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ABSTRACT OF THE DISSERTATION

Strategic Pricing and Resource Allocation:
Framework and Applications

by

Shaolei Ren
Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2012

Professor Mihaela van der Schaar, Chair

Enabled by ubiquitous broadband connectivity and seamless wireless connections,

we have witnessed in the past few years the emergence of a plethora of wireless appli-

cations, ranging from data communications and social networking to the more recently

wireless cloud computing. The growing tension between the exploding demand for

such wireless applications and the increasingly scarce network resources (e.g., spec-

trum, power) has urged a rethinking of the service providers’ pricing strategies and

network resource management techniques to cope with potential threats of quality-of-

service degradation and revenue decreases. Specifically, it has become of paramount

importance for service providers to strategically redesign their pricing policies and to

understand how various pricing policies will affect the service demand, competition in

the market, as well as the network resource management.

In this dissertation, I propose a novel framework to optimize a service provider’s

pricing policy as well as its network resource allocation decision for profit maximiza-

tion, in the presence of self-interested participating users that strategically respond

to the charged price to maximize their own benefits. Applicable to both static and

stochastic environments, the proposed framework explicitly takes into account user
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heterogeneity, which is observed in a wide range of applications. Based on the frame-

work, I investigate the problem of optimizing pricing and resource allocation for the

service provider’s profit maximization in various contexts, including cooperative re-

lay networks, communications markets, online user-generated content platforms, and

mobile cloud computing systems.
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CHAPTER 1

Introduction

1.1 Motivation

Due to the availability of ubiquitous broadband connectivity and seamless wireless

connections, we have witnessed in the past few years the emergence of a plethora of

wireless applications, ranging from data services and social networking to the more

recently wireless cloud computing, which leverage the power of the Internet and wire-

less networks to facilitate social interactions, information and knowledge sharing, as

well as business activities. Notable examples include AT&T Cloud, Google Android,

Apple iOS, Facebook and many others. In order to fully realize the benefits of the

current system infrastructure, tremendous technological efforts have been dedicated in

the past decade to increasing the service provider’s profit and to enhancing the system

performance in terms of throughput, response time, reliability and many other factors.

Among the efforts, resource allocation has received a considerable amount of attention

due to its effectiveness in significantly boosting the system performance and hence at-

tracting more users as well as increasing the profitability of the system. The traditional

resource allocation approach largely relies on system-wide centralized management,

which requires all the users to cooperatively follow the prescribed mechanism or pro-

tocol. Nevertheless, in the absence of a central controller, rational or selfish users have

incentives to optimize their own performances independently, without considering the

social welfare and thus, the existing centralized approaches are no longer applicable

in such settings. Moreover, treating pricing-based demand-side management and the

1



system resource management separately, the existing research does not reap the poten-

tial benefits of using pricing as a lever to enable more efficient resource management

and profit maximization. In this dissertation, we aim to formalize a new design frame-

work that weaves together strategic pricing and resource allocation, which we shall

show can significantly improve the system performance (e.g., in terms of profitability)

compared to the state-of-the-art approaches.

1.2 Key Challenges

In what follows, we state the key design challenges that are common to various appli-

cations.

• User decision dynamics: A majority of the existing research on pricing as-

sumes that the equilibrium demand is directly achieved as a function of the charged

price without considering the underlying dynamics that is required prior to reaching

the equilibrium demand state. Essentially, without having the complete information

regarding each other, self-interested users engage in a non-cooperative game and be-

have strategically. Thus, the existence of a (Nash) equilibrium and whether the users’

non-cooperative behaviors will lead to an equilibrium are particularly important in this

regard. Nevertheless, taking into account the users’ dynamic behaviors will couple the

service provider’s pricing decision with the users’ self-interested decisions, thereby

significantly complicating the formal analysis and design.

• User heterogeneity: What adds to the design challenges is user heterogeneity,

which is often neglected in the existing research pertaining to pricing-based resource

allocation. Heterogeneity is widely observed in various applications and in different

senses: wireless transmitters have heterogeneous channel conditions in relay networks;

wireless subscribers have heterogeneous data service demand in communications mar-

kets; and content producers have heterogeneous content quality on user-generated con-

2



tent platforms. The prevailing presence of user heterogeneity makes it difficult to con-

solidate all the users into one “super user” as well as to design an appropriate pricing

scheme to achieve the global optimality.

• Random environment with unknown dynamics: Achieving the global opti-

mality of pricing and system resource management hinges on the availability of future

information as well as the stochastic knowledge of the underlying dynamic environ-

ment, which is not readily available in practice. Without such information, it is an

intrinsically difficult problem to optimize the long-term system performance. The

existing solutions either reply on the prediction of the future information or assume

that the dynamic environment in which algorithms will be applied follows a certain

stochastic distribution. Nevertheless, predicting the future is typically vulnerable to

prediction errors, whereas assuming that the environment follows a certain stochastic

distribution cannot adapt to the real environment which may be arbitrarily random.

In summary, a new design framework for optimally setting prices and managing

the system resource is necessary, which explicitly takes into account the users’ self-

interested and competing behaviors, user heterogeneity, and incomplete information

about the (possibly random) environment.

1.3 Contributions of the Dissertation

In this dissertation, we propose a formal design framework that leverages the power

of pricing to enable more efficient resource management. Building upon the Stackel-

berg leadership model, the design framework explicitly takes into account the strate-

gic behaviors of self-interested users and finds its usage for a wide range of applica-

tions, such as cooperative relay networks, wireless communications markets, online

user-generated content platforms and mobile cloud computing systems. In partic-

ular, instead of directly assuming a demand function of the price, we also explore
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and explicitly consider the dynamic process in which self-interested users strategically

interact with each other and respond to the charged price. By doing so, the users’

self-interested behaviors are aligned with the system designer’s goal. Furthermore, by

considering user heterogeneity, we use pricing to proactively reshape the users’ be-

haviors/demands and adapt them to the system resource management. Our proposed

design framework is applicable to an arbitrarily random environment and, without the

necessity of predicting the future information, it is provably efficient in the sense that

the resulting performance loss with respect to the optimal offline algorithm with per-

fect future information is upper bounded.

In the following, we summarize the remainder of this dissertation that instantiates

the proposed design framework using various applications.

1.3.1 Chapter 2: Pricing and Power Control in Wireless Relay Networks

In Chapter 2 of the dissertation, we consider a wireless amplify-and-forward relay net-

work with one relay node and multiple source-destination pairs/users and propose a

pricing framework that enables the relay to set prices to maximize either its revenue or

any desirable system utility. Specifically, depending on the quality of the received sig-

nals, the relay sets prices and correspondingly charges the users utilizing its resources

for their transmissions. The price is determined in such a way that the relay’s revenue

or system utility is maximized. Given the specified price, the users competitively em-

ploy the relay node to forward their signals. We model each user as a rational player,

which aims at maximizing its own net utility through power allocation, and analyze the

competition among the users within the framework of non-cooperative game theory. It

is shown that, in the game played by the users, there always exists a unique pure Nash

equilibrium point that can be achieved through distributed iterations. Next, subject to

the availability of complete information about the users at the relay, we propose a low-

complexity uniform pricing algorithm and an optimal differentiated pricing algorithm,
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in which the relay either charges the users at a sub-optimal uniform price or it charges

different prices per user. We also show that, by applying the differentiated pricing al-

gorithm that enforces the users to transmit at certain power levels, any system utility

can be maximized. Extensive simulations are conducted to quantify the performance

of the proposed methods.

1.3.2 Chapter 3: Pricing in Wireless Communications Markets

In Chapter 3, we focus on the users’ aggregate data demand dynamics in a wireless

communications market served by a monopolistic wireless service provider (WSP).

Based on the equilibrium data demand, we optimize the WSP’s data plans and long-

term network capacity decisions to maximize its profit. First, by considering a market

where only one data plan is offered, we show that there exists a unique equilibrium

in the data demand dynamics regardless of the data plans, and that the convergence of

data demand dynamics is subject to the network congestion cost, which is closely re-

lated to the WSP’s long-term capacity decision. A sufficient condition on the network

congestion cost indicates that the WSP needs to provide a sufficiently large network

capacity to guarantee the convergence of data demand dynamics. We also propose a

heuristic algorithm that progressively optimizes the WSP’s data plan to maximize its

equilibrium revenue. Next, we turn to a market where two different data plans are

offered. It is shown that the existence of a unique equilibrium data demand depends

on the data plans, and the convergence of data demand dynamics is still subject to the

network congestion cost (and hence, the WSP’s network capacity, too). We formalize

the problem of optimizing the WSP’s data plans and network capacities to maximize

its profit. Finally, we discuss the scenario in which the data plans are offered by two

competing WSPs and conduct extensive simulations to validate our analysis.
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1.3.3 Chapter 4: Pricing in Online User-Generated Content Platforms

In Chapter 4, we focus on user-generated content, such as blogs and self-made videos,

which has becoming a key component in emerging social media. Specifically, we con-

sider a user-generated content platform monetized through advertising and managed

by an intermediary. To maximize the intermediary’s profit given rational participants

(i.e., content producers and content viewers), we propose a payment scheme in which

the intermediary either taxes or subsidizes a content producer an amount of money

proportional to the number of views of the producer’s content. First, we use a model

with a representative content viewer to determine how the content viewers’ attention is

allocated across available content by solving a utility maximization problem. Then, by

modeling the content producers as self-interested agents making independent produc-

tion decisions, we show that there exists a unique equilibrium in the content production

stage, and propose a best-response dynamics to model the decision-making process

and to reach the equilibrium. Next, we study the optimal payment scheme (i.e., the

payment scheme maximizing the intermediary’s profit) that the intermediary chooses

taking into account the decisions made by the representative content viewer and the

content producers. In particular, by considering the well-known quality-adjusted Dixit-

Stiglitz utility function for the representative content viewer, we derive explicitly the

optimal payment per content view and characterize analytical conditions under which

the intermediary should tax or subsidize the content producers. Finally, we general-

ize the analysis by considering heterogeneity in terms of production costs among the

content producers.

1.3.4 Chapter 5: Pricing and Scheduling in Wireless Cloud Computing

In Chapter 5, we consider a wireless cloud computing system in which a profit-maximizing

wireless service provider operates a data center and can provide cloud computing
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services to its subscribers. In particular, we focus on batch services, which, due to

their non-urgent nature, allow more scheduling flexibility than their interactive coun-

terparts. Unlike the existing research that studied separately demand-side manage-

ment and energy cost saving techniques for the wireless cloud (both of which are crit-

ical to profit maximization), we propose a provably-efficient Dynamic Scheduling and

Pricing (Dyn-SP) algorithm which, using the pricing mechanism as a lever, proac-

tively adapts the service demand to workload scheduling in the data center and oppor-

tunistically utilizes low electricity prices to process batch jobs for energy cost saving.

Without the necessity of predicting the future information (as assumed by some prior

works), Dyn-SP can be applied to an arbitrarily random environment in which the elec-

tricity price, available renewable energy supply, wireless network capacities provided

by base stations may evolve over time as an arbitrary stochastic process. It is proved

that, compared to the optimal offline algorithm with future information, Dyn-SP can

produce a close-to-optimal long-term profit while bounding the job queue length in

the data center. We perform a simulation study based on both traces and randomly

generated data to demonstrate the effectiveness of Dyn-SP. In particular, we show both

analytically and numerically that a desired tradeoff between the profit and queueing

delay can be obtained by appropriately tuning the control parameter. Our results also

indicate that, compared to the other algorithms which neglect demand-side manage-

ment, cooling system energy consumption, or the queue length information, Dyn-SP

achieves a higher average profit while incurring (almost) the same average queueing

delay.

1.3.5 Chapter 6: Conclusion

Chapter 6 concludes the dissertation and includes a discussion about future research

directions.
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CHAPTER 2

Pricing and Distributed Power Control in Wireless

Relay Networks

In this chapter, we consider a wireless amplify-and-forward relay network with one

relay node and multiple source-destination pairs/users and propose a pricing frame-

work that enables the relay to set prices to maximize either its revenue or any desirable

system utility. Specifically, depending on the quality of the received signals, the relay

sets prices and correspondingly charges the users utilizing its resources for their trans-

missions. The price is determined in such a way that the relay’s revenue or system

utility is maximized. Given the specified price, the users competitively employ the

relay node to forward their signals. We model each user as a rational player, which

aims at maximizing its own net utility through power allocation, and analyze the com-

petition among the users within the framework of non-cooperative game theory. It is

shown that, in the game played by the users, there always exists a unique pure Nash

equilibrium point that can be achieved through distributed iterations. Next, subject to

the availability of complete information about the users at the relay, we propose a low-

complexity uniform pricing algorithm and an optimal differentiated pricing algorithm,

in which the relay either charges the users at a sub-optimal uniform price or it charges

different prices per user. We also show that, by applying the differentiated pricing al-

gorithm that enforces the users to transmit at certain power levels, any system utility

can be maximized. Extensive simulations are conducted to quantify the performance

of the proposed methods.
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2.1 Introduction

For many wireless networks, the transmission between two distant users may have

to be accomplished with the help of an intermediate node, i.e., relay, due to trans-

mit power or other constraints [1]. In the presence of a relay node, distributed spatial

diversity, or cooperative diversity, can be created without physically packing multi-

ple antennas into small-size nodes as long as certain signal combining techniques are

applied at the destination [2][3].

The traditional network resource allocation largely relies on system-wide central-

ized management, which requires all the users to cooperatively follow the resource

sharing mechanism and incurs a heavy spectral loss due to the signalling overhead as-

sociated with the information exchange and coordination. Nevertheless, in the absence

of a central controller, rational or selfish users have incentives to optimize their own

performances independently, without considering the social welfare and thus, the ex-

isting centralized mechanisms are no longer applicable in such settings. An alternative

solution is to model a network of selfish users using non-cooperative game theory [34].

Furthermore, it has been demonstrated in the literature that appropriate pricing tech-

niques can be deployed among multiple selfish users to implement various resource

allocation policies, including, but not limited to, revenue maximization [9], social-

welfare improvement [18], user fairness guarantee [20] and system-wide optimization

[19]. Interested readers are referred to [8] for a survey on game-theoretic resource

allocation and pricing mechanisms. In wireless relay networks, without a proper com-

pensation framework, relays have no incentives to forward the signals of various users

to the corresponding destinations, since this is done at the expense of their own energy

consumption. Hence, pricing becomes a useful and efficient mechanism that reim-

burses relays for using their resources by making payments,1 thereby providing the

1The payments can be tokens, virtual money, etc., which can be used in the future by the relay to
purchase resources from the other nodes in the network.
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relays with incentives to forward the other users’ signals [11]–[13].

In this chapter, we focus on a wireless relay network, in which there exists one

relay node and multiple source-destination pairs/users.2 We propose a pricing mecha-

nism that gives the relay incentives to forward the users’ signals to the destinations. In

particular, the price is determined by the relay such that its revenue3 or system utility

is maximized. Given the specified price, the users competitively utilize the relay node

to forward their signals and make appropriate payments to the relay based on the re-

ceive signal to interference plus noise ratio (SINR). We model each user as a selfish

player, which aims at maximizing its own net utility by adjusting its transmit power,

and analyze the emerging competition among the users using non-cooperative game

theory. Specifically, given the knowledge of its local channel state information (CSI),

each user maximizes its utility by optimally choosing its power level in response to

the power allocation strategies of the other users. This process iterates until conver-

gence. We show that, in the non-cooperative game played by the users, there always

exists a unique pure Nash equilibrium point (NEP) that can be achieved through the

distributed iterative power allocation process. Next, we assume that the relay has only

incomplete information about the users (i.e., the number of users and the sum SINR

when all the users transmit with their maximum powers) and propose a low-complexity

uniform pricing algorithm based on which the relay charges the users at a sub-optimal

uniform price. Subsequently, we extend the uniform pricing algorithm to differenti-

ated pricing by assuming that the relay has complete information about the users (i.e.,

channel coefficients, power constraints, etc.). Furthermore, we show that, by utilizing

the differentiated pricing algorithm, any system utility can be maximized even though

2Throughout this chapter, we interchangeably use the term “user” to represent the source-destination
pair.

3The dedicated relay incurs a fixed cost, e.g., power consumption, associated with forwarding the
users’ signals, and moreover, the relay’s resource in the current time slot cannot be reserved for fur-
ther use [17]. For instance, the cost of deploying the relay station and power expenditure is paid in
advance by the infrastructure manager. Therefore, as described in the transmission protocol, the relay
will forward the users’ signals and revenue maximization is virtually equivalent to profit maximization
[25][27][33].
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the users behave selfishly. Finally, extensive simulations are conducted to verify the

performance of the proposed methods.

The main contributions of this chapter are threefold: (i) we focus on a relay net-

work with multiple users that are modeled as selfish players competing against each

other for the scarce network resource, i.e., the relay, and study the NEP of the non-

cooperative game; (ii) depending on how much information the relay has about the

users, we propose two pricing algorithms, i.e., uniform pricing with incomplete in-

formation and differentiated pricing with complete information; (iii) the proposed dif-

ferentiated pricing algorithm enforces the users to transmit at desired power levels at

the NEP and hence, can be applied to optimize any system utility, which includes the

relay’s revenue as a special case.

The rest of this chapter is organized as follows. Chapter 2.2 provides the literature

review and Chapter 2.3 describes the system model and problem formulation. In Chap-

ter 2.4, a distributed power allocation algorithm along with two pricing algorithms are

developed for the considered relay network. Simulation results are shown in Chapter

2.5. Finally, concluding remarks are offered in Chapter 2.6.

2.2 Related Works

Power allocation, both with and without pricing, has been extensively studied in wire-

less networks. Next, we present a brief overview of the related works and describe the

relationship to our proposed mechanism.

It is worth noting that pricing mechanisms, which originate from the competitive

market theory [33], have been widely applied in the context of cognitive systems

[9][10] and relay networks [11]–[13]. For instance, given a wide-band uplink cog-

nitive system, [9] proposes a differentiated pricing algorithm that charges different

secondary users at different prices to maximize the revenue of the service provider.
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To utilize the benefits of distributed spatial diversity and guarantee incentive com-

patibility in wireless cooperative networks, [10] adopts the hierarchical Stackelberg

game-theoretic framework where the primary user, as the leader, selects some sec-

ondary users as the cooperative relay nodes and, in return, grants the spectrum usage

to the participating secondary users for their own data transmissions. As followers,

the secondary users decide the payment made to the primary user to gain the chan-

nel access time and maximize their own utilities. Considering a cooperative network

with multiple self-interested relays, the authors in [11] cast the problem of distributed

power control and relay selection into the Stackelberg formulation. In particular, the

relays are regarded as leaders that selfishly set the prices such that they can maximize

the revenue. The payment made by the user serves as a reimbursement that gives the

relay an incentive to participate in the cooperation. Similar compensation frameworks

enabling the relay to forward the users’ signals are proposed in the literature, e.g.,

[12][13].

Following a joint user-centric and network-centric optimization approach, the au-

thors in [14] propose a distributed power control and revenue optimization framework

in conventional cellular networks. Specifically, the network controller, e.g., base sta-

tion, charges each user in accordance with its throughput while the users transmit over

an interference channel and maximize the energy efficiency. The same approach is

later applied in the multi-cell scenario [15]. In [16], an auction-based spectrum shar-

ing protocol is proposed such that each user submits an optimal bid to the network

manager to maximize the utility minus the payment. Two payment rules, i.e., SINR

and power, are considered and it is shown that, with logarithmic utilities, the power

auction outperforms the SINR auction in terms of the revenue from the network per-

spective. The auction framework is also extended in [17] to a cooperative network

setting wherein the relay and the users are modeled as the auctioneer and bidders,

respectively. Focusing on the classic Gaussian interference channel, [24] introduces
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the notion of “taxation” which captures the effect of one user’s power allocation on

the others’, and presents a modified iterative water-filling algorithm that maximizes

the sum utility. For a cellular network, the authors in [26] proposed a differentiated

pricing mechanism such that any near-optimal system utility can be achieved.

In contrast with the existing literature, we shift our attention to a relay network with

multiple selfish users and propose a pricing mechanism that can maximize the system

utility and provide the relay with incentives to forward the signals of the users. New

challenges emerging in such relay networks include: (i) how to design a proper pricing

mechanism and how to set the price; (ii) given the price, how to model and analyze

the competition among the selfish users; (iii) in view of the users’ selfishness, how to

maximize the system utility. In this chapter, the users competitively adjust their trans-

mit powers and utilize the relay node to accomplish their own transmissions and, as

the service provider, the relay charges all the users according to either uniform or dif-

ferentiated pricing algorithm to maximize the revenue. Furthermore, the differentiated

pricing can be applied to optimize any system utility.

2.3 System Model

Consider a wireless relay network consisting of one relay node and multiple source-

destination pairs.4 The sources and destinations are indexed by Si andDi, respectively,

for i = 1, 2 · · ·Q, and the relay node is represented by R. Similar system models with

one relay node and multiple users have been considered in the literature for different

purposes as well [4]–[7], wherein [4]–[6] focus on orthogonal transmissions without

interferences and [7] studies interference management in a two-way relay channel [1].

4As in [4][5], the analysis throughout this chapter can be applied to a network with more than one
relays, provided that the network can be classified into multiple clusters, each of which consists of one
relay and multiple users, and different clusters are transmitting over different channels.
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2.3.1 Network Model

We assume that the channels are flat (or frequency non-selective) fading. When the

channels are frequency-selective fading and divided into multiple subchannels (e.g.,

OFDM), the proposed algorithm in this chapter can still be applied on a per-subchannel

basis if each user has an individual maximum power constraint for each subchannel.

Nevertheless, if each user has a total power constraint across all the subchannels, it

is intrinsically difficult to generalize the proposed algorithm. In order to keep the

analysis tractable, we note that it is a common practice to focus on a flat fading (or fre-

quency non-selective fading) channel model when studying pricing-related algorithms

([11][14][17][26]). The channel coefficients for the Si −R and the R−Di channels

are denoted by gi and hi, respectively, for i = 1, 2 · · ·Q. The transmit powers of Si

and R are pi and pR, respectively. The local CSI, i.e., gi and hi, is only obtained by

user i, and neither gj nor hj is known to user i, if j 6= i, due to the distributed nature of

the considered communication problem. Furthermore, we assume that the zero-mean

complex additive white Gaussian noise (AWGN) at each node to has a variance5 of

N0. Due to the half-duplex constraint, we consider orthogonal relaying transmissions,

e.g., the source nodes and the relay node transmit in two non-overlapping time slots.

The direct link between Si and Di is neglected due to, for instance, the shadowing ef-

fects [1]. To forward the data from the source to the destination, we adopt the classical

amplify-and-forward strategy [3] as the relaying operation, which has been shown to

be an appealing technique due to its low cost and easy implementation as compared to

the decode-and-forward protocol [30]. Hence, the signals received at R and Di can be

written, respectively, as

yR =
Q∑

j=1

gj
√

pjxj + nR and yi = αhiyR + ni, (2.1)

5This assumption is imposed only for the convenience of notation, as in [24], and can be relaxed
without affecting the analysis in this chapter.
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where xi is the unit-variance transmit signal from Si toDi, α is the amplification factor

of R, nR and ni are the statistically-independent AWGN terms at R and Di, respec-

tively. The amplification factor α =
√

pR∑Q

j=1
|gj |2pj+N0

, which is public information

available to all the users, is chosen to satisfy the fixed power constraint at the relay.

Assuming that Di is only interested in the signal xi and treats the multi-user interfer-

ence as noise [23][29], we can then express the receive SINR at Di as

γi =
|gi|2|hi|2pRpi

|gi|2N0pi + (|hi|2pR + N0) ·
(∑Q

j=1,j 6=i |gj|2pj + N0

) . (2.2)

Recall that in an amplify-and-forward relay network with only one source node, only

AWGN noise is amplified and forwarded by the relay to the destination node in ad-

dition to the desired signal component, and thus, the received signal to noise ratio is

expressed as |gi|2|hi|2pRpi

|gi|2N0pi+(|hi|2pR+N0)N0
. When there are multiple source nodes transmit-

ting simultaneously to the relay, both AWGN noise and multi-user interference (i.e.,
∑Q

j=1,j 6=i |gj|2pj) are amplified and forwarded to the destination nodes and hence, the

resulting SINR expression becomes (2.2). The achievable rate of user i is therefore

given by

Ri(pi; p−i) =
1

2
log (1 + γi) , (2.3)

where the scaling factor 1/2 is due to the fact that Si transmits xi only for half of the

frame, γi is given in (2.2), and p−i = (p1 · · · pi−1, pi+1 · · · pQ) is the vector of power

allocation strategies of all the users except for user i.

Before proceeding to the problem formulation, we briefly discuss how transmis-

sions using the relay node considered in this chapter significantly differ from con-

ventional single-hop transmissions [23][24], despite the absence of direct channels.

First, the signals are transmitted through a cascaded channel, i.e., multi-access chan-

nel followed by broadcast fading channel. Second, the signal forwarded by the relay
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node is not “clean”, whereas the source transmits noiseless signals to the destination in

single-hop Gaussian interference channels, i.e., the relay amplifies the Gaussian noise,

in addition to the desired signal, which can be seen from the signal model in (2.1).

Hence, the analysis in this chapter can be regarded as a generalization of the existing

results on one-hop interference channels. As a special case, if the relay-destination

channel is sufficiently good (i.e., |hi|2 → ∞), the dual-hop relay channel reduces to

the conventional multi-access interference channel and the receive SINR of user i be-

comes γi = |gi|2pi∑Q

j=1,j 6=i
|gj |2pj+N0

, which can also be obtained by taking the limit of (2.2)

with respect to |hi|2 →∞.

2.3.2 Problem Formulation

There are various payment rules in communications networks. For instance, each

individual user may be charged in proportion to the relay’s transmit power [11], its

throughput [14], receive SINR [16][17], allocated rate [25], and its own transmit power

[26]. In the problem considered in this chapter, it is clear from (2.2) that the receive

SINR is partially determined by the relay’s power. Furthermore, it is the SINR that

measures the quality of the received signal and thus influences the utility of each user.

Hence, it is reasonable to assume that the payment made to the relay is a function of

the receive SINR. In particular, we assume in this chapter that the payment that user

i needs to make to the relay is defined as πiγi, where πi is the price for user i set by

the relay. As will be shown in this chapter, this payment rule allows the relay to set

optimal differentiated prices such that any system utility function can be maximized.

Moreover, the considered payment rule charges each user in proportion to its receive

SINR, and has been applied in [16] and [17] for different purposes (e.g., to achieve

different tradeoffs between fairness and efficiency in a multi-user relay network [17]).

Other similar payment rules can be found in [9][14]. In general, the utility function

is increasing and concave in the receive SINR [16][17]. As a particular example and
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to gain more insights on the pricing algorithms, we adopt in the sequel the achievable

rate6 Ri(pi; p−i) as the utility function of user i. Given the utility function and pay-

ment rule, the payoff, or net utility function, of user i can therefore be expressed as the

following surplus [9][11][17]

ui(pi; p−i) =
1

2
log (1 + γi)− πiγi, (2.4)

where the first term 1
2
log (1 + γi) is the achievable rate of user i, and πiγi is the pay-

ment made to the relay. From the perspective of the relay, in order to maximize

the revenue collected from the users, the relay needs to set an optimal price vector

Π∗ =
{
π∗1, π

∗
2 · · ·π∗Q

}
such that

Π∗ = arg max
Πº0




Q∑

i=1

πiγi(pi; p−i)


 . (2.5)

Note that the relay’s price and the users’ power allocation are coupled in a complex

way, and we shall address the coupling in Chapter 2.4. In particular, relay’s price

influences the users’ power allocation which, in turn, affects the relay’s revenue. While

we first use the revenue as a particular utility for the relay, we note that the proposed

pricing mechanism can also be applied to maximize any system utility, making the

proposed pricing framework a suitable option for managing wireless relay networks

with selfish users.
6Note that the logarithm-based function or achievable rate is a widely-used utility definition (see,

e.g., [9][11][17][24][25]) and the analysis herein can be applied, after modifications, to other concave
utility functions as well. In particular, the existence of pure NEP and convergence of the iterative
power control algorithm are not affected if we replace the achievable rate with a general concave utility
function in (2.4). Furthermore, it is easy to incorporate a weight into the utility function, i.e., user i has
a utility of wiRi(pi; p−i) where wi > 0 is a factor that converts the achievable rate into currency [9] or
approximates the reception quality in the case of video delivery applications [28].
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2.4 User-Centric Optimization and Pricing

In this part, we cast the user-level problem of distributed power allocation into the

framework of non-cooperative game theory. Adopting revenue as the relay’s utility, we

propose two pricing algorithms, i.e., uniform pricing and differentiated pricing. Then,

we show that the differentiated pricing algorithm can maximize any system utility by

enforcing the users to transmit at desired power levels.

2.4.1 Distributed Power Allocation

Non-cooperative game theory is an effective tool to capture the selfish behaviors of

self-interested players [34]. Given the price set by the relay, we can mathematically

characterize the competition among the self-interested users as a non-cooperative game

Guser = {Ω, {Pi}i∈Ω, {ui(pi; p−i)}i∈Ω} (2.6)

where Ω , {1, 2 · · ·Q} is the set of active users (i.e., Si − Di pair), Pi is the set of

admissible power allocation strategies of user i defined as {pi : 0 ≤ pi ≤ pmax
i } and

ui(pi; p−i) is the payoff of user i given in (2.4). The optimal power of user i in re-

sponse to the power levels of all the other users is referred to as the best response

function denoted by Bi(p−i). In the non-cooperative game played by the users, the

NEP is achieved when user i, given p−i, cannot increase its net utility ui(pi; p−i) by

unilaterally changing its own power pi, for all i ∈ Ω. Mathematically, the NEP, de-

noted by p∗ = (p∗1, p
∗
2 · · · p∗Q), of the user-level game Guser in (2.6) is formally defined

as follows [34]

ui(p
∗
i ; p

∗
−i) ≥ ui(pi; p

∗
−i), ∀ pi ∈ Pi, ∀ i ∈ Ω . (2.7)
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It is known that, in a one-shot7 non-cooperative game, pure NEP is a critical oper-

ating point at which the outcome of the game becomes stabilized [34], and thus, it is

of great interest to study the existence of NEP in such a game. Moreover, whether and

how the non-cooperative game can eventually arrive at the NEP is another question we

have yet to answer. To this end, we first explicitly express the best response function of

user i, i.e., Bi(p−i), which specifies the transmit power user i should use in response to

the other users’ power strategies and the price set by the relay. Specifically, depending

on the price πi set by the relay, the unique Bi(p−i) can be derived and expressed in a

compact form as

Bi(p−i) =


δi(πi) (|hi|2pR + N0)

(∑Q
j=1,j 6=i |gj|2pj + N0

)

|gi|2 · [|hi|2pR −N0 · δi(πi)]




pmax
i

0

(2.8)

where [ · ]ba = max{min{ · , b }, a } and δi(πi) is a non-negative and continuously

non-increasing function of πi defined as

δi(πi) =





0, if 1
2

< πi,

1
2πi
− 1, if (1 + γi(p

max
i ;0))−1 < 2πi ≤ 1,

γi(p
max
i ;0), 0 ≤ 2πi ≤ (1 + γi(p

max
i ;0))−1 ,

(2.9)

in which γi(p
max
i ;0) is obtained by plugging (pi; p−i) = (pmax

i ;0) into (2.2). Denote

p = (p1, p2 · · · pQ) and B(p) = (B1(p−1),B2(p−2) · · · BQ(p−Q)), respectively. Then,

in order to facilitate the analysis and development of the distributed algorithm, we

further simplify (2.8) and express it in a vector form as

B(p) = [Tp + t0N0]
pmax

0 , (2.10)

7As will be shown later, the pure NEP is reached through an iterative power allocation process.
Nevertheless, the user-level game in this chapter is still one-shot in the sense that, unlike in a repeated
game [34], the players or users do not take into account the history or future utility when making the
current decisions. Thus, pure NEP is an appropriate concept characterizing the steady outcome of the
game.
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where [ a ]p
max

0 =
(
[a1]

pmax
1

0 , [a2]
pmax
2

0 · · · [aQ]
pmax

Q

0

)
, t0i =

δ(πi)·(|hi|2pR+N0)
|gi|2·[|hi|2pR−N0·δ(πi)]

and

Tij =





δ(πi)·(|hi|2pR+N0)
|gi|2·[|hi|2pR−N0·δ(πi)]

· |gj|2, if i 6= j,

0, if i = j,
(2.11)

for i, j = 1, 2 · · ·Q. Next, we present an iterative distributed algorithm (i.e., Algo-

rithm I), in which each user chooses, at each iteration, its best response to the power

strategies of the others.

Algorithm I: Iterative Distributed Power Allocation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Input: πi, gi, hi for user i, i = 1, 2 · · ·Q
Step 1: n = 0; choose any feasible p0 =

(
p0

1, p
0
2 · · · p0

Q

)

Step 2: p(n+1) = B(pn)
Step 3: n = n + 1; go to Step 2 until convergence

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In Step 1 of Algorithm I, each user i can arbitrarily choose its initial power p0
i

from its feasible power set {pi : 0 ≤ pi ≤ pmax
i } in a distributed manner and then, the

initial power vector p0 = (p0
1, p

0
2 · · · p0

Q) is also feasible. To complete the algorithm

description, we give Theorem 1 regarding the existence of NEP in the user game and

the convergence of the proposed algorithm.

Theorem 1. Given any non-negative price vector Π º 0 set by the relay, there exists

a unique pure NEP of the user game Guser. Moreover, starting from any initial point

p0 ∈ P , P1 × P2 · · · × PQ, the iteration specified by p(n+1) = B(pn) always

converges to the unique NEP of the user game as n →∞.

Proof. The proof is mainly based on the standard interference function that was first

proposed for distributed power control in [21]. Any function f(x) satisfying the fol-

lowing three properties, for all x ≥ 0, is called standard:

1. Positivity: f(x) > 0;
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2. Monotonicity: if x ≥ x̃, then f(x) ≥ f(x̃);

3. Scalability: for all β > 1, βf(x) > f(βx).

To prove the existence of a unique NEP and the convergence of Algorithm I, we

consider the following two cases depending on the value of Π which plays a critical

role in the best response vector B(p).

Case 1: 0 ¹ Π ≺ 1
2

.

We have in this case 0 < t0i < +∞ and 0 < Tij < +∞, for i 6= j and

i, j = 1, 2 · · ·Q. It is trivial to show that, without considering the maximum power

constraint, the function of p in the update (2.10), i.e., Tp + t0N0, is standard. Then,

following the proof of Theorem 7 in [21], we can easily prove that the update rule

defined in (2.10) with the maximum power constraint is also standard. Hence, by ap-

plying Corollary 1 in [21], we establish the existence of a unique fixed point in the

proposed iterative power allocation process (i.e., NEP of the user game) and the con-

vergence of Algorithm I to this unique NEP, given 0 ¹ Π ≺ 1
2

.

Case 2: 1
2
≤ πi, for some i ∈ Ω.

In this case, the iteration pn+1
i = Bi(p

n) is always zero, if 1
2
≤ πi. Thus, users that

are charged a price greater than or equal to 1
2

can be excluded from the network. The

remaining users are all charged with a price less than 1
2

and hence, they form a new

virtual network that satisfies Case 1. Hence, as we have shown in Case 1, the game

played by the users in the virtual network admits a unique NEP that can be reached by

applying Algorithm I. Note that adding the users that are charged a price greater than

or equal to 1
2

into the virtual network has no effect for the virtual network, since the

added users always transmit at zero powers. Therefore, the game has a unique NEP

and the proposed distributed power allocation algorithm converges to this unique NEP

regardless of the initial point, even though B(p) is not a standard interference function

as it violates the properties of positivity and scalability.
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To sum up, we have proved Theorem 1 by considering the above two cases. The

existence of a NEP can also be proved by showing that the net utility function of each

user is quasi-concave in this user’s power and continuous in the power of all the users,

and that the feasible power set is compact and closed. The details are omitted for

brevity. It should also be noted that, in general, the existence of a (even unique) fixed

point of an iterative process does not necessarily imply the convergence of this iterative

process (see [35] for an example). The existence of a fixed point and convergence

are two separate properties of an iterative process. In the problem considered in this

chapter, however, both the existence of a fixed point (NEP) and the convergence of the

iterative process can be established, since the best response function is standard and

there exists a maximum power constraint [21]. ¥

Before concluding this part, we note that the distributed nature of the algorithm

stems from the fact that the information required to compute Bi(p−i) at user i can be

locally observed without exchanging CSI among different users. Specifically, as shown

in (2.8), the information needed by user i includes the local CSI (i.e., gi and hi), the

relay’s transmit power pR, the price πi set by the relay and the multi-user interference

plus noise
∑Q

j=1,j 6=i |gj|2pj + N0. In particular, user i can obtain the local CSI through

channel estimation and feedback.8 The relay’s transmit power pR and the price πi are

transmitted via control channels to user i prior to the users’ transmissions. Regarding

the multi-user interference, the relay node can broadcast to all the users its amplifica-

tion factor α such that user i, for i ∈ Ω, acquires the value of
∑Q

j=1,j 6=i |gj|2pj + N0

by computing pR
α2 − |gi|2pi =

∑Q
j=1,j 6=i |gj|2pj + N0. It can therefore be seen that the

proposed algorithm can be applied in a distributed manner and that it needs to be re-

executed when the price set by the relay is updated or the network condition changes.

Finally, note that the proposed algorithm is applicable to scenarios in which the en-

8At the beginning of a frame, a known pilot symbol is sent by a transmitter node to allow its receiver
node to estimate the channel gain and then feed it back to the transmitter node. Other schemes are also
available to let the users obtain their local CSI (see [32] and references therein for details).
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vironment does not change frequently (e.g., the channel gains vary slowly when the

nodes in the network move sufficiently slowly or remain in fixed positions). On the

other hand, if the channels suffer from fast fading (e.g., due to high mobility), the

proposed algorithm no longer works. The same limitation exists in (almost) all the

existing work (see, for instance, [11][16][17][24]).

2.4.2 Uniform Pricing With Incomplete Information

In many wireless networks with limited information exchange among different nodes,

the relay has only incomplete information about the users (e.g., the maximum power

constraints of the users are private and thus unknown to the relay). Under such con-

straints, we propose a uniform pricing algorithm, i.e., the relay sets and broadcasts to

the users a uniform price π1 = π2 · · · = πQ = π.

As we have stated in Theorem 1, the user-level game always consists of a unique

NEP given any price vector set by the relay. Hence, the relay aims at maximizing its

revenue by setting an appropriate price when the game reaches the NEP, i.e., the user

game becomes stabilized. Nevertheless, since the private information of the users,

e.g., power strategy space, is unknown to the relay, it cannot analytically compute

the NEP of the user-level game Guser or directly set an optimal uniform price such

that π∗ = arg maxπ≥0

(
π

∑Q
i γi(p

∗
i ; p

∗
−i)

)
. As a consequence, an iterative process that

adjusts the price is needed to identify the optimal uniform price. A naive solution

is to perform brute-force exhaustive search. Specifically, the relay divides the range

of feasible prices into many sufficiently small intervals, and for each small interval,

the relay selects a uniform price that falls into the interval and computes the revenue

when the user-level game reaches the unique NEP. Finally, the relay chooses the price

that generates the maximum revenue among all the candidate prices. Unfortunately,

the average total number of iterations required by this method to obtain the optimal

uniform price is mN̄ , where m is the number of candidate prices and is typically a
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large value, and N̄ is the average number of iterations needed by the distributed power

allocation algorithm to converge.

Given that it is computationally prohibitive and mathematically involved to find the

optimal uniform price through the exhaustive search, we alternatively propose a low-

complexity algorithm that can yield a close-to-optimal uniform price. Before stating

the algorithm, we first define the lower and upper bounds on the optimal uniform

price, i.e., πa = 1
2
mini∈Ω {1 + γi (p

max)}−1 and πb = 1
2
maxi∈Ω {1 + γi (p

max)}−1,

respectively, and summarize some instrumental properties of the revenue function9

ρ(π) = π
∑Q

i=1 γi(π) in the following theorem.

Theorem 2. The revenue function has the following properties:

1. ρ(π) ≥ 0;

2. ρ(π) = 0 if π = 0 or π ≥ 1
2
;

3. ρ(π) < ∞ if the number of users, Q, is finite.

4. ρ(π) = π
∑Q

i=1 γi(p
max) when 0 ≤ π ≤ πa;

5. There exists a certain value of price π̂ satisfying





π̂ < πb, ∃i, j ∈ Ω s.t. γi (p
max) 6= γj (pmax)

π̂ = πb, ∀i, j ∈ Ω s.t. γi (p
max) = γj (pmax)

, (2.12)

such that ρ(π) = Q ·
(

1
2
− π

)
if π̂ ≤ π ≤ 1

2
;

Proof. The proof is given in the order of the properties listed in Theorem 2.

Property 1–3 directly follows the best response function in (2.8).

Property 4: Given p−i =
(
pmax

1 · · · pmax
i−1 , pmax

i+1 · · · pmax
Q

)
, it can be derived from

the best response function that Bi(p−i) = pmax
i , if 0 ≤ π ≤ 1

2
{1 + γi(p

max)}−1.

Hence, pmax =
(
pmax

1 , pmax
2 · · · pmax

Q

)
satisfies pmax = B(pmax), i.e., pmax is the NEP,

9The SINR is an explicit function of the uniform price π which affects the net utility and the power
allocation of users.
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when 0 ≤ π ≤ 1
2
mini=1,2···Q {1 + γi (p

max)}−1. In this case, by Theorem 2, the

distributed power allocation algorithm globally converges to the unique point pmax.

The intuitive interpretation is that, when the price is sufficiently low, every user can

afford the payment charged by the relay and thus will transmit at a high power. When

all the users transmit at their maximum powers, the receive SINR γi(π) is a positive

constant, denoted by γ̃i = γi(p
max), for i = 1, 2 · · ·Q, irrespective the value of π.

Therefore, the revenue ρ(π) = π
∑Q

j γ̃j is a strictly increasing function of π when

0 ≤ π ≤ 1
2
mini=1,2···Q {1 + γi (p

max)}−1.

Property 5: We first introduce the following lemma before proving the existence of

π̂.

Lemma 1. If π > 1
2
{1 + γi(p

max)}−1, then the maximum transmit power constraint

of user i is not activated at the NEP of the game Guser, i.e., 0 ≤ p∗i < pmax
i , for any

i = 1, 2 · · ·Q.

Proof. By taking the first-order derivative ofBi(p−i) in (2.8) with respect to π, it can be

easily shown thatBi(p−i) is a strictly decreasing function of π when 1
2
{1 + γi(p

max
i ; p−i)}−1 ≤

π ≤ 1
2
. In particular, π = 1

2
{1 + γi(p

max
i ; p−i)}−1 results in Bi(p−i) = pmax

i . There-

fore, the maximum power constraint of user i is not activated, i.e., 0 ≤ Bi(p−i) < pmax
i ,

if 1
2
{1 + γi(p

max)}−1 < π ≤ 1
2
.

When π > 1
2
, Bi(p−i) is always zero. Hence, Lemma 1 is proved. ¤

Now, we shall prove Property 5 by considering the following two cases.

Case 1: γi (p
max) = γj (pmax), for i, j = 1, 2 · · ·Q.

In this case, we will show that π̂ = 1
2
maxi=1,2···Q {1 + γi (p

max)}−1. When π̂ ≤
π ≤ 1

2
, Bi(p−i) satisfies ∂ui(pi;p−i)

∂pi
|pi=Bi(p−i) = 0, for i = 1, 2 · · ·Q. Then, it can be

derived that

γi [Bi(p−i); p−i] =
1

2π
− 1, ∀p−i ∈ P1 × · · · Pi−1 × Pi+1 · · · PQ. (2.13)
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Thus, at the NEP of the game Guser, we have γi(p
∗
i ; p

∗
−i) = 1

2π
− 1, for i = 1, 2 · · ·Q.

Therefore, the revenue at the relay, i.e., ρ(π) = π
∑Q

i=1 γi(p
∗
i ; p

∗
−i) = Q ·

(
1
2
− π

)
, is a

strictly decreasing function of π when π̂ = 1
2
maxi=1,2···Q {1 + γi (p

max)}−1.

Case 2: “γi (p
max) = γj (pmax), for i, j = 1, 2 · · ·Q” does not hold.

Without loss of generality, we assume {1 + γ1 (pmax)}−1 = maxi=1,2···Q {1 + γi (p
max)}−1

and {1 + γQ (pmax)}−1 = mini=1,2···Q {1 + γi (p
max)}−1. Lemma 1 states that, for

any value of the price π > 1
2
{1 + γQ (pmax)}−1, the maximum transmit power con-

straint of user Q is not activated at the NEP, i.e., p∗Q < pmax
Q . Then, following the

proof of Lemma 1, it can be also shown that p∗i < pmax
i , for i = 1, 2 · · ·Q − 1, if

π ≥ 1
2
{1 + γ1 (pmax)}−1.

By temporarily relaxing the maximum power constraint, we can express the best

response function in (2.10) as

p(n+1) = B(pn) = Tpn + t0N0, (2.14)

where T is defined in (2.11). It was shown in [22] that, if and only if the spectral radius

of T is less than one, the iteration process specified by (2.14) converges to a unique

fixed point, regardless of the initial point, and the fixed point is given by

p∗ = Tp∗ + t0N0 = (I−T)−1 t0N0 =
∞∑

i=0

Tit0N0. (2.15)

As stated above, when π ≥ 1
2
{1 + γ1 (pmax)}−1, the transmit power of user i is less

than its maximum power constraint, for i = 1, 2 · · ·Q, and hence, we have

p∗ = [Tp∗ + t0N0]
pmax

0 = Tp∗ + t0N0 = (I−T)−1 t0N0 =
∞∑

i=0

(T)i t0N0.

(2.16)

It should be noted that, if (2.16) holds, γi(p
∗
i ; p

∗
−i) = 1

2π
−1 can be satisfied at the NEP
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of the user game, for i = 1, 2 · · ·Q, and as a consequence, the revenue of the relay,

i.e., ρ(π) = π
∑Q

i=1 γi(p
∗
i ; p

∗
−i) = Q ·

(
1
2
− π

)
, is a strictly decreasing function of π.

As each non-diagonal element of T is continuously decreasing in π, it is clear

that the transmit power of each user at the NEP, given in terms of the fixed point in

(2.15), is also decreasing in π, if the NEP in the game Guser without considering the

maximum power constraint exists. Thus, the minimum price, denoted by π̂, which

yields a matrix T with a spectral radius of less than one and satisfies (2.16) must be

less than 1
2
{1 + γ1 (pmax)}−1 and, given the minimum price, only one user reaches its

maximum power constraint or multiple (less than Q) users reach their corresponding

maximum power constraints simultaneously at the NEP. On the other hand, if π̂ is

less than or equal to 1
2
{1 + γQ (pmax)}−1, at least one user will violate the maximum

power constraint at the fixed point of the iteration process specified by (2.14) and

hence, (2.16) cannot be satisfied. Therefore, π̂ lies between 1
2
{1 + γQ (pmax)}−1 and

1
2
{1 + γ1 (pmax)}−1, and when π̂ ≤ π ≤ 1

2
, the revenue at the relay is a strictly

decreasing function of π.

By considering Case 1 and Case 2 separately, we have proved Property 5.

This proves Theorem 2. ¥

Theorem 2 can be interpreted as follows: <1> The receive SINR is always non-

negative and thus, the revenue is also non-negative; <2> The revenue of the relay van-

ishes when the service of the relay, i.e., packet forwarding, is free or the price is too

high; <3> The maximum revenue of the relay is finite as long as the number of users

is finite; <4> and <5> The optimal price of the relay lies in a certain interval, i.e.,

[πa, π̂], which depends on the channel conditions and transmit power constraints. Prop-

erty 4 and 5 significantly reduce the complexity associated with the exhaustive search

by eliminating the uniform prices that fall out of the range of the optimal price. They

also form the basis of the proposed sub-optimal uniform pricing algorithm. Specif-

ically, the sub-optimal uniform price is obtained by artificially shrinking the interval
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(i.e., [πa, π̂]) to a specific point which is then set as the uniform price. Following these

desirable properties of the revenue function, we derive the following corollary.

Corollary 1. There exists an optimal finite uniform price π∗ such that πa ≤ π∗ ≤ π̂ ≤
πb, and the corresponding maximum revenue ρ(π) is finite and positive. The equalities

are activated simultaneously if and only if γi (p
max) = γj (pmax) for all i, j ∈ Ω. ¥

Corollary 1 states that the optimal price is upper and lower bounded by π̂ and πa,

respectively. As a special case, if and only if γi (p
max) = γj (pmax) for all i, j ∈ Ω,

then we have πa = π∗ = π̂ = πb. In other words, only when γi (p
max) = γj (pmax),

for all i, j ∈ Ω, the optimal uniform price can be analytically computed as πa = π∗ =

π̂ = πb. Otherwise, we only know πa ≤ π∗ ≤ π̂ < πb, i.e., the optimal uniform price

cannot be explicitly expressed in a closed form, although πa = π∗ = π̂ < πb may hold.

If π̂ = πa holds, the optimal price π∗ is then clearly πa. Based on this fact, we propose

a low-complexity algorithm that gives the relay a sub-optimal price. Specifically, if we

artificially increase πa and decrease π̂ simultaneously until they meet at π and assume

that

ρ(π) =





π ·∑Q
i=1 γi(p

max), if 0 ≤ π ≤ π

Q ·
(

1
2
− π

)
, if π < π ≤ 1

2

, (2.17)

we can easily obtain the “optimal” uniform price as

π∗ ≈ π =
Q

2
[∑Q

i=1 γi(pmax) + Q
] . (2.18)

Generally speaking, setting (2.18) as the price can only result in a sub-optimal revenue

for the relay. Nevertheless, the high computational complexity incurred by the ex-

haustive search is avoided and only limited information is needed to calculate (2.18):

the number of active users in the network, i.e., Q, and the value of
∑Q

i=1 γi(p
max).

The relay can set a sufficiently low10 price πs, given which the NEP is pmax, and find

10It can be verified that, if the relay sets a price 0 < π ≤ 1
2 mini∈Ω (1 + γi(pmax

i ;0))−1, then the
resulting NEP of the user game is pmax. The details are omitted due to the lack of space.
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∑Q
i=1 γi(p

max) by computing
∑Q

i=1 γi(p
max) = ρ(πs)

πs
. The uniform price is determined

in a similar way in the context of conventional cellular systems in [14] where the base

station charges the users according to the throughput. Moreover, based on Corollary 1,

we can establish the following corollary that guarantees the optimality of the uniform

price in (2.18) when Q = 1.

Corollary 2. When there is only one user in the network, the uniform price in (2.18)

is the optimal one that generates higher revenues than any other uniform prices, i.e.,

π =
1

2 [γ1(pmax
1 ) + 1]

= arg max
π≥0

(π · γ1(p
∗
1)) . (2.19)

Furthermore, the transmit power of user 1 is pmax
1 at the NEP of the game Guser. ¥

We note that Corollary 2 directly follows Corollary 1 by invoking πa = π∗ =

π̂ = πb when Q = 1. Furthermore, when there are sufficiently many users in the

network or the users operate in low SINR regions, (2.18) is also a good approximation

of the optimal uniform price. Specifically, when the number of users in the network

is large, the sub-optimality of (2.18) can be explained as follows. It is natural that the

level of interference observed by user i, i.e.,
∑Q

j=1,j 6=i |gj|2pj , increases when there are

more active users. Hence, given a large value of Q, maxi=1,2···Q γi(p
max) becomes a

small non-negative number due to the strong interference caused by the other users.

Correspondingly, the difference between the lower bound and the upper bound on the

optimal uniform price is not significant, i.e., π̂ − πa is a small number. Thus, the

sub-optimal price (2.18), which lies between πa and π̂, is close to the optimal one.

Note that the small non-negative number π̂ − πa is also a upper bound on the gap

between (2.18) and the optimal uniform price. Similar statements can be made when

the network operates in low SINR regions as well. As in the existing literature (e.g.,

[14]), it is challenging to determine a priori the exact gap between (2.18) and the

optimal uniform price, and hence, we shall verify in numerical results that the loss of
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revenue is not significant in all the cases when the relay chooses (2.18), as compared

to the optimal one obtained through exhaustive search, as its uniform price.

2.4.3 Differentiated Pricing With Complete Information

In this part, we extend the above analysis to a general case, in which different users

may be charged at different prices, by considering that the relay has complete infor-

mation about the network. It has been shown in [31] that the system performance

can be improved if some users have complete information about the network. In the

following analysis, the relay is assumed to know the maximum power constraints of

all the users,11 in addition to the channel coefficients. Under the differentiated pric-

ing rule, we need to identify an optimal price vector Π∗ set by the relay such that

Π∗ = arg maxΠº0

(∑Q
i=1 πiγi(p

∗
i ; p

∗
−i)

)
. Differentiated pricing is also referred to as

price discrimination in the economics literature [33]. Similarly, depending on the chan-

nel conditions and maximum power constraints, the relay can charge different users at

different prices. Before developing the differentiated pricing algorithm, we first ex-

press the optimal value of πi in terms of p∗, for all i ∈ Ω, in the following proposition.

Proposition 1. Assume that Π∗ = {π∗1, π∗2 · · ·π∗Q} is the optimal price vector, which

generates the maximum revenue for the relay, and that p̃∗ = {p̃∗1, p̃∗2 · · · p̃∗Q} is the

unique corresponding power allocation vector at the NEP of the user game Guser. Then,

Π∗ can be expressed in terms of p̃∗ as follows

π∗i =
1

2(1 + γi(p̃∗))
, ∀i ∈ Ω, (2.20)

where γi(p̃
∗) is obtained by substituting p̃∗ into (2.2).

Proof. If 0 ≺ p̃∗ ≺ pmax, then (2.20) directly follows the definition of NEP in (2.7)

11To implement the protocol, the user may be required to report its maximum transmit power level to
the relay before entering the network.
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and the first-order optimality condition. If p̃∗i = 0 for some i ∈ Ω0 ⊂ Ω, then π∗i ≥ 1
2

and γi(p̃
∗) = 0 and hence, (2.20) also holds true. If p̃∗i = pmax

i for some i ∈ Ωmax ⊂ Ω,

then p̃∗ is the power allocation vector at the NEP of the game Guser for any 0 ≤ πi ≤
1

2(1+γi(p̃∗))
and thus, it is clear that the optimal value of π is π∗i = 1

2(1+γi(p̃∗))
. Therefore,

Proposition 1 is proved. ¥

Proposition 1 enables us to express the price vector, which maximizes the relay’s

revenue, in terms of the transmit power levels at the NEP of the user-level game. Since

the SINR is also a function of the transmit power levels of the users, we can then

express the revenue, defined as the product of SINR and price, using a function of

the power
∑Q

i=1 πi(p)γi(p). Therefore, instead of determining the optimal price vec-

tor directly, the relay can first decide the desired transmit power levels of the users

and then set corresponding prices to enforce the users to transmit at these desired

power levels. Mathematically, following Proposition 1 and substituting (2.20) into
∑Q

i=1 π∗i γi(p
∗
i ; p

∗
−i), the problem of maximizing

∑Q
i=1 π∗i γi(p

∗
i ; p

∗
−i) subject to Π∗ º 0

can be reformulated as

max
Q∑

i=1

γi(p̃
∗)

2(1 + γi(p̃∗))
=

∑Q
i=1

|hi|2pR
|hi|2pR+N0

|gi|2p̃∗i
2

(∑Q
i=1 |gi|2p̃∗i + N0

)

s.t., 0 ¹ p̃∗ ¹ pmax,

(2.21)

where the objective function is linear-fractional and hence quasi-concave in p̃∗ [113].

Therefore, the optimal value of p̃∗ can be found by transforming (2.21) into a standard

linear program [113], and the details of solving (2.21) are omitted due to the space

limitations.

After the value of p̃∗ is found, we can immediately obtain the optimal price vector

using Proposition 1. It should be noted that, given the optimal price vector obtained

using (2.20), the outcome of the game Guser when it reaches the NEP through iterations

is that user i transmits at the power of p̃∗i , regardless of the initial power strategies. This
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can be explained as follows. On one hand, we have shown in Proposition 1 that the

optimal price vector Π∗ can be expressed in (2.20) in terms of p̃∗, i.e., one of the price

vectors corresponding to p̃∗ is Π∗ given in (2.20). One the other hand, by uniqueness

of the NEP of the game Guser given any price vectors stated in Theorem 2, it can be

seen that p̃∗ is the unique NEP of the game Guser if the relay sets Π∗ as its pricing

vector. Therefore, we can solve (2.21) to find p̃∗ and then Π∗ can be determined using

(2.20). Furthermore, based on the objective function in (2.21), we have the following

corollary regarding the upper bound on the revenue12 of the relay.

Corollary 3. The maximum revenue that the relay can obtain from all the users by

charging the optimal differentiated prices is upper bounded by 1
2
, and for any i ∈ Ω,

lim|gi|2,|hi|2→∞ ρ(Π∗) = 1
2
. ¥

Corollary 3 states that, given differentiated prices, the maximum revenue of the

relay can be collected from only one user if this user has a sufficient good channel

condition. In other words, to maximize its revenue with complete information, the re-

lay can set an appropriate price vector such that only one user transmits, if this user’s

channel gains are sufficiently large (i.e., |gi|2, |hi|2 → ∞), while all the other users

who are charged a price greater than or equal to 1
2

remain silent. In contrast, under

the uniform pricing algorithm, all the users are charged the same price according to

(2.18) and hence, they will transmit simultaneously regardless of the channel condi-

tions as long as the price is below 1
2
. Next, as a measure of comparison among dif-

ferent pricing schemes, we briefly discuss the average number of iterations played by

the users and the information required by the relay to set the prices. Given complete

information about the users, i.e., channel coefficients and power strategy space, the

relay can directly compute the optimal differentiated price vector Π∗, by solving the

linear-fractional optimization problem in (2.21), and thus, it only needs to broadcast

12The unit of revenue is the same as that of the utility function, i.e., “nats/s/Hz” in this chapter [17].
Alternatively, the unit of the revenue can be converted to that of real money by multiplying the revenue
with a constant converter without affecting the analysis [9].
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Table 2.1: Average Number of Iterations and Information Requirement of Different
Pricing Algorithms

Optimal Uniform Sub-optimal Uniform Differentiated
Information ∅ Q = |Ω| and

∑Q

i=1
γi(p

max) gi, hi and Pi =
{

pi : 0 ≤ pi ≤ pmax
i

}
,

Requirement for i = 1, 2 · · ·Q
Average Number mN̄ N̄ 0
of Iterations

once the optimal price vector to the users. However, in the case of uniform pricing,

the relay needs to set a sufficiently low price πs before identifying the sub-optimal

uniform price, due to the constraint that only incomplete information about the users

is available to the relay. Define N̄ and m as the average number of iterations required

by the user game Guser to converge and the number of candidate quantized values of

uniform prices, respectively. We list in Table 2.1 the average number of iterations prior

to data transmissions of the users, and the information requirement of different pricing

schemes.

2.4.4 System Utility Maximization

In the previous analysis, we have proposed two pricing mechanisms to maximize the

relay’s revenue, under the implicit assumption that the relay is solely revenue-driven.

The proposed differentiated pricing algorithm, however, is also applicable if the relay

wants to optimize the system utility which can be defined in any form. For the con-

sidered relay network, we have shown that, given any price vectors, there is a unique

NEP in the user-level game, implying that the relay can set prices to enforce the users

to transmit at desired power levels. Therefore, any system utility, defined as a function

as the users’ transmit power p, can be achieved by setting appropriate prices.

As in [26], we denote the system utility which the relay wants to maximize as

U(p). Denote the optimal power levels maximizing U(p) as p̄, i.e.,

p̄ = arg max
p∈P

U(p). (2.22)
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After finding13 p̄, the relay can set prices according to

πi =
1

2(1 + γi(p̄))
, ∀i ∈ Ω. (2.23)

Then, it is guaranteed that the users will transmit at p̄ at the NEP and thus, the system

utility is maximized. For instance, let us take user scheduling as a concrete example. If

the relay aims to schedule user 1 to transmit in a time slot and all the other users remain

silent, it can set the price vector in such a way that π1 ∈ [0, 1
2
) and π2 = · · · = πQ ≥ 1

2

and, given this price vector, only user 1 will transmit when the game reaches the NEP.

We state the pricing-based utility maximization problem formally in the following

proposition.

Proposition 2. Denote p̄ = arg maxp∈P U(p), where U(p) is an arbitrary system

utility. If the relay sets prices according to (2.23), then the system utility is maximized

after the user-level game reaches the NEP.

Proof. By plugging πi = 1
2(1+γi(p̄))

and p−i = (p̄1 · · · p̄i−1, p̄i+1, · · · p̄Q) into the best

response function of user i given in (2.8), it can be shown that

Bi(p−i) = p̄i, (2.24)

for i = 1, 2 · · ·Q. Therefore, p̄ is the NEP of the user game if the prices are set

according to (2.23). Then, by uniqueness of NEP in Guser, we see that p̄ must be the

transmit power levels at the NEP corresponding to the price vector set based on (2.23).

As a result, the system utility is maximized. ¥

Finally, we note that the relay is in fact taking the role of a central planner that

has complete information about the network [26], if it wants to maximize the system

13If U(p) is concave in p, there exists efficient algorithms to maximize U(p). Otherwise, the relay
may need to maximize U(p) via brutal-force search. As in [26], the details of optimizing U(p) is
beyond the scope of this chapter, wherein we focus on the design of pricing algorithms.
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Figure 2.3: Homogeneous Network: Average Sum Rate versus Average Channel Gain

utility which includes the revenue as a particular example. Nevertheless, the distin-

guishing feature of the proposed differentiated pricing algorithm is that it can enforce

the users to transmit at desired power levels such that the system utility is maximized,

even though these users are self-interested. Moreover, unlike in [26] wherein only

near-optimal system utility can be achieved, we propose a pricing mechanism that can

maximize any system utility by exploiting the uniqueness of NEP in the user-level

game. The proposed pricing mechanism can be briefly described as follows. At the

beginning of a frame, each user acquires its local information and, according to some

performance metric (e.g., maximizing the revenue), the relay calculates the optimal

power levels of all the users, sets its corresponding prices, and then announces the

prices to the users. Then, Algorithm I is executed and the resulting NEP is achieved.

In practice, Algorithm I can stop whenever the change in transmit power in two con-

secutive iterations is smaller than a certain threshold.
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2.5 Numerical Results

For the convenience of illustration, gi and hi are modeled as independently Rayleigh

distributed random variables, for i ∈ Ω. The transmit power of the relay node and the

maximum transmit power of each source node are normalized to one.

We consider a simple four-user network and randomly generate the channel gains

and illustrate in Fig. 2.1 the convergence of the proposed distributed power alloca-

tion algorithm and the sub-optimal uniform pricing algorithm. The upper plot shows

that the sub-optimal price (dashed line) is reasonably close to the optimal price (solid

line) obtained through exhaustive search, which validates the use of (2.18) as the uni-

form price selected by the relay. Next, we evaluate and compare the proposed pricing

algorithms based on two distinct performance metrics, i.e., average 14 revenue and

sum rate.15 An orthogonal transmission scheme (i.e., time-division multiple access, or

TDMA, in this chapter) in which the source nodes do not interfere each other is also

included in the comparison. Specifically, in the TDMA protocol, the users transmit in a

round-robin manner and the relay charges each user using the optimal pricing scheme

specified in (2.19).

2.5.1 Homogeneous Network Topology

Given the homogenous network topology, we assume that gi and hi have the same

mean values, for i ∈ Ω, i.e., E{|g1|2} = E{|h1|2} = · · · = E{|gQ|2} = E{|hQ|2},

where E{·} is the expectation operator.

14Throughout the simulations, “average” (e.g., average revenue, average rate) is taken over 10000
channel realizations.

15Due to the non-convexity, we solve the problem of sum rate maximization in (2.22) using greedy
methods and obtain (locally) optimal solutions.
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Figure 2.5: Homogeneous Network: Average Sum Rate versus Number of Users

2.5.1.1 Effects of Channel Gains

We consider a four-user network and examine the effects of channel gains on the aver-

age revenue and average sum rate in Fig. 2.2 and Fig. 2.3, respectively. As intuitively
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expected and can be seen from (2.21), the average revenue of the relay increases as

the channel condition becomes better. Fig. 2.2 demonstrates that the revenue loss due

to the sub-optimality of the uniform price is not significant compared to the optimal

uniform price. Among all the four pricing schemes, differentiated pricing generates

the maximum revenue for the relay at the expense of having more information about

the users. In other words, by allowing the users to transmit simultaneously, the dif-

ferentiated pricing outperforms the optimal pricing in the TDMA protocol. This can

be explained by noting that simultaneous transmission includes TDMA as a special

case, i.e., simultaneous transmission reduces to TDMA if only one user is scheduled

to transmit at a time (the other users can be charged a price greater than or equal to 1
2

such that they transmit at a zero power). Regarding the upper bound on the revenues,

it can be observed that the maximum revenue is always less than 1
2

regardless of the

channel conditions, which verifies Corollary 3. Fig. 2.3 compares the the proposed

algorithms when they are applied to maximize the average sum rate of all the users

(i.e., the system utility function becomes the sum rate). Note that, although the sub-

optimal uniform pricing algorithm is applicable only for revenue maximization, we

include the sub-optimal pricing for the completeness of comparison when we consider

sum rate maximization. The optimal uniform price is numerically searched such that

the sum rate is maximized. The proposed differentiated pricing achieves the highest

average sum rate among all the considered protocols, since it can enforce the selfish

users to transmit at the optimal power through pricing. For instance, if a user has a

poor channel condition, the relay can charge this user a price greater than or equal to
1
2

such that this user keeps silent and does not cause interference to the other users.

We also observe from Fig. 2.3 that, when the channel condition is good enough, the

TDMA protocol outperforms the two uniform pricing schemes, in which all the source

nodes always transmit simultaneously and the heavy interference among the source

nodes significantly limits the achievable rate.
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Figure 2.7: Heterogeneous Network: Average Sum Rate versus Average Channel Gain

2.5.1.2 Effects of Number of Users

In Fig. 2.4 and Fig. 2.5, we fix the average channel gains and vary the number of

active users. Fig. 2.4 shows that, when there are more users competing for the relay,
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the proposed pricing schemes achieve a higher revenue while the revenue obtained

under the TDMA protocol does not change for the considered homogeneous network

topology (since all the users with the same average channel statistics can be considered

as one user in the TDMA protocol). Fig. 2.4 also indicates that the sub-optimal revenue

of the relay gained by setting (2.18) as the uniform price is close to the optimal uniform

one obtained through exhaustive search. Like in Fig. 2.2, the differentiated pricing

outperforms its uniform counterpart and the TDMA protocol in terms of the average

revenue. In terms of the average sum rate, the differentiated pricing is still able to

achieve the best performance, and the revenue under the two uniform pricing schemes

decreases when there are more users simultaneously transmitting in the network due

to the strong interference.

2.5.2 Heterogeneous Network Topology

For the convenience of illustration, we assume thatE{|g1|2} = E{|h1|2} andE{|g2|2} =

E{|h2|2} = · · · = E{|gQ|2} = E{|hQ|2} in heterogenous network topologies.

2.5.2.1 Effects of Channel Gains

As an example, we focus on a four-user network with heterogenous channel conditions

in Fig. 2.6 and Fig. 2.7. Fig. 2.6 demonstrates that, among all the four pricing schemes

considered in this chapter, the differentiated pricing yields the highest revenue for the

relay, which is upper bounded by 1
2
. From Fig. 2.7, it can be seen that when the

channel conditions becomes better, the average sum rate under the uniform pricing

schemes are outperformed by that in the TDMA protocol and may not necessarily

increase, since the interference also becomes stronger and reduces the received SINR.

As in a homogeneous network topology, the proposed differentiated pricing achieves

the highest average sum rate, since sum rate is only an instance of the system utility
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Figure 2.9: Heterogeneous Network: Average Sum Rate versus Number of Users

function and hence can be optimized using the differentiated pricing algorithm.
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2.5.2.2 Effects of Number of Users

We consider fixed average channel gains and vary the number of users in a heteroge-

neous network topology in Fig. 2.8 and Fig. 2.9. It can be observed from Fig. 2.6 that

the two uniform pricing schemes outperform the TDMA protocol in terms of the aver-

age revenue, and the proposed differentiated pricing achieves the highest revenue when

there are more than one users regardless of the channel conditions. Fig. 2.9 shows that

the differentiated pricing results in the highest average sum rate. Moreover, when the

channel gains are strong, the average sum rate in the TDMA protocol is higher than

that in the two uniform pricing schemes, since the strong interference can be avoided

in the TDMA protocol.

To sum up, the proposed differentiate pricing scheme achieves the best perfor-

mance in terms of the average revenue and sum rate, among all the four considered

protocols. Compared to the TDMA protocol, the simultaneous transmission with uni-

form pricing schemes are generally more efficient in terms of the revenue, and less

efficient in terms of the average sum rate (due to the unavoidable interference) when

the channel gains are strong. Prior to concluding this part, we note that the analysis

of general system utility maximization via the differentiated pricing in Chapter 2.4 is

also valid and can be applied to arbitrary utility functions, though we do not show it in

the simulations due to space limitations.

2.6 Conclusion

In this chapter, we considered a wireless relay network consisting of one relay node and

multiple source-destination pairs. First, the interactions between the relay and the users

were appropriately captured. We then modeled each user as a self-interested player,

which aims at maximizing its own benefit by choosing the optimal transmit power, and

analyzed the competition among the users using the notion of non-cooperative game
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theory. It was proved that, in the non-cooperative game played by the users, there

always exists a unique steady operating point, i.e., NEP, which can be achieved in a

distributed manner. Next, under the assumption that the relay has only incomplete

information about the users, we proposed a low-complexity algorithm, in which the

relay charges the users at a sub-optimal uniform price. The analysis was then extended

to differentiated pricing wherein the relay charges different users at different prices.

We also showed that the proposed differentiated pricing can be applied to maximize

any system utility. Extensive simulations were showed that the relay can gain the

maximum revenue and the maximum sum rate by adopting the differentiated pricing

algorithm, which though requires complete information about the users. Furthermore,

given only incomplete information about the users, the relay can apply the proposed

low-complexity sub-optimal uniform pricing algorithm without incurring a significant

revenue loss as compared to the optimal uniform pricing algorithm. Interference can-

not be avoided when using uniform pricing schemes and thus, the resulting average

sum rate is less than that achieved by orthogonal transmission (e.g., TDMA) when the

channels are in a good condition.
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CHAPTER 3

Data Demand Dynamics in Wireless Communications

Markets

In this chapter, we focus on the users’ aggregate data demand dynamics in a wireless

communications market served by a monopolistic wireless service provider (WSP).

Based on the equilibrium data demand, we optimize the WSP’s data plans and long-

term network capacity decisions to maximize its profit. First, by considering a market

where only one data plan is offered, we show that there exists a unique equilibrium

in the data demand dynamics regardless of the data plans, and that the convergence of

data demand dynamics is subject to the network congestion cost, which is closely re-

lated to the WSP’s long-term capacity decision. A sufficient condition on the network

congestion cost indicates that the WSP needs to provide a sufficiently large network

capacity to guarantee the convergence of data demand dynamics. We also propose a

heuristic algorithm that progressively optimizes the WSP’s data plan to maximize its

equilibrium revenue. Next, we turn to a market where two different data plans are

offered. It is shown that the existence of a unique equilibrium data demand depends

on the data plans, and the convergence of data demand dynamics is still subject to the

network congestion cost (and hence, the WSP’s network capacity, too). We formalize

the problem of optimizing the WSP’s data plans and network capacities to maximize

its profit. Finally, we discuss the scenario in which the data plans are offered by two

competing WSPs and conduct extensive simulations to validate our analysis.
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3.1 Introduction

We have witnessed over the last decade a successful proliferation of wireless networks,

which support a variety of services and applications, and increasingly heated compe-

tition among the wireless service providers (WSPs). To sustain their competitive posi-

tions in the market and increase revenues, WSPs themselves will need to appropriately

price their scarce network resources and expand their network capacities to support the

unprecedented amount of wireless traffic. Hence, it becomes of paramount importance

for these WSPs to understand how the aggregate data demand of all the subscribers

evolves and how the demand is affected by various pricing plans.

In this chapter, we are interested studying the users’ aggregate data demand dy-

namics, and optimizing the WSP’s data plans and network capacities in a wireless

communications market. In general, the WSP’s network capacity is difficult to change

once it is deployed and hence, it is a long-term strategy for the WSP to decide its net-

work capacity [41]. In contrast, the WSP can adjust its data plans over the lifespan of

its network infrastructure, although the data plans cannot be updated as frequently as

the users change their data plan subscription. Overall, we will assume that the users

may change their plan frequently, based on their short-term (e.g., a few days or weeks

per period) decisions, the WSP’s data plans are changed less frequently, based on the

WSP’s medium-term (e.g., several months or years per period) decisions, while the

WSP’s network capacity decision is a long-term (e.g., several years per period) deci-

sion. In order to evaluate and compare the long-term profitability of networks with

different capacities, the WSP needs to predict its maximum profit for each network

capacity configuration. To maximize revenue given the network capacity and the as-

sociated cost, the WSP needs to know the users’ aggregate data demand and their

willingness to pay for the service, and then choose its optimal data plans. Hence, by

using backward induction, we study first the users’ dynamic decisions as to whether or

not they subscribe to the WSP’s data plans (i.e., short-term problem), then the WSP’s
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revenue-maximizing data plans (i.e., medium-term problem), and finally the WSP’s

network capacity decision (i.e., long-term problem). Note that we assume in our study

that the medium-term period is sufficiently short compared to the long-term period,

while it is sufficiently long compared to the short-term period.

We consider a wireless market with a monopolistic WSP serving a sufficiently

large number of users. For the sake of analysis, we consider that the WSP can of-

fer one or two data plans, while each user can subscribe to one of the available data

plans. Due to the resource constraint (e.g., network capacity), congestion effects are

observed when multiple users share the same network, degrading the network perfor-

mance (e.g., increasing delays). Essentially, congestion effects are a type of negative

network externalities and have similar impacts to prices on the users’ experiences (i.e.,

utilities). Thus, congestion effects are also referred to as congestion costs in the liter-

ature [46][55]. Taking into consideration the charged price and congestion cost, each

user can dynamically decide whether to subscribe to the WSP’s service and which

data plan to subscribe to. First, by considering a market where only one data plan is

offered, we show that there exists a unique equilibrium in the data demand dynamics

regardless of the data plan or congestion costs. Nevertheless, the convergence of data

demand dynamics is subject to the network congestion cost, which is closely related to

the WSP’s long-term capacity decision. We derive a sufficient condition for the con-

vergence of data demand dynamics, indicating that that the WSP needs to provide a

sufficiently large network capacity. A heuristic algorithm is also proposed to progres-

sively optimize the WSP’s data plan such that its equilibrium revenue is maximized.

Next, we turn to a market where two different data plans are offered. We show that the

existence of a unique equilibrium data demand depends on the data plans. Moreover,

the convergence of data demand dynamics is still subject to the network congestion

cost (and hence, the WSP’s network capacity, too). The problem of optimizing the

WSP’s data plans and network capacities is formalized and solved by numerical meth-
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ods to maximize its profit. Next, we discuss the scenario in which the data plans are

offered by two competing WSPs (i.e., a duopoly market) and find that the two WSPs

only need to adjust their data plans a few times before reaching an equilibrium. Fi-

nally, extensive simulations are conducted to validate our analysis. Numerical results

shows that, to maximize the profit, the WSP needs to increase the network capacity for

its capped data plan while reducing the network capacity for its unlimited data plan.

This coincides with the current trend that some WSPs have discontinued the offering

of unlimited data plans [52].

The rest of this chapter is organized as follows. We review the related literature

in Chapter 3.2. Chapter 3.3 describes the model. In Chapter 3.4 and Chapter 3.5,

we study the data demand dynamics, data plan decision and capacity decision for a

wireless market where one and two data plans are offered, respectively. In Chapter

3.6, we provide numerical results to validate our analysis. Finally, we conclude this

chapter in Chapter 3.7.

3.2 Related Works

The engineering community has recently started to analyze as well as consider the de-

sign of existing and emerging wireless markets from various perspectives. Because of

the space limitation, we only provide an incomplete list of related literature. In our pre-

vious work [35], we study the user subscription dynamics and revenue maximization

in both monopoly and duopoly communications markets, based on a general distribu-

tion of users’ valuation of quality-of-service (QoS) and a general QoS function that

captures negative network externalities. Focusing on two specific access technologies

(i.e., wide and local area network), the authors in [36] apply a stochastic geometric

model and study the convergence of user subscription dynamics. In [37], the authors

showed that non-cooperative communications markets suffer from unfair revenue dis-
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tribution among the service providers and proposed a revenue-sharing mechanism that

requires cooperation among the service providers. The behavior of users and its im-

pact on the revenue distribution, however, were not explicitly considered in [37]. [66]

studies technology adoption and competition between incumbent and emerging net-

work technologies. The model characterizing the users’ valuation of QoS is restricted

to uniform distributions, and only constant QoS functions and positive network effects

are considered in [66]. The user evolution in wireless social community networks is

investigated in [38], where a key assumption is that the social community network

provides a higher QoS to each user as the number of subscribers increases. While this

assumption is valid if the network coverage is the only factor that determines the QoS,

it does not model the QoS degradation due to, for instance, user traffic congestions

at the WSP. By taking into account the congestion cost (i.e., negative network exter-

nality), [39] studies the feasibility of Paris Metro pricing (PMP) and shows sufficient

conditions on the congestion cost functions, under which PMP leads to a higher rev-

enue or social welfare than flat-rate pricing. Pricing decisions (restricted to unlimited

data plans) and network capacity decisions in the presence of network congestion ef-

fects are studied in [41], where a missing part is the analysis of users’ subscription de-

cisions. [43] investigated market dynamics emerging when next-generation networks

and conventional networks coexist, by applying a market model that consists of content

providers, service providers, and users. Nevertheless, the level of QoS that a certain

technology can provide was not considered in the model. The authors in [99] formu-

late a rate allocation problem by incorporating the participation of content providers

into the model, and derive equilibrium prices and data rates. In [45], time-dependent

pricing is studied from the perspective of its efficiency in terms of revenues. In [46],

an upper bound on the efficiency loss as a result of price competition is derived in the

context of congested markets, where an infinite number of users can selfishly route

their traffic through the network.

49



In the aforementioned works, however, several key points are neglected. First, user

heterogeneity in terms of data demand is not considered in these works (except for

[99]). Specifically, it has been an implicit yet common assumption in these works that

every user has the same data demand when it subscribes to the service provider. In

other words, the QoS provided by the service provider only depends on the number

of subscribers, regardless of their actual demand. Hence, user heterogeneity in terms

of data demand cannot be captured and the QoS characterization may not be accurate

under this assumption. Second, in most of the works, only a single data plan (e.g., flat-

rate or “unlimited”, usage-based price) is considered. Nevertheless, with the exploding

popularity of smart phones, multiple pricing schemes are emerging in the market. For

instance, capped data pricing plans and unlimited data pricing plans are both available

in current wireless markets. Last but not least, it remains unknown how the congestion

costs affect the aggregate data demand dynamics, in terms of both the equilibrium

point and convergence, and the resulting revenue of the WSP. To address all these

concerns, we propose a unified model that captures the user heterogeneity in terms of

data demand and various practical data plans. Then, we study the users’ data demand

dynamics, and the WSP’s data plan decision and network capacity decision.

3.3 Model

Consider a wireless communications market where one monopolistic WSP, denoted by

W , offers to N users data communications service, which takes up an overwhelming

majority of the wireless traffic [53]. By assuming that N is sufficiently large such that

each user is negligible,1 we use a continuum user population model and normalize the

number of users to 1 [35]–[41]. In general, WSP W may offer multiple data plans,

and users can choose any of the plans depending on their own preferences (the user

1Another interpretation of the continuum model is that there is a representative user which has the
same characteristics (e.g., data demand) as each user i in the market with a certain probability.
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choice shall be detailed later). As in [41], to keep the analysis tractable, we assume

that WSP W offers up to two data plans, represented by P1 and P2, respectively. For

notational convenience, we also refer to users that subscribe to the plan Pi as Pi−users

(or Pi−subscribers), for i = 1, 2. Next, we shall provide the modeling details of the

WSP and users.

3.3.1 WSP Model

Before entering a market, the WSP needs to first make investment in infrastructure.

In this chapter, we concentrate on the WSP’ capacity deployment which, once de-

termined, is difficult to adjust and hence is an irreversible long-term decision [40].

Denote by Ci ≥ 0 the network capacity (normalized by the number of users N ) that

the WSP allocates to its data pricing plan Pi, for i = 1, 2. Assuming that the WSP

incurs an average cost of τ per unit capacity,2 we can express the WSP’s equilibrium

profit per short-term period (i.e., users’ subscription period) as

ΠW =
∑

i=1,2

{Ri − τCi}, (3.1)

where Ri is the equilibrium revenue per short-term period derived from Pi−users.

Note that in (3.1), we neglect the recurring cost of serving the users, which can also

be absorbed into the revenue Ri [40]. To maximize its profit given the users’ rational

decisions, the WSP shall strategically determine its capacity C = {C1, C2}. After

building the network, the WSP decides its data plans and may alter them throughout

the network’s lifespan.

In today’s wireless market, the most popular data plans are “unlimited”, “capped”

and “usage-based”, all of which can be represented by a unified pricing model specified

2The cost is averaged over the lifespan of the network infrastructure. For instance, if a network with
a lifespan of T short-term periods (i.e., users’ subscription period) is built at a cost of τ̃ per unit capacity,
then the average cost per unit capacity is τ = τ̃ /T .
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by (p, d∗, γ): each subscriber pays a fixed subscription fee p that allows it to transmit

and receive up to d∗ units of data; for each unit of additional data usage exceeding

the capped data limit d∗, the subscriber pays γ. In special cases, a capped data plan

characterized by (p, d∗, γ) becomes a usage-based one if p = 0 and d∗ = 0, and an un-

limited data plan if d∗ = ∞ or γ = 0. For analytical tractability and to gain insights on

how the congestion costs affect the data demand dynamics, we assume that the WSP’s

data plan P1 = (p1, +∞, 0) is “unlimited” whereas its data plan P2 = (p2, d
∗
2, γ2) is

“capped”.3 This assumption, which may seem strong, can be justified by noting that

some WSPs have (partially) resorted to capped data plans in view of the soaring wire-

less data service demand that frequently clogs their network infrastructure.4 Moreover,

even if the WSP offers two capped data plans, it is likely that one of the data plans has

a very high data limit, which only a negligible fraction of subscribers can exceed in

practice, and thus this data plan is almost “unlimited” (see, e.g., [52]).

3.3.2 User Model

Due to the capacity constraint, the network becomes more congested (i.e., negative

network externalities or effect) as more data flow is transmitted [36][45]. Such an

effect is quantified by the congestion cost, which has similar impacts to prices on the

users’ experiences (i.e., utilities) [46]. We denote the congestion cost associated with

the data pricing plan Pi by gi(Di, Ci), where i = 1, 2 and Di ≥ 0 is the aggregate data

demand (i.e., the total data demand of all the Pi-users over a certain period) and Ci is

the capacity allocated to Pi−users. Without causing ambiguity, we simplify gi(Di, Ci)

as gi(Di) by removing Ci wherever applicable. An implicit assumption in the model

is that congestion costs for different data plans are independent of each other, which

3In the most general case where both data plans are “capped”, the approach of analysis in this chapter
is still applicable, although the analysis becomes more complicated.

4Starting from June 7, 2010, AT&T discontinued unlimited data plans to its new iPhone users and
adopts a capped data plan as considered in this chapter [52].
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may be achieved by splitting network capacity among the plans [40].

Users are heterogeneous in the sense that they may have different data service

demand and different benefits of utilizing the WSP’s communications service. To

model the user heterogeneity, each user k is characterized by a two-element tuple

(θk, dk), where θk indicates user k’s benefit from data service and dk denotes its data

demand over a certain period (e.g., a month or a day). The values of θk and dk can

be determined by various approaches. For instance, (θk, dk) may be user k’s intrinsic

characteristic and not influenced by the WSP’s pricing schemes. In such scenarios,

each individual user has inelastic demand [45][46], although the aggregate demand

of all the users is still elastic and influenced by the prices. Mathematically speaking,

when user k subscribes to the WSP’s data plan Pi, its utility is given by

uk,i = θk − gi(Di)− pi − γi[dk − d∗i ]
+, (3.2)

where [ x ]+ = max{0, x}, and if its data demand exceeds the granted data limit d∗i , the

term γi[dk − d∗i ]
+ is positive and represents the additional cost user k incurs. Similar

utility functions have been used in [66][39][99][44][45] and references therein. The

utility function in (3.2) can be interpreted as follows: θk represents the benefit that

user k receives from dk units of data service, gi(Di) indicates the congestion cost (i.e.,

negative network externality), and pi + γi[dk − d∗i ]
+ is the payment made to WSP

Wi [44]. Users that do not subscribe to any data plans obtain zero utility. Now, we

impose some standard assumptions on the users’ data demand and their benefits, users’

subscription decisions, and the congestion function gi(Di).

Assumption 1: The users’ benefits and their data demand follow a two-dimensional

distribution whose joint density function f(θ, d) is defined on U = {(θ, d) | 0 ≤ θ ≤
θmax, 0 ≤ d ≤ dmax}. For completeness of definition, we have f(θ, d) = 0 for all

(θ, d) /∈ U . The cumulative density function is given by F (θ, d) =
∫ d
−∞

∫ θ
−∞ f(x, y)dxdy
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for (θ, d) ∈ R2.

Assumption 2: Each user k subscribes to the data plan Pi if uk,i > uk,j and uk,i ≥ 0

for i, j ∈ {1, 2} and i 6= j. If uk,1 = uk,2 ≥ 0, user k subscribes to the unlimited data

plan P1.5

Assumption 3: gi(Di) is a non-negative, non-decreasing and differentiable6 func-

tion in Di ∈ [0, Dmax], where Dmax is the maximum possible aggregated data demand,

normalized with respect to the total population, and given by

Dmax ,
∫ dmax

y=0

∫ θmax

x=0
yf(x, y)dxdy. (3.3)

We briefly explain the above three assumptions. Assumption 1 can be considered

as an expression of user diversity in terms of the benefits and their data demand. The

lower bound on the interval is set as zero to simplify the analysis, and this will be the

case when there is enough diversity in the users so that there are non-subscribers for

any positive price [40][41]. Assumption 2 captures the user rationality. A rational user

will subscribe to the data plan that provides a higher utility if at least one data plan pro-

vides a non-negative utility, and to neither data plan otherwise. Assumption 3 indicates

an intuitive fact that the congestion cost that each user experiences when subscribing

to the data plan Pi becomes larger when the aggregate data demand increases.

Before concluding this part, it is worthwhile to provide the following remarks re-

garding our model.

Remark 1: As in [45], we assume for the convenience of analysis that each individ-

ual user k has an inelastic and fixed demand dk (and benefit θk, too). Alternatively, dk

can be determined by solving a utility maximization problem and θk is the maximum

5Online surveys show that users generally prefer an unlimited data plan to a capped one [54]. More-
over, specifying an alternative tie-breaking rule (e.g., random selection between the two data plans) in
case of uk,1 = uk,2 ≥ 0 will not significantly affect the analysis of this chapter.

6Since gi(·) is defined on [0, Dmax], we use a one-sided limit to define the derivative of g(·) at 0 and
Dmax, e.g., g′i(0) = limDi→0+ [gi(D)− gi(0)]/(Di − 0).
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benefit that user k receives [99]. Nevertheless, given the WSP’s data plans, (θ, d) still

follows a certain distribution over all the users and thus, our approach can be viewed

as a proxy to determine the users’ demand and benefit, provided that the distribution

does not change significantly with the data plans.

Remark 2: Compared to the congestion cost function used in the existing literature

that disregards the user heterogeneity in terms of data demand and is defined solely in

terms of the number of subscribers [35][39][41], gi(Di) is more accurate in modeling

the congestion effect. Whilst the actual congestion cost also depends on when the users

utilize the network, we consider the congestion cost averaged over time and ignore the

time dependency to keep the analysis tractable [46].

Remark 3: The shape of the congestion cost function gi(Di) may be determined

by various factors, including the network capacity, resource allocation schemes and/or

scheduling algorithms used for the data planPi. While our analysis applies to a general

function gi(Di) satisfying Assumption 3, we shall explicitly focus on the impacts of

network capacities on gi(Di) when we derive specific results or study the WSP’s long-

term capacity decision. For instance, a concrete example is given by gi(Di) = Di/Ci,

which has been widely used (with minor modification, e.g., assuming all the users have

the same data demand) in the prior work [39][41][50][51].7

Remark 4: In addition to negative network externalities (i.e., congestion costs in

this chapter), positive network externalities may also be observed in a communications

network. For instance, when more users subscribe to the WSP’s data plan, the value

of communications service may become higher as more users can communicate with

each other [66]. As in prior research (e.g., [36][39][40][41][46][47][55]), we neglect

the positive network externalities and concentrate on the impacts of congestion effects

on the users’ subscription decisions.

7Another congestion cost function widely adopted in the literature is gi(Di) = 1/(Ci −Di), which
satisfies Assumption 3. Thus, our analysis is also applicable if gi(Di) = 1/(Ci −Di) is considered.
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3.4 Wireless Communications Market: Single Data Plan

In this part, we study the wireless communications market where the WSP offers a

single data plan. Without loss of generality, we assume that the offered data plan is

P2 = (p2, d
∗
2, γ2) and, as aforementioned, the unlimited data plan P1 = (p1,∞, 0) is

a special case when the data limit is infinity. The timing (i.e., order of moves) can be

described as follows.

Stage 1 (long-term): The WSP decides its network capacity C2 to deploy to max-

imize its profit.

Stage 2 (medium-term): Given C2, the WSP chooses its optimal data plan P2 =

(p2, d
∗
2, γ2) by specifying p2, d∗2 and γ2 to maximize its revenue.

Stage 3 (short-term): By jointly considering the congestion cost and offered data

plan, users decide whether or not to subscribe to the WSP’s service.

From the described timing, we see that the WSP can be regarded as the leader

whereas the users are followers. Thus, in order to identify the optimal data plan and

network capacity, the WSP needs to first know how the users make their subscription

decisions. Therefore, we proceed with our analysis using backward induction.

3.4.1 Users’ Subscription Decisions

Due to rationality, users will not choose to subscribe to the WSP’s data plan P2 if

they cannot obtain non-negative utilities. Essentially, the subscription decision stage

can be formalized as a non-cooperative game with an infinite number of players, the

solution to which is (Nash) equilibrium. At an equilibrium, if any, no users can gain

more benefits by deviating from their decisions. In other words, the aggregate data

demand of those users subscribing to the WSP’s data plan does not change at the equi-

librium. Given the WSP’s long-term capacity decision and an aggregate data demand

D2 of the subscribers, the congestion cost is uniquely given by g2(D2). Moreover, the
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users’ subscription decisions are also determined based on the sign of (3.2), i.e., user

k subscribes to the data plan P2 if and only if uk,2 = θk − g2(D
∗
2)− γ2[dk − d∗2]

+ ≥ 0.

Hence, we study the users’ subscription decisions at the equilibrium by specifying the

equilibrium (aggregate) data demand D∗
2. First, we can mathematically express the

equilibrium data demand as

D∗
2 = h2(D

∗
2) =

∫ dmax

y=0

∫ θmax

x=g2(D∗2)+p2+γ2[y−d∗2]+
yf(x, y)dxdy. (3.4)

Thus, an equilibrium data demand exists if and only if the mapping h2(D
∗
2) in (3.4)

has at least one fixed point. Next, we formally define the equilibrium data demand as

follows.

Definition 1: When only data plan P2 is offered, D∗
2 ∈ [0, Dmax] is an equilibrium

data demand if it satisfies

h2(D
∗
2) = D∗

2. (3.5)

We establish in the following proposition the existence and uniqueness of an equi-

librium data demand D∗
2.

Proposition 3. For any data plan P2 = (p2, d
∗
2, γ2), there exists a unique equilibrium

data demand satisfying (3.5).

Proof. To facilitate the proof, we first define an auxiliary function h̃2(D2) = h2(D2)−
D2 for D ∈ [0,∞), where h2(·) is defined in (3.7). By Definition 1, D∗

2 is an equilib-

rium point if and only if it is a root of h̃2(·). Hence, it suffices to show that h̃2(·) has a

unique root on its domain.

Let Dmax ≥ D2,a > D2,b ≥ 0 be two arbitrarily-chosen real numbers. Then, it
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follows that

h̃2(D2,a)− h̃2(D2,b) = h2(D2,a)−D2,a − [h2(D2,b)−D2,b]

= −
∫ dmax

y=0

∫ g2(D2,a)+p2+γ2[y−d∗2]+

x=g2(D2,b)+p2+γ2[y−d∗2]+
yf(x, y)dxdy − (D2,a −D2,b).

(3.6)

Since g2(·) is non-decreasing in [0, Dmax], we have g2(D2,a)+p2+γ2[y−d∗2]
+ is greater

than or equal to g2(D2,b)+p2+γ2[y−d∗2]
+ and hence,

∫ dmax
y=0

∫ g2(D2,a)+p2+γ2[y−d∗2]+

x=g2(D2,b)+p2+γ2[y−d∗2]+ yf(x, y)dxdy

is non-negative. Thus, it can be seen that h̃2(D2,a)− h̃2(D2,b) ≤ −(D2,a −D2,b) < 0

for any Dmax ≥ D2,a > D2,b ≥ 0. That is, the auxiliary function h̃2(·) is strictly

decreasing in [0, Dmax].

On the one hand, h̃2(0) = h2(0) − 0 ≥ 0, and on the other hand, h̃2(Dmax) =

h2(Dmax) −Dmax ≤ 0 Since h̃2(·) is continuous on [0, Dmax], we see that h̃2(·) has a

unique root D∗
2 ∈ [0, Dmax], by applying the intermediate value theorem. This proves

Proposition 3. ¥ ¤

It can be seen from Proposition 3 that the data plan P2 = (p2, d
∗
2, γ2) uniquely

determines the equilibrium data demand. Although it is in general rather difficult to

express D∗
2 as an explicit function of P2 = (p2, d

∗
2, γ2), we summarize in Proposition 4

the relation between the data plan P2 = (p2, d
∗
2, γ2) and the equilibrium data demand

D∗
2.

Proposition 4. For any congestion cost function g2(D2) satisfying Assumption 3, the

equilibrium data demand D∗
2 has the following properties:

1. D∗
2 > 0 if and only if 0 ≤ p2 < [ θmax − g2(0) ]+;

2. D∗
2 is non-increasing in p2 ≥ 0;

3. D∗
2 is non-increasing in γ2 ≥ 0;

4. D∗
2 is non-decreasing in d∗2 ≥ 0. ¥

Property 1 shows that no users will subscribe to the WSP’s data plan P2 if the
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fixed subscription fee p2 exceeds the maximum benefit among all the users minus the

minimum congestion cost. Properties 2 and 3 are consistent with the standard demand-

price relation: increasing the price will not increase the demand. Property 4 indicates

that the data demand will increase or at least remain the same if the data limit d∗2,

which each subscriber can enjoy without incurring additional costs, increases. This

stems from the fact that increasing the data limit results in the decrease of payment for

users with high data demand exceeding the limit d∗2.

In practice, the users do not have complete information regarding each other and

hence, they may not make directly the subscription decisions that lead to an equilib-

rium. Instead, an adjustment process where the users update their subscription deci-

sions based on limited information is required. To formally describe the adjustment

process, we consider a discrete-time model denoted by {Dt
2}∞t=0, where Dt

2 ≥ 0 is

the (aggregate) data demand in the t-th time period and D0
2 ∈ [0, Dmax] is the initial

data demand. A natural and well-studied approach to modeling the adjustment process

is the best-response dynamics, in which each decision maker chooses the best action

in response to the decisions made by the others. As in [35][38][42][47], we consider

the best-response dynamics based on naive (or static) expectation, and assume that

the users can only change their subscription decisions (e.g., opt out of the plan P2)

at discrete time periods indexed by t = 1, 2, · · · . Specifically, at the beginning of

the time period t, user k holds a (static) belief on the congestion cost, denoted by

g̃2,k(D
t
2) = g2(D

t−1
2 ), and makes its subscription decision in a myopic way [66][38].8

When only one data plan P2 is offered by the WSP, each user has a choice of whether

to subscribe to the plan at the beginning of each time period. In particular, user k sub-

scribes to the data plan P2 in the time period t if and only if it believes that its utility

θk − g̃2,k(D
t
2) − p2 − γ2[dk − d∗2]

+ = θk − g2(D
t−1
2 ) − p2 − γ2[dk − d∗2]

+ ≥ 0. Note

8This model of belief formation is called naive or static expectations [56]. A similar dynamic model
of belief formation and decision making has been extensively adopted in the existing literature such as
[35][66][38][42].
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that, in order to make subscription decisions at time t, the users need to know the data

plan P2 and receive a signal indicating the congestion cost g2(D
t−1
2 ) at t − 1. The

best-response decision model implies that, for t = 1, 2, . . ., the data demand dynamics

evolves following a sequence {Dt
2}∞t=0 specified by

Dt
2 = h2(D

t−1
2 ) =

∫ dmax

y=0

∫ θmax

x=g2(Dt−1
2 )+p2+γ2[y−d∗2]+

yf(x, y)dxdy, (3.7)

starting from an initial point D0
2 ∈ [0, Dmax]. Essentially, the dynamics in (3.7)

is a fixed point iteration for h2(·) and it converges regardless of the initial point if

|h′2(D2)| < 1 for D2 ∈ [0, Dmax] [69]. Nevertheless, |h′2(D2)| < 1 may not hold

for all congestion cost functions, resulting in oscillation in the data demand dynamics.

In accordance, the WSP’s revenue becomes instable and may causes higher risks for

the WSP’s operation in the market. Let us consider a hypothetical example to explain

this point. Suppose that the network is highly underutilized in the time period t and

each subscriber incurs a low congestion cost. Users expect that the congestion cost

will remain low in the period t + 1, and thus more users subscribe to the data plan P2,

leading to a high congestion cost in the time period t + 1. The increase of congestion

cost in turn will induce a small amount of data demand in the time period t + 2. When

the congestion cost function is very sensitive to the aggregate data demand, the data

demand dynamics may oscillate around or diverge away from the equilibrium point.

In the following proposition, we provide a sufficient condition under which the data

demand dynamics is guaranteed to converge regardless of the initial points.

Proposition 5. For any data plan P2 = (p2, d
∗
2, γ2), the data demand dynamics spec-

ified by (3.7) converges to the unique equilibrium point starting from any initial point

D0
2 ∈ [0, d̄] if

max
D2∈[0,Dmax]

g′2(D2) <
2

K · d2
max

, (3.8)

where Dmax is given by (3.3), dmax is the maximum individual demand and K =
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max(θ,d)∈U f(θ, d).

Proof. We prove the convergence of the data demand dynamics based on contraction

mapping theorem, which is formally stated as follows [57].

Definition 2 [57]: A mapping T : X → X , where X is a closed subset of Rn, is

called a contraction if there is a real number κ ∈ [0, 1) such that

∥∥∥∥T(x1)−T(x2)
∥∥∥∥ ≤ κ ·

∥∥∥∥x1 − x2

∥∥∥∥, ∀ x1, x2 ∈ X , (3.9)

where ‖ · ‖ is some norm defined on X .

Proposition 1.1 in Chapter 3 of [57] shows an important property of a contraction

mapping T that the update sequence generated by xt+1 = T(xt), t = 1, 2, . . ., con-

verges to a (unique) fixed point x∗ satisfying T(x∗) = x∗ starting from any initial

value x0 ∈ X . To prove Proposition 5, we shall show that the function h2(·), defined

in (3.7), is a contraction mapping on [0, Dmax] with respect to the absolute value norm

if the condition (3.8) is satisfied.

Let D2,a and D2,b be two arbitrarily-chosen real numbers such that Dmax ≥ D2,a >

D2,b ≥ 0. Then, it can be shown that

∣∣∣h2(D2,a)− h2(D2,b)
∣∣∣ =

∫ dmax

y=0
y

{∫ g2(D2,a)+p2+γ2[y−d∗2]+

x=g2(D2,b)+p2+γ2[y−d∗2]+
f(x, y)dx

}
dy. (3.10)

61



Denote F (θ | y) =
∫ θ
x=−∞ f(x, y)dx. Thus, we can obtain the following inequalities

∫ g2(D2,a)+p2+γ2[y−d∗2]+

x=g2(D2,b)+p2+γ2[y−d∗2]+
f(x, y)dx (3.11)

= F (g2(D2,a) + p2 + γ2[y − d∗2]
+

∣∣∣ y)− F (g2(D2,b) + p2 + γ2[y − d∗2]
+

∣∣∣ y)(3.12)

= f(D2,γ, y) · g′2(D2,γ) · (D2,a −D2,b) (3.13)

≤ K · g′2(D2,γ) · (D2,a −D2,b) (3.14)

≤ K ·
[

max
D2∈[0,Dmax]

g′2(D2)

]
· (D2,a −D2,b), (3.15)

where (3.13) follows from the intermediate value theorem and chain rule, D2,γ is a

certain value in [D2,b, D2,a], and K = max(θ,d)∈U f(θ, d). Then, by plugging the in-

equality (3.15) into (3.10), we have

|h2(D2,a)− h2(D2,b)| ≤
∫ dmax

y=0
yK

[
max

D2∈[0,Dmax]
g′2(D2)

]
(D2,a −D2,b)dy(3.16)

=
d2

max

2
K

[
max

D2∈[0,Dmax]
g′(D2)

]
· |D2,a −D2,b| . (3.17)

Therefore, if the condition (3.8) is satisfied, then κ = d2
max

2
K

[
maxD2∈[0,Dmax] g

′
2(D2)

]
∈

[0, 1) and |h2(D2,a)− h2(D2,b)| ≤ κ |D2,a −D2,b|, for any Dmax ≥ D2,a > D2,b ≥ 0.

In other words, h2(·) is a contraction mapping on [0, Dmax] with respect to the absolute

value norm. Thus, by applying Proposition 1.1 in Chapter 3 of [57], we see that the

data demand dynamics converges if the condition (3.8) is satisfied. Proposition 5 is

therefore proved. ¥

Proposition 5 states the relation between the congestion cost function and the distri-

bution of (θ, d) such that the data demand dynamics converges, and holds for a general

yet practical data plan. Although the convergence condition (3.8) is sufficient but not

necessary, it provides us with the insight that, for a given distribution function f(θ, d),

if the congestion cost increases too fast (i.e., g′2(D2) is larger than 2/(K · d2
max) for

some D2 ∈ [0, Dmax]), the data demand dynamics may oscillate or diverge. A simi-
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lar insight was reported in [49] in the context of the decentralized spectrum access in

cognitive networks. Next, by considering g2(D2) = D2/C2 for D2 ∈ [0, Dmax], we

investigate the impacts of the WSP’s long-term capacity decision on the convergence

of the users’ data demand dynamics. The result is summarized as follows.

Corollary 4. Suppose that g2(D2) = D2/C2 for D2 ∈ [0, Dmax]. For any data plan

P2 = (p2, γ2, d
∗
2), the data demand dynamics specified by (3.7) converges to the unique

equilibrium point starting from any initial point D0
2 ∈ [0, Dmax] if

C2 >
K · d2

max

2
, (3.18)

where K = max(θ,d)∈U f(θ, d). If f(θ, d) = 1 over U = {(θ, d) | 0 ≤ θ ≤ 1, 0 ≤ d ≤
1}, then (3.18) becomes C2 > 1/2. ¥

Corollary 4 indicates that the network capacity allocated to P2−users needs to be

greater than a certain threshold such that the data demand dynamics is guaranteed

to converge for any data plan P2 = (p2, γ2, d
∗
2). In particular, if (θ, d) is uniformly

distributed over U = {(θ, d) | 0 ≤ θ ≤ 1, 0 ≤ d ≤ 1}, then the capacity threshold

(normalized with respect to the total number of users) corresponds to data demand

averaged over all the users in the market. This implies that the network for the plan

P2 needs to be able to accommodate all the users’ data demand. Moreover, we see

from (3.18) that the capacity threshold K ·d2
max/2 does not explicitly depend on Dmax.

Instead, it is closely related to dmax. In particular, if dmax increases, then a more

stringent requirement is imposed on the WSP’s network capacity in order to guarantee

the convergence of data demand dynamics regardless of the initial points or data plans.

On the other hand, if the network capacity is not large enough (e.g., C2 < Dmax), then

the users may experience excessive delays (i.e., high congestion costs) and the data

demand dynamics may oscillate without convergence.

Before studying the WSP’s data plan decision, we make two remarks regarding the
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users’ subscription decisions.

Remark 5: The dynamics specified by (3.7) requires that all the users update sub-

scription decisions at the beginning of each time period. In practice, if only a fraction

ε ∈ (0, 1] of the user update subscription decisions each time, then the sequence be-

comes

Dt
2 = εh2(D

t−1
2 ) + (1− ε)Dt−1

2 , (3.19)

where h2(D
t−1
2 ) is given by (3.7). The equilibrium analysis is not affected, whereas

the convergence condition in (3.8) is modified as maxD2∈[0,Dmax] g
′
2(D2) < 2

ε·(K·d2
max)

,

which is more easily satisfied for a smaller ε ∈ (0, 1]. In other words, the parameter

ε ∈ (0, 1] smooths the data demand update process and makes the dynamics easier to

converge by slowing down the convergence rate. Nevertheless, if the network capacity

is large enough to serve all the users’ data demand in practice, then the convergence

can always be observed even though all the users update their subscription decisions.

It should also be noted that another approach to modeling the users’ data demand

dynamics is considering a continuous-time dynamics specified as

dD2

dt
= ρ · [h2(D2)−D2] , (3.20)

where ρ is referred to as the diffusion rate [66]. For (3.20), the equilibrium is still

defined the same as that in Definition 1, while the convergence is guaranteed. The

considered discrete-time data demand dynamics has been studied in prior work (see,

e.g., [38][42]) and is more appropriate for scenarios in which the users’ subscription

decisions can only change in discrete time instants (e.g., at the beginning of a day or

month). Moreover, ε in (3.19) is essentially the same as ρ in (3.20) and the discrete-

time dynamics considered in this chapter will become (3.20) if the duration of a time

period is sufficiently small.
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Remark 6: As in the existing literature [35]–[39], the cost in updating the sub-

scription decisions (e.g., time spent in calling the customer service, activation fees and

early termination fees) are not considered in the chapter. Here, we briefly discuss the

impacts of this cost on the data demand dynamics. For simplicity, we assume that the

cost of activating the data plan and that of terminating the subscription are the same,

and we refer to this cost as switching cost denoted by cs. With a switching cost, the

users’ subscription decisions are affected. Specifically, if user k is a subscriber in the

time period t, it will continue the subscription in the next time period t + 1 if

θk − g2(D
t
2)− p2 − γ2[dk − d∗2]

+ ≥ −cs. (3.21)

On the other hand, if user k is not a subscriber in the time period t, it will choose to

subscribe to the data plan in the next time period t + 1 if

θk − g2(D
t
2)− p2 − γ2[dk − d∗2]

+ − cs ≥ 0. (3.22)

It should be noted that if the cost is taken into account when the users make their

subscription decisions, there may exist multiple equilibrium data demand points, and

the convergence is subject to the initial point. For instance, in the extreme case in

which the cost is so high (e.g., greater than θmax) that no users would like to update

their subscription decisions, every possible value of (aggregate) data demand D2 ∈
[0, Dmax] is an equilibrium point. We shall show in the numerical results the impact of

switching cost cs on the users’ subscription decisions, while rigorous analysis of cs is

left as our future work.
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3.4.2 WSP’s Data Plan Decision

Over the entire lifespan of the network infrastructure, the WSP can change its data

plans to maximize its revenue, although the change of data plans is sufficiently slow

compared to the users’ subscription decisions. In other words, the duration of a

medium-term period corresponds to that of a sufficiently large number of short-term

periods. We note that given the WSP’s data plan, the data demand dynamics converges

rapidly (e.g., within a few iterations) to the equilibrium point if the convergence con-

dition (3.8) is satisfied. Thus, the WSP’s average revenue per short-term period (i.e.,

users’ subscription period) is approximately equal to its equilibrium revenue when the

data demand reaches the unique equilibrium. Next, we derive the expression of the

WSP’s equilibrium revenue as follows.

R2 =p2

∫ dmax

y=0

∫ θmax

x=g2(D∗2)+p2+γ2[y−d∗2]+
f(x, y)dxdy

+
∫ dmax

y=d∗2

∫ θmax

x=g2(D∗2)+p2+γ2(y−d∗2)
γ2 · (y − d∗2) · f(x, y)dxdy,

(3.23)

where the first term on the right hand side is the subscription fee that every subscriber

pays and the second term is the additional fee that users with demand higher than

d∗2 pays. Although the equilibrium data demand D∗
2 is uniquely determined by the

WSP’s data plan P2 = (p2, d
∗
2, γ2) and hence can be expressed as an implicit function

of P2, it is rather challenging to maximize the equilibrium revenue in (3.23). The

difficulties are mainly: (1) D∗
2 cannot be expressed explicitly in a closed-form function

in terms of P2 = (p2, d
∗
2, γ2); (2) due to the integral, the equilibrium revenue is not an

explicit function of P2 = (p2, γ2, d
∗
2). Thus, we resort to numerical methods to find the

optimal P2 = (p2, d
∗
2, γ2) maximizing the equilibrium revenue. Specifically, we search

over all the possible values of (p2, d
∗
2, γ2) and select the one that yields the maximum

equilibrium revenue. In practice, the data plan is typically confined within a small
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finite set of options9 and hence, the complexity associated with the exhaustive search

is not prohibitive.

In the following, we propose a heuristic algorithm that progressively chooses the

(locally) optimal data plan in a greedy manner. For the ease of presenting the algo-

rithm and deriving more specific results, we consider uniformly distributed (θ, d), i.e.,

f(θ, d) = 1 over U = {(θ, d) | 0 ≤ θ ≤ 1, 0 ≤ d ≤ 1}, although other forms of

f(θ, d) can also be applied. Under the assumption of uniformly distributed of (θ, d)

over U = {(θ, d) | 0 ≤ θ ≤ 1, 0 ≤ d ≤ 1}, we rewrite the equilibrium revenue in

(3.23) as

R2 = p2 [1− g2(D
∗
2)− p2] +

γ2(1− d∗2)
2

2

[
1− g2(D

∗
2)− 2p2 − 2γ2(1− d∗2)

3

]

(3.24)

where p2 ≤ 1− g2(D
∗
2), d∗2 ≤ 1 and γ2 ≥ 0.10 Note that, even if we artificially assume

that the congestion cost g2(D
∗
2) is independent of the data plan, (3.24) is non-concave

in (p2, γ2, d
∗
2). Thus, there exist no efficient algorithms to find the optimal (p2, d

∗
2, γ2).

In the proposed heuristic algorithm, instead of jointly optimizing (p2, d
∗
2, γ2), we op-

timize p2, d∗2, and γ2 separately. Specifically, by assuming that the equilibrium data

demand D∗
2 is independent of p2 and treating g2(D

∗
2), d∗2 and γ2 as fixed values, we

choose the optimal p2 to maximize (3.24). Then, we apply the same technique to op-

timize d∗2 and γ2, and the same process repeats until the stopping criterion is satisfied

(e.g., convergence or the maximum number of iterations is reached). To summarize,

the heuristic algorithm is described in Algorithm I.

9In practice, the subscription fee p2 is usually selected from {9.99$, 19.99$, 24.99$, 29.99$} or
similar set of options.

10Since the maximum demand is dmax = 1, d∗2 > 1 and d∗2 = 1 are essentially the same.
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Algorithm 1 Find (p2, d
∗
2, γ2)

R2 = 0, d∗2 ←∞, γ2 ← 0, and k ← 1
while k ≤ MaxIterate do

temp ← R2

Optimize p2: p2 ←
[

1−g2(D∗2)−γ2(1−d∗2)2

2

]+

Optimize d∗2: d∗2 ←
[

1−g2(D∗2)−p2

γ2

]1

0

Optimize γ2: γ2 ←
[

3[1−g2(D∗2)−p2]
4(1−d∗2)

]+

Recalculate R2 based on (3.24)
if abs(temp−R2) ≤ threhold then

break
end if
Update D∗

2, g2(D
∗
2) and k + +

end while
return (p2, d

∗
2, γ2)

3.4.3 WSP’s Capacity Decision

We assume that the WSP’s network capacity is chosen to guarantee the convergence of

data demand dynamics to the unique equilibrium point regardless of the initial points.11

For instance, if (θ, d), i.e., f(θ, d) = 1 is uniformly distributed over U = {(θ, d) | 0 ≤
θ ≤ 1, 0 ≤ d ≤ 1} and g2(D2) = D2/C2, then the network capacity allocated to

P2−users should be greater than 1/(2ε), where ε is the fraction of users that update

their subscription decisions in each time period. As can be seen from (3.23), given the

WSP’s capacity, it is rather difficult to find explicitly the optimal value of (p2, d
∗
2, γ2)

maximizing the WSP’s equilibrium revenue. As a result, we can only numerically find

the optimal network capacity to maximize the WSP’s equilibrium profit in (3.1).

Finally, we note that if only the unlimited data plan P1 = {p1, +∞, 0} is offered,

the above analysis still applies and the corresponding result can be easily obtained by

letting d∗2 = ∞ and γ2 = 0.

11This requires that the average cost of τ per unit capacity be sufficiently small such that the WSP
can receive a non-negative profit.
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3.5 Wireless Communications Market: Two Data Plans

In this part, we turn to the analysis of a wireless communications market where the

WSP offers two data plans P1 and P2. Although we mainly focus on the scenario that

these two data plans are offered by the same monopolistic WSP, we shall also briefly

discuss the case in which they are offered by two competing WSPs.

3.5.1 Users’ Subscription Decisions

As in a market with only one data planP2, we study the users’ equilibrium subscription

decisions by specifying the equilibrium data demand (D∗
1, D

∗
2). By Assumption 2, we

see that the equilibrium data demand (D∗
1, D

∗
2) satisfies the following equations

D∗
1 = hd,1(D

∗
1, D

∗
2) =

∫ dmax

y=d̃

∫ θmax

x=g1(D∗1)+p1

yf(x, y)dxdy (3.25)

D∗
2 = hd,2(D

∗
1, D

∗
2) =

∫ d̃

y=0

∫ θmax

x=g2(D∗2)+p2+γ2[y−d∗2]+
yf(x, y)dxdy (3.26)

if p1 + g1(D
∗
1) > p2 + g2(D

∗
2), and

D∗
1 = hd,1(D

∗
1, D

∗
2) =

∫ dmax

y=0

∫ θmax

x=g1(D∗1)+p1

yf(x, y)dxdy (3.27)

D∗
2 = hd,2(D

∗
1, D

∗
2) = 0 (3.28)

if p1 + g1(D
∗
1) ≤ p2 + g2(D

∗
2). In (3.25) and (3.26), d̃ is given by

d̃ = d∗2 +
1

γ2

[p1 − p2 + g1(D
∗
1)− g2(D

∗
2)], (3.29)

which specifies the data demand of marginal users that are “indifferent” between sub-

scribing to the plan P1 and the plan P2 (see [35][39] for a detailed explanation of
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“indifferent”). Note that there are two regimes of the equilibrium data demand in the

market with two data plans, and which regime governs the equilibrium depends on

the relative values of the effective full price (not including the additional cost if the

data demand exceeds the granted data limit), i.e., p1 + g1(D
∗
1) and p2 + g2(D

∗
2). Next,

we give the formal definition of the equilibrium point (D∗
1, D

∗
2), which is similar to

Definition 1.

Definition 2: When two data plans P1 and P2 are offered, (D∗
1, D

∗
2) is an equilib-

rium data demand if it satisfies satisfies

hd,1(D
∗
1, D

∗
2) = D∗

1 and hd,2(D
∗
1, D

∗
2) = D∗

2, (3.30)

where hd,1(D
∗
1, D

∗
2) and hd,2(D

∗
1, D

∗
2) are given in (3.25)–(3.28).

When the unlimited data plan P1 is available in the market, there may not exist

an equilibrium data demand if the plan P2 is “capped” (i.e., d∗2 < dmax and γ2 > 0).

Suppose, as an counter example, that g2(D2) = 0 is a constant for D2 ∈ [0, Dmax].

Thus, hd,1(D1, D2) in (3.25) and (3.27) is independent of D2 and can be rewritten

compactly as hd,1(D1). From (3.25) and (3.27), we see that the integration interval

is not continuous, implying that h̃d,1(D1) = hd,1(D1) − D1 may not be a continuous

function in D1 ∈ [0, Dmax]. Specifically, if p1 + g1(D1) ≤ p2, then the integration

interval is [0, dmax], i.e., no users subscribes to the plan P2, whereas if p1 + g1(D1) >

p2, the integration interval is [d̃, dmax]. According to Definition 2, the equilibrium data

demand should satisfy h̃d,1(D
∗
1) = hd,1(D

∗
1) − D∗

1 = 0. Although it is easy to show

that h̃d,1(D1) is strictly decreasing in D1 ∈ [0, Dmax], h̃d,1(0) ≥ 0 and h̃d,1(Dmax) ≤ 0,

it is not guaranteed that h̃d,1(D1) has a root, since h̃d,1(D1) may not be a continuous

function in D1 ∈ [0, Dmax]. In other words, an equilibrium data demand may not exist.

Next, we provide a sufficient condition that establishes the existence and uniqueness

of an equilibrium point in Proposition 6.

70



Proposition 6. For any data plans P1 = (p1, +∞, 0) and P2 = (p2, d
∗
2, γ2), there

exists a unique equilibrium data demand (D∗
1, D

∗
2) satisfying (3.25)–(3.28) if

d∗2 = 0 and γ2 > 0. (3.31)

Moreover, the equilibrium data demand (D∗
1, D

∗
2) satisfies D∗

1 = hd,1 (D1, 0
∗) and

D∗
2 = 0 if p2 + g2(0) ≥ p1 + g1(D

∗
1).

Proof. To facilitate the proof, we first define two auxiliary functions h̃d,1(D1, D2) =

hd,1(D1, D2) − D1 and h̃d,2(D1, D2) = hd,2(D1, D2) − D2 for (D1, D2) ∈ D, where

hd,1(D1, D2) and hd,2(D1, D2) are defined in (3.25)–(3.28). By Definition 2, (D∗
1, D

∗
2)

is an equilibrium point if and only if

h̃d,1(D
∗
1, D

∗
2) = 0 and h̃d,2(D

∗
1, D

∗
2) = 0. (3.32)

Hence, it suffices to show that the equation set in (3.32) has a unique solution on its

domain D.

Let us first assume that D2 ∈ [0, Dmax] is a fixed number. We can show that,

if γ2 > 0 and d∗2 = 0, h̃d,1(D1, D2) is a strictly decreasing and continuous function

of D1 ∈ [0, Dmax − D2]. Moreover, for any fixed value of D2 ∈ [0, Dmax], we have

h̃d,1(Dmax−D2, D2) ≤ 0 and h̃d,1(0, D2) ≥ 0. Therefore, by applying the intermediate

value theorem, it follows that h̃d,1(Dmax − D2, D2) has a unique root D∗
1 given any

fixed value of D2. Thus, D∗
1 can be expressed as a function in terms of D2, and

h̃d,1(D
∗
1, D2) and h̃d,2(D

∗
1, D2) can be rewritten in a compact form as h̃d,1(D2) and

h̃d,2(D2), respectively. It can also be easily proved that D1∗ is a decreasing function

of D2 in D2 ∈ [0, Dmax]. Next, we need to show that h̃d,2(D2) has a unique root in

D2 ∈ [0, Dmax] in order to prove Proposition 6.

Lemma 1. ht(D2) = hd,2(D
∗
1, D2) + D∗

1 is decreasing in D2.
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Proof. Note that hd,2(D
∗
1, D2) + D∗

1 is the sum data demand of WSP W1 operating at

its equilibrium data demand point and W2 at the next period, when WSP W2 currently

has a data demand of D2. Thus, hd,2(D
∗
1, D2) + D∗

1 can be expressed as follows

hd,2(D
∗
1(D2), D2) + D∗

1(D2) =Dmax −
∫ d̃

y=0

∫ g2(D2)+p2+γ2y

x=0
yf(x, y)dxdy

−
∫ dmax

y=d̃

∫ g1(D∗1)+p1

x=0
yf(x, y)dxdy,

(3.33)

where d̃ = 1
γ2

[p1 − p2 + g1(D
∗
1)− g2(D2)]

+, the second term and third term on the

right side of the equality represent the aggregate data demand of those users that do

not subscribe to either WSP. Since D∗
1(D2) is increasing in D2 ∈ [0, Dmax] and g1(D1)

is increasing in D1 in its domain, we see that g1(D
∗
1) = g1(D

∗
1(D2)) is also increasing

in D2 ∈ [0, Dmax]. Therefore, (3.33) is decreasing in D2 ∈ [0, Dmax]. This can also be

intuitively expected. When the data demand of both WSPs increases, the congestion

costs increase and hence fewer users will subscribe to the WSPs, which will in turn

result in a decrease in the total data demand of these two WSPs. ¤

Recall that D∗
1(D2) is increasing in D2 ∈ [0, Dmax]. Thus, following Lemma 1,

it can be seen that hd,2(D
∗
1(D2), D2) = ht(D2) − D∗

1(D2) is a non-increasing func-

tion of D2 and h̃d,2(D
∗
1, D2) = h̃d,2(D2) is a strictly decreasing function of D2 in

[0, Dmax]. On the one hand, hd,2(Dmax)−Dmax ≤ 0 and, on the other hand, hd,2(0)−
0 ≥ 0. Thus, due to its continuity and strictly decreasing property, h̃d,2(D

∗
1, D2) =

hd,2(D
∗
1(D2), D2)−D2 has a unique root in D2 ∈ [0, Dmax]. This proves Proposition

6. ¥

Proposition 6 indicates that, if the two data plans P1 and P2 are unlimited and

usage-based, respectively, then the data demand admits a unique equilibrium point. It

also shows that, if the effective subscription cost of for the data plan P1 evaluated at

D∗
1 is always smaller than or equal to that of the data plan P2, then no users subscribe

to the data plan P2 at the equilibrium point.
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Following Chapter 3.4, we consider a discrete-time best-response dynamics to

model the users’ subscription decision process. With two data plans P1 = (p1, +∞, 0)

and P2 = (p2, d
∗
2, γ2) offered in the market, each user has three possible choices at

the beginning of each time period: subscribe to the plan P1, subscribe to the plan P2,

and subscribe to neither. The users expect that the congestion cost incurred when sub-

scribing to a data plan in the time period t is equal to that in the previous period t− 1

and make their subscription decisions to myopically maximize their utility in the time

period t [35][66][38]. We assume that, other than the subscription price, there is no

cost involved (e.g., initiation fees, termination fees, device prices) when users switch

between the data plans P1 and P2[66]. By Assumption 2, at period t = 1, 2 · · · , user k

subscribes to the data plan P1 if and only if

θk − g1(D
t−1
1 )− p1 ≥ θk − g2(D

t−1
2 )− p2 − γ2[dk − d∗2]

+ and θk − g1(D
t−1
1 )− p1 ≥ 0,

(3.34)

to the data plan P2 if and only if

θk − g2(D
t−1
2 )− p2 − γ2[dk − d∗2]

+ > θk − g1(D
t−1
1 )− p1

and θk − g2(D
t−1
2 )− p2 − γ2[dk − d∗2]

+ ≥ 0,
(3.35)

and to neither data plan if and only if

θk − g1(D
t−1
1 )− p1 < 0 and θk − g2(D

t−1
2 )− p2 − γ2[dk − d∗2]

+ < 0. (3.36)

Therefore, given the data plans P1 = (p1, +∞, 0) and P2 = (p2, γ2, d
∗
2), the data

demand dynamics is described by a sequence {(Dt
1, D

t
2)}∞t=0 in D = {(D1, D2) ∈

R2
+ | D1+D2 ≤ Dmax} generated by Dt

1 = hd1(D
t−1
1 , Dt−1

2 ) and Dt
2 = hd2(D

t−1
1 , Dt−1

2 ),

where hd1(D
t−1
1 , Dt−1

2 ) and hd2(D
t−1
1 , Dt−1

2 ) are obtained by substituting (Dt−1
1 , Dt−1

2 )

into (3.25)–(3.28).
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Since an equilibrium point may not exist if the data plan P2 is unlimited or capped,

we restrict the analysis in the remainder of this chapter to the case that the plan P2 is

usage-based (although an initial subscription fee p2 may be charged) such that a unique

equilibrium point is guaranteed to exist. Next, we provide a sufficient condition for the

data demand dynamics {(Dt
1, D

t
2)}∞t=0 to converge.

Proposition 7. For data plans P1 = (p1, +∞, 0) and P2 = (p2, 0, γ2) where γ2 > 0,

the data demand dynamics converges to the unique equilibrium point starting from any

initial point (D0
1, D

0
2) ∈ D = {(D1, D2) ∈ R2

+ | D1 + D2 ≤ Dmax} if the following

condition is satisfied:

max
(D1,D2)∈[0,dmax]2

{g′1(D1), g
′
2(D2)} <

1

K ·

d2

max

2
+ dmax

γ2
[θmax − p1]+ + dmax

γ2
[θmax − p2]+




,

(3.37)

where dmax is the maximum individual demand, θmax is the maximum benefit derived

from subscribing to the WSP’s service and K = max(θ,d)∈U f(θ, d)

Proof. First, define the mapping that specifies the data demand dynamics by hd :

hd(D1, D2) =
(
hd,1(D1, D2), hd,2(D1, D2)

)
, (3.38)

where hd,1 and hd,2 are defined in (3.25)–(3.28). In order to establish the global con-

vergence of the data demand dynamics, we shall show that the mapping hd(·) is a

contraction on D with respect to a certain norm [57]. Unlike in a market with only

one data plan offered, the mapping hd is no longer a scalar function and hence the

absolute value norm is not applicable. Instead, we apply L1 norm and show that hd(·)
is a contraction with respect to L1 norm if the condition (3.37) is satisfied.

Let Da = (D1,a, D2,a) ∈ D and Db = (D1,b, D2,b) ∈ D be two arbitrarily-chosen
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points such that d̃a ≥ d̃b ≥ 0, where d̃a = 1
γ2

[p1 − p2 + g1(D1,a)− g2(D2,a)]
+ and

d̃b = 1
γ2

[p1 − p2 + g1(D1,b)− g2(D2,b)]
+. By the definition of L1 norm, we have

∥∥∥∥hd(D1,a, D2,a)− hd(D1,b, D2,b)
∥∥∥∥
1

=
∣∣∣∣hd,1(D1,a, D2,a)− hd,1(D1,b, D2,b)

∣∣∣∣ +
∣∣∣∣hd,2(D1,a, D2,a)− hd,2(D1,b, D2,b)

∣∣∣∣.
(3.39)

Note that the term |hd,1(D1,a, D2,a)−hd,1(D1,b, D2,b)| can be expanded and rewrit-

ten as

∣∣∣∣hd,1(D1,a, D2,a)− hd,1(D1,b, D2,b)
∣∣∣∣ (3.40)

=

∣∣∣∣∣∣

∫ dmax

y=d̃a

∫ θmax

x=g1(D1,a)+p1

yf(x, y)dxdy −
∫ d̃a

y=d̃b

∫ θmax

x=g1(D1,b)+p1

yf(x, y)dxdy

−
∫ dmax

y=d̃a

∫ θmax

x=g1(D1,b)+p1

yf(x, y)dxdy

∣∣∣∣∣∣
(3.41)

=

∣∣∣∣∣∣

∫ dmax

y=d̃a

∫ g1(D1,b)+p1

x=g1(D1,a)+p1

yf(x, y)dxdy −
∫ d̃a

y=d̃b

∫ θmax

x=g1(D1,b)+p1

yf(x, y)dxdy

∣∣∣∣∣∣
(3.42)

Denote K = max(θ,d)∈U f(θ, d). Next, we show that the following inequalities can

be established

∣∣∣∣∣∣

∫ dmax

y=d̃a

∫ g1(D1,b)+p1

x=g1(D1,a)+p1

yf(x, y)dxdy −
∫ d̃a

y=d̃b

∫ θmax

x=g1(D1,b)+p1

yf(x, y)dxdy

∣∣∣∣∣∣

≤ K ·
∣∣∣∣g1(D1,a)− g1(D1,b)

∣∣∣∣
d2

max −min{d2
max, d̃

2
a}

2
+ K ·

[
θmax − (p1 + g1(D1,b))

]+ d̃2
a − d̃2

b

2
(3.43)

≤ K · g′1(D1,c) ·
∣∣∣∣D1,a −D1,b

∣∣∣∣ ·
d2

max

2
+ K ·

[
θmax − p1

]+

· (d̃a + d̃b)(d̃a − d̃b)

2
(3.44)

≤ K · g′1(D1,c) ·
∣∣∣∣D1,a −D1,b

∣∣∣∣ ·
d2

max

2
+ K ·

[
θmax − p1

]+

· dmax ·
[
d̃a − d̃b

]+

(3.45)

≤ K · g′1(D1,c) ·
∣∣∣∣D1,a −D1,b

∣∣∣∣ ·
d2

max

2
+ K ·

[
θmax − p1

]+

· dmax

γ2

·
∣∣∣∣g1(D1,a)− g1(D1,b)

∣∣∣∣

−K ·
[
θmax − p1

]+

· dmax

γ2

∣∣∣∣g2(D2,a)− g2(D2,b)
∣∣∣∣, (3.46)
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where D1,c is a number between D1,a and D1,b, (3.44) follows (3.43) based on the

intermediate value theorem, and (3.46) is due to the fact that
[
[x1]

+ − [x2]
+

]+

≤
[x1 − x2]

+. Thus, by combining (3.40)–(3.46), we see that (3.40) is less than or equal

to (3.46).

Similarly, it can be shown that

∣∣∣∣hd,2(D1,a, D2,a)− hd,2(D1,b, D2,b)
∣∣∣∣ (3.47)

≤ K · g′2(D2,c′) ·
∣∣∣∣D2,a −D2,b

∣∣∣∣ ·
d2

max

2
+ K ·

[
θmax − p2

]+

· dmax

γ2

·
∣∣∣∣g1(D1,a)− g1(D1,b)

∣∣∣∣

−K ·
[
θmax − p2

]+

· dmax

γ2

∣∣∣∣g2(D2,a)− g2(D2,b)
∣∣∣∣. (3.48)

Thus, following (3.40) –(3.48), we have

∥∥∥∥hd(D1,a, D2,a)− hd(D1,b, D2,b)
∥∥∥∥
1

(3.49)

≤ K


d2

max

2
+

dmax

γ2

[
θmax − p1

]+

+
dmax

γ2

[
θmax − p2

]+

 · g′1(D1,c) ·

∣∣∣∣D1,a −D1,b

∣∣∣∣

+K


d2

max

2
+

dmax

γ2

[
θmax − p1

]+

+
dmax

γ2

[
θmax − p2

]+

 · g′2(D2,c′) ·

∣∣∣∣D2,a −D2,b

∣∣∣∣.

Thus, if the condition in (3.37) is satisfied, the mapping hd(·) is a contraction onD with

respect to L1 norm with a modulus κd ∈ [0, 1), where κd = max(D1,D2)∈[0,dmax]2

{
g′1(D1), g

′
2(D2)

}
·

K ·
(

d2
max

2
+ dmax

γ2

[
θmax − p1

]+

+ dmax

γ2

[
θmax − p2

]+)
, and the data demand dynamics

specified by (3.25)–(3.28) converges, regardless of the initial points, to the unique

equilibrium point. This proves Proposition 7. ¥

We can obtain more specific condition regarding the network capacities for the

convergence of data demand dynamics by plugging g1(D1) = D1/C1 and g2(D2) =

D2/C2 into (3.37). The result is similar to Corollary 3.18 and omitted for brevity. Note

that the condition (3.37) imposes a more stringent requirement on the congestion costs
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(e.g., the WSP needs to allocate larger capacities to the subscribers) than the condition

(3.8) does. However, the condition (3.37) provides us with a similar insight that, if

congest costs increase too rapidly, the data demand dynamics may exhibit oscillation

or divergence. Another important observation from (3.37) is that the two data plans

also affect the convergence. Specifically, given higher prices, it is easier for the con-

gestion costs to satisfy the convergence condition. Intuitively, higher prices result in

lower aggregate data demand. Therefore, there is less fluctuation in the data demand

dynamics and the requirement on the congestion costs becomes less stringent.

3.5.2 WSP’s Data Plan Decision

Following Chapter 3.4, we first write the the WSP’s equilibrium revenues for the data

plans P1 and P2 as

R1 =
∫ dmax

y=d̃

∫ θmax

x=g1(D∗1)+p1

p1f(x, y)dxdy

and R2 =
∫ d̃

y=0

∫ θmax

x=g2(D∗2)+p2+γ2y
(p2 + γ2y)f(x, y)dxdy

(3.50)

if p1 + g1(D
∗
1) > p2 + g2(D

∗
2), and as

R1 =
∫ dmax

y=0

∫ θmax

x=g1(D∗1)+p1

p1f(x, y)dxdy and R2 = 0 (3.51)

if p1 + g1(D
∗
1) ≤ p2 + g2(D

∗
2), where d̃ is given by d̃ = 1

γ2
[p1 − p2 + g1(D

∗
1) −

g2(D
∗
2)]. The expressions of equilibrium revenues in (3.50) and (3.51) are even more

complicated than (3.23) and hence, lose analytical tractability. As a consequence,

we resort to numerical search to identify the optimal P1 = (p1, +∞, 0) and P2 =

(p2, 0, γ2) maximizing R1 + R2.
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Figure 3.1: Single data plan: oscillation and convergence of data demand dynamics.
ε = 0.5, d∗2 = 0.5, γ2 = 0.2. C2 = 1/8 in upper plot and C2 = 2/3 in lower plot.

3.5.3 WSP’s Capacity Decision

It is mathematically challenging to analytically find the optimal capacities C = (C1, C2)

to maximize the WSP’s profit, since the optimal data plans can only be numerically

found. Thus, as in Chapter 3.4, we find the WSP’s optimal capacities through exhaus-

tive search.

In the above analysis, we have considered that the two data plans P1 and P2 are

offered by the same WSP. Nevertheless, in a wireless communications market, it is

possible that these two plans are offered by two different WSPs competing against

each other (i.e., duopoly market). The order of moves is almost the same as that

described at the beginning of Chapter 3.4, with the exception that in the long-term

and medium-term periods, each of the two WSPs decide their own network capaci-

ties and data plans, respectively. Specifically, for the long-term capacity decision, the

two WSPs simultaneously and independently invest in the network capacities. Then,
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Figure 3.2: Single data plan: comparison between discrete-time and continuous-time
data demand dynamics. ρ = 1, ε = 0.5, d∗2 = 0.5, γ2 = 0.2. C2 = 1/8 in upper plot
and C2 = 2/3 in lower plot.

given the capacity decisions, the two WSPs play a noncooperative subgame in which

they strategically make data plan decisions. Best-response dynamics can be applied to

model the two WSPs’ data plan decision process. That is, given its competitor’s data

plan, each WSP chooses an optimal data plan to selfishly maximize its revenue. In

the short-term period, the users’ subscription dynamics is unaffected and the same as

that studied in Chapter 3.5. Unfortunately, it is mathematically intractable to analyze

the competition between the two WSPs, as explicitly expressing the optimal decisions

of the two WSPs in response to each other’s decision is not possible. With a simpler

model, some (partial) analytical results regarding the competition between the WSPs

are available in [35][41], whereas in this chapter, we shall illustrate the WSP competi-

tion through numerical results.
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3.6 Numerical Results

In the numerical results, we assume that the congestion costs are given by g1(D1) =

D1/C1 and g2(D2) = D2/C2, which capture the congestion externality effects in time-

sharing communications networks [39][41]. For the ease of presentation, we consider

uniformly distributed (θ, d), i.e., f(θ, d) = 1 in U = {(θ, d) | 0 ≤ θ ≤ 1, 0 ≤ d ≤ 1}.

Note that our analysis also applies to other settings, provided that Assumptions 1–3

specified in Chapter 3.3 are satisfied.

3.6.1 Single data plan

First, we illustrate in Fig. 3.1 the oscillation and convergence of the data demand

dynamics. The lower plot in Fig. 3.1 shows that the equilibrium data demand D∗
2 de-

creases when the fixed subscription fee p2 increases. Fig. 3.1 verifies that, even for the
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Figure 3.4: Single data plan: comparison between the optimal revenue and that yielded
by Algorithm I. ε = 0.5.

same data plan, different congestion cost functions may result in different convergence

behaviors of the data demand dynamics. We plot the continuous-time data demand

dynamics specified by (3.20) in Fig. 3.2. It can be seen that the continuous-time and

discrete-time data demand dynamics converges to the same equilibrium point. The im-

pacts of switching costs on the data demand dynamics are shown in Fig. 3.3, in which

the upper plot indicates that switching costs may make the data demand dynamics con-

verge even though the network capacity is not large enough. We explain this point by

noting that, with switching costs, fewer users will not change their subscription deci-

sions and hence the data demand dynamics converges under milder conditions. It can

also be seen from the lower plot in Fig. 3.3 that there may exist multiple equilibrium

data demand points and the equilibrium, to which the data demand converges, depends

on the initial point. Next, we show in Fig. 3.4 that the proposed heuristic Algorithm

I can yield a revenue close to the optimum, especially when the network capacity is

large. Thus, Algorithm I may be used to find a suboptimal data plan if finding the
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Figure 3.5: Single data plan: optimal data plan P2 = (p2, d
∗
2, γ2) versus capacity C2.

ε = 0.5.

optimal one is prohibitive. We also plot the optimal data plans12 P2 = {p2, d
∗
2, γ2} in

Fig. 3.5 under different network capacities. In Fig. 3.6, we show the WSP’s profit

versus its deployed network capacity under different capacity costs. It indicates that

if the average capacity cost is smaller (e.g., the network’s lifespan is long and/or the

deployment cost is small), then the WSP needs to enlarge its investment in the network

capacity. With a larger network capacity, the congestion effects will be reduced and

the WSP can attract more users (hence, more revenue) to subscribe to its service.

3.6.2 Two data plans

Convergence and oscillation of the data demand dynamics in a wireless market with

two data plans are illustrated in Fig. 3.7. As intuitively expected and reflected in

Proposition 7, a more stringent requirement on the congestion costs (i.e., the network

capacities) is imposed to guarantee the convergence of the data demand dynamics with

two data plans, compared to a market with only one data plan. Thus, even though a

certain network capacity may guarantee the convergence of data demand dynamics

with one data plan, it does not necessarily guarantee the convergence with two data

plans. Next, we show in Fig. 3.8 the profits under various network capacities. To

maximize the profit, the WSP needs to increase the network capacity for its capped

12The optimal data plans are obtained by exhaustive search over all the possible data plans.
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data plan while reducing the network capacity for its unlimited data plan. This can be

explained as follows: when an unlimited data plan is offered, subscribers with high

data demand will cause excessive congestion costs for the other subscribers, reducing

the profitability of the unlimited data plan. This also coincides with the current trend

that some WSPs have discontinued unlimited data plans [52]. Finally, we show the

competition between two WSPs in Fig. 3.9. It can be seen that if the two WSPs

choose their optimal data plans independently in response to the competitor’s data

plan, then the competition will quickly lead to an equilibrium. This means that, given

the long-term capacity investment, the WSPs only adjust their data plans a few times

before reaching an equilibrium.13 Fig. 3.9 also shows that if the capacity investment

by the WSP offering the unlimited data plan decreases, the corresponding revenue

will be reduced, whereas its competitor’s revenue will significantly increase. This is

because with a decreased capacity for the unlimited data plan, the resulting congestion

cost will increase significantly (due to heavy users) and thus, many users will switch

to the usage-based data plan. Note that the two WSPs also need to compete against

each other by strategically choosing their long-term network capacities. The result is

similar to Fig. 3.9 and hence, is omitted here for brevity.

3.7 Conclusion

In this chapter, we considered a wireless communications market where one monop-

olistic WSP serves a large number of users. The users’ data demand dynamics, the

WSP’s data plan decision and network capacity decision were studied. In our analy-

sis, the users’ heterogeneity in terms of their benefits and data demand, as well as the

network congestion costs, were explicitly taken into consideration. For the user’s data

demand dynamics, we showed that: (1) the existence of an equilibrium data demand

13Similar results are also observed for other simulation settings, although in some (rare) cases the
data plan competition between the two WSPs does not converge.
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is independent of the congestion cost, although for certain data plans, there may not

exist any equilibrium data demand if two data plans are both offered in the market; (2)
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in order to guarantee the convergence of data demand dynamics, the congestion costs

should not increase too rapidly when the aggregate data demand increases, implying

that the WSP needs to deploy a large network capacity to support the users’ demand.

We also proposed a heuristic algorithm that can achieve a close-to-optimal equilibrium

revenue if only one data plan is offered by the WSP. For general cases, the WSP’s data

plan decision and network capacity decision were formalized and solved numerically

to maximize the WSP’s profit. Finally, we conducted extensive simulations to verify

our analysis. Numerical results indicate that to maximize the profit, the WSP should

increase the network capacity for its capped data plan while decreasing the network

capacity for its unlimited data plan.
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CHAPTER 4

Maximizing Profit on User-Generated Content

Platforms

User-generated content, such as blogs and self-made videos, has becoming a key com-

ponent in emerging social media. In this chapter, we consider a user-generated content

platform monetized through advertising and managed by an intermediary. To maxi-

mize the intermediary’s profit given rational participants (i.e., content producers and

content viewers), we propose a payment scheme in which the intermediary either taxes

or subsidizes a content producer an amount of money proportional to the number of

views of the producer’s content. First, we use a model with a representative content

viewer to determine how the content viewers’ attention is allocated across available

content by solving a utility maximization problem. Then, by modeling the content

producers as self-interested agents making independent production decisions, we show

that there exists a unique equilibrium in the content production stage, and propose a

best-response dynamics to model the decision-making process and to reach the equi-

librium. Next, we study the optimal payment scheme (i.e., the payment scheme max-

imizing the intermediary’s profit) that the intermediary chooses taking into account

the decisions made by the representative content viewer and the content producers. In

particular, by considering the well-known quality-adjusted Dixit-Stiglitz utility func-

tion for the representative content viewer, we derive explicitly the optimal payment

per content view and characterize analytical conditions under which the intermediary

should tax or subsidize the content producers. Finally, we generalize the analysis by
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Table 4.1: Comparison Between Different Mechanisms
Mechanism/Scheme Purpose Tax Subsidize Application Examples
Removing low-quality Incentivize high-quality N/A N/A User-generated content
content [58] content
Review-based scoring rule [59] Encourage early responders N/A N/A Q&A forums

and high-quality answers
Virtual reward [60] Maximize task competition N/A Users Social networks

probability (virtual currency)
Payment transfer [61] Maximize social welfare Downloaders Uploaders P2P networks
Pricing transmitters [62] Maximize network utility Transmitters N/A Wireless relay networks
Pricing content providers [99] Maximize profit Content providers Price-sensitive Communications markets

end users
Pricing consumers [65] Maximize profit Consumers N/A Online games & dating
Proposed payment scheme Maximize profit Content producers Content producers User-generated content

considering heterogeneity in terms of production costs among the content producers.

4.1 Introduction

As the Internet has been penetrating every aspect of our lives, we have witnessed a sig-

nificant expansion of online user-generated content platforms during the past decade.

Well-known examples include YouTube, Facebook, Twitter, and Yahoo! Answers (an

online community where people share knowledge). A key characteristic of these plat-

forms is that the content can be viewed for free by the users and the content producers

are not obliged to produce content on the platform. In addition, advertising accounts

for a major source of platforms’ revenue. To enhance a platform’s profitability, it is

vital for the platform owner, which we refer to as an intermediary in this chapter,

to either attract more content views or develop more efficient advertising algorithms

showing more relevant advertisement to the content viewers.

In this chapter, we consider a user-generated content platform and propose a pay-

ment scheme in which the intermediary can either tax or subsidize the content produc-

ers to maximize its profit. On the one hand, the intermediary increases the revenue per

content view by taxing, while decreasing the total content available on its platform.

On the other hand, the intermediary stimulates more content production by sharing

(part of) its advertising revenue with, i.e., subsidizing, the content producers. While
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the latter approach has been exercised, either partially or fully, by several online con-

tent platforms (e.g., YouTube Partner, Squidoo), we shall show that taxing the content

producers, which is relatively less common on the Internet,1 may also maximize the

intermediary’s profit.

The scenario we focus on is summarized as follows:

1. The intermediary monetizes the user-generated content platform through adver-

tising, and users can access to the content for free (e.g., YouTube, Yahoo! Answers).2

2. Content production is costly. For instance, video content producers may incur

costs when shooting video clips and making video files.3 Content producers are moti-

vated to produce content by both implicit incentives (e.g., social satisfaction) and ex-

plicit incentives (e.g., monetary compensation) [70]. In the proposed payment scheme,

subsidizing (taxing) provides content producers with an explicit incentive (disincen-

tive) [70].

3. Depending on the payment scheme (i.e., taxing or subsidizing), the intermediary

pays a content producer a positive or negative amount proportional to the number of

times that its content is viewed. The considered “pay per content view” is a common

practice in the Internet industry.

To approach the problem of optimizing the payment scheme, we adopt a leader-

follower model (i.e., the intermediary is the leader, followed by the content producers

and then by the content viewers) and use backward induction. First, we use the model

of a representative content viewer, which is a collection of all the individual content

viewers, to determine how the content viewers’ attention is allocated across a vari-

ety of content by solving a utility maximization problem. Then, we study the content

1The intermediary may tax the content producers for utilizing its resources. As a relevant example,
Google Picasa charges its users for storage exceeding the free quota.

2In principle, the intermediary may charge the content viewers for viewing the content, which we
shall study in our future work.

3The production cost also includes the cost (e.g., time cost) incurred in publishing (or uploading)
the content on the intermediary’s platform.
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production decisions made by self-interested content producers. It is shown that there

always exists a unique equilibrium point at which no content producer can gain by

changing its production decision. We also propose a best-response dynamics to model

the content producers’ decision process and derive a sufficient condition for its con-

vergence. Next, we formulate the intermediary’s profit maximization problem and,

by considering the quality-adjusted Dixit-Stiglitz utility function for the representative

content viewer, derive a closed-form optimal solution explicitly. We also character-

ize analytically conditions under which the intermediary should tax or subsidize the

content producers. Finally, we generalize our analysis by considering heterogeneity in

terms of production costs among the content producers.

The rest of this chapter is organized as follows. Related work is reviewed in Chap-

ter 4.2. Chapter 4.3 describes the model. In Chapter 4.4, we study the decisions

made by the content viewers and content producers, and derive the optimal payment

maximizing the intermediary’s profit. Heterogeneous production costs are studied in

Chapter 4.5. Finally, concluding remarks are offered in Chapter 4.6.

4.2 Related Works

We summarize in Table 4.1 several mechanisms closely related to ours.

If the intermediary chooses to subsidize the content producers, the proposed pay-

ment scheme is essentially an incentive mechanism. Various incentive mechanisms

have been proposed recently. For instance, the authors in [58] proposed eliminating

or hiding low-quality content to provide content producers with incentives to generate

high-quality content. In [59], two scoring rules, the approval-voting scoring rule and

the proportional-share scoring rule, were proposed to enable the high-quality answers

for online question and answer forums (e.g., Yahoo! Answers). The authors in [60]

proposed a (virtual) reward-based incentive mechanism to improve the overall task

90



completion probability in collaborative social media networks. Pricing-based incen-

tives were proposed to improve social welfare for peer-to-peer networks in [61] and to

maximize any system utility in multi-user relay networks in [62], respectively.

If the intermediary taxes the content producers, then the proposed scheme can be

classified as market pricing. By considering a general two-sided market, the authors

in [63] studied the tradeoffs between the merchant mode and the platform mode, and

showed the conditions under which the merchant or platform mode is preferred. Fo-

cusing on the Internet markets, [64] revealed that a neutral network is inferior to a

non-neutral one in terms of social welfare when the ratio between advertising rates

and end user price sensitivity is either too high or too low. The authors in [99] stud-

ied the broadband communications market based on a two-sided model, and proposed

pricing the content providers to maximize the service provider’s profit. In the presence

of externalities among the users or consumers, [65] proposed three different pricing

schemes, namely, uniform price, differentiated prices and only two different prices, to

maximize the monopolist’s profit.

4.3 Model

Consider an online user-generated content platform managed by a profit-maximizing

intermediary. Content on the platform is produced by individual users, which we refer

to as content producers, and viewed by content viewers. Next, we specify the modeling

details of the intermediary, content producers and viewers.

4.3.1 Intermediary

It is known that advertising is one of the most prevailing revenue sources in the Inter-

net industry, especially for content platforms such as YouTube and Yahoo Answers.

Hence, we consider that the intermediary monetizes its content platform by displaying
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contextual advertisement to content viewers. Although multiple charging models (e.g.,

pay per click, pay per sale, and pay per impression) have been proposed for online ad-

vertising, the advertising revenue is in general proportional to the total number of times

that the content with advertisement is viewed (i.e., content views) [64]. To increase the

advertising revenue, one natural approach is to improve the algorithm based on which

the advertisement is displayed to the content viewers, e.g., targeted advertising that

enhances the correlation of advertisement to the content such that the advertisement

is more likely to be clicked on. On the other hand, the intermediary can derive more

advertising revenue by increasing the content views. To do so, we propose that the

intermediary provides the content producers with economic incentives (i.e., subsidiz-

ing) to produce more content,4 which in turn attracts more content views. Essentially,

this scheme allows the intermediary to share with the content producers (part of) its

advertising revenue as an economic incentive, and it has been exercised by several

content platforms (e.g., YouTube Partner, Squidoo). Note that, since we focus on the

side of content producers, we do not consider subsidizing the content viewers (e.g.,

providing rewards) to attract more content views. Moreover, the number of content

viewers is typically much greater than that of content producers and hence, in practice,

it is relatively easier to implement the proposed payment scheme on the side of content

producers.

To formally state our model, we denote x̄ as the total content views of all the

content on the intermediary’s platform, and b ≥ 0 as the (average) advertising profit

(i.e., revenue minus cost) that the intermediary can derive per content view. For the

convenience of analysis, we assume that b is constant regardless of x̄, i.e., the average

advertising profit is independent of the content views. The intermediary pays θ per

content view to the respective content producers. For the completeness of analysis,

we allow θ to take negative values, in which case the intermediary taxes the content

4In this chapter, the intermediary does not differentiate among different qualities, although a pro-
ducer producing content of higher quality will be compensated more because of higher demand.
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producers with −θ per content view. Practically speaking, negative θ may correspond

to that the intermediary taxes the content producers for utilizing its resources (e.g.,

bandwidth) or for commission fees if the content producers produce advertisement-

type content. In the following analysis, we use the term payment (per content view) to

refer to θ wherever applicable, regardless of its positive or negative sign. Neglecting

the intermediary’s recurring fixed operational cost, we can express the intermediary’s

profit as

ΠI = (b− θ) · x̄. (4.1)

While b can be increased by using sophisticated advertising algorithms showing more

relevant advertisement, we assume throughout the chapter that b is exogenously deter-

mined and fixed, and shall focus on deriving the optimal θ that maximizes the interme-

diary’s profit. Note that in our current study, we restrict our analysis to uniform θ, and

considering more general payment schemes (e.g., different payments per content view

for different content producers) is left for future work.

4.3.2 Content Producers

As evidenced by the exploding number of YouTube users, a popular user-generated

content platform can attract a huge number of content producers. To capture this fact,

we use a continuum model and assume that the mass of content producers is normal-

ized to one. Each content producer can produce content of a certain quality while

incurring a production cost. We further assume that content producers produce dif-

ferentiated content, or in other words, no two content producers can produce identical

content. Note that the content quality can be different across content producers, al-

though we assume that the production cost is the same for all content producers (we

shall relax this assumption in Chapter 4.5). The content quality is represented by

a scalar and treated as an internal feature of content (e.g., how fun/informative the

content is). Mathematically, we denote qi ≥ 0 and c > 0 as the quality of content
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produced by content producer i and the production cost, respectively. Without causing

ambiguity, we occasionally use content qi to refer to the content with a quality qi. To

characterize heterogeneity in the content quality, we assume that the content quality

follows a cumulative distribution function (CDF), denoted by F (q), across the unit

mass of content producers. In other words, F (q) denotes the number or fraction of

content producers whose content has a quality less than or equal to q ≥ 0.

Millions of users engaging daily in Internet activities such as blogs, for which

they receive no monetary rewards, highlight that such content producers may sim-

ply derive satisfaction (and hence utility) by attracting the content viewers’ attention

[58][60][70]. We use the content views to quantify the amount of received attention

and assume that the benefit resulting from the content viewers’ attention for a content

producer is a linear function of its content views. We assume further that each con-

tent producer i is self-interested and can strategically make a binary decision: produce

or not produce. Denote by x(qi) ≥ 0 the number of views for content qi. If con-

tent producer i produces content on the intermediary’s platform, it can derive a utility

expressed as

πi = (θ + s) · x(qi)− c, (4.2)

where s ≥ 0 is the (social) benefit per content view derived from the content viewers’

attention,5 θ is the payment per content view determined by the intermediary, and c is

the production cost. Content producer i obtains zero utility if it chooses not to pro-

duce content. By the assumption of rationality, content producer i chooses to produce

content if and only if its utility is non-negative.

In what follows, we assume that the content quality q follows a distribution in a

normalized interval [0, 1] and the probability density distribution (PDF) is given by a

continuous and positive function f(q) for q ∈ [0, 1]. Scaling the interval [0, 1] to [0, q̄]

5Essentially, s ≥ 0 converts the content viewer’s attention to the content producers’ (economic)
benefit/utility.
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does not affect the analysis, but will only complicate the notations. It is intuitively

expected that a content with a higher quality will attract more content views (and yield

a higher utility for its content producer, too) than the one with a lower quality. Thus, the

production decision of the content producers has a threshold structure. In particular,

there exist marginal content producers whose content has a quality denoted by qm ∈
[0, 1], and those content producers whose content quality is greater (less) than qm will

(not) choose to produce content on the intermediary’s platform [67]. We refer to qm as

the marginal content quality. Next, it is worthwhile to provide the following remarks

concerning the model of content producers.

Remark 1: In our model, a content producer who produces m ≥ 1 pieces of content

is viewed as m content producers, each of whom produces a single content, and the

total production cost is m · c (i.e., constant returns to scale [63]).

Remark 2: As in [63], we assume that the content producers will incur a predeter-

mined production cost if they choose to produce content. That is, the content producers

cannot choose their production costs when producing content. For the ease of presen-

tation and to gain insights as to whether the intermediary should tax or subsidize the

content producers, we first consider a homogeneous production cost among the content

producers. In Chapter 4.5, we shall generalize the model to consider heterogeneity in

the content producers’ production costs.

Remark 3: If θ < −s, it is clear from (4.2) that no content producers can possibly

receive a non-negative utility by producing content on the platform. As a consequence,

x̄ = 0 and the intermediary’s profit is zero. On the other hand, if θ > b, then we see

from (4.1) that the intermediary can never gain a positive profit. Hence, we exclude

these two trivial cases in the remainder of this chapter and focus on the case of −s ≤
θ ≤ b unless otherwise stated.
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4.3.3 Content Viewers

Despite that the content viewers are diverse in terms of preferences towards the con-

tent, the aggregate content viewing decisions of all the content viewers can be con-

veniently characterized by the decision of a representative content viewer. Thus, we

adopt the widely-used representative agent model to determine how the total content

views are allocated across a variety of content [107]. Specifically, the representative

content viewer optimally allocates its total content views, denoted by T , across the

available content to maximize its utility. Note that T can be interpreted as the size of

the representative content viewer or the market size. On the Internet, it is quite com-

mon that multiple content platforms offer similar services and the content viewers have

access to the content on any of these platforms. Focusing on the intermediary’s optimal

payment decision, we do not consider the details of how the content is produced on the

other platforms. Instead, we can assume that the mass of content available on the other

platforms is na ≥ 0 and the content quality follows a certain CDF F̃ (q) with support

q ∈ [ql, qh], where 0 ≤ ql < qh are the lowest and highest content quality on the other

platforms, respectively. For the convenience of notation, throughout the chapter, we

alternatively represent the content on the other platforms using a unit mass of content

with an aggregate quality of qa, without affecting the analysis. Note that qa is a func-

tion of na ≥ 0, F̃ (q) and the utility function of the representative content viewer. In

particular, given a uniform distribution of content quality on the other platforms and

the quality-adjusted Dixit-Stiglitz utility for the representative content viewer (which

we shall define later), we can readily obtain

qa =


na

(
qσ+1
h − qσ+1

l

)

1 + σ




1
σ

, (4.3)

where σ > 1 measures the content substitutability. Recalling that qm ∈ [0, 1] is the

marginal content quality above which the content producers choose to produce con-
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tent on the intermediary’s platform, we write the representative content viewer’s util-

ity function as U(x(q), xa | qm, qa), where x(q) denotes the content view for content

q ∈ [qm, 1] and xa is the content view allocated to the aggregate content qa on the

other content platforms. In our model, the intermediary’s content platform is a mo-

nopolist in the market and the content producers under consideration, if they choose

to produce content, can only produce content on the intermediary’s platform. Thus, xa

is essentially interpreted as “outside activity” of the content viewers. Note that x(q)

can be rewritten as x(q | qm, qa), although we use the succinct notation x(q) throughout

the chapter whenever applicable. If qm increases (decreases), there will be less (more)

content on the intermediary’s platform. Because of the continuum model, we allow

x(q) and xa to take non-integer values, and x(q) actually represents the content view

density allocated to a continuum of content with quality q ∈ [qm, 1], i.e., x(q) is the

content view that an individual content producer with a content quality of q receives.

Next, we formulate the utility maximization problem for the representative content

viewer as follows

max
x(q)≥0,xa≥0

U(x(q), xa | qm, qa),

s.t.,
∫ 1

qm

x(q)dF (q) + xa ≤ T,

(4.4)

where F (q) is the CDF of content quality on the intermediary’s content platform. It

is worth noting that an implicity assumption underlying the problem (4.4) is that the

aggregate quality of the content on the other platforms is independent of the interme-

diary’s payment decision and other variables in the model such as qm, x(q), xa. This

can be justified by noting that there are many content platforms on the Internet and

changes on one content platform have a negligible impact on the other platforms. Be-

fore performing further analysis, we assume that the following properties are satisfied

by the utility function U(x(q), xa | qm, qa).

Property 1 (Diminishing marginal utility): U(x(q), xa | qm, qa) is increasing and
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strictly (jointly) concave in x(q) and xa, for q ∈ [0, 1].

Property 2 (Preference towards diversified content): maxx(q)≥0,xa≥0 U(x(q), xa | qm, qa)

is decreasing in qm ∈ [0, 1].

Property 3 (Negative externalities): Denote by x∗(q | qm, qa), for q ∈ [0, 1], the

optimal solution to (4.4).6 If content q is produced, then x∗(q | qm, qa) is positive.

Moreover, it is continuous and strictly increasing in qm ∈ [0, 1], increasing in q ∈ [0, 1],

and decreasing in qa for qa ∈ [0,∞). In particular, x∗(0 | qm, qa) = 0 for all qm ∈ [0, 1]

and qa ≥ 0.

Property 4 (More content leading to more content views): x̄ =
∫ 1
qm

x∗(q | qm, qa)dF (q)

is decreasing in qm ∈ [0, 1].

We briefly discuss the above properties. Property 1 captures the effects of dimin-

ishing marginal utility when the representative content viewer views more content.

Property 2 models the phenomenon that content viewers will typically benefit from

the participation of content producers on the platform. This is particularly true for on-

line content platforms, where the content viewers prefer to view a diversified bundle

of content. Thus, when qm ∈ [0, 1] increases, i.e., fewer content producers produce

content, the representative content viewer’s (maximum) utility decreases. Property 3

reflects the “crowding effects”, i.e., lower qm or more content production increases

competition among the content producers. Specifically, an individual content producer

will attract a less content view if more content producers choose to produce content on

the platform or the aggregate content quality on the other platforms is higher. The last

property ensures that more content views are devoted to the intermediary’s platform if

there is more content available on the platform.

As a concrete example satisfying Properties 1–4, we use a quality-adjusted version
6The existence of x∗(q | qm, qa) can be established based on the strict concavity of the utility func-

tion. Due to the continuum model, x̃(q | qm, qa) = x∗(q | qm, qa) almost everywhere for q ∈ [0, 1] is
also optimal in maximizing the utility function. For simplicity, we treat such x̃(q | qm, qa) the same
as x∗(q | qm, qa). The treatment does not change our analysis, except that it affects the decisions of a
negligible mass of content producers.
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of the well-known Dixit-Stiglitz utility function [68][107], defined as below7

U(x(q), xa | qm, qa) =
[∫ 1

qm

q · x(q)
σ−1

σ dF (q) + qa · x
σ−1

σ
a

] σ
σ−1

, (4.5)

where σ > 1 measures the elasticity of substitution between different content. In the

extreme case, the content is perfectly substitutable when σ = ∞ [68].

4.4 Profit Maximization on Content Platforms

In this part, based on the model described above and the proposed payment scheme,

we study the problem of optimizing payment in the presence of self-interested content

producers and content viewers. The timing of decision making can be described as

follows.

Stage 1 (Payment Scheme Decision): The intermediary announces the value of θ

to the content producers.

Stage 2 (Production Decision): Given θ, each content producer makes a binary

decision as to whether or not to produce content on the platform.

Stage 3 (Viewing Decision): Given the available content, the content viewers,

consolidated as a representative content viewer, optimally allocate the content views

to maximize utility subject to a total content view constraint.

From the described timing, we see that the intermediary can be regarded as the

leader, followed by the content producers and then by the content viewers. Thus, in

order to identify the optimal θ, the intermediary needs to first know how the content

producers and viewers respond to its choice of θ. Therefore, we proceed with our

7If we model the quality of na pieces of content on the other platforms by using a certain CDF
F̃ (q) for q ∈ [ql, qh], where 0 ≤ ql < qh are the lowest and highest content quality on the other
platforms, respectively, then the Dixit-Stiglitz utility function in (4.5) becomes U(x(q) | qm, ql, qh) =[∫ 1

qm
q · x(q)

σ−1
σ dF (q) + na

∫ qh

ql
q · x(q)

σ−1
σ dF̃ (q)

] σ
σ−1

and the analysis remains the same with an ap-
propriate choice of qa.
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analysis using backward induction.

4.4.1 Optimal Content Viewing

It follows from the strict concavity of U(x(q), xa | qm, qa), specified in Property 1, that

there exists a unique optimal solution, denoted by x∗(q) and x∗a for q ∈ [0, 1], to the

utility maximization problem in (4.4), although it is not possible to obtain a closed-

form expression without specifying U(x(q), xa | qm, qa). By considering the quality-

adjusted Dixit-Stiglitz utility defined in (4.5) and uniform distribution of the content

quality,8 we can obtain explicitly the closed-form solution as follows

x∗(q) =
T (σ + 1)qσ

(σ + 1) · qσ
a + (1− qσ+1

m )
, (4.6)

for q ∈ [qm, 1], x∗(q) = 0 for q ∈ [0, qm), and x∗a = T (σ+1)qσ
a

(σ+1)·qσ
a +(1−qσ+1

m )
. The details

of deriving (4.6) are omitted for brevity. After plugging x∗(q) and x∗a into (4.5), the

maximum utility derived by the representative content viewer is given by

U∗(x∗(q), x∗a) = T

[
qσ
a +

1− qσ+1
m

σ + 1

] 1
σ−1

, (4.7)

which is decreasing in qm ∈ [0, 1].

4.4.2 Equilibrium Content Production

Due to rationality, content producers will not choose to produce content if they cannot

obtain non-negative utilities. Essentially, interaction among the content producers can

be formalized as a non-cooperative game with an infinite number of players, the solu-

tion to which is (Nash) equilibrium. At an equilibrium, if any, no content producers

8The uniform distribution has been widely applied to model the diversity of various factors, such as
opportunity cost [63] and valuation of quality-of-service [66].
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can gain more benefits by deviating from their decisions. In other words, the fraction

of content producers choosing to produce content on the intermediary’s platform does

not change at the equilibrium, or equivalently, the marginal content quality qm ∈ [0, 1]

becomes invariant. Next, we study the equilibrium content production by specifying

the equilibrium marginal content quality denoted by q∗m.

If q∗m = 1, then no (or a zero mass of) content producers can receive a non-negative

utility by producing content on the platform. This implies that, with q∗m = 1, we

have x∗(1|1, qa) · (θ + s) − c ≤ 0. If there are some content producers choosing to

produce content at the equilibrium (i.e., q∗m ∈ [0, 1)), then according to the definition

of marginal content producers, we have x∗(q∗m|q∗m, qa) · (θ + s) − c = 0. Hence, we

can show that q∗m ∈ [0, 1] satisfies

q∗m , Q(q∗m) = arg min
q
{q ∈ [0, 1] : x∗(q | q∗m, qa) · (θ + s)− c ≥ 0} , (4.8)

where [x]10 = min{1, max{0, x}}. Thus, an equilibrium point of content production

exists if and only if the mapping Q(q∗m), defined in (4.8), has a fixed point. Next, we

formally define the equilibrium marginal content quality in terms of q∗m as below.

Definition 1: q∗m is an equilibrium marginal content quality if it satisfies q∗m =

Q(q∗m).

We establish the existence and uniqueness of an equilibrium marginal content qual-

ity in Theorem 3.

Theorem 3. For any θ ∈ [−s, b], there exists a unique equilibrium q∗m ∈ (0, 1] in the

production decision stage. Moreover, q∗m satisfies





q∗m = 1, if x∗(1 | 1, qa) · (θ + s) ≤ c,

q∗m ∈ (0, 1), otherwise,
(4.9)
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where x∗(1 | 1, qa) is obtained by solving (4.4) with qm → 1.9 ¤

Proof. We prove the theorem by considering the following two cases.

Case 1: If x∗(1 | 1, qa) · (θ + s) ≤ c, then it can be shown that for any value

of qm ∈ [0, 1], the utility obtained by content producer i whose content quality is 1

satisfies

πi = x∗(1 | qm, qa) · (θ + s)− c ≤ x∗(1 | 1, qa) · (θ + s)− c ≤ 0, (4.10)

where the first inequality follows from Property 3 specified in Chapter 4.3 that x∗(1 | qm, qa) ≤
x∗(1 | 1, qa). Thus, only q∗m = 1 satisfies Definition 1 and the equilibrium is unique in

this case.

Case 2: If x∗(1 | 1, qa) · (θ + s) > c, we first show by contradiction that q∗m, if any,

must be strictly less than 1. Suppose that q∗m = 1 and no content is produced at the

equilibrium. Then, content producer i whose content quality is 1 can receive a strictly

positive utility

πi = x∗(1 | q∗m, qa) · (θ + s)− c = x∗(1 | 1, qa) · (θ + s)− c > 0, (4.11)

which means that content producer i can receive a positive utility by producing content

and contradicts our assumption. Thus, q∗m must be strictly less than 1. On the other

hand, by Property 3, we have x∗(0 | qm, qa) = 0, for any qm ∈ [0, 1], and hence content

producers whose content quality is zero will not choose to produce content. Therefore,

at the equilibrium, q∗m must be strictly positive.

Next, we prove the uniqueness of q∗m by constructing an auxiliary function Q̄(qm) =

Q(qm)−qm, where Q(qm) is defined in (4.8) is continuous in qm ∈ [0, 1] as per Property

9When qm → 1, only a negligible fraction of content producers choose to produce content on the
intermediary’s content platform.
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3. Thus, q∗m is an equilibrium point of the content production if and only if Q̄(q∗m) = 0

(i.e., a fixed point of Q(qm)). Based on Property 3, it can be seen that, when qm

increases, Q(qm) decreases. Thus, the auxiliary function Q̄(qm) = Q(qm)− qm is con-

tinuous and strictly decreasing in qm ∈ [0, 1]. It can be further shown that Q̄(1) < 0

while Q̄(0) > 0. Thus, by applying the intermediate value theorem, there must exist a

unique q∗m ∈ (0, 1) such that Q̄(q∗m) = 0. Therefore, the uniqueness of the equilibrium

point in the content production stage is proved. ¥

Theorem 3 guarantees the existence of a unique equilibrium point and shows that

if the the content producer with the highest quality cannot obtain a positive utility (due

to high production cost, taxing or low subsidizing from the intermediary), then no

content producers choose to produce content on the intermediary’s content platform

at the equilibrium. For notational convenience, we denote the value of θ that satisfies

x∗(1 | 1, qa) · (θ + s) = c by

θ =
c

x∗(1 | 1, qa)
− s. (4.12)

Then, it follows from Theorem 3 that the intermediary can gain a positive profit if and

only if θ ∈ (θ, b]. Nevertheless, if θ ≥ b, then the intermediary’s profit is always zero.

Hence, we assume θ < b throughout the chapter. Based on the uniqueness of q∗m for

any θ ∈ [−s, b], we can express q∗m = q∗m(θ) as a function of θ ∈ [−s, b]. While there

exists no simple closed-form expression of q∗m(θ) in general, it can be easily shown

that q∗m(θ) ∈ (0, 1) is strictly decreasing in θ ∈ (θ, b] and q∗m(θ) = 1 for θ ∈ [−s, θ]. In

practice, the content producers do not have complete information regarding each other

and hence, they may not make directly the decisions that strikes an equilibrium. In

such a scenario, the content producers may use an adjustment process to update their

decisions based on limited information.

A natural and well-studied approach to modeling an adjustment process is the best-
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response dynamics, in which each decision maker chooses the best action in response

to the decisions made by the others. In this chapter, we consider the best-response

dynamics based on naive (or static) expectation. Specifically, at the end of time t =

1, 2, 3 · · · , content producer i assumes that the decisions made by the other content

producers at time t + 1 remain the same as those at time t, and expects xt+1(qi) =

x∗(q | qm,t, qa), where x∗(q | qm,t, qa) is the solution to (4.4) and qm,t ∈ [0, 1] is the

marginal content quality at time t. Note that a content producer with a content quality

less than qm,t may also choose to produce content at time t + 1, if it believes that there

is not much high quality content on the platform (i.e., qm,t ∈ [0, 1] is large) and it

can receive a non-negative utility. Similar decision processes have been adopted in

the existing literature (e.g., [66] and references therein). The best-response decision

model implies that the sequence qm,t, for t = 0, 1, 2 · · · , evolves as follows10

qm,t+1 = Q(qm,t), (4.13)

where Q(·) is defined in (4.8). Essentially, the dynamics in (4.13) is a fixed point itera-

tion for Q(·) and it converges regardless of the initial point if |Q′(q)| < 1 for q ∈ [0, 1]

[69]. Following the contraction mapping theorem, we can easily further specify a suf-

ficient convergence condition, and the details are omitted here for brevity. It should be

noted that, by considering the dynamics specified by (4.13), we implicitly assume that

the content produced in the previous periods has little value and will not significantly

affect the content views in the current period (e.g., news content platform). More-

over, the dynamics specified by (4.13) requires that all the content producers update

production decisions at the end of each time period. In practice, if only a fraction

ε ∈ (0, 1] of the content producers make decisions each time, then the sequence be-

comes qm,t+1 = (1−ε)qm,t+εQ(qm,t) without affecting the equilibrium analysis while

the convergence is slowed down.

10If there exists no q ∈ [0, 1] such that x(q | qm,t, qa) · (θ + s)− c ≥ 0, then we set qm,t+1 = 1.

104



4.4.3 Optimal Price

Based on decisions made by the content viewers and content producers, we study the

optimal payment θ that maximizes the intermediary’s steady-state profit (i.e., profit

obtained when the content production decision stage reaches the equilibrium). Mathe-

matically, we formalize the profit maximization problem as

θ∗ = arg max
θ∈[θ,b]

(b− θ) · x̄, (4.14)

where x̄ =
∫ 1
q∗m x∗(q | q∗m, qa)dF (q). The decision interval is shrunk to [θ, b], since

θ ∈ [−s, θ) always results in a zero profit for the intermediary, where θ is defined

in (4.12). By Property 4 stated in Chapter 4.3, x̄ =
∫ 1
q∗m x∗(q)dF (q) is decreasing in

q∗m ∈ [0, 1]. Then, recalling that q∗m(θ) is strictly decreasing in θ ∈ [θ, b], we can see

x̄ is increasing in θ ∈ [θ, b]. In other words, increasing θ ∈ [θ, b] will encourage more

content producers to produce content on the intermediary’s platform and hence attract

more content views from the content viewers.

Although we can numerically solve the profit maximization problem (4.14), it is

rather challenging, if not impossible, to explicitly determine the optimal payment θ∗

without specifying the utility function U(x(q), xa | qm, qa) or further restrictions on x̄.

If the profit function in (4.1) is strictly concave in θ, then there exists a unique optimal

payment θ∗ ∈ [θ, b] maximizing the intermediary’s profit and satisfying the first-order

optimality condition

−x̄(θ∗) + (b− θ∗)
∂x̄

∂θ

∣∣∣
θ=θ∗

= 0. (4.15)

Moreover, if the first-order partial derivative of (4.1) with respect to θ evaluated at

θ = 0 is negative (positive), then the optimal payment θ∗ is negative (positive), i.e., the

intermediary should tax (subsidize) the content producers to maximize its profit. This
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result can be interpreted as follows. If −x̄(θ = 0) + b · ∂x̄
∂θ
|θ=0 < 0 =⇒ x̄(θ = 0) >

b · ∂x̄
∂θ
|θ=0, it implies that there is already a sufficient amount of content available on

the intermediary’s platform even when the intermediary does not subsidize the content

producers. Otherwise, the intermediary should subsidize the content producers such

that there is more content produced, receiving more content views. Therefore, we see

that the amount of content views when θ = 0 is critical in determining whether the

intermediary should tax or subsidize the content producers.

In the following analysis, to gain insights and explicitly derive the optimal payment

θ∗, we consider the quality-adjusted Dixit-Stiglitz utility and uniform distribution of

content quality. A closed-form optimal payment θ∗ ∈ [ c·qσ
a

T
−s, b] is explicitly obtained

and shown in Theorem 4.

Theorem 4. Suppose that U(x(q), xa | qm, qa) is given by the Dixit-Stiglitz utility func-

tion in (4.5) and the content quality q is uniformly distributed on [0, 1]. The unique

optimal payment θ∗ ∈ [ c·qσ
a

T
− s, b] that maximizes the intermediary’s profit is given by

θ∗ =
c [(σ + 1) · qσ

a + 1− zσ+1]

T (σ + 1) · zσ
− s, (4.16)

where z ∈ [q∗m(b), 1] is the unique root of the equation

− T · qσ
a · (b + s)

((σ + 1) · qσ
a + 1− zσ+1)2

+
c

(σ + 1)3
· σ + zσ+1

z2σ+1
= 0. (4.17)

Proof. We see from Theorem 3 that q∗m = Q(1) = 1 and q∗m ∈ (0, 1), when θ = c·qσ
a

T
−s

and θ = b, respectively. Hence, we can express

q∗m = Q(q∗m) =

{
c [(σ + 1) · qσ

a + 1− (q∗m)σ+1]

T (σ + 1)(θ + s)

} 1
σ

(4.18)
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when θ∗ ∈ [ c·qσ
a

T
− s, b]. Then, by rewriting (4.18), θ can be expressed in terms of q∗m as

θ =
c [(σ + 1) · qσ

a + 1− (q∗m)σ+1]

T (σ + 1)(q∗m)σ
− s. (4.19)

Thus, by replacing the optimization variable θ with q∗m, we can reformulate the inter-

mediary’s profit maximization problem in (4.14) as

max
q∗m∈[q∗m(b),1]

(b + s− c [(σ + 1) · qσ
a + 1− (q∗m)σ+1]

T (σ + 1)(q∗m)σ
) · x̄, (4.20)

where q∗m(b) is the equilibrium point of the content production when θ = b. By plug-

ging x̄ =
∫ 1
q∗m x∗(q)dq = T · 1−(q∗m)σ+1

(σ+1)·qσ
a +1−(q∗m)σ+1 , the objective function in (4.20) can be

written as

(b + s) · T − (b + s) · T · (σ + 1) · qσ
a

(σ + 1) · qσ
a + 1− (q∗m)σ+1

− c[1− (q∗m)σ+1]

(σ + 1)(q∗m)σ
, (4.21)

which we can prove is a strictly concave function of q∗m ∈ [q∗m(b), 1]. Therefore, there

exists a unique solution, denoted by q∗∗m , which maximizes (4.21), and correspondingly,

the optimal value of θ that maximizes (4.14) is also unique in [ c·qσ
a

T
− s, b].

By applying Theorem 3, we have q∗m ∈ (0, 1) if θ > c·qσ
a

T
−s, i.e., a positive fraction

of content producers produce content and the total content views x̄ is positive. Thus, if
c·qσ

a

T
−s < b, there exists a θ ∈ [ c·qσ

a

T
−s, b] such that the intermediary’s profit (b−θ) · x̄

is strictly positive.

We see that the first-order derivative of (4.21) with respect to q∗m can be obtained

as

−T · qσ
a · (b + s)(σ + 1)2(q∗m)σ

[(σ + 1) · qσ
a + 1− (q∗m)σ+1]2

+
c

σ + 1
·
[
σ(q∗m)σ−1

(q∗m)2σ
+ 1

]
. (4.22)

Due to the strict concavity of (4.21), its first-order derivative in (4.22) is strictly de-
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creasing in q∗m ∈ [q∗m(b), 1]. We have already shown that the intermediary’s profit is

zero if θ = b or θ = c·qσ
a

T
− s and positive if θ ∈ ( c·qσ

a

T
− s, b). Thus, there must exist a

unique value of θ∗ ∈ [ c·qσ
a

T
− s, b] such that (4.22) is zero and the intermediary’s profit

is maximized. By letting z = q∗m and dividing (4.22) by (σ + 1)2 · zσ, we have proved

Theorem 4. ¥

Having derived the optimal payment θ∗, we next analyze the sign of the optimal

payment in Proposition 8. Such analysis is useful in understanding the impacts of

various factors on the intermediary’s decision of taxing or subsidizing.

Proposition 8. Suppose that U(x(q), xa | qm, qa) is given by the Dixit-Stiglitz utility

function in (4.5) and the content quality q is uniformly distributed in [0, 1]. The optimal

payment θ∗ ∈ [ c·qσ
a

T
− s, b] that maximizes the intermediary’s profit satisfies





θ∗ ∈ (0, b), if ∆ <
c(σ + 1) · qσ

a · (b + s)

s2T
,

θ∗ = 0, if ∆ =
c(σ + 1) · qσ

a · (b + s)

s2T
,

θ∗ ∈ (
c · qσ

a

T
− s, 0), if ∆ >

c(σ + 1) · qσ
a · (b + s)

s2T
,

(4.23)

where ∆ = σ
q∗m(0)

+ [q∗m(0)]σ, in which q∗m(0) is the equilibrium point of content pro-

duction when the intermediary chooses θ = 0.

Proof. Assuming that θ∗ = 0, we obtain from (4.16) that

(σ + 1) · qσ
a + 1− [q∗m(0)]σ+1 =

sT (σ + 1)[q∗m(0)]σ

c
. (4.24)

Then, by plugging (4.24) into (4.22), we can rewrite (4.22) as

c

(σ + 1)[q∗m(0)]σ

[
− c(σ + 1) · qσ

a · (b + s)

s2T
+

σ

q∗m(0)
+ [q∗m(0)]σ

]
, (4.25)
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Figure 4.1: Profit versus price θ. σ = 2, b = 1, s = 0.4.

the sign of which is clearly the same as that of− c(σ+1)·qσ
a ·(b+s)

s2T
+ σ

q∗m(0)
+[q∗m(0)]σ. Due

to the strict concavity of (4.21) in q∗m, if − c(σ+1)·qσ
a ·(b+s)

s2T
+ σ

q∗m(0)
+ [q∗m(0)]σ < 0, then

the root of − c(σ+1)·qσ
a ·(b+s)

s2T
+ σ

q∗m(θ)
+ [q∗m(θ)]σ = 0 must be less than q∗m(0). Thus, by

the monotonically and strictly decreasing property of q∗m(θ) in θ ∈ [ c·qσ
a

T
− s, b], the

optimal θ∗ that maximizes the intermediary’s profit must be greater than 0. Similarly,

the conditions for θ∗ = 0 and θ∗ < 0 can also be shown. ¥

Proposition 8 rigorously characterizes the conditions for subsidizing or taxing.

Meanwhile, it also enables us to obtain some qualitative results regarding whether tax-

ing or subsidizing is the optimal choice to maximize the intermediary’s profit. Specif-

ically, subsidizing should be selected if one of the following cases is satisfied:

1. Total content view T (i.e., market size) is sufficiently small;

2. Production cost c is sufficiently large;

3. Social benefit per content view s is sufficiently small;

4. Aggregate content quality on the other platforms qa is sufficiently large;

5. Advertising revenue per content view b is sufficiently large.

In the first four cases, few content producers can receive a non-negative utility

by producing content without being subsidized by the intermediary (e.g., if the pro-
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duction cost c is very high, then content producers need to receive subsidy from the

intermediary to cover part of the production cost). As a result, the intermediary cannot

attract enough content views or maximize its profit without subsidizing the content

producers. The last case indicates that if the intermediary can derive a sufficiently

high advertising revenue per content view, then it can share the advertising revenue

with the content producers to encourage more content production. Numerical results

illustrating the impacts of qa, c and T are shown in Fig. 4.1. It can be seen that the pro-

posed payment scheme can significantly increase the intermediary’s profit compared

to setting θ = 0 (i.e., without the payment scheme). For example, we observe from

Fig. 4.1(b) that by optimally choosing the payment, the intermediary’s profit increases

from approximately 0.21 to 0.5 (i.e., nearly 150% increase).

Finally, we conclude this part by discussing two extreme cases, qa → 0 and σ →
∞. When qa → 0, the aggregate content quality on the other platforms is negligible

(e.g., very low quality or little content available). In other words, the intermediary

becomes a monopolist in the market, and almost all the content views are devoted to

content on the intermediary’s platform. Therefore, the intermediary can tax the content

producers by choosing θ∗ → −s and its profit can be arbitrarily close to (b+s)T . When

σ → ∞, the content becomes perfectly substitutable. Naturally, all the content views

will be attracted by the content with the highest quality. This can also be verified

by taking the limit σ → ∞ in (4.6). Therefore, if qa > 1 and σ → ∞,11 then the

content produced on the intermediary’s platform will receive no content views and the

intermediary cannot possibly obtain a positive profit by varying θ. On the other hand,

if qa < 1 (which is equivalent to qh < 1 when σ →∞), then the content with a quality

of 1 can receive almost all the content views and the intermediary can set θ∗ → −s

11When σ → ∞, we see from (4.3) that qa = limσ→∞ n
1
σ
a · limσ→∞ q

σ+1
σ

h ·

limσ→∞

[
1−

(
ql

qh

)σ+1
] 1

σ

· limσ→∞
(

1
1+σ

) 1
σ

= qh. Thus, when σ → ∞, qa > 1 if and only if

the highest content quality qh > 1.
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to make its profit arbitrarily close to (b + s)T . To sum up, when qa → 0 or σ → ∞
with qa < 1, the intermediary can almost fully extract two sources of revenues, i.e.,

advertising and payment from content producers.

4.5 Extension to Heterogeneous Production Costs

In the preceding analysis, it was assumed that all the content producers incur a ho-

mogeneous production cost. We relax this assumption and generalize the preceding

analysis by considering heterogeneous production costs.

To keep the analysis tractable, we assume that there are K ≥ 1 possible values for

content production costs, denoted by c1, c2, . . . , cK , where 0 < c1 ≤ c2 · · · ≤ cK , and

refer to content producers with the production cost of ck as type-k content producers.

Under the continuum model, the (normalized) mass of type-k content producers is

nk > 0 such that
∑K

k=1 nk = 1. To model the content quality heterogeneity, we

assume that the content quality of type-k content producers follows a continuous and

positive PDF denoted by fk(q) > 0 for q ∈ [0, 1], and the corresponding CDF is Fk(q)

for q ∈ [0, 1]. Thus, the mass of type-k content producers whose content quality is

less than or equal to q ∈ [0, 1] is given by nkFk(q). As in the case of homogeneous

production cost, for type-k content producers, there exists marginal content quality,

denoted by qmk
∈ [0, 1], and a type-k content producer with content quality greater

(less) than qmk
will choose (not) to produce content on the intermediary’s platform.

For notational convenience, we use the vector expression qm = [qm1 , qm2 · · · qmK
]

wherever applicable.

4.5.1 Optimal Content Viewing

With heterogeneous production costs, we define the strictly concave utility function

for the representative content viewer as U(x(q), xa |qm, qa), where x(q) denotes the
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content view for each individual content q ∈ [0, 1]. The four properties specified

in Chapter 4.3 can be similarly restated for the utility function U(x(q), xa |qm, qa),

and are omitted in the chapter for brevity. The quality-adjusted Dixit-Stiglitz utility

function in (4.5) becomes

U(x(q), xa |qm, qa) =

[
K∑

k=1

∫ 1

qmk

nk · q · x(q)
σ−1

σ dFk(q) + qa · x
σ−1

σ
a

] σ
σ−1

. (4.26)

By maximizing (4.26) subject to
∑K

k=1

∫ 1
qmk

nk · x(q)dFk(q) + xa ≤ T , we can derive

the optimal value of x(q) as

x∗(q) =
Tqσ

qσ
a +

∑K
k=1

∫ 1
qmk

nk · qσdFk(q)
, (4.27)

for q ∈ [min{qm1 , qm2 , · · · qmK
}, 1], and x∗(q) = 0 otherwise.

4.5.2 Equilibrium Content Production

Following the analysis in Chapter 4.4 for homogeneous production cost, we first for-

mally define the equilibrium marginal content quality, denoted by q∗m, as follows.

Definition 2: q∗m is an equilibrium marginal content quality if it satisfies q∗m =

Q(q∗m), where Q(q∗m) , [Q1(q
∗
m), Q2(q

∗
m) · · ·QK(q∗m)] is given by

Qk(q
∗
m) = arg min

q
{q ∈ [0, 1] : x∗(q |q∗m, qa) · (θ + s)− ck ≥ 0} , (4.28)

for k = 1, 2 · · ·K.

It can be easily shown that Q(q∗m) is continuous in the compact convex set q∗m ∈
[0, 1]K . Then, by Brouwer fixed point theorem [69], we know that there exists a fixed

point (i.e., equilibrium point) that satisfies q∗m = Q(q∗m). In game-theoretic analy-

sis, uniqueness of the equilibrium point is important, as it ensures that the game has
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a unique outcome. In the context of content platforms, uniqueness of the equilib-

rium marginal content quality allows the intermediary to maximize its long-term profit

deterministically, since there is a unique outcome at the content production stage in

response to the intermediary’s payment. We first show two properties satisfied by the

equilibrium point in the content production stage.

Lemma 2. The equilibrium marginal content quality satisfies 0 < q∗m1
≤ q∗m2

· · · ≤
q∗mK

≤ 1.

Lemma 3. Let k∗ = max{k = 1, 2 · · ·K | q∗mk
< 1}. The following relation is satis-

fied at equilibrium:

x∗(qmi
)

x∗(qmj
)

=
ci

cj

, (4.29)

for i, j ∈ {1, 2, · · · , k∗}.

Based on Lemmas 2 and 3, we obtain the following theorem regarding the existence

and uniqueness of the equilibrium point q∗m ∈ (0, 1]K .

Theorem 5. For any θ ∈ [−s, b], there exists a unique equilibrium q∗m ∈ (0, 1]K in the

production decision stage. Moreover, q∗m satisfies





q∗mk
= 1, if x∗(1 | q̄mk, qa) · (θ + s) ≤ ck,

q∗mk
∈ (0, 1), otherwise,

(4.30)

for k = 1, 2 · · ·K, where x∗(1 | q̄mk, qa) is obtained by maximizing U(x(q), xa |qm, qa)

subject to
∑K

k=1

∫ 1
qmk

nk·x(q)dFk(q)+xa ≤ T and q̄mk =
[
qm1, qm2, · · · , qm(k−1), 1, 1, · · · , 1

]

satisfies (4.29).

Proof. We first assume that there exists at least one equilibrium point q∗m ∈ (0, 1]K .

Next, we prove q∗mk
= 1 if x∗(1 | q̄mk, qa) ·(θ+s) ≤ ck and q∗mk

∈ (0, 1) otherwise, for

k = 1, 2 · · ·K, where x∗(1 | q̄mk, qa) is obtained by maximizing the utility function
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U(x(q), xa|q̄mk, qa) and q̄mk =
[
qm1, qm2, · · · , qm(k−1), 1, 1, · · · , 1

]
satisfies (4.29).

Since content producers with a content quality of 0 always receive negative utility if

they produce, we must have q∗mk
> 0 at equilibrium, for k = 1, 2 · · ·K. Suppose

that q∗mk
∈ (0, 1) (i.e., some type-k content producers choose to produce content on

the intermediary’s platform at the equilibrium) when x∗(1 | q̄mk, qa) · (θ + s) ≤ ck.

Then, by Lemmas 2 and 3, type-1, type-2, · · · , and type-(k − 1) content producers

whose content qualities are sufficiently high will also choose to produce content at

equilibrium. In particular, we have x∗(qmi )

x∗(qmk
)

= ci

ck
, for i = 1, 2 · · · k − 1. Thus, due to

the “crowding effects” (Property 3), we can establish the following inequalities

x∗(q∗mk
|q∗m, qa) · (θ + s)− ck ≤ x∗(1 | q̄mk, qa) · (θ + s)− ck ≤ 0, (4.31)

which violate the definition of an equilibrium point in (4.28). As a result, q∗mk
must be

1 if x∗(1 | q̄mk, qa) · (θ + s) ≤ ck. Similarly, we can prove by contradiction that q∗mk

must be strictly less than 1 if x∗(1 | q̄mk, qa) · (θ + s) > ck.

Now, to complete the proof of Theorem 5, it remains to show that there exists a

unique equilibrium point q∗m ∈ (0, 1]K . Let k∗ = max{k = 1, 2 · · ·K | q∗mk
< 1},

i.e., none of type-k∗, type-(k∗ + 1), · · · , and type-K content producers choose to

produce content at equilibrium, and we can disregard these content producers with-

out affecting the proof. Based on the monotonicity of xq and Lemma 3, we can

express q∗mi
= ρ( ci

ck∗
)q∗m∗

k
, such that x∗(qmi )

x∗(qm∗
k
)

= ci

c∗
k

for i = 1, 2 · · · k∗, and q∗m =
[
ρ( c1

ck∗
)q∗m∗

k
, ρ( c2

ck∗
)q∗m∗

k
, · · · , ρ(

ck∗−1

ck∗
)q∗m∗

k
, q∗m∗

k
, 1, 1, · · · 1

]
. Therefore, proving the unique-

ness of q∗m ∈ (0, 1]K is equivalent to proving q∗m∗
k

= Qk(q
∗
m) has a unique fixed point

q∗m∗
k
∈ (0, 1). Following the same approach used in the proof of Theorem 3, we can

show that q∗m∗
k

= Qk(q
∗
m) always has a unique fixed point. This proves Theorem 5. ¥.

Because of the crowding effects (i.e., negative network externalities among the

content producers, as specified in Property 3 in Chapter 4.3), we can easily show that
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x∗(1 | q̄∗mi, qa) ≥ x∗(1 | q̄∗mj, qa), for 1 ≤ i ≤ j ≤ K. We can also see from (4.30) in

Theorem 5 that type-k content producers will choose to produce content at the equi-

librium if and only if θ is sufficiently large such that x∗(1 | q̄mk, qa) · (θ + s) > ck, for

k = 1, 2 · · ·K. For notational convenience, we define

Θ = [θ0, θ1, · · · θK , θK+1], (4.32)

where −s = θ0 ≤ θ1 ≤ θ2 · · · ≤ θK ≤ θK+1 = b and θk = ck

x∗(1 | q̄mk,qa)
− s, for

k = 1, 2 · · ·K.12 Thus, based on (4.30), it can be shown that if the payment set by

the intermediary satisfies θ ∈ (θk, θk+1], then type-1, type-2 · · · and type-k content

producers with high content qualities will choose to produce content at equilibrium,

whereas none of type-(k + 1), type-(k + 2), · · · , and type-K content producers will

produce content, for k = 1, 2 · · ·K. As will be shown later, Θ defined in (4.32)

is instrumental when we derive the intermediary’s optimal payment to maximize its

profit.

As in Chapter 4.4, by considering the best-response decision model, we can show

that qm,t = [qm1,t, qm2,t · · · qmK ,t], for t = 0, 1, 2 · · · evolves as follows qm,t+1 =

Q(qm,t), where Q(·) is defined in (4.28). More specific results regarding the exis-

tence and convergence of the equilibrium marginal content quality can be obtained, if

we substitute the utility function U(x(q), xa |qm, qa) with the Dixit-Stiglitz function

defined in (4.26). The details are omitted for brevity.

12Subject to the value of qa, we should note that θk = ck

x∗(1 | q̄mk,qa) − s may be greater than b. In
such cases, for any θ ∈ [−s, b], type-k content producers will never choose to produce content at the
equilibrium. Without affecting the analysis, we can remove type-k content producers from our model
and consider a smaller subset of content producers. Therefore, we assume without loss of generality
that the inequalities −s = θ0 ≤ θ1 ≤ θ2 · · · ≤ θK ≤ θK+1 = b hold in the analysis.
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max
q∗mk

∈[q∗mk
(θk+1),1]


b + s−

ck

[
qσ
a +

∑k
j=1 nj

1−(q∗mj
)σ+1

σ+1

]

T (q∗mk
)σ


 · x̄ (4.33)

4.5.3 Optimal Price

As in the case of homogeneous production cost, it is cumbersome to maximize the in-

termediary’s long-term profit without resorting to numerical results for the general util-

ity function U(x(q), xa |qm, qa). In this part, we consider the quality-adjusted Dixit-

Stiglitz utility function defined in (4.26) and uniform distributions of content quality

for the content producers, i.e., fk(q) = 1 for q ∈ [0, 1] and k = 1, 2 · · ·K, and develop

an algorithm to find the optimal payment in the following analysis. We first restrict the

payment to [θk, θk+1] such that only type-1, type-2, · · · , and type-k content producers13

with high content qualities will choose to produce content at the equilibrium.

With uniform distributions of content qualities and θ ∈ [θk, θk+1], the optimal

content view in (4.27) at the equilibrium of the content production stage becomes

x∗(q) =
Tqσ

qσ
a +

∑k
j=1 nj ·

·1−(q∗mj
)σ+1

σ+1

, (4.34)

for q ∈ [q∗m1
, 1]. Based on (4.34) and Lemma 3, we can see that q∗mj

= q∗mk
·
(

cj

ck

) 1
σ

at the equilibrium of the content production stage. If we express q∗mk
as a function of

θ ∈ [θk, θk+1], then q∗mk
(θ) is decreasing in θ ∈ [θk, θk+1] and q∗mk

(θ) ∈ [q∗mk
(θk+1), 1].

Since there exists no simple expression of q∗mk
(θ), it is rather difficult to optimize

(b − θ) · x̄ by directly choosing the optimal θ∗. Following the proof technique in

Theorem 4, we can show that the profit maximization problem with heterogeneous

production costs can be reformulated as (4.33), where q∗mj
= q∗mk

·
(

cj

ck

) 1
σ and x̄ =

13Note that if θ = θk, then type-k content producers with a content quality of q = 1 derive a zero
utility and hence are indifferent between producing and not producing content at the equilibrium.

116



T ·

1− qσ

a

qσ
a +

∑k

j=1

nj ·(1−qσ+1
mj

)

σ+1


. By showing the second-order derivative of (4.33) with

respect to q∗mk
∈ [q∗mk

(θk+1), 1] is strictly negative, we prove that the optimization

problem in (4.33) is strictly concave in q∗mk
∈ [q∗mk

(θk+1), 1]. Thus, the unique optimal

solution to (4.33) can be efficiently obtained. After solving (4.33), we can obtain the

optimal payment as θ∗ =
ck

[
qσ
a +

∑k

j=1
nj

nj1−(q∗mj
)σ+1

σ+1

]

T (q∗mk
)σ − s.

Next, based on the optimal solution to (4.33), we develop a recursive algorithm

to find the optimal payment maximizing the intermediary’s profit and describe it in

Algorithm 2.

Algorithm 2 Find θ∗ ∈ [−s, b]

ΠI ← 0, θ∗ ← −s, and k ← 1
while k ≤ K do

Solve (4.33) and denote the maximum value by temp
if ΠI < temp then

ΠI ← temp

θ∗ =
ck

[
qσ
a +

∑k

j=1
nj

nj1−(q∗mj
)σ+1

σ+1

]

T (q∗mk
)σ − s

end if
k + +

end while
return θ∗

As in the case of homogeneous production cost, we can also analyze whether the

intermediary should tax or subsidize the content producers. Nevertheless, we omit the

result because of its similarity with Proposition 8.

4.6 Conclusion

In this chapter, we studied a user-generated content platform and proposed a payment

scheme in which the intermediary can either tax or subsidize the content producers to

maximize its profit in the presence of rational content producers and content viewers.
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We first used the representative content viewer model to determine how the content

viewers’ attention is allocated across a variety of content. Then, we showed that there

always exists a unique equilibrium point at which no producer can gain by changing its

production decision, and that, under certain conditions, the equilibrium point is guar-

anteed to be reached through an iterative process in which the content producers update

their decisions with limited information. Next, we formalized the intermediary’s profit

maximization problem and, by using the quality-adjusted Dixit-Stiglitz utility func-

tion function and the uniform distribution of content qualities as a concrete example,

derived the closed-form optimal solution explicitly. We also showed the analytical

conditions under which the intermediary should tax or subsidize the content produc-

ers. Then, we discussed qualitatively the impacts of the aggregate quality of content

on the other platforms and content substitutability on the intermediary’s profit. Finally,

we generalized our model by considering heterogeneity in the content producers’ pro-

duction costs. Future research directions include, but are not limited to studying: (1)

differentiated payment schemes in which different content producers may be taxed or

subsidized differently; (2) a scenario where content producers can vary their own con-

tent quality and choose to produce on more than one content platforms; and (3) optimal

payment schemes maximizing social welfare.
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CHAPTER 5

Dynamic Scheduling and Pricing in Wireless Cloud

Computing

In this chapter, we consider a wireless cloud computing system in which a profit-

maximizing wireless service provider operates a data center and can provide cloud

computing services to its subscribers. In particular, we focus on batch services, which,

due to their non-urgent nature, allow more scheduling flexibility than their interactive

counterparts. Unlike the existing research that studied separately demand-side man-

agement and energy cost saving techniques for the wireless cloud (both of which are

critical to profit maximization), we propose a provably-efficient Dynamic Scheduling

and Pricing (Dyn-SP) algorithm which, using the pricing mechanism as a lever, proac-

tively adapts the service demand to workload scheduling in the data center and oppor-

tunistically utilizes low electricity prices to process batch jobs for energy cost saving.

Without the necessity of predicting the future information (as assumed by some prior

works), Dyn-SP can be applied to an arbitrarily random environment in which the elec-

tricity price, available renewable energy supply, wireless network capacities provided

by base stations may evolve over time as an arbitrary stochastic process. It is proved

that, compared to the optimal offline algorithm with future information, Dyn-SP can

produce a close-to-optimal long-term profit while bounding the job queue length in

the data center. We perform a simulation study based on both traces and randomly

generated data to demonstrate the effectiveness of Dyn-SP. In particular, we show both

analytically and numerically that a desired tradeoff between the profit and queueing
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Figure 5.1: System diagram.

delay can be obtained by appropriately tuning the control parameter. Our results also

indicate that, compared to the other algorithms which neglect demand-side manage-

ment, cooling system energy consumption, or the queue length information, Dyn-SP

achieves a higher average profit while incurring (almost) the same average queueing

delay.

5.1 Introduction

Cloud computing has experienced an explosive growth over the past few years. As

a service featuring scalability, reliability and low cost [71], “computing” is delivered

to multiple clients over wireline/wireless networks, releasing clients from the hassle

of maintaining their own computing infrastructure. More recently, enabled by ubiq-

uitous communications and low-cost mobile devices, the proliferation of digital data

and growing demand for outsourcing the data to a cloud for processing has attracted a

significant amount of attention from various IT companies. Particularly, it has been an

emerging trend that traditional wireless carriers are integrating cloud computing with

wireless access services (e.g., [72]) by jointly managing their base stations and data

centers.
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In this chapter, we focus on a profit-maximizing wireless service provider that can

“sell” cloud computing services to its subscribers. The system diagram is illustrated

in Fig. 5.1. The wireless service provider operates multiple base stations and one

data center, which has an on-site renewable energy supply system as a supplementary

source of energy. Due to hardware/software constraints on mobile devices, wireless

subscribers outsource data-intensive and/or computing-intensive applications to the

cloud managed by the service provider for processing. Migrating such applications

is mutually beneficial: users can access a large pool of high-performance computing

resource anywhere and anytime; the wireless service provider is no longer only pro-

viding connectivity between users and the cloud service providers, but can enhance

its profit by integrating cloud computing with wireless access services. Example ap-

plications that can, or even have to, be migrated to the cloud include real-time stream

mining, scientific computing, visual search, and batch image processing [73]. In gen-

eral, these applications can be classified as interactive (i.e., delay-sensitive) and batch

(i.e., delay-insensitive). For interactive applications, the service provider needs to pro-

cess them in real-time and respond immediately. By contrast, for batch applications,

the service provider can defer them to an appropriate time instant to process, as long

as the average response time constraint is satisfied. In our study, we concentrate on dy-

namically scheduling and pricing batch services which, due to their non-urgent nature,

give the service provider more scheduling flexibility.

As a commercial entity, the wireless service provider’s ultimate goal is maximizing

its long-term profit subject to a service level agreement (e.g., average delay require-

ment) by optimally designing the demand-side management and data center opera-

tion. Nevertheless, the optimal design is challenged and complicated by the highly-

intermittent nature of availability of renewable energies as well as the time-varying

network capacities provided by base stations. To tackle the randomness in the envi-

ronment, we propose a provably-efficient online algorithm, Dynamic Scheduling and
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Pricing (Dyn-SP), which can be implemented using the currently available information

without the necessity of predicting the future. For an arbitrarily random environment,

we prove that Dyn-SP is efficient in the sense that the profit gap between the Dyn-

SP and the optimal offline algorithm with T -slot future information is upper bounded.

Meanwhile, the job queue length is also upper bounded, resulting in an finite (and

bounded) average queueing delay. Moreover, the tradeoff between the queueing delay

and profit can be flexibly adjusted, making Dyn-SP an appealing candidate for future

wireless cloud management. We conduct extensive simulations to validate Dyn-SP.

In particular, we show that the long-term profit achieved by Dyn-SP can be pushed

arbitrarily close to the maximum (at the expense of increasing the queueing delay).

Compared to other algorithms which neglect demand-side management, cooling sys-

tem energy consumption, or the queue length information, Dyn-SP produces a higher

profit while incurring the same queueing delay. Our results highlight the importance

of dynamic pricing as well as the integrated approach to managing data centers (which

considers both cooling system and server energy consumption). The key ideas of Dyn-

SP are two-fold: (1) reshaping the service demand: pricing is used as a lever to

proactively adapt the service demand to the time-varying data center management;

and (2) opportunistically utilizing low electricity prices: batch jobs are deferred and

processed (using electricity energy) only when the electricity price is sufficiently low

relative to the length of the job queue maintained in the data center.

The rest of this chapter is organized as follows. Related work is reviewed in Chap-

ter 5.2. Chapter 5.3 describes the model. In Chapter 5.4, we develop a provably-

efficient online algorithm to maximize the service provider’s average profit subject to

queueing delay constraint. Simulation results are shown in Chapter 5.5 and finally,

concluding remarks are offered in Chapter 5.6.
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5.2 Related Works

In this part, we first review the existing works related to wireless spectrum management

with add-value services, energy-efficient data center operation as well as pricing, and

then we differentiate our study from the existing research in terms of the model and

the methodology.

•Wireless spectrum management with add-value services: Wireless service providers

have invested billions of dollars in the purchase of scarce radio spectrum (often through

auction) from the respective authorities (e.g., Federal Communications Commission

in the United States). To revert the huge investment, wireless service providers are

attempting to provide new add-value services over its spectrum to the subscribers (see

[74] for a quick review). For example, the advancement of cognitive radio technology

makes it possible that the wireless service provider obtains additional revenues by leas-

ing its unused spectrum to third-party users on a short-term basis [75]. In addition to

spectrum leasing, relay stations can also bring additional revenues to wireless service

providers: helping distant transmitters forward signals to their respective receivers at

the expense of energy consumption and additional spectrum usage [76][77]. Recently,

with a plethora of data and mobile applications, providing cloud-based services to

wireless subscribers has attracted special attention from various wireless carriers (e.g.,

[72]), enabling new business opportunities. For instance, [78] proposes a new archi-

tecture migrating data-intensive and/or computation-intensive applications from mo-

bile devices to the cloud, whereas [79] advocates the migration of energy-demanding

applications from energy-constrained mobile devices to the cloud.

• Energy-efficient data center operation: Many megawatts are required to power

an Internet-scale data center, invoking a growing interest in cutting electricity bills

for large data centers. Several classic approaches to energy saving in data centers in-

clude power-aware architecture design and workload consolidation (e.g., [81]), cluster-
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level (thousands of servers) power management (e.g., [82]), optimal power allocation

among servers to dynamically tune the server performance (e.g., [83]), and dynamic

and automated cooling system and power supply management (e.g., [84][85][86]). An-

other important line of research on energy-efficient data centers deals with workload

management/scheduling, which is the focus of our study. For instance, [87] proposes

to dynamically defer batch jobs based using a linear programming approach. [88]

proposes an online right-sizing algorithm which dynamically turns on/off servers to

minimizes the delay plus energy cost, under the assumption that the electricity price

is fixed over time. [89] considers a similar problem but proposes to predict the fu-

ture service demand using a Markov chain to determine the number of active servers.

[90] quantifies the economic gains by scheduling workloads across multiple data cen-

ters, which is an empirical study without providing analytical performance bounds

on the proposed scheduling algorithm. Several studies explore the opportunity of en-

ergy saving by executing jobs when and/or where the electricity prices are low (e.g.,

[91][92][93][94][95]). Among them, some perform local and myopic optimization at

each time period without offering performance guarantees for the average energy cost

or queueing delay over a large time horizon [91][92]. Other prior studies assume that

the electricity price variations and/or job arrivals follow certain stationary (although

possibly unknown) distributions [93][94][95]. More recently, an integrated approach

to data center management, which takes into account server and cooling system energy

consumption as well as renewable energy supply, is proposed to increase the service

provider’s profit [96].

• Pricing: Originated from economics literature, pricing has been studied exten-

sively by various communities and for various purposes. In particular, pricing has

been widely used as a lever to enable efficient resource management in wireless net-

works (e.g., [76][77]), congestion control (e.g., [98][99]), and demand coordination in

smart grid [100]. In the contexts of cloud computing, [101] proposes a dynamic pric-
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Table 5.1: Literature Review
Literature Pricing Renewable Energy Cooling System Methodology Environment Performance

Guarantee
[75]–[77] Yes No No Game theory Static No
[87] No No No Linear programming Arbitrary Yes
[88] No No No Greedy Arbitrary No
[89] No No No Optimization w/ Arbitrary No

future information
[91] No Yes No Convex optimization Static No
[92] No No No Optimization Static No
[93]–[95] No No No Stochastic control i.i.d. or Markovian Yes
[96] No Yes Yes Optimization w/ Arbitrary No

future information
Our study Yes Yes Yes Stochastic control Arbitrary Yes

ing algorithm to regulate admission and resource allocation for social welfare maxi-

mization, [102] develops a computationally efficient and truthful auction-style pricing

mechanism enabling fair competition for cloud resource among self-interested users,

and [103] studies a pricing game among multiple cloud service providers and devel-

oped an algorithm to determine the minimum amount of resource to guarantee the

prescribed Quality-of-Service (QoS). Combined with manufacture management (e.g.,

capacity sizing, workflow scheduling), pricing has also invoked lots of interest in op-

erational research. For instance, [104] studies the equilibrium behavior of multiple

users sharing a common pool of resource in the context of pricing and capacity siz-

ing under revenue and social optimization objectives. [105] presents a decision model

that integrates pricing and production decisions for the cases where the manufacturer

charges the same price or different prices to different customers. [106] considers the

coordination of pricing and scheduling decisions in a make-to-order environment, and

proposes computationally-efficient algorithms to maximize the total net profit.

Next, we state the key differences between our study and the existing research,

which are also summarized in Table 5.1.

• First, unlike the existing research that separately studied demand side man-

agement and data center operation while neglecting the interplay between workload

scheduling and pricing, we propose a Dyn-SP which, using the pricing mechanism

as a lever, proactively adapts the service demand to workload scheduling in the data
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center and opportunistically utilizes low electricity prices to process batch jobs for en-

ergy cost saving. Joint design of scheduling and pricing has been touched upon mostly

in operational research (e.g., [106]) which, however, cannot be applied in wireless

cloud computing due to its neglectance of many important characteristics in wireless

networks and data centers (e.g., time-varying wireless network capacities, electricity

prices, renewable energy supply, as well as queueing delay constraint).

• Second, we adopt an integrated approach to data center management by taking

into considering the server energy consumption, cooling system energy consumption

as well as renewable energy supply, whereas the existing research (except for [96]) on

workload scheduling neglects the cooling system energy consumption and/or renew-

able energy supply.

• Last but not least, what distinguishes our study from the prior works is the

methodology. Specifically, the existing research on demand side management and

workload scheduling relies on one of the following approaches: (1) optimization with

predicted future information (e.g., [81][96][89] for data center management and [109]);

(2) myopic optimization (e.g., [90]–[92]); (3) stochastic control techniques under the

assumption that the environment, including electricity prices and renewable energy

supplies, is independently and identically distributed or Markovian (e.g., [93]–[95]).

By contrast, the proposed algorithm, Dyn-SP, builds on the sample-path version of

Lyapunov optimization and applies for an arbitrarily random environment while pro-

viding a long-term performance guarantee.

5.3 Model

In this chapter, we focus on a profit-maximizing wireless service provider that dy-

namically prices its wireless cloud computing services. We consider a discrete-time

model in which the time slots match the timescale at which the control decisions are
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Table 5.2: List of Notations
Notation Description

a(t) Interactive service demand
b(t) Batch service demand
d(t) Processed batch jobs
f(t) Cooling system energy consumption
y(t) Renewable energy supply
p(t) Price for batch service

ui(b(t), t) Time-dependent utility for representative user i
φ(t) Electricity price
r(t) Electricity cost
h(t) Profit
q(t) Batch job queue length
Ci(t) Network capacity of base station i

made. Next, we describe the service provider model as well as the user model, and

then discuss the extension of our model. Key notations are listed in Table 5.2.

5.3.1 Service Provider

We consider a wireless service provider that delivers cloud computing services to its

subscribers by jointly managing (cellular) base stations as well as data centers housing

tens of thousands of servers.1 In the following, we provide the modeling details of

base stations and data centers.

5.3.1.1 Base station

The service provider owns N base stations, indexed by 1, 2, · · · , N , respectively, each

of which covers a certain area.2 Assuming that certain wireless technologies (e.g., code

division multiple access or CDMA) have been deployed, we use Ci(t) ∈ [Cmin, Cmax]

1Although we focus on cellular base stations, our analysis also applies to the scenario in which the
service provider provides wireless access services via other technologies (e.g., Wi-Fi hot spots).

2In this chapter, we ignore the energy consumption of base stations, which is relatively less than
that of an Internet-scale data center, whereas we leave the incorporation of energy consumption of base
stations in our future work.
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to represent the network capacity provided by the base station i at time t. The net-

work capacity is time-varying for various reasons such as the users’ distances to the

respective base station.

5.3.1.2 Data center

For the convenience of presentation, we consider that the service provider only owns

one data center while noting that multiple data centers can be viewed as one consoli-

dated (virtual) data center. Due to the enormous appetite for energy, a major compo-

nent of operational costs of a data center is its electricity cost, which thereby has led

to an increasing interest in decreasing the energy usage. Of the megawatts required

to power a data center, a significant portion (typically 80%-85% [80]) is consumed by

servers and cooling systems (which keeps the servers running at an appropriate tem-

perature for reliability purposes). Despite being beyond the scope of this chapter, we

note that the power system/infrastructure also incurs a non-negligible power loss (e.g.,

power transmission, conversion [96][97]). While significant progress has been made in

improving the energy efficiency of servers and cooling systems separately (e.g., [81]–

[85]), we adopt in this chapter the approach of integrated data center management [96]

by jointly considering the server energy consumption and cooling system energy con-

sumption.3 In the following, we provide the models of the cooling system, servers, as

well as the power supply system of the data center.

• Cooling system: Depending on the data center’s geographic location, multiple

approaches (e.g., outside air economizer, chiller plant) may be available to keep servers

cool by exhausting the heat generated from densely-organized server racks to the out-

side. In this chapter, we consider chiller plant, which provides relatively stable cooling

resources, as the only approach to cooling down servers. In general, there exists no

3As all the time slots have the same duration, we interchangeably use energy and power wherever
applicable.
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simple analytical relation between the number of active servers and the power con-

sumption by the associated cooling system such that the temperature is held (relatively)

constant. As a proxy, we assume that the cooling system incurs a power consumption

that is linearly increasing with the number of active servers, i.e., f(m) = γ ·m where

m ≥ 0 is the (normalized) number of active servers and γ > 0 is a certain constant

depending on the chiller structure. Albeit simple, the linear relation has been found

to be reasonably accurate through empirical measurement [96][86]. Without causing

ambiguity, we sometimes use f(t) = f(m(t)) to represent the cooling system power

consumption at time t. Note that our analysis still applies if a more general form of

f(t) = f(m(t)) (e.g., convex function) is considered. Moreover, even though multiple

cooling techniques are utilized to in the data center, the overall cooling energy con-

sumption can still be expressed as a single function f(t) = f(m(t)) in terms of the

number of active servers [96].

• Servers: To avoid delving into the intricate details of servers, we assume that

the data center houses W (homogeneous) servers, each of which has a normalized

processing speed of 1 and incurs a power of 1 when active. Without losing key insights,

this model has been widely applied in the existing literature pertaining to data center

management (e.g., [96][88]). The service provider can dynamically size its data center

by turning on/off (a certain number of) servers to adapt the server provisioning to the

incoming workloads. For the sake of analysis, we ignore the toggling costs (e.g., wear-

and-tear costs) incurred when servers are switched on/off, while noting that such costs

can be dealt with using the approach of [88] if necessary.

• Power supply system: Typically, a modern data center is powered through mul-

tiple sources of energies such as grid power and renewable energy (in the form of

solar, wind, etc.) [80]. Despite being sustainable, renewable energy supply is highly

intermittent and time-varying subject to the source from which it is generated. For in-

stance, while the solar energy supply often exhibits regular temporal variations, energy
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generated from the wind is normally much less predictable. Fig. 5.4 shows the total

available renewable energies in California on March 21, 2012 [112], which verifies

highly intermittent nature of renewable energy supplies. Neglecting the energy emis-

sion/loss during the transmission and conversion processes, we denote in our study

the available amount of renewable energy at time t by y(t) ∈ [0, ymax]. Note that the

value of y(t) is known (with a reasonably high confidence) at the beginning of time t

based on the current status of the renewable energy supply (e.g., the current weather

condition and wind speed). For reliability issues, renewable energy is complemented

by the conventional grid power, which can be purchased from utility companies at

either a pre-defined contract rate or on-spot time-varying rate. In this chapter, we

consider that the service provider participates in a real-time electricity market to pur-

chase grid power at time-varying rate. Letting φ(t) be the real-time electricity price

at time t, we can express the energy cost incurred by the purchase of grid power as

r(t) = r(φ(t), e(t)), where e(t) ≥ 0 is the total amount of power purchased from

utility companies (for processing batch jobs). Without considering the peak demand

charging rate (which can be viewed as additional penalty charges when the data center

power consumption exceeds a certain threshold), a particular form of r(t) can be writ-

ten as r(t) = r(φ(t), e(t)) = φ(t)e(t), which we shall use extensively in the remainder

of this chapter. Note that energy storage system (e.g., uninterruptible power supply or

UPS) is often installed in a data center as an emergency power supply backup in the

rare event of power outages. Nevertheless, such an energy storage system can typically

only support the data center operation for a very short period of time, and the energy

loss during the conversion process is often significant [80]. For such reasons, we iso-

late the energy storage system operation from our study without considering drawing

power from there as an additional source of power supply, although incorporating it

merely adds complexity and intricacy to the model.

Next, we specify the control decisions made by the service provider to maximize
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its long-term profit. In general, there are two types of services provided by the service

provider: interactive and batch. Examples of interactive services include real-time

stream mining and visual search, and a distinguishable feature of interactive services

is that they cannot be deferred due to the stringent delay deadlines associated. On

the other hand, batch services, such as data backup services, scientific computing and

batch image processing, can be delayed and processed depending on the schedule of

the service provider, although the average response time is still critically important.

Thus, the service provider has more flexibility in scheduling batch jobs (as long as the

average response time requirement is satisfied), whereas it has to adapt its resource

provisioning to the arrival of interactive jobs such that they are completed in real-

time. Therefore, our focus is on the pricing decision and scheduling decision for batch

jobs. In particular, we denote the service provider’s price for its batch services at

time t by p(t), which is held constant during the entire span of time t but may change

across time slots. For the sake of analysis, we quantify the jobs’ service demand

using the (normalized) number of servers. Specifically, we use a(t) ∈ [0, amax] and

b(t) ∈ [0, bmax] to represent the total service demands of interactive jobs and batch jobs,

respectively, which are submitted by all the subscribers at time t. We later explain by

which means a(t) and b(t) are determined. Under the discrete-time model, we assume

that both interactive and batch jobs arrive at the service provider at the end of each

time slot. Since batch jobs may be deferred to an appropriate time to process, a batch

job queue is maintained in the data center, whose queue length (quantified in terms of

total service demand) is represented by q(t) at time t. By letting d(t) ∈ [0, dmax] be the

amount of batch jobs processed at time t, we can show that the bath job queue length

evolves according to the following dynamics

q(t + 1) = max [q(t)− d(t), 0] + b(t) = [q(t)− d(t)]+ + b(t), (5.1)

with an initially empty queue (i.e., q(0) = 0). In the following study, we use the
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queue length as a quantity indirectly indicating the average response time (which is

largely dependent on the average queueing delay). Supposing that the electricity cost

increases linearly with the power drawn from the grid and given the control decision

p(t) and d(t), we can express the service provider’s profit at time t as

h(t) = p(t)b(t)− r(φ(t), e(t))

= p(t)b(t)− r(φ(t),
[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+
)

= p(t)b(t)− φ(t) ·
[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+
,

(5.2)

where [y(t)− a(t)− f(a(t))]+ represents the amount of available renewable energy

that can be used to process batch jobs, f(d(t) and f(a(t)) are the cooling energy con-

sumption for batch and interactive jobs, respectively, and φ(t) is the real-time elec-

tricity price charged by utility companies at time t. Note that we neglect in (5.2) the

term representing the profit obtained by providing interactive services, since our focus

is on batch services. Moreover, it is implicitly assumed in (5.2) that renewable energy

is first dispatched to servers processing interactive jobs and then, if still available, may

be utilized for batch jobs. Throughout the chapter, we use environment information to

refer to the current electricity price φi(t), the amount of interactive jobs a(t), and the

available renewable energy supply y(t).

Remark 1: In this chapter, we assume that the network connection between the

data center and base stations (typically through broadband backbone networks) is not

a bottleneck for the data transfer between the data center and end users. Hence, the

maximum amount of jobs that can be submitted by end users is constrained solely by

the wireless network capacity provided by the base stations. Moreover, we neglect

the networking energy cost in data center operation, which, unlike the cooling system,

is often independent of the server energy consumption and consumes relatively less

power than servers and the cooling system [80].
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5.3.2 Users

In practice, there are a large number of users subscribing to a wireless service provider,

and it is quite cumbersome to model the (batch) service demand of each individual

user in response to the price charged by the service provider. Nevertheless, the ag-

gregate service demand of a group of users can be conveniently represented by the

decision of a representative user. Thus, to determine the interactive service demand

as well as the batch service demand, we adopt the widely-used representative agent

model [107], which has been extensively applied in engineering contexts (e.g., Inter-

net services [108] and communications market [99]) due to its facilitation of analysis.

Specifically, in our study, all the users served by base station i are consolidated into

one representative user i, which then determines the aggregate service demand at each

time slot by solving a utility maximization problem [107][99]. It is an intuitive un-

derstanding that the number of users is time-varying (e.g., there are more day users

than night users). To account for this fact, we associate with each representative user i

a time-dependent utility function ui(bi(t), t), where bi(t) is the representative user i’s

batch service demand in response to the service provider’s price p(t) at time t. We use

the time index t to emphasize the time dependency of the utility function, and assume

ui(0, t) = 0 and that ui(bi(t), t) is increasing in bi(t). In addition, ui(bi(t), t) is typ-

ically concave in bi(t), which, however, is not required in our formulation. Note that

we do not explicitly model the demand of interactive services (which in this chapter

includes voice services) and instead treat it as a time-varying discrete-time process

{ai(0), ai(1), ai(2), · · · }. Before processing the jobs, data exchange is required be-

tween the users and the base station (and then the submitted data will be transferred

to the data center for processing via backbone networks). Nevertheless, the network

capacity provided by a base station is limited in wireless communications, which in

turn caps the maximum service demand. In particular, the maximum network capacity

that can be used to support data exchange for batch jobs will be constrained by the
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total network capacity minus the capacity used for interactive jobs. With a slight abuse

of notation and to limit the number of free parameters, we use Ci(t) ∈ [Cmin, Cmax]

to represent the available network capacity provided by the base station i at time t for

submitting batch jobs. For the convenience of presentation, we use B(t) = B(bi(t)),

which we assume is increasing in bi(t) ∈ [0, bi,max], to denote the required network

capacity for submitting bi(t) amount of batch jobs. Then, we can mathematically for-

mulate the (net) utility maximization problem for each representative user i as follows

max
bi(t)∈[0,bi,max]

ui(bi(t), t)− p(t)bi(t), (5.3)

s.t. B(bi(t)) ≤ Ci(t). (5.4)

Denote the optimal solution to the above problem (5.3)(5.4) by b∗i (t), which is clearly

a function of p(t). Then, the total service demand of all the users can be expressed

as b(t) =
∑N

i=1 b∗i (t), which can alternatively be expressed as b(t) = b(p(t)) to stress

that the batch job demand is (indirectly) determined by the service provider’s pricing

decision p(t) at time t. Note that b(t) = b(p(t)) is decreasing in p(t). Moreover, we

assume without loss generality that b(t) = b(pmax) = 0, i.e., with the maximum price

charged by the service provider, no one is better off by using the batch service.

As a particular example, we shall consider ui(bi(t), t) = αi,t log(1 + bi(t)), where

αi,t ≥ 0 is a scalar indicating the representative user i’s time-dependent preference,

when we derive more specific results in later parts. Without causing ambiguity, we also

refer to αi,t as demand state. The logarithm utility function has been widely studied in

prior research (e.g., [99]). While there exists a rich body of research on modeling the

utility function ui(bi(t), t), the analytic expression of B(t) = B(bi(t)) is more difficult

to derive. For illustration purposes, we shall use extensively B(t) = B(bi(t)) = λbi(t)

with λ > 0, which can be viewed as a first-order Taylor approximation of the actual

B(t) around the zero point.
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Remark 2: An implicit assumption underlying the formulation (5.3)(5.4) is that

the representative users are price takers without anticipating the impacts of their ac-

tions on the service provider’s pricing decision. This is because a representative user

is in essence a collection of many individual pricing-taking users, each of which is

negligible (as in a continuum model) [99][108].

Remark 3: We can further consolidate N representative users into one representa-

tive user, whose decision captures the decisions made by all the users subscribing to

the service provider (rather than served by a certain base station). Under this model,

the decision of the representative user will be denoted by a N -element vector, whose

i-th element is the batch job service demand submitted through the i-th base station

and is subject to the network capacity constraint of the i-th base station.

Remark 4: In order to maximize its long-term profit by dynamically setting prices

for batch services, the service provider needs to obtain the information regarding the

(representative) users’ utility functions. Alternatively, as in economics literature, de-

mand function (i.e., b(t) = b(p(t)) becomes a pre-requisite for the service provider to

optimally determine its price. In practice, such information can be extracted from the

history data or estimated online, as assumed in [99].

5.3.3 Extension to multiple service classes

To keep the model succinct and highlight our modeling framework that captures dy-

namic pricing and integrated data center management subject to network capacity con-

straints, we only present the basic model in the previous analysis, whereas we briefly

discuss how the basic model is extended to better capture a real system. In particular,

we emphasize QoS differentiation (in terms of average queueing delay) for multiple

service classes.

Suppose that there are K classes of services available to the users, and different ser-
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vice classes may be associated with different QoS requirements. Then, each represen-

tative user i’s batch job demand becomes a vector bi(t) = (bi,1(t), bi,2(t), · · · , bi,K(t)),

where bi,k(t) is the demand for class-k service at time t, and its utility function ui(bi(t), t)

is defined in terms of bi(t). As an example, we can define the utility function as

ui(bi(t), t) = αi,t log(1+
∑K

k=1 βkbi,k(t)), which βk represents the relative importance

of class-k services. The service provider charges a price of pk(t) for class-k services

at time t. Thus, we can express the representative user i’s net utility as follows

ui(bi(t), t)−
K∑

k=1

pk(t)bi,k(t), (5.5)

which is jointly concave in bi(t). The representative user i’s batch service demand

at time t is determined by maximizing (5.5) subject to Bk(bi,k(t)) ≤ Ci(t), in which

Bk(bi,k(t)) is the required network capacity for demanding bi,k(t) class-k batch ser-

vices. In the data center, each service class is associated with a separate queue, whose

queue length dynamics evolves similarly as in (5.1). For QoS differentiation, the queue

length of class-k batch jobs needs to be multiplied by a positive constant µk, when

the service provider decides the number of jobs to be processed based on the queue

lengths. In particular, a larger value of µk indicates a higher level of QoS (i.e., shorter

average response time).

5.4 Dynamic Pricing and Capacity Provisioning

This part first presents an offline optimal formulation of the problem of maximizing the

service provider’s long-term profit. Then, an online algorithm that can be implemented

in practice is developed, followed by the proof of its efficiency with respect to the

optimal offline algorithm with future information of up to T time slots.
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5.4.1 Offline problem formulation

In practice, wireless carriers stay in the market and operates data centers over a large

time horizon, and hence maximizing the time-average profit is crucial for business

interests. Let h̄ be the time average of the service provider’s profit h(t), defined in

(5.2), under a particular control policy implemented over a sufficiently large but finite

time horizon with tend time slots:4

h̄ , 1

tend

tend−1∑

τ=0

h(τ). (5.6)

Similarly, we define ā , 1
tend

∑tend−1
τ=0 a(τ), b̄ , 1

tend

∑tend−1
τ=0 b(τ), and d̄ , 1

tend

∑tend−1
τ=0 d(τ).

For notational simplicity, denote z(t) = (p(t), d(t)) as the control decision made by

the service provider at time t.

The problem of maximizing the service provider’s long-term profit can be formu-

lated as follows:

max
z(t),t=0,1,2,··· ,tend−1

h̄ (5.7)

s.t., b̄ ≤ ∑

i∈Dj

d̄, (5.8)

b(t) =
N∑

i=1

b∗i (t),∀t, (5.9)

b∗i (t) solves (5.3)(5.4),∀t (5.10)

d(t) + a(t) ≤ W, ∀t. (5.11)

The constraint (5.8) specifies that the batch service demand needs to be accommodated

over a large time scale (i.e., queue stability constraint), while the constraint (5.11)

states that the server resource provided at any time cannot exceed the total available

server resource (i.e., data center capacity constraint). Throughout the chapter, we as-

4As the time-scale duration of interest, tend is typically a very large value (e.g., in the order of
thousands or even greater if each time slot corresponds to one hour) in practice.
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sume that the problem (5.7)–(5.11) is feasible in the sense that there exits at least

one control policy that satisfies the constraints (5.8)–(5.11). To solve the optimization

problem (5.7)–(5.11), we need offline information (e.g., future renewable energy sup-

plies, electricity prices, job demand) which, however, is unavailable in practice. Un-

like the previous research that relies on (possibly inaccurate) prediction of the future

environment information (e.g., [81][96][89] for data center management and [109]),

we develop in the following analysis an online algorithm that makes pricing and job

processing decisions based on the currently available information only.

5.4.2 Online Algorithm

Based on the sample-path version of recently developed Lyapunov optimization [110],

we present in this part an online algorithm “Dyn-SP”, whose performance is provably

“good” compared to that of the optimal offline policy with T -slot lookahead informa-

tion. The intuition of Dyn-SP is to trade the queueing delay for profit improvement by

using the batch job queue length as a guidance for making pricing and scheduling de-

cisions: batch service demand is reshaped using pricing as a lever to adapt to the data

center management and batch jobs are processed only when the queue length becomes

sufficiently large and/or electricity prices are sufficiently low. Therefore, the batch job

queue dynamics introduced in (5.1), which specifies the queue length changes gov-

erned by the scheduling and pricing decisions, is instrumental for the service provider

to make online decisions.

We describe Dyn-SP in Algorithm 1, which is purely online and requires only the

current information (including available renewable energy supply, electricity price, in-

teractive service demand) and queue lengths as the input. Solving (5.12) is a much

simpler programming problem than directly solving (5.7)–(5.11). Even though (5.12)

may not be convex in the pricing decision p(t) ∈ [0, pmax] (for example, −p(t)b(t)

may be non-convex in p(t)), the computation complexity of minimizing (5.12) is still
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Algorithm 3 Dyn-SP Algorithm
1: At the beginning of every time slot t, observe the current environment information

(i.e., φi(t), a(t), and y(t)) and the current queue length q(t)
2: Choose p(t) ∈ [0, pmax] to minimize

b(t) · [q(t)− V p(t)] = b(p(t)) · [q(t)− V p(t)] , (5.12)

where b(t) = b(p(t)) is the demand function for batch services satisfying (5.9)
3: Choose d(t) ∈ [0, dmax] to minimize

V · r(φ(t),
[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+
)− q(t)d(t) (5.13)

where r(φ(t),
[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+
) = φ(t) ·

[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+
is the electricity cost

4: Update q(t) according to (5.1)

affordable for the service provider because: (1) it only involves one decision variable;

and (2) minimizing (5.12) is performed only once every time slot (which, in practice,

may correspond to one hour). With φ(t)·
[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+

being the electricity cost (for batch jobs), minimizing (5.13) belongs to linear program-

ming and is rather easy to solve [113].

The parameter V ≥ 0 is a control variable which we refer to as profit-delay pa-

rameter, and it can be tuned to different values to trade the queueing delay for the

service provider’s long-term profit. In particular, given a larger value of V , the service

provider cares more about its profit, while the average queueing delay increases.

• Effect of V on the service provider’s pricing decision: Let us consider two ex-

treme cases: V → 0 and V → ∞. When V → 0, the batch jobs cannot tolerate

any delays (i.e., essentially they become interactive jobs) and hence, as can be seen

from (5.12), the service provider always sets p(t) = pmax such that no one uses its

batch service. On the other hand, when V →∞, average queueing delay is not a con-

cern and we can notice from (5.13) that the service provider always chooses its price

p(t) ∈ [0, pmax] such that its profit b(p(t))p(t) is maximized.
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• Effect of V on the service provider’s scheduling decision: Next, let us ex-

plain how V affects the tradeoff between the profit and queueing delay. For sim-

plicity, we focus on the scenario in which the electricity price is given by φ(t) ·
[
d(t) + f(d(t))− [y(t)− a(t)− f(a(t))]+

]+
, where φ(t) is the real-time electricity

price, a(t) is the interactive service demand, and y(t) is the available renewable en-

ergy supply (which is provided at no additional cost). It can be easily seen that in

addition to processing interactive jobs (which naturally have a higher priority than

batch jobs), renewable energy, if available, is always the first choice of energy supply

to process batch jobs regardless of the batch job queue length. Nevertheless, whether

or not to draw power from the electricity grid to process batch jobs depends on the cur-

rent electricity price as well as the job queue length. Specifically, if φ(t) ≤ q(t)
V (1+γ)

is

satisfied where γ is the required cooling power per unit number of active servers (and

also per unit of processed workload), then the service provider will try to schedule as

many batch jobs as possible to process. Otherwise, the service provider will wait until

the electricity price is sufficiently low relative to the job queue length to process batch

jobs. On the one hand, given a large value of V , we see from φ(t) ≤ q(t)
V (1+γ)

that batch

jobs are processed using power drawn from the electricity grid only when the elec-

tricity price is sufficiently low. That is, the service provider opportunistically utilizes

low electricity prices for its batch services, which clearly reduces the energy cost (and

hence increases the profit) while increasing the queueing delay. On the other hand,

given a small value of V , batch jobs are still processed using power drawn from the

electricity grid even though the electricity price is not sufficiently low (as can be seen

from the condition φ(t) ≤ q(t)
V (1+γ)

). Doing so will clearly reduce the queueing delay,

whereas at the same time it increases the electricity cost (and hence reduces the profit).

Therefore, we see that V is an important parameter adjusting the tradeoff between the

profit and queueing delay. In the next subsection, a more formal statement regarding

the role of V will be provided.
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5.4.3 Performance Analysis

This subsection shows that the proposed online algorithm is provably-efficient against

an optimal algorithm with T -slot lookahead information. We first describe the T -

slot lookahead policy, and then analyze the performance of Dyn-SP against it. More

specifically, we show that, given a profit-delay parameter V , our proposed Dyn-SP

algorithm is O(1/V )-optimal with respect to average profit against the optimal T -slot

lookahead policy, while the queue length is bounded by O(V ).

5.4.3.1 T -Slot Lookahead Policy

Here, we present the T -slot lookahead policy, which has full knowledge of the envi-

ronment information in the next (up to) T time slots. If T is sufficiently large (e.g.,

in the extreme case T = tend), the T -slot lookahead policy also “approximately” (or

exactly if T = tend) maximizes the average profit in (5.7).

We divide the time horizon of tend time slots into R ∈ Z+ frames, each of which

contains T time slots such that tend = RT . In the T -slot lookahead algorithm, the

service provider has future environment information of up to the next T time slots

and maximizes the profit subject to certain constraints. Specifically, the profit max-

imization problem over the r-th frame, for r = 0, 1, · · · , R − 1, can be formulated

as

min
z(t),t=rT,rT+1,··· ,rT+T−1

1

T

t=rT+T−1∑

t=rT

h(t) (5.14)

s.t.,
t=rT+T−1∑

t=rT

[b(t)− d(t)] ≤ 0, (5.15)

Constraints (5.9)− (5.11). (5.16)

In the problem (5.14)–(5.16), we denote the maximum of 1
T

∑t=rT+T−1
t=rT h(t) by H∗

r ,

which is achievable over the r-th frame considering all the actions including those
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that are chosen with the perfect knowledge of environment information over the en-

tire frame. Thus, the maximum profit over R frames achieved by the optimal T -slot

lookahead policy is

1

R

R−1∑

r=0

H∗
r . (5.17)

We shall show that our online algorithm, Dyn-SP, can achieve a profit “close” to the

value of (5.17).

5.4.3.2 Online Algorithm Analysis

Now, we present the performance analysis of our proposed online algorithm compared

with the optimal T -slot lookahead policy.

Before showing the main theorem, we first present the slackness conditions, which

bound the relationship between the required server resource and the maximum server

availability. The slackness conditions are prerequisites of Theorem 1.5

Slackness Conditions: There exists a positive value δ > 0 and a sequence of control

decisions z(t) = (p(t), d(t)) and hi,j(t) such that, for data center states x(t), t =

0, 1, · · · tend − 1, the following conditions are satisfied

b(t) ≤ d(t)− δ, (5.18)

d(t) + a(t) ≤ W − δ. (5.19)

We note that the above slackness conditions are not restrictive at all. On the one

hand, the condition (5.18) is naturally satisfied by our formulation, as the service

provider can always set p(t) = pmax such that b(t) = 0. On the other hand, the

5If we only assume that the problem (5.7)–(5.11) is strongly feasible without slackness conditions,
the performance analysis of Dyn-SP algorithm remains similar while the upper bound on the queue
length may grow as the time passes [110].
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condition (5.19) ensures that the available server resource is always enough to pro-

cess all the scheduled jobs with a certain slackness. In practice, this condition is quite

mild and can be easily satisfied. In particularly, the server resource in a data center

is provisioned for the peak load, and thus the available server resource is (almost) al-

ways sufficient for processing workloads, i.e., (5.19) holds in practice. In the worst

case where the data center is overloaded, admission control techniques for interactive

services can be applied to complement our scheme. Note that an equivalent statement

of the slackness conditions (5.18)(5.19) is a(t) ≤ W − 2δ. To see this point, we can

choose a control sequence z(t) = (pmax, δ) such that (5.18) is satisfied. In addition, if

a(t) ≤ W − 2δ is satisfied, then clearly (5.19) is also satisfied, which establishes the

equivalence of a(t) ≤ W − 2δ and the slackness conditions (5.18)(5.19).

Next, we provide Theorem 1 to show a profit bound and queue length bound for

Dyn-SP.

Theorem 1. Suppose that the slackness conditions (5.18)(5.19) are satisfied for

some δ > 0, that the environment information (i.e., φ(t), a(t) and y(t) is arbitrarily

random, for t = 0, 1, · · · tend − 1, and that the queue length is initially zero. Then, the

following statements hold.

a. The queue length are bounded. For any time slot t = 0, 1, · · · tend − 1, we have

q(t) ≤ V A3

δ
, (5.20)

where V ≥ 0 and A3 is a finite number defined in (5.35).

b. For any T ∈ Z+ and R ∈ Z+ such that tend = RT , the profit achieved by

Dyn-SP satisfies

h̄∗ ≥ 1

R

R−1∑

r=0

H∗
r −

B + D(T − 1)

V
, (5.21)
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where h̄∗ is the (average) profit achieved by Dyn-SP for the problem (5.7)–(5.11), B

and D are (finite) constants defined in the appendix and H∗
r is the maximum profit in

the r-th frame achieved by the T -slot lookahead policy.

Proof. Here, we provide the proof of Theorem 1. First, as a scalar measure of the

queue length, we define the quadratic Lyapunov function as

L(q(t)) , 1

2
q2(t). (5.22)

Let 4T (t) be the T -slot Lyapunov drift yielded by some control policies over the

interval t, t + 1, · · · , t + T − 1:

4T (t) , L(q(t + T ))− L(q(t)). (5.23)

Similarly, the 1-slot drift is

41(t) , L(q(t + 1))− L(q(t)). (5.24)

Then, it can be shown that the 1-slot drift satisfies

41(t) ≤B + q(t) [b(t)− d(t)] , (5.25)

where B is a constant satisfying, for all t = 0, 1, · · · , tend,

B ≥ 1

2

[
b2(t) + d2(t)

]
, (5.26)

where is finite due to the boundedness of b(t) and d(t).
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Part (a): Based on (5.25), we can easily show that

41(t)− V · h(t) ≤B − V · h(t) + q(t) [b(t)− d(t)] . (5.27)

Thus, Dyn-SP actually minimizes the upper bound on the 1-slot Lyapunov drift minus

a weighted profit shown on the right hand side of (5.27).

Let us choose a control action z′(t) satisfying the slackness conditions (5.18)(5.19).

The corresponding 1-slot Lyapunov drift minus a weighted profit achieved satisfies

41(t)− V · h(t) ≤B − V · h(t)− δ · q(t). (5.28)

Since Dyn-SP minimizes the right hand side of (5.27), the 1-slot Lyapunov drift minus

a weighted profit achieved by Dyn-SP must be less than or equal to that achieved by

z′(t). In other words, the following inequality can be established

4∗
1(t) ≤B − V · (hmin − hmax)− δ · q(t), (5.29)

where hmax and hmin are the maximum and minimum 1-slot profit,6 respectively, and

4∗
1(t) is the 1-slot Lyapunov drift achieved by Dyn-SP. Now, we define

P , B − V · (hmin − hmax). (5.30)

Thus, if the queue length q(t) is greater than or equal to P/δ, the 1-slot Lyapunov

drift in (5.29) is non-positive. Moreover, we can show that the maximum value of the

Lyapunov function is [P/(
√

2δ)]2 under the constraint that the queue length q(t) is less

than or equal to P/δ. Thus, if the Lyapunov function is greater than [P/(
√

2δ)]2, the

queue length q(t) will be greater than P/δ and the Lyapunov function in the next time

6Both hmax and hmin are finite due to boundedness of b(t) and d(t).
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slot will not increase, since the 1-slot Lyapunov drift is negative. Nevertheless, if the

queue length q(t) is less than or equal to P/δ during time t, we have

L(q(t + 1)) ≤ 1

2

[
q(t) + qdiff (t)

]2 ≤ L(Θ(t)) + D +
qdiffP

δ
≤

( P√
2δ

)2
+ D +

qdiffP

δ
,

(5.31)

where qdiff (t) represents the absolute value of changes in the queue length, with max-

imum value being qdiff = max[bmax, dmax], and D is a constant satisfying, for all

t = 0, 1, · · · , tend − 1,

D ≥1

2
qdiff ·max

[
b(t), d(t)

]
, (5.32)

which is finite due to the boundedness of b(t) and d(t). Clearly, L(q(0)) satisfies

(5.31), as the queue length q(0) is initially zero. Then, by mathematical induction, we

can show that, for any t = 0, 1, · · · , tend − 1,

L(q(t)) ≤
( P√

2δ

)2
+ D +

qdiffP

δ
, (5.33)

following which we see that all the queue lengths are bounded by

q(t) ≤
√

(P

δ

)2
+ 2D +

2qdiffP

δ
=

V
√

P 2

V 2 + 2Dδ2

V 2 + 2qdiff δP
V 2

δ
=

V A3

δ
, (5.34)

where

A3 =
√

D1 + D2 + D3, (5.35)
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in which

D1 ,
[
B

V
+ hmax − hmin

]2

, (5.36)

D2 , 2Dδ2

V 2
, (5.37)

D3 , 2qdiffδ

V

√
D1. (5.38)

This proves part (a) of Theorem 1.

Part (b): Based on (5.27), we can show that, for r = 0, 1, · · · , R − 1, the T -slot

drift minus weighted profit satisfies

4∗
T (rT )− V

rT+T−1∑

t=rT

h∗(t) ≤BT − V
rT+T−1∑

t=rT

h(t) +
rT+T−1∑

t=rT

(t− rT )qdiff [b(t)− d(t)]

+ q(rT )
rT+T−1∑

t=rT

[b(t)− d(t)].

(5.39)

Then, after some simple mathematic manipulations based on (5.39), we can derive the

following inequality

4∗
T (rT )− V

rT+T−1∑

t=rT

h∗(t) ≤BT + V
rT+T−1∑

t=rT

h(t) + DT (T − 1)

+ q(rT )
rT+T−1∑

t=rT

[b(t)− d(t)],

(5.40)

where D is a finite constant satisfying (5.32). In (5.40), the left hand side is the T -slot

Lyapunov drift minus weighted profit achieved by Dyn-SP, which explicitly minimizes

the right hand side of (5.27). Note that the right hand side of (5.27) is smaller than or

equal to that of (5.40). Thus, by considering the optimal T -slot lookahead policy on
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the right hand side of (5.40), we obtain the following inequality

4∗
T (rT )− V

rT+T−1∑

t=rT

h∗(t) ≤ BT − V TH∗
r + DT (T − 1) + q(rT )

rT+T−1∑

t=rT

[b(t)− d(t)]

≤ BT + V TG∗
r + DT (T − 1),

(5.41)

where the second inequality follows from the constraint in (5.15) satisfied by the opti-

mal T -slot lookahead policy. Therefore, by summing (5.41) over r = 0, 1, · · · , R− 1,

and considering that all the queues are initially empty, it follows that

−V
RT−1∑

t=0

h∗(t) ≤BTR− V T
R−1∑

r=0

H∗
r + RDT (T − 1)− L(q(RT − 1))

≤BTR− V T
R−1∑

r=0

H∗
r + RDT (T − 1).

(5.42)

Finally, by dividing both sides in (5.42) by V TR, we have

h̄∗ =
1

TR

RT−1∑

t=0

h∗(t) ≥ 1

R

R−1∑

r=0

H∗
r −

B + D(T − 1)

V
, (5.43)

which shows that the online algorithm can achieve a profit within O(1/V ) to the min-

imum cost achieved by the optimal T -slot lookahead policy. This proves part (b) of

Theorem 1. ¥

Theorem 1 shows that, given a profit-delay parameter V , our algorithm Dyn-SP is

O(1/V )-optimal with respect to the average profit against the optimal T -slot looka-

head policy, while the queue length is bounded by O(V ). More specifically, the in-

equality (5.20) bounds the queue length: the queue length (which is closely related to

the average queueing delay) is bounded by O(V ) where V is the profit-delay parameter

in Algorithm 1. The queue length bound is tighter when V is smaller. The inequal-

ity (5.21) shows that the average profit is bounded within an additional O(1/V ) profit
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Figure 5.2: Dyn-SP with different V .

loss of that achieved by the optimal T -slot lookahead policy. The profit loss is smaller

when V is larger. Note that the upper bound on the profit loss B+D(T−1)
V

grows with the

value of T (i.e., information window size of the oracle which owns the future infor-

mation), which can be intuitively understood as follows: with more information about

the future environment, the profit achieved by the offline algorithm increases, thereby

resulting in an enlarged profit gap.

The key insight obtained from Theorem 1 is that, by appropriately tuning the profit-

delay parameter V , we can achieve a desired tradeoff between the profit and queue

length with analytic performance guarantees. Finally, it should be pointed out that

although the derived analytic performance bound, which applies for an arbitrarily ran-

dom environment subject to mild slackness conditions, may not be very tight for cer-

tain system settings, the actual performance of Dyn-SP is reasonably good in practice

and outperforms the other algorithms as shown in the next part.

5.5 Numerical Results

We perform a simulation study to evaluate our algorithm using traces of hourly elec-

tricity prices and renewable energy supplies for a data center operating in California.
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0 5 10 15 20 25 30
180

190

200

Time

q(
t)

 

 

0 5 10 15 20 25 30
0

5

Time

b(
t)

 

 
Dyn−SP

0 5 10 15 20 25 30
0

5

Time

b(
t)

 

 
Myopic

0 5 10 15 20 25 30
0

5

Time

b(
t)

 

 
Static

(b) Batch service demand under different pric-
ing schemes with V = 1000.

Figure 5.3: 30-hour snapshot.

We conduct three sets of experiments:

• Profit-maximization with different V : study the impact of the profit-delay pa-

rameter V on profit maximization.

• Algorithm comparison: compare Dyn-SP with three other algorithms (i.e., Stat-

Pricing, ServerOnly, BestEffort) explained later.

• Extension to multiple service classes.

The experimental results show that (1) Dyn-SP maximizes profit while bounding

the queue length by opportunistically pricing and scheduling batch jobs when the elec-

tricity prices are sufficiently low relative to the queue length; (2) Compared to the other

algorithms, Dyn-SP can significantly increase the service provider’s profit while still

providing a queueing delay guarantee; (3) Dyn-SP can be extended to multiple service

classes for QoS differentiation.

5.5.1 Setup

In this part, we introduce default settings that are used throughout the simulations

unless otherwise stated. We consider a time-horizon of 2000 time slots.

• Data center: We re-scale real-world traces of hourly electricity prices and renew-
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Figure 5.4: Traces of (normalized) hourly electricity prices and total available renew-
able energies (March 21, 2012) in California, USA [112]

able energy supplies in California, USA [112]. A 24-hour trace sample is plotted in

Fig. 5.4. The total number of servers in the data center is normalized to 10. Based on

empirical data provided in [80], we assume that the cooling system consumes a power

equal to 0.75 times the server power, i.e., f(m) = 0.75 ·m, where m is the number of

active servers.

• User: For simplicity, we assume that there are 10 base stations (each of which

may correspond to multiple physical base stations in practice). The utility function for

the representative user i is ui(bi(t), t) = αi,t log(1 + bi(t)), in which the demand state

αi,t is assumed to be independently and uniformly distributed in [0, 1]. The service

demand for interactive applications, i.e., a(t), is modeled as a uniformly distributed

random variable in [0, 8]. We assume that a unit of network capacity is required for

submitting a unit of batch service demand to the service provider, and that the available

network capacity Ci(t) for batch services follows a uniform distribution in [0, 10].
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(a) Processed batch jobs using electricity grid
with V = 10.
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(b) Processed batch jobs using electricity grid
with V = 1000.
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Figure 5.5: 30-hour snapshot and queue length trace.

Note that we apply the above settings to demonstrate the effectiveness of our pro-

posed Dyn-SP, whereas our analysis also applies to any other settings.

5.5.2 Experimental Results

In this part, we provide detailed experimental results based on the system settings

described above.7

7The average values at time t = 1, 2, · · · are obtained by summing up all the values up to time t and
then dividing the sum by t.
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5.5.2.1 Profit-maximization with different V

We show in Fig. 5.2 the average profit and average delay achieved by Dyn-SP with

various values of V . It can be seen that when V increases, the average profit increases

at the expense of increasing the average queueing delay, which verifies Theorem 1. We

note that the maximum profit can only be obtained in an online fashion if there is no

queueing delay constraint. In fact, the average delay corresponding to the maximum

profit in Fig. 5.2 approaches to infinity and thus, it is not shown. Moreover, we do

not show the profit achieved by the optimal offline algorithm with T -slot lookahead

information, which clearly cannot outperform the maximum profit. In Fig. 5.2(a) and

Fig. 5.2(b), the interactive service demand a(t) follows a uniform distribution in [0, 3]

and [0, 8], respectively. Thus, in Fig. 5.2(a), there is more renewable energy avail-

able for processing batch jobs, which, as can be seen by comparing Fig. 5.2(a) and

Fig. 5.2(b), reduces the long-term electricity cost.

Next, let us illustrate how Dyn-SP reshapes the service demand to adapt it to the

data center management and how it opportunistically utilizes low electricity prices.

First, we show in Fig. 5.3 a 30-hour snapshot of queue lengths and batch service de-

mand under various pricing schemes (i.e., Dyn-SP, Myopic which maximizes the in-

stantaneous profit without considering the impact of the pricing decision on the queue

dynamics, and Static which uses a fixed price of p(t) = 0.4, for t = 0, 1, 2, · · · 1999).

Note that in Fig. 5.3, the demand state αi,t takes a constant value of 0.5 to isolate the

demand state randomness and to highlight the role of queue length in setting the price.

We observe from Fig. 5.3(a) that Dyn-SP can adapt the demand to the queue length:

in general, the service provider will set a lower price to attract a higher batch service

demand when the queue length is smaller, whereas a higher price will be used to sup-

press the batch service demand when the queue length is larger (such that excessive

delay can be avoided). By contrast, Myopic and Static pricing schemes ignores the

queue length information and thus, the batch service demands under these two pricing
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Figure 5.6: Algorithm Comparison.

schemes are only constrained by the available network capacity (in addition to user

rationality, which is captured by net-utility maximization formulated in (5.3)(5.4)). As

we noted Chapter 5.4, giver a larger value of V , the service provide cares more about

its profit and less about the queueing delay. Fig. 5.3(b) reflects this point by showing

that Dyn-SP almost neglects the queue backlog and sets a price, which is nearly the

same as that set by Myopic, when V is sufficiently large.

Now, let us see how Dyn-SP adjusts the tradeoff between the electricity cost sav-

ing and queueing delay. Fig. 5.5 shows a 30-hour snapshot of the amount of processed

batch jobs using energy drawn from the electricity grid. We have stated in Chapter 5.4

that the electricity grid supplies power for batch services if and only if φ(t) ≤ q(t)
V (1+γ)

is

satisfied. We define an indicator which is equal to one if q(t)
V (1+γ)

holds. Fig. 5.5(a) ver-
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ifies that batch jobs are processed using electricity energy if and only if q(t)
V (1+γ)

holds,

i.e., the electricity price is sufficiently low relative to the queue length. In particular,

we notice from Fig.5.5(a) that, in general, Dyn-SP will draw more electricity energy

to process batch jobs when the electricity price is lower, i.e., low electricity prices are

opportunistically utilized. This phenomenon is better reflected in Fig. 5.5(b), in which

V = 1000 indicates that the service provider will shift the processing of batch jobs

to time slots with low electricity prices. However, doing so will inevitably increase

the queue length (as shown in Fig. 5.5(c)) as well as the queueing delay. Therefore,

Fig. 5.5 illustrates the key insight of Dyn-SP: processing batch jobs using electricity

energy only when the electricity price is sufficiently low relative to the queue length.

5.5.2.2 Algorithm comparison

We next compare Dyn-SP against three other algorithms described as follows.

• StatPricing: StatPricing uses a fixed price at all times, while it uses Step 3 in

Algorithm 1 to make scheduling decisions.

• ServerOnly: ServerOnly ignores the cooling system energy consumption and

only considers server energy consumption when making scheduling decisions.8

• BestEffort: BestEffot tries to maximize the service provider’s instantaneous

profit and process the submitted batch jobs as soon as possible.

We show Fig. 5.6 the profit comparison subject to (almost) the same average de-

lay constraint of 1.15.9 It shows that Dyn-SP outperforms all the other algorithms in

terms of the average profit. Moreover, Fig. 5.6(a) shows the importance of dynamic

pricing, which reshapes the batch service demand to the data center operation, while

Fig. 5.6(b) indicates that an integrated approach to managing the data center, i.e., con-

sidering both cooling system and server energy consumption, is important for profit

8Cooling system energy consumption is still added when the scheduling decision is made.
9Note that due to the discrete-time model, the minimum queuing delay is one time slot.
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Figure 5.7: Algorithm Comparison with uniformly distributed distributed electricity
price and renewable energy supply.

maximization. As shown in Fig. 5.6(c), the BestEffort algorithm is inferior to Dyn-

SP in terms of profit maximization, since it neglects the queue length information and

hence it cannot reshape the batch job service demand to the data center operation or

exploit low electricity prices. To show the robustness of Dyn-SP against the random

environment, we consider uniformly distributed electricity prices and available renew-

able energy supplies. In particular, the electricity price φ(t) is uniformly distributed

in [0, 0.25], and the available renewable energy supply y(t) is uniformly distributed in

[0, 6]. Under this setting, Fig. 5.7 shows that Dyn-SP can still outperform the other

three algorithms (i.e., StatPricing, ServerOnly, and BestEffort) in terms of the average

profit while incurring the same average queueing delay.
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5.5.2.3 Extension to multiple service classes

The proposed Dyn-SP can be extended to multiple service classes and provided differ-

entiated QoS in terms of the average queueing delay. For the ease of illustration, we

consider only two service classes, and assume that the utility function of the represen-

tative user i is ui(bi(t), t) = αi,t log(1 + bi,1(t) + 2bi,2(t)). Without loss of generality,

we assume that class-2 service requires a lower queueing delay on average than class-

1 service. Intuitively, the service provider sets a higher price for class-2 service than

class-1 service. This can be seen from Fig. 5.8, in which it also shows that the average

queueing delay for class-2 service is lower than that for class-1 service. Because of

space limitations, we omit the results showing the tradeoff between the average profit

and queueing delay, which are similar with Fig. 5.2.
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5.6 Conclusion

In this chapter, we considered a profit-maximizing wireless service provider operating

a data center and “selling” cloud computing services to its subscribers. The focus of

our study was on batch services, which do not have urgent delay constraints. Wireless

subscribers were modeled using the representative agent model, whose service de-

mand is influenced by the service provider’s pricing decision. To maximize the service

provider’s long-term profit, we proposed a provably-efficient online algorithm Dyn-SP

which can be implemented based on the currently available information. Dyn-SP is

applicable to an arbitrarily random environment in which the electricity price, avail-

able renewable energy supply, wireless network capacities provided base stations may

evolve over time as an arbitrary stochastic process. We proved that, compared to the

optimal offline algorithm with future information, Dyn-SP can produce a close-to-

optimal long-term profit while bounding the job queue length in the data center. The

key idea of Dyn-SP is: (1) using pricing to proactively adapt the service demand to

workload scheduling in the data center; and (2) opportunistically utilizes low electric-

ity prices to process batch jobs for energy cost saving. We performed a simulation

study to demonstrate the effectiveness of Dyn-SP. In particular, it was shown both

analytically and numerically that a desired tradeoff between the profit and queueing

delay can be obtained by appropriately tuning the control parameter. Our results also

indicated that, compared to the other algorithms which neglect demand-side manage-

ment, cooling system energy consumption, or the queue length information, Dyn-SP

achieves a higher average profit while incurring (almost) the same average queueing

delay.
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CHAPTER 6

Conclusion

In this dissertation, we developed a rigorous and formal framework that integrates

strategic pricing with system resource management for a wide range of computer

and communications systems including wireless cooperative relay networks, wireless

communications markets, online user-generated content platforms, and mobile cloud

computing systems. Instead of directly assuming a demand function of the price,

the framework explores and explicitly considers the dynamic process in which self-

interested users strategically interact with each other and respond to the charged price.

We showed that the users’ self-interested behaviors can be aligned with the system de-

signer’s goal via appropriate pricing mechanisms. Furthermore, in the presence of user

heterogeneity, pricing was used to proactively reshape the users’ behaviors/demands

and adapt them to the system resource management. The framework was shown to be

applicable to an arbitrarily random environment.

As the first application of the proposed framework, we considered wireless co-

operative relay networks in which one dedicated relay node consumes its own lim-

ited power to forward multiple sources’ signals to their respective destinations. Both

uniform and differentiated pricing algorithms were proposed to maximize the system

utility that can be defined in any form. The proposed pricing algorithms reimburses

the relay for its power consumption and, if appropriately set, can enforce the users to

transmit at desired power levels even though they are self-interested. Then, we studied

wireless communications markets where the subscribers are heterogeneous in terms of

their valuations of services as well as their data service demands. We proposed a gen-
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eral yet practical pricing scheme that includes unlimited pricing, usage-based pricing,

and capped pricing as special cases. A computationally-efficient algorithm was pro-

posed to find the sub-optimal pricing scheme maximizing the service provider’s long-

term profit. Next, We turned to another important applications: online user-generated

content platforms. Modeled as a two-sided market, the user-generated content plat-

form allows users to exchange their content and also possibly make profits, as dictated

by the pricing algorithm set by the intermediary who monetizes the platform. Our pro-

posed pricing algorithm explicitly considered the participants’ rationality as well as the

content substitutability, which are key features of online content platforms. Finally, we

focused on a wireless cloud computing system in which a profit-maximizing wireless

service provider operates a data center and can provide cloud computing services to its

subscribers. We proposed a novel dynamic pricing and scheduling algorithm which,

using the pricing mechanism as a lever, proactively adapts the service demand to work-

load scheduling in the data center and opportunistically utilizes low electricity prices

to process batch jobs for energy cost saving. Without the necessity of predicting the

future information (as assumed by some existing works), the proposed algorithm is

provably efficient in the sense that the resulting performance loss with respect to the

optimal offline algorithm with perfect future information is upper bounded.

The proposed design framework can be extended in three directions. First, it can

be generalized to incorporate several important issues such as price anticipation. An

implicit assumption underlying our framework is that users are not price-anticipating,

i.e., users are price takers. While this is a reasonable assumption in the sense that there

are many users each of which only has a negligible impact on the service provider’s

pricing decision, investigating pricing anticipation is important as part of the sensitivity

study (especially when the number of users in the system is quite limited). Second, the

proposed design framework can be applied in several emerging large-scale resource

management scenarios including utility-based micro-grid management and intelligent
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energy distribution. For instance, recent advances in smart meters and communication

technologies will allow utility companies to proactively modify the energy distribution

load and demand at household levels by using price signals. Together with the in-

creasing penetration of renewable energy sources, the ability to reshape the customer

demand poses both opportunities and challenges in intelligently managing the energy

distribution to satisfy the soaring energy demand while utilizing the clean energy as

much as possible. The proposed framework is a promising solution providing an intel-

lectual guidance for future smart grid designs. Third, the proposed design framework

can be implemented in real systems for a practical understanding of implementation

issues. Moreover, it can be unified with other relevant theories (e.g., cross-layer design

in communications systems) to advance the theoretic framework of jointly designing

economic incentives and resource management.
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