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OPEN

ORIGINAL ARTICLE

Brain site-specific proteome changes in aging-related
dementia

Arulmani Manavalan1, Manisha Mishra1, Lin Feng2, Siu Kwan Sze1, Hiroyasu Akatsu3 and Klaus Heese4

This study is aimed at gaining insights into the brain site-specific proteomic senescence signature while comparing

physiologically aged brains with aging-related dementia brains (for example, Alzheimer’s disease (AD)). Our study of proteomic

differences within the hippocampus (Hp), parietal cortex (pCx) and cerebellum (Cb) could provide conceptual insights into the

molecular mechanisms involved in aging-related neurodegeneration. Using an isobaric tag for relative and absolute quantitation

(iTRAQ)-based two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D-LC-MS/MS) brain site-

specific proteomic strategy, we identified 950 proteins in the Hp, pCx and Cb of AD brains. Of these proteins, 31 were

significantly altered. Most of the differentially regulated proteins are involved in molecular transport, nervous system

development, synaptic plasticity and apoptosis. Particularly, proteins such as Gelsolin (GSN), Tenascin-R (TNR) and AHNAK

could potentially act as novel biomarkers of aging-related neurodegeneration. Importantly, our Ingenuity Pathway Analysis (IPA)-

based network analysis further revealed ubiquitin C (UBC) as a pivotal protein to interact with diverse AD-associated

pathophysiological molecular factors and suggests the reduced ubiquitin proteasome degradation system (UPS) as one of

the causative factors of AD.
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INTRODUCTION

Understanding the unique alterations in the brain proteomic
signature induced by cellular senescence as a result of normal
and pathological aging is essential for identification of a specific
cure for various neurodegenerative disorders. Alzheimer’s
disease (AD) is a progressive, aging-related neurodegenerative
disorder of the central nervous system and is the most common
cause of dementia in the elderly worldwide. It is characterized
by impaired memory and the deterioration of higher cognitive
functions.1,2 The main pathological characteristics of AD are
accumulations of senile plaques that comprise amyloid-b
(Ab) peptides produced from the b-amyloid precursor
protein (APP) following sequential processing by b- and
g-secretases.3–6 The second major pathological hallmark of
AD is neurofibrillary tangles (NFTs) caused by intracellular
accumulations of the hyperphosphorylated microtubule-
associated protein tau (MAPT).7–9 Neurodegeneration in AD
progresses sequentially, starting first in predisposed induction
sites from the entorhinal cortex in the medial temporal lobe

and then gradually spreading to the entire hippocampus (Hp)
and the limbic system, before advancing in topographically
predictable sequences and ultimately expanding to the
temporal association cortex. Although the occipital lobe
cortex retains nearly normal function, frequently even in
terminal-stage patients, the temporal lobe cortex, in contrast,
as one of the most fragile parts of the brain, is extremely
vulnerable to neuronal death.10–13 Thus, it might be possible to
identify those biomarkers that cause aging-related AD in the
temporal lobe. Biomarkers that are capable of preventing
neurodegenerative processes within the occipital lobe at early
stages of AD may also be identified.14,15 Because the prevailing
assumption is that the cerebellar proteome of the central
nervous system area is relatively unaffected by AD, this is a
less investigated region and often neglected in AD studies.
However, it must be noted that several studies indicated that
in AD the cerebellum (Cb) also shows some signs of
morphological and metabolic dysfunctions.16 A number of
pathological changes, such as widespread deposits of diffuse
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amyloid, ubiquitin-immunoreactive dystrophic neurites and
increased microglia, have been revealed in the AD-affected Cb
by immunocytochemical studies. However, tau-immuno-
reactive NFTs have not been seen. Although the observed
changes may be merely epiphenomenal to the pathological
processes occurring in the AD neocortex and Hp, the
morphological and immunocytochemical differences between
cerebral and cerebellar cortices of AD patients may nonetheless
give insights into the molecular factors involved in the
development of the neuropathological lesions of the AD
brain.16 Consequently, more attention has also been given to
this brain area in recent years, though with little focus at the
molecular level.17–24

Thus far, proteomic analyses have been considered world-
wide with greater emphasis on improving the diagnosis of
early stages of AD by identifying novel specific biomarkers
from the cerebrospinal fluid or plasma to complement the
existing diagnostic methods that are based on autopsy or
neuroimaging techniques. Isobaric tags for relative and abso-
lute quantitation (iTRAQ) is a widely accepted approach for
quantitative proteomics.25 Accordingly, in this study, we
applied the two-dimensional (2D) liquid chromatography
coupled with tandem mass spectrometry-based iTRAQ (2D-
LC-MS/MS-iTRAQ) technique for quantitative profiling of
aging-related brain site-specific proteome changes. We sought
to investigate the mechanisms of senescence and pathological
aging-related neurodegeneration at the proteomic level in
different areas of the brain, including the Hp, the parietal
cortex (pCx) and the Cb, by comprehensively identifying the
proteins with altered expression levels in response to aging and
aging-related dementia (for example, AD). Subsequently, we
exploited publically accessible bioinformatic databases to infer
the functional role and networks linked to the proteins that we
found differentially expressed.

Our data also reveal protein pathway modulations acquired
by the Cb to counteract neurodegeneration and thus could
eventually become a lucrative target for the identification of
plausible therapeutic drugs.

MATERIALS AND METHODS

Reagents
Unless indicated, all reagents used for biochemical methods
were purchased from Sigma-Aldrich (St Louis, MO, USA).
Materials and reagents for sodium dodecyl sulfate-polyacryla-
mide gel electrophoresis were from Bio-Rad (Bio-Rad Labora-
tories, Hercules, CA, USA). The iTRAQ reagent eight-plex kit
was bought commercially (Applied Biosystems, Foster City,
CA, USA).

Human subjects
Brain tissues were obtained from the brain bank of the Choju
Medical Institute of the Fukushimura hospital (Toyohashi,
Aichi, Japan), and the protocols utilized were approved by the
local ethics committee of the Fukushimura hospital. The
scientific use of human material was conducted in accordance
with the Declaration of Helsinki, and informed consent was

obtained from the guardians of the patients. Brain tissues were
weighed at the time of autopsy, snap frozen with liquid
nitrogen and stored at –80 1C. Patients with sporadic AD
(early stage, low incidence, Table 1) received a pathological
diagnosis according to the criteria of the Consortium to
Establish a Registry for Alzheimer’s Disease (CERAD) and
the Braak stage13,26 as described previously.27,28 Controls were
elderly patients who were age matched but without significant
neurological disorders. Patients were also cognitively evaluated
by neuropsychological tests using the mini-mental state
examination (MMSE) and Hasegawa’s dementia scale (HDS,
or the HDS revised version (HDS-R)), which is commonly
utilized in Japan.14,15,27–29

Autopsy, neuropathological diagnostic criteria and
immunohistochemistry
Brains were removed at the time of autopsy, weighed, cut mid-
sagittally and examined for vascular and other macroscopically
detectable lesions. Specimens for diagnostic examination were
obtained from the hemisphere showing abnormal findings
based on computed tomography scanning or from the left
hemisphere when no difference was observed between the left
and the right hemispheres. Specimens were fixed in 4%
paraformaldehyde (Sigma, Tokyo, Japan) as a hemisphere
block. Samples used for diagnostic purposes were taken from
the frontal, temporal, parietal and occipital lobes; hippocampal
formation; amygdala; basal ganglia; thalamus; and midbrain,
including the substantia nigra, pons, medulla and the Cb.
The specimens were embedded in paraffin and processed
into 5-mm sections for conventional histological and

Table 1 Characteristics of human brain subject tissue

samples

Subject

(Patient)

Pathological

diagnosis Gender

Age

(years)

Stage of amyloid

deposits (none,

A, B, C)

NFT

stage

(I–VI)

PMI

(h)

Control

1 Physiological

aging

F 82 A I 34

2 Physiological

aging

F 88 A I 36

3 Physiological

aging

F 87 A II 7

4 Physiological

aging

F 95 B II 24

AD

1 SDAT F 80 B VI 3.3

2 SDAT F 88 C V 11

3 SDAT F 87 C VI 6.5

4 SDAT F 98 C V 12

Abbreviations: AD, Alzheimer’s disease; F, female; M, male; NFT, neurofibrillary
tangle; PMI (h), post-mortem interval in hours; SDAT, senile dementia/Alzheimer’s
type. Stages of amyloid deposits: A, rare or a few; B, mild or moderate;
C, numerous or marked.
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immunohistochemical examination. For standard tissue char-
acterization, specimens were stained using hematoxylin–eosin
(to display morphology) and Klüver–Barerra staining meth-
ods. Methenamine silver and modified Gallyas–Braak staining
were used to detect senile plaques, cerebral amyloid angiopathy
and NFTs. Further characterization by immunohistochemistry
was performed with specific antibodies against ubiquitin,
a-synuclein, Ab (1–40/42), and MAPT (IBL, Fujioka, Japan).
Immunostaining methods were applied using the antibodies in
a dilution of 1:1000 and a standard Avidin–Biotin Complex
(ABC) method using a VectaStain Elite ABC kit (Vector
Laboratories, Burlingame, CA, USA) and the protocols pro-
vided by the supplier. After being extensively washed, immu-
noreactive products were detected with DAKO Envisionþ
(Dako, Kyoto, Japan) and visualized after the addition of
diaminobenzidine as the chromogen.14,15,27–29

Human brain tissue protein extraction from Hp,
pCx and Cb
Briefly, brain tissues from Hp, pCx and Cb (Table 1) were
excised, snap-frozen in liquid nitrogen and then powdered
using a mortar and pestle. Upon addition of lysis buffer (2%
sodium dodecyl sulfate, 0.5 M triethyl ammonium bicarbonate
buffer (TEAB), 1 Complete protease inhibitor cocktail tablet
(Roche, Mannheim, Germany) and 1 PhosSTOP phosphatase
inhibitor cocktail tablet (Roche)), the samples were vortexed
for 1 min and incubated on ice for an additional 45 min before
homogenization (sonication parameters: amplitude, 23%;
pulse: 5 s/5 s for 5 min) using a Vibra Cell high intensity ultra-
sonic processor (Jencons Scientific, Leighton Buzzard, Bed-
fordshire, UK). After centrifugation (20 000� g/4 1C/30 min),
supernatant was collected and stored at �80 1C until further
use. The protein was quantified by a ‘2-D Quant’ kit
(Amersham, Piscataway, NJ, USA) according to the manufac-
turer’s protocol.14,29

iTRAQ protocol
A detailed description of the 2D-LC-MS/MS-iTRAQ proce-
dures,30,31 including postproteomic data verification by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
and western blot analyses (Supplementary Figures S1–S3),32–34

can be found in the Supplementary document.

Experimental design. Hp, pCx and Cb tissues were isolated
from four AD females and four age-matched non-demented
females (controls) using the above-mentioned protocol.
Detailed diagnostic features used in this study, such as stages
of plaques and NFTs of AD patients and control patients, are
described in Table 1. Proteomic analysis was conducted in two
batches (B-I and B-II). For each batch, we used four (four
biological replicates) different Hp, pCx and Cb tissues pooled
from four AD and four control patients, respectively. Each
batch was then repeated six times to ensure high confidence in
the detection of brain region-specific proteins regulated by
aging-related neurodegeneration. The quality of the data set
and instrumental reproducibility was achieved by comparing

and combining three technical replicates after the samples were
labeled with 113–118 isobaric tags and processed in 2D-LC-
MS/MS (Figure 1).

To verify the tissue specificity and that the protein samples
were covering the whole human brain tissue proteome,
all the identified proteins were uploaded into JVirGel (http://
www.jvirgel.de/), a database that creates a virtual 2D-gel
picture (Supplementary Figure S1).35

In addition, we used online databases (for example, Panther
(Protein Analysis Through Evolutionary Relationship) at
www.pantherdb.org, UniProt, NCBI and ‘softberry’ http://
linux1.softberry.com/berry.phtml) to classify the functions of
the iTRAQ-identified proteins modulated in the AD brains.
Further biocomputational network analysis of the iTRAQ-
identified proteins using the Ingenuity Pathways Analysis (IPA,
http://www.ingenuity.com) offered us additional valuable clues
about the complex interactions between these proteins in the
AD brain.

Following the database search and classification of proteins,
western blots were performed on randomly selected proteins
to verify the iTRAQ values. The western blot images correlated
well and thus validated the obtained iTRAQ values
(Supplementary Figures S2 and S3).

Statistical analysis
The data obtained by the western blot analyses are illustrated
as the mean±s.d. Student’s t-tests were used to determine
statistical significance. SPSS 19.0 (Statistical Products and
Service Solutions, IBM Corporation, Armonk, NY, USA) for
Windows was used to perform an analysis of variance followed
by Fisher’s protected least significant difference post hoc tests,
when warranted. For the iTRAQ analysis, ProteinPilot Soft-
ware 3.0 (Applied Biosystems) was used. To be considered
statistically significant, we required a probability value to be
o0.05 (95% confidence limit, *Po0.05).29,32,33

RESULTS

Identification of brain region-specific proteome changes in
the Hp, pCx and Cb of AD
We identified a total of 950 proteins in the Hp, pCx and Cb
through the use of iTRAQ. Of those identified proteins, 825
were quantified with a strict cutoff of an unused ProtScore X2
as the qualification criteria. These results correspond to a
peptide confidence level of 99% and an applied false discovery
rate of 0.33% (o1.0%). A total of 31 proteins showed an
altered expression level in the investigated brain sites (Figure 1
and Tables 2 to 8, with the cutoff for up- and down-regulation
predefined at 1.2 and 0.83, respectively (P-values are the
average P-values of batch-I and batch-II; s.d. values are s.d.
of batch-I and batch-II)).

Specifically, 11 proteins (APP, MARCKS, INA, MECP,
HIST1H1E, ALB, GNB1, AK1, ALDOA, TNR and CLU) in
the Hp (Table 2), 2 proteins (SYN1 and ATP5A1) in the pCx
(Table 3), and 7 proteins (PLP1, GAP43, DPYSL2, QDPR,
MATR3, ENO1 and GSN) in the Cb (Table 4) were modulated.
In addition, ANXA6 was modulated in both Hp and pCx
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(Table 5). MAPT, MAP1A, AHNAK, CEND1 and GAPDH
were altered in both Hp and Cb (Table 6) and HIST1H1D
and GLS were modulated in both pCx and Cb (Table 7).
SOD2, MBP and VIM were modulated in all brain regions
investigated (Table 8).

As expected, APP was found to be upregulated in the AD
Hp, whereas MAPT and MAP1A were upregulated in both
AD Hp and Cb. It is noteworthy that Clusterin (CLU) was

downregulated in the Hp, AHNAK was upregulated in the Hp
and downregulated in the Cb, the extracellular matrix protein
Tenascin-R (TNR) was downregulated in the Hp, HIST1H1D/
E were upregulated in the pCx and the Hp and downregulated
in the Cb and MECP2 was upregulated in the Hp of AD
brains. In addition, the antiapoptotic protein SOD2 was
upregulated in all three areas (Hp, pCx and Cb) of AD
subjects.

Figure 1 Schematic representation of the experimental design showing biological and technical replicates. Brain tissues (hippocampus
(Hp), parietal cortex (pCx) and cerebellum (Cb)) were isolated from four Alzheimer’s disease (AD) and four age-matched non-demented
control subjects. The quantitative proteomics analyses of AD and control brains were performed by labeling with multi eight-plex isobaric
tag for relative and absolute quantitation (iTRAQ) reagents (113–118) (followed by electrostatic repulsion-hydrophilic interaction
chromatography (ERLIC)-based fractionation, and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based
multidimensional protein identification technology (2D-LC-MS/MS-iTRAQ). The obtained data were analyzed using ProteinPilot software,
classified by the Panther database and validated by western blots.
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Biocomputational classification of the regulated proteins in
the Hp, pCx and Cb of AD brains
Next, we classified all of the 31 differentially regulated proteins
from the Hp, pCx and Cb of AD brains based on their classes
as well as cellular and molecular functions using the Panther
database (Figures 2–4 and Tables 2–8). As predicted, both
molecular and cellular functions of these proteins, as well as
their associated biological pathways, were significantly altered
in the Hp and the pCx compared with the Cb (Figures 2–4).
All investigated regions (Hp, pCx and Cb) revealed severe
alterations in metabolic, cellular and developmental processes.
The most interesting observation was that the percentage of

alterations in developmental processes was highest in the Cb
(35.7%; it was 29% for Hp and 25% for pCx), whereas the
percentage of alterations in cellular processes was equivalent in
both the pCx (62.5%) and the Hp (58%) (Figures 2–4a). As
part of these changes, binding proteins (43.8%; HIST1H1E
and APP) were significantly altered in the Hp as well as the
structural proteins (31.3%; MAPT, MARCKS, MBP, INA and
vimentin) and catalytic regulators (18.8%; GAPDH and
GNB1). Alterations in binding proteins (25%; HIST1H1D
and ANNEXIN A6), catalytic proteins (25%; GLS, ATP5A1
and SOD2) and structural proteins (25%; MBP, synapsin1 and
vimentin) were similar in the pCx. Catalytic proteins (42.9%;

Table 2 List of regulated proteins in the Alzheimer’s disease (AD) hippocampus (Hp)

Protein IDs

Gene

symbols Protein names Biological process

No. of

peptides

AD Hp/

Control P-value

s.d.

value

Subcellular

location

Structural constituent of cytoskeleton

IPI00219301.7 MARCKS Myristoylated alanine-rich

C-kinase substrate

Calcium-mediated signaling 30 2.05 4.43E–05 0.7725 Plasma

membrane

IPI00001453.2 INA a-Internexin Cellular component

morphogenesis

24 1.86 0.0349 0.1334 Intermediate

filament

Nucleic acid binding

IPI00645192.3 MECP2 Isoform B of methyl-CpG-

binding protein 2

Regulation of transcription

from RNA polymerase II

promoter

11 3.35 0.0209 0.6794 Nucleus

IPI00217467.3 HIST1H1E Histone H1.4 Nucleotide and nucleic acid

metabolic process

12 7.65 0.0392 1.2124 Nucleus

Transfer

IPI00745872.2 ALB Isoform 1 of serum albumin Transport 31 1.67 0.0155 0.3689 Secreted

GTPase activity/ATP binding

IPI00026268.3 GNB1 Guanine nucleotide-binding pro-

tein G(I)/G(S)/G(T) subunit b-1

Ras protein signal

transduction

6 0.71 0.0302 0.1165 Nucleus

IPI00640817.1 AK1 Adenylate kinase 1 ATP metabolic process 7 1.67 0.0307 0.2267 Cytoplasm

Fructose binding/nervous system development

IPI00796333.1 ALDOA Fructose-bisphosphate

aldolase A

Glycolysis 26 0.57 0.0315 0.0111 Cytoplasm

IPI00160552.3 TNR Tenascin-R Signal transduction 10 0.67 0.0004 0.0238 Secreted

Chaperone-mediated protein folding

IPI00400826.1 CLU Isoform 2 of Clusterin Apoptosis 3 0.51 0.0479 0.0168 Cytoplasm

Table 3 List of regulated proteins in the Alzheimer’s disease (AD) parietal cortex (pCx)

Protein IDs

Gene

symbols Protein names Biological process

No. of

peptides

AD pCx/

Control P-value

s.d.

value

Subcellular

location

Neurological system process/hydrolase activity

IPI00251507.2 SYN1 Isoform IB of Synap-

sin-1

Synaptic

transmission

106 0.72 0.0334 0.0406 Golgi apparatus

IPI00440493.2 ATP5A1 ATP synthase subunit a Cation transport 48 1.30 0.0424 0.0231 Mitochondrial
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GLS, GAPDH, ENO1 and SOD2) in the Cb were the most
affected group of proteins. Structural proteins (35.7%; MAPT,
GSN, PLP1, MBP and Vimentin) and binding proteins (21.4%;
HIST1H1D and GSN) were also significantly affected (Figures
2–4b). It is of interest to note that a substantial proportion of
extracellular proteins (for example, TNR) were significantly
downregulated exclusively in the Hp, whereas downregulation
was only observed among intracellular proteins in the pCx and
the Cb (Figures 2–4).

Biocomputational network analysis of the proteins regulated
in the Hp, pCx and Cb of AD brains
To gain further insight into the potential biological mechan-
isms involving the iTRAQ-identified differentially regulated

proteins in the AD brain, we used IPA (http://www.ingenui-
ty.com). IPA identifies protein networks based on the known
interactions (either direct or indirect) between proteins. In
addition, IPA defines common functional and canonical
pathways, thereby offering additional information about the
complex interactive links between these proteins in the brain
(Figures 5–7). The Hp network comprises 35 proteins
(AHNAK, AK1, ALB, ALDOA, ANXA6, APP, CCDC50,
CEND1, CLU, EGFR, GAPDH, GNB1, HIST1H1E,
HIST1H1T, HSP27, HSP70, INA, LDL, MAP1A, MAPK,
MAPT, MARCKS, MBP, MCOLN3, MECP2, PKC(s), PXK,
RAC, ROCK, SLC25A5, SOD2, TMCO3, UBC, VIM and
XPR1), of which 22 proteins were quantified by iTRAQ. The
remaining 13 proteins were found by IPA to interact with the

Table 4 List of regulated proteins in the Alzheimer’s disease (AD) cerebellum (Cb)

Protein IDs

Gene

symbols Protein names Biological process

No. of

peptides

AD Cb/

Control P-value s.d. value

Subcellular

location

Neurological system process

IPI00219661.2 PLP1 Isoform 1 of myelin

proteolipid protein

Cellular component

morphogenesis

6 5.77 0.0039 0.7291 Plasma

membrane

IPI00015964.4 GAP43 Neuromodulin Activation of protein

kinase C activity by

G-protein-coupled

receptor protein

signaling pathway

21 2.75 9.32E–05 0.1643 Cell membrane

Hydrogen ion transporting ATP synthase activity/oxidoreductase activity

IPI00257508.4 DPYSL2 Dihydropyrimidinase-

related protein 2

Nucleotide and nucleic

acid metabolic process

47 1.69 0.0328 0.0542 Cytoplasm

IPI00014439.4 QDPR Dihydropteridine

reductase

Cellular amino acid

catabolic process

11 1.59 0.0386 0.6406 Cytoplasm

Nucleotide binding/lyase activity

IPI00789551.1 MATR3 Matrin-3 Structural molecule

activity

6 0.66 0.0504 0.0304 Nucleus

IPI00465248.5 ENO1 a-Enolase Glycolysis 42 0.75 0.0175 0.0980 Cytoplasm

Structural constituent of cytoskeleton

IPI00026314.1 GSN Isoform 1 of Gelsolin Cellular component

morphogenesis

10 0.69 0.0569 0.0540 Cytoplasm

Table 5 List of common regulated proteins in the Alzheimer’s disease (AD) hippocampus (Hp) and parietal cortex (pCx)

Protein IDs

Gene

symbols Protein names

Biological

process

No. of

peptides

AD pCx/

Control P-value

s.d.

value

No. of

peptides

AD Hp/

Control P-value

s.d.

value

Subcellular

location

Alzheimer disease-amyloid secretase pathway

IPI00219186.1 APP APP Isoform APP714

of amyloid b A4 protein

(Fragment)

Signal

transduction

13 2.82 0.0128 0.0707 10 2.39 0.0136 0.2291 Membrane

Calcium ion binding

IPI00221226.7 ANXA6 Annexin A6 Intracellular

protein

transport

17 1.83 0.0632 0.0487 18 2.64 0.0134 0.3616 Cytoplasm
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proteins quantified by iTRAQ. These proteins mediate bio-
logical processes such as glucose metabolism, signal transduc-
tion and apoptosis (Figure 5). The pCx network contained
33 proteins (ATP6V0D1, ATPAF1, ATP5A1, ATP6V1E2,
ATP6V0A2, ANXA6, ARMCX2, BCAS4, DDX55, DIS3L2,
EP300, FAM192A, GLS, HIST1H1D, HIST1H1T, HMGN5,
IL1, MAPK, MBP, MSTO1, NUDT6, PKC(s), PLS1, RDH12,
SYN1, SCRN1, SLC26A6, SLC6A9, SOD2, TMEM131, UBC,
VIM and ZNF358), of which 8 proteins were quantified by
iTRAQ. The remaining 25 proteins were found by IPA to
interact with the proteins quantified by iTRAQ (Figure 6). The
Cb network comprises 43 proteins (ACOT7, AHNAK, APBB1,
CCDC50, CSRP1, DPYSL2, ENO1, FAH, GAPDH, GLS,
GAP43, GSN, HIST1H1D, HIST1H1T, HMGB3, HSP70,
JNK, KIAA0391, MAP1A, MAPK, MAPT, MATR3, MBP,
P38MAPK, PDK3, PLCH1, PLP1, PKC(s), PXK, QDPR,
SCAMP3, ZNF259, SLC18A3, SOD2, SPCS2, TUBB,
TMEM55A, TMEM55B, TNS4, UBC, VIM, YPEL5 and
ZFYVE28), of which 16 proteins were quantified by iTRAQ.

The remaining 27 proteins were found by IPA to interact with
the proteins quantified by iTRAQ. These proteins are mainly
involved in developmental processes, and their downregulation
is critically associated with various neurological, skeletal and
muscular disorders (Figure 7). Interestingly, our IPA networks
of differentially regulated proteins from Hp, pCx and Cb
revealed a strong interaction between most of the AD-
associated proteins (such as AHNAK, CLU, CEND1, SOD2,
GNB1, ANXA6, ATP5A1, TNR and HIST1H1 variants) with
ubiquitin C (UBC), a type of post-translational modification
system. UBC binds to target proteins either as a monomer
or as a polymer and forms a polyubiquitin chain to label
those proteins for the ubiquitin proteasome degradation
system (UPS).

DISCUSSION

Aging-related neurodegenerative disorders such as AD are
multifactor disorders. These factors include a variety of brain
changes that begin as many as 20 years before symptoms

Table 6 List of common regulated proteins in the Alzheimer’s disease (AD) hippocampus (Hp) and cerebellum (Cb)

Protein IDs

Gene

symbols Protein names Biological process

No. of

peptides

AD Hp/

Control P-value

s.d.

value

No. of

peptides

AD Cb/

Control P-value

s.d.

value

Subcellular

location

Structural molecule activity

IPI00220175.5 MAPT Isoform Tau-E of

Microtubule-asso-

ciated protein tau

Cellular component

morphogenesis

10 2.01 0.0013 0.2714 11 1.49 0.0371 0.0931 Plasma

membrane

IPI00020356.4 MAP1A MAP1A 331 kDa

protein

Microtubule asso-

ciated complex

12 1.51 0.0107 0.0183 17 1.70 0.0472 0.0222 Cytoplasm

Protein binding

IPI00021812.2 AHNAK Neuroblast differen-

tiation-associated

protein AHNAK

Nervous system

development

8 2.73 4.84E–07 0.1066 6 0.55 0.0216 0.0239 Nucleus

IPI00295601.1 CEND1 Cell cycle exit and

neuronal differentia-

tion protein 1

Involved in neuro-

blastoma cell

differentiation

6 5.7 0.0398 0.2243 2 0.52 0.0428 0.0205 Membrane

Oxidoreductase activity

IPI00219018.7 GAPDH Glyceraldehyde-3-

phosphate

dehydrogenase

Glycolysis 33 0.39 0.0027 0.0649 184 0.7955 2.12E–

05

0.0621 Cytoplasm

Table 7 List of common regulated proteins in the Alzheimer’s disease (AD) parietal cortex (pCx) and cerebellum (Cb)

Protein IDs

Gene

symbols Protein names

Biological

process No. of peptides

AD pCx/

Control P-value

s.d.

value

No. of

peptides

AD Cb/

Control P-value

s.d.

value

Subcellular

location

DNA binding/hydrolase activity

IPI00217466.3 HIST1H1D Histone

H1.3

Nucleotide and

nucleic acid

metabolic

process

7

4.12 0.0220 0.8771 13

0.57

0.0423 0.0852

Nucleus

IPI00289159.3 GLS Isoform KGA of Glu-

taminase kidney

isoform

Cellular

amino acid

metabolic

process

3 0.35 0.0443 0.0229 14 0.81 0.059 0.0370 Cytoplasm
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appear and involve the disruption of the most intricate
neuronal networks regulating synaptic plasticity, signal
transduction and transport. In this study, we provide for the
first time a comprehensive quantitative brain site-specific
proteome study of aging and aging-related AD-type dementia
brains.

In recent years, several proteomic studies have described the
differential protein expression profile in the brains of AD
patients, with great emphasis on the cortical and hippocampal
proteomes. Surprisingly, none of the reports focused on the
cerebellar proteome despite its unique behavior of staying
unaffected in AD. However, several reports have confirmed
that the Cb also reveals molecular changes in response to AD,
but this area of the brain likely counteracts those changes
more efficiently.17–24 Therefore, we aimed to compare the Cb
proteome with the Hp and pCx proteomes to provide critical
information on brain region-specific mechanisms that are
counteracting the development and progression of aging
and AD-related neurodegeneration and may illuminate how
the Cb sequesters itself from neuronal death in AD. We
identified 31 proteins that were altered significantly in the
investigated brain areas, including Hp, pCx and Cb. The
biocomputational protein classification analysis using the
Panther database suggests that these proteins are involved in
diverse biological processes but with different configurations in
the Hp, pCx and Cb. The IPA indicates that the proteins that
were altered in the AD brains had a strong interaction with
UBC signaling in all three of the investigated brain regions.
UBC mediates the polyubiquitination of proteins and con-
sequently targets them to be transported to the proteasome for
degradation back to the basic building blocks of cells so that
they may be recycled elsewhere.

In addition, our data are in agreement with the expression
levels of several proteins altered in the brains of AD-based
neuropathology. For instance, ATP5A1 was suggested to
contribute to neurodegeneration as it accumulates in the
cytosol at early stages of NFT-based neurodegenerative pro-
cesses.36 Furthermore, the protein levels of ALDOA were
reported to be increased in AD hippocampal tissue.37 Our
data are in line with previous studies of ATP5A1, which was
downregulated in the Hp whereas ALDOA expression was
upregulated.38 Impairment of brain metabolism has been
recognized as a hallmark of AD, and the reduction of glucose
utilization is paralleled by a decrease in the expression of
glycolytic enzymes. We observed a significant downregulation
of ALDOA in the Hp, ENO1 in the Cb and GAPDH in both
the Hp and the Cb, thus explaining the impaired glucose
metabolic system in AD.

Hyperphosphorylation of MAPT (tau) is closely related to
various neurodegenerative diseases, including aging-related
dementia such as AD.39,40 For instance, deposition of
hyperphosphorylated tau in the Cb of PS1 E280A AD has
recently been reported.18 Many mechanisms could be involved
in tau hyperphosphorylation, including the upregulation of
tau kinases, the downregulation of phosphatases and other
covalent modifications of tau.7,41,42 Although the MAPTT
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hyperphosphorylation in the Hp and the pCx has been
reported in neurodegenerative tauopathies,43 no thorough
data have been reported yet regarding its changes in the Cb.
Our data reveal high protein expression levels of MAPT
in both AD Hp and AD Cb tissues. Recently, it has been
hypothesized that a prion-like transmission of misfolded
hyperphosphorylated MAPT or Ab aggregates between
neurons is one possible explanation for AD-associated
anatomical irregularity and progression that appears in the
absence of cortical Ab pathology and MAPT lesions in the
transentorhinal region. Misfolded MAPT in the neuronal
cytoplasm may function as a seed that triggers hyper-
phosphorylation and misfolding of the natively unfolded
MAPT protein. Disease progression is therefore associated
with the intercellular transfer of pathogenic proteins, such as
hyperphosphorylated MAPT aggregates.44–47 This sheds further
light on the current discussion that an impairment of the UPS
is affected at early stages of AD,48,49 and is in agreement with
our current and previous data showing that pivotal proteins of
the chaperone/proteasomal pathways are changed at early
stages of AD.14,15 It is possible that these abnormally high
expressions of MAPT and the disturbed UPS could contribute

to the hyperphosphorylation of MAPT in the Hp and
eventually in the Cb too. In addition, Sepulveda-Falla et al.18

reported that the deposition of hyperphosphorylated MAPT in
the Cb was found in AD and was caused by a presenilin-1
mutation E280A. Thus, combined with our proteomic results,
the high expression of (hyperphosphorylated) MAPT in the Cb
could also be involved in aging-related neuropathologies such
as AD. However, this suggests that the Cb exploits cellular tools
to inhibit hyperphosphorylated MAPT-based NFT formation.
Furthermore, we identified several other proteins critically
regulated in AD brains that could eventually become potential
therapeutic targets for various neurodegenerative disorders. In
the following sections, we describe some of these proteins with
respect to AD.

CLU and AD
CLU is another important protein involved in neurodegenera-
tive diseases.50 Association of CLU gene polymorphisms with
late-onset AD has been reported recently,51–55 and additional
data provide a possible link between the CLU and APOE
genotypes in the etiology of AD.56,57 Some in vitro studies have
demonstrated that at certain concentrations, purified CLU can

Figure 2 Pie chart depicting the functional classification of differentially regulated proteins in the hippocampus (Hp) of Alzheimer’s
disease (AD) brains. The isobaric tag for relative and absolute quantitation (iTRAQ)-identified hippocampal proteome was characterized
within the molecular function Gene Ontology (GO) category. Subcellular and functional categories were based on the annotations of GO
using the online tool at www.pantherdb.org in the following categories: (a) biological process, (b) molecular function, (c) protein class and
(d) cellular component.
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interact with Ab and result in an inhibition of fibril formation
and thus functions as an extracellular chaperone that prevents
the aggregation of nonnative proteins.58–60 In contrast, in a
mouse model of AD, CLU was found to cause neuritic
dystrophy by promoting Ab plaque formation.61 This effect
of CLU varied according to the amount of the prefibrillar
substrate.62 Regardless, CLU could play an antiapoptotic
function by interfering with the activity of the proapoptotic
protein Bax.63 Overexpression of CLU has also been found in
several human gland cancers.64 Thus, our data support the
hypothesis that the strict downregulation of CLU in the AD
Hp could contribute to neurodegenerative processes because of
a reduced chaperone function and decreased antiapoptotic
activity.

TNR and AD
TNR is an extracellular glycoprotein known to be primarily
involved in signal transduction and cell–matrix adhesion. Loss
of TNR impairs cognition, synaptic plasticity and motor
abilities in mice. Homozygous deletion of TNR is associated
with intellectual disability and cognitive deficits.65,66 Our data
are consistent with these reports, indicating that TNR was
significantly downregulated. However, this TNR down-

regulation only occurred in the Hp, and not in the pCx or
Cb. Thus, we postulate that the downregulation of TNR
expression might be one specific direct cause of impaired
cognitive abilities in AD. Interfering with the TNR protein
expression level could potentially be useful for novel AD
treatment strategies especially through an improvement of Hp
function.

AHNAK and AD
Recent findings have disclosed the crucial role of AHNAK in
myelination processes during development, neuronal plasticity
and neuro-re-/de-generation events;67,68 because the develop-
ment of tau lesions in AD is traceable to differences between
early- versus late-maturing oligodendrocytes and to the
exceptionally protracted myelination of late-developing
portions of the human brain,69–71 AHNAK becomes of
pivotal interest for future investigations.

Gelsolin (GSN) and AD
Previous studies have identified the antiamyloidogenic role of
gelsolin in AD. Gelsolin can reduce the amyloid burden by
acting as an inhibitor of Ab fibrillization and as an antioxidant
and antiapoptotic protein.72,73 However, the expression level of

Figure 3 Pie chart depicting the functional classification of differentially regulated proteins in the parietal cortex (pCx) of Alzheimer’s
disease (AD) brains. The isobaric tag for relative and absolute quantitation (iTRAQ)-identified parietal cortical proteome was characterized
within the molecular function Gene Ontology (GO) category. Subcellular and functional categories were based on the annotations of GO
using the online tool at www.pantherdb.org in the following categories: (a) biological process, (b) molecular function, (c) protein class and
(d) cellular component.
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GSN in the brain of AD patients has been discussed con-
troversially.74,75 Our data indicate that GSN is significantly
downregulated in the AD Cb, which is consistent with a recent
report that a reduced plasma GSN level in AD patients was
found. This suggests that GSN may function as an additional
plasma biomarker candidate that could contribute to the
diagnosis of early-stage aging-related AD.75

MECP2 and AD
Environmental factors, including metals and dietary factors,
operate by interfering with the interaction of methylated CpG
clusters and binding proteins, such as MeCP2 and SP1. The
impact of these factors on AD has been discussed previously.76

MECP2 was found to be involved in various neuro-
developmental disorders77 and to promote neuronal death.78

Thus, the extremely high expression of MECP2 in the AD Hp
could contribute to neurodegenerative pathways.

Histones and AD
The post-translational modifications of histones, such as
acetylation and deacetylation, have been increasingly recognized
as critical factors affecting gene activation and silencing in the

brain of individuals with neurodegenerative disorders.79–83

Aside from its post-translational modifications, the expression
levels of histones are also important for cell cycle control.84

Here, we show that the expression of HIST1H1E was increased
in the AD Hp, whereas the expression of HIST1H1D was
increased in the AD pCx but decreased in the AD Cb. In
general, increased levels of histone variants were found in
affected areas (pCx and Hp) in AD, whereas the Cb reflected
reduced levels of another cell cycle protein, CEND1. The
different changes in expression levels of histones in different
brain regions indicate their brain site-specific roles in the
pathology of AD. However, further studies are required to
unravel the link between the expression levels and cellular
functions of these proteins to accurately evaluate their specific
pathological roles in AD and other neurodegenerative
disorders.

CEND1 and AD
CEND1 is another neural stem cell-specific protein involved in
cell cycle exit and neuronal differentiation.85 The correlation of
neurodegeneration and deregulation of the cell cycle in AD
have been frequently discussed over the past few years.86–92

Figure 4 Pie chart depicting the functional classification of differentially regulated proteins in the cerebellum (Cb) of Alzheimer’s disease
(AD) brains. The isobaric tag for relative and absolute quantitation (iTRAQ)-identified cerebellar proteome was characterized within the
molecular function Gene Ontology (GO) category. Subcellular and functional categories were based on the annotations of GO using the
online tool at www.pantherdb.org in the following categories: (a) biological process, (b) molecular function, (c) protein class and
(d) cellular component.
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Figure 5 The Ingenuity Pathway Analysis (IPA)-generated network of isobaric tag for relative and absolute quantitation (iTRAQ)-identified
proteins and their interacting partners in Alzheimer’s disease (AD) hippocampus (Hp). The IPA construct networks based on the
differentially regulated proteins and their potential link with other known proteins in human AD Hp. Solid and dashed connecting lines
indicate the presence of direct and indirect interactions, respectively. Modulatory roles of proteins on the expression of other proteins are
indicated by arrows.

Figure 6 The Ingenuity Pathway Analysis (IPA)-generated network of isobaric tag for relative and absolute quantitation (iTRAQ)-identified
proteins and their interacting partners in Alzheimer’s disease (AD) parietal cortex (pCx). The IPA construct networks based on the
differentially regulated proteins and their potential link with other known proteins in human AD pCx. Solid and dashed connecting lines
indicate the presence of direct and indirect interactions, respectively. Modulatory roles of proteins on the expression of other proteins are
indicated by arrows.
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Brain site-specific CEND1 expression changes (increased in the
Hp and decreased in the Cb) may cause neurodegeneration by
promoting abnormal cell cycle re-entry.93 Thus, increased
CEND1 expression in the Hp could be responsible for a
reduced regeneration capacity, whereas its downregulation in
the Cb might be a survival strategy acquired by this area to
induce dynamic regeneration. Thus, our study suggests a
potential therapeutic usage of CEND1 in neurodegenerative
disorders.

UPS and AD
Our iTRAQ data provide information about various proteins
with an altered brain site-specific expression pattern, and it is
intriguing to notice that many of them functionally interact
with the pivotal UPS regardless of their resources. Our data are
consistent with previous reports and reinforce that the
function of the UPS is impaired in AD,94–97 and thus
emphasize the importance of the unfolded protein response
and proteostasis in AD (Figure 8).98

The UPS is the major proteolytic pathway that degrades
intracellular proteins in a regulated manner, usually essential
for protein repair, turnover and degradation. Deregulation of
the UPS has been implicated in the pathogenesis of many
neurodegenerative disorders such as Parkinson’s disease, Hun-
tington disease, Pick’s disease and prion diseases. In addition,
deregulation of the UPS has also been implicated in several
other genetic diseases, including cystic fibrosis, Angelman’s
syndrome and Liddle syndrome, suggesting that activation of
similar mechanisms must occur in neurodegeneration as a
basic phenomenon.99–103

Recently, it has also become clear that the UPS is perturbed
in aging-related dementia such as AD.96,97,104–108 Pathological
aging, with respect to protein repair and degradation via the
UPS, and selective protein oxidation may cause protein
damage, or protein mutations may induce a dysfunction of
the proteasome and a deficit of the UPS in AD. Such events
eventually lead to activation of cell death pathways and to an
aberrant aggregation or incorporation of ubiquitinated
proteins into hallmark structures of AD such as neuritic
amyloid plaques or NFTs. In AD, insoluble Ab peptide
aggregates or inclusion bodies within nerve cells are
commonly observed with ubiquitin immunoreactivity.109,110

The accumulation of ubiquitin–protein conjugates in neuro-
pathological lesions was first detected in NFTs isolated from
human brain tissue,111–113 and it is these NFTs that best
correlate with the degree of dementia.13 A more direct
relationship between the ubiquitin system and pathogenesis
of AD was established with the discovery of a frameshift
mutation in the ubiquitin transcript, which results in an
ubiquitin protein with 20 extra amino-acid residues at its
C-terminus (UBBþ 1).95,108,114 However, it is not fully
understood why ubiquitin is accumulated in intra- and
extra-cellular deposits or how it is involved in AD patho-
genesis. Our iTRAQ analysis provides compelling evidence
that many of the altered molecular factors in AD brains
interact with UBC. Thus, the interconnection of AD-related
proteins with UBC implicates a pivotal role of ubiquitin UPS
in aging-related neurodegeneration such as AD.

Although our proteomic data are in agreement with
others,115 quantitative proteomics analyzing aging brain

Figure 7 The Ingenuity Pathway Analysis (IPA)-generated network of isobaric tag for relative and absolute quantitation (iTRAQ)-identified
proteins and their interacting partners in Alzheimer’s disease (AD) cerebellum (Cb). The IPA construct networks based on the differentially
regulated proteins and their potential link with other known proteins in human AD Cb. Solid and dashed connecting lines indicate the presence
of direct and indirect interactions, respectively. Modulatory roles of proteins on the expression of other proteins are indicated by arrows.
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tissue has yet to be evaluated and reviewed with critical
considerations. There are currently a combination of
different methods used, such as (1) 2D difference gel
electrophoresis (2D-DIGE) combined with MALDI-TOF-MS/
MS (matrix-assisted laser desorption/ionization time-of-flight
MS/MS) proteomics17,37,38,116 or (2) 2D-LC-MS/MS-iTRAQ/
ICAT (isotope-coded affinity tag); some proteins appear more
frequently (for example, 14-3-3 proteins, VDACs, VIM,
creatine kinase B, Aldolase, GFAP and HSP70 proteins),
whereas others are hardly detected (for example, STAT3,
p60TRP, NF-kB, NTRK1 and a-, b- and g-secretases).117,118

Despite improved sensitivity of our 2D-LC-MS/MS analyses,
limitations of ‘undersampling’ in LC-MS/MS still restrict the
number of peptides that can be identified in a specific sample.
Though this technical limitation can be assessed by the
inclusion of technical replicates or identical samples that are
processed in parallel,119 further technical improvements of
quantitative 2D-DIGE/LC-MS/MS (iTRAQ/ICAT) proteomics
are required to make more significant translational research-
based contributions that may provide more clinically relevant
data.

Further studies using higher numbers of control and AD
patients, shorter post-mortem intervals and more individual

patient-to-patient comparisons may certainly improve our
knowledge regarding the neurodegenerative processes in the
aging brain.

In conclusion, our current study demonstrates a brain
site-specific aging-related proteome pattern and emphasizes
the importance of UPS in the AD brain. We report higher
MAPT expression levels in the AD Cb suggesting transmis-
sion of neurodegeneration signals to this area. Our study
also indicates a crucial role of AHNAK in processes of aging-
related dementia, and we hypothesize that the Cb exploits
proteins such as CEND1 or GSN to fight against neurode-
generation. An even more comprehensive study of the
cerebellar proteome would most likely shed further light
on how this area counteracts NFT formation and AD-
induced neurodegeneration.

In conclusion, our findings have unraveled the complex
proteome changes that occur in aging brains and open a new
avenue for drug discovery in aging-related brain disorders
such as AD.
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Figure 8 Ingenuity Pathway Analysis (IPA)-derived neurodegenerative disease-specific network of isobaric tag for relative and absolute
quantitation (iTRAQ)-identified differentially regulated proteomes of hippocampus (Hp), parietal cortex (pCx) and cerebellum (Cb) of
Alzheimer’s disease (AD) brains. IPA analysis identified a group of proteins modulated in aging demented brain and their potential
interactive links in the context of various neurodegenerative diseases. The nine different pathways identified by IPA are as follows:
(1) amyloid processing (APP, MAPT), (2) Huntington’s disease signaling (GNB1, GLS), (3) axonal guidance signaling (DPYSL2, GNB1),
(4) mitochondrial dysfunction (SOD2, APP, ATP5A1), (5) glycolysis/gluconeogenesis (ENO1, ALDOA, GAPDH), (6) clathrin-mediated
endocytosis signaling (CLU, ALB), (7) protein kinase A signaling (HIST1H1D, HIST1H1E), (8) signaling Rho family GTPases (VIM, GNB1)
and (9) phospholipase C signaling (AHNAK, GNB, MARCKS).
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