
UC Davis
UC Davis Previously Published Works

Title
Some Thoughts on Teaching Secure Programming

Permalink
https://escholarship.org/uc/item/5td1w91v

Author
Bishop, Matt

Publication Date
2013-02-02

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5td1w91v
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


Some Thoughts on Teaching Secure Programming

Matt Bishop
Dept. of Computer Science

University of California at Davis
Davis, CA 95616-8562

email : bishop@cs.ucdavis.edu

February 2, 2012

Teaching students, developers, and others to “program securely” raises many issues, several of
which I consider misconceptions or hindering, rather than helping, such efforts. This short note
discusses them. It is based on my experience teaching and practicing this material for over 30 years,
as a graduate student, company employee, research scientist, and a university faculty member. I
teach “secure programming” in my programming and computer security classes, and have presented
numerous tutorials to conferences (like SANS and USENIX), several companies, and other forums.
I have also written on this topic (see for example [1–9]).

To be precise, my concern is for teaching people how to write programs that are reliable, in
the sense that they perform the tasks they are supposed to, and handle any unexpected inputs or
events in a reasonable manner. Here, I call this “secure programming”.1

The good reader will note I do not criticize what has, and has not, been done. That would
be counterproductive at best. Efforts to blame, or foist problems off on others, generally hinder
solving a problem. Readers who interpret or use this document to assess blame or “point fingers”
misuse this note. The point of this note is to help fix the problem.

The Myths

Myth #1. There is no room in the curriculum for a course on secure programming.
This statement assumes that a separate course is required. A different approach would be far more
effective.

Introductory and second programming classes teach the basics of secure programming: how to
check for bad inputs, to do bounds checking, check return values, catch and handle exceptions, and
so forth. When students program for more advanced classes, the focus is on the class material and
not on the mechanics of programming.2 That students will write secure programs is assumed, and
rarely checked.

When checked, the effects are salutary. In my operating systems class, I had my grader (a
student in the Computer Security Lab) check the students’ programs. When grading the first
assignment, he told the students he would deduct 20% of their score if he saw code that non-secure

1It’s actually “robust” programming, which deals with more than security.
2Similarly, in industry, the usual focus is on shipping the product, not on the security of the programing.

1



again. The students complained to me; I said I thought the grader was not deducting enough. The
programs for the second assignment were substantially better.

The NSA’s IASP capacity-building program gave us a little funding to try a different approach:
a “secure programming clinic”.3 This essentially functions like a writing clinic in law school or an
English department; see Bishop and Orvis [9] for details. Our goal was to see if the idea was worth
studying further. The results were quite impressive [9, p. 171] and definitely warrant further trials.

Myth #2. If students learn to write secure programs, the state of software and system
security will dramatically improve. Several factors make this assertion questionable.

The cliché “a chain is only as strong as its weakest link” applies to security. Programs rely
on operating system, library, and other services. Programs can check some results, but not all; so
if the services fail, so will the program. In 1999, for example, the buffer overflow in the widely-
used RSAREF2 library enabled the compromise of many security-based programs [12,13]. Further,
system security relies on systems being set up and configured as required for the particular envi-
ronment in which the system is used ; the size of the gap between this and practice is unknown, but
probably large, even in areas of national security such as elections [14].

Companies must also provide support for the use of these skills. Writing secure programs takes
far more time and care than normal programming, because one must test the programs far more
than is current commercial (and governmental) practice. This will increase the cost of developing
software, and lengthen the time to market. Whether organizations that develop software and
systems will be willing to pay this price in practice, despite the long-term benefits, is unclear.
Whether customers will be willing to pay higher prices, and endure longer development times, for
the higher assurance software and the long-term benefits is equally unclear.

Myth #3. Academic institutions are hierarchical in organization. In no institution I
know about can a university president, chancellor, or dean require faculty to teach a particular
topic, and how to teach it.

The marketplace of ideas is akin to a purely (idealistic) capitalistic economy: the best ideas and
methods of learning and teaching are developed through trying different ways, and seeing which
works best. There may be no “best way” to do something; often, several different ways work equally
well. This is because one of the two products of academia, learning, depends on the students—and
people have different learning styles.

In computer science and in educational methodology, the other product of academia, knowledge,
depends on the scientific method: develop a hypothesis, gather data, test the null hypothesis, and
reject or fail to reject it. Those who advocate a particular method of teaching need to support their
assertion with data and hypothesis testing, not simply assertions that “this works”. As an example,
the secure programming clinic test in Myth #1 developed some hypotheses—it absolutely did not
validate a claim that the clinic will work everywhere.4 Such a claim would require refinement of
the hypotheses and much broader testing. This leads us to our final myth.

Myth #4: We know what to do and how to do it. We don’t know how to teach secure
programming. We have ideas, but we do not know what will work, and when. To date there has
been little funding for projects examining this. Contrast this with the funding levels for general

3Fortify Software also contributed their software analysis tool. I express my appreciation to both.
4For one thing, the sample size was too small.

2



“cybersecurity awareness”, “building secure infrastructure”, and “building secure software engi-
neering”. None of that funding goes to testing different methods of teaching secure programming,
because the sponsors do not target education.

Before we decide the problem of teaching secure programming is not worth funding, or that we
know how to do it, we should fund specific projects to test different methods of teaching it, and
see what works, and under what circumstances. The National Science Foundation’s Summit on
Education in Secure Software [10, 11] provides a basis for many different methods that can, and
should be tested; it provides roadmaps for developing such pilot projects. These projects must be
grounded in science, to ensure meaningful results. From these projects, we will understand how
well the different methods work, the support necessary to make the programs effective, and thus
can justify the changes and support that a large-scale effort will require.

Conclusion

Improving the state of software requires a concerted effort on the parts of all sectors. The above tries
to provide answers to claims that, in my opinion, will hinder success in this endeavor. Ultimately,
we must work together to achieve the goal of students programming securely as second nature.
Perhaps what that wise old man, Benjamin Franklin, said at the signing of the Declaration of
Independence applies here: “We must all hang together, or assuredly we shall all hang separately.”

Disclaimer. All opinions expressed herein are those of the author. They are not the opinions of
anyone who has read the document, anyone with whom the author has worked, any organization
or government agency that has funded any work the author has done, or anyone else.

References

[1] M. Bishop, “How to Write a Setuid Program,” ;login: 12(1) pp. 5–11 (Jan. 1987).

[2] M. Bishop, “Teaching Computer Security,” Proceedings of the Workshop on Education in
Computer Security pp. 78–82 (Jan. 1997).

[3] M. Bishop, Computer Security: Art and Science, Addison-Wesley Professional, Boston, MA,
USA (Dec. 2002).

[4] M. Bishop, “Best Practices and Worst Assumptions,” Proceedings of the 2005 Colloquium
on Information Systems Security Education (CISSE) pp. 18–25 (June 2005).

[5] M. Bishop, “Teaching Context in Information Security,” ACM Journal on Educational Re-
sources in Computing 6(3) pp. 3:1–3:12 (Sep. 2006).

[6] M. Bishop and M. Dilger, “Checking for Race Conditions in File Accesses,” Computing
Systems 9(2) pp. 131–152 (Mar. 1996).

[7] M. Bishop and C. Elliott, “Robust Programming by Example,” Proceedings of the Seventh
World Conference on Information Security Education pp. 23–30 (June 2011).

3



[8] M. Bishop and S. Engle, “The Software Assurance CBK and University Curricula,” Proceed-
ings of the Tenth Colloquium for Information Systems Security Education pp. 14–21 (June
2006).

[9] M. Bishop and B. J. Orvis, “A Clinic to Teach Good Programming Practices,” Proceedings
of the Tenth Colloquium for Information Systems Security Education pp. 168–174 (June
2006).

[10] D. Burley and M. Bishop, Summit on Education in Secure Software: Final Report, Technical
Report CSE-2011-15, Dept. of Computer Science, University of California at Davis, Davis,
CA, USA (June 2011).

[11] D. Burley and M. Bishop, Summit on Education in Secure Software: Final Report, Techni-
cal Report GW-CSPRI-2011-7, Cyber Security Policy and Research Institute, The George
Washington University, Washington, DC (June 2011).

[12] CERT, Buffer Overflows in SSH daemon and RSAREF2 Library, CERT Advisory CA-1999-
15, CERT, Pittsburgh, PA, USA (Dec. 1999).

[13] CoreLabs Research, Buffer Overflow in RSAREF2, CoreLabs Advisory CORE-120199, Core-
Labs Research (1999).

[14] S. C. Hoke and M. A. Bishop, Essential Research Needed to Support UOCAVA-MOVE Act:
Implementation at the State and Local Levels, Technical Report 10-197, Cleveland-Marshall
College of Law, Cleveland State University, Cleveland, OH, USA (Oct. 2010).

4




