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Unified Irradiance Equations 

by Rudolph U. Preisendorfer 

Scripps Institution of Oceanography, University of California, La Jolla, Californi 

ABSTRACT 

The necessary s tructure of the coeff icient functions occurring in the Schuste 

equations i s found in order tha t they be consistent with the scat ter ing functions 

of general rad ia t ive t ransfer theory. The general proceuure followed y ie lds a bas 

for the unif icat ion of t h e manifold forms of the equations used in p rac t ice and 

provides an objective means for t he i r evaluation. Necessary and suff ic ient condit 

are given in order t h a t the Schuster equations be exact. In i l l u s t r a t i o n of the 

theory, an extension, based on recent experimental evidence, i s made of the classii 

equations to the case of two flows whose radiance d i s t r iou t ions have d i s t i n c t angi 

s t ruc ture . Final ly , the n-flow non steady s ta te Schuster equations are r igorcusl j 

derived from the equation of transfer for an a rb i t r a ry op t ica l medium with scurce; 

'Contr ibution from the scripps In s t i t u t i on of Oceanography, New Series Now 

This paper represents r e su l t s of research which has been supported by the jiureau 

of Ships, U. S. Navy. 



INTRODUCTION 

Our purpose is to derive the Schuster equations for irradiance from 

the equation of transfer for radiance with particular emphasis on the resultin 

radiometric structure of the coefficient functions in the equations and on 

their relations to the scattering functions of general radiative transfer 

theory. This procedure provides an objective means of evaluation of the various 

forms of the Schuster equations that have been used in practica and affords a 

means of their unification under one general form. 

The principal results are;an e;:act delineation of the intrinsic structure 

of the Schuster equations; the necessary and sufficient conditions under which 

they become exact differential equations with known constant coefficients; 

a generalization of the classical two-flow equations, based on recent experiment 

evidence, such that each flow has its own distinctive fixed geometrical structur 

and finally, a generalization of the Schuster equations to arbitrary geometries 

and arbitrary numbers of flows: 

It is generally agreed that the history of the Schuster equations begins 

with the classical paper by Schuster1. The differential equations derived dealt 

vdth a pair of irradiance functions representing two antiparallel flows of 

radiant energy in a steller atmosphere. In the hands of Schwarzschild , King^, 

A. Schuster, Astrophys. J. 22, 1 (1905). 

\ , Schwarzschild, Nachr. Akad. V/iss, Go'ttingen, Math.-physik.Kl. 41(1906), 

3L. V. King, Trans. Ray. Soc. (London) A212. 375 (1913). 
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and Milne*, Schuster's approach was developed Into a relatively more complete 

description of the light field by means of the equation of transfer f»r 

radiance (specific intensity). Under Hopf , Arribarzumian , and Chandrasekha:.-̂ , 

the mathematical problems of radiative transfer were subsequently crystalline'1, 

into forms generally used today, such as general integral equation approaches 

along with the principles of invariance. 

On the other hand, there followed from Schuster's work another chain of 

studies which dwelled almost exclusively on his original pair of equations for 

irradiance, reshaping them, successively generalizing them, and applying them to 

all manners of optical media from paint and paper to the atmosphere and the sea. 

The industrial researchers and the geophysicists took alternate turns in the 

formulations and applications, the results being typified by the papers of 

Channon, Renwick and Storr8, Mecke9, Dietzius10, Silberstein11, Ryde12 and 

E. A. Milne, "Thermodynamics of the Stars," Handbuch der Astrophysik (Springer. 
Berlin, 1930), Vol.3, Chap.2. 

$E. Hopf, Mathematical Problems of Radiative Equilibrium (Cambridge Tracts in 
Math, and Hath.Physics. No. 31, University Press, Cambridge, 1934). 

°V. A. Ambarzumian, Compt. rend. (Doklady) Acad. Sci. U.R.S.S. J38, 229 (1943). 

7s. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950). 

8H. J. Channon, F. F. Renwick and B. V. Storr, Proc. Roy.Soc. (London)A94.222(1911 

9R. Mecke, Ann. Physik. 6^ 257(1921). 

10R. Dietzius Beitr. Phys. freien Atm. 10, 202(1922). 

n L . Silberstein, Phil. Mag. l±, 129(1927). 

1 2J. W. Ryde, Proc. Roy. Soc. (London) A131. 451(1931). 
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•Juntley . Concurrently certain Russian author notably Gurevic , Boldyre-v"1 v̂ 

^ershun , and Alexandrov17, made lasting contributions to the Schuster theory. 

I'he latter papers are curious mixtures of the archaic forms of the equation;; 

during that period along with some brilliant innovations which only much later 

came into widespread use. 

With the formulation of neutron diffusion problems there arose a certain 

amount of mutually profitable cross-fertilization of techniques between the 

neutron diffusion and radiative transfer theories which stems principally from 

the papers of Wick , and Chandrasekhar19. in these papers the Schuster equatior 

were extended to handle n-flows with particular emphasis on the form of the 

coefficients most suitable to numerical analysis. Some relatively recent works 

based on or related to the Schuster theory are contained in the papers of Whitnej 

53s. Q. Duntley, J. Opt. Soc. Am. ^2, 61 (1942). 

*%. M. Gurevic, Trans. Opt. Inst. Leningrad. 6, No. 57, 1 (1931), 

^ N . Boldyrev, Trans Opt. Inst, Leningrad, 6, No. 59. 1(1931). 

*®A. Gershun, Trans. Opt. Inst. Leningrad. 11, No. 99, 43(1936). 

l7ir. Boldyrev and A. Alexandrov, Trans. Opt. Inst. Leningrad. 11, Wo. 99, 56(1931), 

l8G. C. Wick, Z. Physik, 121, 702(1943). 

19s. Chandrasekhar, Astrophys. J. 100. 76(1944). 

2QL, V. Whitney, J. Opt. Soc Am. £1, 714(1941). 
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Hulburt , Kubelka , Middleton , and a report by Sliepcevitch . A fairly 

exhaustive bibliography of the Schuster theory may be compiled from the 

references in the preceding papers. 

In view of this immense array of works on the Schuster equations, 

it may be felt that relatively little more of importance can be said 

about thern. Perhaps as far a.s their practical ramifications are concerned 

this is true. Further, by being instrumental in the introduction of modem 

mathematical techniques into the disciplines of radiative transfer and 

neutron diffusion theory, it appears that the Schuster equations as 

ground-breaking theoretical tools may now be respectfully laid to rest. 

Despite these facts, the Schuster equations persistently reappear along 

with an occasional novel twist, and continue to remain to this day as a 

rough and ready tool of great practical interest. Thus the continuing 

use (and abuse) of the Schuster equations appears to justify a study of 

their intrinsic structure and the development of a means of unifying 

the various forms they have taken in the past, principally in the studies 

the industrial researchers and the geophysicists. 

2 1 E. 0. Hulburt, J. Opt. Soc. Am. 33, 42, (1943). 

2 2 P. Kubelka, J. Opt. Soc. Am. 38, 448, (1948); 44, 330, (1954). 

23 W. E. K. Middleton, J. Opt. Soc. Am. 44, 793, (1954). 

2^ C. M. Sliepcevitch and others. Confidential report (Army Chem. Corps. 
Contract No. DA18-108-CML-4695. AFSWP-749, ERI-2089-2-F. Eng. Res. 
Inst. Univ. of Mich., Ann Arbor, Michigan, (1954). 



TWO-FLOW ANALYSIS FOR THE SLAB GEOMETRY 

A slab of depth z-, is a subset X of Euclidean three space Eo defined as 

the sot of all points between and including two planes parallel to the x-y 

plane and separated a distance z . Using the usual vector notation for ( 

Eo, (Fig. 1), a point in E_ is denoted by a vector^- (x, k ., 2. X, and 

for the present discussion X may be defined as X- f-X- •" G t £ •£ £, }. 

The plane z = 0 is the upper boundary of X, and the plane z = z, is the 

lower boundary of X. Let E: denote the collection of all unit vectors 

J_ in E~. The radiance at time t at x into the direction 5 is 

denoted by N(x, I" , t). The function N and all the other functions 

introduced below refer to a <*iven fixed wavelength of radiant flux. The 

light field in X is the vector-valued function H defined at each point x 

of X by: 

(1) 

H(x,t) is the vector irradiance at x at the time t. The scalar irradiance 

h(x,t) is defined by 

h(£>t)sS- kl^\t)c/Jl / J ) . (2) 

_/l is the solid angle measure on H (dfi- S r»0 cfadft* -<£* ̂ A/* =C6S 9'-

The radiance distribution at x and t is a function on :EE 

obtained from the radiance function N by fixing x and t, and is denoted 

by N(x,-Jb). Let n bo a unit vector, then the radiance distribution 

N(x,»,t) gives rise to an irradiance H(x,n,t) on a unit area normal to n: 

1-0 2:0 (3) 



H(x,n.t) is the radiant flux at time t across a unit area at x in the direct? 
Me 

or.on. 

n, H(x,t) has the following property; 

n-H(£,l) - HfZ.Q,*) ~ H<ZrZ>OAh) 

The structure of the radiance function is governed by the equation of 

transfer: 

where n is the index of refraction function, v is the velocity of ligftt 

function. o< i3 the volume attenuation function, and H^ 4# the path function, 

defined by 

where cr is the volume scattering function. Finally> N is the emission 

function. The following discussion will require that n be constant on X and 

independent of t. In this case (5) reduces to: 

where: -t- J>J„ <£, £,-£), 

V = _/ ^/V-x -»• y <3/^«± — -& <?/<?;& . 
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' W 

While for a y;reu,t os-vl oZ the present di^cupsion- i t i s not ac tual ly 

•ozoes.si?.r/ t o do so, we sha l l in the i n t e r e s t s of brevi ty make the customary 

assumption t ha t X i s s t r a t i f i e d . v;hich mea;is that. N, <* , er (Hence N4(p) and 

ijf, depend a p i t i a l l y only or. 2 „ _hus (?) reduces to the r e l a t i v e l y i. ovo 

fr •;.!? l;.ar form: 

••••here x has been replaced by z, and £ by the pai r (/Mt<f)i/S':* cos 3 . 

Fig. 1 

The following definitions are necessary prerequisites to the derivation 

of the general Schuster equations. First, the collection of all outward 

directions is defined as "H_ . = \ S" : S'A^of, and the collection of all inward 

directions is defined as ~~L-- )^i %-Jk<o}9 An outward radiance distribution 

is the restriction of a radiance distribution to the collection of outward 

directions and is denoted by N(z,-+ , ,t), so that N(z,+//,f(,t) is an outwarc-

radiance, OS// $ I o -& <f> < 27T . An inward radiance distribution is defined 

analogously and is denoted by N(z,- , ,t), so that N(z,~/,ft) is an inward 

radiance, 0«/ / ̂  1 , 0 ^ ^<2"W , Irradiances associated with the special 

direction k play a central role in the sequel. From (3) with now r̂  = k, define 

fKf^tlsHtf.i.i) } H^.-,-t) s hd ,--&,£>• (9) 

These irradiances are induced by the outivard and inward radiance distributions 

at z, at time t. The pair of functions (H( ,*,t), H( ,-,t)) is called the 
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•'/'vo-i'lDu,Schuster Analysis of tiie light field, or Analysis for short. The 

ligr1- field is analyzed by this pair of functions in the sense of (4): 

un; 

r.l:e outward and inward radiance distributions also give rise to two scalrr 

irradiances: 

If N is replaced by N* in (11) and (12), we have h«( ,+,t) and h J ,-,t) in 

analogy to the functions h( ,+,t) and h( ,-,t). 

Derivation of the Equations for the Analysis 

The derivation of the equations for the Analysis proceeds as follows: 

holding z fixed, (3) is integrated over 31 in two steps : once over 31 -t-and 

once over "-="_ c. The resulting pair of equations is a conglomeration of 

irradiance, scalar irradiance^and radiance functions. The immediate goal is 

to arrive at a pair of equations explicitly involving only the members of the 

Analysis. An attempt to reach this goal supplies the motivation for the intro

duction of the so-called forward and backward scattering functions f and b and 

the important distribution function Dc 

Holding z fixed, integrate (8) over 1=1 + : 

-c/H(2,-h,-0/c/2 +(\/v)B]nl^^)/3i = --cH&hu^.-L) (13) 

•* {_ ti#CZ, />,£, t) olfjcl 4 
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and then over =£~ _ : 

c. 

+ \) „ ( £, ~ > t ) . 

Definitions: , , . • . i . t ,-, .+. 1 ^ v '-' 
0 ( 2; ± tt ) = h(?,±,k)/H(Z, ±>t /' • 

D( ,+,t) is the distribution function for the outward radiance distribution, 

P( ;->*) is defined similarly. 
— i 

Definitions: r , , ,-/,) / , / /// 

f( ,+,t) and b( ,,+,t) are the forward and backward scattering functions of the 

Analysis. Each member of the Analysis has associated with it an f and a b 

function. By observing that the integral for \ can be written as the sum of 

two integrals: one over :=£ 4. and the other over 1=1 _, (13) and (14) can be writ! 

in the required forms: 

zfd\\CZ,tti)/d£ +0M d[D<2s*,t)H(z,±,i)J/dt = 
(18) 

= -o«;i,i)o((i!,()H(f^) + f^i^H(^^ •+ 

(18) is the sought-for general pair of equations for the Analysis of the light 

field. 
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The transient cas-a has been carried along up to this point to show the 

Se-nerality of the present mode of derivation. With regard to the purposes of 

this paper, however, no essential loss of generality will be engendered jf ,Lhc 

steady state form of (18) is considered instead; 

+ dH6z,±)/d? =• -D(2,±) *(*) Hd,^) + f(*,t)H(?,±) 

(19N 

Some Properties of the Coefficient Functions 

From this point on, the main purpose of the discussion will be to relate 

(19) by successive stages to the classical Schuster equations with special 

emphasis on the structure of the coefficient functions. The first term of 

(19) suggests the 

Definitions: o<(?; -± ) - D(£,±)c<(2) . (20) 

Now the total (volume) scattering function s is defined as: 

(21) 

and if GLdenotes the volume absorption function, vie have from general radiative 

transfer theory the relation: 

ocC2) = (X(Z)-t^lCZ) . (22) 

In analogy to (20) we make the 

-,1-j = Di2,±) a ( f ) ? 

-d(^i-) = D(*>^) ̂ L(z) . (24) 

Definitions: a ( z > +} = 0 i Z + ) a C i ? ) ^ 
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From (16) and (17) it. follows that 

f(2,±) + \oU,±) = D(2.tt)^L(i) = -A.L*>±)p 2̂5) 

and (19) may then be written 

In certain contexts, notably in hydrological and meteorological optics, 

it is useful to introduce into the equation of transfer the equilibrium 

radianco N defined as: 

ty(3£.Z,t)= N*<ZJJ)/<*C&.D9 (27) 

and which is analogous to the source function used in astrophysics. Thus (8) 

may be written: 

(28) 

In the absence of any emissive sources (Nrj = 0) in X, N^ serves as a 

criterion for the test of whether N is locally increasing or decreasing along 

a path of length r. For if N >.N, then dN/dr > 0 (dz - - /<dr) and if N^< N, 

then dN/dr < 0. This points up the meaning of the term equilibrium radiance. 

In a similar manner the notion of equilibrium irradiance H^ can be associated 

with each member of the Analysis: 

(29) 

h j i i j t ) = —-=r f 
6 [Q(2I ±)~b(Z,±)} 
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so that in analogy to (28), (26) may be written: 

'ZdtiU,±)/d2: = Lac*.±) H.bf£>i-)][Hs(?,±;-H^>D>h7ta^30) 

and in a similar way we have a criterion for the local increase or decrease 

with depth of each member of the Analysis. 

The similarity in structure between the equation of transfer (29) 

and the equations (30) of the Analysis only begins to lay bare the deeper ly?rij 

connections which must naturally exist between the two. Even at this stage 

of the exposition, it is perhaps evident that the study of these connections 

is most profitably pursued by riveting attention on the comparatively little 

studied coefficient functions a, f, b, et cetera of the Analysis. 

In previous studies of the system (26) the main object was, of course, 

to solve it and apply the results to problems of immediate interest in the 

particular field concerned. To attain this end the system (26), or some 

minor variant, was considered as a pair of differential equations with constant 

coefficients a, f, b, and h« was assumed known or absent. As to the constancy 

of these coefficient functions, what conditions are necessary and sufficient 

that this be true? Is the requirement that <T be independent of z sufficient? 

Eren without the help of the definitions (16) and (17) the negative answer 

would perhaps be easily and correctly reached. But with their help it is 

at once clear that a sufficient condition that the forward and backward scatter: 

functions be independent of depth is that both o~ and the radiance distribution,̂  

be independent of depth. The radiance distributions are defined to be fod spender 
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of dey.th if K(Z, ,)/li(Z,l,0) - N(2', , )A'U«, 1,0) for *11 z aid z« in the 

slab. Such a condition on the radiance function implies that there is a 

multiplicative uncoupling of the deoth and direction dependences, i.e., .'• 

is of the form H(z,M, jO = g(z)V(/i,o). According to (16) and (17), a radiance 

function with this property,along with a depth independent <T~, results in 

depth independent forward and backward scattering functions. (A sligh-t genol L-

zation of the preceding condition is effected if in addition to N, (T has it* 

depth and direction dependences multiplicatively uncoupled. Then once again, 

after suitable modifications, the f and b functions can be made independent 

of depth.) 

But what of the necessity of these conditions? That is, if f and b are 

independent of depth, is it necessarily true that N must be factorable and that 

CT is independent of depth? The answer, which depends upon some relatively 

intricate mathematical analysis, is a qualified yes (exceptions can occur only 

°S the physically unimportant sets of z of zero measure). 

The necessity and sufficiency of these conditions are extendable to the-

functions OB( , + ), s( , + ) and oc ( , + ). In view of (.?2), (23), and (?4) 

attention in these cases is naturally directed toward, the distribution function 

l'( )+)o It turns out that in the homogeneous slab, the functions 

i'{ ,±h b( , + ), a( . * ) . s( ,±) and ^< ( .*) are independent of depth if and 

unly if the radiance distributions are independent of dejrth, and this in turn 

is tx-uc; if and only if the distribution functions D( .*) are independent of 
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3o :C;M- or_Ly ;u?tlipnijti3"0. interrelations amonp the coefficient function,' 

J;.& *\.'-i opc'.ca.-!. and radiometric properties of the ̂ .cci:.ur have been drawn. It 

.ooinain? ir as1:, is the kiejur premise, namely tho dd̂ tli independence of radiance 

dlrststations, actually realizable in a given opticr.l nedium with the slib 'eon*, 

lac answer :'.s: in genei-al. no. However, ̂ ertuin ruaericul calculations e-")- <0 

and experirauntu.! results ' "''* bear evidence in favor of a limiting—or 

asymptotic-fcrm of the radiance distributions in certain optically deep scatteri 

media. In such media these asymptotic radiance distributions are, according to 

some preliminary mathematical investigations, independent of the external light

ing conditions and dependent only on the inherent optical properties of the 

media. Hence, under such circumstances, the coefficient functions would be 

sensibly constant below a certain depth, and the system (26) may bo coaeidnrwi 6 

a pair of diffeirtmi^ai .oqaoliijne. 

The net conclusion is that the system (26) as a pair of differential 

equations with constant coefficients is at best a good approximation. Some 

28 
recent experimental evidence (summarized in Table II) has wfcfie&a. 

particular form of (26) which yields a theory of maximal accuracy for a tvro-

flow Analysis of the light field. 

25j. Lenoble, Rev. Optique. 35, 1(1956). 

26J. Lenoble, Opt Acta. U, 1(1957). 

2?J, Lenoble, Ann. Geophysique. 12, 16(1956) 

2%he Lake Pend Oreille experiments conducted in the Spring of 1957 by J. E. Tylei 
of the Visibility Laboratory of the Scripps Institution or Oceanography, La Jol] 
California. Publication of these results is planned. 
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AiaiLYSlo OF Tiki DBCOi.iJrOiED LIGHT FlnLD 

Tne c l i p c i c a l iohuster equations were customr.rily -./ritten in terms of 

+-h.3 cliffare flux component of t h e l i gh t f i e ld , This procedure va l i nov oe 

<-lazlfied and extended. In «rder to draw out the f u l l symmetry of the following 

formulations., iv. wxll be assumed i n i t i a l l y tha t there exist incident radiancj 

distribution," a t both the upper and the lower boundaries of the s lab , whose vrla-

viill be designated by N°(0,-//,^) and N°(z ,-y/,<j>), 0</U^r 1, 0 « 4< 2n. 

The incident radiance d is t r ibu t ions and the emission function N* generate 

the l i gh t f ield H in X. Nov the radiarc e function N from which H i s derived irav 

be d.er.oipnc:.'--ed into the .sun N° * if' of two functions,. These functions are such 

tha t N° represents radiance which, r e l a t i ve to N°(0,- , ) , N°(z-,,+ , ) , and 

Nn( > > ) has zero sca t te r ing order . N* represents radiance which, r e l a t i v e to 

N°(0,- , ) , N°(z1,+ , ) , and I\L( , , ) , has scat ter ing orders one, two, and highc 

The existence of these two functions follows immediately from the scattering-ordi 

decomposition of the equation of t ransfer : 

X*VN° + (i/v) dn°/dl = - o< N° + Nv) 

( 

( 

in which the two incident radiance distributions and the emission function have 

been assigned scattering order zero. The components of the radiance function N 

consisting of scattering order j >: 1 are defined inductively by means of (32). 

Hence the solution N of the equation of transfer may be formally written as 
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and by dnfinins tt* ^^£?x M* (34) 

•** hv.? .j r. t/° + M*t "'-5"> 

This decomposition of N in turn gives rise to the decomposition H' + H* uf 

tho light, field, and in general any radiometric quantity derived from or relat-.c 

to N. If* is referred to as the diffuse component of N, and N« as the reduced 

component. 

For the steady state case in the slab geometry, (31) becomes 

~/jLcfNo/0 2 = - oc/V°-<-A/£r - (36) 

Summing each side of (32) over the range 1 « j < ca , we have (for the steady 

state case, slab geometry) 

Equation (36) may be solved immediately: 
A 

ess) : 
where ^ 

A similar expression exists for N°(*.,+//,o'). 

Hence the values N0(z,yW,̂ >) of the reduced component of N are known for all 

depths and directions. Under the present decomposition of N, it follows that 

the boundary conditions for the diffuse component N*- are 

N* (0.-/J, 4) -O J 

N*a..TS.+>-0,
 a^*<, * * * « * * - . (40) 



To solve (37), .suppose for the moment that the radiance d i s t r ibu t ions at the 

•co?e-\? and lower boundaries are coilimated: 

O < /Jot- I j o =£ 4 < 2 7T . (ig 

V ° ( x , , - M . 4 ) - s>°<$(/-/*•>)<<(*>-&) } 

j'lui- j extending a general procedure i n i t i a t ed by Airibarzumian0 and developed by 

Lnandrasekhar?, the solution of (37) subject in turn to the boundary condtion (yC) 

and each of the incident l ight ing conditions in (Ul), y ie lds two pair3 (FJ».,T_), (R;.> 

cf functions with the general proper t ies : 

- +-

M*(*n-At) = 0//<)LT-Czt}M;/'M,>t'OrS':*') o/y^o/4' 

+ 0///)( R + L*.-lS'i+i//,t4>t)N(2,l+/'',tt) dt/'c/*'. 
' • ' — ^ 

a. 

The functions 1L. and T_ are the diffuse reflectance and diffuse transmittance functi 

for radiance incident at the upper- boundary of the slab. A similar designation hole 

for R+ and T+. If the slab is homogeneous (or separable, i.e., a/c*>- is a const 

function) then the two pairs (R_,T_) and (R+,T+) are identical. However, in the eve 

of a general inhomogeneity, the pairs are distinct '. The functions R and T are clc 

akin to 0"~ • This is illustrated by ooserving that the volume scattering function 

has the property that 

d*<Z,/t,4>) = $_<ril-iM,<l"t/'W)M(*,/''f4>')o//s'ct4' 
) ^ 

-'Partial evidence for this may be found in the irradiance context (ref. 22). A pro 

that R_ f R+ in the case of isotropic scattering may be based on the results in R.Be 

and R. Kalaba, Proc. Nat. Acad, bci. Ij2, 629(1956). In lieu of a general direct pro 

the assertion^R_ = R+, T_ = T+,may be countered by the following example: consider t 

contiguous homogeneous slabs in which ^fO but a = 0 in one and o f 0 in the other. 



and tha t N*(z,i/,ai) i s the scat tered radiance generated per unit length in the 

di rect ion (u,cf>)» Hence '^•Hr(zJJs<f)/\u( i s the corresponding radiance generated \ 

unit depth in the s lab . If the above integrat ion i s carr ied out exp l i c i t l y ô  

~ ' +. and ~3L _ then: 

Since ~- +• and-IL . .differ only by a se t of H-measure zero, IJET4 may replace 3ST 

the second in t eg ra l . The s imi lar i ty between (U5) and ei ther one of (42) or (li 

goes deeper than, these superf icial appearances. For example, i f we define* 

(read upper signs together and lower signs toge ther ) : 

<T+(2 ;/,,£; u'^')- <rC2;±/*,*;-Z./JW) =• <TU-+ju ',4'• T//,4>) 
' (hi 

then the functions 0+ and o_ have the proper t ies 

(47) emphasizes the fact tha t R and T play the sane ro le for a slab of f i n i t e 

thickness as does the volume scat ter ing function for a slab of infinitesimal 

th ickness . Further r e l a t i ons between the functions R, T, and a+ , a_ may be 

exhibited, such as the d i f fe ren t i a l forms of the f i r s t four pr inc ip les of inva: 

iance, but these matters wi l l not be pursued here . 

(46) summarizes the following assumed property of the medium: ( i ) isotropy of 

sca t te r ing , i . e . , a ( z ; | r , | , 2 ) ° ^\h>'^) ^ I l ' | 2 3 j 3 # i U ' ° - z " zl> f r o m 

which follows, ( i i ) rec iproc i ty of sca t te r ing , i . e . , a(zi^Ji%2^ = a(zi~%2''~£l)' 

procity of re f lec t ion processes w i l l also be t a c i t l y assumed for r 0 , r^ (equa

t ion (82) ) . Clearly, of the two , isotropy i s the more r e s t r i c t i v e . Jrom (47) 

i t appears tha t a_ ac t s l i k e a ref lectance, cr+ l i k e a transmittance function*. 
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To derive the Schuster equations for the decomposed l i gh t f i e ld , we begin 

..-•"•th (37). The dori\-ition follows the procedure ont lined e a r l i e r for the 

*L.;*e. of th-, unde^orcnos.eci. ?.ight f i e ld . The on].-/ ne»ol lecture In the present 

•lwrivatjx i .'3 +h > in+rodusti-jr- of a ba t tery of coefficient functions for each 

of t i e tv,o oon;jonfcn-c.si of the membert; of the Analysis-. 

iH"*z, + )+K*Kz. + ) ,Hu(z,-)+H»(z,-)) • 

These ooca:.c:i >:.• ••, functions are defined by the general def in i t ions (16), (17) v 

ana are ^r.^ia.rx. .̂-. In VJ.l<i I , The resu l t of the derivat ion i s : 

(48) 

4- { ° ( z , i ) H 0 u ^ - f ) + b ° < 2 , + ) H 0 C ? , + ) . 

THE CLASSICAL EQUATIONS FOR THE TWO-FLOW ANALYSIS 

The classical equations associated with the two-flow Analysis as 

studied by Schuster, Silberstein, Ryde, Duntley, et cetera were in each study 

derived de novo for the case of the decomposed light field. The geometrical 

setting of the optical medium \*as the slab geometry; homogeneity was assumed. 

The boundaries were non-reflecting, the usual plan being that the equations 

were first solved for this case, and an interreflection study was to be taken 

into account subsequently if desired. The light field was generated by an 

incident radiance distribution at the upper boundary which was either uniform, 

collimated, or a combination of both. The diffuse component of the radiance 

distribution was invariably assumed to be uniform at all depths, thus : 

D*(z,*)» £ , 0 < z « Z]_. 
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Each coefficient function was therefore to be constant. Ryde gave the first 

detailed description of the coefficient functions, under the above incident 

and internal lighting conditions, and related them to the volume scattering 

function, but in a manner which neglected the general effect on the coeffi

cients of the angular structure of the inward and outward radiance distri

butions. In the extension of Ryde's work by Duntley, some of the conditions 

imposed on the coefficients by Ryde were relaxed, but the basic definitions 

remained unaltered. For the purposes of comparison, Table I exhibits the 

coefficient functions of the present work with those used by Ryde and 

Duntley. 

After applying the present definitions of the coefficient functions to 

the classical assumptions given above, we will compare some of the results 

with those found by the earlier methods. Of the incident lighting conditions 

discussed, the collimated radiance distribution is the most basic. 

Accordingly, we will assume that 

TABLE I Comparison of the general coefficient functions for reduced and 
diffuse flux with those occuring in the works of Ryde and Duntley. 

Undecomposed 
f l u x Reduced f l ux Diffuse f lux 

H( , + ) H°( , - ) I V *»( , + ) s H*( , - ) t 

<*.( , i ) 

b( , + ) 

f( ,±) 

s( , i ) 

D( , i ) 

* ° ( ,-) 

b°( , -) 

f°( , - ) 

s ( , - ) 

D°( , - ) 

AJ+B'+F' 

A-
B» 

pi 

S' 

•»<*( , + ) 

*•*( ,+) 

B-""( , + ) 

f*( ,+) 

s*( ,+) 

D*( ,+) 

/<+B+F 

B 

F 

S 

<=*>*( , - ) 

* * ( ,-) 

b*( , - ) 

f*( , - ) 

s*( , - ) 

B*( , - ) 

/*B+F 

A 
B 

F 

S 
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For the reduced comocner.t cf the l igh t f i e ld : 

I« f.-n-r-s fror. {!$) thr.t 

Further, from (16; 

and from (1?) 

For t he diffuse component of the l i gh t f i e ld , we have '.' . ' 

I __ 

— + © 

Similarly ' 

fa*(*,-> = fc^e/t) -Oft)Js<r- ( / " ) ^ ' ^ ' = f ' / " * ' = s < r - " 

from the general properties of the f and b functions, or directly from above, 

it follows that 
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R y d e ' s e c l u s i o n v;as tha t B + F = B'. + F ' , i . e . that S = S», a disagreement 

with tl.e present conclusion s* = 2/e0s°, which apparently a r i ses from different 

de:?m.U.i me of B aid b , F and f, According to the present formulations* 

there i s ,*>.grcfciiinnt when and only when /Jo = '/- i !•:".• v ' h o n &<,**&>'• ** 

9-, - G°%/Jc- 1 and s-"- « 2s° , a conclusion correct ly reached, for example, 

2'' 
by Hulbero. 

13 

In ihe ercLenuicn of Ryde's results, Duntley -'introduced a new 

constant ,/ ' which corresponds, according to Table I , toa*( , - ) • Under 

the present assumptions, it follows from (23) that 

a°(z,-) = (i/^,)a, }
 (5' 

and 

a*(z,«) * 2 a , (5' 

Duntley rightly concluded that^and^//' differ by virtue of the difference 

in angular structure of the reduced and diffuse radiance distributions. 

However the simple relation 

Q.* = 2/V*° <5 

between the two that existed by virtue of the assumed character 

of the light field was not given. If 0 o = 0°, then a* = 2a?, another observa 

21 
correctly made by Hulburt , The preceding relations are special examples of 

the general relations 

d*(z,+) - [i>*(z,+)/b0 («»+)] CL."(Z,+), (£ 

-d*(z»+) » [^(z,l)/D°(z,+)]A0(z,i). (6 
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The preceding discussion was concerned with radiance d i s t r ibu t ions of 

r e i t r i c - e d angular s t ructure and a voluae scat tering function of a rb i t r a ry anrju] 

s t ruc ture . Below we examine the consequences of reversing t h i j s i tua t ion : the 

angular &!/-.*sturo o*' the radiance d is t r ibu t ions wi l l be a rb i t r a ry and in fact 

•i"lo./ed to aSJI:'.!, ':'-;(; i r natural forms in a medium which exhibi ts isotropic scatt

ering. Then., by v i r t u s o.f the general def in i t ions , 

C - ( I / 4 T\ ) A, , 

and 

±CS,±) = i D ( 2 , t ) ^ , 

t <*,£)=• i » C z , ± ) ^ . 

Further, 

a cz , r ) = ocz, ± ) oo , 

so that in this case the burden of depth dependence is carried by the distribu

tion functions. Thus (26), the general equations for the undecomposed light fie! 

take the form: 

+ dHC£,t)/di - - i [ 2 ^ - f ^ ] 0 ^ , ± ) H C ? ; ± ) + ^ 0 ( 2 / + ) ^ l H < r z y + ) ^ i 

(67) 

Since D( ,+) and D( , - ) c l ea r ly depend upon the unknown structure of the 

radiance d i s t r i bu t ions , equation (67), as i t s t a id s , has unknown var iable coeff i

c i e n t s . If the usual assumption i s now made tha t D(z,+) and D(z,-) are known 

(62) 

(63) 

(610 

(65) 

(66) 
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constants (or tha t they vary in some r e l a t ive ly innocuous manner) then the precec 

in?; system i s solvable. By i n i t i a l l y decomposing the l i gh t f ie ld and allowing (<• 

to take i+b appropriate form, such assumptions invaria'BO.y lead to r e l a t i ve ly use1, 

approximate descript ions of the Analysis of the l igh t f i e ld , A recent paper by 

Kubelka" presents a pa i r of d i f fe ren t i a l equations whi';h are re la ted in structu-, 

to (67) (with h , -=n) . The derivation of the pa i r proceeded " in the usual manner 

by means of oon.'.crvatron argument s« 

I t i s of ir.te.-'(.;3T0 to obnerve that (67) i s j u s t two steps away from a steady 

s ta te diffusion equation for photons. By adding the members of (67) , the l e f t 

side becomes the divergence (V*H) of the_light f i e l d . Assuming for the moment i 

Pick 's law ofi diffusion i s vaL id for photons, 

£(*) = -ccz) vhu) , 

where C is a diffusion function, (67) leads to 

V ( C < 2 ) v h ( 2 ) ) ^ a.hc-2) - hy -

If C i s a constant , the more familiar form involving C V * ( l I s obtained. 

By decomposing the l ight f i e l d , a pai r of ^ equations in h° and h i s 

obtained. The equation involving h° i s readi ly solved. Under the isotropic sea 

assumption, i t may be shown that F ick ' s law holds r igorously for the diffuse comj 

of t h e l i g h t f i e ld , so tha t in t h i s case an exact diffusion theory discussion of 

the litfht f i e ld i s poss ib le . 
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THE TWO-D THEORY 

The chain of successive generalizations of th- two-flow theory from 

Schuster's original work in 1905 to Duntley"s work in 1942 increased the 

number of optical constants used in the theory from two LO six. Atide from 

certain acr.dw.dc sophistications to which the classical two-flow theory can 

be subjected (e.g., extension to the transient case, to more general geometries 

to n flows, and to the inclusion of arbitrary emission functions) there remains 

one final extension of some practical importance, namely the endowment of each 

of the two flows with a distinct geometrical structure. That is, the inward 

and the outward radiance distributions are assigned arbitrary but fixed shapes. 

Equivalents, to each member of the Analysis is assigned an arbitrary but 

fixed distribution factor. 

This extension was made some time ago30 but the result remained only as an 

idle curiosity of academic interest. However, scne recent experimental work28 

on the measurement of radiance distributions in natural hydrosols has supplied 

some evidence in favor of the two-D hypothesis. This evidence is summarized in 

Table II. In the course of the experimental work, radiance distributions were 

measured from the surface down to depths of about 200 feet. The medium was 

found to be homogeneous in this depth interval. Further, the measurements were 

taken under a variety of incident radiance distributions varying from sunny to 

completely overcast skies. The presently available data was kindly put at the 

disposal of the author by J. E. Tyler and his staff prior to their publication 

of the experimental results. 

°R. W. Preisendorfer, Lectures on Radioaetrv and Geophysical Optics, unpublishe 

lecture notes (Visibility Laboratory, Scripps Institution of Oceanography, Fall, 

1954). 

http://acr.dw.dc
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Table II Experimentally determined Distribution Functions 

Clear Sunny Sky Completely Overcast Sky 

i 

Depth z, ft. j i-("J + '
1 D(z,-) Depth z, ft D(z,+) D(z,-) 

13 

33 

53 

93 

133 

173 

2,67 

2.70 

?.79 

2.76 

2.78 

2.77 

1.25 

1.26 

1.28 

1.31 

1.31 

1.30 

10 

Uo 

80 

120 

160 

2.75 

2.82 

2.85 

2.93 

2.86 

1.22 

1.32 

1.31 

1.33 

1.33 

Before embarking on the details of the two-D theory, it should be noted that 

a slight additional generalization can be incorporated in the present extension if 

one assumes that the medium is inhomogeneous in such a way that ex. and CT vary in t 

same manner with depth, so that s/<=<• is a constant function. Such a generalizat 

is inessential to the structure of the resulting equations since the equations arc 

immediately reducible to the homogeneous case, for example, by a transformation fi 

geometrical depth z to optical depth T — /<*.(?') d% ' . On the other haid, tl 
o 

assumption of a general type of inhomogeneity introduces essential modifications 

which vitiate the customary utility of the Schuster equations arising', .. from 

the presence of constant coefficient functions. For these reasons the medium is 

assumed homogeneous at the outset with oc and <J~ otherwise arbitrary. 

Basic Properties 

IVe begin by agreeing t h a t , ( i ) the incident radiance d i s t r ibu t ion at the 

upper boundary i s of t he form: /V°fo, ~/Jt 4>) = A/° £(/i-^c ) Sc4 - 4>0) 0*//0~ 

O <i <f>0 < 2Ty ( i i ) //<££ + t ) = o , ( i i i ) the upper and lower boundaries are 
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non re f lec t ing , (iv) i-In( , , ) s O , (v) D*(z,±) =D*(±), two generally different 

constants,, If the response of the medium to a collimated incident radiance d i s 

t ion can be determined, the response of the medium to an a rb i t ra ry incident rad: 

d i s t r ibu t ion i s readi ly synthesized from the r e s u l t s developed below. 

The r e q u i s i t e equations for t h e two-flow Analysis follow from (48), (50), 

a-nd (51); 

(7C 

where, in view of the homogeneity assumption, the depth dependence of the coeff 

functions has been dropped from the notation. 

The general solution of the system (70) is readily obtained and may be 

expressed in the form 

where m+ and m_ are two constants (for given/Z^and ẑ_) which are determined 

by using the boundary conditions (v»hich follow from (40)): 

< 7 2 ) 

H*(o,-) = H*(Z,,+) = o , 

I t follows that 

ill 
where 

* * * _ P ^ / - ) o f4.\^-F <7u; A(2,)= <$+(+) 3.(-)e«^£ - ^ ( - ; ^ c + ) e ^ 
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and where _, 

"* ~ (75) 

The two constants jL -t , &- are obtained during the solution procedure 

and are defined by 

-^Vi^Mj^j. (76) 

These constants have the property that 

j> 

Finally, 

The above expressions reduce readily to those of the one-D theory by 

assuming D*( + ) = D*(-) = 2. It follows that cd*"(+)= cift~)=2^ h^ti-)-j^(-)-Xr-

so that £+^ '&- "lULbi.+tfS JJ'^^y . Furtherj+(+)= j-f-)s /WW^f^".^-/-^, 

Under these conditions, and setting /^ •= / , (71) reduces to the equations 

originally considered by Ryde if in addition the identifications ,<a/*'"= ̂ u'; 

(kJ^ •= <2..° are made. 

Diffuse Reflectance and Transmittance Functions 

The diffuse reflectance and transmittance functions nfat'P- ) sn<^ 

I (i • A0 J for irradiance are defined by the relations 

/*'/? (£,;/-. ) = //%, <-1 (78) 

/VT^/,),^-). (79) 



Using (71), these functions are readily found: 

f Ĉ A. -t-)l(A(a)/& fe,))e—'**/*< - i]j 

Tf^^.^Cfawr)3i-l-)rh[e?-i*'-e*'-i']M ti,) + 



To see R(2iji',hndTt£.)//j) in their proper perspective, it is instructive to retv 

to the exact solutions of the standard problem as given in (42), (43). Under the 

present assumptions, 

A*V^-f//>; = L\I/J)N°&(Z,;/J.4> )/>ot 40) ? 

,V* (x,l-/',4) - (i///l A/" T&,;jJ,4 i//*,^} . 

Since 

we have from the exact theory 

In the exact theory one may make the definitions 

R(2t;/'e\ SL f_ Zcz, 1/J, 4*/da, to) Q/^O/4 9 

T(2i) / / - / S / ^ f 7Y2/ ; / / , J * ; / ' - / ?V * W ^ „ 

Hence if the two-D hypothesis were to hold exactly, then the la t ter functions wo:. 

be identical with those introduced in (78) and (79). In any event, the diffuse 

reflectance and transmittance functions introduced in (78) and (79) have the 

properties that , for an arbitrary incident radiance distribution, 

H*(o,+) = J^ R(in/i)hl9(o,-/'t*>> o W * * 7 

The similarity of the R and T functions of the two-D theory with those of the ex; 

theory i s strengthened by noting that 
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Tie above se ts of simultaneous equations are statements in the exact theory, 

are jus t as d i f f i cu l t to solve as t h e general equation of t ransfer i t s e l f , iiovrevr 

they have been de l ibera te ly formulated so that their appearance i s that of a set c 

csrmultaneous l inear algebraic eouations with the irradiate es as unknowns, and if i 

are to be sol", ed ?s such, the various coeff ic ients R*, T*, rg , and r£ must be assi 

known. Time, tV- para l le l with the general two-flow equations for the Anal/sis it 

complete: in order t o solve the above se ts of equations as algeoraic equations, i 

follows from (83)-(86) that some assumption must oe made aftout the angular structv 

of the diffuse radiance d is t r ibut ions .and the ref lected r a d i nee d i s t r iou t ions a t 

the boundaries. As far as the diffuse radiance d i s t r ibu t ions are concerned, one 

may adopt a one-D or a two-D theory} and for the r e f l ec t ed radiance d i s t r i bu t ions , 

matte or specular re f lec t ing cha rac te r i s t i c s of the ooundaries are the customary 

concessions to complexity. If the one-D and epocular assumptions are made, (88) 

wil l y ie ld , upon solut ion, the correct forms of the transmittals e and reflectance 

of the slab with ref lec t ing boundarie s which v a i l reduce to the c l a s s i ca l r e s u l t s 
12 

of ityde • , for example,after adopting the appropriate assumptions made ii 

each case . Though we shal l not do so here, i t would be of in te res t to apply the 

two-.u theory to the systems (88) and (89) to complete the generalizat ions ber-un 

in the preceding sect ion. 

GENERALIZED SCHUSTER ANALYSIS 

We now indicate br ie f ly the generalization of the c l a s s i ca l two-flow Analysis-

to geometries other than the slab geometry, and then f ina l ly th3 two-flow Analysis 

i s generalized, in the s p i r i t of the preceding sect ions, to n-flows. 

Fig. 2 
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Let A now be an a rb i t r a ry suoset of Euclidean three space, x » (x-j_,x2,Xo) a 

point of X, and _=_ the co l lec t ion of a l l unit vectors in £3. In the slab geomet 

t he vector Jk was used to p a r t i t i o n H" into 3T+ and S"_. In the present case , 

se lect a t each :•;: J. fixed unit vector n(x) , or n for short . Then a t x. p a r t i t i o n 

-=1 into ^T+rr,) .= > J,' f 5 • 0 & 0 } and ;=:_ (n ) = ( j ; 1 . n<oUFigure 2 ( a ) ) . In analo 

to H(x , t ) , define 

JH<2.±f l .O-L XNte.s.-OcUnn <» 

then 

(9 

similarly, define 

A corresponding definition exists for ĥ (2f trt.A). Holding £ fixed, (7) is now 

integrated overZ"+(fl) andH"_(£ )̂ vhich supplies the general analogy to (26): 

r <; 

The £'s and b's are defined as in (16) and (17), the integrations now being taken 

ET4(£)and;r_(£). The definition ofD^.^.f^parallels that in (15). If X is re 

presented by spherical, cylindrical, or generally some curvilinear coordinate sy6t 
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the divergences V - H ( ^ , t £ i) take t he i r charac te r i s t ic form in tha t system 

The divergences reduce to the familiar der ivat ives in the slab geometry. For t h 

^eneralizea Schuster analysis to be nost effect ive, one must choose the coordina 

system in such 3. v. ry tha t the members of the Analysis are constant over each sur. 

of some space-f i l l ing one-parameter family of surfaces ( e . ^ . , spheres, cyl inders 

p lare^ , e t c . ) . 

The general n-flow equations are obtained by par t i t ion ing ~=I into n mutual 

exclusive suusets whose union i s 3 1 (Figure 2 (b ) ) . AS before, l e t n£x) oe somi 

chosen uni t vector at x . Then with respect to n, p a r t i t i o n 1=1 into n subsets 

"ST-p j = l > " « > n , in some well-dci'ined manner ( e . g . , in the slab geometry, l e t th. 

p a r t i t i o n be n equiangular concentric zones about n * k; if n = 2, the usual pan 

t ion i s obtained). Define 

along with 

!£ • , £ ! j <* .&.*>/ ~ H j C ^ . n ^ ) ^ (95) 

which i s the irradiance a t time t on a uni t area at £ , normal to jn induced by the 

radiant flux in the d i rec t ions ~E: ^ . (H]_, H2* . . . ,Hn) i s the n-flow Schuster 

Analysis of the l ight f i e ld , 05 n-flow Analysis, for short . Further, set 

(96) 

ield, 05 n-flow Analysis, for short . Further, 

with \)n :t£,£ "tj defined analogously, and agree t o define the j t h d i s t r ibu t ion 
* J 

factor by 



Finally, the general counterparts to (16) and (17) must be of the form 

3. 

a 

Aj- {> ••' J O ; / l •= I . . . , n . . 

•Hudc^.:, u . . , and s_. are define.! analogously to (22), (23), and (24) , Than holding 

^ fixed, in tegrate (7) over 3C via tne n p a r t i t i o n s . ..ith t he above def in i t ions , 

the r e s u l t i s reduciule to 

V-JJi + C ' / r l ^ D i M j J p i - - ^ - H , . + ^ f c a l ^ 3 > H * + f7^3 <*' 

Despite the generali ty of the p a r t i t i o n i t i s s t i l l possible to define "forward" am 

"backward" scat ter ing functions f. and b . by adopting the following device: l e t 

f j * s j j> ^ o r J c •*•* ••• >ni a n d i f ZLy^j.' denotes summation over a l l k from 1 

to n excluding j , then l e t b^ = ^^.sky Consequently, f, + bj = s^ - DjS. Final, 

set b j k a a for j / k. Then (99) becomes 

which es tabl ishes the final general izat ion. By l e t t i n g n -> oo such that 

maxjXlOljJj j'=l,... ;nJ->0, (lCO> re turns to the equation of t ransfer ( 7 ) , and the 

c irc le i s complete. 
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CAPTIONS 

Figure 1. I l l u s t r a t i n g the slab geometry, k denotes the batic outward d i rec t 

~&! t h e o a s i c inward d i r ec t ion . The z-coordinate increases as one progresses 

into the medium from the upper boundary (the x-y p lane) . The or igin i s a t 0 

H; denotes the sphere of unit d i rect ions about the point x. 

Figure 2. (a) I l l u s t r a t i n g the p a r t i t i o n of the unit sphere as used in the 

derivation of the two-flow equations for an a rb i t ary coordinate system. 

(b) I l l u s t r a t ing the p a r t i t i o n of the unit sphere as used in the 

derivat ion of the n-flow equations. 
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Figure 1. Rudolph W. Freisendorfer 
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Figure 2. Rudolph IN. Preisendorfer 




