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A DETERMINING FORM FOR THE DAMPED DRIVEN

NONLINEAR SCHRÖDINGER EQUATION- FOURIER MODES

CASE

MICHAEL S. JOLLY, TURAL SADIGOV, AND EDRISS S. TITI

Abstract. In this paper we show that the global attractor of the 1D damped,

driven, nonlinear Schrödinger equation (NLS) is embedded in the long-time
dynamics of a determining form. The determining form is an ordinary differ-

ential equation in a space of trajectories X = C1
b (R, PmH2) where Pm is the

L2-projector onto the span of the first m Fourier modes. There is a one-to-one

identification with the trajectories in the global attractor of the NLS and the
steady states of the determining form. We also give an improved estimate for

the number of the determining modes.

1. Introduction

The damped, driven, nonlinear Schrödinger equation (NLS), (2.1), has been
derived in various areas of physics, and widely investigated (see e.g. [4] and ref-
erences therein). In plasma physics, the NLS is a model for the propagation of
an intense laser beam through a nonlinear medium (see e.g. [7]). In this model
the unknown function u(x, t) is the electrical field amplitude, t is the distance in
the direction of the propagation and x is a transverse spatial variable. Absorption
of the electromagnetic wave by the medium is accounted for by linear damping.
Some resonant forcing of small amplitude (for example, a traveling wave) is used
to compensate weak dissipative losses (i.e, absorption). The NLS also describes
the single particle properties of Bose-Einstein condensate (BEC) (see e.g. [3]), in
which a gas of bosons is cooled to very low temperatures. In this case, known as
the Gross-Pitaevski equation, u(x, t) describes the macroscopic wave function of
the condensate; t is time and x is a spatial variable. A constant damping rate
(absorption) γ, describes inelastic collisions with the background gas which occur
when the particle density is very large. The forcing term represents the interatomic
forces of the condensate. We note that the NLS is also investigated in deep-water
phenomena and in the collapse of Langmuir waves (see e.g. [7]). In this paper, we
consider a force general enough to include the above applications where it can be
periodic in space and independent of time.

The undamped, unforced case has been extensively studied in modern mathe-
matical physics (see e.g. [5]). Well-posedness of (2.1), for nonzero forcing and γ > 0
is established by Ghidaglia in [12], where, under the assumption that the force is
either time independent or time periodic, it is also proved that there exists a weak
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attractor in the Sobolev spaces H1 and H2. Later, it is proved in [18] that this weak
attractor is in fact a global attractor in H2 in the strong sense. In [13], assuming
the force is smooth enough and periodic in spatial variable, Goubet proved that the
global attractor A is smooth, meaning it is included and bounded in Hk, for any
k ≥ 1. This implies that A is in C∞ due to classical Sobolev embeddings theorems.
Finally in [16], it is proved that A is in fact contained in a subclass of the space
of real analytical functions provided that the forcing term is real analytic. The
long-time dynamics of the damped, driven NLS is entirely contained in the gobal
attractor A, a compact finite-dimensional set within the infinite-dimensional phase
space Hk for any k ≥ 1 (see [13]). It is shown in [16], for real analytical forcing,
that the solutions on the attractor of the NLS are determined uniquely by their
nodal values on only two sufficiently close nodes.

The finite dimensionality for the NLS can be stated more explicitly. It is also
known that solutions of the NLS in A are determined by the asymptotic behavior
of a sufficient finite number of Fourier modes (see [13], [14]). To be precise, this
means that if two complete trajectories in the global attractor coincide under the
projection Pm onto a sufficiently large number, m, of low modes, then they are
the same trajectory. These m-modes are called determining modes (see [11]). This
notion of determining modes was used in [8] to find a determining form for the
2D Navier-Stokes equations (NSE). In [8], the determining form is an ordinary
differential equation in an infinite dimensional Banach space X = Cb(R, PmH),
governing the evolution of trajectories. Here H is a Hilbert space which is a natural
phase space for the 2D NSE (see [6], [17]). The trajectories in the attractor of the
2D NSE are identified with traveling wave solutions of the determining form in [8].

A determining form of a different sort was found in [9] for the 2D NSE. It is based
on data assimilation by feedback control through a general interpolant operator. It
is general in the sense that it can be induced by a variety of determining parameters
such as determining modes, nodal values and finite volumes. The steady states of
this determining form are precisely the trajectories in the global attractor of the 2D
NSE. Thus, in general, a determining form for a dissipative system can be defined
as an ODE in a phase space of trajectories which characterizes those in the global
attractor. The second type of determining form may ultimately prove useful in data
assimilation; if a time series for the projection of a solution is corrupted by noise,
then the true solution could be recovered by evolving the form toward a steady
state.

Motivation for the determining form comes from the notion of an inertial form.
An inertial form for a partial differential equation is an ordinary differential equation
restricted to a finite dimensional manifold called an inertial manifold. We note that
it is not known if there is an inertial manifold for 2D NSE. Nor is it known whether
there is such a manifold for the NLS. In this paper we adapt the approach in [9]
for the NLS. While the feedback control approach potentially allows for a variety
of interpolant operators, our analysis for the NLS is restricted the case of Fourier
modes. This is done in order to close the a priori estimates needed in L2, H1, H2,
even though there is no dissipative term to absorb the highest derivative. The key
step to get a determining form is defining and extending the map W which recovers
the high frequency components of a trajectory on the global attractor from the
low frequency components. This is done by adding a feedback control term to the
NLS (see [1], [2] for feedback controls). The determining form in [8] has the map
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W inserted in the bilinear term of the NSE. The feedback control approach allows
us to avoid doing this for the cubic nonlinear term in the NLS. The idea of the
feedback control approach is that if we know the Pm projection of the solution
of the damped driven NLS on the attractor, we can feed this information into
the system to construct the complete solution. It is worth pointing out that this
equation is dispersive and merely damped, not strongly dissipative. The analysis
used here involves compound functionals motivated by the Hamiltonian structure
of the Schrödinger equation.

Section 2 introduces the NLS and special notation. The statements of the main
results are mentioned in section 3. A priori estimates are done in section 4. Section
5 contains the main results that we need to obtain a determining form. Section
6 introduces the determining form. Finally, in section 7, we give a different proof
of the determining modes property of the NLS through a ‘reverse’ Poincaré type
inequality. This approach produces an improved estimate for the number of the
determining modes for the NLS.

2. Preliminaries

We consider the 1D damped, driven, nonlinear Schrödinger equation subject to
periodic boundary conditions

iut + uxx + |u|2u+ iγu = f (2.1)

u(t, x) = u(t, x+ L), ∀ (t, x) ∈ R× R
u(0, x) = u0(x)

where 0 < L < ∞, 0 < γ and f 6= 0. We assume that f is time independent, and
f ∈ L2

per. Let 0 ≤ k <∞. We denote by Hk[0, L] (or simply Hk) Sobolev space of
order k,

Hk[0, L] :=
{
f ∈ L2[0, L] : α ≤ k,Dαf exists and Dαf ∈ L2[0, L]

}
,

and by Hk
per, the subspace of Hk consisting of functions which is periodic in x, with

period L. Note that H0
per[0, L] = L2

per[0, L]. We assume that u0(x) ∈ H2
per. It has

been proven in [12] that (2.1) has a unique solution u(x, t) such that the mapping

u0 → u(t)

is continuous on H1, with u ∈ L∞(R;H1). The global attractor is the maximal
compact invariant set under the solution operator S(t, ·). Alternatively, it can
be defined as A = ∩u0∈BS(t, u0) where B is an absorbing ball (see e.g. [17]).
Throughout the paper, we will use the notation

‖u‖2 := ‖u‖2L2 ,

‖u‖2H1 := ‖u‖2L2 + ‖ux‖2L2 ,

and
‖u‖2H2 := ‖u‖2L2 + ‖uxx‖2L2 .

To make the flow of the analysis more transparent, we adopt some specialized
notation for certain bounding expressions. Bounding expressions that depend on γ,
f (and µ, see (3.4)) will be denoted by capital letters R and K with specific indices.
The bounding expressions R with indices 0, 1 and 2 are L2, H1 and H2 bounds,
respectively, for the solution of (3.4). Those bounding expressions accented with˜

and˜̃will be subsequently improved. As they are improved once, we remove a .̃ For
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example, ˜̃K2 will be improved once, and we use K̃2 for the improvement. Then we
improve K̃2 again to get K2 which is the final improvement. Universal constants
will be denoted by c and updated throughout the paper. We denote by Pm the
L2-projection onto the space Hm, where

Hm := span{eikx 2π
L : |k| ≤ m}. (2.2)

3. The Statements Of The Main Results

We define the following norms,

|v|X = sup
s∈R
‖v(s)‖+ sup

s∈R
‖vs(s)‖

|v|X,0 = sup
s∈R
‖v(s)‖, (3.1)

|w|Y = sup
s∈R
‖w(s)‖H2 ,

and the following Banach spaces,

X = C1
b (R, PmH2) ={v : R→ PmH

2 : v(s) is

continuous ∀s ∈ R and |v|X <∞}, (3.2)

Y = Cb(R, H2) ={w : R→ H2 : v(s) is

continuous ∀s ∈ R and |w|Y <∞}. (3.3)

Let v ∈ X, and consider the equation

iws + wxx + |w|2w + iγw = f − iµ[Pm(w)− v], (3.4)

subject to periodic boundary condition

w(s, x) = w(s, x+ L), ∀(s, x) ∈ R× R.

We assume that f ∈ L2
per. We first state a new estimate for the number of deter-

mining modes.

Theorem 3.1. Assume

m ≥ L

2π
K11 − 1,

where K11 is defined in (7.1). Then the Fourier projection Pm of L2 onto the space
Hm, where Hm is defined in (2.2), is determining for (2.1) i.e, for all u1(·), u2(·) ⊂
A, Pmu1(t) = Pmu2(t), for all t ∈ R implies that u1(t) = u2(t), for all t ∈ R.

Remark 3.2. By tracking the ‖f‖ dependence of the bounds throughout the paper,
we will show that a sufficient number of determining modes is of order O(‖f‖10)
as ‖f‖ → ∞and O(γ−12) as γ → 0. Following the analysis in Goubet [13], one
can show that a sufficient number of determining modes is of order O(γ−12.5) as
γ → 0 and O(‖f‖12) as ‖f‖ → ∞. Thus the functionals in our analysis in (4.8),
(4.16), (5.6) and (5.16), which are naturally motivated by the Hamiltonian structure
of the Schrödinger Equation, lead to sharper explicit estimates. We also mention
that the abstract treatment of determining modes by Hale and Raugel is applied to
the damped, driven, nonlinear Schrödinger equation in [14], but that approach does
not provide estimates for the number of modes needed.

The proof of Theorem 3.1 is given in section 7. It is a byproduct of the proof for
the following main result.
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Theorem 3.3. Let v ∈ X, and u∗ be a steady state of equation (2.1). Then we
have the following:

(1) There exists a unique bounded solution w ∈ Y of (3.4), which defines a map
W : X → Y , such that w = W (v).

(2) For sufficiently large m and µ, we have W (Pmu) = u, for any trajectory
u(s), s ∈ R, in the global attractor of (2.1).

(3) For sufficiently large m and µ, PmW : X → X is a locally Lipschitz map.
(4) The determining form

dv

dt
= F (v) = −|v − PmW (v)|2X,0(v − Pmu∗),

is an ordinary differential equation in a forward invariant set

{v ∈ X : |v − Pmu∗|X < 3(R0
0 +R′0)},

and F restricted to that set is globally Lipschitz. Moreover, Pmu(s) is

included in that set, for every u(s) ∈ A. Here R0
0 = R0|µ=0 and R′0 =

R′|µ=0 are defined in (5.8) and (4.26), respectively.

Theorem 3.3 is a combination of results to follow. Item (1) corresponds to Propo-
sition 4.1 and first part of Theorem 5.3, item (2) is equivalent to Proposition 5.1,
item (3) is analogous to the second part of Theorem 5.3, and finally item (4) is the
summary of Theorem 6.1. The basic idea is to use the Galerkin method to establish
a unique bounded solution to (3.4), which defines the map W . This involves a series
of a priori estimates undertaken in the next section.

Let n > m. Note that Pnv = v, for every v ∈ X, and consider a Galerkin ap-
proximation of (3.4),

i∂swn + ∂2xwn + Pn(|wn|2wn) + iγwn = Pnf − iµ(Pmw − v), (3.5)

subject to periodic boundary condition, and with the initial data

wn(−k, x) = 0, (3.6)

where wn ∈ Hn, for some k ∈ N. For simplicity we will drop the subscript n. Since
(3.5) is an ordinary differential equation with locally Lipschitz nonlinearity, it has
a unique, bounded solution wn on a small interval [−k, S∗), for some S∗ > −k. We
will show that wn exists globally on the interval [−k,∞) and is uniformly bounded
with respect to s ∈ [−k,∞), n and k, in the norms of the spaces L2, H1 and H2.

4. A Priori Estimates

4.1. L2 bound. Let [−k, S∗) be the maximal interval of existence for (3.5). We
will establish here global (in time) uniform in n bounds which will imply, among
other things, that S∗ = ∞. Let us focus below on the interval [−k, S∗). Multiply
(3.5) by w̄, and integrate

i

∫ L

0

wsw̄ +

∫ L

0

wxxw̄ +

∫ L

0

|w|4+i

∫ L

0

γ|w|2 + iµ

∫ L

0

Pm(w)w̄

=

∫ L

0

fw̄ + iµ

∫ L

0

vw̄. (4.1)
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Take the imaginary parts of both sides, and use the fact that Pm is an orthogonal
projection and v ∈ X, to get

1

2

d

ds
‖w‖2 + γ‖w‖2 + µ‖Pm(w)‖2 = Im

∫ L

0

fw̄ + µRe

∫ L

0

vPmw̄.

By using Hölder and Young inequalities, we have

1

2

d

ds
‖w‖2 + γ‖w‖2 + µ‖Pmw‖2 ≤ ‖f‖‖w‖+ µ‖v‖‖Pmw‖

≤ ‖f‖
2

2γ
+
γ‖w‖2

2

+
µ‖v‖2

2
+
µ‖Pmw‖2

2
,

and hence,
d

ds
‖w‖2 + γ‖w‖2 + µ‖Pmw‖2 ≤

‖f‖2

γ
+ µ‖v‖2,

for all s ∈ [−k, S∗). Since v ∈ X, we get

d

ds
‖w‖2 + γ‖w‖2 + µ‖Pmw‖2 ≤

‖f‖2

γ
+ µ|v|2X . (4.2)

Thus,
d

ds
‖w‖2 + γ‖w‖2 ≤ ‖f‖

2

γ
+ µ|v|2X .

Since, w(−k, x) = 0, we deduce by Gronwall’s lemma that,

‖w(s)‖2 ≤ ‖f‖
2

γ2
+
µ

γ
|v|2X ,

for all s ∈ [−k, S∗). Since the right-hand side is constant, we conclude that S∗ =∞,
and therefore

‖w(s)‖ ≤ ‖f‖
γ

+
µ

1
2

γ
1
2

|v|X =: R̃0,

for all s ∈ [−k,∞), and as a result

sup
s≥−k

‖w(s)‖ ≤ R̃0. (4.3)

Note that the constant R̃0 satisfies R̃0 = O(µ
1
2 ) as µ→∞, and is independent of

k and n.

4.2. H1 bound. Use again the fact that Pm is an orthogonal projection in (4.1),
and take the real parts of equation (4.1):

Im

∫ L

0

ww̄s = ‖wx‖2 − ‖w‖4L4 +Re

∫ L

0

fw̄ − µIm
∫ L

0

vw̄, (4.4)

for all s ∈ [−k,∞). Now, multiply (3.5) by w̄s and integrate with respect to x over
[0, L] to obtain

i‖ws‖2 −
∫ L

0

wxw̄xs +

∫ L

0

|w|2ww̄s+iγ
∫ L

0

ww̄s + iµ

∫ L

0

Pm(w)w̄s

=

∫ L

0

fw̄s + iµ

∫ L

0

vw̄s.
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Take the real part of the above equation to obtain

d

ds
‖wx‖2 −

1

2

d

ds
‖w‖4L4 + 2γIm

∫ L

0

ww̄s + 2µIm

∫ L

0

PmwPmw̄s =

− 2Re

∫ L

0

fw̄s + 2µIm

∫ L

0

vw̄s. (4.5)

To eliminate the third term in (4.5), we will use (4.4). For the fourth term, we
take the Pm projection of equation (3.4), then multiply by Pmw̄, integrate, and
take the real parts to find

Im

∫ L

0

PmwPmw̄s − ‖Pmwx‖2+Re

∫ L

0

Pm(|w|2w)Pmw̄

= Re

∫ L

0

PmfPmw̄ − µIm
∫ L

0

vPmw̄. (4.6)

Now combine as follows: (−2γ)× (4.4) + (−2µ)× (4.6) + (4.5) to get

dφ

ds
+ 4γφ =2γ‖wx‖2 + 6γRe

∫ L

0

fw̄ − 6µγIm

∫ L

0

vw̄

+ 2µRe

∫ L

0

Pm(|w|2w)Pmw̄ − 2µ‖Pmwx‖2

− 2µRe

∫ L

0

PmfPmw̄ + 2µ2Im

∫ L

0

vPmw̄

− 2µIm

∫ L

0

vsw̄, (4.7)

where

φ(s) = ‖wx‖2 −
1

2
‖w‖4L4 + 2Re

∫ L

0

fw̄ − 2µIm

∫ L

0

vw̄. (4.8)

Since w(−k, x) = 0 for all x, we have that wx(−k, x) = 0 for all x, and thus
φ(−k) = 0.
We estimate the right hand side of (4.7) using the Hölder, Young and Agmon
inequalities and (4.3) as follows

2γ‖wx‖2 ≤ 2γ‖w‖2H1 ,

6γRe

∫ L

0

fw̄ ≤ 6γ‖f‖‖w‖ ≤ 6γ‖f‖R̃0,

−6µγIm

∫ L

0

vw̄ ≤ 6µγ‖v‖‖w‖ ≤ 6µγ|v|XR̃0,
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2µRe

∫ L

0

Pm(|w|2w)Pmw̄ = 2µRe

∫ L

0

|w|2wPmw̄

≤ 2µ‖w‖2∞‖w‖‖Pmw‖
≤ 2µ(c‖w‖‖w‖H1)‖w‖‖Pmw‖
≤ 2µc‖w‖3‖w‖H1

≤ µ2c2‖w‖6

γ
+ γ‖w‖2H1

≤ µ2c2R̃6
0

γ
+ γ‖w‖2H1 .

Moreover, we have

−2µRe

∫ L

0

PmfPmw̄ ≤ 2µ‖Pmf‖‖Pmw‖ ≤ 2µ‖f‖‖w‖ ≤ 2µ‖f‖R̃0,

2µ2Im

∫ L

0

vPmw̄ ≤ 2µ2‖v‖‖Pmw‖ ≤ 2µ2|v|XR̃0,

−2µIm

∫ L

0

vsw̄ ≤ 2µ‖vs‖‖w‖ ≤ 2µ|v|XR̃0.

Putting together the above estimates, we obtain

dφ

ds
+ 4γφ ≤ 3γ‖w‖2H1 + ˜̃K1, (4.9)

where

˜̃K1 := 6γ‖f‖R̃0 + 6µγ|v|XR̃0 +
µ2c2R̃6

0

γ
+ 2µ‖f‖R̃0 + 2µ2|v|XR̃0 + 2µ|v|XR̃0.

Then by using the Agmon, Hölder, and Young inequalities in (4.8), we get

φ(s) ≥ ‖wx‖2 −
1

2
c‖w‖3‖w‖H1 − 2‖f‖‖w‖ − 2µ‖v‖‖w‖

= ‖wx‖2 −
1

2
c‖w‖3‖wx‖ −

1

2
c‖w‖4 − 2‖f‖‖w‖ − 2µ‖v‖‖w‖

≥ ‖wx‖2 −
c2‖w‖6

16ξ
− ξ‖wx‖2 −

1

2
c‖w‖4 − 2‖f‖R̃0 − 2µ|v|XR̃0

≥ (1− ξ)‖wx‖2 + (1− ξ)‖w‖2

−

[
c2R̃6

0

16ξ
+

1

2
cR̃4

0 + 2‖f‖R̃0 + 2µ|v|XR̃0 + (1− ξ)R̃2
0

]
, (4.10)

where 0 < ξ < 1, ξ to be chosen later. Thus, we have

φ ≥ (1− ξ)‖w‖2H1 − ˜̃K2,

where

˜̃K2 :=
c2R̃6

0

16ξ
+

1

2
cR̃4

0 + 2‖f‖R̃0 + 2µ|v|XR̃0 + (1− ξ)R̃2
0,

and hence

‖w‖2H1 ≤
1

1− ξ
φ+

˜̃K2

1− ξ
. (4.11)



A DETERMINING FORM FOR DAMPED DRIVEN NLS 9

Use (4.11) in (4.9) to obtain

dφ

ds
+

1− 4ξ

1− ξ
γφ ≤ ˜̃K3,

where

˜̃K3 :=
3γ ˜̃K2

1− ξ
+ ˜̃K1.

Choose ξ = 1
7 , so that

1− 4ξ

1− ξ
=

1

2
.

So we have
dφ

ds
+
γ

2
φ ≤ ˜̃K3.

Since φ(−k) = 0 , applying the Gronwall lemma, we have

φ(w(s)) ≤ ˜̃K4,

for all s ≥ −k, where ˜̃K4 := 2 ˜̃K3/γ. From (4.11), we obtain

‖w(s)‖2H1 ≤
7

6
φ+

7

6
˜̃K2 ≤

7

6
( ˜̃K4 + ˜̃K2),

for all s ≥ −k. Therefore, we have ˜̃K1 = O(µ5), ˜̃K2 = O(µ3), ˜̃K3 = O(µ5), ˜̃K4 =
O(µ5) as µ→∞. Thus

sup
s≥−k

‖w(s)‖H1 ≤ ˜̃R1 :=

√
7

6
( ˜̃K4 + ˜̃K2) =

√
28

3
˜̃K2 +

7

3γ
˜̃K1 = O(µ

5
2 ), (4.12)

as µ→∞. Note that ˜̃R1 is independent of k and n.

4.3. Improved L2 bound. We now use the H1-bound in (4.12) to obtain a better
L2-bound. We rewrite (4.2) as

d

ds
‖w‖2 + γ‖w‖2 + µ‖w‖2 − µ‖Qmw‖2 ≤

‖f‖2

γ
+ µ|v|2X ,

where Qm = I − Pm. Thus,

d

ds
‖w‖2 + (γ + µ)‖w‖2 ≤ ‖f‖

2

γ
+ µ|v|2X + µ‖Qmw‖2.

By the generalized Poincaré inequality we have

‖Qmw‖2 ≤
L2

4π2

1

(m+ 1)2
‖wx‖2 ≤

L2

4π2

˜̃R2
1

(m+ 1)2
.

If we choose m large enough such that

˜̃R2
1

(m+ 1)2
L2

4π2
< 1, (4.13)

then
d

ds
‖w‖2 + (γ + µ)‖w‖2 ≤ ‖f‖

2

γ
+ µ|v|2X + µ.
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Now, we apply the Gronwall Lemma, using the fact that ‖w(−k)‖ = 0, to obtain

‖w(s)‖2 ≤ ‖f‖2

γ(γ + µ)
+
µ|v|2X
γ + µ

+
µ

γ + µ
,

for every s ≥ −k, and hence,

sup
s≥−k

‖w(s)‖2 ≤ ‖f‖2

γ(γ + µ)
+
µ|v|2X
γ + µ

+
µ

γ + µ
.

As a result,

sup
s≥−k

‖w(s)‖ ≤ R0,

where

R0 :=
‖f‖√
γ(γ + µ)

+

√
µ

γ + µ
|v|X +

√
µ

γ + µ
= O(µ0), (4.14)

as µ→∞. Note that R0 depends neither on k, nor on n. So by choosing m large
enough satisfying 4.13, we get an L2-bound which is uniform in µ. Inserting R0 in
place of R̃0 in the proof of the H1-bound, yields new constants

K̃1 = O(µ2), K̃2 = O(µ), K̃3 = O(µ2), K̃4 = O(µ2),

replacing ˜̃K1, ˜̃K2, ˜̃K3 and ˜̃K4 , respectively as µ→∞. As as result,

sup
s≥−k

‖w(s)‖H1 ≤ R̃1 :=

√
28

3
K̃2 +

7

3γ
K̃1 = O(µ),

as µ→∞, where

K̃1 := 6γ‖f‖R0 + 6µγ|v|XR0 +
µ2c2R6

0

γ
+ 2µ‖f‖R0 + 2µ2|v|XR0 + 2µ|v|XR0,

and

K̃2 :=
c2R6

0

16ξ
+

1

2
cR4

0 + 2‖f‖R0 + 2µ|v|XR0 + (1− ξ)R2
0.

4.4. H2 bound. Multiply (3.5) with w̄xxs + γw̄xx, integrate, and take the real
parts:

Re

∫ L

0

iwsw̄xxs+γRe

∫ L

0

iwsw̄xx +Re

∫ L

0

wxxw̄xxs + γRe

∫ L

0

|wxx|2

+Re

∫ L

0

|w|2ww̄xxs + γRe

∫ L

0

|w|2ww̄xx + γRe

∫ L

0

iww̄xxs

+γ2Re

∫ L

0

iww̄xx + µRe

∫ L

0

iPmwPmw̄xxs + µγRe

∫ L

0

iPmwPmw̄xx

=Re

∫ L

0

fw̄xxs + γRe

∫ L

0

fw̄xx + µRe

∫ L

0

ivw̄xxs + µγRe

∫ L

0

ivw̄xx.

We now estimate term by term, using integration by parts in most cases.

Re

∫ L

0

iwsw̄xxs = −Re
∫ L

0

i|wxs|2 = 0,

γRe

∫ L

0

iwsw̄xx = −γRe
∫ L

0

iwxsw̄x = γIm

∫ L

0

wxsw̄x = −γIm
∫ L

0

wxw̄xs,
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Re

∫ L

0

wxxw̄xxs =
1

2

d

ds
‖wxx‖2,

γRe

∫ L

0

|wxx|2 = γ‖wxx‖2,

Re

∫ L

0

|w|2ww̄xxs = −Re
∫ L

0

(w2w̄)xw̄xs =−Re
∫ L

0

2wwxw̄w̄xs −Re
∫ L

0

w2w̄xw̄xs

=−
∫ L

0

|w|2 d
ds
|wx|2 −

1

2
Re

∫ L

0

w2 d

ds
w̄2
x,

γRe

∫ L

0

|w|2ww̄xx = −γRe
∫ L

0

(w2w̄)xw̄x =− γRe
∫ L

0

2wwxw̄w̄x − γRe
∫ L

0

w2w̄xw̄x

=− 2γ

∫ L

0

|w|2|wx|2 − γRe
∫ L

0

w2w̄2
x,

γRe

∫ L

0

iww̄xxs = −γRe
∫ L

0

iwxw̄xs = γIm

∫ L

0

wxw̄xs,

γ2Re

∫ L

0

iww̄xx = −γ2Re
∫ L

0

i|wx|2 = 0,

µRe

∫ L

0

iPmwPmw̄xxs = −µRe
∫ L

0

iPmwxPmw̄xs = µIm

∫ L

0

PmwxPmw̄xs,

µγRe

∫ L

0

iPmwPmw̄xx = −µγRe
∫ L

0

i|Pmwx|2 = 0.

Now, we combine the above terms to get

1

2

dϕ

ds
+ γϕ =−

∫ L

0

2Re(ww̄s|wx|2)−Re
∫ L

0

wwsw̄
2
x

+ µIm

∫ L

0

vsw̄xx + γµIm

∫ L

0

vw̄xx

− γRe
∫ L

0

fw̄xx − µIm
∫ L

0

PmwxPmw̄xs, (4.15)

for all s ≥ −k, where

ϕ(w) := ‖wxx‖2 − 2

∫ L

0

|w|2|wx|2 −Re
∫ L

0

w2w̄2
x

− 2Re

∫ L

0

fw̄xx + 2µIm

∫ L

0

vw̄xx. (4.16)

Observe again that since w(−k, x) = wx(−k, x) = wxx(−k, x) = 0, for all x ∈ [0, L],
we have ϕ(−k) = 0. We write

ws = iwxx + h, (4.17)

where h := i|w|2w−γw−µPmw+µv− if . Observe, thanks to Agmon’s inequality,
that

‖h(s)‖ ≤ c‖w‖2‖w‖H1 + (γ + µ)‖w‖+ µ‖v‖+ ‖f‖

≤ cR2
0R̃1 + (γ + µ)R0 + µ|v|X + ‖f‖,
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for all s ≥ −k. We estimate each term on the right-hand side of (4.15). We use
(4.17), as well as the Young, Hölder, and Agmon inequalities to obtain

−
∫ L

0

2Re(ww̄s|wx|2) ≤ 2

∫ L

0

|w||ws||wx|2 = 2

∫ L

0

|w||iwxx + h||wx|2

≤ 2

∫ L

0

|w||wxx||wx|2 + 2

∫ L

0

|w||h||wx|2

≤ 2‖w‖∞‖wx‖∞
∫ L

0

|wxx||wx|+ 2‖w‖‖h‖‖wx‖2∞

≤ 2‖w‖∞‖wx‖∞‖wxx‖‖wx‖+ 2‖w‖‖h‖‖wx‖2∞
≤ c‖w‖∞‖wx‖

3
2 ‖wxx‖

3
2 + c‖w‖‖h‖‖wx‖‖wxx‖

≤ c(‖w‖ 1
2 ‖w‖2H1)‖wxx‖

3
2 + c(‖w‖‖h‖‖wx‖)‖wxx‖

≤ c(R
1
2
0 R̃2

1)‖wxx‖
3
2

+ cR0R̃1(R2
0R̃1 + (γ + µ)R0 + µ|v|X + ‖f‖)‖wxx‖

≤ γ

20
‖wxx‖2 +

c(R
1
2
0 R̃2

1)4

γ3

+
c(R0R̃1(R2

0R̃1 + (γ + µ)R0 + µ|v|X + ‖f‖))2

γ

=
γ

20
‖wxx‖2 + K̃5,

where

K̃5 :=
c(R

1
2
0 R̃2

1)4

γ3
+
c{R0R̃1[R2

0R̃1 + (γ + µ)R0 + µ|v|X + ‖f‖]}2

γ
.

Similarly, we have

−Re
∫ L

0

wwsw̄
2
x ≤

γ

10
‖wxx‖2 + K̃5,

and

µIm

∫ L

0

vsw̄xx ≤ µ‖vs‖‖wxx‖ ≤
γ

20
‖wxx‖2 +

cµ2|v|2X
γ

,

γµIm

∫ L

0

vw̄xx ≤ γµ‖v‖‖wxx‖ ≤
γ

20
‖wxx‖2 + cγµ2|v|2X ,

−γRe
∫ L

0

fw̄xx ≤ γ‖f‖‖wxx‖ ≤
γ

20
‖wxx‖2 + cγ‖f‖2.
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For the term −µIm
∫ L
0
PmwxPmw̄xs, we take the Pm projection of equation (3.5),

multiply it with µPmw̄xx, integrate, and take the real part to get

−µIm
∫ L

0

PmwxPmw̄xs =− µ‖Pmwxx‖2 − µRe
∫ L

0

Pm(|w|2w)Pmw̄xx

+ µRe

∫ L

0

fPmw̄xx − µ2Im

∫ L

0

vPmw̄xx

≤− µ‖Pmwxx‖2 + µ‖w‖2∞‖w‖‖Pmwxx‖+
+ µ‖f‖‖Pmwxx‖+ µ2‖v‖‖Pmwxx‖.

Apply Young’s inequality to eliminate µ‖Pmwxx‖2, and then Agmon inequality, to
get

−µIm
∫ L

0

PmwxPmw̄xs ≤ cµ(R2
0R̃1)2 + cµ‖f‖2 + cµ3|v|2X .

Combine the above terms to obtain

1

2

dϕ

ds
+ γϕ ≤ K̃6 +

γ

4
‖wxx‖2, (4.18)

where

K̃6 :=2K̃5 +
cµ2|v|2X

γ
+ cγµ2|v|2X + cγ‖f‖2+

+ cµ(R2
0R̃1)2 + cµ‖f‖2 + cµ3|v|2X .

Note that K̃6 = O(µ8) as µ→∞. From (4.16) we obtain

ϕ ≥ 1

2
‖wxx‖2 − K̃7, (4.19)

where K̃7 := c(R0R̃3
1 + ‖f‖2 + µ2|v|2X). Use (4.19) in (4.18), to get

1

2

dϕ

ds
+ γϕ ≤ K̃6 +

γ

2
(ϕ+ K̃7)

=
γ

2
ϕ+ (

γ

2
K̃7 + K̃6)

=
γ

2
ϕ+ (

γ

2
K̃7 + K̃6).

Thus we have
dϕ

ds
+ γϕ ≤ γK̃7 + 2K̃6.

Since ϕ(−k) = 0, we have, thanks to Gronwall’s lemma, ϕ(s) ≤ K̃7 + 2K̃6

γ , for all

s ≥ −k. From (4.19), we get

‖wxx(s)‖2 ≤ 2ϕ+ 2K̃7 ≤
4K̃6

γ
+ 4K̃7,

for all s ≥ −k. Thus we get

sup
s≥−k

‖w(s)‖H2 ≤ R̃2,

where

R̃2 :=

√
4K̃6

γ
+ 4K̃7 +R0 = O(µ4), (4.20)
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as µ→∞. Comparing to (4.12), we observe that R̃2 >>
˜̃R1, for large µ.

4.5. Improved H1 bound. We now use the H2-bound to obtain a better H1-
bound. From (4.7) and (4.8), we realize that

dφ

ds
+ 4γφ+ µφ =2γ‖wx‖2 + 6γRe

∫ L

0

fw̄ − 6µγIm

∫ L

0

vw̄

+ 2µRe

∫ L

0

Pm(|w|2w)Pmw̄ − 2µ‖Pmwx‖2

− 2µRe

∫ L

0

PmfPmw̄ − 2µIm

∫ L

0

vsw̄

+ µ‖wx‖2 −
µ

2
‖w‖4L4 + 2µRe

∫ L

0

fw̄. (4.21)

We estimate the right-hand side of (4.21) as follows

2γ‖wx‖2 ≤ 2γ‖w‖2H1 ,

6γRe

∫ L

0

fw̄ ≤ 6γ‖f‖‖w‖ ≤ 6γ‖f‖R0,

−6µγIm

∫ L

0

vw̄ ≤ 6µγ‖v‖‖w‖ ≤ 6µγ|v|XR0,

2µRe

∫ L

0

Pm(|w|2w)Pmw̄ = 2µRe

∫ L

0

|w|2wPmw̄

≤ 2µ‖w‖2∞‖w‖‖Pmw‖
≤ 2µc(‖w‖‖w‖H1)‖w‖‖Pmw‖
≤ 2µc‖w‖3‖w‖H1

≤ µc2‖w‖6 + µ‖w‖2H1

≤ µ(c2‖w‖6 + ‖w‖2) + µ‖wx‖2

≤ µ(c2R6
0 +R2

0) + µ‖wx‖2.
Choose m large enough so that

R̃2
2L

2

4π2(m+ 1)2
≤ 1. (4.22)

Then,

−2µ‖Pmwx‖2 = −2µ‖wx‖2 + 2µ‖Qmwx‖2

≤ −2µ‖wx‖2 +
2µ

((m+ 1) 2π
L )2
‖wxx‖2

≤ −2µ‖wx‖2 + 2µ,

2µRe

∫ L

0

fw̄ − 2µRe

∫ L

0

PmfPmw̄ ≤ 2µ‖f‖‖Qmw‖

≤ 2µ‖f‖‖w‖
≤ 2µ‖f‖R0,
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−2µIm

∫ L

0

vsw̄ ≤ 2µ‖vs‖‖w‖ ≤ 2µ|v|XR0.

Add the above terms to obtain

dφ

ds
+ 4γφ+ µφ ≤ 2γ‖w‖2H1 +K1, (4.23)

where

K1 := 6γ‖f‖R0 + 6µγ|v|XR0 + µ(c2R6
0 +R2

0) + 2µ+ 2µ‖f‖R0 + 2µ|v|XR0.

Now, as in (4.10)

φ(s) ≥ ‖wx‖2 −
3c2‖w‖6

16
− 1

3
‖wx‖2 −

1

2
c‖w‖4 − 2‖f‖R0 − 2µ|v|XR0

≥ 2

3
‖wx‖2 +

2

3
‖w‖2 −

[
3c2R6

0

16
+

1

2
cR4

0 + 2‖f‖R0 + 2µ|v|XR0 +
2

3
R2

0

]
=

2

3
‖w‖2H1 −K2,

where

K2 :=
3c2R6

0

16
+

1

2
cR4

0 + 2‖f‖R0 + 2µ|v|XR0 +
2

3
R2

0.

Thus ‖w‖2H1 ≤ 3
2φ(w) + 3

2K2. Use this in (4.23) to obtain

dφ

ds
+ γφ+ µφ ≤ 3γK2 +K1

Thus, since φ(−k) = 0, by virtue of Gronwall Lemma, we have

φ(s) ≤ 3γK2 +K1

γ + µ
,

for all s ≥ −k. Thus,

sup
s≥−k

‖w(s)‖H1 ≤ R1 :=

√
( 3
2µ+ 6γ)K2 +K1

γ + µ
= O(µ

1
2 ), (4.24)

as µ → ∞. Inserting R1 in place of R̃1 in the proof of the H2-bound, yields new
H2-bound

sup
s≥−k

‖w(s)‖H2 ≤ R2 =

√
4K6

γ
+ 4K7 +R0 = O(µ2), (4.25)

as µ→∞, where

K6 :=2K5 +
cµ2|v|2X

γ
+ cγµ2|v|2X + cγ‖f‖2 + cµ(R2

0R1)2 + cµ‖f‖2 + cµ3|v|2X ,

K7 := c(R0R3
1 + ‖f‖2 + µ2|v|2X),

K5 :=
c(R

1
2
0R2

1)4

γ3
+
c{R0R1[R2

0R1 + (γ + µ)R0 + µ|v|X + ‖f‖]}2

γ
.
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4.6. Time derivative bound. We realize from (3.5) that we have

‖w′(s)‖ ≤ R2 + cR2
0R1 + (γ + µ)R0 + ‖f‖+ µ|v|X .

Thus

sup
s≥−k

‖w′(s)‖ ≤ R′,

where

R′ := R2 + cR2
0R1 + (γ + µ)R0 + ‖f‖+ µ|v|X . (4.26)

4.7. Passing to the limit. To summarize our L2, H1, H2 and the time derivative
bounds, we have

sup
s≥−k

‖wn(s)‖ ≤ R0 = O(µ0),

sup
s≥−k

‖wn(s)‖H1 ≤ R1 = O(µ
1
2 ),

sup
s≥−k

‖wn(s)‖H2 ≤ R2 = O(µ2),

sup
s≥−k

‖w′n(s)‖ ≤ R′ = O(µ2),

(4.27)

as µ → ∞, where R0,R1, R2 and R′ are independent of k and n, and defined
in (4.14), (4.24), (4.25) and (4.26), respectively, and where wn is the solution of
the initial value problem (3.5)-(3.6). Thus we have a bounded solution wn to the
Galerkin approximation (3.5) of the equation (3.4) with initial condition (3.6), on
the interval [−k,∞), and satisfying (4.27); we will call it wn,k to emphasize the
initial time −k, and consider

wn,k ∈ Cb([−k,∞);H2) ∩ C1
b ([−k,∞);L2).

We now focus on the interval [−1, 1]. SinceHn, defined in (2.2), is finite-dimensional,
we may invoke the Arzela-Ascoli compactness theorem to extract a subsequence of

wn,k, denoted by w
(1)
n,k, such that w

(1)
n,k → w

(1)
n , as k →∞, where w

(1)
n is a bounded

solution of the Galerkin approximation (3.5) on the interval [−1, 1]. Let j ∈ N,

we will use an induction iterative procedure to define w
(j+1)
n,k to be subsequence of

w
(j)
n,k, all of which are subsequences of wn,k. Indeed, we have already defined w

(1)
n,k.

Suppose w
(j)
n,k is defined, and is a subsequence of wn,k. We apply again the Arzela-

Ascoli compactness theorem to extract a subsequence of w
(j)
n,k, denoted by w

(j+1)
n,k ,

such that w
(j+1)
n,k → w

(j+1)
n , as k → ∞, uniformly on [−(j + 1), (j + 1)], where

w
(j+1)
n is a bounded solution of the Galerkin approximation (3.5) on the interval

[−(j+1), (j+1)]. Notice that w
(j)
n satisfies all the estimates in (4.27) in the interval

[−j, j]. By the Cantor diagonal process we have that w
(k)
n,k → wn, where wn is a

bounded solution of the Galerkin approximation (3.5) on all of R satisfying all the
estimates above. Thanks to the compact embeddings

H2 ↪→ H1 ↪→ L2,

and

sup
s∈R
‖wn‖H2 ≤ R2 and sup

s∈R
‖w′n‖ ≤ R′,
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we can apply Aubin’s compactness theorem (see, e.g., [6] and [17]). For every

m ∈ N there exist a subsequence w
(m)
n of wn such that w

(m)
n → w(m) on the

interval [−m,m], where w(m) is a bounded solution of (3.4) on the interval [−m,m].
Also,w(m) and d

dsw
(m) satisfy estimates (4.27) on the interval [−m,m]. Again by

the Cantor diagonal process we have a subsequence w
(n)
n → w where w is a bounded

solution of (3.4) on all of R. Since w and w′ also satisfy (4.27) for all s ∈ R, we
have the following theorem:

Proposition 4.1. Let v ∈ X, where X is defined as in (3.2). Then there exists a
bounded solution w ∈ Y of (3.4), where Y is defined as in (3.3).

Note that conditions (4.13) and (4.22) are only needed to get sharper bounds.
Even without these conditions, there exists a bounded solution of (3.4). But to
have the bounds (4.27), we need conditions (4.13) and (4.22).

Theorem 4.2. Let w be any bounded solution of (3.4), on R, for some v ∈ X.
Assume that m is large enough such that both conditions 4.13 and 4.22 hold i.e,

max{
˜̃R1L

2π(m+ 1)
,
R̃2L

2π(m+ 1)
} ≤ 1, (4.28)

where ˜̃R1, R̃2 are defined as in (4.12), (4.20), respectively. Then w satisfies the
bounds in (4.27).

Proof. Given that w is a bounded solution of (3.4), we can mimic section 4. We
integrate the evolution inequalities in that section from s0 to s, then take s0 to
−∞, to obtain the same bounds. �

Remark 4.3. Assume that v ∈ X is given.

(1) v is independent of µ and γ. All the estimates we have depend on |v|X .

(2) Observe that ˜̃R1 = O(µ
5
2 ) and R̃2 = O(µ4) as µ→∞. Therefore, condition

(4.28) implies that m ≥ O(µ4).
(3) We note the γ dependence on these constant is of the form R0 = O(γ−1),R1 =

O(γ−
7
2 ),R2 = O(γ−17), and R′ = O(γ−17) as γ → 0.

(4) Note that since ˜̃R1 = O(γ−4) and R̃2 = O(γ−19.5) as γ → 0, then condition
(4.28) implies that m ≥ O(γ−19.5).

5. Main Results

Proposition 5.1. Let u be a trajectory on the global attractor of the damped, driven
NLS

iut + uxx + |u|2u+ iγu = f, (5.1)

and let w be a bounded solution of the equation (3.4) with v = Pmu. Assume that
µ is large enough so that

R
1
2∞(R0

∞)
1
2 < µ, (5.2)
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holds, where R∞ = cR0R1, and R0
∞ = R∞|µ=0. In addition, assume that m is

large enough such that both (4.28) and

cL2K9

γ2(m+ 1)2
≤ 1 (5.3)

hold, where K9 is defined in (5.12), and c is a universal constant. Then we have
w ≡ u.

Remark 5.2. Note that condition (5.2) can be achieved since R
1
2∞(R0

∞)
1
2 = O(µ

1
4 )

as µ→∞. We realize that

cL2K9

2γ2
≤ O(γ−

383
12 ),

cL2K9

2γ2
≤ O(µ

35
12 ),

as γ → 0 and µ → ∞. Condition (5.3) implies that we need to choose m large

enough such that m ≥ O(γ−
383
24 ) and m ≥ O(µ

35
24 ). We note that these conditions

are already achieved by (5.2), (4.28) and Remark 4.3, up to a constant.

Now we give a proof for Proposition 5.1.

Proof. We first mention that all of the bounds that we obtained in section 4 also
hold for the solution of equation (5.1), with µ = 0. Our notation for the time

derivative bound and the square of the L∞ bound for the solution u will be R′0
and R0

∞ (see (5.8) for R∞), respectively. We will use the superscript 0 in K0
j to

denote the constant Kj , but with µ = 0 in its formula. Taking the difference of the
following equations

iws + wxx + |w|2w + iγw = f − iµ[Pm(w)− u],

ius + uxx + |u|2u+ iγu = f,

we get

iδs + δxx + |w|2w − |u|2u+ iγδ = −iµPmδ,

where δ := w − u. Note that

|w|2w − |u|2u = |δ|2δ + wūδ + w̄uδ + wuδ̄

= |δ|2δ + 2Re(wū)δ + wuδ̄,

and hence

iδs + δxx + |δ|2δ + 2Re(wū)δ + wuδ̄ + iγδ = −iµPmδ. (5.4)

Multiply (5.4) by δ̄, integrate, and take the real parts, to get

Im

∫ L

0

δδ̄s = ‖δx‖2 −
∫ L

0

|δ|4 − 2

∫ L

0

Re(wū)|δ|2 −Re
∫ L

0

wuδ̄2. (5.5)

Define Φ(s) as follows

Φ(s) =‖δx‖2 −
1

2

∫ L

0

|δ|4 − 2

∫ L

0

Re(wū)|δ|2 −Re
∫ L

0

wuδ̄2. (5.6)
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Thus from (5.5), we have

Im

∫ L

0

δδ̄s = Φ(s)− 1

2

∫ L

0

|δ|4.

Now multiply (5.4) by Pmδ̄, integrate, and take the real parts, to get

Im

∫ L

0

PmδPmδ̄s =‖Pmδx‖2 −Re
∫ L

0

|δ|2δPmδ̄

− 2

∫ L

0

Re(wū)Re(δPmδ̄)−Re
∫ L

0

wuδ̄Pmδ̄. (5.7)

Multiply (5.4) by δ̄s, integrate, and take the real parts, to get

d

ds
‖δx‖2 −

1

2

d

ds

∫ L

0

|δ|4 =− 2γIm

∫ L

0

δδ̄s − 2µIm

∫ L

0

PmδPmδ̄s

+ 4

∫ L

0

Re(wū)Re(δδ̄s) + 2Re

∫ L

0

wuδ̄δ̄s.

We then realize that,

d

ds
Φ(s) + 2γΦ(s) =− 2µIm

∫ L

0

PmδPmδ̄s − 2

∫ L

0

Re(wūs)|δ|2

−Re
∫ L

0

(wu)sδ̄
2 + γ

∫ L

0

|δ|4.

Use (5.7) above to get

d

ds
Φ(s) + 2γΦ(s) =− 2µ‖Pmδx‖2 + 2µRe

∫ L

0

|δ|2δPmδ̄

+ 4µ

∫ L

0

Re(wū)Re(δPmδ̄) + 2µRe

∫ L

0

wuδ̄Pmδ̄

− 2

∫ L

0

Re(wūs)|δ|2 −Re
∫ L

0

(wu)sδ̄
2

+ γ

∫ L

0

|δ|4.

Since condition (4.28) is an assumption of the proposition, we may use the bounds
we obtained in section 4. By using Agmon’s inequality, along with derivative bound
(4.26) and

‖w‖2∞ ≤ c‖w‖‖w‖H1 ≤ c(R0R1) := R∞ = O(µ
1
2 ), (5.8)
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as µ→∞, so we have

−2

∫ L

0

Re(wūs)|δ|2 ≤ 2‖w‖∞‖δ‖∞‖us‖‖δ‖

≤ cR
1
2∞(‖δ‖ 1

2 ‖δ‖
1
2

H1)‖us‖‖δ‖

≤ cR
1
2∞R′0(‖δ‖ 3

2 ‖δ‖
1
2

H1)

≤ cR
1
2∞R′0‖δ‖2

+ cR
1
2∞R′0‖δ‖

3
2 ‖δx‖

1
2

≤ c[R
1
2∞R′0 +

1

γ
1
3

R
2
3∞(R′0)

4
3 ]‖δ‖2 +

γ

3
‖δx‖2.

Similar analysis can be done for the term −Re
∫ L
0

(wu)sδ̄
2. Since

−Re
∫ L

0

(wu)sδ̄
2 = −Re

∫ L

0

wsuδ̄
2 −Re

∫ L

0

wusδ̄
2,

We have

−Re
∫ L

0

(wu)sδ̄
2 ≤c[(R0

∞)
1
2R′ + 1

γ
1
3

(R0
∞)

2
3 (R′) 4

3 ]‖δ‖2 +
γ

3
‖δx‖2

+ c[R
1
2∞R′0 +

1

γ
1
3

R
2
3∞(R′0)

4
3 ]‖δ‖2 +

γ

3
‖δx‖2.

We also have

2µRe

∫ L

0

|δ|2δPmδ̄ ≤ 2µ‖δ‖2∞‖δ‖‖Pmδ‖

≤ 4µ(R∞ +R0
∞)‖δ‖‖Pmδ‖

≤ 4µ(R∞ +R0
∞)‖δ‖2.

After similar treatment of the terms 4µ
∫ L
0
Re(wū)Re(δPmδ̄),

2µRe
∫ L
0
wuδ̄Pmδ̄ and γ

∫ L
0
|δ|4, we obtain

4µ

∫ L

0

Re(wū)Re(δPmδ̄) ≤ 4µ(R∞)
1
2 (R0

∞)
1
2 ‖δ‖2,

2µRe

∫ L

0

wuδ̄Pmδ̄ ≤ 2µ(R∞)
1
2 (R0

∞)
1
2 ‖δ‖2,

γ

∫ L

0

|δ|4 ≤ γ‖δ‖2∞‖δ‖2 ≤ 2γ(R∞ +R0
∞)‖δ2‖.

Combine the above terms, to obtain

d

ds
Φ(s) + 2γΦ(s) + 2µ‖Pmδx‖2 ≤ cK8‖δ‖2 + γ‖δx‖2, (5.9)
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where

K8 :=µ(R∞ +R0
∞) + µ((R∞)

1
2 (R0

∞)
1
2 ) + (R0

∞)
1
2R′ + 1

γ
1
3

(R0
∞)

2
3 (R′) 4

3

+R
1
2∞R′0 +

1

γ
1
3

R
2
3∞(R′0)

4
3 .

We realize that K8 = O(µ
8
3 ) as µ→∞. Also, from (5.6)

Φ(s) ≥ ‖δx‖2 − c(R∞ +R0
∞ +R

1
2∞(R0

∞)
1
2 )‖δ‖2,

and hence

‖δx‖2 ≤ Φ(s) + c(R∞ +R0
∞ +R

1
2∞(R0

∞)
1
2 )‖δ‖2. (5.10)

Using (5.9) and (5.10), we conclude that

d

ds
Φ(s) + 2γΦ(s) ≤ c[K8 + γ(R∞ +R0

∞ +R
1
2∞(R0

∞)
1
2 )]‖δ‖2 + γΦ(s),

so

d

ds
Φ(s) + γΦ(s) ≤ c[K8 + γ(R∞ +R0

∞ +R
1
2∞(R0

∞)
1
2 )]‖δ‖2.

So we have

Φ(s) ≤ c[K8 + γ(R∞ +R0
∞ +R

1
2∞(R0

∞)
1
2 )]

γ
sup
s∈R
‖δ(s)‖2.

Thus,

‖δx‖2 ≤
c[K8 + γ(R∞ +R0

∞ +R
1
2∞(R0

∞)
1
2 )]

γ
sup
s∈R
‖δ(s)‖2. (5.11)

The inequality (5.11) is a ’reverse‘ Poincaré type inequality. From (4.2),

d

ds
‖δ‖2 + 2γ‖δ‖2 + 2µ‖Pmδ‖2 ≤ 2‖w‖∞‖u‖∞‖δ‖2

≤ 2R
1
2∞(R0

∞)
1
2 ‖δ‖2

= 2R
1
2∞(R0

∞)
1
2 ‖Pmδ‖2 + 2R

1
2∞(R0

∞)
1
2 ‖Qmδ‖2

≤ 2R
1
2∞(R0

∞)
1
2 ‖Pmδ‖2 +

2R
1
2∞(R0

∞)
1
2

((m+ 1) 2π
L )2
‖δx‖2

≤ 2R
1
2∞(R0

∞)
1
2 ‖Pmδ‖2 +

cL2K9

γ(m+ 1)2
sup
s∈R
‖δ(s)‖2,

where

K9 := R
1
2∞(R0

∞)
1
2 [K8 + γ(R∞ +R0

∞ +R
1
2∞(R0

∞)
1
2 )]. (5.12)

Thus, if we choose µ large enough so that cR
1
2∞(R0

∞)
1
2 = O(µ

1
4 ) ≤ 2µ (which is the

condition (5.2)), we get

d

ds
‖δ‖2 + 2γ‖δ‖2 ≤ cL2K9

γ(m+ 1)2
sup
s∈R
‖δ(s)‖2,
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and hence

sup
s∈R
‖δ(s)‖2 ≤ cL2K9

2γ2(m+ 1)2
sup
s∈R
‖δ(s)‖2.

Since m is chosen to be large enough satisfying condition (5.3), we conclude that
sups∈R ‖δ(s)‖2 = 0. Thus δ ≡ 0. This implies that w ≡ u. �

Theorem 5.3. Let v ∈ Bρ := {v ∈ X; |v|X ≤ ρ} for some positive ρ. Assume that

c(R0R1) < µ, (5.13)

holds, and for such µ, conditions (4.28) and

cL2K10

γ2(m+ 1)2
≤ 1, (5.14)

hold, where K10 is defined in (5.18). Then the map W : X → Y , where W (v) :=
w is a bounded solution of (3.4) provided by Proposition 4.1, is well-defined, and
PmW : X → X is a locally Lipschitz function with Lipschitz constant LW (ρ) given
in (5.21).

Remark 5.4.
(1) Recall that R0, R1, R′, R∞ depend on |v|X which is controlled by ρ. Also

note that condition (5.13) can be achieved since c(R0R1) = O(µ
1
2 ) as µ→

∞.
(2) Notice that LW (ρ) = O(µ

3
2 ) as µ → ∞, LW (ρ) = O(γ−

9
2 ) as γ → 0 and

LW (ρ) can be bounded independent of m.
(3) We note that

cL2K10

2γ2
≤ O(γ−

65
2 ),

cL2K10

2γ2
≤ O(µ

7
2 ),

as γ → 0 and µ → ∞. Condition (5.14) implies that we need to choose m

large enough such that m ≥ O(γ−
65
4 ) and m ≥ O(µ

7
4 ). These conditions

are already achieved by (5.13), (4.28) and Remark 4.3, up to a constant.

Now we give the proof of Theorem 5.3.

Proof. Note that all constants R0,R1,R2,R′ and R∞ depend on |v|X . So, since
we are in a ball Bρ ⊂ X, all of these constants will depend on ρ. Let v, ṽ ∈ Bρ such
that W (v) = w and W (ṽ) = w̃. Since w and w̃ are the solutions of the equation
(3.4) for v and ṽ , respectively , the following hold:

iws + wxx + |w|2w + iγw = f − iµ[Pm(w)− v],

iw̃s + w̃xx + |w̃|2w̃ + iγw̃ = f − iµ[Pm(w̃)− ṽ].

Subtract, denoting δ := w − w̃ and η := v − ṽ, to obtain

iδs + δxx + |δ|2δ + 2Re(w ¯̃w)δ + ww̃δ̄ + iγδ + iµPmδ = iµη. (5.15)
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Multiply (5.15) by δ̄, integrate, and take the real parts, to get

Im

∫ L

0

δδ̄s =‖δx‖2 −
∫ L

0

|δ|4 − 2

∫ L

0

Re(w ¯̃w)|δ|2

−Re
∫ L

0

ww̃δ̄2 − µIm
∫ L

0

ηδ̄.

Define Ψ(s) as follows

Ψ(s) =‖δx‖2 −
1

2

∫ L

0

|δ|4 − 2

∫ L

0

Re(w ¯̃w)|δ|2

−Re
∫ L

0

ww̃δ̄2 − µIm
∫ L

0

ηδ̄. (5.16)

Now multiply (5.15) by Pmδ̄, integrate, and take the real parts, to get

Im

∫ L

0

PmδPmδ̄s =‖Pmδx‖2 −Re
∫ L

0

|δ|2δPmδ̄

− 2

∫ L

0

Re(w ¯̃w)Re(δPmδ̄)−Re
∫ L

0

ww̃δ̄Pmδ̄

− µIm
∫ L

0

ηPmδ̄. (5.17)

Multiply (5.15) by δ̄s, integrate, and take the real parts, to get

d

ds
‖δx‖2 −

1

2

d

ds

∫ L

0

|δ|4 =− 2γIm

∫ L

0

δδ̄s − 2µIm

∫ L

0

PmδPmδ̄s

+ 4

∫ L

0

Re(w ¯̃w)Re(δδ̄s) + 2Re

∫ L

0

ww̃δ̄δ̄s

+ µIm

∫ L

0

ηδ̄s.

We then realize that

d

ds
Ψ(s) + 2γΨ(s) =− 2µIm

∫ L

0

PmδPmδ̄s − 2

∫ L

0

Re(w ¯̃w)s|δ|2

−Re
∫ L

0

(ww̃)sδ̄
2 + γ

∫ L

0

|δ|4

− µIm
∫ L

0

ηsδ̄ − 2γµIm

∫ L

0

ηδ̄.
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Use (5.17) above to get

d

ds
Ψ(s) + 2γΨ(s) =− 2µ‖Pmδx‖2 + 2µRe

∫ L

0

|δ|2δPmδ̄

+ 4µ

∫ L

0

Re(wū)Re(δPmδ̄)

+ 2µRe

∫ L

0

wuδ̄Pmδ̄ − 2

∫ L

0

Re(wūs)|δ|2

−Re
∫ L

0

(wu)sδ̄
2 + γ

∫ L

0

|δ|4

− µIm
∫ L

0

ηsδ̄ − 2γµIm

∫ L

0

ηδ̄.

We estimate as before to obtain

‖δx‖2 ≤
(c(µ+ γ)R∞ + cγ−

1
3R

2
3∞R′

4
3 )

γ
sup
s∈R
‖δ(s)‖2 + (µ+ 3γµ)|η|X sup

s∈R
‖δ(s)‖.

Mulitply (5.15) with δ̄, integrate, and take the imaginary parts to obtain

d

ds
‖δ‖2 + 2γ‖δ‖2 + 2µ‖Pmδ‖2 = 2µRe

∫ L

0

ηδ̄ − 2Im

∫ L

0

ww̃δ̄2.

We make similar estimates again, and take advantage of the condition (5.13), to
get

d

ds
‖δ‖2 + 2γ‖δ‖2 ≤ cL2K10

γ(m+ 1)2
sup
s∈R
‖δ(s)‖2

+
cR∞(µ+ 3γµ)

( 2π
L )2(m+ 1)2

|η|X sup
s∈R
‖δ(s)‖ ,

where

K10 = R∞[(µ+ γ)R∞ + γ−
1
3R

2
3∞R′

4
3 ]. (5.18)

By (5.14) we have

sup
s∈R
‖δ(s)‖ ≤ cR∞(µ+ 3γµ)

( 2π
L )2(m+ 1)2γ

|η|X . (5.19)

Note that (5.19) implies that the W -map is well-defined. Now,

‖Pmδxx‖ ≤ m2‖Pmδ‖ ≤ m2‖δ‖ ≤ cR∞(µ+ 3γµ)

( 2π
L )2γ

|η|X . (5.20)

From (5.15) and (5.20),

‖Pmδs‖ ≤ ‖Pmδxx‖+ ‖Pm(|w|2δ + ww̃δ̄ + |w̃|2δ)‖+ (γ + µ)‖Pmδ‖+ µ‖η‖
≤ m2‖δ‖+ cR∞‖δ‖+ (γ + µ)‖δ‖+ µ‖η‖

≤ ((m2 + cR∞ + γ + µ)(
cR∞(µ+ 3γµ)

( 2π
L )2(m+ 1)2γ

) + µ)|η|X ,

so that

‖Pmδ‖+ ‖Pmδs‖ ≤ LW |η|X ,
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where

LW := (m2 + cR∞ + γ + µ+ 1)(
cR∞(µ+ 3γµ)

( 2π
L )2(m+ 1)2γ

) + µ. (5.21)

Thus,

|Pmδ|X ≤ LW |η|X ,
i.e,

|PmW (v)− PmW (ṽ)|X ≤ LW |v − ṽ|X .
�

6. The determining form

For every trajectory u in the global attractor, A, we have

|u|X ≤ R,

where

R := R0
0 +R′0, (6.1)

with R0
0 = R0|µ=0 and R′0 = R′|µ=0. Let u∗ be a steady state of the damped,

driven NLS (2.1). Adapting the suggestion given in [9], we propose the following
determining form for the damped-driven NLS:

dv

dt
= −|v − PmW (v)|2X,0(v − Pmu∗), (6.2)

where | · |X,0 is defined in (3.1). The specific conditions on m and its dependence on
R to guarantee the existence of a Lipschitz map PmW (v) are stated in the Theorem
6.1 below.

Theorem 6.1. Suppose that the conditions of Theorem 5.3 hold for ρ = 4R, where
R is defined in (6.1).

(1) The vector field in the determining form (6.2) is a Lipschitz map from the
ball BρX(0) = {v ∈ X : |v|X < ρ} into X. Thus, (6.2) is actually an ODE,
in the Banach space X, which has a short time existence and uniqueness
for the initial data in BρX(0) = {v ∈ X : |v|X < ρ}.

(2) The ball B3RX (Pmu
∗) = {v ∈ X : |v − Pmu∗|X < 3R} ⊂ BρX(0) is forward

invariant in time, under the dynamics of the determining form (6.2). Con-
sequently, (6.2) has global existence and uniqueness for all initial data in
B3RX (Pmu

∗).
(3) Every solution of the determining form (6.2), with initial data in B3RX (Pmu

∗),
converges to a steady state of the determining form (6.2).

(4) All the steady states of the determining form, (6.2), that are contained in
the ball BρX(0) are given by the form v(s) = Pmu(s), for all s ∈ R, where
u(s) is a trajectory that lies on the global attractor, A, of (2.1).

Proof. We use the fact that PmW is a locally Lipschitz map to prove item (1)
above. For item (2) and (3), we use dissipative property of (6.2). To prove item
(4), we realize that the right-hand side of (6.2) is zero when either v = Pmu

∗ or
v = Pmw. In either case, we show that v(s) = Pmu(s), for all s ∈ R, where u(s) is
a trajectory that lies on the global attractor, A, of (2.1). For details see [9]. �
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7. A new proof of the determining modes property

Here we give the proof of Theorem 3.1:

Proof. We assume u(s) and ũ(s) are trajectories on the global attractor, A, of (2.1),
and Pm(u(s)) = Pm(v(s)) for all time s ∈ R, and for some m ∈ N to be chosen
later. Then,

ius + uxx + |u|2u+ iγu = f,

iũs + ũxx + |ũ|2ũ+ iγũ = f.

Subtract, denoting δ := u− ũ, to obtain

iδs + δxx + |δ|2δ + 2Re(u¯̃u)δ + uũδ̄ + iγδ = 0,

which is precisely (5.4), but with µ = 0, w replaced by u, and ū replaced by ¯̃u.
Following the proof of Theorem 5.1, we obtain the analog of (5.13) with µ = 0:

‖δx(s)‖ ≤ K11 sup
s∈R
‖δ(s)‖,

where

K11 =

√
(cγR0

∞ + cγ−
1
3 (R0

∞)
2
3 (R′0)

4
3 )

γ
. (7.1)

Then, since Pmδ = 0, we have

‖Qmδ‖ ≤
L

2π(m+ 1)
‖δx‖ ≤

L

2π(m+ 1)
K11 sup

s∈R
‖δ‖

=
L

2π(m+ 1)
K11 sup

s∈R
‖Qmδ‖.

Thus, if we choose

m ≥ L

2π
K11 − 1,

we obtain that Qmδ = 0. As a result, u(s) = ũ(s). �

Remark 7.1.
(1) By tracking the ‖f‖ and γ dependence of the bounds throughout the paper,

we have that R0 = O(‖f‖, γ−1), R0
0 = O(‖f‖, γ−1),R1 = O(‖f‖3, γ−3.5),

R0
1 = O(‖f‖3, γ−3),R2 = O(‖f‖13, γ−17),R0

2 = O(‖f‖13, γ−15),

R′ = O(‖f‖13, γ−17),R′0 = O(‖f‖13, γ−15),R∞ = O(‖f‖4, γ−4.5),

R0
∞ = O(‖f‖4, γ−4),K8 = O(‖f‖20, γ− 77

3 ),K0
8 = O(‖f‖20, γ−23),

K9 = O(‖f‖24, γ− 359
12 ),K0

9 = O(‖f‖24, γ−27),K10 = O(‖f‖24, γ− 61
2 ),

K0
10 = O(‖f‖24, γ−27), as ‖f‖ → ∞ and γ → 0.

(2) Since R′0 = O(‖f‖13) and R0
∞ = O(‖f‖4), from (7.1) we have K11 =

O(‖f‖10) as ‖f‖ → ∞. Thus, from (3.5), a sufficient number of determin-
ing modes is of order m = O(‖f‖10).

(3) Similarly, since R′0 = O(γ−15) and R0
∞ = O(γ−4), we have K11 =

O(γ−12) as γ → 0. Thus a sufficient number of determining modes is
of order m = O(γ−12).

(4) Following the analysis in the earlier work of Goubet [13], one can show
that a sufficient number of the determining modes is of order O(γ−12.5) as
γ → 0 and O(‖f‖12) as ‖f‖ → ∞.
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