On 
Marginal Marginal On 
Present Marginal On 
Present Present On 
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CHAPTER 7: CONCLUSIONS  

The time and cost of data generation was once a hindrance to biological 

research, limiting studies to the independent characterization of individual genes and 

proteins. However, with the recent explosion of high-throughput experimental 

methods, such as genome sequencing, gene expression profiling, and massively 

parallel phenotyping, we have now entered a “data rich” era that provides rapid, 

simultaneous analysis of thousands of cellular components. The inherent challenge of 

integrating and analyzing these large, comprehensive data sets is arguably best met 

with a systems approach [182-185].  

This Dissertation encompasses three fundamental aims of systems biology as 

they relate to eukaryotic cellular metabolism: 

1. Reconstructing comprehensive, self-consistent networks based on a variety of 

data types (Chapters 3 & 5). 

2. Using network reconstructions as a context for large-scale data analysis 

(Chapter 6). 

3. Formulating mathematical models for network validation (Chapter 3) and 

hypothesis-driven experimentation (Chapter 4).  

The following sections summarize my contributions to systems biology (7.1), 

describe key applications of the S. cerevisiae iND750 and H. sapiens Recon 1 

metabolic networks, and highlight areas of eukaryotic reconstruction that need further 

improvement (7.3). 



123 

 

7.1 Contributions to the field 

While the reconstruction and modeling of prokaryotic networks is well 

established, especially in Escherichia coli [186], previous attempts at genome-scale 

reconstruction and analysis in eukaryotes are limited (3.1, 5.1). In this Dissertation, 

we have shown that fully compartmentalized, biochemically, genetically, and 

genomically integrated (BiGG) eukaryotic networks can be reconstructed, and 

demonstrate their applications in studying optimal growth behaviors (Chapter 3), 

predicting gene deletion phenotypes (Chapter 4), and investigating metabolic states in 

specific human tissues (Chapter 6).  A summary of key results and conclusions is 

provided here. 

 

7.1.1 Advancements in reconstructing eukaryotic metabolic networks 

Reconstruction principles first introduced in Forster and Famili’s original yeast 

network (3.1, [58]) were further developed in the assembly of S. cerevisiae iND750 

(3.2, [57]) to include full compartmentalization, direct incorporation of gene-

transcript-protein associations, and elementally and charge balanced reactions. This 

work subsequently led to a new generation of metabolic models that also incorporate 

these features [119, 187, 188], including the global human reconstruction (Chapter 5, 

[121]).  

A novel combination of top-down and bottom-up methods (1.2) were 

employed in the human reconstruction project to achieve careful, quality controlled 

curation within a manageable time frame. This approach (5.2), in which a candidate 

component list generated from the genome annotation was simultaneously curated by 

a team of researchers, could be used as a prototype for future mammalian 
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reconstructions in rat, cow, dog, rabbit, and chicken, whose genomes have been fully 

sequenced or are nearing completion [189-191]. 

 

7.1.2 Identification of metabolic knowledge gaps 

Our large-scale gene deletion study (3.3, [57]) and comprehensive survey of 

the human metabolic knowledge base (5.3, [121]) demonstrate the utility of genome-

scale reconstructions as strategic tools for discovery-driven research. For example, 

detailed examination of the 246 failure modes in the yeast deletion study led to 27 

direct suggestions of how to potentially improve the model (Table 3.3) and specific 

experiments that could be performed to further improve our understanding of yeast 

metabolism.  

Systemic assignment of reaction confidence scores in H. sapiens Recon 1 

revealed an apparent bias in the characterization of metabolic pathways (Figure 5.9), 

with nearly 20% of those in Recon 1 only moderately supported by biochemical 

and/or genetic evidence, and another 20% largely based on physiological data or 

modeling assumptions alone. In addition to highlighting these “thin” areas at the 

reaction and pathway levels, a list of specific metabolites that require additional study 

was also assembled based on careful evaluation of network gaps (Supplement B). 

 

7.1.3 Integrated analysis of metabolic phenotypes 

The integration of genome-scale networks and experimental data is essential to 

fully characterizing an organism’s genotype-phenotype relationships. For instance, our 

in silico and in vitro analysis of yeast’s optimal growth patterns (Chapter 4, [93]) 

revealed that S. cerevisiae exhibits only a few dominant phenotypes over a range of 
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glucose uptake and oxygenation conditions, which is strikingly different than 

behaviors observed in E. coli [72]. We also generated new hypotheses on the function 

and capacity of yeast’s metabolic machinery in these states, which includes the 

presence of an optimal glucose-oxygen uptake ratio for maximal ethanol production 

during optimal growth. 

The global human reconstruction and its collection of human-specific 

metabolic maps provided a comprehensive, quality-controlled context for visualizing 

and interpreting gene expression in obese skeletal muscle (6.1; [121]) and across a 

panel of 79 human tissues (6.2). Specifically, pathway analysis of these data suggested 

that gastric bypass surgery may induce transcriptional changes similar to long-term 

caloric restriction, and that tissues may exhibit some high-level transcriptional 

differences that can be used to differentiate their metabolic networks. 

 

7.2 What’s next for S. cerevisiae iND750 and H. sapiens Recon 1? 

For S. cerevisiae iND750, additional iterations of testing and validation with 

experimental data will be required to continually improve its interpretive and 

predictive capabilities [192]. In fact, since its release in 2004, two updated metabolic 

models have appeared: S. cerevisiae iLL672 [193], which has improved predictability 

of gene deletion phenotypes, and S. cerevisiae iMM910 [194], which includes 160 

additional genes and extensively validated protein and reaction localizations. A 

transcriptional regulatory network has also been assembled to describe the regulation 

of metabolic genes in S. cerevisiae iND750 [195].  
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The stoichiometric framework of S. cerevisiae iND750 is the basis of a variety 

of mathematical tools [4], and as a result, it has numerous modeling applications in the 

research community. For example, S. cerevisiae iND750 has been used to explore 

structure-function relationships related to gene essentiality [196-198], environmental 

conditions [199, 200], and optimal bioreactor design [201]. S. cerevisiae iND750 is 

also part of a growing collection of genome-scale reconstructions that have been used 

for comparative studies of network structure [202, 203], analysis of evolutionary 

network conservation [204], and as a basis for top-down assembly of new networks 

[205]. We anticipate that metabolic models of yeast will continue to be actively 

developed and expanded, and that the mathematical and experimental tools developed 

for yeast will lay the groundwork for future studies in higher eukaryotes, including 

human cells. 

The next big step for H. sapiens Recon 1 will be to develop cell-specific 

models for quantitative simulations of physiological and pathophysiological metabolic 

states. While the possibilities seem endless, the best candidate cell types for 

mathematical modeling will have defined metabolic objectives and good data 

availability (Table 7.1). For example, while skeletal muscle, cardiac muscle, and liver 

all have clear metabolic functions, obtaining healthy, homogeneous samples of these 

tissues can be difficult. On the other hand, blood cells and cell lines can be easily 

sampled and effectively grown in vitro. However, the metabolic objectives of these 

cells may be limited to biomass production, and it remains to be seen whether 

immortalized cell lines are suitable representations of in vivo cells. Thus, careful 

selection of reconstruction targets is critical to advancing constraint-based modeling 

of human cells. 
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7.3 Improving genome-scale reconstruction and analysis of 

eukaryotes 

Lessons learned from the reconstruction and analysis of S. cerevisiae iND750 

and H. sapiens Recon 1 have led to many suggestions for improving component 

representations (7.3.1), community interaction (7.3.2), and the integration of gene 

expression data (7.3.3). A summary of these insights and their implications for future 

extensions of this work are described here. 

  

7.3.1 Enhancing component representations 

Comparison of metabolite compartmentalization in the yeast and human 

metabolic networks revealed that we are getting better at defining the unique 

functionalities found within these compartments (Figure 7.1). For example, in addition 

to the mitochondria and peroxisome, which have a significant number of unique 

metabolites in both the yeast and human networks, the distinct metabolic roles of the 

Golgi apparatus, endoplasmic reticulum, and lysosome also appear to have been 

captured by the human metabolic network. Furthermore, singular value decomposition 

[206] of the yeast and human stoichiometric matrices [121] confirmed that the 

introduction of compartmentalization added new, non-redundant functionalities to 

these networks.  

So what can be done to improve our representation of intracellular 

compartments? A first step might be to remove the simplifying assumption that there 
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is a constant pH of 7.2 across all compartments and reformulate metabolites so that 

they have compartment-specific formulae and charge. Although this could lead to 

potential bookkeeping and computational challenges (as the number of metabolites 

and reactions could each increase eight-fold), such a study might provide new insights 

on compartmental relationships by introducing transformations that have varying 

energetic costs depending on their localization. 

Better biochemical characterization of intracellular compartments is also 

needed to improve the overall accuracy of our reconstructions. While green 

fluorescent protein (GFP)-tagging has been suggested for high-throughput localization 

assessment, our observations from a case study with three yeast mitochondrial data 

sets suggests that it might be premature to assign localizations using this data alone 

(data not shown). For membrane-bound enzymes, it is especially important to identify 

active site localizations to ensure proper compartmentalization of their corresponding 

reactions. High quality localization data may also reduce the need to add metabolite 

exchange reactions, which as a whole are poorly understood.  

In addition to compartmentalization, another feature introduced in the yeast 

and human reconstructions is the systemic representation of isozymes and complexes 

as Boolean logic statements. For yeast, these relationships were defined based on 

multiple, independent genes (Figure 3.2). However, mammals, unlike yeast, are 

known to have high levels of alternative splicing, with recent estimates of alternative 

splicing in 40-60% of human genes [199-204]. Therefore, we extended definitions of 

isozymes and complexes in the human reconstruction to include multiple splice 

variants of the same gene. These alternative transcripts were identified in terms of 

RefSeq mRNA identifiers [9], a non-redundant set of transcript sequences provided by 

the National Center for Biotechnology Information.  
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While we found RefSeq’s coverage of alternative transcripts in human genes to 

be limited (Figure 6.2), there were two primary reasons for choosing this identifier to 

define alternative transcripts in our reconstruction. First, RefSeq identifiers are highly 

curated and well integrated other types of data, including Affymetrix’s microarrays. 

Second, cataloging splice variants from the literature would have been challenging (if 

not impossible), as their descriptions are typically not reported consistently across 

research groups, and sequence information is rarely available. The ambiguities present 

in defining alternative transcripts are reminiscent of those that once existed with 

enzymes [207] and eventually led to the development of Enzyme Commission 

numbers [17]. Unfortunately, a major obstacle in establishing a similar universal 

nomenclature system for transcript variants is that the extent of their cross-species 

conservation is unclear [208]. Thus, while comprehensive identification and 

classification of human alternative splicing events is greatly needed, there appears to 

be many logistical challenges which must be overcome before this can be 

accomplished. 

Our representation of enzyme kinetics could also be improved in future 

versions of the yeast and human metabolic networks. For example, since we do not 

currently account for enzyme substrate and cofactor affinities, all isozymes are 

considered to be equivalent and can catalyze reactions at the same maximal rate in 

silico. This presents a challenge in gene expression analysis, as oftentimes isozymes 

are differentially regulated, leading to conflicting results when measurements are 

mapped to fluxes in the reaction network. Furthermore, we could account for sequence 

variations with known enzymatic defects by reducing maximum flux values for their 

corresponding reactions [209]. The inclusion of detailed kinetic data may therefore 
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provide a more accurate link between changes in component properties and measured 

physiological functions.  
 

7.3.2 Improving communication with the research community 

As demonstrated by S. cerevisiae iND750, genome-scale reconstructions have 

many applications as integrated databases, structural networks, and mathematical 

models. Consequently, their contents need to be disseminated in a variety of formats 

to best serve the needs of the research community. The current BiGG Human 

Database (http://bigg.ucsd.edu) provides basic search/browse capabilities, cross-

references gene, protein, reaction, and metabolite entries, and links to several 

biological databases (Table 5.7). In the future, we hope to expand the database to 

include other genome-scale reconstructions as well as add many more features, 

including: 

• Community forums for network curation and feedback; 

• Data repositories, advanced query tools, and technical support to facilitate 

information exchange; 

• Searchable, integrated maps for data visualization; and 

• Tools such as FBA (2.2.1) and pathway analysis (6.2) for in silico analysis. 

Making these improvements would facilitate community-based curation of metabolic 

networks and provide greater access to genome-scale visualization and analysis tools. 

 

7.3.3 Fine-tuning integration of gene expression data  

As described in 7.2, a long-term goal of the human metabolic reconstruction 

project is to tailor the global network to specific cells, tissues, and disease states. This 
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Dissertation describes an approach that uses presence or absence of whole metabolic 

pathways to potentially refine network content (6.2). While traditional pathway 

definitions are subjective, overlapping, and may have poor gene coverage, a key 

strength of this method is that it offers tremendous flexibility in the classification of 

functionally related genes. Thus, future implementations could use H. sapiens Recon 

1’s network structure (e.g., extreme pathways [210], correlated reaction sets [211], 

flux coupled reaction sets [120]) or biological modules (e.g., compartments or 

chromosomal locations) as “pathways.” In addition, gene presence or absence could 

alternatively be assessed by determining an appropriate cutoff expression value 

through statistical analysis or, instead of binary on/off calls, quantitative expression 

measurements such as standard deviations from the mean, or percentile rank could be 

used to determine genes with significant expression.  

An alternative to the pathway-based approach is integrating gene expression 

data at the individual reaction level. While this strategy is arguably less crude than 

pathway analysis, it also has some inherent challenges. First, results can be confusing 

when mapping expression data to reactions associated with more than one gene. For 

example, is an enzyme present if only one of its subunits is called on? Another 

potential difficulty is that this approach may lead to “incomplete” networks that can 

no longer achieve some of their desired functionalities. Methods for handling these 

challenges have been proposed [212] and are currently underway in the Systems 

Biology Research Group at UCSD. 
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7.4 Concluding remarks 

To paraphrase the introductory quote by Dr. Francis Collins, the human 

genome sequence is not simply the book of life, but a context for evolutionary 

analysis, a catalog of cellular components, and a basis for improved understanding and 

treatment of disease. Much of the work described in this thesis relates to the second 

application, using the human genome (as well as that of yeast) to systemically 

reconstruct metabolic networks. We have also made additional strides in 

understanding yeast physiology during optimal growth under a variety of genetic and 

environmental constraints. However, for human studies, the most exciting implications 

of this work are yet to come. Efforts are already underway to use the global network 

as a stepping stone for comprehensive, cell type-specific reconstructions that will 

enable detailed, quantitative analysis of human physiology and pathophysiology. 

Careful integration of genomic, transcriptomic, and metabolomic data may also yield 

translational technologies such as personalized simulations of drug metabolism. 

Finally, with the growing number of 1-D and 2-D annotations, new insights may be 

generated on the evolution and adaptation of metabolic networks. 
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Figure 7.1: Compartmental distribution of H. sapiens Recon 1's metabolites. The 
number of metabolites found in each compartment is shaded based on its connectivity. 
Metabolites that are unique to a particular compartment are shown in white; 
metabolites found in two compartments are shaded in grey; and metabolites found in 
three or more compartments are shaded in black. Compare to Figure 3.3 for yeast. 
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Figure 7.2: Number of transcripts per open reading frame (ORF) in the human 
gene index. An initial set of 20,015 human ORFs and 25,883 transcripts were 
identified based on the November 2004 genome annotation in LocusLink [116] and 
RefSeq mRNA identifiers [9] (see 5.2.2). 

2 transcripts
(2,645 ORFs)

1 transcript
(16,313 ORFs)

3 transcripts
(591 ORFs)

>4 transcripts
(244 ORFs)

4 transcripts
(222 ORFs)
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Table 7.1: Candidates for cell-specific human metabolic models. Legend – High 
quality, homogeneous data can be readily obtained (♦♦♦), data can be readily obtained, 
but is usually heterogeneous (♦♦), data is difficult to obtain or only available under 
limited conditions (♦). 
 

Cell type Potential objective functions Data 
availability 

Cardiac 
myocytes 

ATP production ♦ 

Skeletal 
myocytes 

ATP production ♦♦ 

Hepatocytes Bile, cholesterol, glycogen, and 
urea production 

♦ 

Cancer Biomass production ♦♦ 
Cell lines Biomass production ♦♦♦ 
B cell Biomass production ♦♦♦ 
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