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ABSTRACT OF THE DISSERTATION

Proteogenomics: Applications of mass spectrometry at the interface of
genomics and proteomics

by

Natalie Castellana

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Vineet Bafna, Chair

Proteins are understood to be the main workhorses in the cell, participat-

ing in a wide variety of activities from cell structure to inter- and intra-cellular

transport. Through improvements in sample preparation and instrumentation,

mass spectrometry has become a popular, efficient, high throughput technology

for studying protein expression.

The standard protocol for a mass spectrometry experiment includes diges-

tion of the sample proteins into peptides that are subsequently analyzed by the

mass spectrometer to produce tandem mass spectra. An important initial step

in characterization of the sample is the identification of the peptide precursor of

each spectrum. This routinely involves the comparison of the experimental spec-
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trum to the theoretical spectrum associated with a peptide sequence contained in

a protein sequence database. Publicly available protein sequence databases are

believed to be complete for well understood, model organisms. However, in this

thesis we demonstrate that even for organisms that receive extensive attention, the

databases are missing a significant fraction of expressed proteins. We describe two

situations in which a comprehensive protein sequence database is not available for

peptide identification and propose methods for addressing the issue.

Determining the nucleotide sequence that comprises an organisms genome is

only the first step to understanding the molecular basis for its phenotype. Genome

annotation is required to determine the function of each nucleotide, including nu-

cleotides that encode the blueprint for proteins. We present a semi-automated

pipeline that accepts mass spectra and the sequenced genome, and addresses the

dual goals of annotating the genome for protein-coding genes and identifying pep-

tide sequences in the absence of a complete, curated protein sequence database.

The pipeline mentioned above for genome annotation, assumes that the

genome is immutable. Immunoglobulins, proteins involved in our adaptive im-

mune systems, require rearrangements in the genome resulting in a different im-

munoglobulin gene sequence in nearly every B-cell in the body. We build on the

ideas of genome annotation to construct a database to represent the complement

of possible immunoglobulin gene sequences in an organism. In addition, we move

beyond the goal of peptide identification to sequence entire proteins.
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Chapter 1

Introduction

Proteins play an astonishing variety of roles in the cell, from transporting

vital molecules to the regulation of protein expression. While proteins have been

studied using low-throughput methods for decades, mass spectrometry (MS) has

emerged as a key technology for high-throughput analysis of protein expression [1].

Improvements in speed and sensitivity in the past two decades have led to large-

scale profiling of the proteome in many organisms at a variety of developmental

stages, environment conditions, and disease states. The omnipresent question of

which proteins are present in a given sample has been addressed by numerous

computational methods and received much attention from biologists, chemists,

computer scientists, and statisticians [2]. Here, we explore the use of MS data to

answer this question in a non-traditional context; when the complement of possible

proteins is unknown.

A protein’s primary structure is defined by a string on a 20 letter alpha-

bet. Each letter represents an amino acid. There are two dominant methods for

identifying a protein in a sample each with its own unique set of capabilities and

limitations. In top-down MS, an intact protein is analyzed by a mass spectrome-

ter resulting in a collection of tandem mass spectra, each one corresponding to a

protein sequence. Though these mass spectra are very complex, great strides have

been made in computational methods for analyzing them [3]. While a single top-

down spectrum contains information about an entire protein, it is considerably

lower throughput than other technologies, must be run on a mass spectrometer

1
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with high mass accuracy, and cannot be used to analyze insoluble proteins. In

contrast, bottom-up mass spectrometry circumvents many of the physio-chemical

limitations of top-down MS by first digesting the protein sample into short peptide

sequences of between 10 and 20 amino acids. The peptides are then analyzed by

the mass spectrometer. Analyzing the proteome in this bottom-up fashion, that is

characterizing a protein’s state through the collection peptides identified, also has

several limitations. A particularly challenging problem is inference of proteins from

the peptides. Due to redundancy in the proteome, many peptides may match to

multiple proteins creating ambiguity in the inference. Second, in a standard mass

spectrometry protocol that digests the proteins with a single enzyme, we only ob-

serve a fraction of a protein’s amino acids as proteins. In these cases, the inference

assumes that the protein sequence in the database is identical to the protein in

the sample. When a protein’s sequence is important for its characterization, this

outcome is unacceptable.

Many computational methods for the bottom-up characterization of a sam-

ple rely on the identification of the peptide precursor of each spectrum. The most

widely used algorithms [4, 5, 6, 7] for performing peptide identification compare

the experimental spectrum to a theoretical spectrum associated with a peptide

sequence contained in a protein sequence database. Publicly available protein

databases are available for many organisms, and are often assumed to be com-

plete. However, we found that even for well-studied organisms like Arabidopsis

thaliana, the databases are missing a significant fraction of expressed proteins. In

this thesis, we describe two situations in which a comprehensive protein sequence

database is not available for peptide identification.

For many years, scientists believed that sequencing the entirety of the hu-

man genome would reveal the genetic basis for observed phenotypes. However, even

after decades of analysis, the function of many genomic regions eludes us. Genome

annotation has the goal of identifying the function of each nucleotide in the genome,

including nucleotides that encode the blueprint for proteins [8]. Sophisticated an-

notation pipelines have emerged [9, 10], which aggregate many sources of evidence

to arrive at a final prediction of genes and their protein products. These sources
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range in throughput, accuracy, and cost. Ab initio predictors [11, 12, 13], which

rely solely on genomic signals, are by far the cheapest, fastest, and least accurate

method of annotation. Expression-based assays, such as RNA-Seq [14] or expressed

sequence tags (ESTs) [15], are also very popular. This evidence requires some lab-

oratory work, but sequencing technologies have been improving faster than MS

technologies and are capable of generating large datasets in a very short time.

However, for protein-coding gene finding, transcript-based annotation introduces

many false positives from unspliced mRNAs or non-sense transcripts. Another

source of evidence is homology. Conservation is a strong indication of function,

and when a related species’s proteome has been characterized, the proteins can be

mapped to the target genome to identify likely protein-coding regions.

Few annotation efforts to date have utilized MS data to improve the anno-

tation of protein-coding genes. A crucial step for incorporating evidence from MS

data into a genome annotation pipeline is creating a database for peptide iden-

tification. Since the goal is to identify proteins that are not already annotated,

relying on a curated proteome is not applicable. Instead, we construct a database

of putative peptide sequences generated directly from the genome; the six frame

translation and a splice graph [16]. These databases are much larger than the

curated proteome databases, presenting challenges in search speed and sensitivity.

In addition, the genomic databases only contain fragments of proteins, causing the

problem of protein inference becomes more challenging. In Chapter 2, we review

the state-of-the-art in proteogenomics for genome annotation and emphasize the

benefit of including MS data as an orthogonal source of evidence for gene finding.

We identify key challenges which must be addressed to successfully incorporate

proteomics into gene finding pipelines.

In Chapter 3, we describe our early efforts in improving the gene anno-

tation of the model organisms Arabidopsis thaliana. In many ways, arabidopsis

represented an easy first case for developing our pipeline; it has a genome of man-

ageable size (200 million nucleotides) that contains little sequence redundancy. In

addition, the number of tandem mass spectra included in the study could be an-

alyzed in under a month on a computer cluster. Working against us was the fact
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that arabidopsis is a model organism for plant biologists and had undergone seven

iterations of genome annotation. Despite the extensive efforts in gene finding, we

were still able to generate 1,473 gene models that were either entirely new loci or

revisions of annotated genes.

From lessons learned in improving the annotation in arabidopsis, including

calculation of false-discovery rates at the level of a novel gene, we developed a semi-

automated pipeline that accepts tandem mass spectra and a sequenced genome. In

Chapter 4 we describe the pipeline applied to Zea mays. Compared to arabidopsis,

maize presented a new set of challenges. First, the maize genome is an order of

magnitude larger (2 billion nucleotides). The dramatically expanded genome is

largly due to sequence duplications caused by transposable elements [17]. Our

pipeline addresses the dual goals of annotating the genome and identifying peptide

sequences in the absence of a complete, curated protein sequence database.

There are several natural extensions to the pipeline which unfortunately

did not make it into this thesis. As genome sequencing becomes cheaper and

faster, organisms are being sequenced at an incredible rate. One consequence of

this trend is an increased reliance on computational tools, that (not to discredit

my own field) tend to make many more errors than their slow but meticulous

human counterparts. As a result, many genomes may contain errors in the form

of incorrect nucleotides, inverted regions, or missing regions.

Another challenging class of organisms are those with dramatic genetic

diversity. While the maize and arabidopsis plants used for our genome annotation

efforts were believed to be clonal (exact copies of one another), many species like

humans, exhibit nucleotide variability.

Both of the above described challenges boil down to sequence differences be-

tween the peptide sequence in the sample and the peptide sequence in the database.

The pipeline described in Chapters 3 and 4 assumes that not only is the genome

sequence complete, but it also is error-free. To solve both problems the peptide

identification portion of the pipeline could be altered to allow the substitution of

one amino acid for another. In the case of a missing genomic region, a homology

sequence (which would contain some nucleotide differences from the target organ-
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ism) could be used. Allowing sequence differences between the genomic databases

and the tandem mass spectra greatly increases the rate of erroneous peptide iden-

tifications. We could potentially control the error by leveraging the information

provided in transcriptomic experiments.

Previously, I mentioned the challenge of protein inference in bottom-up

experiments. While peptides provide incomplete information about the proteins

present in a sample, top-down mass spectrometry, which generates mass spectra

from whole proteins, can unambiguously determine which proteins are expressed.

By itself, top-down MS could not provide the proteome coverage necessary anno-

tate a full genome. However, coupling bottom-up and top-down mass spectrometry

could prove to be a useful technique for maximizing proteome coverage while at

the same time improving protein inference. Since it is likely that the genomic

databases do not contain all full length protein sequences, new algorithmic meth-

ods for searching the databases with top-down mass spectra would be required.

The genome annotation pipeline described in Chapters 3 and 4 , assumes

a static genome that is identical in all cells of an organism. However, in organisms

with adaptive immune systems such as humans, genome rearrangement plays a

crucial role in defense against infection. Immunoglobulins, also referred to as anti-

bodies, are proteins involved in recognizing pathogens and rely on protein sequence

diversity to properly perform their functions. For that reason, the immunoglobulin

gene in mature B-cells are different both from each other and from the germline

sequence present in other cells. Each immunoglobulin gene is created through a

genome rearrangement which brings together in a combinatorial fashion disparate

regions of the genome. In Chapter 5, we build on the ideas of genome annotation

to construct a database to represent the complement of possible immunoglobulin

gene sequences encoded in an organism’s genome. To introduce further sequence

diversity, immunoglobulin genes also undergo hypermutation. For that reason,

inference of a complete protein sequence from a few peptides is insufficient to

properly characterize the immunoglobulin. Instead, the goal of this chapter is to

identify the entire protein sequence.

Both applications, MS-based genome annotation and antibody sequencing,
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require a departure from conventional MS studies which rely heavily on a protein

database. Instead, we propose solutions which identify peptide sequences using

the genome as a template. Research of this type, at the junction of proteomics

and genomics has been aptly named proteogenomics.



Chapter 2

Incorporating mass spectrometry

into gene finding: a review

2.1 Why Proteogenomics? a primer on gene find-

ing

Scientific progress is often associated with abstraction and compaction of

available knowledge, so as to create a foundation on which future discoveries can

be made. Our understanding of the gene has unfortunately bucked this trend. The

recently concluded ENCODE project resulted in further ambiguity of the concept.

The classical definition of the gene being a “unit of heredity” (from Mendel’s work),

has now evolved into “... a union of genomic sequences encoding a coherent set

of potentially overlapping functional products” [18]. Other examples point to the

plasticity of the genome itself, with large genomic rearrangements disrupting genes

on the genome [19]. All of this has implications for proteomics.

Historically, the genomics and proteomics communities acted independently.

It was the role of the genomics community to identify genes and the corresponding

protein sequences. This was often done through large-scale annotation efforts, dur-

ing and after the sequencing of the genomes (see below). The collection of derived

proteins was considered to be a fixed set, although it was recognized that not all

proteins are expressed in every cell. It was the role of the proteomics community to

7
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understand which proteins are expressed under specific conditions, or tissues, and

to identify the various post-translational modifications, and other processing of the

proteome. Proteogenomics challenges this perspective: if the definition of the gene

itself is not clear, the proteomics (mass spectrometry) and genomics communities

should work together from the beginning, to clarify gene structures. Therefore, a

good place to start is to look at gene-finding.

2.1.1 Gene Structure

The central dogma of molecular biology suggests a flow of information from

DNA to protein. First, the genic region of the DNA is ‘transcribed’ (copied) into

mRNA (also called a transcript, or message). Special ‘promoter’, ‘enhancer’, and

‘repressor’ regions proximal to the gene help switch the transcription on and off,

thereby regulating the production of protein. Next, the ribosomal machinery reads

the message, and ‘translates’ it into proteins. Note that the beginning and end of

the transcript are not translated and are referred to as the 5’ and 3’ untranslated

regions (UTRs), respectively. While the process of protein production is common

to both prokaryotic and eukaryotic organisms, the structure and organization of

genes is quite different between the two, and will be discussed separately.

Prokaryotic Genes In prokaryotes, related genes may be clustered into oper-

ons (Figure 2.1A). All genes in an operon share the same promoter region, and

are transcribed as a single mRNA. While the transcript produced by an operon

contains mRNA from all the genes, regulation at a higher granularity occurs at

translation. Even with this simple structure, there is genic diversity. Programmed

frame-shifts can produce alternate or truncated proteins [20], but are nearly im-

possible to predict from genomic data.

Eukaryotic Genes In eukaryotes, the coding regions of the gene are often

present in discontinuous regions called exons. Multiple exons are separated by

introns : regions that are transcribed, but not translated (Figure 2.1B). Introns
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Figure 2.1: A: Prokaryotic genes may be arranged in an operon, sharing the same
promoter. B: A eukaryotic gene contains protein-coding regions called exons, sep-
arated by non-protein-coding regions called introns. Once transcribed, the introns
are spliced out. An alternate splice junction is shown using a dotted line.

are spliced out of the mRNA prior to translation by an RNA-protein complex

called the spliceosome, producing the mature mRNA. For a given transcript, there

may be alternate splice patterns each of which produces a different mature mRNA

and may cause the protein sequence to be altered.

2.1.2 Gene Annotation

The goal of gene finding can be roughly stated as the process of identifying

the genomic coordinates of exons, and the splicing patterns. Here we focus only on

the coding exons. Established methods of gene annotation today combine evidence

from multiple orthogonal sources [21]. One form of evidence is from ab initio gene

predictors that analyze genomic signals for coding exons and splice junctions. In

addition, large-scale transcript sequencing projects (often in the form of expressed

sequence tags, or ESTs [22]) yield cDNA sequences that can be mapped against
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the genome to identify coordinates. Finally, evolutionary conservation with related

species is often suggestive of genes, and other functional elements [23]. Even so,

gene finding is challenging. The recent release of the Arabidopsis Information

resource (TAIR8 to TAIR9) modified over 1,000 genes and added 282 new protein-

coding loci [24]. Even with the well-studied human genome, a manual investigation

by the ENCODE Consortium [25] resulted in the assignment of additional exons

to 80% of studied genes.

Predicting the beginning of translation is a major challenge [8] for current

annotation pipelines. Translation start is usually marked by one of a handful of

canonical start codons, the most common of which codes for the amino acid me-

thionine. Studies have shown that this is not a hard rule, with many non-standard

start sites observed in prokaryotes [26]. Eukaryotic gene annotation is further com-

plicated by the prevalence of alternatively spliced genes, which play a key role in

generating proteome diversity. The reliable detection of splice-junctions is diffi-

cult, and most ab initio gene finding algorithms only predict a single transcript

at a locus, ignoring completely alternate splice isoforms. Several tools have been

developed to identify alternative splice variants using ESTs [27, 28], but accurate

annotation remains a challenge due to intrinsic problems in EST sequencing in-

cluding incomplete gene coverage, low sequencing accuracy, and chimerism. The

issue of determining whether the alternative transcripts differ in protein-coding

regions or UTRs also remains.

While gene annotation efforts for model organisms rely heavily on transcript

sequencing, recent studies suggest that evidence of transcription might not be

evidence of translation. Clamp et al. [29] suggest that approximately 4,000 genes

in human do not code for protein despite cDNA evidence, citing their lack of

conservation with primates. Genomic signals, which are the primary component

of ab initio gene predictors, may be equally misleading. For example, the codons

‘TGA’, ‘TAA’, and ‘TAG’ are very strong indicators of translation stop. However,

in order to accurately determine translation stop, the frame for the terminal exon

must be correctly predicted. Coding signals, based on hexamer compositions,

are not sufficient to determine frame in short exons [30], and sometimes cause
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annotators to miss the exon completely. Similar challenges make it hard to identify

short genes (< 100 amino acids), which constitute a significant portion of protein-

coding genes [31]. Even for longer genes, differing GC composition change coding

signals to the point that the tools have to be retrained for each new genome [32].

2.2 The promise and challenge of proteogenomics

The idea of searching un-interpreted mass spectra against a translated nu-

cleotide database is hardly new. We see an early account in the paper by Yates et

al. [33]. However, the true power of the approach comes from a holistic use of these

peptides in gene finding. See Figure 2.2. A proteogenomically identified peptide

provides unique information for gene annotation by (a) confirming translation and

separating pseudogenes(see below) from coding genes [34]; (b) establishing that a

protein is not targeted for degradation (c) automatically determining frame, even

multiple overlapping frames; (d) constraining the location of the translation start

and end sites, as well as sites of post-translational processing (e.g. signal cleav-

age); (e) identifying exact splicing boundaries and alternative splice-forms, if the

peptide is split across exons; and, finally (f) predicting a completely novel gene,

by mapping to an uncharacterized genomic location. One may argue that next-

generation sequencing of transcripts is a more promising technology for sampling

the translated genome for the purpose of gene annotation. However, recent studies

suggest that many transcripts are targeted for nonsense-mediated decay [34], or

upon translation are unable to form stable, functional proteins[29]. Indeed, the

optimist in us would claim that proteogenomics is the panacea for the ailments

that plague gene annotation. Proteomic analysis also carries beneficial side-effects

like peptide abundance calculations, and the identification of post-translational

modifications.

However, proteogenomic studies are not without substantial challenges.

First, peptide identification is arguably more error-prone than matching cDNA.

Incomplete fragmentation, noise, and ‘isometric’ peptides can all lead to erro-
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Figure 2.2: Several peptides fall within an annotated gene locus, validating trans-
lation of two exons and an intron. One peptide indicates a novel splice isoform
which skips the internal exon. Additional peptides fall within an annotated pseu-
dogene giving strong indication for its translation in the cell. Peptides which fall
within the intergenic region may indicate novel protein-coding loci. Cyan colored
peptides would likely not be identified using a standard proteomic database.

neous identification. The problem is compounded for proteogenomics as genomic

databases are much larger than existing protein databases. A 6-frame translation

of the human genome has 6 billion residues in it; contrast that with 180Mb needed

for the UniProt database [35] consisting of proteins from over 250 organisms. The

number of spectra for single proteogenomic studies is also large, often on the order

of tens of millions of spectra.

Second, sampling and dynamic range is a concern in nearly all mass spec-

trometry studies. Current techniques can reliably sample proteins over 3-4 orders

of magnitude [1], which is smaller than the estimated true abundance range (∼ 6

orders) [36]. Detectability of peptides is a concern as not all peptides show up in

mass spectrometric scans due to chemical attributes unfavorable to ionization or

fragmentation.

Peptides which span splice junctions contain a wealth of information useful

to gene structure prediction. In the ENSEMBL [37] database of human proteins

(assembly GRCh37, release 57), approximately 26% of fully tryptic peptides of

length 7 or greater span a splice boundary. These peptides are invaluable, as reli-

able prediction of splice-junctions is a major challenge for gene finding. However,

identifying split peptides using proteogenomics seems to be equally challenging, if

not more.

Finally, the output of proteogenomics is peptides, and peptides are not com-

plete genes. Determining the gene structure from incomplete coverage by peptides

is a difficult task. While these are all valid criticisms, we assert below that recent

developments in technologies and computation are tipping the balance.
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2.3 The proteogenomics solution (eukaryotes)

In the wake of technological advances in DNA sequencing, the number of

eukaryotic genomes sequenced has increased dramatically in the past 20 years,

with full genomes available for Saccharomyces cerevsiae [38], Caenorhabditis el-

egans [39], Arabidopsis thaliana [40], Drosophila melanogaster [41], Homo sapi-

ens [42, 43], Anopheles gambiae [44], and recently, Zea mays [17]. As the genome

sequences of many model organisms become available, so too are large-scale pro-

teogenomic studies beginning to fill a much needed niche in gene annotation. In

the past ten years, proteogenomic studies have confirmed expression of 25% of

ORFs in Yeast [31], 73 transcripts in A. gambiae [45], 9,124 transcripts in D.

melanogaster [46], 224 hypothetical proteins in Human [16], and over 13,000 tran-

scripts in Arabidopsis [47, 48]. Peptides identified in these studies provide vali-

dation of putative genes. These successes are due in part to recent developments

described below.

Sampling the proteome Achieving broad coverage of the proteome is critical

to constructing a complete and accurate catalog of genes. A distinct set of proteins

is expressed by cells of different tissues or conditions, and sampling each reveals a

unique cross-section of the proteome. By acquiring multiple biological replicates

of samples from different organs [47, 46, 16, 48] and developmental stages [46] a

wider range of proteins can be identified. While broadly sampling the proteome

increases the number of proteins detected, absence of peptides from a protein can-

not be used as an indicator for absence of the protein in the sample. As Figure

2.3 shows, the number of unique peptides identified in Arabidopsis nearly doubled

with a broader sampling strategy [48]. Coupled with technological advances in the

form of high-resolution mass spectrometers [36], spectra can be collected from pep-

tides with a wider dynamic range, while providing accurate spectral information

for downstream analysis. Improved protein separation techniques [49] have also

enabled the identification of more peptides in a single mass spectrometer run. In

addition, fractionation methods can be used to isolate underrepresented subsets
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of the proteome such as small proteins [31], phosphoproteins [48], and basic pro-

teins [46]. Brunner et al. achieved coverage of 63% of the Drosophila melanogaster

proteome by utilizing these techniques as part of an ‘analysis-driven experimen-

tation feedback loop’. They used the analysis of previous data sets to determine

categories of the proteome where their sampling was deficient.

Figure 2.3: A graph showing the discovery curve for Arabidopsis peptides [48].
The x-axis in the figure is the number of spectra considered, while the y-axis is the
number of distinct peptides recovered from the spectra. As spectra were added to
the experiment, the rate of distinct peptide sequences identified slows. The figure
suggests that including more spectra from root tissue will not substantially increase
the number of peptides identified. However, including spectra from a different
tissue type provided additional distinct peptides. Extrapolation suggests that the
number of distinct peptides identified is nearly doubled by including additional
tissues and additional fractionation

.

Error rates The problem of erroneous identifications is common to all pro-

teomics projects, but is magnified for proteogenomics. Searching large spectral
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data sets (∼ 10M) against large databases (∼ 1B AA) translates into a large

number of erroneous identifications even at a low error rate. At the same time, the

evidence for a new gene (usually low-abundance) might only come from a small

number of peptides.

Algorithmically, the identification problem is broken up into two parts:

scoring/ranking of each candidate peptide for a spectrum, so that the correct

identification gets the top score, and is well separated from the others; and,

validation, which provides confidence that the top-scoring peptide is the right

identification. Scoring has seen great improvement, based on probabilistic mod-

els [50, 51, 52, 53, 54, 55, 56] for peptide fragmentation. Large data sets of anno-

tated peptides allow for a systematic data-mining of fragmentation patterns, which

are then encoded into scoring models.

To understand why a secondary validation step is needed, consider the case

when the correct peptide is not in the database, and never considered. Even if

the ranking of candidates is perfect, the validation part is needed to reject the

top scoring peptide. To assess the likelihood of the top-scoring peptide being the

correct identification, parametric and non-parametric approaches have been tried.

In the model-based approach, it is suggested that the correct and incorrect peptides

follow a distinct distribution of scores. By modeling the two distributions, once

can use a statistical test to identify the correct peptides [57]. Gygi and colleagues

suggest a model-free approach based on constructing a decoy database [58]. The

spectra are simultaneously searched against the standard and the decoy database

(typically a scrambled version of the standard database). Peptides identified using

the decoy are all spurious and can be used to estimate the false discovery rate

(FDR).

An issue with FDR is that all peptides that exceed the score cutoff are

treated equally (have the same FDR). However, we know that higher scoring pep-

tides are more likely to be correct. Additionally, our confidence in peptide iden-

tification also depends upon its size, charge, and physico-chemical characteristics.

One direction to improve FDR is to bin peptides that are similar (by score, size,

charge, etc.), and compute FDR separately for each bin [48]. This local FDR
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(`-FDR) [59] computation is possible in proteogenomics, where the large number

of peptides allow each bin to be populated. Second, the goal of proteogenomics

is to find protein-coding regions, not just peptides. If 2-3 peptides support the

same genic locus, or gene model refinement event, then the error occurs only if all

of the identifications are wrong. In this case, the `-FDR values of these peptides

(under the assumption that the identifications are independent) can be multiplied

to give an event level FDR (eFDR). The generic approach is as follows: a list of

proteogenomic events is created, such as ‘spliced exons’, ‘translated ORF’. Each

event is supported by a collection of peptides and their associated `-FDR values.

A Bayesian approach is used to compute eFDR values for the event being incor-

rect [48]. For example, a spliced peptide may have a high probability of being

correct, but makes a small contribution to a splicing event because of a small over-

lap with the second exon. On the other hand, a small collection of peptides that

hit two exons, with a few spliced-peptides is strong evidence for a splicing event,

even when each of the peptides has a poor `-FDR score. In the set of 591 gene

models submitted by Castellana et al. to TAIR, a lower eFDR correlated with

manual curation and acceptance into TAIR9 resource.

The decoy database approach, and its variations, have been widely adopted.

However, critics point out that including the decoy database doubles the search

time and, more importantly, the FDR values greatly depend on the size of the

database and the distribution of peptides in it. The most obvious difficulty is in

the construction of a decoy database. One desirable attribute of the decoy database

is that it does not share peptide sequences with the target database. This becomes

a difficult task when the target database exceeds 6 billion amino acids.

Another difficulty stems from the construction of the target database. In

proteogenomic studies, a major goal in constructing a database from genomic

data is to include as many putative protein sequences as possible. This often is

done by performing a translation of the genome in all six-frames. In addition

to containing all putative proteins sequences, the resulting database also contains

spurious sequences, often at a much higher rate than standard proteomic databases.

This implicit addition of decoy peptides in the database results in diminished
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sensitivity at the same FDR. To combat this, an additional goal of constructing

proteogenomic databases is compactness. For example, the six frame translation

can be restricted to sequences exceeding the average size of an exon in the organism

of interest, or to regions which receive high scores by ab initio gene predictors.

One might argue that instead of attempting to construct a database of pu-

tative protein sequences, interpreting the peptide sequence de novo will guarantee

that any possible peptide sequence is considered. Several groups have proposed

database-independent p-value computation methods [60, 61]. These methods rate

peptide-spectrum matches using spectrum-specific score distributions, but make

the assumption that all peptides are equally likely a priori.

This argument illustrates a philosophical difference regarding the impor-

tance of prior information (the database) in peptide identification, and is analogous

to the debate between Bayesian and frequentist inferences. De novo approaches

to peptide identification seek to distinguish the correct peptide among all possi-

ble peptides, and consequently are highly error-prone. In a database search, the

space of candidate peptides is greatly reduced. This automatically increases the

confidence in identification, but only if we agree that the database is complete.

In proteogenomic studies, the search is on ever larger genomic databases, and the

differences between de novo and database searches diminishes, particularly when

modifications and mutations are permitted. If we consider only the set of peptides

of length 9, de novo algorithms must consider 209 < 1012 candidate peptides. The

six-frame translation of the human genome contains about 109 peptides. However,

if we allow a single mutation per peptide (which would have no effect on de novo

algorithms), the size of the genomic database increases 200 times, to 1011. For large

databases typical of proteogenomics, the boundary between de novo and database

search is blurred. Confident assessment of a genomic region being translated must

depend upon the discovery of multiple, large peptides with accurate fragmentation

patterns.

Another aspect of large genomic databases is the non-random distribution

of nucleotides. In fact, segmental duplications, and retrotransposon mediated ele-

ments, often create multiple copies of the same gene [43, 42], leading to identical
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peptides at multiple locations in the genome (shared peptides). Sometimes, only

one of the gene copies is active. The inactive genes (possibly transcribed into RNA,

but not translated), are called pseudogenes, and will cause problems for proteoge-

nomic identification. Identifying pseudogenes is one of the major challenges for

gene annotation.

One approach to handling genomic redundancy is to consider all locations of

the shared peptide [45]. However, this may lead to the false reporting of proteins.

A stricter approach is to ignore the shared peptides [62, 47], significantly reducing

the number of protein identifications. Grobei et al., developed a classification

method of peptides based on their occurrence in the database. Peptides which

could uniquely identify a protein sequence were labeled Class 1. Peptides which

mapped to multiple locations were classified depending on whether their matches

were to isoforms of the same gene (Class 2), members of the same gene family (Class

3a), or from multiple gene families (Class 3b). In the study by Grobei et al [63], all

Class 3b peptides were discarded. Other groups [48] have used peptide locality to

decide whether to keep or discard shared peptides. If a shared peptide appears in

close proximity to a uniquely-located peptide, the additional identification boosts

the confidence in the shared peptide location.

Spliced peptides In humans, approximately one quarter of peptides cross a

splice junction. These peptides are especially informative for gene annotation,

giving boundary and frame information for two exons and a splice junction. The

identification of these spliced peptides is a challenge unique to eukaryotic proteoge-

nomics.

Historically, peptides identified against predicted or known proteins were

mapped back to the genome to validate splicing events [64, 65, 16]. The detection

of new splice-junctions, however, calls for a special database that encodes putative

splice-forms. Such a database can be constructed using ESTs which are produced

from mature mRNA and have the introns already spliced out, thus enabling the

identification of peptides which span the intron boundaries [62, 66]. However,

ESTs are error-prone, and highly redundant. Edwards proposed a compression

scheme for reducing EST database size, based on a de Bruijn graph representation
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of cDNA fragments [66, 67], while retaining all potential peptide sequences.

Even with large sampling efforts, ESTs do not adequately cover all splice-

junctions since many ESTs are sequenced from the 3′ end which provides unique

tags for identification, but only limited representation of the coding sequence. A

second source of putative spliced sequences is ab initio gene prediction tools, such

as GeneID [68], Fgenesh [11], Augustus [69], and GeneMark [13]. Kuster et al. [70]

used a two-pass system to identify spliced peptides by first identifying likely novel

coding regions using unspliced peptides, then predicting a new model for that

region and searching the spectra against the new model.

Tanner et al. [16] proposed a spliced-exon graph to compactly represent

all gene structures and splice-junctions generated by gene prediction tools and

EST mappings. In the graph, each exon is a node and each edge between exons

represents a putative splice junction. While the graph provides a compact encoding

of all splice-forms, the MS2 identification tools need to be modified to search

the specialized database. In recent studies, this approach confirmed over 15, 000

spliced peptides in human, including over 40 instances of alternative splicing, where

peptides confirm the splicing of one exon with multiple partner exons [16]. In

arabidopsis, 4, 018 novel spliced peptides were identified when compared to the

TAIR7 annotations [48]. By structuring proteogenomic databases as spliced-exon

graphs and de Bruijn graphs, the sequence redundancy that is inherently present

in the proteomes of higher organisms is reduced. This is of particular importance

in proteogenomics where database size has significant impact on error rates and

search time.

The general issue of identifying ‘discontinuous’ peptides (of which spliced-

peptides are a special case) is likely to persist. The genomes of individual humans

are now being sequenced [71], and show remarkable plasticity, with large rearrange-

ments leading to gene disruptions, fusions, and trans-splicing [19]. Additionally,

the rearrangements often characterize the transition of a normal genome to a tu-

mor genome [72, 73]. Identification of discontinuous peptides confirming fusion

events is likely to expand the role of proteogenomics in cancer detection and ther-

apy. It is important to note that in the case of diseases which result from genome
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rearrangements, such as cancer, that the reference genome should not be limited

to the wild type individual. Proteogenomic studies, coupled with deep genomic

and transcript sequencing, can provide valuable information on aberrant protein

expression.

Search speed In 2001, Choudhary et al. [74] constructed the 6-frame trans-

lations of the human draft genome sequence. On a single processor, searching

169 spectra required 10 hours of compute time. Since then search algorithms and

computing resources have improved greatly, while the framework of proteogenomic

studies has remained largely unchanged. Filtering spectra for quality [75, 76], or

clustering them to increase the signal to noise ratio of each spectrum [77] are tech-

niques employed to improve both the quality of identifications, as well as the speed

of the search. A second advance is in ‘database filtering’, where a two-pass search

is employed for MS2 identifications. The goal of the first search (the filter step) is

simply to discard most of the database, while retaining the correct peptides, using

minimal computation. The more expensive scoring is relegated to a second stage,

and is fast because only the filtered peptides are scored. Novel strategies for fil-

tering are under active development, including tag-based filtering, and peak-based

filtering resulting in two orders of magnitude speedup, with little loss of sensitiv-

ity [6, 7, 53]. Today, many database search engines can be run on multiple cores,

or in parallel on large compute clusters. A typical search of 1M spectra against

the 6-frame translation of the maize genome containing over 1B amino acids takes

on the order of days using a compute cluster of 100 nodes, while also identifying

difficult peptides with unexpected modifications and mutations [7, 78].

While technological advances in the form of multi-core hardware and im-

proved database search engines certainly have been enabling factors in proteoge-

nomics, there are biological and experimental tradeoffs which can be made to

improve speedup. For example, the database size can be reduced by filtering out

unlikely coding regions, such as repeat regions or open reading frames of insufficient

length to contain an exon.
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2.3.1 Improving gene annotation

The proteogenomic identification of a peptide might come from a region of

the genome not previously known to code for protein. We refer to these peptides

as ‘novel’. Novel peptides might be intragenic (fall within the locus of a known

gene structure), or intergenic (fall outside the locus of a known gene model), and

suggest different categories of genome annotation. A set of possible events with

supporting peptides is shown in Figure 2.4.

Figure 2.4: Five different refinement events which may be suggested by intragenic
peptides. Exons are shown in black boxes while novel coding regions suggested by
the peptides are shown in green. Peptides (dark blue and cyan) are shown aligned
to the gene models. Examples drawn of refined genes in TAIR7 from Castellana
et al.[48] are annotated with the updated gene model. Several of these genes
have been updated in subsequent gene annotation releases to include the peptide
evidence.
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Refining gene models For intragenic novel peptides, it is difficult to distinguish

if the gene structure needs to be corrected, or if it can be explained by a novel

splice-form. The sampling of the proteome is not dense enough to observe peptides

from multiple isoforms. Therefore, extrinsic data, such transcript sequences, or

homology to genomic regions, is used to distinguish the two cases [47, 48].

Reconstructing gene models using mapped peptides is non-trivial, mostly

because the peptide information is not sufficient to completely determine the struc-

ture due to limited coverage. While spliced-peptides provide information on which

exons might splice together, they are not informative about distal events (isoforms

with multiple alternative splicing patterns). Top-down proteomics, in which in-

tact proteins are analyzed, might help in this case, but has not been used for

proteogenomics due to the complexity of the samples.

The peptides can be used to increase the likelihood of a gene model being

correct. New gene finding tools such as Augustus [69], are able to combine ab

initio signals with external hints, including homology with related species, ESTs,

annotated gene models, and now, proteogenomic peptides. Recent proteogenomic

studies have proposed automated prediction of the updated gene model including

the peptides as hints [70, 16, 48]. A total of 339 arabidopsis gene models predicted

in this way were incorporated into the most recent gene annotation release for

Arabidopsis, TAIR9 [24].

Gene discovery Intergenic peptides which are not proximal to a known gene

may indicate a novel coding region. To reduce errors, eFDR or ProteinProphet

can be used to combine the evidence from multiple peptides in support of the

novel gene [79]. Validation of the novel genes remains a challenge, but supporting

evidence is obtained from expressed transcript sequence, RT-PCR validation [80,

81] or homology searches of newly predicted gene models [48, 82]. The homology

searches can also be used for functional annotation of the corresponding protein

sequence [64, 83].
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2.4 Proteogenomics in prokaryotes

Bacterial genomes are being sequenced at an astonishing rate, and as a con-

sequence that gene annotations are primarily computational predictions. Prokary-

otic genomes tend to be smaller and less genetically complex than eukaryotes. As

prokaryotic genes do not undergo splicing, all proteins can be captured by trans-

lating the genome in all six frames.

Several studies on prokaryotic genomes have shown that ab initio tools

alone are insufficient, particularly for identifying gene boundaries, and for short

ORFs [84, 64, 26, 82]. Proteogenomic validation of predictions is a pragmatic

compromise between computational prediction, and full-experimental validation.

Jaffe et al. [64] validated 81% of predicted ORFs in Mycoplasma pneumoniae and

Gupta et al. [26] validated 40% of genes in Shewanella oneidensis. Wang et al. [83]

constructed a database of gene predictions, and validated 901 proteins in Mycobac-

terium smegmatis.

The first study to search tandem mass spectra against the 6-frame transla-

tion of a fully-sequenced bacterium (Haemophilus influenzae) identified 263 pro-

teins and 2 genomic loci which were not previously believed to be translated. Since

then, several high-throughput studies have identified novel translated loci in My-

coplasma pneumoniae (16 ORFs) [64], Rhodopseudomonas palustris (85 ORFs) [80],

Shewanella oneidensis (8 ORFs) [26], and Deinococcus deserti (15 ORFs) [85].

Peptides which map in close proximity to annotated genes may suggest

changes to the gene model, rather than separate novel loci. While determining the

translation end site is simply the location of the first in-frame, down-stream stop

codon, determining translation start is much trickier. Proteogenomic mapping of

peptides to regions proximal to the N-terminus of the annotation gene may correct

these errors. In Shewanella oneidensis, 30 genes appeared to have incorrect 5’

boundaries based on peptides mapping upstream of the annotated start site as

well as alignment with proteins in related species [26]. Peptides which are mapped

near an annotated gene, but are in a different frame, may indicate the rare event

of programmed frame shift [64], which is nearly impossible to predict by other
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automated methods. Baudet et al [82] derived protein N-termini using a labeling

reagent, TMPP, to correct the translation start sites of 60 genes in Deinococcus

radiodurans.

With the dramatic increase of sequenced genomes of related prokaryotic or-

ganisms, proteogenomics is now being performed on multiple sequences in tandem.

Gallien et al. [86] combined comparative genomics and N-terminal protein labeling

to correct 19% of translation start sites in M. smegmatis and 601 start sites in 16

other Mycobacterium species. As an extension to previous work in Shewanella onei-

densis [26], Gupta et al. [87] sampled the proteomes of three Shewanella species to

simultaneous annotate their genomes. Due to the high level of sequence similarity

between the species, 2,590 orthologous ORFs were defined as ‘shared genes’. By

allowing peptides identified on an orthologous protein to contribute evidence for

expression of a protein, Gupta et al. are able to rescue over 140 proteins which

would have been excluded from a proteomic experiment using the ‘two peptide per

protein’ inference rule. While using comparative proteogenomics represents a new

frontier for annotating genomes, methods for determining statistical significance

of these inferences have yet to be developed.

In addition to gene annotation, a study in the bacteria Shewanella onei-

densis discovered over 10,000 sites of chemical modification [26]. The diversity

of modifications identified is beyond what can be specified by popular database

search tools, underscoring one of the main challenges to proteomics and proteoge-

nomics. Gupta et al. also discovered non-chemical protein modifications which

reveal the dynamic nature of the proteome. By considering the positions of the

most N-terminal peptides observed with relation to the predicted translation start

site (Figure 2.5A), Gupta et al. [26] observed possible instances of signal pep-

tides and N-terminal methionine cleavages. The study was able to distinguish

potential signal peptides from post-source decay by identifying non-tryptic pep-

tides contained in tryptic peptides. The peptide compositions also allowed them

to determine motifs for signal peptide cleavage sites that closely agree with motifs

used by computational predictors (Figure 2.5B). A comparative analysis reveals
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a functional role for N-terminal methionine excision [90]. Jaffe et al. [64] showed

post-processing of a gene by identifying two halves of the resulting protein appear-

ing separately in the same mass spectrometry run.

2.5 New directions for proteogenomics

The discussion above assumes that the peptide encoded by the spectrum

can be found in the genomic database. This may not always be the case. How-

ever, the peptide may be inferred by comparing the spectrum against a related

genomic template. We refer to this as comparative proteogenomics. An exciting,

if somewhat controversial, recent example is the sequencing of T. rex and mastodon

peptides [91, 92, 93, 94].

MS-Blast [95] is often cited as an early tool for comparative proteogenomics.

It relies on a de novo analysis to establish tags. A collection of tags is then searched

using Blast to identify homologous sequences. Likewise the search for mutated

and modified peptides also implies an imperfect genomic template. Tools such as

MSAlignment [78], Modi [96], SPIDER [97], and TagRecon [98] perform a search

of a homologous database with an unrestricted set of modifications or mutations.

When the genomic templates are very different (a different species), a new

set of tools are required. Comparative shotgun protein sequencing [99] uses clus-

tering, spectrum alignment, and de novo sequencing techniques to create sequence

contigs of the target protein. Champs [100] identifies the most similar protein to

the target protein in the database, and uses SPIDER to correct de novo sequenced

peptides against the protein. GenoMS [101] resembles both de novo and database

search techniques. It first identifies one or more templates from a database of ho-

mologous proteins or a related genome. Mutated or missing portions of the target

proteins or proteins are then sequenced using model-based spectral alignment and

de novo sequencing.

The gene annotation for an organism is not a once and done enterprise,

but relies on a feedback loop involving the genomic and proteomic communities.

Proteogenomics has developed beyond the proof-of-principle level, and is becoming
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an integral part of the annotation pipeline for model organisms. The realization of

the method, in studies to date, has only been as a downstream analysis tool, for

improvement of a first pass annotation. However, the high-throughput nature and

the ability to directly ascertain the elements of the genome which are translated,

highly recommend proteogenomics as a method to be used on the front-line of gene

annotation.

The need for proteogenomics is highlighted by the exponential rate of

growth of genomic databases, not only across species, but of individuals within

species. For eukaryotes, the notion of gene is evolving to diverse trans-splicing

and rearrangement induced splicing events. For prokaryotes, a vast majority of

the genomes will never be sampled due to the difficulty in culturing. Instead,

metagenomic studies sample genomic sequence from a community of genetically

diverse organisms, which makes even species identification difficult. The devel-

opment of sequencing technologies is allowing for the sequencing of genomes and

meta-genomes at an unprecedented rate [102, 103]. At the same time, advances in

instrumentation, MS2 identification algorithms, specialized database construction,

and comparative tools suggest that the future is bright for proteogenomics.
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Figure 2.5: Proteomic annotation results courtesy of Gupta et al. [26]. A: A
histogram of the position of non-tryptic N-terminal peptides reveals two protein
processing events; cleavage of N-terminal methionine and cleavage of signal pep-
tides. B: The signal peptide motif recovered by MS/MS analysis compared to the
same motif determined by two computational predictors [88, 89].



Chapter 3

Discovery and revision of

Arabidopsis thaliana genes

3.1 Introduction

A fundamental goal of genome projects is to generate a protein-coding

catalog. Much of modern biological research depends on a complete and accu-

rate proteome. Extensive proteomic catalogs have been developed through the

integration of gene prediction algorithms, cDNA sequences, and comparative ge-

nomics [104, 105]. As emerging research is incorporated into annotation pipelines

and manual curation efforts, gene models continue to improve. High throughput

gene annotation pipelines use a variety of information sources, and benefit most

significantly when new data contains information that is orthogonal to the kinds

currently available [8].

Recent advances in chemistry and algorithms for peptide mass spectrome-

try have enabled the production of large proteomics datasets with broad coverage

of the proteome [47, 46, 16]. Proteo-genomics (using proteomic information to

annotate the genome) complements nucleotide-based annotation in that it unam-

biguously determines reading frame, translation start and stop sites, splice bound-

aries, and the validity of short ORFs. By combining DNA-based annotation with

proteogenomics, an accurate and more complete protein-coding catalog can be

28
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obtained [16, 80, 26, 62, 65]. With its clear potential for improving genome anno-

tation, proteogenomics could be integrated with genome projects.

A recent publication by Baerenfaller et al. [47] demonstrated the ability

of extensive resampling to provide good coverage of the Arabidopsis proteome.

From 1,354 LC runs the authors identified 86,456 distinct peptides covering 13,029

proteins. In addition to providing an organ specific proteome catalog, they demon-

strated the ability of proteomics to refine plant genome annotation by presenting

evidence for 57 new gene models, including 7 from intergenic regions not suspected

to contain genes.

We reported a proteogenomic study of humans that described an exon splice

graph that enabled efficient searches of potential coding sequences, including pep-

tides that span splice junctions [16]. We reasoned that we could extend the obser-

vations of Baerenfaller et al. deeper into the unmapped proteome by building an

exon splice graph of Arabidopsis and obtaining a novel set of peptides. We used

two strategies to obtain novel peptides. First we used a nested 3D LC strategy

to obtain much greater peptide separation permitting a deeper sampling of the

proteome. This is reflected by our yield of 144,079 distinct peptides from only 45

LC runs, with a false-discovery rate < 1%. Second we used TiO2 to enrich for

phosphopeptides. Phosphorylated proteins are less abundant and are mostly miss-

ing from profiles of whole proteomes. Considering only cases in which we observed

2 or more previously non-annotated peptides mapping within 1 kb of each other,

we discovered 1,473 new or revised genes; a model was generated for each using the

gene finder AUGUSTUS [12]. Two hundred eighty genes were previously unrec-

ognized, 498 were previously annotated as pseudogenes, and 695 were revisions of

known genes that were annotated in the wrong reading frame, with missing exons,

or with incomplete exons. Extrapolating from our sample we estimate that 13% of

Arabidopsis protein-coding genes were either not yet identified or they contained

significant errors in their exon definitions. We have remedied ≈ 40% of these

deficiencies.
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3.2 Methods for gene finding in Arabidopsis

3.2.1 Sample Chemistry

In total, 21,170,989 MS/MS spectra were collected from 45 LC-MS/MS

experiments. For Arabidopsis organ samples (leaf, root, flower, and silique), 2 g of

fresh organs were cut from wild type Arabidopsis (Col-0) using a sharp razor blade

and transferred into a 50 mL conical tube filled with liquid nitrogen immediately.

Frozen organs were ground in a ceramic mortar and pestle with liquid nitrogen

for 15 minutes to fine powders, and then transferred to a 50 mL conical tube. 50

mL cold (20◦C) methanol containing 0.2 mM Na3VO4 was added to the conical

tube. Samples were incubated at 20◦C for 15 minutes and then spun down in

a refrigerated centrifuge at 4,000g for 5 minutes. Supernatant was discarded.

Two more methanol washes were performed, and followed by three acetone washes

using the same procedure. After final acetone wash, sample pellets were dried in an

Eppendorf Vacufuge Concentrator at 4◦C. Proteins were extracted by adding 1 mL

of 0.2% RapiGest (Waters) with 0.2 mM Na3VO4 to the dry pellet and incubated

on ice for 15 minutes. Samples were spun down at 16,000 g in a refrigerated

centrifuge for 15 minutes. Pellets were discarded and the supernatants were ready

for protein digestion. For MM2d cells, cell pellets (100 L pellet volume) were

washed by 1 mL Hepes saline buffer (10mM Hepes, 150 mM NaCl) three times. A

total of 250 L of protein extraction buffer (2% RapiGest from Waters plus 0.2 mM

Na3VO4) was added to the cell pellet. Samples were sonicated in a Branson Sonifier

450 sonicator equipped with a high intensity cup horn (Branson Part No. 101-147-

046) at 40% output power for 2 minutes with circulating cooling water. Cell lysates

were centrifuged at 16,100g, 4◦C, for 15 minutes. Pellets were discarded and the

supernatants were diluted 10 times in 50 mM Hepes buffer (pH 7.2). Cysteines

were reduced and alkylated using 1 mM Tris(2- carboxyethyl)phosphine (Fisher,

AC36383) at 95◦C for 5 minutes then 2.5 mM iodoacetamide (Fisher, AC12227)

at 37◦C in dark for 15 minutes. Proteins were digested with trypsin (Roche, 03

708 969 001) overnight then 1% TFA (pH 1.4) was added to precipitate RapiGest.



31

Samples were incubated at 4 C overnight and then centrifuged at 16,100 g for 15

minutes. Supernatant was collected and centrifuged through a 0.22 uM filter. An

Agilent 1100 HPLC system (Agilent Technologies) delivered a flow rate of 300 nL

min to a 3-phase capillary chromatography column through a splitter. Using a

custom pressure cell, 5 m Zorbax SB-C18 (Agilent) was packed into fused silica

capillary tubing (200mID, 360mOD, 20 cm long) to form the first dimension reverse

phase column (RP1). A 5 cm long strong cation exchange (SCX) column packed

with 5 m PolySulfoethyl (PolyLC) was connected to RP1 using a zero dead volume

1m filter (Upchurch, M548) attached to the exit of the RP1 column. A fused silica

capillary (100 m ID, 360 m OD, 20 cm long) packed with 5 m Zorbax SB-C18

(Agilent) was connected to SCX as the analytical column (RP2). The electrospray

tip of the fused silica tubing was pulled to a sharp tip with the inner diameter

smaller than 1 m using a laser puller (Sutter P-2000). The peptide mixtures were

loaded onto the RP1 column using the custom pressure cell. Columns were not

re-used. Peptides were first eluted from the RP1 column to the SCX column using

a 0 to 80% acetonitrile gradient for 150 minutes. The peptides were fractionated

by the SCX column using a series of salt gradients (from 10 mM to 1 M ammonium

acetate for 20 minutes), followed by high resolution reverse phase separation using

an acetonitrile gradient of 0 to 80% for 120 minutes. Spectra were acquired on

LTQ linear ion trap tandem mass spectrometers (Thermo Electron) employing

automated, data dependent acquisition. The mass spectrometer was operated in

positive ion mode with a source temperature of 150◦C. As a final fractionation

step, gas phase separation in the ion trap was employed to separate the peptides

into 3 mass classes prior to scanning; the full MS scan range was divided into 3

smaller scan ranges (300800, 8001,100, and 1,1002,000 Da) to improve dynamic

range. Each MS scan was followed by 4 MS/MS scans of the most intense ions

from the parent MS scan. A dynamic exclusion of 1 minute was used to improve

the duty cycle. Final totals for spectrum count were: 6,336,450 spectra from roots,

1,415,293 spectra from M. incognita infected roots, 2,660,544 from leaves, 1,284,713

from flowers, 1,206,222 from siliques, and 8,267,767 from phospho-peptide enriched

MM2D cell lysates. The data associated with this manuscript may be downloaded
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from Tranche (http://tranche.proteomecommons. org) using the following hash:

eTyqbeZEgF7KOZNqcE0OAbFGAmrIzV1xKx4OCC0CJN9A1MwZmuP2drhEsT

7XohMx8FM8wtckHv7mqSnWHLhVuGmrsYAAAAAAASfeg. The Tranche hash

can also be used to verify that files have not changed since publication.

3.2.2 Database Construction and Use

Proper database construction is crucial for novel peptide recovery. For

gene model confirmation, we used the TAIR7 release of the Arabidopsis proteome

(www.arabidopsis. org). For proteomic discovery, we constructed two greatly

expanded databases. The first database was the six frame translation of the

Arabidopsis genome, containing 210 M amino acids. The second database was

a spliced-exon graph containing ab initio gene predictions from the AUGUSTUS

software [16, 12, 106] AUGUSTUS reported multiple transcripts per locus with

sampling parameter 100. Additionally, we edited the exon length distribution to

make short exons (100 base pairs) 3 more likely. All resulting exon and intron

predictions were incorporated into the graph where each node is a putative exon

and each directed edge indicates a putative splice junction. The resulting graph

contained 16 M amino acids. For the MS/MS searches, all three databases were

combined with decoy sequences formed by shuffling each target sequence. To en-

sure minimal overlap between target and decoy sequences, any 8-mer appearing in

the decoy sequences which also appears in the target database was re-shuffled.

3.2.3 Mass Spectrometry, Peptide Identification and Loca-

tion

All spectra above were converted from the vendor formatted RAW files to

mzXML using the ReAdW software in centroid mode (Nov 1, 2006 version). Spec-

tra were searched against the three databases with the Inspect software, release

2007.09.05. All datasets, excepting the phospho-peptide enriched samples, were

searched without allowing any post-translational modifications (PTMs). Parame-

ters for this search were: PM tolerance 3.0 Da, 0.5 Da fragment ion tolerance, 25
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tags/spectrum, 57 Da fixed modification on cysteine. For phospho-enriched sam-

ples, we allowed a variable modification of 80 on STY, max of 2 PTMs/peptide

and searched with InsPecTs phosphopeptide specific scoring function [107]. All re-

sults are filtered to 1% spectrum-level false discovery rate using the decoy database

strategy [58]. In this strategy, a scrambled database of the same size is concur-

rently searched with the target sequences against the spectra. A score cutoff is

chosen such that no more than 1% of the spectra are annotated with a peptide

from decoy sequences. To count proteins validated by our TAIR7 database search,

we map peptides back to their protein(s). We report proteins with two or more

peptides, and at least 1 uniquely mapped peptide. For proteins groups which have

exactly identical coding sequences we report the group of proteins, as they share all

peptides and do not have any uniquely mapped peptides. As we require multiple

peptides per protein identification, our 1% spectrum level FDR translated to an

empirical 0.6% protein-level FDR. The source code for Inspect is available at our

laboratory web site, http://peptide.ucsd.edu

3.2.4 Clustering and Homology Search

Novel peptides (all of which have a genomic location) were clustered. Pep-

tides within 1,000 nucleotides were linked; clusters were aggregated by single link-

age. We find that the vast majority of peptides within current genes fit this clus-

tering (98%). Any fixed width cluster has the potential to misgroup peptides from

multiple genes into a single group. This is overcome by the gene finding algorithm

which creates the best gene model given the evidence, including splitting clusters.

Clusters were classified as intragenic or intergenic depending on whether they over-

lapped a TAIR7 protein coding gene model. We extracted the DNA sequence of

each cluster with 500 nucleotides abutting the first and last amino acid of the

predicted peptides and searched versus the NCBI nonredundant protein database

(NCBI nr) using blast with default parameters.
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3.2.5 Frame Correction

We found evidence of many novel peptides out of frame with the current

gene models. From these we picked a subset to highlight. From the list of all

novel peptides that overlap a known gene locus, we generated a list of peptides

that overlap the coding region of the locus but in a different frame. Our reported

results require at least two out-of-frame novel peptides. To increase our confidence

in the assertion that the gene is (at least partially) mispredicted, we also tabulated

several features for these novel peptides. As splicing sometimes results in only a

portion of the peptide being out of frame with the reference annotation, we fil-

tered out peptides that had 3 aa out of frame. In these cases we do not doubt the

accuracy of the MS/MS annotation. However, with only one or two amino acid(s),

there are likely several close genomic regions with an appropriate nucleotide se-

quence. Additionally, we determined whether the novel peptides conflicted with

observed MS/MS peptides that support the current gene model and frame. On

a few occasions there was peptide and homology support for both the annotated

frame and a new frame, possibly suggesting alternative splicing. (There are in-

stances within the current annotation of the same DNA sequence being translated

in multiple frames.) Seventy proteins had novel peptides that met these three

requirements: multiple peptides out of frame, sequence out of frame is at least 3

aa, and no conflicting TAIR peptides. There were also instances of novel peptides

present in the 5’ and 3’ untranslated regions of genes. In some instances these are

likely to merely be expansion of the current sequence. However, some of these also

appear to be frame mis-predictions

3.2.6 False Discovery Rate Calculations

Local false discovery rate (lFDR) The most commonly reported statis-

tic for false-discovery rate is the cumulative false-discovery rate, cFDR, or the

fraction of false positive spectra with a score greater than t. This number is meant

as an estimate of error for a data set and is often misinterpreted as a confidence in

a single spectrum annotation. For example, consider a data set with 1,000 spectra
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annotated at a 1% cFDR at score t0. At this cutoff, 10 of the 1,000 spectra are

estimated to be false-positives. As the score cutoff is relaxed and more spectra are

accumulated, we set the next cutoff t1 for a 5% cFDR and note 1200 spectra are

annotated. 60 of the 1200 are estimated false positives. cFDR assignments to these

new spectra would be between 1% and 5%. However, this is misleading. The en-

tire data set has a 5% false discovery rate, but for the 200 newly included spectra,

the false discovery rate is much higher. Of the 60 total false-positive spectra, 50

came from these 200 new annotations, or 25% false discovery. Thus a cumulative

FDR calculation should not be used to estimate confidence in single annotations.

Unfortunately, this point has not been previously addressed in proteomics studies.

When considering that we annotate over 2.7 million spectra at a cFDR of 1%,

a more lax 5% cFDR could have included a significant number of spectra that

in reality have an unacceptable false-discovery rate. To more accurately measure

the quality of our assignments, we defined a local false discovery rate [59]. For

scoret, and bin-size δ, define local -FDR (lFDRδ(t)), as the fraction of incorrect

identifications with score in [t,t+δ).

lFDRδ(t) = f0(t)/f1(t)

where f0(t) is the number of false annotations with score in [t,t+δ) and

f1(t) is the number of true annotations with score in [t,t+δ). Although local FDR

is a continuous function, we empirically measure it over a discretized range. Unlike

microarray experiments where the number of false data points must be estimated,

by using the decoy database search strategy, we can directly count this value; f0 is

simply the distribution of matches to the decoy database and f1f is the distribution

of matches to the true database. We compute a local FDR for each spectrum using

0.1. Our dataset is large, therefore, a significant number of spectrum-peptide

matches fall in each bin and we can achieve a more accurate local FDR. For higher

score regions with fewer spectrum-peptide matches, bins were expanded to include

at least 1,000 annotations. As spectra of different charge states have distinct

score distributions (data not shown), the FDR should be separately calculated.

Inspect identifies spectra of charge 3, and we compute lFDR separately for charge
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3 spectra. A change in FDR for peptides of different lengths has also been reported.

As Inspect explicitly takes peptide-length into account while scoring, this bias is

not observed in our identifications (data not shown). The minimum peptide length

for Inspect is 7 aa; 0.8% of all reported spectral identifications are of length 7.

Spectral FDR versus peptide FDR (pFDR) The redundancy intro-

duced by repeated observation (multiple spectra) of peptides changes the false

discovery rate for peptides. If 100 spectra identified the same peptide, the peptide

identification is incorrect only if all spectral identifications are incorrect. At the

same time, spectra identifying the same peptide cannot be treated as independent.

A systematic error might lead to similar spectra to all be mis-annotated. There-

fore, we conservatively assign the FDR for a peptide to be the minimum local FDR

of all spectra identifying that peptide.

Event-level FDR (eFDR) The identification of distinct peptides can be

reasonably assumed to be independent. Even peptides that overlap in sequence

have completely different spectra, as prefix/ suffix masses are all changed by the

distinct terminal residues. In identifying an event, (e.g. a novel exon), we estimate

the FDR of the event as the product of the local FDR of the peptides supporting

that event, and use an eFDR cut-off of 5%.

Estimation of level of alternative splicing To estimate the extent of

alternative splicing, we start with a few simplifying assumptions. Each gene has

a common splice-isoform that has the highest expression level. Alternative splice

isoforms are characterized by relative expression ealt, (0 ≤ ealt ≤ 1), denoting the

expression of the alternative isoform relative to the common one (ecommon = 1).

Each alternative splicing event can be characterized by a branching intron that

splices together exons A and B which are not spliced together in the common form.

We would like to estimate N , the number of branching introns as a proxy for the

number of alternative splice-forms. We sample an intron connecting exons A,B, if

we identify a uniquely located peptide that spans the splice junctions of A,B. In

the proteogenomic search of TAIR reference sequences, we sampled 12,616 of the

115,040 introns (f = 0.11). Assuming that each intron is sampled independently

with probability f ,
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Pr[a branching intron (with relative expression ealt) is sampled] ≈ ealtf .

Pr[an intron (A,C) and a branching intron (A,B) are sample]≈ ecommonealtf
2

= ealtf
2.

Therefore,

E[common and branching introns sampled] ≈ ealtf
2N .

A sampling of the graph revealed a total of 47 instances of multiple branch-

points. According to recent studies, it is not unreasonable to assume one multiple

branch-point event occurs between each pair of isoforms [108]. At ealt = 0.5, the

model tells us that in order for our observations to reside within one standard

deviation of the mean, 6, 718 ≤ N ≤ 8, 983. However, the TAIR7 protein database

contains only 3,799 alternatively spliced genes, where N = 3, 141. Therefore, in

order for our branch-point observation to be consistent with the observed N , minor

isoforms must be expressed at no less than 88% of the dominant isoform. This

indicates that alternatively spliced protein isoforms are only detectible when they

have roughly equal expression levels, or that the predicted number of alternatively

spliced genes in arabidopsis is considerably lower than what is actually present.

3.3 Results in Arabidopsis

3.3.1 Proteome Coverage

To achieve broad coverage of the proteome, we acquired 21 million mass

spectra from protein extracts of 4 Arabidopsis organs (leaf, root, flower, and silique)

and a cell culture (MM2d). In addition, phosphopeptides were enriched from

MM2d proteins. Inspect was used to search spectra against 3 reference databases:

TAIR7; a 6 frame translation of the genome; and an exon splice-graph that com-

pactly encodes putative splicing events (6) (See Figure 3.1 for an overview of the

method). The data were filtered to a 1% cumulative false-discovery rate (FDR) at

the spectrum level. We required at least two peptides per protein for identification,

so our 1% spectrum-level FDR provided an empirical, protein-level FDR of 0.6%.

A total of 144,079 distinct peptides were mapped to at least 1 of our 3

Arabidopsis protein databases. Most (126,055 peptides) resided in TAIR7 gene
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models (12,769 proteins confirmed). We mapped 18,024 peptides not present in the

TAIR7 annotation including 4,018 peptides (22%) that were derived from mRNA

splicing. Of these, 16,348 peptides mapped to single loci (i.e., uniquely-located)

in the genome, whereas the rest were shared between 2 or more related proteins.

The 6-frame translation and the spliced-exon databases contributed equally to

the discovery of novel peptides and their contributions had little overlap; only

5% were found in both databases. This indicates that both types of database

should be used for proteogenomic studies because they provide complementary

novelty. Every reported peptide can be uploaded as a track in TAIR8. These

files are available at http://peptide.ucsd.edu. The AUGUSTUS model building

was restricted to nuclear genes and they encompass 2,873 novel peptides. These

models can be accessed from http://peptide.ucsd.edu.

3.3.2 NovelGenes

Using the protein identification standard of 2 peptides per protein, we fo-

cused on 1,765 novel peptide clusters containing 5,426 novel peptides, 4,575 of

which are uniquely located. An additional 6,361 novel peptides were observed

outside of clusters but with a unique genomic location and a local FDR < 0.05.

These were not analyzed in detail. We classified novel peptide clusters according to

their position relative to annotated protein coding models. We defined intragenic

clusters as those falling within the boundaries of a known protein coding gene and

intergenic clusters as those falling in the intergenic space (i.e., these indicate novel

genes). Some of the novel clusters overlapped loci that had been annotated as

non-coding pseudogenes (31% of the peptides or 1,420 peptides derived from 561

clusters) or genes that had not been recognized at all by gene finding programs or

annotators (20% of the peptides or 905 peptides derived from 331 clusters).

With our novel intergenic peptides, we defined 778 new genes consisting of

930 transcripts using the gene finder AUGUSTUS. Evidence from peptides plus

EST alignments, and genomic conservation with rice, poplar, and Medicago, were

given as hints to AUGUSTUS, which derives gene models that are in agreement

with the hints and that have high likelihood in an ab initio probabilistic gene struc-
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ture model. Resulting gene models include alternative splice variants, if suggested

by the evidence. Of the 778 novel genes, 55 have EST and homology support, in

addition to peptides; 455 genes have support by the peptides and ESTs; and 70

genes are supported by the peptides and homology only. The remaining 198 genes

have no other support than the peptides. As an independent validation of our dis-

coveries, 52 of the 778 loci have now been incorporated in the newest Arabidopsis

genome release (TAIR8).

To discover homology with the novel genes, we excised the surrounding

nucleotide sequence and searched against the nonredundant database of proteins

(National Center for Biotechnology Information nr version 03/26/08). For 539

of the loci, the underlying sequence revealed a close homolog (e value < 1E-10),

providing additional validation, and functional assignments for the new genes.

Although many of the novel genes we discover are homologous to genes of unknown

function, we highlight a novel gene involved in photosynthesis. Our predicted

protein, supported by 13 novel and uniquely located peptides, aligns with proteins

targeted to the chloroplast thylakoid lumen (e value = 1E-75). It also contains the

PsbP pfam domain characteristic of photosystem II (See Figure 3.2). A second

novel locus containing 4 uniquely located peptides on chromosome 4 shows strong

similarity (e value = 1E-85) with a heat-shock protein (AT4G12770).

We also note several interesting structural features of the intergenic clus-

ters. First, a significant fraction (64%) of intergenic clusters overlap annotated

pseudogenes or transposons. An example of a translated pseudogene is at locus

AT2G15040, ATRLP18: Receptor like protein 18, which has high homology to

disease resistance proteins in both Arabidopsis and other plants. We identify 5

peptides, 3 of which are uniquely located at this locus, confirming translation. It

is presumed that pseudogenes do not produce proteins, but transposons (which

like pseudogenes are not typically included in the proteome) can contain active

protein-coding genes. We find evidence in transposons of translated proteins that

are unrelated to transposon activity. For example, we identified 3 peptides within

the locus AT4G07947 (See Figure 3.3A). Although annotated as a pseudogene in

TAIR7 it has been reclassified as a transposable element gene in TAIR8. The
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genomic region containing these peptides has high similarity to the ubiquitin-like

protease (Ulp1) family in Arabidopsis (See Figure 3.3B), suggesting this may be a

gene traveling as cargo with the transposable element [109].

Since the release of TAIR7, there have been several community annotation

efforts, including publication of short ORFs [110]. We compared the novel peptides

for overlap with this set. Hanada et al. [110] reported that 7,442 non-annotated

small ORFs in Arabidopsis are transcribed. Our peptides confirm the translation

of 155 of these predicted ORFs. An additional 85 ORFs overlap at least 1 of

our novel peptides, but the peptides indicate that the frame of the ORF may be

incorrect.

3.3.3 Refined Gene Models

In addition to the novel genes, we discovered peptide clusters overlapping

annotated gene models, suggesting refinement of the existing annotation, e.g., a

new exon, exon boundary change, exon skipping, or modified translation bound-

aries. The refinement events can be classified according to their type, location,

and the transcript being modified. A majority (521) of the events are novel exons,

of which 314 are located within introns and 207 are in untranslated regions (UTR)

of TAIR7 gene models. Of the 314 instances of novel coding sequence predicted

between 2 exons of a gene, 26 are observed in the same frame as both adjacent

exons and may indicate a single exon, a portion of which may be spliced out in

some isoforms. Exon boundary changes were also prevalent, with typical instances

including 5’ extension of the first exon and alternative donor/acceptor splice sites.

We find evidence for 180 instances of exon extension, and 191 instances of exon

shortening. In 5 transcripts, peptide evidence supports an exon skipping event.

Some intragenic loci indicate gene extension beyond the borders of the annotated

gene model; 323 of these gene extension events were discovered. Using AUGUS-

TUS to refine existing models with the new peptide evidence, we predict 964 new

or altered transcripts in 695 genes.

It is difficult to determine whether a new transcript predicted by AUGUS-

TUS is a refinement of a gene model or an additional isoform of an alternatively
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spliced gene. To better distinguish between these two cases, we compared each

new transcript and the TAIR7 transcripts to all available cDNA evidence. For 122

genes, EST evidence, in addition to the peptide evidence, was found in support of

the new transcript; no ESTs were found in support of the TAIR transcript. For an

additional 130 genes, EST evidence was found to support both the new transcript

and the TAIR7 gene models, suggesting that the peptides are produced by a newly

discovered isoform.

To provide additional support to our gene refinements, we excised the pre-

dicted amino acid sequence surrounding a novel cluster and searched for homology

to the nonredundant database of proteins (National Center for Biotechnology In-

formation nr version 03/26/08). For 348 loci, we found a close homolog (e value

< 1E-10). Several genes that have been extensively studied are included among

the refined gene models. For example, we found an additional 200-aa exon in the

5’ UTR of MAPK phosphatase (AT3G55270). Also, we identified 8 peptides cor-

responding to 4 missing or mispredicted exons at locus AT1G79920 (heat shock

protein 70). The new sequence completes the canonical HSP70 pFam domain. A

final example is the gene PMI1 (AT1G42550), which, when mutated, results in

impaired plastid movement and localization [111]. We found 6 peptides upstream

of the annotated start codon, providing at least 130 aa of additional sequence.

We identified 70 cases in which the annotated reading frame is different

from the observed peptides. Assignment of reading frame is particularly difficult

for nucleotide-based genome annotation (e.g., cDNA). However, proteomic evi-

dence unambiguously defines the frame of translation. The 70 frame corrections

are supported by multiple peptides and extensive homology to other proteins. We

will use two proteins to illustrate: first, a whole gene frame correction; and second,

a partial gene correction. Locus AT3G22240 is a 51-aa protein with no discernible

homologs. Four of our peptides indicate translation in different frame than has

been annotated. Translation in the new reading frame yields a protein with high

sequence identity to PCC1, pathogen and clock controlled protein. The second ex-

ample is AT1G63500, a protein kinase, which has 4 novel peptides in the annotated

5’ UTR. These peptides point to a large expansion of the gene and a misprediction
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of the current first exon (Figure 3.4).

In addition to the peptides that are described above, 3,534 uniquely located

singleton peptides with high confidence (lFDR < 0.05) overlap genes and indicate

refinement events. These peptides likely indicate corrections to gene models and

are a starting point for further investigation.

Similarly, 2,827 singleton peptides (also uniquely located and with lFDR

¡0.05) are found in intergenic regions. Some of the peptides may be mis-annotations,

however, subsequent work has indicated that many are correct: 665 peptides are

contained in ORFs with strong sequence similarity to known proteins (BLAST e

value < 1E-10). Spectral counts are also an indication of strength of an annotation;

291 peptides have higher spectral counts than 50% of all peptides identified in this

study. The intergenic peptides indicate novel coding regions that may have pro-

duced a single detectible peptide for several reasons including protein composition

or protein length.

3.3.4 Validated Gene Models

In addition to discovering new protein-coding loci, we identified 126,055

distinct peptides (1.72 million amino acids) that confirmed annotated gene models

for 12,769 proteins (40% of the TAIR7 genes). Our claims of coverage are con-

servative. We count only proteins covered by at least two peptides, one of which

must uniquely map to the designated locus. A total of 11,801 peptides were lone

supporters of proteins or shared peptides, and therefore were not counted toward

the confirmed proteins. Of the sequenced peptides, 87% map to a unique genomic

location, unambiguously identifying 10,692 proteins. In addition, we observed pro-

teins from highly homologous gene groups that could not be attributed to a single

locus (see Methods). The Arabidopsis genome has high rates of tandem and seg-

mental duplication and many loci contain multiple gene predictions that differ only

in the non-translated regions [112]. We observed peptides from 913 groups of in-

distinguishable proteins (2,077 proteins), bringing the total confirmed gene models

to 12,769.
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3.3.5 Splicing

It is difficult to estimate the true extent of alternative splicing, given that

the alternative splice forms are often not as highly expressed, and might not be

sampled. However, our deep proteogenomic sampling revealed a total of 47 genes

in which multiple splice forms were observed. We estimate that with high prob-

ability, the number of genes with alternative splice forms is between 6,718 and

8,983. This is considerably higher than the number of alternatively spliced genes

in TAIR7 (3,799) and the number recently predicted by cDNA and ESTs (4,707

at the transcript level) [108].

3.4 Discussion

In tandem mass spectrometry, a peptide (from an enzymatic digestion of

a protein mixture) is fragmented, usually through collisions. While the physics of

the fragmentation is incompletely understood, the fragmentation pattern is con-

sistent, and the collection of fragments (the spectrum) can be used to fingerprint

the peptide. Recent advances in mass resolution and the availability of software

tools to analyze spectra make mass spectrometry the tool of choice for proteomics.

Nevertheless, technological limitations create many challenges for the approach.

First, the sampled peptides are biased toward the more abundant proteins

in the cell. To comprehensively sample the proteome, a diversity of samples must

be assayed. Second, incomplete fragmentation patterns and spectral noise smudge

the fingerprint and introduce errors in peptide identification. Additionally, identi-

fication is typically based upon looking up a database of known peptides to pick

the most likely candidate. If the true peptide is not in the database, it will not be

identified. Finally, post-translational modifications change the mass and pattern

of the fragments, making identification harder. Our study addresses each of these

issues. Broad sampling of the proteome was achieved through assaying multiple

plant organs and phosphopeptide enriched peptides. We address identification er-

ror rates through the introduction of a local false discovery rate. The genome

is explicitly and thoroughly queried for potential protein coding sequences. Fi-
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nally, we use a phosphopeptide spectra specific algorithm for sensitive and efficient

annotation of phosphorylated peptides.

The database search tool we used, Inspect, contributed significantly to

our ability to extensively annotate spectra. Inspect’s Bayesian scoring function

is more sensitive than that of SEQUEST, annotating more spectra at a given

false-discovery rate. The exon splice-graph database allowed us to detect peptides

that span splice boundaries. Our experimental techniques enabled a sampling of

the phosphoproteome, which typically contains low abundance proteins. We used

3D LC, which provides much greater resolution and renders unnecessary the ex-

tensive resampling that is typical of LC ESI MS/MS experiments. To illustrate,

we identified 67% more total peptides using only 3% as many LC runs compared

with a study based on resampling (4). We used our novel peptides and an auto-

mated gene prediction pipeline to derive 1,473 new and revised gene models. The

technical advances reported here dramatically reduce the time and cost required

to obtain deep proteome coverage.

Historically, the proteomic and genomic communities have operated inde-

pendently, with the genomic community in charge of annotation efforts. The pre-

dicted proteome is then passed over to the proteomics community for validation,

and identification of post-translational events. We assert that much is to be gained

by joining forces, and incorporating proteomic evidence upfront into the genomics

pipelines. Proteogenomics provides an orthogonal data source to predict gene

models, with levels of sensitivity that are complementary to cDNA sequencing.

By investing in proteogenomics to complement more traditional cDNA and EST

data at the onset of genome annotation, a more complete and accurate proteome

can be achieved even in the early releases. Here, we provide proteomic evidence for

778 new genes and refine 695 current gene models, using the reference annotation

from TAIR7. Recently, TAIR released the next revision of the genome/proteome,

TAIR8. Only a small number of our novel peptides (3%) appear in the TAIR8 re-

lease indicating that the proteogenomic approach is complementary to computer-

based annotation.
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Figure 3.1: All mass spectra are compared with three databases using Inspect.
Spectra are filtered to a 1% false discovery rate and grouped into peptides. Novel
peptides are separated from those that appear in TAIR7 and clustered. It is
important to note that only a subset of the novel peptides appear in a peptide
cluster. Novel peptide clusters are then segregated based on genome location.
Those that overlap a current gene model (intragenic) are further classified by how
they refine the model. Peptides that do not overlap a gene model (intergenic) are
classified by whether they overlap a pseudogene. The peptide clusters, along with
evidence from cDNA and current gene annotations, are given to the gene predictor
AUGUSTUS to produce new gene models. Not all peptides in the peptide clusters
are included in the final AUGUSTUS models.
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Figure 3.2: (A) A cluster of 13 uniquely located peptides that do not overlap a
current gene model (Chr3). The prediction track shows the single exon gene model
produced by AUGUSTUS. (B) The predicted sequence shows strong homology to a
Thylakoid lumen family protein (sp‖P82658‖TL19 ARATH). It also shows strong
similarity to proteins in both grapevine (emblCAO40861.1, a hypothetical gene)
and rice (Os08g0504500, a cDNA derived gene).

Figure 3.3: (A) 5 peptides, 4 unique, overlap locus AT4G07947, which is anno-
tated as a transposable element gene. (B) Sequence alignment to an Arabidopsis
Ulp1 (ubiquitin like protease) showing strong conservation (56% identity, e value
0.0). Observed peptides are highlighted.
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Figure 3.4: TAIR locus AT1G63500 encodes a protein kinase. (A) Four novel
peptides map within the 5’ UTR and the first exon. (B) Zoom of the region shows
that the current first exon (frame 3) is out of frame with the peptides (frame 2). (C)
Sequence alignment with Arabidopsis and grapevine proteins supports translation
in the frame supported by peptides (observed peptides highlighted in alignment).



Chapter 4

Novel genes discovered in Zea

mays using an automated gene

finding pipeline

4.1 Introduction

Automated annotation of genome sequences with the location of protein

coding genes remains critically important. The wide availability of inexpensive

next-generation sequencing technologies ensures that model organisms from all

branches of the tree of life will continue to be sequenced at an ever increasing

pace. However, the annotation of these genomes remains challenging.

Much recent focus on computational gene finding is on incorporating tran-

script evidence. As with genomic sequencing, availability of high-throughput tech-

nologies for transcript sequencing such as RNAseq [14] has dramatically changed

the genome annotation landscape. While RNA-Seq provides valuable evidence

for genome annotation [13, 69, 68], it does not provide a comprehensive solution

either. Increasing evidence suggests that a discrepancy exists between protein

isoforms that are transcribed versus translated [113]. We observed a large range

in abundance (6 orders of magnitude) of transcripts suggesting that some genes

are not observed even with deep sampling. Indeed in our own observation, we

49
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find evidence for genes in sampling proteins that are not visible at the transcript

level. Moreover, the transcript evidence is confounded by pre-spliced messages,

non-targeted expression noise, ncRNA, and lack of strand and frame information.

All of these remain challenges for gene finding.

Tandem mass spectrometry is a key technology for assaying the expressed

proteome. In typical bottom-up workflows, enzymatically digested peptides are

isolated via chromatography and mass spectrometry, then fragmented. The col-

lection of masses of peptide fragments (tandem mass spectrum) are used as a

fingerprint for identification of expressed peptides. Historically, the genomics com-

munity has provided the annotations (aa sequences) and the proteomics commu-

nity has focused on identifying peptides and proteins from this annotated list to

assay for expression of proteins in specific contexts. However, rapidly improv-

ing mass spectrometry (MS) instrumentation and advances in sample preparation

have enabled the field of proteogenomics, relying relying on direct interpretation

from the genome [114]. In this context, the evidence of peptide expression is used

to annotate the genome and reconstruction of gene structures in model organ-

isms [48, 47, 115, 46], multiple organisms in parallel [87, 86, 116], and difficult to

annotate genomes such as those with high GC content [117].

However, significant concerns remain in the development of this technology.

The tandem mass spectra are noisy, and large-scale MS-based proteomic studies

are confounded by false positives resulting from the intrinsic testing of millions

of hypothesis. Further, many of the peptides cross splice-junctions, and would

not be identified by searching against a 6-frame translation. At the same time

identification of spliced-peptides is key to reconstructing gene structures. Finally,

the annotated peptides must be reconciled into complete gene models, possibly

with alternatively spliced isoforms.

Here we present a semi-automated proteogenomic method and apply it to

the annotation of the maize (Zea mays) genome. Our method extends our previous

proteogenomics efforts on human and arabidopsis [16, 48] using special spliced-

graph databases to search spectra for spliced-peptides. In addition, we automate

the refinement process to predict complete gene models, and automatically refine
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existing structures. We develop a framework for evaluating the quality of mass

spectrometry-based discovery of gene refinement ‘events’ to control the false dis-

covery rate. The maize genome is particularly challenging due to its large size (2

billion nucleotides), and abundance of mobile elements that re-insert themselves

into the genome creating many repetitive regions. Instead of discarding peptides

that appear in multiple locations, we use them to identify paralagous sets of genes,

one or more of which is likely expressed.

We analyzed over 109 million tandem mass spectra generated from Zea mays

seed tissues. Comparison of the spectra against our putative protein database

containing nearly 2 billion amino acids required extensive computing power (∼ 7.5

million CPU-hours). Our analysis revealed a revised genome annotation with

updated gene models for 1,989 loci and the addition of 1,102 novel protein coding

loci. This study represents possibly the largest proteogenomic effort undertaken

on a single organism.

4.2 Results

The core of our method is the identification of peptides that are discor-

dant with the annotated proteome. To identify the novel peptides, we generate a

database of putative translated sequences directly from the genome. The database

contains both the six frame translation and an exon-splice graph [16] that is in-

formed by mapped mRNA sequences and ab initio predictions. The splice graph

compactly represents many possible protein products for each genomic locus, col-

lapsing shared sequence between multiple isoforms into single nodes in the graph

and incorporating splice junctions by adding edges in the graph.

We identified 225,166 distinct peptide sequences by searching the MS/MS

data against a database of both annotated and putative protein sequences. The

peptide sequences either confirm annotated protein sequences in the 5a.59 maize

proteome release or map to a genomic location that was not previously believed to

be protein-coding. Based on the genomic-mapped peptide sequences, we codified

eight distinct refinement ‘events’; novel genes, novel exons, frame change, exon
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extension, gene extension, translated ’untranslated region’ (UTR), novel splice

junction, and overlapping antisense translation.

To control false-positive predictions, we applied a filter, the eventProb,

which scores events based on the spectral evidence supporting them. Using the

peptides from the filtered novel events, combined with over 2 million Zea mays

ESTs, 875 million RNA-Seq reads, and the mappings of proteins from rice and

sorghum, we generated putative gene structures using the ab initio tool, Augus-

tus [69]. The gene predictions and proteogenomic evidence, together with the

Maize Protein Atlas, can be found at http://maizeproteome.ucsd.edu/

4.2.1 Validation of Zea mays Genes

The maize proteome has two sets of annotated proteins. The filtered gene

set (version 5b.60) contains 39,656 trusted gene predictions encoding 63,540 pro-

teins. The working gene set (version 5a.59) contains an expanded, hypothetical set

of genes and is a superset of the filtered set, containing a total of 136,770 proteins

in 110,028 genes.

We identify 200,384 peptides sequences matching to proteins in the filtered

set or working set. These peptides confirm the expression of 14,615 genes. The

majority of these genes are from the filtered set (13,811 genes, 94%), suggesting

that the 5b.60 annotation contains most maize genes expressed in seed tissue.

The majority of maize genes produce two or more protein isoforms. The protein

isoforms often share exons in the gene model and therefore peptides matching one

isoform often match another isoform. However, we are able to determine that

10,604 specific protein isoforms from 10,507 genes are expressed, each with at least

one uniquely mapping peptide. Again, the vast majority of the proteins identified

are from the filtered protein set (9,874 proteins). We identify unique peptides in

730 working set proteins, suggesting that these proteins should be promoted to the

trusted protein set for future proteome releases.

The specific set of promoted proteins have several characteristics which

distinguish them from other proteins in the working set. Promoted working set

proteins tend to be longer (247 amino acids) than the average working set pro-
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tein (130 amino acids). Over 88% of promoted working set proteins begin with

the canonical start site encoding Methionine. In contrast, only 67% of all work-

ing set proteins have this starting amino acid. We propose that Methionine at

the translation start site is important for correct expression. The filtered set is

predominantly comprised of Methionine-initiated proteins (98% of proteins in the

filtered set). Our set of promoted working set proteins indicates that alternate

start sites may play a larger role in plant proteomes than evidenced by the current

genome annotation. We observe another distinction between working set proteins

and filtered set proteins regarding the number of independent sources of evidence

supporting the models. Sources of evidence reported from the gene sets include

cDNA, ESTs, mRNA, ab initio predictions, and protein mappings from both Maize

and other species. We found that 65% of filtered set proteins had 2 or more types

of evidence, while only 23% of working set proteins had as much evidence. The

lack of evidence for most working set proteins is likely a contributing factor in the

classification. Of the working set proteins we believe should be promoted, 45%

had at least 2 other types of evidence. It appears that peptide mass spectrometry

provides an orthogonal source of information that improves the identification of a

trusted proteome.

Deep Versus Broad Sampling

In a previous study [48], we demonstrated that broad sampling of a diverse

set of tissues improves coverage of the proteome by MS/MS data. In this study,

however, we evaluate the benefit of deep sampling of a small collection of tissues.

In this study, we used a more conservative scoring scheme compared to the previous

study. To create a fair comparison, we re-scored the Arabidopsis peptides using an

identical procedure to maize (see Methods) resulting in the identification of 128,432

distinct peptides. Compared to the arabidopsis study, the maize study analyzed 5

times more spectra, but identified only 50% more peptides. In part, the diminished

return in maize is due to the much larger maize genome, which resulted in a protein

sequence database 10 times larger than the arabidopsis database. Larger search

databases are known to reduce sensitivity. However, the reduction in the number of
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peptides is also due to repeated sampling of the same peptide species. We observe

on average 12 clustered spectra (24 raw spectra) supporting each peptide in our

maize study, compared to 19 raw spectra per peptide in Arabidopsis.

While broad sampling helps increase the diversity expressed peptides, deep

sampling allows us a robust, label-free quantification of each peptide. A Maize

Protein Atlas describing the comparative abundance will be presented in a com-

panion study [118]. In addition to deeper sampling of each peptide, we also observe

greater coverage for the identified proteins. Among all maize proteins that have at

least one identified peptide (unique or shared), we achieve 27% amino acid coverage

on average (13 peptides per protein). In contrast, in arabidopsis we only achieved

20% coverage on average (9 peptides per protein). Multiple peptides identified

for a protein can dramatically improve the spectral-count based quantification of

proteins, and help in improved gene structure annotation.

About 25% of the peptides (49,778 peptides) do not map uniquely to a lo-

cation, likely due to the presence of duplicated gene copies in maize. We group sets

of indistinguishable proteins into protein groups (see Methods). These ‘paralogous

locus groups’ of proteins are discussed below.

4.2.2 Discovery of Novel Events

Peptide sequences which do not match to either the filtered gene set or the

working gene set are considered novel peptides. We identify 24,782 novel peptides

matching to 91,059 locations in the genome. Many of the novel peptides match to

a single location in our genomic databases (16,659, 67.2%). Upon clustering the

peptides, we identify 6,384 novel annotation refinement events. We require that

each event have at least one uniquely-located peptide, but only a single peptide

is required to constitute an event. The identified events by type and the number

of affected genes are shown in Table 4.1. Using the peptides from the filtered

novel events, combined with over 2 million Zea mays ESTs, 875 million RNA-Seq

reads, and the mappings of proteins from rice and sorghum, we generated putative

gene structures using the ab initio tool, Augustus [69]. The gene predictions and

proteogenomic evidence, together with the Maize Protein Atlas, can be found at
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Table 4.1: Each event is defined by a collection of peptides and a protein. There-
fore, it is possible for a single collection of peptides to count towards multiple
events on different proteins.

Event Type Events Identified Genes Affected
Antisense Translation 1,019 812
Frame Change 678 507
Exon Extension 520 371
Novel Exon 624 440
Novel Splice 69 48
Translated UTR 706 504
Gene Extension 1066 799

http://maizeproteome.ucsd.edu/

Our stringent eventProb cutoffs and the requirement for at least one uniquely

located peptide to be present in each event, results in 7,572 novel peptides (30.6%

of the 24,782 novel peptides identified) contributing to accepted events. Nearly

half of the peptides not contributing to events map to two or more genomic lo-

cations (45.22%), a much higher fraction than shared peptides among all novel

peptides (34.78%). We believe that this prevalence of shared peptides is a result

of the high level of sequence redundancy in the genome. While we cannot localize

the protein expression to a single locus, we find multiple loci which share most of

their peptides (See results for Paralagous Locus Groups).

4.2.3 Revision of Annotated Genes

Using the filtered novel events as additional evidence, we constructed re-

vised gene models with peptide support for 733 working set genes and 1,256 filtered

set genes. We used augustus to predict updated gene models, using novel peptides,

ESTs, RNA-Seq, homology with rice and sorghum, and the current gene models

as hints. For 1,989 genes, we predicted at least one novel transcript supported by

the novel peptides.

A key challenge in genome annotation is distinguishing pseudogenes from

protein coding genes. Pseudogenes are believed to be genes which have lost their

capacity to produce proteins, and therefore are considered non-functional. We

find annotated pseudogenes that are incorrectly labeled. It is likely that many of
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Figure 4.1: We observe 2 peptides matching to the annotated pseudogene, GR-
MZM5G883336, as well as 25 novel peptide sequences downstream of the gene.
The predicted sequence extends the annotated gene by over 400 amino acids. Our
peptides confirm that this locus is translated and should be reclassified as protein-
coding.

these loci were labeled as pseudogenes because they are short or show little ho-

mology with other proteins. As an example, gene GRMZM5G883336 is annotated

as a pseudogene in the 5a.59 gene annotation. We propose that this gene is in

fact translated, as we identify two peptides that match the protein produced at

this locus, one of which matches uniquely. We also observe 25 distinct, uniquely

located novel peptides downstream of the gene (Figure 4.1). We predict that GR-

MZM5G883336 should be extended in the 3’ direction by 419 amino acids. The

alignment of the annotated gene sequence and the predicted gene sequence is shown

in Figure 4.2.

Determining whether a translated region is a single gene or two proximal

genes is a difficult problem for gene annotation. We observe cases where two or

more genes were annotated, but given the evidence we predict a single gene. For

example, two peptides are identified in the 5’ UTR of GRMZM5G881353 giving

evidence for an extension of the protein coding region towards GRMZM5G831724.

Given these peptides, we predict an updated gene model that merges GRMZM5G83

1724 and GRMZM5G881353. In addition, we observe peptides downstream of the

genes, suggesting a gene extension. Figure 4.3 shows the two genes as well as

the novel prediction. Both GRMZM5G831724 and GRMZM5G881353 are anno-

tated as pseudogenes, however our peptide evidence suggests that these loci are

translated.

The predicted protein sequence has significant sequence similarity (evalue

= 2E-173) to annotated maize protein GRMZM5G376743 P01. In Figure 4.4 the

alignment between the predicted sequence and GRMZM2G376743. The sequences
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Figure 4.2: The predicted sequence contains the annotated sequence, and adds a
419 amino acid extension to the C terminus of the protein.

Figure 4.3: We observe 44 peptides (green and purple) uniquely matching to
two annotated genes, GRMZM5G881353 and GRMZM5G831724. In addition, we
observe 27 uniquely located novel peptides (blue) in the UTR of GRMZM5G881353
as well as downstream of both genes. We predict a single gene at this location which
is consistent with all peptides.
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are sufficiently distinct that we can uniquely map the peptides to the refined locus.

Using blastp against the non-rendundant protein sequence database (nr) at NCBI,

we found that the single gene model is conserved in Brachypodium distachyon.

As next generation sequencing of RNA molecules becomes a popular and

inexpensive assay for expression, we will doubtless see an increase in genome an-

notation studies incorporating it. For protein coding genes, however, determining

the frame of translation for an exon is a difficult problem, one which is not unam-

biguously solved by transcriptomics. Instead, proteomics can be used to address

this need. We identify novel peptides at 507 genes suggesting that the annotated

frame is incorrect.

For example, we identify 12 uniquely located peptides matching GRMZM2G

121186 P01, a nucleosome/chromatin assembly factor group A (nfa102). In addi-

tion, we find 41 novel peptides overlapping the annotation but in a different frame.

The proposed revision is consistent with the N terminus of the annotated protein,

but the final two exons, consisting of 78 altered amino acids, are updated slightly.

The alignment between the revised protein and the annotated protein is shown in

Figure 4.5.

The coordinates of the predicted sequence do not differ significantly from

the annotation. In fact, the prediction contains a late splice donor site, extending

exon 9 by 16 nucleotides (See Figure 4.6). Exon 10 in the prediction is identical in

coordinates to exon 10 in the annotation, however, the difference in frame results

in a dramatically different C terminus.

Discovery of Novel Genes

We identified 1,702 novel gene events. Occasionally, Augustus chooses to

split some novel gene events into two or more distinct gene model predictions

based on the available evidence. In total, augustus predicted 3,713 novel protein

sequences in 3,676 genes. 1,113 (29%) of the novel proteins in 1,102 genes were fully

consistent with at least one of the uniquely-located peptides at the locus. Of these

proteins, 785 were only supported by peptides and would not have been identified

in a transcriptomic-based annotation pipeline. We used blastp to identify paralogs
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Figure 4.4: The predicted sequence is aligned to paralogous protein, GR-
MZM2G376743 P01. Peptides that match to the annotated protein GR-
MZM831724 as well as the newly predicted protein are shown in purple. Peptides
matching both GRMZM5G881353 and the predicted sequence are shown in green.
Novel peptides are highlighted in blue. For each peptide, amino acid differences
prevent the peptide from matching GRMZM2G376743 P01.
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Figure 4.5: The predicted sequence is aligned to the annotated sequence at gene
GRMZM2G121186. The N terminal portion of the prediction is consistent with
the annotation, and we observe 12 peptides matching this region. We also identify
41 distinct novel peptide sequences matching the C terminus of the predicted
sequence, which is in a different frame from the annotation.

Figure 4.6: The locus GRMZM2G121186 with both the annotated gene model
and the predicted gene model shown. The predicted gene model is only slightly
different in coordinates from the annotated model, but even the small different in
coordinates causes a large change in over 70 amino acids.
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of the novel protein sequences in the annotated maize proteome. We found 302 of

the 1,113 peptide-supported novel proteins that have significant sequence similarity

to a known protein in maize (evalue < 1E-10), suggesting that these new proteins

are extensions of gene families. Blastp was also used to identify conserved domains

and protein homologs between predicted protein sequences and nr.

On chromosome 3, we identify a novel gene with strong sequence similarity

to maize protein GRMZM2G090086 P01 (evalue = 4E-88). While the annotated

protein is not functionally annotated at MaizeSequence.org, we believe this protein

is translocase subunit SecA from its similarity to the protein by that name (Gene

ID: 100841935) in Brachypodium distachyon (evalue = 0.0). Figure 4.7 shows

the alignment between our predicted novel protein and the closest maize protein,

GRMZM2G090086 P01. The four identified novel peptides, bolded and highlighted

in blue, are unique to this genomic location. The amino acid differences between

the two proteins support the assignment of these peptides to the novel protein.

The amino acid differences between the two proteins at the identified peptides

are bolded and highlighted in red on GRMZM2G090086 P01. We note that a

Zea mays protein in nr (Gene ID: 542347 tha1) has a near perfect match to our

predicted protein, but appears in a truncated form. Our predicted protein contains

495 amino acids, while the protein in nr has only 291 amino acids.

We identify a locus on chromosome 1 that bears sequence similarity to an-

notated maize protein GRMZM5G899800 P01 (evalue = 0.0). Again, this protein

does not have a functional annotation, but similarity to a protein in Oryza sativa

(Gene ID: 108863044, evalue = 0.0) suggests that these proteins are Structural

Maintenance of Chromosomes (SMC) domain containing proteins. In fact, the rice

protein suggests that the annotated maize protein, GRMZM5G899800 P01 may be

truncated. The alignment of our predicted protein, GRMZM5G899800 P01, and

the SMC N terminal domain containing protein is shown in Figure 4.8. The seven

identified peptides, bolded and highlighted in blue, are unique to this genomic

location. We also observe 21 peptides uniquely matching GRMZM2G899800 P01,

although if our predicted sequence was promoted to a gene, these peptides would

be shared across both loci.
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Figure 4.7: The alignment of a novel protein to the closest maize protein,
GRMZM2G090086 P01.
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Figure 4.8: The alignment of a novel protein to the closest maize protein,
GRMZM2G899800 P01, and a functionally annotated rice protein.
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Antisense Overlapping Translation

Overlapping natural antisense transcripts (NATs), once believed to pre-

dominantly exist in bacterial and viral genomes [119], have recently been observed

in many eukaryotes [120] including humans [121] and Arabidopsis thaliana [83].

While most overlapping NATs are identified by transcriptional evidence [83, 122]

and homology [123], there are few documented cases of overlapping NATs in which

both transcripts are translated. There are may hypotheses attempting to explain

how overlapping genes are regulated, most of which suggest that the simultane-

ous expression of both genes is unlikely. One model suggests that the mRNAs

produced at overlapping antisense loci are complementary and therefore likely to

produce double stranded RNA, preventing translation of either locus [124]. An-

other hypothesis points to the transcriptional complexes physically blocking one

another when transcription on both strands is attempted [125].

In the maize 5a.59 annotation, there are 10,724 overlapping anti-sense gene

pairs in the working gene set. Some large genes overlap multiple genes on the

opposite strand, resulting a total of only 20,159 genes overlapping another gene on

the opposite strand. We observe 3,470 overlapping pairs in the 5a.59 annotation

where one of the genes is expressed in our data. We also observe 230 overlapping

pairs where both genes are expressed.

Upon examining our novel peptides we observe 812 genes with novel pep-

tides within 3 kilobases of the transcribed region, but on the opposite strand.

Among these cases, we observe 243 genes with peptides also matching the gene on

the annotated strand.

We find an unusual case where the 5a.59 genome annotation indicates over-

lapping anti-sense protein coding genes. Our novel peptides indicate that not only

are both loci translated in seed tissues, but one of the annotations is incorrect.

On chromosome 1, gene GRMZM2G149751 is annotated on the forward strand,

while gene GRMZM2G449274 is annotated on the reverse strand. The transcribed

regions of these two genes overlap. We observe 282 distinct peptide sequences

matching to GRMZM2G149751 covering 85% of the one of the six annotated iso-

forms with the longest coding region (GRMZM2G2G149751 P05). We observe no
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Figure 4.9: The genome browser view of a revised gene locus. GRMZM2G149751,
on the forward strand, is confirmed by 282 distinct peptide sequences matching
only this locus (highlighted in green and labeled ‘Peptides’). The novel peptide is
shown on the reverse strand. We predict a novel protein coding gene on the reverse
strand that is consistent with this peptide, but distinct from the annotated gene
GRMZM2G449274.

peptides that can be localized to GRMZM2G449274.

We observe a novel peptide on the reverse strand, overlapping the intron

from GRMZM2G449274. We predict a novel gene that is consistent with the

novel peptide (Figure 4.9). The predicted protein indicates that the gene model

at GRMZM2G449274 has a protein isoform consisting of both exons, but also

including a read through of the annotated intron. The alignment of the predicted

protein to the single protein product of GRMZM2G449274 is shown in Figure 4.10

While the prediction is based on a single peptide sequence, our data contains

strong support for the peptide identification. The peptide is identified by spectra

at two charge states. Figures 4.11 and 4.12 show the annotated spectra. The

spectra in the images represent the clustered spectra produced by MSCluster [77]

(see Methods), each clustered spectrum represents a single raw spectrum. The

small number of identified spectra could indicate that the predicted protein is

expressed at a low level, and only in the germ kernel. The average length of fully

tryptic peptides in the predicted protein is only 7 amino acids, which is on the

small side of the species identifiable by mass spectrometry. In contrast, there is

abundant spectral evidence for the forward strand annotation, GRMZM2G149751

in endosperm, embryo, germ kernel, and pericarp/aleurone.
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Figure 4.10: The alignment of the predicted sequence to the protein product of
GRMZM2G449274. The single novel peptide is highlighted in blue. The missing
portion of the sequence of GRMZM2G449274 is aligned to the translated intron
in the predicted sequence.



67

Figure 4.11: The annotated cluster spectrum from maize germ kernel (file 104,
scan number 6176). This spectrum is annotated with the peptide in charge state
2.
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Figure 4.12: The annotated cluster spectrum from maize germ kernel (file 194,
scan number 8342). This spectrum is annotated with the peptide in charge state
3.
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4.2.4 Identification of Paralagous Locus Groups

Among annotated maize working set proteins, we identify 563 protein groups.

Each protein group contains at least 2 proteins each arising from distinct genes. All

proteins in a protein group are indistinguishable given the identified peptides. We

find 1,899 proteins in the 563 groups defined by 2,992 shared peptides. Though we

cannot determine which specific proteins from each protein group are expressed, we

are confident that at least one of the proteins in each group exists in the samples.

We expect a similar phenomenon to exist among novel peptides. We create

a bipartite graph to identify novel loci that share peptides as described in Methods.

In total, our graph contains 3,613 peptides in 3,301 connected components. From

the collection of paralogous locus groups, we selected 205 groups that have 2 or

more peptides. We identified 55 locus groups containing 822 loci in which all of the

loci were at least 3 kilobases from the nearest genes (equivalent to the criteria used

to define novel gene events). Not unexpectedly, we find that many of the loci (444)

overlap annotated repeats (downloaded from maizesequence.org). Upon analysis

using blastx, aligning the nucleotide sequence from the loci to the non-redundant

protein database, we found that the loci are likely unannotated retrotransposons.

4.3 Discussion

We presented a probabilistic framework, the eventProb, for scoring anno-

tation events derived from mass spectrometry data. Proteogenomic studies, for

which broad and deep sampling of the proteome is a key goal, generate enormous

data sets. False positive identifications in these experiments arise from the millions

of hypotheses that are being tested, one for each peptide-spectrum match. While

controlling the false discovery rate at the level of the peptide-spectrum match ad-

dresses this problem, errors may be propagated and amplified by protein or event

inference. We demonstrated that our eventProb can be used to limit the false

discovery rate at the refinement event-level without sacrificing sensitivity.

Zea mays, with a human-scale genome and significant sequence redundancy,

presented a challenging target for our proteogenomic methods. The parallization
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of the database search by InsPecT was crucial to making the analysis tractable.

Engineering alone, however, was insufficient to address the problem of repetitive

genomic regions. Instead we extended the idea of protein groups from protein

inference to enable the identification of paralagous locus groups. While we cannot

claim which of the loci are expressed, the identification of these groups improves

our understanding of the complement of protein sequences which can be expressed

by a genome.

By applying our semi-automated genome annotation method to Zea mays,

we demonstrated that proteomics provides a much need line of evidence for the

identification of protein-coding genes. Over 70% of the novel protein sequences

supported by the peptide data were lacking corroborating transcriptomic and ho-

mology evidence. However, with current mass spectrometry technology it would

be impossible to perform a complete genome annotation. The dynamic range of

proteins spans 10 order of magnitude, well beyond the range measurable by mod-

ern mass spectrometers. Mass spectrometry is best utilized as a necessary and

orthogonal source of genic information, to be coupled with transcriptomics and

homology. In future work, we plan to add breadth to our mass spectrometry

analysis by sampling additional tissues including leaves, roots, and reproductive

organs which has been shown to reveal a distinct cross section of the detectable

proteome [48].

4.4 Methods

A total of 109 million tandem mass spectra were acquired as described pre-

viously [118]. To reduce the computation resources required to analyze the spectra,

we first clustered the raw spectra using MSCluster [77]. Clustering collapses the

multiple spectra acquired for a single peptide into a single spectrum with a greater

signal to noise ratio. In addition, we only analyzed clustered spectra with quality

score larger than 0.2 as determined by PepNovo [126]. All subsequent analyses

were performed on the clustered, quality filtered spectra.

First, the spectra were searched against a database containing annotated
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protein sequences as well as putative protein sequences. Using the putative protein

sequences in the database, we will identify novel protein coding regions. The

six-frame translation of the genome has previously been used with great success

to capture novel coding regions for proteogenomics [48]. To keep the six-frame

translation to a reasonable size, we only accepted translated reading frames with

length of 40 amino acids greater. In eukaryotic organisms, spliced peptides provide

a wealth of information about the structure of a gene. Whereas the six-frame

translation does not include peptides which span splice boundaries, an exon splice

graph [16] can compactly represent many putative splice junctions.

The exon splice graph takes many putative gene predictions, including alter-

nate transcripts for the same gene that will include significant amounts of sequence

redundancy. The graph construction routine then merges transcripts which share

sequence, so that every exon prediction appears only once in the graph. To con-

struct the exon splice graph for Zea mays, we downloaded approximately 2 million

maize cDNA sequences from NCBI RefSeq (2010.10.07) and mapped them to the

maize genome release RefGen v2 using BLAT [127]. We used the ab initio gene

prediction tool, Augustus [69], to interpret the mappings and produce a set of

gene predictions. The predictions were produced to include many structures for

the same gene. The splice graphs constructed from this input were combined with

the six-frame translation to create a database of putative protein sequences.

All tandem mass spectra were searched against the putative protein se-

quence databases and the annotated protein database (5a.59) using InsPect [7].

The scoring method used by InsPecT is based on a delta-score, the difference is

match score between the best peptide and the second best peptide for a spectrum.

Our databases contained over 2 billion amino acid, causing the delta-score to fail

at distinguishing true and false identifications. Instead, the top 10 candidate pep-

tides ranked by InsPecT were re-scored using MS-GF [60]. The highest scoring

peptide was identified for each spectrum, and results were filtered to a 1% false

discovery rate (FDR) [58]. A decoy database constructed from reversed sequences

was used in the FDR calculation. We then removed peptides with more than one

missed trypsin cleavage site. The resulting collection of peptide-spectrum matches
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had an estimated FDR of 0.4% with a peptide-level FDR of 3%.

Peptides were then labeled as either ‘known’, meaning they can be derived

from an annotated protein sequence, or ‘novel’. Novel peptides do not match an

annotated protein sequence. In a few cases, a novel peptide can be modified by a

single amino acid change to create a known peptide. Several amino acid changes

do not alter the mass of the peptide (e.g. Isoleucine and leucine or lysine and

glutamine) or can be explained by small chemical modifications (e.g. deamidated

asparagine and aspartic acid). If by making a single amino acid change, the novel

peptide matches a known protein, it is removed from the set of novel peptides. By

our definition, we found 24,782 novel peptides.

4.4.1 Validation of the Known Proteome

Peptides that match to annotated proteins confirm the translation of the

protein. We distinguish between three ways in which proteins may be selected.

A protein may be selected if it has at least one peptide that matches uniquely

to the protein. In the case of protein isoforms from the same gene, there may

be no peptide that is unique to each isoform. However, there may be a locus-

specific peptide which maps to only proteins produced at that gene. In this case,

we say that the locus, or gene, was selected. Finally, we group together proteins

which are not produced at the same locus, but are indistinguishable given the

identified peptides. Following the parsimony rule, proteins which match a subset

of peptides matched to another protein are removed. Shared peptides that match

to a previously selected protein are removed before identifying groups.

4.4.2 Defining Novel Events

Novel peptide sequences were then mapped to all locations in our putative

protein databases. Both the six-frame translation database and the exon splice

graph contain meta-information denoting the location on the genome from which

each amino acid was derived. Mapping to the databases, instead of the genome di-

rectly, introduces a bias towards regions that have sufficiently large reading frames
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Table 4.2: Event types and descriptions

Event Type Description
Antisense Translation The peptide cluster appears within 3kb of the anno-

tated transcript, but is on the reverse strand.
Frame Change The peptide cluster overlaps an annotated exon, but

in a different frame of translation.
Exon Extension The peptide cluster overlaps an annotated exon, but

extends beyond the exon boundary.
Novel Exon The peptide cluster falls with the intron region of an

annotated transcript.
Novel Splice The peptide sequences map to exons, but the indicated

splice junction is not in the annotated transcript.
Translated UTR The peptide sequences fall within the untranslated re-

gion (UTR) of the transcript.
Gene Extension The peptide sequences fall within 3kb of the annotated

transcript.

or have genomic signals indicating translation. We adopted this strategy to pre-

vent the identification of false positive locations that would be created by allowing

all possible splicing patterns. On average, a novel peptide matched to 3.67 loca-

tions in the genome. We found that novel peptides often co-located with other

novel peptides. For gene annotation, the most important step is interpreting the

peptide clusters to identify refinements to the current annotation. We created an

automated method for interpreting and scoring the suggested refinements. We call

these refinements, ‘novel events’.

Each novel event indicates an update to a specific annotated protein. The

exception to this is novel genes, which are refining the annotation as a whole,

not a specific gene. In our method, we define seven types of novel events besides

novel genes. The event types and a brief description is provided in Table 4.2.

The events are ordered by precedence so as to prevent a novel peptide cluster

from being interpreted as two distinct types of events while not providing any new

information.

Precedence is assigned to remove ambiguity in the identification of events.

For example, a peptide may extend an exon and may also be in a discordant

frame. In these cases, the ‘Frame Change’ event takes precedence. All events
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are also defined with reference to a particular transcript. A single gene may have

several splice isoforms, and a novel exon event may be defined using the same set

of novel peptides for each distinct splice isoform.

4.4.3 Scoring Novel Events

The quality of an event is determined based on the quality of the origi-

nal peptide identification, the quantity of identifications to each peptide, and the

quantity of peptides supporting the event. The score of an event, is computed

using a bayesian framework. Consider the event, E, shown in Figure 4.13. We

wish to compute the probability that E is correct, Pr(E). Event E has two sup-

porting peptide locations, and we assume that the identification of distinct peptide

locations is independent. Therefore,

Pr(E) = 1−
∏

l∈Loc(E)

(1− Pr(l))

where Loc(E) is the set of peptide locations supporting E, and Pr(l) is the

probability of the location l being translated. Intuitively, this equation explains

that the probability of an event being correct is the probability that at least one of

the locations in the event is expressed. Pr(l) is dependent on the confidence in the

peptide sequence identification, and the number of locations the peptide matches

in the genome. In 4.13, the blue peptide is uniquely located, only appearing at the

location in the event E. However, the green peptide appears in two locations. Since

either location is equally likely to be correct, we evenly distribute the confidence

in the peptide sequence identification across the two locations. We compute the

probability of a location l that matches peptide p being translated as

Pr(l) =
1

mp

Pr(p)

where mp is the number of genomic locations for peptide p. We chose to

consider each location of a peptide equally, but the distribution of probabilities

could be extended to take into account neighboring peptides or genomic signals.

The probability of a peptide sequence identification being correct, Pr(P ), is in-
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Figure 4.13: An event E is a ‘Novel Exon’ event and is supported by 2 peptides.
One of the peptides also maps to the genome at a location distal to E. The unique
peptide was identified by 2 spectra, while the degenerate peptide was identified by
1 spectra.

formed by the quality of the spectra identifying the peptide. Whereas we could

treat the identification of distinct peptides as independent events, we cannot make

that assumption of multiple spectra identifying the same peptide. Instead, we con-

servatively evaluate the probability of the peptide sequence being correct as the

highest probability of a spectrum matching the peptide.

Pr(p) = maxs∈Spec(p)Pr(s, p)

where Spec(p) are the set of spectra matching p and Pr(s, p) is the prob-

ability of the spectrum s being generated from p. We estimate the Pr(s, p) using

the local false discovery rate (lFDR) [59] of the match. The lFDR is a measure

of the rate of false discoveries among peptide-spectrum matches of similar quality.

In our pipeline, we estimated match quality using MS-Generating Function [60],

and computed the FDR in fixed-width bins with a minimum of 100 matches per

bin. The lFDR of the match of p and s with MS-GeneratingFunction Spectral

Probability q is simply the lFDR in the bin containing the score q. We then can

compute the probability of a peptide-spectrum match being correct as

Pr(s, p) = 1− lFDR(q)
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We find that our definition of the probability of an event, or eventProb, has

several desirable qualities. First, it eliminates the need to choose an arbitrary, and

experiment dependent, cut-off for the minimum number of peptides required to

trust an event. An event with a single high confidence peptide will receive a high

eventProb. This makes the eventProb more robust to varying sizes of experiments.

Secondly, it enables us to evaluate events which have no uniquely located peptides.

In order to choose appropriate eventProb cutoffs for the events, we evaluated

the both its sensitivity and specificity. To measure sensitivity, we simulated the

removal of proteins from the known proteome, and performed event finding anew

with the peptides from the removed proteins now marked as novel. We repeated

the trial 10 times, each time selecting 1000 proteins to remove. We only removed

proteins for which we identified at least one uniquely mapping peptide, the same

criteria used for event identification.

We measured specificity by inserting decoy peptide sequences into the set of

novel peptides. At the estimated 3% peptide-level FDR, we expect approximately

7,000 false peptides to appear in our dataset. If the incorrect peptide identifica-

tions occurred at random among the known and novel identifications, then at the

estimated 3% peptide-level FDR, we expect 743 novel peptides to be incorrect.

However, since our search database contains more novel sequences than known

protein sequences, we expect more incorrect peptides to occur among the set of

novel peptides. To be conservative, we assume all of the incorrect peptides occur in

the novel peptide set. To estimate our specificity in event identification, we created

7,394 decoy peptides by selecting random genomic locations, choosing a peptide

length from the distribution of observed peptides, and translating the genomic lo-

cation. To make the calculation more tractable, we restricted our decoy peptides

to those appearing at no more than 500 locations in the genome. Each decoy pep-

tide was assigned a lFDR sampled from the distribution of expected decoy PSMs

at observed lFDRs. Using the combination of novel peptides, and our decoy novel

peptides, we performed event identification. We labeled events composed solely of

decoy peptides as decoy events, and computed an event-level FDR.

We found that the behavior of the eventProb depends on the type of event,
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and for our pipeline we chose several eventProb cutoffs which correspond to 90%

sensitivity. The eventProb cutoff for Novel Gene events has the highest error

rate (eventProb >= 0.95, sensitivity = 0.9, FDR = 8.75%) because the chance of

finding co-located decoy peptides in a gene desert is relatively high. In contrast,

Gene Extension events, Translated UTR events, and Antisense Translation events

require co-located peptides which are proximal to a known gene. This is a more

difficult scenario to find by chance, and therefore at the same sensitivity, the FDR

is lower (eventProb >= 0.951, sensitivity = 0.9, FDR = 5.93%) . The most relaxed

eventProb cutoff (eventProb >= 0.788, sensitivity = 0.9, FDR = 4.88%) is reserved

for events with low probability of occurring by chance. These include events that

require peptides to appear very close to one another; Novel Exon events, Frame

Shift events, Novel Splice events, and Exon Boundary events. We allow a higher

FDR among novel gene discoveries in order to achieve good sensitivity. We expect

that many of the erroneous discoveries will be removed at the full gene model

prediction stage.

4.4.4 Peptide degeneracy

In higher eukaryotes, we observe many peptides that match to multiple

genomic locations, termed ‘peptide degeneracy’ in the mass spectrometry com-

munity. Zea mays has undergone 2 whole genome duplications, and over 80% of

the genome is composed of transposable elements [17]. In our proteomic analysis

of Maize, we found that 31.14% of novel peptides matched two or more genomic

locations. In the identification of events, described above, we found 61,902 clus-

ters of novel peptides containing only degenerate peptides. Since we only accepted

events with at least one uniquely located peptide, these clusters were discarded

from consideration as novel events.

In the set of proteins identified in the known proteome, we observe small

groups of paralagous genes which share peptides. Among novel peptide clusters,

we define sets of clusters which share many peptides as paralogous locus groups.

To identify the groups, we construct a bipartite graph with one class of nodes

representing clusters and the other class of nodes representing peptides. We add
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an edge between a peptide node and all of the locus nodes in which the peptide

appears. To reduce the graph to only shared peptides, we remove all loci which

have a unique peptide as well as all shared peptides from the removed loci. What

remains is a collection of connected subgraphs, which we label as paralagous locus

groups.

4.4.5 Gene Model Prediction

We generate full gene models based on the events that passed our eventProb

filters. We used Augustus to produce the gene models due to its ability to accept

external evidence. In addition to the peptide evidence, we also provided Augus-

tus with evidence from transcriptomics (2 million maize cDNA sequences from

NCBI RefSeq (2010.10.07) and 875 million RNA-Seq reads [128, 129]). We also

included evidence from homology by mapping proteins from Oryza sativa (genome

annotation version 7 containing 66,338 proteins) and Sorghum bicolor (genome an-

notation version 1.4 containing 34,496 proteins). Proteins and ESTs were aligned

to the maize genome using BLAT [127] with default parameters. RNA-Seq reads

were aligned using Bowtie version 0.12.7 with default parameters and TopHat ver-

sion 1.4.1. We accepted only reads which mapped uniquely. For gene refinement

events, we also include the currently annotated gene model from the 5a.59 protein

set as a hint.
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Chapter 5

Sequencing whole antibodies

5.1 Introduction

Database-search algorithms, such as Sequest[130], Mascot[5], and InsPecT[7],

are the primary workhorses for the identification of tandem mass spectra. How-

ever, these methods are limited to the identification of spectra whose peptides are

present in the database. It is well recognized that curated protein databases are, at

best, an imperfect template for the extant peptides. For example, peptides arising

from novel splice-forms or fusion proteins would be difficult to identify using most

protein databases.

Recent developments have extended the identifications to peptides that have

diverged from the database entry. By allowing divergence, the methods enable

the identification of small-scale mutations, and post-translational modifications,

albeit with some loss of sensitivity[95, 131, 97, 132]. Among these tools, MS-Blast

is able to determine a homologous protein in the related species, but does not

report the (diverged) protein in the target organism. The other tools consider

variations, including modifications, and mutations, in reconstructing the target

sequence. However, these tools will not work if the template (homologous peptide)

is missing in the database, or comes from a novel splice-form. Additionally, these

tools do not attempt to reconstruct the entire protein target sequence. De novo

identification of peptide sequences[126, 133] is another possibility, and does not

require a protein database. However, these methods are prone to error.

79
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The issue of discovering spliced peptides (more generally, eukaryotic gene

structures) has been investigated using a combination of approaches, loosely termed

proteogenomics. Often, these approaches start by creating specialized databases

of splice forms, combining evidence from protein (ex: NCBI nr[134]), and cDNA

sequencing[135, 62, 136]. To discover novel splicing events, the tools also search

databases derived directly from the genome such as a 6-frame translation or a

compact encoding of multiple putative splicing events[47, 48, 16, 66]. For exam-

ple, Castellana, et al. achieved this by constructing a database represented as a

graph[16], containing many putative exons and exon splice junctions.

However, this approach also has its shortcomings. The putative gene models

are constructed based on prior assumptions about splice junctions, and proximal

exons. In addition, recent genomic discoveries point to extensive structural vari-

ation in the genome, in the form of large scale deletions, insertions, inversions,

and translocations on the genome that might fuse different genic regions, or cre-

ate non-standard splice-forms[137, 138]. Indeed, many cancers are characterized

by such large scale mutations of the genome[19]. A second example of variation

that confounds standard database identification techniques are immunoglobulins,

or antibodies. Here, recombination events fuse disparate regions of the genome,

often inserting non-templated sequence, and creating many novel gene structures

in every individual. The common theme in all of the scenarios described is that

it is not possible to maintain all possible encodings in a database to allow for a

standard proteogenomic search.

In this paper, we ask if the imperfect template provided by the genome can

be still used as a basis for peptide (and protein) identification. We are motivated

in our approach by the work of Bandeira, et al [99], who could sequence monoclonal

antibodies de novo, not making use of a database at all. In their method, an all-to-

all comparison of spectra allows the creation of spectral contigs, similar to sequence

contigs in shotgun sequencing projects. The sequences of the spectral contigs are

determined de novo. Using full antibody sequences as references, they are able to

order the contigs and infer the missing sequence. Because the construction and

sequencing of the contigs is performed completely de novo, Bandeira, et al are able
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to sequence highly divergent proteins or proteins for which there is no database.

However, the ordering of the sequenced contigs relies on a database of full antibody

sequences for mapping. Sequences that cannot be mapped to an antibody in the

database may be discarded. In contrast, the templates used in our method are

not full proteins, but substrings of proteins, such as the V,J, and C regions (or

exons), that are combinatorially chained together to best explain the spectrometric

evidence.

Recently, Liu, et al [100] developed a method, Champs, for sequencing a

divergent protein using a homologous protein database. In their method, a single

reference protein is chosen and the de novo interpretation of spectra are mapped

to the reference. They are able to sequence a protein with high accuracy using a

reference protein with only 77% similarity to the target. While Champs is able to

map peptides that differ from the reference by one or two amino acids, it does not

look for large insertions or deletions in the target sequence, as in a novel splice

form. In our work, use of the database as an incomplete template lends additional

confidence to the target sequencing without substantially limiting the ability to

identify diverged sequences.

Here, we describe a novel method for template proteogenomics, imple-

mented in a tool, GenoMS. GenoMS takes as input a collection of spectra

(acquired from multiple protease digests), and a collection of imperfect templates

and constraints (defined in Experimental Procedures). It returns a target protein

sequence. At the heart of the approach is a novel method of extending a target

amino acid sequence, by recruiting and aligning spectra that match it partially.

By using spectral data-sets with multiple protease digests, we are able to identify

many overlapping peptides. We then align the overlapping spectra and produce

an extended consensus spectrum. We are able to extend 89% of the target amino

acid sequences. Over 40% of these extensions are 3 or more amino acids.

We test the performance of GenoMS in reconstructing monoclonal an-

tibody sequences. Antibodies are a interesting test case owing to their highly

variable nature, and no complete antibody database exists.. They are composed of

four polypeptide chains; two identical heavy chains and two identical light chains
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Figure 5.1: Bottom: The mature immunoglobulin protein structure contains two
identical light chains and two identical heavy chains. The germline heavy chain
and light chain loci (shown top) contain many different gene segments. During
heavy chain gene rearrangement, in B cell differentiation, one V, one D, and one
J segment gene segment are combined. For light chain gene formation, a V and
a J gene are combined. The combined VDJ, or VJ, segment are joined by splice
junction to a constant region.

(Figure 5.1). An antibody’s preference and efficiency in the detection and removal

of encountered antigens is heavily dependent on its amino acid sequence. Con-

sequently, antibodies are extremely diverse. A principal way in which antibody

diversity is achieved is through genome rearrangement of the germline locus (Fig-

ure 5.1). An antibody’s heavy chain is comprised of 4 gene segments; a variable

(V) segment, a diversity (D) segment, a joining (J) segment, and a constant (C)

segment. Similarly, the light chain is composed of 3 gene segments; a V segment,

a D segment, and a C segment. Each segment is chosen from potentially hundreds

present in the genome, and many combinations of gene segments may be joined.

Imprecise boundaries with the possible insertion of additional nucleotides allows

the creation of many sequences from a single germline locus. Somatic hypermuta-
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tion also plays a role in achieving antibody diversity. While antibody sequence may

be determined by sequencing the DNA of the source cell line, few direct protein

sequencing options exist when the source is unavailable or for ensuring antibody

integrity. The antibody structure provides enough complexity to serve as a test

case for template proteogenomics.

Using the technique of extending the peptide sequence without reference to

a database, we are able to reconstruct the full protein sequence for the antibody

raised against the B- and T-cell lymphocyte attenuator molecule (aBTLA)[99].

We also test our approach by using an available data-set of spectra acquired using

multiple protease digests for bovine serum albumin (BSA). The sequence of BSA

is determined using the the bovine genome as a template database. Both chains

of aBTLA were sequenced using un-rearranged gene segments as templates. An

independent reconstruction of the aBTLA heavy chain was performed using the

un-rearranged heavy chain genomic locus as a template.

5.2 Methods

Our goal is to reconstruct the target amino acid sequence, using a chain of

templates. Define a template to be an amino acid sequence that may be present

in the target protein, though possibly in a mutated or modified form. The target

protein might contain multiple templates chained together. We provide additional

abstraction to model constraints on the templates. First, the user can specify a

partial order t1 → t2 to enforce that template t1 must precede t2 in the chain.

Second, the user can provide mutual exclusion constraints on a pair of templates,

(t1, t2), to enforce that only one of the two templates is in the chain. For example,

in antibody sequences, all V, D, J, C genes are templates. The constraints help

specify the ordering of V, D, J, C genes, and the exclusion of any pair of genes

from the same class (Ex: V ).

Define an anchor to be a substring of a template that is present in the target

with no mutations. Each template may contain zero or more anchors. Figure 5.2

describes an overview of our algorithm. GenoMS takes a collection of MS2 spectra
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as input, along with a set of templates and their constraints, requiring at least one

anchor sequence. It outputs a target protein sequence, using a chain of templates

as a guide. There are 3 stages: template-chain selection, anchor extension, and

sequence construction, all described below.

Figure 5.2: The template proteogenomic method reconstructs a target protein
sequence using tandem mass spectra and a template database in three steps;
Template-Chain Selection, Anchor Extension, and Sequence Construction. The
template database specifies ordering and mutual-exclusion constraints between
templates. A set of templates are selected that obey these constraints based on
peptides identified on them. Anchors are peptides identified by searching spec-
tra against the template database. Anchors are extended by aligning spectra that
overlap the anchor. Finally, the sequence is reconstructed by merging the extended
anchor sequences.

5.2.1 Template-chain selection

We create a custom database of all template sequences, and use the database

search tool, InsPecT to search all spectra against the database[7]. The best tem-

plates to use as guide are the ones that show good match to the spectra. Define
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Coverage[t] as the number of amino-acids on t that were confirmed by the database

search. Peptides that appear in multiple templates count towards the coverage of

all of them. This reuse is eliminated in the next step. The goal of the template-

chain selection phase is to select a chain of templates with maximum coverage,

while satisfying all constraints.

To find the chain of templates, we define a graph in which the nodes are

templates. There are two sets of edges. Directed edges t1 → t2 model the ordering

constraints, while a set of undirected edges, (t1, t2) ∈ Ef , model the exclusion. In

addition to the constraints specified by the user, we also create forbidden edges

between templates that share more than the minimum of 2 peptides or half of the

peptides belonging to one of the templates. A chain T = {t1, t2, . . . , tk} is valid if

(ti, tj) 6∈ Ef for all ti, tj in T , and t1 → t2 → . . .→ tk. The objective is to compute

a valid chain so that
∑k

i=1 Coverage[ti] is maximized.

Solving this problem generally is hard. We use a heuristic method based

on dynamic programming to find a valid chain. Let Vj denote the maximum score

of a valid chain ending at tj, and Tj denote the corresponding chain. Then,

Vj = Coverage[tj] + max
i:Ti+{tj}is valid

Vi

and Tj is constructed by chaining tj to the optimal Ti. The template-chain deter-

mined by this heuristic is considered for subsequent stages of GenoMS. For an

antibody, the template chain will often link V(D)JC together in that order. How-

ever, all templates are not required. Missing templates will be filled in by anchor

extension. Second, we are not limited to a single chain. A variant of this heuristic

can output multiple chains when needed (Ex: alternative splicing).

5.2.2 Anchor Identification and Extension

Recall that the template chain was created by connecting templates that

were well-covered by target peptides. For each selected template in the chain,

anchors are created by merging overlapping peptides. Anchors are ordered by

their position on the chain. Spectra not annotated using the database search are
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reconsidered in the subsequent phases of the algorithm.

In the second step, we extend the sequence of each anchor. Prior to ex-

tension, all spectra are first clustered to reduce the overall number of spectra

and improve spectrum quality[139]. The clustered spectra are converted to Prefix

Residue Mass (PRM) spectra[126]. A PRM spectrum is represented by a list of

mass values, and a PRM-score function φ that computes the likelihood of a mass

value being a PRM. To extend the anchors, we perform the following at either end

of each anchor:

procedure ExtendAnchor

1. Recruit PRM spectra that overlap the N/C-terminal of

the anchor.

repeat

1.1. Align recruited spectra.

1.2. Construct a consensus spectrum from the aligned

spectra.

1.3. Recruit spectra that overlap the N/C-terminal of

the consensus spectrum.

while new spectra can be recruited.

2. Sequence the consensus spectrum

Recruiting PRM Spectra

All spectra that do not contribute to an anchor and have not already been

recruited are examined for overlap with each anchor. Any spectra that are recruited

in previous rounds to the same terminus of the anchor are eligible for recruitment

in subsequent rounds of recruitment for the terminus as well. We determine overlap

by using a modified spectral alignment method[140]. When aligning a spectrum to

an anchor, we allow the spectrum to only partially overlap the anchor (Figure 5.3).

Since the extended target sequence is determined by aligning the recruited spectra,

it is critical to reduce false-positive recruitment, while maintaining enough coverage

to reliably extend the sequence.
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Figure 5.3: Top: A PRM spectrum is shown with a partial alignment to the theo-
retical PRM spectrum of an anchor. The C-terminal of the spectrum is not aligned.
Bottom: The overhanging peaks enable the extension of the anchor sequence by
two amino acids (QT).

We consider 3 parameters: the minimum additive score of the spectral

alignment, Q[140]; the minimum number of overlapping peaks, β, for a spectral

alignment to be considered, and the exact number of spectra recruited, NS. Q could

be learned by the algorithm independently for each experiment by looking at the

alignment score of spectra identified by InsPecT. We tested for the dependence

on β and NS using a training set of 206 uniformly selected anchor ends from the

aBTLA heavy chain sequence. Values β = 4, NS = 5 were chosen to balance the

accuracy (fraction of recruited spectra that are correct), and sensitivity (fraction

of true spectra recruited).

The recruited spectra and the anchor sequence must then be aligned. The

sequence helps to anchor the spectral alignment, and the spectral alignment is then

used to produce a consensus extension of the sequence. We do this using Hidden

Markov Models (HMMs).
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Multiple spectrum alignment

Profile hidden markov models (HMMs) are a popular tool for multiple se-

quence alignment[141]. We alter the scheme slightly in order to perform multiple

spectrum alignment. The use of HMMs for scoring peptide-spectrum alignments

has previously been proposed[142]. A novel part of our approach is that the HMM

is not static, but is updated by model surgery, as we extend the anchor sequence.

Figure 5.4: A: The spectrum profile HMM derived from the anchor ‘VCAK’ after
aligning 4 spectra, all of which are aligned to the state I5. The peaks aligned to
that state are shown, and suggest a candidate match state at mass 515.33 Da. B:
The same HMM, after we perform model surgery to add the new match state.

Recall that the anchor sequence can also be interpreted as a list of PRMs

[m1, m2, m3, . . .]. For example, the anchor VCAK corresponds to the PRM list

[0, 99.07, 259.21, 330.28, 458.32]

Intuitively, the HMM is an automaton that generates these PRMs. See Fig-

ure 5.4A. In the absence of noise, we have a set of Match states (M1, M2, . . .).
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The automaton starts in Match state M1. In each Match state Mi, the PRM mi

is emitted, followed by a transition to the next Match state. Formally, an HMM

is described by a 5-tuple M = (Ω, A,B, π, Σ), where Ω is the set of states. The

HMM is initially in state ωi ∈ Ω according to the distribution π. In state ωi, M

emits a symbol o ∈ Σ according to the distribution Bi,o, and transitions to state

ωj, according to the transition probability Ai,j. To model measurement errors, the

Match state Mj outputs a mass m according to

BMj ,m ∼ N(mj, σ)

where s.d. σ is obtained by empirically measured instrument accuracy. Noise

peaks are modeled by Insert states in between each adjacent pair of Match states,

with the emission probabilities defined by

BIj ,m ∝

{
e−φ(m) if mj < m < mj+1

0 otherwise

Missing peaks in spectra are modeled by moving from a Match state to a Delete

state, where no symbol is emitted. The transition probabilities Ai,j are initialized

to favor Match transitions, and penalize Delete transitions. All parameters are

updated at each iteration using a Bayesian approach described in the next section.

In this generative model, each spectrum is produced by traversing a (hid-

den) path through the states of the HMM. Reconstructing the most likely path

is equivalent to aligning the spectrum to the HMM, and can be determined using

the Viterbi algorithm[143]. An Insert states is created after the final Match state

for C-terminal extension, or before the initial Match state for N-terminal exten-

sion. Model surgery is performed to generate additional Match states from these

terminal Insert states, which are used to reconstruct the template extension. The

complete procedure is described below.

procedure AlignSpectrum

1. Create an initial HMM using the anchor.
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2. For each recruited spectrum, S

2.1. Align S to the model using the Viterbi algorithm.

2.2. Update model parameters.

2.3. Perform model surgery.

Updating model parameters: Transitions Ai,j are updated according to

ρi ←
1∑

k ci,k + 1
(5.1)

Ai,j ←
ci,j + αj + ρiAi,j∑

k[ci,k + αk] + ρi

(5.2)

where ci,j is the number of aligned spectra with transition from ωi to ωj and ρi

is the ‘learning rate’. Low values of ρ favor the observed transitions, while high

ρ favor the current transition probability. αj is the pseudocount for ωj, described

empirically by

αj =

{
7 if ωj is a Match state

1 otherwise

To update BMj ,m, the mean is recomputed in each step, using spectral

PRMs that were emitted in state Mj. The variance remains unchanged.

Model Surgery: The initial HMM is constructed using the anchor PRMs. The

aligned spectra overlap only partially. The PRMs preceding the N-terminal Match

state (or succeeding the C-terminal Match state in the case of right extension) are

emitted by Insert states. The observed masses emitted by an Insert state cluster

around certain PRM values, specifically at the preceding (or succeeding) PRMs of

the target sequence. Model surgery is used create a Match state that can emit the

cluster of PRMs (See Figure 5.4B). In this way, the HMM is extended to better

represent the target sequence.

Let MI denote the set of mass values emitted by insert state I. Consider

a subset M ′ ⊆ MI . Let µM ′ , σM ′ denote the mean of the values in M ′, and the
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standard deviation, respectively. Define

Score(M ′) =
∑

m∈M ′

φ(m)

We compute

M∗ = arg max
M′ ⊆ WI

M’ ≥ 2

σM′ < 0.25

Score(M ′) (5.3)

Note that the computation can be done efficiently by sorting the mass values, and

looking at intervals.

If Score(M∗) exceeds the minimum PRM score φ(m) for any spectrum, we

add a new Match state with mean µM∗ , along with the corresponding Delete states

and Insert states (Figure 5.4B). All spectra are realigned to the new HMM.

Building a consensus spectrum and extending the anchor sequence

The HMM, once learned from the recruited spectra, is used to produce

a consensus spectrum. The consensus PRM spectrum is produced by finding the

maximum likelihood path constrained to those paths that begin at the initial Match

or Delete state and end at the final Match or Delete state. The peak emissions of

this path, omitting noise peaks emitted from Insert states, produce the consensus

spectrum. Each peak in the consensus spectrum is associated with a peak score.

The PRM score for the mass emitted from state Mi is

Σ(wi,φi)∈WMi
φi − λW –D i˝ (5.4)

where WMi
is the set of peaks aligned to state Mi and WDi

is the set of

peaks aligned to state Di. λ is a constant. The peak scores are likelihoods, and λ

is the likelihood of a true peak not being observed. We chose λ to be the average

score of a PRM in the dataset. The consensus spectrum is then used as the anchor

for subsequent rounds of extension. The sequence of the final consensus spectrum,

once no more spectra can be recruited, is determined de novo by constructing a

spectrum graph allowing edges for single and double amino acid masses[144]. The
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sequence is then recovered from the highest scoring path in the spectrum graph.

5.2.3 Protein Sequence Reconstruction

Once anchors have been extended until no spectra can be recruited, the

extended anchor sequences are merged into a single protein sequence. If confident

overlap between extended anchor sequences exists, then the sequences are merged.

Each extended anchor sequence is considered for merging with all eligible anchors,

that is the C-terminal extension of an anchor can only be merged with the N-

terminal of another anchor. Similarly, if template ordering is provided, anchors

can only be merged in accordance with the template order constraints.

5.2.4 Confidence estimates

The output of GenoMS is a sequence of mass intervals, some of which

are represented by amino-acids in the final sequence while others which can be

explained by two AAs are presented as masses. Each interval is inferred from a

pair of adjacent PRMs. All spectra that were used to create an anchor or extend

an anchor can be mapped to the sequence of intervals. We compute the confidence

of a mass-interval as the fraction of overlapping spectra with PRMs mapping to

the two adjacent PRMs. Figure 5.5 illustrates the computation of the site-wise

confidence from the set of mapped spectra.

For spectra which are identified using InsPecT and are used for anchor

creation, all mass intervals that are overlapped are also considered supported. In

some cases, the confidence estimate is conservative as many spectra may support a

larger mass interval that contains the correct one. For example, the first spectrum

in Figure 5 supports the large interval ‘SR’, but is not counted towards either mass

interval since it is missing the PRM between ‘S’ and ‘R’. We use pseudo-counts 1

and 1.5 for the number of supporting and overlapping spectra, respectively.
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Figure 5.5: A set of spectra is shown overlapping a region of the predicted se-
quence. A spectrum supports a mass interval in the predicted sequence if both
adjacent PRMs to the interval are matched in the spectrum. The confidence of
each mass interval is the fraction of overlapping spectra that support the interval
(with pseudocounts). The PRMs of the overlapping spectra which are necessary
to support the mass interval corresponding to ‘C’ are circled.

5.2.5 Genomic Templates

Immunoglobulins are an excellent candidate for template proteogenomics,

with templates selected from translated germline segments. However, for other

applications of protein sequencing, such as gene annotation, a protein template

database may be difficult to produce. To handle these situations, GenoMS also

accepts genomic sequence as input. It automatically generates templates and con-

straints as follows: the template database is a 6-frame translation of a gene locus,

with each open reading frame (ORF) describing a template. Templates that overlap

or are on different strands are mutually exclusive. Templates are ordered accord-

ing to their genomic coordinates. Once the template database and constraints are

produced, the same algorithm is used to reconstruct the target. For flexibility, we
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do not consider splice-junction signals in selecting template boundaries. However,

users have the option to input customized template and constraint files.

The output of the GenoMS from genomic templates is the sequence of the

target protein, as well as the genomic coordinates of the exons or gene segments

selected as templates. In this way, the precise exon and splice boundaries for a

gene may be discovered. Because template proteogenomics does not require the

template genome to be an exact match for the target protein, it is possible to

sequence the target protein of one species using the genomic template database

derived from the genome of a related, and more comprehensively studied species.

5.2.6 Constructing a Divergent Sequence Database

In order to assess the ability of GenoMS to sequence more divergent pro-

teins, we alter the template database to contain sequences with less similarity to

the target. We construct the divergence sequence database from the known tar-

get protein sequence appended with the Mouse IPI database (v3.54) that contains

56,551 proteins once immunoglobulin sequences are removed. We simulated de-

grees of mutation by replacing regions of the target sequence with nonsense amino

acids, ”XXXX”. The regions were selected at random positions on the heavy

chain, with a normal length distribution with mean 7, standard deviation 2, and

minimum length of 4 amino acids similar to the hypervariable complementarity

defining regions (CDRs)[145].

5.2.7 Mass spectrometry analysis

Spectral datasets derived from aBTLA described in Bandeira, et al [99] were

used for evaluating anchor extension and for full antibody sequence reconstruction.

The dataset consisted of 44,985 MS/MS from the heavy chain and 39,135 MS/MS

from the light chain acquired on either an LTQ-Orbitrap or LTQ-FTMS instru-

ment. Heavy chain samples were prepared using four different protease digestions

(trypsin, chymotrypsin, pepsin, and AspN) while light chain samples were prepared

with three different proteases (trypsin, chymotrypsin, and AspN). 5,154 MS/MS
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spectra acquired on an Orbitrap instrument from three digestion conditions using

GluC, LysC, and trypsin[100] were used to determine the gene structure of BSA.

All spectra were first clustered to reduce the overall number of spectra

and improve spectrum quality[139] and converted to Prefix Residue Mass (PRM)

spectra[126].

5.3 Results

5.3.1 Anchor Extension

Anchor extension is the mainstay of our algorithm. We measured the accu-

racy and length of GenoMS’s extension of arbitrary anchors. Certain discrepan-

cies between the target sequence and the predicted sequence were not considered

errors, such as substitutions of amino acids with similar mass or mass shifts owing

to common post-translational modifications.

From the known sequence of the aBTLA heavy chain, we selected every

possible 10 amino acid sequence as an anchor. Q was fixed at 70, which is ap-

proximately the score cutoff chosen for the heavy chain. We then performed one

round of recruitment, alignment, and reconstruction, as described above. Of the

413 anchors, 89% were extended. The average extension length was 2.56 amino

acids. 41% of the extendable anchors were extended by 3 or more amino acids,

while 12% were extended by 5 or more amino acids. Across all extensions, 95%

of the amino acids were correctly predicted. Errors generally occurred in regions

with one or more prolines, which hinders peptide fragmentation.

The accuracy depends greatly on the position in the extension. Figure 5.6

shows the accuracy as a function of the position from the tail of the extension.

To explain, consider an anchor that is extended by two amino acids, g1g2, and

another that is extended by three amino acids, h1h2h3. The accuracy at position

−1, the last position of the extension, considers the accuracy (fraction of residues

predicted accurately) of g2 and h3. The accuracy at position −2 is determined by

the accuracy of g1 and h2, while the accuracy at position −3 is only determined

by the accuracy of h1. As expected, the number of predictions decreases from
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−1 onwards, while the accuracy increases. The length of extension depends upon

the availability of overlapping peptide spectra, which in turn depends upon the

protease mixtures. Our results indicate that with a large number of overlapping

peptides, the extensions are accurate.

Figure 5.6: The average accuracy of each position in the extension. The accuracy
of the extension degrades for positions close to the end of the extension, while the
number of predictions increases. Each data point is annotated with the total
number of anchors extended to that position or further.

Complete Protein Sequence Reconstruction The International Im-

munogenetics Information System(IMGT) GENE-DB[146] contains immunoglob-

ulin genes observed in human, mouse, rat, and rabbit. We used the mouse genes

in GENE-DB as templates for full protein sequencing. These templates contain

sequences that are highly similar, but not identical to the specific aBTLA anti-

body used to acquire spectra. The heavy chain sequence and light chain sequence

of the target, determined previously by Edman sequencing, are 443 and 221 AA in

length, respectively. We tested if GenoMS could reconstruct the aBTLA targets

using the MS2 spectra, and the GENE-DB templates.
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We constructed a database, IgH-DB, containing all mouse immunoglobulin

heavy chain genes in GENE-DB (v.20090331), and a database, IgLK-DB, con-

taining all mouse immunoglobulin light chain genes in GENE-DB (v.20090320).

IgLK-DB contained both Lambda and Kappa light chain genes. Each V, D, J, and

C segment was a template, and constraints were created according to two rules.

Templates of the same type (e.g. V segments) were mutually exclusive, and the

templates were ordered so that all V segments preceded D segments, D segments

preceded J segments, and J segments preceded C segments. IgH-DB contained 479

templates and IgLK-DB contained 177 templates.

Figure 5.7A contains the results of full protein sequencing for the heavy

and the light chains. The grey boxes correspond to anchors, annotated by the

GI number and position in the sequence. Arrows extending and linking anchors

in Figure 5.7 are annotated with the sequence that was determined by anchor-

extension and sequence-reconstruction. A red sequence indicates error in extension.

If the arrow is continuous from one anchor to the next, then there was sufficient

overlap in the extensions to allow merging of anchor sequences. Mass gaps in the

consensus spectrum that could not be resolved to a single amino acid are indicated

with brackets ([XX]). If the mass gap correctly identifies a pair of amino acids

from the sequence, the mass in brackets is replaced by the amino acids symbols in

brackets.

Nearly all of the heavy chain sequence was recovered (99%) with 99% ac-

curacy. One pair of anchors had sufficient overlap to be merged. The C-terminal

extension of the third anchor and the N-terminal extension of the fourth anchor

also overlap and could be merged by eye but not by our conservative merging

criteria. The chain consisted of a template from each of V (gene IGHV2-3, Gen-

Bank Accession Number1), J (IGHJ4*01, GenBank Accession Number2), and C

(IGHCG1*02, GenBank Accession Number3) segments. No database sequence

matched the D gene, but the automated extension could reconstruct much of it.

The only error in the D gene sequence, which appears in the C-terminal extension

1AC090887
2V00770
3L35252
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Figure 5.7: A: The aBTLA heavy chain and light chains reconstructed from
protein template databases. The grey rectangles are anchors while the arrows,
annotated with sequence, are the extended and merged sequence. Text above the
anchors indicates the GI number of the template used and coordinates within or
below the anchors indicate their position within the template. Red amino acids
were incorrectly predicted. B: The aBTLA heavy chain identified using a genomic
template database. The anchors were identified using templates from the locus
reverse strand. Anchor ordering and genomic position is annotated with reference
to the forward strand. The coordinates of each anchor on the chromosome are
shown. Red portions of the anchors are incorrectly incorporated anchor sequence.
C: The heavy chain sequence produced by using increasingly divergent templates.
The reconstructions at 85%, 75%, and 65% similarity to the aBTLA heavy chain
sequence are shown.

of the first anchor, has one incorrect PRM. ‘[174]E’ has the same mass as the

correct sequence ’RF’. The incorrect intervals receive a lower site-level confidence

(0.62 and 0.73, respectively) than the rest of the sequence. Missing sequence oc-

curred at the N-terminus (3 AA), owing to modification of the leading glutamine

to glutamic acid.

Light chain templates were chosen in the same manner as for the heavy

chain. The V, J, and C templates correspond to genes IgKV8-21*01(GenBank Ac-

cession Number4), IgKJ4*02(GenBank Accession Number5), and IgKC*01(GenBan

k Accession Number6) (Figure 5.7A). Sequencing construction determined 96% of

the sequence with 99% accuracy.

4Y15982
5V00777
6V00807
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There was little gap between any of the anchors. A gap of two amino acids

between the end of the first anchor and the start of the second anchor could be

filled in correctly by inferring the sequence from the template. The N-terminal

extension of the first anchor ’NN’ has the same mass as the correct sequence ’DI’,

but the internal PRM is off by one Da. These two incorrect amino acids get

very low site-level confidence (0.08 and 0.16, respectively). Five amino acids are

missing between the end of the extension of the second anchor and the start of the

third anchor. This gap corresponds to the joining boundary of the V and J gene

segments. N-terminal extension of the third anchor is prevented by the incorrect

incorporation of ’L’ during anchor construction as the first AA in the anchor. The

third and fourth anchors are directly abutting, with no missed amino acids.

aBTLA Heavy Chain: Genomic templates

We tested if the target could be reconstructed in the absence of protein

templates. The mouse heavy chain genomic locus, GenBank Accession Number7,

was used to construct a template database, as described in Experimental Meth-

ods (Genomic Templates). The database contained 87,265 templates. Spectrum

identifications were filtered to a 1% false discovery rate. Figure 5.7B shows the

reconstruction of the heavy chain. We identified seven anchors comprising 95% of

the target sequence. Each anchor was identified from a different ORF template on

the reverse strand except for the 5th and 6th anchors which were from the same

ORF. Each ORF revealed an exon in the final rearranged immunoglobulin heavy

chain gene. Gaps between anchors, which are sequenced via anchor-extension,

determine the exact splice boundaries between exons.

The predicted target antibody sequence contained 443 AA, with 98% ac-

curacy. Two pairs of anchors were able to be merged. The first anchor of the

sequence was identical to the first anchor identified against the IMGT database

and consequently the error at the C-terminal extension of the anchor is also the

same. The boundaries of two anchors were mis-identified by InsPecT. Four and

three amino acids were incorporated into the third and fifth anchors, respectively,

7NG005838
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and are denoted by the red shaded portions of those anchors. The summed masses

of the incorrect amino acids were no more than one Da different from the true se-

quence, but they prevented the N-terminal extension of both anchors. The second

anchor’s C-terminal extension overlaps the correct portion of the third anchor, but

the incorrect anchor boundary prevents merging.

5.3.2 Protein Sequence Reconstruction with Template Di-

vergence

The template databases used contained sequences that were highly similar

to the target sequence, presenting us with an easier test case. We tested accuracy

by comparing against a diverged template database. Various levels of divergence

(based on similarity to the original template) were created by introducing nonsense

mutations in the template database (See Experimental Procedures). At each level

of similarity, 20 independent diverged database results were averaged in Table 5.1.

Q varied between experiments with mean 68.9.

Table 5.1: ‘Sequence Similarity’ is the identity of the target sequence to the clos-
est mutated sequence in the database. ‘#Peptides’, and ‘#Anchors’ refers to the
number of unique peptides, and anchors, respectively, identified on the mutated
templates. ‘Target Length’ refers to the length of the reconstructed sequence,
while ‘Anchor Sequence’ refers to the fraction recovered from the anchors. ‘Target
Accuracy’ is the percentage of amino acids predicted correctly. While the an-
chor sequence drops rapidly, a significant fraction of the target is reconstructed
accurately.

Sequence
#Peptides # Anchors

Anchor Target Target
Similarity Sequence Length Accuracy

95% 527 4 90.8% 429 99.1%
90% 443 6 83.6% 406 98.3%
85% 364 8 77.1% 402 97.6%
80% 286 9 68.2% 375 96.9%
75% 245 10 62.8% 368 95.1%
70% 201 10 56.1% 337 96.1%
65% 181 10 52.2% 324 95.3%

As the similarity of the database to the target decreases, more of the se-
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quence was determined by automated de novo extension (Table 5.1). Three re-

constructions with 85%, 75%, and 65% database similarity to the target sequence

are shown in Figure 5.7C. Table 5.1 demonstrates how the number of peptides

decreases with greater target sequence divergence. The disjointness of the pep-

tides is indicated by the increasing number of anchors. Though the accuracy is

diminished as the target sequence becomes more divergent, it is never below 95%.

As the amount of sequence recovered in anchors decreases (‘Anchor Sequence’ in

Table 5.1), the portion of the sequence recovered by extension increases. In Figure

5.7C, the longest extension in the case of 85% similarity is 14 AA, and most of the

anchor extensions could be merged. Once the similarity drops to 65%, the longest

extension is 22 AA, fewer extensions could be merged.

5.3.3 Gene Annotation

Recently, Liu, et al [100] published an algorithm for sequencing a diverged

protein using a homologous protein. The target sequence used was BSA, and

purified spectra were derived from three protease digestions. The complete BSA

protein consists of 608 AAs, however the first 25 residues are cleaved as a signal

peptide. Therefore, we only consider the 583 AAs following the cleavage site. Liu,

et al is able to sequence the target protein with 100% accuracy and over 99%

coverage by using a close homolog in sheep (¿90% similarity). In contrast, our

method does not require a protein reference sequence, but can build from the

genome directly.

In addition to sequencing the target protein, identifying templates from a

genomic template database gives the positions of exons in the gene whose prod-

uct is the target protein. We sequenced BSA using a database constructed from

the bovine genome. We created a genomic template database from the 6-frame

translation of the BSA locus (GenBank Accession Number8) containing 559 tem-

plates. From the genomic template database, we identified 91% of the sequence

with 98% accuracy. We recover ORFs for 12 exons (Figure 5.8). The lack of over-

lapping spectra prevented the merging of all but one pair of anchors, however, some

8NC 007304.3:91,461,065-91,479,638
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splice junctions could still be determined. For example, the N-terminal extensions

‘PCTEDY’ and ‘[LGE]YGFQNA’ span the splice junctions between the tenth and

eleventh exons, and the ninth and tenth exons, respectively. This allows us to

determine boundaries of the splice junctions and infer the missing exon sequence

from the template.

Figure 5.8: The annotation of the BSA gene using a genomic template database.
Twelve exons for the gene are shown, with corresponding extensions. Each anchor
is annotated with its genomic coordinates.

5.4 Discussion

Since the first sequencing of the human genome in 2001[147], we have wit-

nessed an explosion in the number of species with partial and fully sequenced

genomes. Gene and proteome annotation, however, have not been able to keep

pace. Mass spectrometry and advancing computational tools, as a complement

to cDNA sequencing, have been shown to greatly improve the accuracy and ef-

ficiency of the annotation process[47, 87, 48]. At their core, these methods rely

on the assumption that the genome is an adequate database for the identification

of peptides. It is nearly impossible to create a database that encodes all possible

gene splice variants as well as small and large scale genome rearrangements. One

alternative is to use de novo methods[148, 126] for peptide and protein sequencing.

These algorithms make no such assumptions, but are plagued with low accuracy.

We have presented a novel method for protein sequencing that draws from

the strengths of both the database- and de novo -based approaches. Template pro-

teogenomics improves upon prior proteogenomic efforts by eliminating the need for

custom databases that anticipate splice junctions and mutations[16]. Our method

makes use of the genome as an imperfect template, while employing de novo tech-
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niques to sequence the divergent portions of the protein. By utilizing available

sequence information, we are able to increase confidence in the final sequence,

while not relying on the existence of a complete and accurate database.

Antibodies are highly diverse proteins that have confounded past attempts

to construct a complete sequence database. We are able to use known antibody

gene segments as templates to sequence proteins with up to 35% sequence diver-

gence from the templates. The utility of the template proteogenomic method for

gene annotation has also been demonstrated. From the final protein sequence, we

were able to determine many exon boundaries and splice-junctions by constructing

a template database from the 6-frame translation of the aBTLA heavy chain locus.

The alignment of overlapping spectra derived from a mixture of proteases

lends additional confidence to full protein sequence. However, the errant por-

tions of the alignment provide useful information as well, yet are often ignored.

Post-translational modifications may be identified by observing both modified and

unmodified spectra aligned. Complex protein mixtures containing both modified

and unmodified spectra, or spectra from alternatively spliced peptides may be lost

when an alignment is reduced to a consensus spectrum. In these scenarios, the cor-

rect output of the template proteogenomic method would be multiple sequences,

not a single protein. In future work, template proteogenomics will be extended in

order to capture post-translational modifications and sequence higher complexity

samples.

5.5 Extensions to GenoMS

The description of GenoMS above requires the construction of a single,

directed, acyclic graph consisting of a single component (representing either the

heavy chain or light chain of any antibody). In the application of GenoMS to the

sequencing of the anti-LT-a antibody [149] required the simultaneous sequencing

of the heavy and light chains. We extended the algorithm to act on two connected

components, one representing the heavy chain gene segments and the other repre-

senting the light chain gene segments. Therefore, the extended GenoMS is able to
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sequence two antibody chains despite the increased complexity of the mixture of

spectra.

A second extension was required to sequence the anti-LT-a antibody. While

aBTLA differs from the database in the CDRs, the anti-LT-a antibody had point

mutations spread throughout the sequence, preventing the identification of anchors.

We modified the template-chain selection method to perform a mutation-tolerant

database search. By allowing each identified peptide in an anchor to differ by an

amino acid from the peptide in the database, we improved the sequencing coverage

of the antibody.
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