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ABSTRACT 

LONG-TERM CHANGES IN BIOLOGICAL CHARACTERISTICS AND FISHERY 

OF LOLIGO OPALESCENS 

by Briana C. Brady 

Opalescent squid, Loligo opalescens, captured from central and southern 

California fisheries were examined for long-term changes in size, sex ratio, and 

fecundity. Samples were collected in Monterey from 1948 to 2006 and in the Channel 

Islands and Catalina Island from 1999 to 2007. A significant CPO.0001) decline in 

opalescent squid size and fecundity occurred in Monterey. The trend in monthly mean 

sizes was similar among locations. Monthly mean sizes were negatively correlated with 

fishing pressure; when fishing pressure was strong, smaller individuals were captured the 

following fishing season. Body size was also negatively correlated with hatch-month sea 

surface temperature (SST). Negative correlations between anomalies for monthly mean 

SST and sizes were found - individuals grew larger if a winter was anomalously cooler. 

In addition, monthly mean upwelling and body sizes were positively correlated during the 

juvenile stage. The ratio of males to females captured in the fishery fluctuated in all 

areas. 
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INTRODUCTION 

Approximately 120 fishing vessels have participated in California's commercial 

opalescent (market) squid (Loligo opalescens) fishery during the past decade; and 

landings have averaged 70,000 metric tons (mt), making the fishery one of the state's 

most important by quantity and value (CDFG 2005). The Market Squid Fishery 

Management Plan (MSFMP) indicates the harvest of this species is sustainable, although 

opalescent squid abundance appears to fluctuate greatly as evidenced by fishery landing 

receipts recorded in the California Department of Fish and Game's (CDFG) Commercial 

Fisheries Information System (Figure 1). Many aspects of the life history and population 

biology of opalescent squid are greatly influenced by changes in sea surface temperature 

(SST) from year to year (Starr et al. 1997, 2002; CDFG 2005; Keiper et al. 2005). In 

occurrence with strong El Nino events, which create a warm-water, low-nutrient 

environment, fishery landings may decline by greater than 90%, and will usually rebound 

the following season (Mclnnis and Broenkow 1978; Ish et al. 2004; Reiss et al. 2004). 

Fishery-dependent data from the Monterey area from 1989 to 1994 indicated that body 

size and sex ratios differed from samples collected from the 1940s to the 1970s (Leos 

1998). Variables that may be associated with the observed differences in the biological 

characteristics of opalescent squid include changes in fishing gear, regulations, fishing 

pressure, and environmental conditions. 

Determining possible causes for changes in the life history characteristics of 

opalescent squid is essential for successful fishery management. For this study, potential 

factors influencing fluctuations in biological aspects of the opalescent squid fishery were 
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Figure 1 Statewide opalescent squid landings and strong El Nino events north and 

south of Point Conception for fishing seasons from 1927-28 to 2006-07 

(data source CDFG landing receipts) 

examined through: 1) the analysis of long-term (1948 to 2006) changes in dorsal mantle 

length (DML), mass, sex ratios, and fecundity using original data collected in Monterey 

from Fields (1965), Evans (1976), Spratt (1979), Leos (1998), and CDFG's most recent 

sampling program (1999 to 2006); 2) the assessment of recent (1999 to 2007) changes in 

DML, mass, sex ratios, and fecundity from CDFG sample data for central (Monterey) and 

southern California (northern Channel Islands and Catalina Island); and, 3) the 

correlation of long- and short-term biological fluctuations with patterns in fishery and 

environmental variables. 

Opalescent Squid Life History 

The scientific name for opalescent squid in past research was Loligo opalescens, 

although recent work based on morphology and molecular data suggests the name should 
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be changed to Doryteuthis (Amerigo) opalescens (Anderson 2000; Vecchione et al. 

2005). Opalescent squid inhabit the coastal, pelagic zone from southeast Alaska to Baja 

California (Recksiek and Frey 1978). Hatching at a DML of less than 3 mm, they remain 

within 1 km of the shore for approximately 1 month and then are widely distributed by 

ocean currents (Zeidberg and Hamner 2002). There is a limited understanding of 

opalescent squid distribution between birth and spawning (Cailliet and Vaughan 1983); 

however, some observations of opalescent squid indicate they are common within the 

upper 400 m of the water column (Hunt et al. 2000). Opalescent squid live to an age of 

10 months (Butler et al. 2001), grow to an average DML of 152 mm (CDFG 2005), and 

reproduce at the end of their lifespan (Macewicz et al. 2004) when they congregate to 

spawn in nearshore areas. Prior to more recent work (Jackson 1994; Butler et al. 1999), 

age estimates were as great as 4 years with an estimated average of 2 years (Fields 1965; 

Spratt 1979). 

Primary spawning grounds occur in shallow, sandy habitats in central and 

southern California in less than 180 m, but eggs have been reported as far north as British 

Columbia and as deep as 792 m (CDFG 2005). Multiple cohorts recruit to the spawning 

grounds within a season and individuals die soon after spawning (semelparous). Near the 

end of their lifespan, as reproduction takes place and eggs and spermatophores are 

released, the mantle condition of females and males deteriorates, and their body mass 

decreases. Females lose more mass than males, because as much as 50% of female body 

mass can be attributed to gonad size (Fields 1965). A female of 134 mm in DML has the 

potential to lay 4000 eggs (potential fecundity). Females may lay 20 egg cases and each 

3 



egg case, which is attached to the substrate or other egg masses, can contain up to 300 

eggs. On average, females lay less than 40% of their potential fecundity or the number of 

eggs present within the ovary and oviduct (Macewicz et al. 2004). Female opalescent 

squid do have the ability, however, to release 78% of their potential fecundity. As egg 

cases accumulate, up to 100 m2 of seafloor are covered by egg case clusters (Dickerson 

and Leos 1992). 

Eggs hatch in about 4 to 5 weeks at a surrounding water temperature of 12 °C 

(Isaac et al. 2001). The SST and productivity during hatch-month affects growth rates 

and the DML at which opalescent squid mature and recruit to the fishery (Jackson and 

Domeier 2003; Reiss et al. 2004). According to Jackson and Domeier's (2003) study, 

female (r=0.72, P=0.002, n=15) and male (r=0.61, iM).013, n=\6) DMLs were 

negatively correlated with the SST of the hatch-month. They also found that female 

(A=0.65, P=0.008, n=15) and male (r=0.81, PO.001, n=16) DMLs were positively 

correlated with the hatch-month upwelling index (Jackson and Domeier 2003). The 

DMLs of male opalescent squid aged during the 1997-98 El Nino and 1998-99 La Nina 

events were not dependent on age, whereas female DMLs were found to be partially 

correlated with age - so females were larger because of being older, not solely from 

having faster growth rates. 

At an age of about 1 month, juveniles enter the pelagic where they feed on 

macrozooplankton and remain until they reach maturity. As adults, they prey upon 

crustaceans, other squid, and coastal pelagic finfish such as sardines {Sardinops sagax 

carulea), anchovies (Engraulis mordax), and mackerel (Scomber japonicus) (Fields 
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1965; Karpov and Cailliet 1979). They are prey items for marine mammals, seabirds, 

coastal pelagic finfish, and other squid (Morejohn et al. 1978; Lowry and Carretta 1999; 

Keiper et al. 2005). 

Opalescent Squid Fishery 

The commercial opalescent squid fishery began in 1863 in Monterey and 

expanded to southern California where a substantial increase in landings occurred during 

the 1960s (Vojkovich 1998). In both areas, fishing may occur year round; however, the 

fishery usually spans from April through October in Monterey and from October through 

March in southern California. Although the fishery may extend from San Francisco to 

the Big Sur coast, the Monterey fishery is concentrated mainly off the Monterey 

Peninsula. In southern California, fishing activity may be strong along the coast from Pt. 

Conception to San Diego and out to the Channel Islands. Since the inception of the 

fishery, opalescent squid have been used as food and bait abroad and within the U.S. 

When the commercial fishery began in the mid 1860s, fishing occurred during the 

night, and fishermen used a handheld torch to attract and aggregate opalescent squid at 

the surface. The opalescent squid were then captured with a handheld net that was 

deployed by 2 other boats (Fields 1965). A similar system is in use today; however, 

fishing also may occur during the day. Current fishing practices use a light boat with up 

to 30,000 watts and a purse or drum seine and tender vessel that wrap the opalescent 

squid with a large net. The corralled opalescent squid are brought onboard with an 

automated pumping system. Within the last decade, the average mesh size was 1 inch 

(2.5 cm) (CDFG 2005). Another form of gear used in the current fishery is the hydraulic 
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brail (scoop) net, which is used onboard vessels that are usually smaller than purse 

seiners. Because brail vessels are compact and more maneuverable, they are used in 

shallower depths that are closer to shore and in areas where seiners are prohibited (e.g., 

Santa Monica Bay and the mainland side of Catalina Island). 

In Monterey during the early 1900s, when the lampara net was first used to 

capture opalescent squid, the average reported mesh size was 1.25 inches (3.2 cm) (Fields 

1965). Average opalescent squid landings in the early 1900s in Monterey were about 90 

mt a year and sometimes reached 5,000 mt. By the 1970s, about 6,000 mt were landed a 

year in Monterey. In the late 1980s, the lampara net was replaced by the purse seine net 

in Monterey (Figure 2). From 1999 to 2007, the average catch was 8,000 mt in 

Monterey. 
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Figure 2 Opalescent squid landings for Monterey area ports for purse and lampara nets 

for fishing seasons 1969-70 to 2006-07 (data source CDFG landing receipts) 
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In southern California, where brail nets were primarily used until the 1970s, 

annual landings were sometimes as high as 6,000 mt. Once purse seine nets replaced the 

majority of brail nets, landings in southern California typically surpassed those in 

Monterey. Since 1999, landings in southern California have averaged 66,000 mt. 

Opalescent squid fishing regulations have been minimal throughout the duration 

of the fishery with most pertaining to area and time closures, gear restrictions, catch 

amounts, and permits. Until 1959 in Monterey, the opalescent squid fishery was 

permitted to use lights to attract opalescent squid to the surface. Using lights as an 

attractant was restricted to prevent the harvest of opalescent squid directly from Monterey 

fishing docks and to reduce the disruption of lights on spawning opalescent squid 

(Dickerson and Leos 1992). The ban on lights was lifted in the Monterey area in the late 

1980s, just as Leos (1998) began sampling opalescent squid. In 1984, to allow periods of 

uninterrupted spawning, a weekend closure went into effect for the Monterey area, and 

the closure was extended to southern California in 2000. Also in 2000, light wattage was 

restricted to 30,000 per vessel to reduce detrimental effects on nesting marine birds. A 

harvest guideline (HG) of 113,398 mt (125,000 short tons (st)) was set in 2001 to avoid 

overfishing. The HG was reduced to 107,048 mt (118,000 st) in 2005. To attain a 

capacity goal in fleet size, the California Fish and Game Commission adopted a restricted 

access permit program in 2005. 

Biology of the Opalescent Squid Fishery 

Due to the value of the opalescent squid resource, several fishery-dependent 

studies have focused on collecting biological data from landings. Fields (1965) worked 
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with CDFG to collect fishery-dependent data concerning size, sex, and age information 

from 1946 to 1962. CDFG continued to sponsor work in the 1970s when Moss Landing 

Marine Laboratories (MLML), Spratt (CDFG, 1979), and Evans (MLML, 1976) analyzed 

size, sex, and age data from fishery catches from 1973 to 1975 in Monterey using 

methods similar to Fields (1965). Leos (1998) completed a similar sampling project from 

1989 to 1994 for the same area in Monterey. In 1998, CDFG, with input from the 

National Marine Fisheries Service (NFMS), established an ongoing sampling program 

targeting the fishing ports near Monterey, Santa Barbara, and Los Angeles (Figure 3). 

Fields (1965) documented aspects of the life history characteristics of opalescent 

squid collected from the Monterey fishery from 1946 to 1962. During the course of 

Fields' (1965) sampling efforts, approximately 7,660 opalescent squid were collected 

from random samples from fishing vessels and processing pumps. Fields (1965) found 

that sex ratios were nearly equal, and females had a narrower size range than males at 

spawning. Opalescent squid were estimated to live to 4 years, but this was based on an 

analysis of size groups only and was never validated. The average DML of opalescent 

squid collected during Fields' (1965) study was 140 mm for females and 150 mm for 

males with their respective average masses being 50 g and 70 g. Size of opalescent squid 

during his study varied, however, from 1948 to 1962 (Figure 4a-b). Fields made the 

point that the decline in size was not the effect of more animals of a certain size group but 

an absence of larger opalescent squid. For instance, in 1948, 15% of males had DMLs 

greater than 172 mm, whereas in 1950 less than 1% of DMLs of males were larger than 

172 mm. 
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Figure 3 Location of 7 commercial fishing ports for sample collection 
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In the 1970s, Spratt (1979) counted statolith growth rings and found opalescent 

squid lived up to 4 years, but this too was not validated. In his publication, mean DMLs 

were not referred to - although some of the raw DML, mass, and sex ratio data were 

available from his analysis (Spratt 1979). Evans (1976), however, did publish results for 

mean opalescent squid size, but the results were for samples collected in only 1974. 

Evans (1976) assessed opalescent squid samples from the Monterey and southern 

California commercial fishery catches. For Monterey, DML and mass of commercially 

caught opalescent squid were of comparable size to some of the values reported by Fields 

(1965). Sex ratios were dominated by males in both geographic regions, whereas Fields 

(1965) had reported equal sex ratios for Monterey. Opalescent squid in southern 

California were longer in DML; however, Monterey opalescent squid had greater body 

mass at length. Evans (1976) found there were greater numbers of immature opalescent 

squid in southern California and opalescent squid matured at a smaller size in Monterey. 

As Fields (1965) had discovered, female opalescent squid were less variable in size than 

males. 

Leos (1998) collected opalescent squid samples from the commercial fishery in 

Monterey Bay in the late 1980s and early 1990s just after a regulatory measure for a 

weekend closure was adopted. A greater proportion of spawned opalescent squid were 

found in the catch on Mondays, the day following the weekend closure. The results from 

Leos' (1998) study indicated that the weekend closure gave opalescent squid the 

opportunity to spawn without interruption, thereby allowing more eggs to be released by 

females. Opalescent squid were not aged during the 1998 study. The results from a 
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Students T-Test indicated DML and mass were significantly (P < 0.001) smaller than the 

sizes reported by Fields (1965). Sex ratios were equal in Monterey fishery landings. The 

distribution of size for females was narrower than males. Leos (1998) also detected that 

mean DMLs of opalescent squid were larger during the first month of the fishing season, 

which typically coincided with the onset of upwelling - DMLs immediately decreased, 

and then increased as the fishing season progressed. The majority (93.5%) of the 

sampled opalescent squid were sexually mature. 

In 1998, the beginning of the latest CDFG-sponsored sampling program, a group 

of about 200 opalescent squid were collected for ageing purposes. These opalescent 

squid were aged by counting statolith increments and were determined to be an average 

of 6 months old, with some as old as 10 months (Butler et al. 1999, 2001). Since then, 

daily growth increments were validated by growing opalescent squid from hatching to 52 

days in a laboratory setting (Vidal et al. 2002), and have shown that opalescent squid 

DML at capture can be linked to the regional SST of the hatch-month (i.e., 4 to 10 

months prior to capture) (Jackson and Domeier 2003; Reiss et al. 2004). Additional 

information collected in the CDFG sample program included gonad weight and mantle 

condition, which can be used to calculate the standing stock of oocytes or fecundity 

within a female opalescent squid at time of capture. 

Environmental Variables 

Opalescent squid spawning activity is associated with local and seasonal influxes 

of nutrients from upwelling or winter mixing events (Zeidberg et al. 2006). In Monterey, 

the upwelling season and the spawning activity of opalescent squid usually begin 
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between February and April. During these months, when winds from the northwest 

become more common, nutrient-rich water from the ocean-bottom near the upwelling-

center off Point Ano Nuevo is driven to the surface, and provides an abundant food 

source for the zooplankton communities upon which newly hatched opalescent squid 

prey. In southern California, opalescent squid spawning coincides with winter mixing of 

surface waters and deeper-water upwelling, which usually happens from October to 

March. 

SST, nutrients, and surface water circulation in central and southern California 

undergo long- and short-term cycles. Climatic regime shifts and El Nino Southern 

Oscillation (ENSO) events are described by indices that reflect such oceanographic 

changes over long- and short-time periods, respectively. The Pacific Decadal Oscillation 

(PDO), an example of a regime shift, fluctuates between anomalously warm and cool 

SST every 20 to 30 years (Hare and Mantua 2000; Mantua and Hare 2002). During cool 

water phases, primary productivity increases and causes a bloom in phytoplankton that is 

reflected through trophic cascades up the food chain from zooplankton to small coastal 

pelagic finfish and invertebrates and onto larger organisms (Francis et al. 1998). The 

ENSO is similar to the PDO but occurs on a much shorter time scale lasting from 6 to 18 

months, and is called El Nino during warm water, low-nutrient phases and La Nina 

during periods of cool water and high-nutrients (Parrish and Tegner 2001; Marinovic et 

al. 2002). Warm water PDO or ENSO periods cause food availability for opalescent 

squid to diminish greatly. 
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Changes in Biological Aspects of Opalescent Squid 

Populations of many harvested marine organisms exhibit fluctuations in 

biological aspects through time. Distinguishing the proportion of those variations caused 

by direct impacts due to fishery exploitation, environmental factors, or biotic factors 

(e.g., competition, predation) remains a challenge. Many researchers have focused on 

changes in the abundance of fished species caused by oscillations in the environment and 

fishing pressure (MacCall 1996; Hofmann and Powell 1998; Klyashtorin 1998; Beamish 

et al. 1999; Moser et al. 2000, 2001; Steneck and Wilson 2001; Chavez et al. 2003; 

Mason 2004). Others have correlated changes in life history traits of fished species, such 

as body size, age, and reproductive potential, with oceanographic or fishery variables 

(Trippel 1995; VenTresca et al. 1995; Law 2000). 

Although the opalescent squid fishery often collapses during episodic El Nino 

events, a fishable population has persisted throughout the duration of the warm water, 

low-nutrient PDO cycle that began in 1977 (Jackson and Domeier 2003; Reiss et al. 

2004). Recent El Nino and La Nina cycles are correlated with short-term changes in 

opalescent squid abundance (Ish et al. 2004; Zeidberg et al. 2006), age, growth, timing of 

maturity (Jackson and Domeier 2003; Reiss et al. 2004), and paralarval densities 

(Zeidberg and Hamner 2002). Results of previous studies on opalescent squid indicate 

age and growth are dependent on SST and food availability (Forsythe 2004), and body 

size increases as SST decreases (Jackson and Domeier 2003; Reiss et al. 2004). 

Fluctuations in SST and nutrient availability are not as extreme in different phases of 

regime shifts compared with ENSO; however, past research has shown long-term 
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changes in the size and sex ratios of opalescent squid from the earlier phases of the 

fishery (i.e., 1940s), through regime shifts and many ENSO events, to the present (Fields 

1965; Evans 1976; Leos 1998). 

These studies indicated that changes in the life history of opalescent squid may be 

related to fishing pressure and environmental variables; however, the strength of a 

relationship among these variables has yet to be determined. For this study, the following 

hypotheses were addressed to evaluate changes in biological characteristics of opalescent 

squid and to attempt to separate environmental effects from fishery induced. The results 

of this study will provide information that is necessary for successful management of the 

fishery. The hypotheses include: 

1) DML, body mass, the proportion of females, and fecundity have declined in the 

opalescent squid fishery through time, and these biological aspects were similar among 

geographic locations; and 

2) Observed biological changes, as identified in hypothesis 1, correspond to 

patterns in fishery or environmental data: a) Size was negatively correlated with fishing 

pressure from the previous fishing season; b) Size was negatively correlated with hatch-

month SST; and c) Size was positively correlated with hatch-month upwelling. 
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METHODS 

Eight different, historic data sources (biological, fishery, and environmental 

information) were used in the analyses (Table 1). Data were presented temporally by 

year, fishing season (from April 1 to March 31 of the following year), and month. For 

Monterey, data were available from 1948 to 2006 and were compared by: 1) consecutive 

months (i.e., January through December); and 2) by the same month for each fishing 

season (e.g., June for each year). Data from 1999 to 2007 were compared on a monthly 

basis for the Monterey area (only to 2006), the northern Channel Islands (Anacapa, Santa 

Cruz, Santa Rosa, and San Miguel Islands), and Catalina Island. These 3 areas were 

chosen because spawning in Monterey occurs during the opposite season of the southern 

California sites, and spawning activity will sometimes occur only in the northern Channel 

Islands or Catalina Island - although in some years spawning occurs at all locations 

simultaneously. 

Biological Datasets and Analyses 

Fields (1965), Evans (1976), Spratt (1979), and Leos (1998) provided only 

summarized biological information in their publications. The original data collected in 

Monterey for each study period were found in various sources. A reference for Fields' 

(1965) data was located online at the University of Victoria's library web site. DML, 

mass, and sex data were obtained from X, Y plots created by Fields (1965) - only data 

for 1948 to 1957 were available. DML, mass, and sex data collected by Spratt (1979) 

and Evans (1976) from 1973 to 1975 were found in archived CDFG files. Data from 

1989 to 1994 were available from the original CDFG data sheets and contained DML, 
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Table 1 Dataset origin, time span, location of data collection, and variables reported 

Dataset source 

Fields (1965) 

Evans (1976) 
Spratt(1979) 

Leos(1998) 

CDFG samples 

CDFG landing 
receipts 

Hopkins Marine 
Station 

Time period 

1948 to 1957 

1974 
1973 to 1975 

1989 to 1992, 
1994 

1999 to 2006 
1999 to 2007 

1950 to 1953, 
1969 to 2007 

1945 to 2006 

Location 

Monterey 

Monterey 

Monterey 

Monterey, 
N. Channel Islands, 
Catalina Island 

Monterey, 
N. Channel Islands, 
Catalina Island 

Monterey 

Variables 

DML, mass, sex 

DML, mass, sex 

DML, mass, sex, 
maturity 

DML, mass, sex, gonad 
weight, mantle condition 

Fishing location, catch 
amount, gear used 

SST 

National Oceanic 1998 to 2007 Buoy 46053- SST 
Atmospheric N. Channel Islands, 
Administration Buoy 46025 -

Catalina 
1950 to 2006 Pacific Ocean ENSO and PDO events 

Pacific Fishery 1945 to 2007 Monterey Upwelling 
Environmental (36° N, 122° W), 
Laboratory S. California 

(33° N, 119° W) 

mass, sex, and maturity records (Leos 1998). The most recent CDFG sampling project 

spanned from 1998 to 2007 for 3 port complexes: 1) Monterey and Moss Landing; 2) 

Santa Barbara, Ventura, and Port Hueneme; and 3) San Pedro and Terminal Island (see 

Figure 3). Data from 1999 to 2007 were used in the analysis because data collected in 

1998 were not comprehensive. In addition to size and sex information, this dataset also 
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contained fecundity estimates. Because reliable age data were not available for any of 

the studies, the effect of age on opalescent squid size could not be evaluated. 

Biological data from the various time periods were collected with similar 

methods. Samplers visited commercial fishing docks throughout the fishing season and 

collected a sample of opalescent squid from fishing vessel holds, the processing pump, or 

transportation bins. In the lab, opalescent squid were drained of excess fluid, weighed to 

the nearest 0.1 g, measured along the dorsal side of the mantle to the nearest mm, and the 

sex was determined. In some of the earlier samples, opalescent squid were either 

measured immediately or after being frozen; whereas all samples taken in the 1980s or 

later were measured on the same day of collection. 

Fields (1965) collected random numbers of opalescent squid at the docks 

throughout the unloading process. Spratt (1979) and Evans (1976) collected a random 

sample of approximately 1,000 g and then measured different numbers of opalescent 

squid each time. Leos (1998) measured 25 randomly selected opalescent squid from 

2,000 g samples. Handfuls of opalescent squid were collected throughout the entire 

offloading process until a 2,000 g sample filled a bucket. In the most recent sampling 

regimen, approximately 40 opalescent squid were randomly taken from the processing 

pumps - samplers watched the majority of the offloading process and took 5 or 6 

individuals with a handheld net as the opalescent squid were pumped into shipping bins 

(Kong et al. 2004). Thirty opalescent squid were then measured. In addition to recording 

DML, mass, and sex information for the 1999 to 2007 samples, fecundity and age data 

were collected. Gonads, mantle punches, and statoliths were taken for the first 5 females 
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of every sample and a mantle punch and statoliths were removed for the first male of 

every sample. Statoliths were not aged or validated, and were not available for use in this 

analysis, although they may be used later for additional verification purposes. 

The number of opalescent squid and days sampled each month varied for all the 

collection periods in Monterey. The sample unit that was used for analyses was a day. 

Means and 95 % confidence intervals (CI) for DML, body mass, sex ratio, maturity, and 

fecundity were calculated for each day a sample was taken and were used in subsequent 

analyses. Samples were not collected in every month. Because opalescent squid size 

differs in relation to the month of capture, samples could not be combined within a year 

to determine if the biological aspects of opalescent squid changed through time. DML 

and body mass were graphed by month in box plots, which show the minimum, 

maximum, mean, and the 10th, 25th, 75th, and 90th percentiles of the size distribution. 

Corresponding sex ratios and samples sizes were graphed adjacent to monthly DMLs to 

reveal temporal patterns. A Chi-square test was used to compare the monthly sex ratios. 

In this instance, the numbers of female and male opalescent squid were summed by 

month and not by sample day, and the proportion of males was used in comparisons. The 

Chi-square statistic was 3.84 with 1 degree of freedom (i.e., 2 sexes, 2-1=1). 

A one-way ANOVA was used to determine if DML and mass changed 

significantly through time in Monterey. The month of June was sampled the most from 

1948 to 2006 - 18 years for DML and 15 years for mass. Because some months of June 

had only 1 sample day, variances could not be compared with a Cochran's Test. Due to 

variances for the month of June being unequal and sample sizes being largely different, 
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Resampling Statistics (RS) for Excel was used to run a one-way ANOVA to compare 

DML and mass for females and males (RS 2006). The RS ANOVA was executed with 

10,000 iterations and with replacement (bootstrap). 

The proportion of immature, mature, and spent individuals captured by the fishery 

from 1989 to 1994 in Monterey was calculated for each month. Mean DML and mass 

also were depicted with the maturity data to illustrate how the monthly index of maturity 

changed with size through time. To determine if patterns in the maturity index related to 

fishery landings, total catch also was graphed by month. 

Biological data were compared by month for 3 geographic regions for fishing 

seasons from 1999-00 to 2006-07. Mean DMLs and masses were graphed by month for 

each region. Pairwise comparisons for monthly sizes for each region were made with a 

Pearson product-moment correlation. The mean proportion of males captured in the 

fishery from each region was calculated for each month. Since past studies found sex 

ratios to be 1:1, this ratio was included in the graphs. The 95% CI from 1999 to 2007 

was computed for each region. Similar to the analysis computed for sex ratios in 

Monterey from 1948 to 2006, a Chi-square test was used to compare the monthly sex 

ratios to 1:1 for each region. RS for Excel was used to compute the 95% CI for a 

proportion of 0.50 for a daily sample size of 30 opalescent squid. 

For the 3 geographic regions, gonad weight and mantle condition were available 

from 1999 to 2004 (only 2002 measurements were available for Monterey). The fraction 

of released potential fecundity for individual females was calculated from the following 

(Macewicz et al. 2004): 
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Ep = 29.8L, [r1 = 0.34] 

where Ep = potential fecundity, L= female DML in mm, 

and 

EYD = 37&.28ei23'c+0-2441G-°-24CG), 

where EYD = standing stock of oocytes and ova in a mature female opalescent 

squid, C = mantle condition index; and G = gonad (ovary and oviduct) mass, 

and, 

l-( EYD/ Ep) ~ fraction of potential fecundity released 

The mean fraction of released potential fecundity was then calculated for each sample 

day. The potential fecundity (Ep) equation, however, was based originally on the number 

of eggs present in the ovaries of only 13 preovulatory mature females (Macewicz et al. 

2004). Those females ranged in size from approximately 107 to 133 mm, which did not 

include the full size range of mature opalescent squid captured in the fishery and 

collected in samples used for this analysis. There was the possibility the number of eggs 

associated with the DML of a female changed over time, although fecundity calculations 

for the current analysis were made with the assumption that potential fecundity, based on 

DML for females, has not changed. Due to uncertainties involved with using the 

potential fecundity equation, the standing stock of oocytes also was used as a proxy for 

fecundity. This was based on the assumption that the standing stock of oocytes of 

opalescent squid sampled from spawning grounds could be used as a proxy for opalescent 

squid not captured by the fishery but were instead left to spawn until they died from 

natural mortality. If the fishery always captured opalescent squid at the same time within 
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their life history, the standing stock of eggs in opalescent squid should signify a relative 

amount of eggs that non-captured opalescent squid were capable of releasing. 

Fishing and Environmental Datasets and Analyses 

Fishery information from landing receipts was used to determine how fishing gear 

and catch amounts changed through time and differed among geographic regions. The 

CDFG had landing receipts in digital format from 1969 to 2007. Historic landing 

receipts were available via microfiche from 1950 to 1968. Receipts from 1950 to 1953, 

which overlapped with the biological data, were searched for opalescent squid 

information and then added to the landing receipt database to increase the time coverage 

for opalescent squid catch. Summaries of landings data were available from CDFG 

Fishery Bulletins from 1929 to the present; however, these summaries did not include the 

number of landings made, so a catch-per-trip (or catch-per-unit-effort (CPUE)) estimate 

could not be calculated. Therefore, the data from the landing receipt microfiche were 

used even though total metric tons landed did not match those reported in CDFG Fishery 

Bulletins. Only fishery data reflecting accurate information about the geographic 

distribution of opalescent squid were used in the analysis - any information pertaining to 

an area outside of the normal depth distribution of opalescent squid was not included. 

Total catch amounts and CPUE were calculated for each period and area. 

To determine if the observed change in mean opalescent squid size was valid or if 

it was instead an artifact of sampling (i.e., fishing gear), a comparison of opalescent squid 

DML in relation to gear type was made with data from Leos (1998). During the late 

1980s, opalescent squid were caught with lampara, purse, or drum seine nets. An RS 
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bootstrapped AN OVA with 10,000 iterations was used to compare the mean size of 

opalescent squid caught with lampara nets or purse and drum seine nets. 

SST and upwelling data were available for locations proximal to opalescent squid 

fishing grounds in central and southern California. For Monterey, SSTs collected at 

Hopkins Marine Station were available from 1945 to 2006. In southern California, SST 

data were available from National Oceanic and Atmospheric Administration buoys near 

the northern Channel Islands (buoy #46053) and Catalina Island (buoy #46025) from 

1998 to 2007. Fluctuations in mean SSTs were calculated from 1945 to 2006 for 

Monterey, and for 1998 to 2007 for Monterey, the northern Channel Islands, and Catalina 

Island. SST was used as a proxy for food availability for opalescent squid (Roemmich 

and McGowan 1995; Jackson and Domeier 2003; Ish et al. 2004). SST anomalies were 

computed in Matlab (version 12.0). Mean monthly SSTs were assigned a consecutive 

number from 1 to 12. The average SST for each single month of the year for the entire 

time series was calculated (e.g., all January months, all February months) and then 

subtracted from the corresponding month within each year to compute the anomaly for 

that month. Upwelling index and anomaly values were available from the Pacific 

Fisheries Environmental Laboratory web site for Monterey and southern California. 

The relationship between opalescent squid size and fecundity and fishing or 

environmental variables was tested with Pearson product-moment correlations. To 

determine which fishing related and oceanographic factors had the greatest influence on 

opalescent squid size, SST, upwelling, and fishery landings (i.e., number of fishing days, 

total catch, and CPUE) were correlated with opalescent squid DML and mass. The size 
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to which an individual opalescent squid may grow to and be captured by the fishery may 

be determined more so during certain stages of their life history. Because certain stages 

of an opalescent squid's life history may be more susceptible to environmental factors or 

fishing pressure, correlations were performed for 1 -month lags for up to 1 year prior to 

the individual being captured. A Sequential Bonferroni Test was used to correct for 

multiple correlation tests with the following steps: 1) P-values for 13 months of 

correlations (month 0 was equal to the time of capture) were sorted from least to greatest; 

2) the alpha-value (0.05) was divided sequentially by the number of lags (i.e., 13, 12, 

11... 1); and 3) if the P-value was less than the newly calculated alpha-value, then it was 

considered to be significant. To determine if any correlations between opalescent squid 

body size and environmental factors were affected by relatively weaker or stronger 

values, anomalies for DML and mass were calculated. The statistical software SAS 

(version 9.1) was used to compute the anomalies for DML and mass because there were 

months without values, and the code used in Matlab was not written to accept missing 

values. 

The longest time series for the fecundity data was from Catalina Island. The 

fraction of potential fecundity released and standing stock of oocytes data from Catalina 

Island were correlated with fishery landings between 1 to 12 months following the month 

samples were collected to determine if a proxy for fecundity was related to the amount of 

opalescent squid captured at a later time. All correlations were calculated in JMP 

(version 7.0) with a Pearson product-moment correlation. 
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RESULTS 

Biological Data 

Of the original data collected from each time period in the Monterey area, 27,680 

records for individual opalescent squid were analyzed. As previously documented (Leos 

1998), mean DMLs and masses of opalescent squid decreased for both sexes from 1948 

to 1994 - this decline continued into the 2000s. The minimum and maximum values for 

DML and mass of opalescent squid caught by the fishery decreased through time for each 

study period (Table 2 and see Figure 4a-b). 

In Monterey, there was a general trend in mean DML and mass in which size was 

relatively small near the beginning of the season and then increased into the fall and 

winter months (Figure 5a-d). Opalescent squid sampled from the 1940s to the 1950s 

were consistently greater in mean DML and mass each month than opalescent squid 

sampled in the studies from the 1980s to the 2000s (see Figure 5a-d). In comparing the 

average DMLs and masses between the two periods of the 1940 to the 1950s to the 1990 

to the 2000s, there was an approximate decrease of 20 mm. Comparisons of mean DML 

sampled by lampara or purse seine gear were not significantly (P > 0.05) different for 

data from 1989. Although sampling activity did not occur every month during the 1970s 

and the 1980s to the 1990s, sampling did apparently occur every month in the 1940s to 

the 1950s. Sample days were scheduled for every month during the 1990s to the 2000s, 

but landings may not have occurred during randomly chosen sample days. 
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Table 2 Number of opalescent squid sampled and minimum 

and maximum sizes for each study period in Monterey 

Study period Squid Minimum Maximum 
DML (mm) 

All squid 
1948-1957 4,533 78.0 192.0 
1973-1975 831 86.0 188.0 
1989-1994 6,200 58.0 185.0 
1999-2006 16,116 62.0 173.0 

Female squid 
1948-1957 2,272 86.0 179.0 
1973-1975 331 96.0 167.0 
1989-1994 2,970 58.0 159.0 
1999-2006 7,022 83.0 158.0 

Male squid 
1948-1957 2,261 78.0 192.0 
1973-1975 500 86.0 188.0 
1989-1994 3,230 62.0 185.0 
1999-2006 9,094 62.0 173.0 

Mass (g) 
All squid 

1948-1957 2,761 13.0 148.0 
1973-1975 831 12.7 140.1 
1989-1994 6,200 5.6 124.5 
1999-2006 16,116 8.5 107.3 

Female squid 
1948-1957 1,429 13.0 112.0 
1973-1975 331 15.9 108.7 
1989-1994 2,970 5.6 84.3 
1999-2006 7,022 8.5 76.9 

Male squid 
1948-1957 1,332 13.0 148.0 
1973-1975 500 12.7 140.1 
1989-1994 3,230 6.7 124.5 
1999-2006 9,094 9.0 107.3 
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Figure 5a-d Mean DML and mass with corresponding 95% CI pooled by month for each 

study period in Monterey, 1948 to 2006 (data source See Table 1) 

Mean DMLs and masses of females and males were significantly different in June 

from 1948 to 2006 (Table 3). June was sampled the most among all sampling years due 

to the relatively greater number of fishery landings during this month, and was chosen to 

depict the overall pattern of decline in size (Figure 6a-d). In some years, opalescent 

squid DML or mass did overlap in size, which signifies the variability of opalescent squid 

body size. However, in only 1 month (May 2000) following the 1970s did the maximum 

sizes reach those of the earlier samples (Figure 7a-b). 
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Table 3 Results for a one-way ANOVA in RS for mean DML and mass for the month of 

June in Monterey, 1948 to 2006 

Female Male 
DML P< 0.0001 P=0.01 
Mass P =0.04 P =0.05 

Sex ratios fluctuated in Monterey from 1948 to 2006. The majority of monthly 

sex ratios of females and males captured in the fishery were significantly different from 

1:1 (Table 4, see Figure 4a). From 1989 to 2006, there was a general trend in which the 

mean proportion of males increased throughout the fishing season. 

The monthly maturity index for females and males exhibited different patterns for 

each fishing season from 1989 to 1994 in Monterey (Figure 8a-b). Opalescent squid 

recruiting to the fishery in 1989 and 1990 were mature from April to August and then an 

increase in the proportion of spent individuals occurred. In 1991, the proportion of 

immature females increased at the end of the fishing season rather than the proportion of 

spent individuals. Also in 1991, the proportion of spent males captured in the fishery was 

greatest in July. During the 1992 fishing season, individuals were identified as mature 

throughout the fishing season with no notable increase in the proportion of immature or 

spent individuals. In 1994, the proportion of mature female opalescent squid remained 

consistent throughout the season, whereas males were spent in most months. Total catch 

decreased at the end of the fishing season as more spent opalescent squid recruited to the 

fishing grounds. Trends in mean DML and mass did not correspond to the monthly 

patterns exhibited in the maturity index. 
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Figure 6a-d Mean DML and mass with corresponding 95% CI for June for Monterey, 

1948 to 2006 (data source See Table 1) 
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Table 4 Chi-square results for comparing opalescent squid sex ratios to 1:1 for 

Monterey, 1948 to 2006 

Jan 

1948 

1949 8.7* 

1950 

1951 

1952 

1953 

1957 

1973 

1974 

1975 

1989 

1990 

1991 

1992 

1994 

1999 

2000 

2001 

2002 

2003 

2004 

2005 

2006 

Feb 

4.4* 

0.0 

Mar 

2.7 

10.9* 

7.0 

10.8* 

Apr 

3.4 

4.6* 

0.3 

1.3 

3.3 

19.9* 

8.9* 

8.5* 

May 

20.4* 

1.2 

5.6* 

3.3 

4.0* 

0.6 

2.0 

4.3* 

1.8 

15.7* 

1.9 

7.0* 

6.0* 

75.6* 

Jun 

8.4* 

8.5* 

22.3* 

57.7* 

0.7 

20.7* 

6.8* 

9.6* 

0.7 

0.1 

0.0 

64.4* 

5.4* 

18.3* 

6.1* 

2.6 

28.6* 

49.3* 

Jul 

0.0 

1.4 

8.5* 

18.7* 

0.7 

0.0 

0.7 

5.9* 

5.6* 

11.0* 

26.8* 

33.8* 

13.3* 

5.0* 

26.1* 

17.1* 

30.0* 

Aug 

8.5* 

8.7* 

5.1* 

0.0 

0.0 

1.3 

1.9 

0.5 

2.9 

0.6 

0.8 

30.4* 

22.5* 

30.0* 

30.8* 

Sep 

4.1* 

1.1 

0.1 

4.5* 

6.8* 

0.9 

1.4 

9.7* 

5.4* 

1.6 

1.2 

0.2 

2.7 

6.4* 

Oct 

0.9 

9.3* 

0.0 

23.0* 

0.7 

10.0* 

1.6 

5.8* 

1.0 

5.0* 

0.6 

5.6* 

0.6 

Nov 

0.1 

9.9* 

0.7 

0.4 

10.7* 

1.6 

3.6 

1.0 

Dec 

0.4 

2.4 

43.7* 

0.4 

7.8* 

*Sex ratios were significantly different from 1:1 
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For the geographic comparison of the biological aspects of opalescent squid, 

60,022 individuals were sampled from Monterey, the northern Channel Islands, and 

Catalina Island (Figure 9a-b). From 2000-01 to 2006-07 there was a decrease in mean 

opalescent squid DML and mass in all areas (Figure lOa-d). In 1999-00 opalescent squid 

size was the largest for the northern Channel Islands and Catalina Island. Opalescent 

squid size was the smallest during the 2004-05 fishing season for southern California. 

Body size then increased in 2005-06 for sites south of Point Conception, but size 

decreased even further in 2005-06 and 2006-07 in Monterey for all opalescent squid. 
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Figure 9a-b The number of sample days and number of opalescent squid sampled 

per month for 3 regions from 1999-00 to 2006-07 (data source See Table 1) 
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Figure lOa-d Mean DML and mass with corresponding 95% CI for 3 regions 

from 1999-00 to 2006-07 (data source See Table 1) 
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Within a fishing season, mean opalescent squid body size oscillated from month 

to month (see Figure lOa-d). In Monterey, mean DML started at a certain size in the 

beginning of the regulatory fishing season (April) each year, and then increased on a 

monthly time scale until the end of the spawning period, sometime during the summer or 

fall. In southern California, opalescent squid size followed a pattern similar to Monterey 

when compared on a monthly time scale (see Figure lOa-d). In southern California, the 

spawning period usually began in October (instead of April in Monterey). Therefore, in 

the southern fishery, mean sizes were greatest at the beginning of the fishery, and then 

decreased in size until about the time when fishing stopped in the spring. Mean DMLs 

and masses were relatively small in the spring months and then increased through the 

summer months to the winter. This pattern occurred in Monterey, the northern Channel 

Islands, and Catalina Island. Mean DMLs were significantly correlated among the 3 

regions for each month indicating that the pattern in mean opalescent squid size was 

similar among regions, although masses from Monterey did not correspond with the 

northern Channel Islands (Table 5). 

Table 5 Pearson correlation coefficients of mean DML and mass by month between 

regions from 2000-01 to 2006-07 

Female DML (mm) 
Female mass (g) 
Male DML (mm) 
Male mass (g) 

Monterey vs. 
N. Channel Islands 
0.44* 
0.31 
0.35* 
0.36 

Monterey vs. 
Catalina 
0.69*** 
0.54** 
0.52** 
0.53** 

N. Channel Islands 
vs. Catalina 
0.81*** 
0.81*** 
0.80*** 
0.80*** 

*P<0.05, **P<0.01, ***P<0.001 
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In most months, males from all 3 areas for 1999-00 to 2006-07 dominated sex 

ratios of opalescent squid captured in the fishery (Figure 1 la-c). For the majority of the 

months, the proportion of males was within the 95% CI for a sample size of 30. In some 

months the proportion of males was significantly greater than the proportion of females 

(Table 6a-c). Past studies in Monterey found sex ratios to be equal from 1948 to 1962 

(Fields 1965) and from 1989 to 1994 (Leos 1998) and not equal in 1974 (Evans 1976) -

the results of this study indicate that sex ratios were equal in some months but not the 

majority. In Monterey, there was a general increase in the proportion of males from 1999 

to 2006, although this increase was not evident in the southern California sites. 

If female opalescent squid are captured before they have an opportunity to spawn, 

they will have a greater standing stock of eggs in their bodies, whereas females that have 

spawned will contain fewer eggs. Potential fecundity of female opalescent squid is 

dependent on DML (Macewicz et al. 2004); therefore, the temporal pattern in potential 

fecundity was the same as DML. Moreover, because DML decreased in Monterey from 

1948 to 2006, potential fecundity decreased. To estimate the fraction of potential 

fecundity a female had released into the environment at the time of capture, the ratio of 

oocyte standing stock to potential fecundity was subtracted from 1. It appears that 

released fecundity increased from 1999-00 to 2002-03 (Figure 12). In Monterey from 

2001-02 to 2002-03, the fraction of released fecundity increased through the fishing 

season from April to the fall, which matches the patterns in maturity index from 1989 to 

1994 when there was a greater proportion of spent individuals later in the fishing season 

(see Figure 8a-b). 
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Figure 1 la-c Mean proportion of males with corresponding 95% CI by month for 3 

regions from 1999-00 to 2006-07. The upper and lower solid lines depict the 95% 

CI for the entire period, and the middle solid line depicts the mean. The upper 

and lower dashed lines show the 95% CI for a daily sample size of 30 squid; 

the middle dashed line signifies a sex ratio of 1:1. (data source See Table 1) 
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Table 6a-c Chi-square results for opalescent squid sex ratios compared to 1:1 ratio 

for 3 regions 

Jan 
a. 
1999 

2000 

2001 
2002 

2003 

2004 

2005 

2006 

b. 
1999 

2000 23.8* 
2001 0.2 

2002 2.3 

2003 0.5 

2004 18.4* 

2005 6.4* 

2006 1.1 

2007 2.4 

c. 
1999 

2000 28.2* 

2001 3.2 

2002 0.1 

2003 4.3* 

2004 0.1 

2005 8.5* 
2006 6.2* 

2007 7.5* 

Feb 

0.0 

61.5* 
1.2 
17.3* 

32.0* 

1.1 
0.0 

0.0 

0.1 
0.1 
4.8* 

6.6* 

6.5* 
24.7* 
14.4* 

Mar 

7.0* 

10.8* 

15.2* 
0.1 
9.1* 

6.0* 

23.6* 

2.8 

25.6* 
0.0 
9.2* 

5.0* 
0.0 
19.2* 
0.7 

Apr 

3.3 
19.9* 

8.9* 

8.5* 

16.1* 

17.6* 

15.7* 
2.6 
2.2 
13.7* 

10.1* 

66.4* 

10.7* 
3.2 
3.6 
8.4* 

8.5* 

2.2 

May 

4.3* 
1.8 
15.7* 
1.8 
7.0* 

6.0* 

72.6* 

Jun Jul 

Monterey 

64.4* 26.8* 
5.4* 33.8* 

18.3* 13.3* 

6.1* 5.0* 

2.6 26.1* 

28.6* 17.1* 

49.3* 30.0* 

Aug 

0.6 
0.8 
30.4* 

22.5* 

30.0* 

30.8* 

N. Channel Islands 

1.1 
0.7 
0.1 
0.1 

17.1* 

18.1* 

0.0 
4.3* 

30.0* 

0.4 

1.4 

29.6* 2.4 

16.4* 0.0 
5.0* 12.3* 

3.3 
13.3* 

0.1 

0.1 

Catalina 

31.2* 0.1 

12.1* 0.8 

1.3 6.1* 
1.0 

20.0* 0.4 

15.0* 

1.6 
8.1* 1.4 

2.1 
0.6 

3.6* 

2.1 

1.2 
0.1 
1.2 

0.0 

0.2 
5.0* 

Sep 

5.4* 

1.6 
1.2 
0.2 
2.7 
6.4* 

42.1* 

6.2* 
0.2 
0.2 

6.4* 

14.3* 

0.6 

Oct 

5.1* 
0.6 
5.6* 

0.6 

24.8* 
10.4* 

14.0* 

28.9* 

19.0* 

0.1 
0.5 
2.1 

0.0 

2.5 

Nov 

3.6 
1.0 

4.5* 
0.2 
8.0* 

24.9* 
0.1 

25.6* 

1.8 
0.1 
0.3 

0.3 

3.6 

Dec 

2.3 
2.5 
9.6* 

7.1* 

0.1 

0.8 
3.9* 

7.3* 
2.3 
0.2 
1.1 
5.1* 

3.9* 

*Sex ratios were significantly different from 1:1 
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-•— Monterey —&— N. Channel Islands Catalina Island 

1999-00 2000-01 2001-02 2002-03 2003-04 

Figure 12 Fraction of potential female fecundity released with corresponding 95% CI for 

3 regions from 1999-00 to 2003-04 (data source See Table 1) 

Fishery and Environmental Data 

The average catch-per-daily-vessel-landing was calculated from dealer receipts 

(Figure 13a-c). Calculating CPUE in this manner did not account for 0 take even if effort 

was expended, nor was the actual amount of fishing time used in analyses. CPUE in this 

instance was used as a relative measure of the amount of opalescent squid removed per 

standardized-unit-of-effort (one fishing vessel day) through time and among different 

geographic regions. From 1950-01 to 1953-54 and from 1969-00 to 1989-90 in 

Monterey, the average catch-per-landing was never greater than 10 mt, and from 1990-91 

to 2006-07, CPUE was greater than 10 mt in some years (see Figure 13c). In 2002-03, 

even though the number of landings remained low, the average CPUE was greater than 

20 mt per landing, signifying a potential increase in opalescent squid abundance during 

that fishing season (see Figure 13a-c). 
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Figure 13a-c Monterey area fishery data from 1950-51 to 2006-07 

(data source See Table 1) 

From 1998-99 to 2006-07, total catch and CPUE were considerably greater in 

southern California than in Monterey (Figure 14a-c). In 1999-00 there were higher 

landings from the northern Channel Islands than from Catalina Island and in 2005-06, the 

opposite trend occurred. In years when landings were relatively small in Monterey, 

landings were greater in the southern California sites. 

In Monterey, the fishing season usually began within the month of April when 

mean opalescent squid sizes were relatively small (Figure 15a-b). Total catch reached a 
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maximum in May or June and then declined through the rest of the summer as mean 

opalescent squid sizes increased. In southern California, the fishing season usually began 

in October when opalescent squid were relatively large. Total catch increased as mean 

DML decreased from November to March (Figure 15c-d). Through the summer months, 

mean opalescent squid DML declined as total catch decreased. It appears that in 

Monterey, the fishery captured relatively smaller opalescent squid as the season began, 

whereas in southern California larger opalescent squid were caught at the beginning of 

the fishing season (see Figure 15a-d). 
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Figure 14a-c Regional fishery data from 1998-99 to 2006-07 

(data source See Table 1) 
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Figure 15a-d Total catch summed for each month throughout each time period and 

overall mean DML by month (data source See Table 1) 
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The 1976-77 regime shift caused SST to increase and upwelled nutrients to 

decrease along California. The monthly average SST recorded at Hopkins Marine 

Station near Monterey was 13.3°C (CI = 0.09) from 1947 to 2006; SST warmed 0.5°C. 

The seasonal pattern in SST - where SST is warm in the summer and cool in the winter -

did not falter, but the SST of the summers and winters were warmer after the 1976-77 

regime shift (Figure 16a-l). The strength of upwelling did not change considerably 

(Figure 17a-l); nutrients that would normally be upwelled were reduced due to an 

increase in water column stratification (McGowan et al. 2003; Kim and Miller 2007). 

Environmental conditions differed between central and southern California. 

Mean monthly SSTs were consistently cooler near Monterey than in southern California 

during the summer months, whereas, SSTs were more similar during winter months 

(Figure 18a-b). The strongest upwelling occurred in spring and summer in both areas 

(Figure 18c). In Monterey, upwelled water provided a source of nutrients from 

bathymetric depths and in southern California, nutrients were upwelled from the 

continental slope (Venrick et al. 2006). Upwelling values overlapped in both areas 

throughout the year. During the 1998-99 La Nina, a shift to a cool regime phase was 

predicted, but instead of the shift being permanent, in 2002, SST became warm and 

upwelling relaxed. In addition, the timing of seasonal events shifted. For example, the 

spring transition that usually occurred in Monterey during March was offset to summer 

months in the 2005-06 (Peterson et al. 2006) and 2006-07 seasons (Goericke et al. 2007). 

Oceanographic conditions in southern California were near the long-term average during 

this alternative period (Bograd et al. 2000; Durazo et al. 2001). 
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Figure 18a-c Mean SST with corresponding 95% CI, SST anomaly, and upwelling by 

month for 3 regions from 1998-99 to 2006-07 (data source See Table 1) 
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Causes for the decline in opalescent squid size are not well-known. For Monterey 

from 1948 to 2006, the PDO shifted from a cool regime to a period of warm water in 

1976-77 and then to an alternative period in 1999, and there were numerous ENSO 

events (see Figure 4a). Opalescent squid DML was larger during the cool PDO and in 

years immediately following strong La Nina events, whereas warmer water led to 

comparatively smaller individuals (See Figure 4a). Correlations between biological 

characteristics and fishing pressure were not as strong as correlations between opalescent 

squid size and environmental variables for Monterey from 1948-49 to 2006-07. Mean 

DMLs for females and males were negatively correlated with landings 8 months prior to 

capture (Table 7a-b). CPUE 7 to 12 months before capture had a negative effect on 

female DML, but there were no significant correlations between male size and CPUE 

(see Table 7a-b). Total catch was negatively correlated with female DMLs at 8 to 12 

months before capture (see Table 7a-b). A correlation with a 12-month lag indicates that 

the catch 1 year before opalescent squid were captured will have an effect on the size of 

individuals from a generation 1 year later unless opalescent squid live to 12 months. 

Different results were found for the 3 geographic regions from 1999-00 to 2006-

07 (Table 8a-b). There were no significant correlations between mean DMLs and the 

number of landings in Monterey, but instead positive correlations occurred from 7 to 9 

months before capture in the northern Channel Islands for females and males. CPUE was 

positively correlated with DML at time of capture for males in the Monterey, but there 

were minor significant correlations between mean DML and CPUE for the southern 

California sites (see Table 8a-b). 
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Table 8a-b Pearson correlation coefficients for mean DML versus fishery variables by 

month for Monterey from 2000-01 to 2006-07 and two southern California sites from 

1999-00 to 2006-07 

Monterey 
Lag Landing CPUE Catch 

N. Channel Islands 
Landing CPUE Catch 

Catalina 
Landing CPUE Catch 

a. Female 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.11 
0.03 

-0.06 
-0.07 
-0.12 
0.26 
0.44 
-0.29 
-0.25 
-0.24 
-0.22 
-0.35 
-0.43 

0.55* 
0.44* 
0.49* 
0.38 
0.20 

-0.05 
-0.16 
-0.15 
-0.22 
-0.40 
-0.17 
-0.04 
0.02 

0.26 
0.19 

-0.10 
0.01 
0.20 
0.30 
0.22 
-0.24 
-0.20 
-0.14 
-0.24 
-0.32 
-0.24 

0.16 
0.06 

-0.02 
-0.05 
-0.07 
0.15 
0.30 
0.44** 
0.48** 
0.44** 
0.34 
0.23 
0.22 

0.30 
0.12 
0.20 
0.13 
0.04 
0.14 
0.14 
0.20 
0.11 
0.05 
-0.01 
-0.01 
-0.09 

0.26 
0.15 
0.12 
0.07 
-0.01 
0.13 
0.24 
0.34 
0.37* 
0.31 
0.22 
0.13 
0.10 

0.09 
-0.08 
-0.15 
-0.21 
-0.32 
-0.31 
-0.18 
-0.02 
0.08 
0.13 
0.22 
0.12 

-0.01 

0.19 
0.07 

-0.16 
-0.11 
-0.14 
-0.20 
-0.15 
0.06 
0.07 
0.15 
0.14 
0.16 
0.07 

0.09 
-0.07 
-0.15 
-0.23 
-0.34 
-0.30 
-0.15 
0.01 
0.10 
0.14 
0.19 
0.13 
0.04 

b. Male 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.20 
0.11 
-0.01 
0.01 

-0.09 
0.19 
0.44 
0.32 
-0.16 
-0.11 
-0.10 
-0.21 
-0.33 

0.62 
0.52 
0.52 
0.43 
0.15 

-0.12 
-0.14 
-0.22 
-0.15 
-0.19 
-0.09 
0.14 
0.20 

0.35 
0.36 
0.20 
0.01 
0.12 
0.29 
0.23 

-0.17 
-0.10 
-0.06 
-0.11 
-0.24 
-0.19 

0.19 
0.10 
0.05 
0.09 
0.07 
0.24 
0.42* 
0.47** 
0.37* 
0.36 
0.32 
0.25 
0.21 

0.36* 
0.14 
0.20 
0.18 
0.08 
0.17 
0.16 
0.18 
0.02 

-0.05 
-0.09 
-0.09 
-0.13 

0.28 
0.18 
0.19 
0.20 
0.12 
0.22 
0.37* 
0.38* 
0.27 
0.21 
0.16 
0.07 
0.06 

0.22 
0.05 
-0.06 
-0.15 
-0.27 
-0.27 
-0.18 
-0.02 
0.09 
0.14 
0.23 
0.13 
0.01 

0.29 
0.22 
0.09 

-0.02 
-0.08 
-0.16 
-0.14 
0.03 
0.15 
0.18 
0.13 
0.19 
0.15 

0.22 
0.05 
-0.05 
-0.17 
-0.28 
-0.27 
-0.15 
0.01 
0.12 
0.15 
0.21 
0.14 
0.05 

*P<0.05, **P<0.01 
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Environmental factors including mean SSTs and upwelling were significantly 

correlated with mean DMLs in Monterey from 1948-49 to 2006-07. There was a 

negative correlation between mean DML or mass with monthly SST at time of capture 

and from 7 to 11 months before opalescent squid were sampled, which should coincide 

with their hatch-month (Figure 19a-b). Additionally, there was a positive correlation 

between mean DML and mass versus upwelling approximately 4 to 6 months before 

capture (Figure 19c-d). Anomalies for monthly mean SST, upwelling, and opalescent 

squid sizes were correlated to determine if relatively stronger or weaker environmental 

variables would have an even greater effect on opalescent squid size. Correlations 

between the anomalies for monthly mean DML and SST, indicate an actual negative 

correlation existed that was not just an artifact of seasonality (see Table 7a-b). 

Similar patterns existed for Monterey, the northern Channel Islands, and Catalina 

Island from 1999-00 to 2006-07 (Tables 9-12). In Monterey from 1999-00 to 2006-07, 

mean DML and SST were negatively correlated between 8 to 10 months before capture 

and positively correlated 1 to 4 months before being collected. Anomalies for monthly 

mean SSTs and opalescent squid DMLs were not significantly correlated. These patterns 

for Monterey from 1999-00 to 2006-07 do not match the results from 1948-49 to 2006-07 

probably because the sample size was considerably less due to the shorter time period. In 

southern California, similar correlations were significant probably because the sample 

size was larger due to the fishery being more active throughout the fishing season. In the 

northern Channel Islands, monthly mean DMLs were negatively correlated with mean 

SSTs from 5 to 8 month for females and from 6 to 8 months for males before time of 
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capture (see Table 9a-b). Correlations between the monthly mean anomalies for SST and 

DML also were significant for 2 to 4 months for females and males (see Table 9a-b). 

Near Catalina Island, mean DML and SST were negatively correlated for lags of 6 to 9 

months for females and from 7 to 10 months for males, and correlations between the 

corresponding anomalies were significant (see Table 9a-b). 
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Table 9a-b Pearson correlation coefficients for mean DML versus SST by month for 

Monterey from 2000-01 to 2006-07 and two southern California sites 

from 1999-00 to 2006-07 

DML vs. SST 

Lag , A A N. Channel „ . ,. Monterey T , , Catalma Islands 

DML anomaly vs. 
SST anomaly 

, , • . N. Channel -, . ,. Monterey T . , Catalma Islands 
a. Female 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.08 
0.40* 
0.57** 
0.57** 
0.41* 
0.27 

-0.03 
-0.28 
-0.49** 
-0.55** 
-0.49** 
-0.16 
0.19 

0.41** 
0.34* 
0.14 
-0.10 
-0.28 
-0.39** 
-0.54** 
-0.55** 
-0.46** 
-0.16 
0.16 
0.37* 
0.47** 

0.26 
0.39** 
0.46*** 
0.35** 
0.13 

-0.11 
-0.41** 
-0.59*** 
-0.55*** 
-0.38*** 
-0.13 
0.07 
0.25 

-0.20 
-0.11 
-0.06 
-0.11 
-0.22 
-0.16 
-0.06 
0.07 
0.08 
0.25 
0.17 
0.06 
-0.15 

-0.18 
-0.20 
-0.39** 
-0.49** 
-0.43** 
-0.20 
-0.21 
-0.23 
-0.31 
-0.18 
-0.01 
-0.16 
-0.02 

-0.27 
-0.36* 
-0.32* 
-0.37* 
-0.41** 
-0.34* 
-0.51** 
-0.51** 
-0.31* 
-0.20 
-0.09 
-0.17 
-0.13 

b. Male 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.02 
0.26 
0.41 
0.43* 
0.28 
0.13 

-0.04 
-0.15 
-0.33 
-0.37 
-0.36 
-0.20 
0.09 

0.28 
0.19 
-0.02 
-0.20 
-0.31 
-0.37 
-0.43* 
-0.41** 
-0.32** 
-0.07 
0.18 
0.30 
0.33 

0.11 
0.32* 
0.45** 
0.45** 
0.28 
0.06 

-0.25 
-0.50*** 
-0.57*** 
-0.51*** 
-0.31* 
-0.15 
0.10 

-0.14 
-0.17 
-0.13 
-0.19 
-0.20 
-0.23 
-0.08 
0.15 
0.17 
0.28 
0.17 
-0.03 
-0.16 

-0.12 
-0.13 
-0.43** 
-0.51** 
-0.46** 
-0.30 
-0.22 
-0.25 
-0.31 
-0.17 
-0.02 
-0.01 
0.03 

-0.16 
-0.27 
-0.33* 
-0.31 
-0.38** 
-0.33* 
-0.46*** 
-0.43*** 
-0.26 
-0.20 
-0.11 
-0.26* 
-0.09 

*P<0.05, **P<0.01, *'**P<0.001 
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Table lOa-b Pearson correlation coefficients for mean DML versus upwelling by month 

for Monterey from 2000-01 to 2006-07 and two southern 

California sites from 1999-00 to 2006-07 

DML vs. upwelling 

Lag 
, , , N. Channel „ , .. 
Monterey T , , Catalma J Islands 

DML anomaly vs. 
upwelling anomaly 

Monterey T ' , Catalina 
Islands 

a. Female 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-0.23 
0.10 
0.49** 
0.64** 
0.74** 
0.73** 
0.48** 

-0.01 
-0.30 
-0.40** 
-0.46** 
-0.44** 
-0.33 

0.06 
0.30 
0.46** 
0.50** 
0.40** 
0.22 
0.09 

-0.14 
-0.36* 
-0.41** 
-0.35* 
-0.11 
0.16 

-0.07 
0.17 
0.40** 
0.47** 
0.46*** 
0.36** 
0.28 
0.09 
-0.20 
-0.42*** 
-0.45*** 
-0.28 
-0.05 

0.49* 
0.38 
0.38 
0.16 
0.18 
0.09 
-0.07 
-0.12 
0.01 
0.31 
0.35 
0.46* 
0.36 

-0.01 
-0.07 
-0.02 
0.10 
0.15 
0.09 
0.25 
0.26 
0.29 
0.22 
0.05 
0.05 
0.15 

0.15 
0.13 
0.17 
0.06 
0.01 

-0.01 
0.12 
0.14 
0.15 
0.20 
0.25 
0.35 
0.34 

b. Male 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-0.11 
0.16 
0.43 
0.55* 
0.60** 
0.60** 
0.40* 
-0.01 
-0.22 
-0.28 
-0.30 
-0.25 
-0.19 

0.07 
0.19 
0.32 
0.33 
0.23 
0.18 
0.12 

-0.04 
-0.16 
-0.23 
-0.19 
-0.01 
0.18 

-0.26 
-0.03 
0.22 
0.38** 
0.48*** 
0.47*** 
0.45*** 
0.24 

-0.09 
-0.38* 
-0.50*** 
-0.41** 
-0.26 

0.48* 
0.45* 
0.43* 
0.25 
0.21 
0.04 

-0.04 
-0.14 
0.03 
0.16 
0.34 
0.51* 
0.39 

-0.08 
-0.15 
0.01 
0.12 
0.01 
0.20 
0.30 
0.32 
0.35 
0.24 
0.11 
0.07 
0.12 

0.10 
0.09 
0.07 
-0.01 
-0.02 
-0.01 
0.18 
0.14 
0.13 
0.12 
0.12 
0.25 
0.19 

*P<0.05, **P<0.01, ***P<0.001 
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Table 1 la-b Pearson correlation coefficients for mean mass versus SST by month for 

Monterey from 2000-01 to 2006-07 and two southern 

California sites from 1999-00 to 2006-07 

Mass vs. SST Mass anomaly vs. 
SST anomaly 

Monterey N. Channel 
Islands 

Catalina Monterey N. Channel 
Islands 

Catalina 

a. 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.11 
0.39 
0.47* 
0.46* 
0.37 
0.28 
0.02 
-0.15 
-0.34 
-0.38 
-0.34 
-0.08 
0.11 

0.43** 
0.27 

-0.05 
-0.15 
-0.35* 
-0.51** 
-0.59** 
-0.50** 
-0.32* 
-0.05 
0.18 
0.38* 
0.50** 

Fen 
0.39** 
0.45*** 
0.39** 
0.20 

-0.09 
-0.33 
-0.56* 
-0.64*** 
-0.51*** 
-0.24*** 
0.04 
0.27 
0.41 

lale 
-0.16 
0.05 
0.05 
0.01 

-0.02 
-0.02 
-0.08 
0.27 
0.20 
0.33 
0.22 
0.02 
-0.28 

-0.17 
-0.30 
-0.47** 
-0.43** 
-0.39** 
-0.32** 
-0.26 
-0.19 
-0.17 
-0.13 
-0.15 
-0.16 
0.04 

-0.23 
-0.30 
-0.30 
-0.33 
-0.45** 
-0.37** 
-0.45*** 
-0.39** 
-0.19 
-0.11 
-0.06 
-0.05 
-0.03 

Male 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

0.02 
0.25 
0.41 
0.44* 
0.28 
0.12 

-0.03 
-0.12 
-0.28 
-0.34 
-0.33 
-0.19 
0.05 

0.27 
0.16 

-0.05 
-0.19 
-0.32 
-0.42** 
-0.46** 
-0.42** 
-0.29 
-0.03 
0.16 
0.28 
0.32 

0.18 
0.35* 
0.42** 
0.37** 
0.15 
-0.07 
-0.35* 
-0.53** 
-0.55*** 
-0.44*** 
-0.22 
-0.03 
-0.19 

-0.12 
-0.15 
-0.09 
-0.12 
-0.13 
-0.21 
-0.02 
0.21 
0.24 
0.32 
0.19 

-0.03 
-0.20 

-0.13 
-0.23 
-0.49** 
-0.48** 
-0.45** 
-0.40** 
-0.28 
-0.27 
-0.24 
-0.12 
-0.06 
-0.04 
-0.03 

-0.14 
-0.25 
-0.32 
-0.29 
-0.43** 
-0.35* 
-0.42** 
-0.34* 
-0.19 
-0.14 
-0.07 
-0.18 
-0.04 

*P<0.05, **P<0.01, ***P<0.001 
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Table 12a-b Pearson correlation coefficients for mean mass versus upwelling by 

month for Monterey from 2000-01 to 2006-07 and two 

southern California sites from 1999-00 to 2006-07 

Weight vs. upwelling 

Lag 
, , , N. Channel ~ A ,. Monterey T , , Catalma Islands 

Weight anomaly vs. 
upwelling anomaly 

, . . N. Channel „ . ,. Monterey T , , Catalma Islands 
a. Female 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-0.07 
0.19 
0.45* 
0.53** 
0.61*** 
0.49** 
0.28 

-0.11 
-0.27 
-0.27 
-0.31 
-0.26 
-0.14 

0.16 
0.39* 
0.52** 
0.47** 
0.35 
0.18 
0.04 

-0.21 
-0.36* 
-0.38* 
-0.25 
0.01 
0.24 

0.10 
0.32* 
0.52*** 
0.49*** 
0.41** 
0.25 
0.09 
-0.11 
-0.37** 
-0.52*** 
-0.42** 
-0.16 
0.14 

0.48** 
0.39 
0.31 
0.10 
0.19 
-0.07 
-0.14 
-0.23 
0.03 
0.38 
0.35 
0.48** 
0.42* 

0.02 
0.01 
0.04 
0.04 
0.03 
0.13 
0.30 
0.29 
0.33 
0.26 
0.17 
0.12 
0.08 

0.09 
0.04 
0.12 
-0.06 
-0.05 
0.02 
0.12 
0.17 
0.13 
0.14 
0.20 
0.26 
0.22 

b. Male 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

-0.07 
0.20 
0.43* 
0.54*** 
0.58*** 
0.56* 
0.37 

-0.04 
-0.23 
-0.28 
-0.28 
-0.23 
-0.15 

0.10 
0.23 
0.34* 
0.32 
0.22 
0.19 
0.10 

-0.04 
-0.16 
-0.23 
-0.16 
-0.01 
0.17 

-0.16 
0.06 
0.31* 
0.41** 
0.48*** 
0.43** 
0.37* 
0.13 
-0.17 
-0.42* 
-0.49*** 
-0.34* 
-0.17 

0.50** 
0.51** 
0.46* 
0.26 
0.22 

-0.01 
-0.06 
-0.18 
0.02 
0.25 
0.34 
0.50** 
0.41* 

-0.02 
-0.07 
0.06 
0.10 
0.06 
0.20 
0.29 
0.32 
0.33 
0.23 
0.15 
0.08 
0.10 

0.19 
0.04 
0.09 

-0.05 
-0.02 
0.03 
0.21 
0.16 
0.14 
0.13 
0.11 
0.24 
0.14 

*P<0.05, **P<0.01, ***P<0.001 
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Correlations between monthly mean upwelling and opalescent squid DMLs were 

significantly positive in Monterey, the northern Channel Islands, and Catalina Island for 

females for lags of 2 to 6 months (see Table 10a). For males, however, the positive 

correlation between mean DMLs and upwelling was only significant in Monterey and 

Catalina Island (see Table 10b). Anomalies for DML and upwelling were significant in 

Monterey from 0 to 2 months; however, there were no significant correlations between 

anomalies for upwelling and DMLs in southern California (see Table 10b). Similar to 

DML, mean body mass was negatively correlated with SST and positively correlated 

with upwelling (see Tables 11-12). When SST was warm during potential hatch-months 

of opalescent squid, then adult body mass was relatively smaller than if SST had been 

cool during the early life stages. 

Two measures of female fecundity for spawning adults were tested for 

correlations with fishery landings projected from 1 to 12 months into the future around 

Catalina Island from 1999-00 to 2002-03. The first measure of fecundity that was tested 

was the mean fraction of released potential fecundity for each month of adult female 

opalescent squid. This measure was not significantly correlated with fishery landings 

that occurred 1 to 12 months later. The second measure of female fecundity, the standing 

stock of oocytes, however, did have a positive correlation with fishery catch 4 to 7 

months after samples were taken (Table 13). These results indicate that oocyte standing 

stock may be used as a proxy to predict fishery landings projected up to 7 months into the 

future. 
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Table 13 Pearson correlation coefficients for a measure of fecundity (standing stock of 

oocytes) versus total catch for Catalina Island from 1999-00 to 2002-03 

Projection 
(month) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Oocytes vs. Catch 
-0.24 
-0.27 
-0.30 
-0.05 
0.42*** 
0.61*** 
0.73*** 
0.58** 
0.23 

-0.12 
-0.25 
-0.26 
-0.09 

**P<0.01, ***P<0.001 
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DISCUSSION 

Having access to original, historic, biological data to statistically evaluate long-

term trends is uncommon. Although the opalescent squid fishery began in the mid 1800s 

and the biological samples for this study were not collected until the 1940s, sampling did 

begin just as fishing pressure was substantially increasing in California. The results of 

this study offer insight into long-term trends in the biology of the fished population of 

California's opalescent squid. 

Biological characteristics of opalescent squid tend to oscillate over time; for 

instance a significant decrease in opalescent squid body size and an increase in the 

proportion of males were evident in this study. Although, monthly mean opalescent 

squid DMLs may fluctuate in excess of 20 mm within a fishing season, recorded sizes 

have yet to reach the maximum average sizes of the past. Given that opalescent squid are 

a valuable commodity for California's economy and that numerous marine organisms 

depend on opalescent squid as a food source, it is important to identify potential causes 

for the decline in opalescent squid body size from 1948 to 2006 and the increase in the 

proportion of males captured in the fishery from 1999 to 2006. 

The presence of smaller opalescent squid in fishery landings may be from 

individuals recruiting to the fishery at a younger age, indicating that individuals are 

maturing earlier. Many exploited species have undergone such changes in age (Trippel 

1995). One cause for an earlier age-at-maturity is the compensatory response where 

fishing reduces population density, thereby fostering a less competitive environment for 

food resources and allowing more food intake and faster growth. The explanation that an 
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increase in food availability may have increased growth rates in the opalescent squid 

population is somewhat weak because there has been a decline in food availability over 

the long-term (Roemmich and McGowan 1995). The ages of harvested opalescent squid 

were not available for this analysis. Past ageing studies indicate, however, that the 

longevity of opalescent squid may have decreased from the 1940s to the 2000s (Fields 

1965; Spratt 1979; Butler et al. 1999; Jackson and Domeier 2003; Reiss et al. 2004). 

Another factor that may have caused the decline in opalescent squid size in 

Monterey could be a change in how individuals were sampled or captured by the fishery. 

Since the inception of the opalescent squid fishery, a change in gear types made fishing 

more efficient, fishermen's knowledge about the behavior of opalescent squid improved, 

technology for finding aggregations became more sophisticated, and regulations changed. 

There was a shift from lampara to purse or drum seine nets in Monterey in the late 1980s 

when the ban on purse seine nets was lifted. Gear types, including lampara, purse, and 

drum seine nets, did not have the same mesh size and may have selectively captured 

certain sizes of opalescent squid. Even though on average there was a larger mesh size 

used from the 1940s to late 1980s than from the early 1990s to the mid 2000s, this still 

does not explain why the maximum size in opalescent squid declined. In fact, relatively 

smaller individuals (both DML and mass) were captured in the later study periods 

although the mesh size was larger. Since opalescent squid from the largest sizes were 

missing, the decline in monthly mean DMLs and masses cannot be solely an effect of 

mesh size or gear type. In addition, the use of purse seine nets led to a decrease in actual 

fishing time. Identifying opalescent squid aggregations became easier as improvements 
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in sonar technology allowed fishermen to discriminate between different schooling 

species. With all of these improvements, fishermen have harvested a greater amount of 

opalescent squid in the more recent years, thus allowing more opportunities to sample -

yet the maximum sizes were still missing from the samples. 

A fishing regulation that could have affected opalescent squid size was a ban on 

using lights as an attractant from 1959 to 1989 in Monterey (CDFG 2005). Considering 

that in most fishing seasons opalescent squid DML was above the long-term mean from 

the 1940s to the 1970s and that the ban on lights began in the middle of that time period, 

lights probably did not have a significant effect on opalescent squid size. 

From 1950 to 2007, total catch in Monterey increased starting in the mid 1980s. 

Some may argue that with larger catch volumes, a greater number of relatively smaller 

opalescent squid have been sampled, thereby causing the mean size to decline. This 

could be the case for samples taken in 2000, but RS for Excel was used when the 

sampling sizes were greatly unequal, thereby reducing the bias of sample size and 

unequal variances. In addition, with more individuals being sampled from the 

environment by the fishery, there should have also been a greater likelihood that the 

largest individuals would be captured, but instead they were non-existent in samples 

taken from the 1980s to the 2000s. 

The fishing fleet may have been intercepting opalescent squid before they actually 

reached the spawning grounds. This would have caused mean DMLs of sampled 

opalescent squid to be smaller. The fishery occurs mainly during the night; in recent 

years, however, there has been an increase in daytime fishing (unpublished CDFG 
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logbook data). The data on maturity collected from the 1980s to the 1990s was fairly 

constant through time. Even though a direct measure of maturity was not taken for the 

samples from the 2000s, it was noted whether the sex was discernable. The percentage of 

unknown sex in opalescent squid samples did not change, indicating that the fishery did 

not intercept opalescent squid earlier in their life history or at smaller sizes. 

Size-selectivity by the fishery may have played a role in the decline in opalescent 

squid size. The fishing fleet captures only the largest opalescent squid, thereby leaving 

the smaller individuals to reproduce and spawn offspring that may grow to a size that is 

similar to their parents. The fishing industry usually targets the largest individuals 

because buyers often will not accept relatively small opalescent squid. If the fishing 

industry knows that spawning opalescent squid are too small, then they will not put forth 

the effort to catch them, thereby leaving the smaller opalescent squid to spawn. The 

offspring of the smaller opalescent squid may live to spawn individuals that may grow to 

a size that is similar to their parents. This form of size-selective mortality leads to a 

population that spawns smaller larvae through time (Conover and Munch 2002; Melville-

Smith and de Lestang 2006). Fishermen usually target the largest opalescent squid, thus 

leaving the smaller individuals to reproduce, therefore the likelihood of size-selectivity 

shaping the biological aspects of the opalescent squid population is also a potential factor 

leading to a change in size through time. This effect could compound the gradual 

decrease in food availability caused by the warm, nutrient-poor cycle of the PDO and the 

increased frequency of El Niftos. The cumulative affect of fishing may interfere with the 
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natural ability of opalescent squid to counteract the effects of a warmer, low-nutrient 

environment (Jackson et al. 2001). 

Among the different environmental and fishery aspects that were tested as 

potential factors causing the decrease in mean opalescent squid DML, SST had the 

greatest correlation with body size, which supports the findings of other studies (Jackson 

and Domeier 2003; Reiss et al. 2004). When SST was warm, relative to long-term 

averages, mean DML was relatively smaller from 7 to 11 months later; and when SST 

was cold, mean DML was larger within the same time lag. Interestingly, the correlation 

was significant up to 11 months before the time of capture, which could potentially mean 

that some individuals were as old as 11 months, although the most recent ageing studies 

have estimated opalescent squid to live to a maximum of 10 months (Butler et al. 2001). 

According to the results of this study, not only was DML smaller with a warmer hatch-

month, but DML was even smaller during months that were anomalously warmer. 

Opalescent squid body size was not just fluctuating with SST as a coincidence -

either SST or something related to SST, like food supply, caused some of the variability 

in opalescent squid size. Opalescent squid that were estimated to hatch in cool months of 

early spring grew even larger if SSTs were anomalously cooler. When SST was warmer 

than usual, DML was relatively smaller. In addition to the short-term effects of SST on 

opalescent squid size, a longer-term effect also was taking place. As SST increased 

decadally from the 1940s to the 2000s, mean opalescent squid DML and mass decreased. 

The most probable causes for the observed decline in opalescent squid size were 

the limiting nature of SST and food supply during the earlier life stages of opalescent 
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squid. The California Current was less productive and warmer from 1977 to 2007 than it 

was from 1948 to 1975. In the California Current system, SST can be inversely related to 

nutrients and plankton (Roemmich and McGowan 1995). When SST increases, 

zooplankton (one of the main food items of opalescent squid) decreases. Zooplankton 

and pelagic finfish, the main prey items of opalescent squid (Fields 1965; Cailliet et al. 

1979; Karpov and Cailliet 1979; CDFG 2005), have decreased since the 1950s 

(Roemmich and McGowan 1995; Chavez et al. 2003). Not only has the SST during the 

past 60 years increased, but food availability for opalescent squid also has decreased. 

Upwelling and opalescent squid DML were positively correlated from 2 to 6 

months and negatively correlated from 8 to 11 months, or at the beginning of the lifespan 

of opalescent squid. A negative correlation for upwelling during the hatch-month may 

correspond more to the movement of water and passive larvae transport from nursing 

grounds rather than with nutrients (Zeidberg and Hamner 2002). Upwelling and 

opalescent squid DML were positively correlated during their growth stage (2 to 6 

months), which corresponds to the time when they would be actively feeding on 

zooplankton. Upwelling would bring nutrients to the surface, causing a bloom in 

phytoplankton and zooplankton, thereby increasing the food source of juvenile opalescent 

squid. The absence of significant correlations between the anomalies for upwelling and 

body size may signify that anomalously high upwelling within a particular season is 

unlikely to correspond to larger opalescent squid DMLs. 

Sampling concurrently within different geographic regions began in 1998 during 

an El Nino when there happened to be a considerable decline in landings. The lack of 
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opalescent squid and samples continued in Monterey through the 1999-00 season; 

however, CDFG samplers obtained samples from southern California during the 1999-00 

La Nina. Opalescent squid DMLs and masses were significantly larger than in other 

years in southern California during the first season of sampling; probably due to the 

increase in nutrients and drop in SST from the 1999-00 La Nina. There was a 

considerable reduction in body size in 2004-05 in Monterey, most likely due to a 

decrease in food availability because there was a delay in the onset of upwelling, which 

was associated with weaker winds (Goericke et al. 2005). In 2005-06, upwelling was 

again reduced in Monterey, causing the size of opalescent squid to decline even further, 

whereas mean DMLs and masses increased in both of the southern California sites as the 

SST was in a cool state (Peterson et al. 2006). 

Although the primary spawning periods in Monterey and southern California 

occurred at different times, mean DMLs and masses fluctuated on a monthly basis in the 

same pattern. Size was usually at a minimum in early spring and at a maximum in late 

fall and early winter. Ageing studies conducted in southern California during 1998 

(Butler et al. 1999) and from July 1998 to March 2000 (Jackson and Domeier 2003) 

indicated the oldest opalescent squid were from 225 to 257 days (7.5 to 8.5 months), and 

they matured as early as 129 to 163 days (4.3 to 5.4 months). Based on opalescent squid 

being between 6 to 10 months old (Butler et al. 2001), the relatively largest individuals 

captured in November, December, and January would have been born from February to 

July during relatively cool to medium SSTs and during periods of increased food supply 

due to upwelling. Relatively smaller opalescent squid caught in March, April, and May 
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would have been hatched from July to November during a nutrient low period with 

months that were warm due to summer heat. 

As shown in the correlations between opalescent squid DML and mass and 

environmental variables, SST explained up to 60% of the variation in size during 

potential hatch-months and upwelling was related more to the juvenile period. The lack 

of a significant correlation in Monterey from 2000 to 2006 between opalescent squid 

body size and environmental factors was probably due to a smaller sample size north of 

Point Conception versus southern California. Due in part to a relatively short life span 

and low fat content, when opalescent squid consume nutrients, the energy is used for 

growth instead of being stored for later use (O'Dor and Webber 1986). Growth was 

influenced primarily by SST and food availability due to the rapid response opalescent 

squid have to fluctuations in these factors (Jackson and Domeier 2003; Reiss et al. 2004). 

Interestingly, although SST was consistently cooler in Monterey than southern California, 

opalescent squid size overlapped for each of the locations, even though opalescent squid 

in Monterey should be larger due to the cooler SSTs. This signifies that SST explains 

just a portion of the variation in size and that other variables like age, food supply, and 

fishing pressure should be considered. 

In Monterey from 1948 to 2006, the proportion of males incrementally increased 

from the beginning of the fishing season in April to the end of the year, and then the 

number of females increased at the end of the fishing season. Patterns in monthly sex 

ratios indicated that one sex may have completed their spawning stage and died of natural 

causes before being caught by the fishery (Starr and McCrae 1984,1985). In other 
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species ofLoligo, males recruit to the fishery before females (Boyle and Pierce 1994), 

which may cause the number of males present at the spawning grounds to increase if the 

presence of cohorts overlaps considerably. 

There appeared to be an increase in the proportion of males in Monterey during 

the study. Whether this was due to a decline in the number of females or an increase in 

the number of males could not be determined due to the absence of an actual biomass 

estimate for this species. Past studies have identified the presence of smaller, lone males 

on the spawning grounds (Hanlon et al. 2004; Zeidberg 2008). These "sneaker" males 

insert their spermatophores into the mantle cavity of females mating with larger males. A 

decrease in opalescent squid size may be associated with an increase in the proportion of 

males present on the spawning grounds and with the paternal effect of smaller males. 

Additionally, changes in fishing methods may have also caused a shift in sampled 

sex ratios. Within the past few years, daytime fishing has increased, and perhaps those 

schools were dominated by a particular sex. Another possibility is that catch was 

dominated by males in a year when abundance was low; for instance in the 2004-05 and 

2005-06 fishing seasons, catch was unusually small and sex ratios were dominated by 

males. In addition, lights may affect sex ratios if one sex is more phototropic (Leos 

1998). A decline in the number of females present in the ecosystem would be of great 

concern because each cohort is dependent on the fecundity of females from past months. 

Potential fecundity for females was directly related to DML (Macewicz et al. 

2004). In Monterey, assuming that the relationship between DML and fecundity has not 

changed, there was an SST induced decrease in potential fecundity associated with the 
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decline in body size from 1948 to 2006. Even if this may be the case, in some of the 

more recent years, opalescent squid landings greatly surpassed those from the past, which 

occurred because of an increase in food supply due to the presence of a La Nina and to 

greater effort on the part of the fishery. 

In 2005-06, potential fecundity for opalescent squid in Monterey declined to an 

all time low as did the fishery for that season and the following 2006-07 season. The 

decline in female fecundity and landings can be attributed to the relatively warmer SST in 

Monterey and the delay and weakening in upwelling from 2004-05 to 2006-07. In 

southern California from 1999-00 to 2006-07, potential fecundity was relatively lower in 

2004-05, but this rebounded in 2005-06 to values similar to previous seasons. Landings 

did not closely match the decline in DML or potential fecundity in southern California as 

was seen in Monterey. Although the Monterey fishery could extend from the Farallon 

Islands to Pt. Conception, it was mostly concentrated near Monterey. The southern 

California fishery covered a much greater area with fishing activity occurring along the 

coast from Pt. Conception to the Mexican border and around the offshore islands. A 

greater area of spawning grounds and a larger number of active fishing vessels in the fleet 

could explain why landings persisted through periods of lower female fecundity in 

southern California. 

Identifying potential causes for long-term changes in opalescent squid size is 

imperative for effective fisheries management. The current management strategy for 

sustainable harvest in the opalescent squid fishery involves monitoring the amount of 

eggs released by females. In other words, one way for the fishery to be replenished is to 

69 



ensure that enough females have laid enough eggs before being caught by the fishery. 

According to the current assessment of egg escapement by CDFG and NMFS, enough 

eggs (at least 30% of potential fecundity) are being released. However if size, which is 

directly related to fecundity and has been in an overall decline for at least the past 60 

years, continues to decrease, there should be concern for the future health of the fishery. 

One of the primary objectives of the MSFMP is to ensure the sustainable harvest 

of the species. According to statewide landings for the past decade, the fishery has done 

well - the resource appears to support the abundance the fishery extracts. For most 

species, CPUE is not considered a reliable index for abundance. For the opalescent squid 

fishery, however, fishermen only expend the effort to fish when opalescent squid 

aggregate in abundance. Therefore, CPUE does serve as an index of the available 

abundance of opalescent squid on well-known spawning grounds. CPUE in the 

opalescent squid fishery has in general increased thus signifying a supposed increase in 

relative abundance on the spawning grounds and perhaps an increase in the area fished. 

The resource may not be able to sustain such levels of fishing pressure especially when 

coupled with a decline in food availability, which may be revealed by a decline in 

opalescent squid size and the proportion of females captured in the fishery. 

To ensure sustainable long-term conservation of the resource, current 

management for the opalescent squid fishery includes a host of measures that pertain to 

catch limits, gear restrictions, and closures. The seasonal catch limit, which was set at 

107,047 mt in 2005 to prevent the fishery from over-expanding, was based on a multi-

year average catch of previous seasons. To provide opalescent squid with a period of 
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uninterrupted spawning, a weekend closure was enacted in 1984 for Monterey and then 

extended to southern California in 2000. Opalescent squid captured immediately 

following the weekend fishing closure tended to have spawned more than those caught 

later in the week (Leos 1998). Due to an increase in fishing pressure and the number of 

vessels participating in the fishery, a restricted access program was established in time for 

the 2005-06 fishing season. Gear restrictions pertain primarily to reducing any 

disturbance of lights on the local communities and wildlife, not on opalescent squid 

communities. In the past, however, lighting was restricted in Monterey from 1959-60 to 

1987-88. Since then, lighting has been restricted to 30,000 watts. 

In 1996-97, 1999-00, and 2000-01 landings surpassed the current catch limit, 

however, the majority of the catch came from south of Pt. Conception. Since 2002, 

statewide catch has not exceeded 74,000 mt, and within the past 3 fishing seasons, 

landings have been extremely low in Monterey. As shown by work done by Reiss et al. 

(2004), opalescent squid abundance naturally declines and then increases through time; 

however, it remains to be determined if in Monterey, where the habitat for spawning is 

concentrated in a relatively confined area, opalescent squid are no longer found in 

abundance because prolonged exposure to artificial illumination is having a negative 

effect, thereby causing a reduction in landings. The natural diel migration of opalescent 

squid allows them to feed in the shallows at night in the safety of darkness from visual 

predators; during the day, they remain at depth. When opalescent squid are on the 

spawning grounds and are targeted by fishing vessels, they are attracted to lights, or are 

phototropic. 
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Opalescent squid paralarvae hatch primarily during the night (Fields 1965; Vidal 

et al. 2002). Similar among squid species, recently hatched young are attracted to light 

and will actively swim towards any light source (Rugh 1950; Recksiek and Kashiwada 

1979). Opalescent squid paralarvae, however, will not hatch when there is constant 

illumination (Vidal et al. 2002). A postponement in hatching due to the presence of 

lights would cause embryos to use nutrient resources from yolk globules that would 

otherwise serve as their food source during the first few days of their paralarval stage. In 

addition, if opalescent squid paralarvae hatch during the night and are then immediately 

exposed to artificial light they will be more prone to mortality as they swim towards the 

surface where nighttime predators are actively feeding. The effect lights have on 

opalescent squid paralarvae mortality should be further investigated to determine 

potential consequences for the adult population. In confined fishing areas, such as 

Monterey, restricting the use of lights for a pre-determined period or adding an additional 

weekday closure during the fishing season may be an alternative management option to 

establishing a full seasonal closure. 

We have observed that the abundance of opalescent squid declines and size 

decreases in the event of anomalously warm water with the opposite occurring during 

cool periods. To offset any potential compounding impacts the opalescent squid fishery 

may have during nutrient-limited periods, a climate-based annual catch limitation might 

be used. If an El Nino event is forecasted for the central and southern California coast, 

then the capacity of a seasonal catch limit could be set in accordance to the predicted 

strength of the environmental anomaly (Agnew et al. 2005). Catch limits could be set 
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based on strong, weak, or moderate El Nino events. This could protect the opalescent 

squid that are available and also reserve those opalescent squid for other species, such as 

marine mammals (Lowry and Carretta 1999), birds, and finfish, that depend on 

opalescent squid as a food source (Morejohn et al. 1978; Recksiek and Frey 1978). 

During cool periods, the HG could be increased to account for an increase in abundance 

and to provide an opportunity for the fishery participants to benefit from the improved 

conditions. 

The central and southern California fisheries, however, do not respond to El Nino 

events in the same capacity. For instance, following the 1982-83 El Nino, which began 

in August 1982 and ended in June 1983, opalescent squid landings in southern California 

were significantly less than landings in Monterey for the 1982-83 fishing season. In the 

following two fishing seasons, 1983-84 and 1984-85, landings decreased in Monterey 

and continued to be reduced in southern California. During the 1997-98 El Nino, which 

began in April 1997 and ended in April 1998, landings first dropped in southern 

California as was seen in the 1982-83 El Nino. Then in 1998-99 and 1999-00, landings 

rose dramatically in southern California, but fell below 500 mt in Monterey. Therefore, a 

climate based seasonal catch limit could be assigned separately to fishing areas north and 

south of Pt. Conception. Because southern California usually experiences the effects of 

an El Nino first, the climate-based catch limit for their fishing season (October to March) 

could be set accordingly. In Monterey, the climate-based catch limit could be set for 

March to September for two seasons following the El Nino. If future studies indicate 

environmental factors are not the primary causal factor for changes in the biological 
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aspects of opalescent squid, then management measures could be re-evaluated (Agnew et 

al. 1998). 

Aside from the difference in landings in the central and southern fisheries that 

occurs because of El Nino events, the fishery could be managed according to region due 

to the noticeable difference in catch. According to the results of this study, opalescent 

squid from the two regions were not different from one another. We can see this in 

average monthly DML and mass. If patterns were to diverge in the future (as seen in sex 

ratios), then managing the two areas as separate regions could be considered. The 

seasonal catch limit of 107,047 mt could be modified to match an amount that represents 

the landings of the most recent past few years for each area, not statewide. 

A management option that perhaps could be pursued in the near future would be 

to have a seasonal closure to protect the largest size classes of opalescent squid, thereby 

allowing the largest females to spawn without interruption within a 1 or 2 month period 

regardless of changing environmental conditions (Dawe and Beck 1997). In southern 

California, the seasonal closure could be set for November and/ or December, when 

opalescent squid are at their largest. In Monterey, the seasonal closure could be in 

August and/ or September when opalescent squid are being captured and relatively larger 

than earlier in the fishing season. These seasonal closures could protect the largest size 

class of opalescent squid, thereby allowing a greater proportion of spawning to occur, 

thus ensuring a more sustainable resource. 
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SUMMARY 

Body size, sex ratios, and fecundity of opalescent squid captured in California's 

most valuable fishery were examined for spatial and temporal patterns and changes. 

Biological samples were collected in Monterey from 1948 to 2006 and from the northern 

Channel Islands and Catalina Island from 1999 to 2007. There was a significant decline 

in opalescent squid DML and mass in Monterey from 1948 to 2006. Monthly opalescent 

squid body size was similar among all three areas. Due to the fishing season occurring at 

different times of the year within each fishing region, the Monterey fishery captured 

larger individuals as the fishing season progressed from April to August, whereas the 

southern California fishery captured the largest opalescent squid in the beginning of the 

season in October. 

According to past studies, opalescent squid live from 4 months to 4 years, 

although most recent ageing studies indicate they have an average lifespan of 6 months. 

The SST of their hatch-month can determine their ultimate size. For this study, there was 

a significant correlation between potential hatch-month SST and mean DML and mass 

that signified opalescent squid will be larger at catch when they are born in cooler water 

and grow through months with an abundant food source. This holds true for Monterey 

from 1948 to 2006 and for southern California from 1999 to 2007. Significant negative 

correlations between the anomalies for SST and body size for potential hatch-months 

indicated that if a winter was anomalously cooler, then opalescent squid DMLs would be 

even larger. Upwelling and body size were significantly correlated during the juvenile 

stage; stronger upwelling in the season would lead to larger individuals a few months 
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later. The anomalies were not significantly correlated, which signifies that a relative 

increase in upwelling within a year will not lead to larger opalescent squid. In addition, 

when CPUE was high on adults, then the fishery probably removed a greater portion of 

larger individuals before they had a chance to spawn, thereby leaving smaller individuals 

to spawn and generate smaller offspring in the following fishing season. The proportion 

of males captured in the fishery has increased within the past 7 years in Monterey. The 

potential decline in the number of females present in the fishery and a decrease in DML 

are of significant concern for the sustainability of the opalescent squid population 

because females are producing fewer eggs. 
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