UC San Diego

SIO Reference

Title

Unified irradiance equations

Permalink

https://escholarship.org/uc/item/5v2643pr

Author

Preisendorfer, Rudolph W

Publication Date

1957-08-22

Visibility Laboratory
 University of California Scrips Institution of Oceanography San Diego 52, California

UNIFIED IRRADIANCE EQUATIONS

R. W. Preisendorfer

22 August 1957
Index Number NS 714-100

Bureau of Ships
Contract NObs-72092

SIO REFERENCE 58-43

Moper Oluvelle
Roger Revelle, Director
Strips Institution of Oceanography

Unified Irradiance iqquations ${ }^{\dagger}$

by Rudolph W. Preisendorfer

Scripps Institution of Ocearography, University of California, La Jolla, Californi:

ABSTRACT

The necessary structure of the coefficient functions occurring in the schuste equations is found in order that they be consistent with the scattering functions of general radiative transfer theory. The general procecure followed yields a bas for the unification of the manifold forms of the equations used in practice and provides an objective means for their evaluation. iNecessary and sufficient condit are given in order that the schuster equations be exact. In illustration of the theory, an extension, vased on recent experimental evidence, is made of the classi equations to the case of two flows whose radiance distrivutions have distinct angl structure. Finally, the n-flow non steady state Schuster equations are rigorausly derived from the equation of transfer for an arbitrary optical medium with sau ree:

[^0]
INTROUCTION

Our purpose is to derive the Schuster ecmations for irradiance from the equation of transfor for radiance with particular emphasis on the resultin radiometric structure of the coefficient functions in the equations and on their relations to the scattering functions of general radiative transfer theory. This procedure provides an objective means of evaluation of the various forms of the Schuster equations that have been used in practiea and affords a means of their unification under one general form,

The principal results are:an exact delineation of the intrinsic structure of the Schuster equations; the necessary and sufficient conditions under which they become exact differential equations with known constant coefficients; a generalization of the classical two-flow equations, based on recent experiment evidence, such that each flow has its om distinctive fixed geometrical structur and finally, a generalization of the Schuster equations to arbitrary geometries and arbitrary numbers of flows:

It is generally agreed that the history of the Schuster equations begins with the classical paper by Schuster ${ }^{1}$. The differential equations derived dealt with a pair of irradiance functions representing two antiparallel flows of radiant energy in a steller atmosphere. In the hands of Schwarzschild ${ }^{2}$, King ${ }^{3}$,
$I_{\text {A. Schuster, Astrophys. J. 21, } 1 \text { (1905). }}$
2K. Schwarzschild, Nachr. Akad. Fiss, Göttingen, Math.-physik.KI. 4I(1906). 3L. V. King, Trans. Ro.y. Soc. (London) A212, 375 (1913).
and Wilne ${ }^{4}$, Schuster's aprourh was developer into a relativoly more compleie description of the light field by means of the countion of transfer for radiance (specific intensity). Under Hopf ${ }^{5}$, Amberzumian ${ }^{6}$, and Chandrasekha:: ${ }^{7}$. the mathematical problems of radiative transfer were subsequently cryatallize ${ }^{\text {. }}$. into forms generally used today, such as general integral equation approaches along with the principles of invariance.

On the other hand, there followed from Schuster's work another chain of studies which dwelled almost exclusively on his original pair of equations for irradiance, reshaping them, successively generalizing them, and applying them to all manners of optical media from paint and paper to the atmosphere and the sea. The industrial researchers and the geophysicists took alternata turns in the formulations and applications, the results being typified by the papers of Channon, Renwick and Storr ${ }^{8}$, Mecke ${ }^{9}$, Dietzius ${ }^{10}$, Silborstein ${ }^{11}$, Ryde ${ }^{12}$, and
${ }^{4}$ E. A. Kilne, "Thermodynamics of the Stars," Handbuch der Astronhysik (Springer,
Berlin, 1930), Vol.3, Chap.2.
5E. Honf, Mathematical Problems of Radiative Equilibrium (Cambridge Tracts in Math. and Math. Physics. No. 31, University Press, Cambridge, 1934).
GV. A. Ambarzumian, Compt. rend. (Doklady) Acad. Sci. U.R.S.S. 38, 229 (1943).
7S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).
${ }^{8}$ H. J. Channon, F. F. Renwick and B. V. Storr, Proc. Roy. Soc. (London)A94, 222(191;
9R. Mecke, Ann. Physik. 65, 257(1921).
1^{10}. Diet'zius Beitr. Phys. freien Atm. 10, 202(1922).
${ }^{11}$ L. Silberstein, Phil. Nag. 4, 129(1927).
12J. W. Ryde, Proc. Roy. Soc. (London) Al31, 451(1931).

Wintley ${ }^{\text {J3. }}$. Concurrently wertiin Russian authose motably Gurevic ${ }^{14}$, Boldyrev ${ }^{1.5}$, Fershun ${ }^{16}$, and Alexandrovi7, made lasting contributiong to the Schuster theory. I're latter papers are curious mixtures of the archaic forms of the equation: during that period along with some brilliant innovations which only much late: came into widespread use.

With the formulation of neutron diffusion problems there arose a certain amount of mutually profitable cross-fertilization of techniques between the neutron diffusion and radiative transfer theories which stems principally from the papers of Wick ${ }^{18}$, and Chandrasekhar ${ }^{19}$. In these papers the Schuster equatior were extended to handle n-flows with particular emphasis on the form of the coefficients most suitable to numerical analysis. Some relatively recent works based on or related to the Schuster theory are contained in the papers of Whitney

13 S. Q. Duntley, J. Opt. Soc. Am. 32, 61 (1942).
$\mathbf{1 M}_{4}$. M. Gurevic, Trans. Opt. Inst. Leningrad. 6, No. 57, 1 (1931).
${ }^{15} \mathrm{~N}$. Boldyrev, Trans Opt. Inst. Leningrad, 6, No. 59, I(1931).
16A. Gershun, Trans. Opt. Inst. Leningrad. 11, No. 99, 43(1936).
1711. Boldyrev and A. Alexandrov, Trans. Opt. Inst. Leningrad. 11, No. 99, 56(1931). 18, C. Wick, Z. Physik, 121, 702(1943).
19S. Chandrasekhar, Astrophys. J. 100, 76(1944).
20L. V. !!hitney, J. Opt. Soc Am. 31, 714(1941).

Hulburt ${ }^{21}$, Kubelka ${ }^{22}$, Middleton ${ }^{23}$, and a report by Sliepcevitch ${ }^{24}$. A fairly exhaustive bibliography of the Schuster theory may be compiled from the references in the preceding papers.

In view of this immense array of works on the Schuster equations, it may be felt that relatively little more of importance can be said about thern. Perhaps as far as their practical ramifications are concerned this is true. Further, by being instrumental in the introduction of modem mathematical techniques into the disciplines of radiative transfer and neutron diffusion theory, it appears that the Schuster equations as ground-breaking theoretical tools may now be respectfully laid to rest. Despite these facts, the Schuster equations persistently reappear along with an occasional novel twist, and continue to remain to this day as a rough and ready tool of great practical interest. Thus the continuing use (and abuse) of the Schuster equations appears to justify a study of their intrinsic structure and the development of a means of unifying the various forms they have taken in the past, principally in the studies the industrial researchers and the geophysicists.
${ }^{21}$ E. O. Hulburt, J. Opt. Soc. Am. 33, 42, (1943).
22 P. Kubelka, J. Opt. Soc. Am. 38, 448, (1948); 44, 330, (1954).
23 W. E. K. Middleton, J. Opt. Soc. Am. 44, 793, (1954).
24 C. M. Sliepcevitch and others. Confidential report (Army Chem. Corps, Contract No. DA18-108-CPLL-4695. AFSWP-749, ERI-2089-2-F. Eng. Res. Inst. Univ, of Mich., Ann Arbor, Michigan, (1954).

TWO-FLOW ANALYSIS FOR THE SLAB GEOMETKY

\therefore Slab of depth z_{1} is a subset X of Euclidean three space E_{3} defined as the set of all points between and including two planes parallel to the $x-y$ plane and separated a distance z_{1}. Using the usual vector notation for , E_{3}, (Fig, I.), a point in E_{3} is denoted by a vector $x=(x, y, z)$, and for the present discussion X may be defined as $X=\{x: 0 \leq z \leq Z$,$\} .$ The plane $z=0$ is the upper boundary of X, and the plane $z=z_{1}$ is the lower boundary of X. Let \equiv denote the collection of all unit vectors ξ in E_{3}. The rediance at time t at x into the direction ξ is denoted by $N(x, \underset{M}{F}$, $t)$. The function N and all the other functions introduced below refer to a given fixed wavelength of radiant flux. The light ficld in X is the vector-valued function H derined at each point x of X by:

$$
\begin{equation*}
H(x, t)=\int_{\equiv} \xi N(x, \xi, t) d \Omega(\xi) . \tag{1}
\end{equation*}
$$

$\underset{\sim}{H}(x, t)$ is tho voctor irradiance at x at the time t. The scalar irradiance $h(x, t)$ is defined by

$$
\begin{equation*}
h_{1}(x, t)=\int=N\left(x, \xi_{N}, t\right) d \Omega(\xi) \tag{2}
\end{equation*}
$$

Ω is the solid angle measure on $\equiv\left(d / \Omega=\sin \theta d \theta d \phi=-d \mu d \phi_{3} \mu=c 0.5 \theta\right)$. The radiance distribution at x and t is a function on obtained from the radianco function N by fixing $\underset{\sim}{x}$ and t, and is denoted by $N(x, \cdot t)$. Let n bo a unit vector, then the radiance distribution $N(x, \cdot t)$ gives rise to an irradiance $H(x, n, t)$ on a unit area normal to n :

$$
H(x, \prime, t)=\int_{\mu, n} \sum_{\substack{ \\\xi \cdot n}} N(x, \xi, t) d \Omega(\xi)
$$

$H(x, n, t)$ is the radiant $I l u x$ at time t across a unit area at x in the direction n. $\underset{m}{ } \underset{m}{(x, t)}$ has the following property:

$$
n \cdot H(x, t)=H(x, n, t)-H(x,-n, t)
$$

The structure of the radiance function is governed by the equation of
transfer:

$$
\begin{aligned}
& {\left[n^{2}(x, t) / v(x, t)\right] \|\left[N\left(x,{\underset{w}{w}}^{\xi}, t\right) / n^{2}(x, t)\right] / D t=}-\alpha(x, t) N(x, \xi, t \\
&+N_{-}(x, \xi, t) \\
&+N_{\eta}(5) \\
&x, \xi, t)
\end{aligned}
$$

Where n is the index of refraction function, v is the velocity of light
function, α is the volume attenuation function, and f $_{H}$ the path function defined by

$$
\begin{equation*}
N_{k}(\underset{\sim}{x}, \underset{w}{\xi}, t)=\int_{\equiv} \sigma(\underset{\sim}{x} ; \underset{\sim}{\xi}, \underset{w}{\xi}, t) N\left(\underset{w}{ },{\underset{w}{w}}_{\prime}^{\prime}, t\right) d \Omega\left({\underset{w}{\prime}}^{\underline{\xi}}\right) \tag{6}
\end{equation*}
$$

where σ is the volume scattering function. Finally, N_{f} is the emission
function. The following discussion will require that n bo constant on X and independent of t. In this case (5) reduces to:

$$
\begin{align*}
& \xi \cdot \underset{\sim}{j} \cdot \nabla N(\underset{\sim}{x}, \underset{\sim}{\xi}, t)+(1 / v) \partial N(\underset{\sim}{x}, \underset{\sim}{\xi}, t) / \partial t=-\infty(\underset{\sim}{x}, t) N(\underset{\sim}{r}, \underline{\xi}, t) \tag{7}\\
& +N_{\text {*k }}(x, E, t) \\
& \text { where: } \\
& +N_{\eta}(\mathfrak{x}, \xi, t) \text {, } \\
& \nabla=\underset{\sim}{i} \partial / \partial x+\underset{w}{j} \partial / \partial y-\underset{m}{k} \partial / \partial z .
\end{align*}
$$

While ior a ereat pere oitho present discussion tit is not actually acessary to do so, we shall in the interests of brevity mike the customant assumption that X is stratinied, wich means that. N, α, σ (Hence N_{H}) and in ${ }^{\prime}$, depenc spatially only or Z "has (7) reduces to the relatively n wilsar form:

$$
\begin{align*}
& -\mu d \mu(z, \mu, \phi, t) / d z+(1 / v) \partial N i, j, u, \phi, t) / \partial t= \tag{5}\\
& \cdots \cdots \alpha(z, \dot{c}) N(z, \mu, \phi, t)+N_{*}(z, \mu, \phi, t)+N_{\eta}(z, \mu, \phi, t),
\end{align*}
$$

here x has been rellaced by z, and $\underset{w}{5}$ by the pair $(\mu, \phi), \mu=\cos \theta$. rig. 1

The folloring definitions are necessary prerequisites to the derivation if the general Schuster equations. First, the collection of all outvard directions is defined as $\mathcal{F}_{+}=\{\xi: \xi \cdot k \geqslant 0\}$, and the collection of all invard directions is defined as $\overline{=}=\left\{\underset{\sim}{\xi}: \underset{\sim}{\xi} \cdot \hat{k}_{2}<0\right\}$, An outward radiance distribution is the restriction of a radiance distribution to the collection of outward directions and is denoted by $N(z,+, \quad t)$, so that $H(z,+\mu, \phi, t)$ is an outwawi radiance, $0 \leqslant \mu \leqslant 1,0 \leqslant \phi<2 \pi$. An invard radiance distribution is defined analogously and is denoted by $N(z,-,, t)$, so that $N(z,-\mu, \phi, t)$ is an invard padiance, $0<\mu \leqslant 1,0 \leqslant \phi<2 \pi$. Irradiances associated with the special direction k play a central role in the sequel. From (3) with now $n=k$, definc:

$$
\begin{equation*}
H(z,+, t) \equiv H\left(z, R_{i}, t\right), \quad H(z,-, t) \equiv H\left(z,-R_{i}, t\right) \tag{9}
\end{equation*}
$$

These irradiances are induced by the outward and invard radiance distributions at z, at time t. The pair of functions $(H(,+, t), H(,-, t)$) is called the

Kowilu Schuster Analysis gi the light fielct or Analysis for short，The ijg t^{t} field is analyzed by this pair of functions in the sense of（4）：

$$
\begin{equation*}
k \cdot H(z, t)=H(z, t, t)-H(z,-, t) \text {. } \tag{10}
\end{equation*}
$$

ille cutward and inward radiance distributions also give rise to two scain r irradiances：

$$
\begin{align*}
& h(z,+, t)=\int_{E} N(z, \mu, \phi, t) d \mu d \phi \tag{11}\\
& h(z,-, t)=\int_{E_{-}} N(z, \mu, \phi, t) d \mu d \phi \tag{13}
\end{align*}
$$

If．N is replaced by N_{η} in（17）and（12），we have $h_{\eta}(,+, t)$ and $h_{\eta}(,-, t)$ in analogy to the functions $h(,+, t)$ and $h(,-, t)$ ．

Derivation of the Equations for the Analysis

The derivation of the equations for the Analysis proceeds as follows： holding z fixed，（ 3 ）is integrated over $\overline{=}$ in two steps ：once over $\overline{=}$ once over $=$－．The resulting pair of equations is a conglomeration of irradiance，scalar irradiance，and radiance functions．The immediate goal is to arrive at a pair of equations explicitly involving only the members of the Analysis．An attempt to reach this goal supplies the motivation for the introm duction of the so－called forvard and backward scattering functions f and b and the important distribution function $D_{\text {。 }}$

Holding z fixed，integrate（8）over $三+:$

$$
\begin{align*}
\sim d H(z,+, t) / d z+(1 / v) \partial h(z, t, t) / \partial t= & -\alpha(z, t) h(z,+, t) \tag{13}\\
& +\int_{三_{+}} N_{*}(z, \mu, \phi, t) d \mu d \phi \\
& +h_{\eta}(z,-, t)
\end{align*}
$$

anis then over \equiv - :

$$
\begin{aligned}
d H(z,-, t) / d z+(1 / v) \partial h(z,-, t) / \partial t & =-\alpha(z, t) h(z,-, t) \\
& +\int_{\equiv-} N_{*}(z, \mu, \phi, t) d \mu d \phi,(i,) \\
& +h_{\eta}(z,-, t)
\end{aligned}
$$

Ie:jnitions:

$$
D(z, \pm, t)=h(z, \pm, t) / H\left(z_{i} \pm, t\right)
$$

$D(,+, t)$ is the distribution function for the outward radiance distribution, $D(,-, t)$ is defined similarly.

$$
\begin{aligned}
& \text { Definitions: } \\
& f(z, \pm, t)=\frac{1}{H(z, \pm, t)} \int_{ \pm \pm}\left[\int_{\Xi_{ \pm}} \sigma\left(z ; \mu^{\prime}, \phi ; \mu^{\prime}, \phi^{\prime}, t\right) N\left(z, \mu^{\prime}, \phi^{\prime}, t^{\prime}\right) d \mu^{\prime} d \phi^{\prime}\right] \\
& b(z, \pm, t)=\frac{1}{H(z, \pm, t)} \int_{ \pm}\left[\int_{\Xi \pm}^{ \pm} \sigma\left(z_{i} \mu, \phi ; \mu^{\prime}, \phi^{\prime}, t\right) N\left(z_{1} \mu^{\prime} ; \phi^{\prime}, t\right) d \mu^{\prime}\left(17 \phi^{\prime}\right]\right.
\end{aligned}
$$

$f(, \pm, t)$ and $b(, \pm, t)$ are the forward and backward scattering functions of the Analysis. Each member of the Analysis has associated with it an f and $a b$ function. By observing that the integral for N_{*} can be written as the sum of two integrals: one over $\equiv+$ and the other over $\equiv-$, (13) and (14) can be writi in the required forms:

$$
\begin{align*}
\mp & d H(z, \pm, t) / d z+(1 / v) \partial[O(z, \pm, t) H(z, \pm, t)] / \partial t= \tag{18}\\
= & -D(z, \pm, t) \alpha(z, t) H(z, \pm, t)+f(z, \pm, t) H(z, \pm, t)+ \\
& +b(z, \mp, t) H(z, \mp, t)+h_{\eta}(z, \pm, t) .
\end{align*}
$$

(18) is the sought-for general pair of equations for the Analysis of the light, field.

The transient sase has been carried alone up to this point to show the senerality of the present mode of derivation. With regard to the purposes of this paper, horever, no essential loss of generality will be engendered if thi steady staie form of (18) is consilered instead:

$$
\begin{align*}
\mp d H(z, \pm) / d z= & -D(\ddot{z}, \pm) \propto(z) H(z, \pm)+f(z, \pm) H(z, \pm) \\
& +b(z, \mp) H(z, \mp)+h_{7}(z, \pm)
\end{align*}
$$

Some Properties of the Coefficient Functions

From this point on, the main purpose of the discussion will be to relate (19) by successive stages to the classical Schuster equations with special emphasis on the structure of the coefficient functions. The first term of (19) suggests the

Definitions:

$$
\begin{equation*}
\alpha(z, \pm)=D(z, \pm) \alpha(z) \tag{20}
\end{equation*}
$$

Now the total (volume) scattering function s is defined as:

$$
\begin{equation*}
\alpha(z)=\int_{\equiv} \sigma\left(z_{i} \mu^{\prime}, \phi^{\prime} ; \mu, \phi\right) d \mu d \phi, \tag{21}
\end{equation*}
$$

and if adenotes the volume absorption function, we have from general radiative transfer theory the relation:

$$
\begin{equation*}
\alpha(z)=a(z)+\mu(z) \tag{22}
\end{equation*}
$$

In analogy to (20) we make the
Definitions:

$$
\begin{align*}
& a(z, \pm)=D(z, \pm) a(z) \tag{23}\\
& A(z, \pm)=D(z, \pm) s(z) \tag{24}
\end{align*}
$$

From (16) and (17) it follows that

$$
f(\bar{z}, \pm)+b(z, \pm)=D(z, \pm) \mu(z)=1(z, \pm), \quad, 25)
$$

and (7.9) may then be written

$$
\mp d H(Z, \pm) / d Z=-[a(Z, \pm)+b(Z, \pm)] H(Z, \pm)+b(Z, \mp) H(Z, \mp)+1
$$

In certain contexts, notably in hydrological and meteorological optics, it is useful to introduce into the equation of transfer the equilibrium radiance N_{q} defined as:

$$
\begin{equation*}
N_{q}(x, \xi, t)=N_{x}(x, \underset{w}{\xi}, t) / \alpha(x, t), \tag{27}
\end{equation*}
$$

and which is analogous to the source function used in astrophysics. Thus (8) may be written:

$$
\begin{equation*}
-\mu d N / d Z \Rightarrow \alpha\left(N_{q}-N\right)+N_{\eta} \tag{28}
\end{equation*}
$$

In the absence of any emissive sources $\left(N_{\eta} \equiv 0\right)$ in X, N_{q} serves as a criterion for the test of whether \mathbb{N} is locally increasing or decreasing along a path of length r. For if $N_{q}>N$, then $d N / d r>0(d z=-\mu \mathrm{dr})$ and if $N_{q}<N$, then $\mathrm{dN} / \mathrm{dr}<0$. This points up the meaning of the term equilibrium radiance. In a similar manner the notion of equilibrium irradiance H_{a} can be associated with each member of the Analysis:

$$
\begin{equation*}
H_{q}(z, \pm)=\frac{b(z, \mp) H(z, \mp)}{[a(z, \pm)+b(z, \pm)]} \tag{29}
\end{equation*}
$$

so that in analogy to (28), (26) may be written:

$$
\mp d H(z, \pm) / d z=[a(z, \pm)+b(z, \pm)]\left[H_{i}(z, \pm)-H(z, \pm)\right]+h_{\eta}(z)(30)
$$

and in a similar way we have a criterion for the local increase or decrease wi.th depth of each member of the Analysis.

The similarity in structure betiveen the equation of transfer (29) and the equations (30) of the Analysis only begins to lay bare the deeper lyin; connections which must naturally exist between the two. Even at this stage of the exposition, it is perhaps evident that the study of these connections is most profitably pursued by riveting attention on the comparatively little studied coefficient functions a, f, b, et cetera of the Analysis.

In previous studies of the system (26) the main object was, of course, to solve it and apply the results to problems of immediate interest in the particular field concerned. To attain this end the system (26), or some minor variant, was considered as a pair of differential equations with constant, coefficients a, f, b, and h_{η} was assumed known or absent. As to the constancy of these coefficient functions, what conditions are necessary and sufficient that this be true? Is the requirement that σ be independent of z sufficient? Eren without the help of the definitions (16) and (17) the negative answer would perhaps be easily and correctly reached. But with their help it is at once clear that a sufficient condition that the forward and backward scatter: functions be independent of depth is that both σ and the radiance distribution: be independent of depth. The radiance distributions are definec $\ddagger 0$ be indepencie
 slab. Such a condition on the radiance function inplies that there is a multiplicative uncoupling of the denth and direction dependences, i.e., : is of the form $N(z, \mu, \phi)=\phi(z) \nu(\mu, 0)$. iccording tc (16) and (17), a radiance function vith this property, along with a depth indopendent σ, results in depth independent forward and backward scattering functions. (A slight gencinli. zation of the preceding condition is effected if in addition to ij, σ^{-}has \dot{L}^{4}. depth and direction dependences multiplicatively uncoupled. Then once again, after suitable modifications, the f and b functions can be made independent of depth.)

But what of the necessity of these conditions? That is, if f and u are independent of clepth, is it necessarily true that N must be factorablo anci that
σ^{-}is independent of depth? The answer, which depends upon some relutively intricate mathematical analysis, is a qualified yes (exceptions can occur only on the physically uninportant sets of z of zero zeasure).

The necessity and sufficiency of these conditions are extendablo to tive functions $\alpha_{s}(, \pm), s(, \pm)$ and $\alpha(, \pm)$. In view of (23), (23), and (24) attontion in these cases is naturally directed tomarr the distribution function W , \pm). It turns out that in the homogeneous slab: the functions
 only if tie radiance disuributions are independent of gepth, and this in ourn
 eoth.

 dintaikutione, dotualy realizabic jn a given opticrl medium with the slib seonc Sin arswor is: in geneal, no. Howover, sertian 1 unericii alculatione 25, 26 and experimintu: result; 20, 2\%, 28 bear evidence in riaver of a limiting-mor asmajtotic-t'cm of the radiance distributions in certain cptically deep scatteri media. In such modia these asymptotic radiance distributions are, according to some preliminaity mathematical investigations, independent of the external light. ing conditions and dependent only on the inherent optical properties of the media. Hence, under such circumstances, the coefficient functions would be sensibly constant below a certain depth, and the system (26) may bo conoideated o a pair of difformation suatiinno.

The net conclusion is that the system (26) as a pair of differential equations with constant coefficients is at best a good approximation. Some recent experimental evidence ${ }^{28}$ (summarized in Table II) has verrified a particular form of (26) which yields a theory of maximal accuracy for a twoflow Analysis of the light field.

25J. Lenoble, Rev. Optique. 35, 1(1956).
26 J. Lenoble, Opt Acta. 4, 1(1957).
27J. Lenoble, Anr. Geophysique. 12, 16(1956)
28 The Lake Pend Oreille experiments conducted in the Spring of 1957. by J. E. Tyler of the Visibility Laboratory of the Scripps Institution or Oceanography, La Joll California. Publication of these results is planned.

The classical sinustor equations were customarily rotten in terms of the ciffure flux nomonent of the light field. 'his procedure will nov e of cladified and extended. In order to draw out the full symmetry of the foliorin. formulations: i\% wal be assumed initially that there exist incident radiance: तistrihuificir a^{+}beth the upper and the lower boundaries of the slab, whose vr?u. vil. be designated by $N^{\circ}(0,-\mu, \phi)$ and $N^{\circ}\left(z_{1},+/, \phi\right), 0<\mu \leqslant 1,0 \leqslant \phi<2 \pi$.

 be der:umousd into the bum $11^{\circ}+\mathrm{N}^{*}$ of two functions. These functions are such that iN O represents runiance winch, relative to $\mathrm{iN}^{\circ}(0,-$,$) , iN o \mathrm{N}_{1},+$,), and $N_{\eta}($, , $)$ has zero scat taring order. $\mathbb{N}^{* *}$ represents radiance which, relative to $\mathrm{N}^{\mathrm{O}}(\mathrm{O},-),, \mathrm{N}^{\mathrm{O}}\left(\mathrm{z}_{2},+,\right)$, and $\mathrm{N}_{\eta}(,$,$) , has scattering orders one, two, and high e$ The existence of these two functions follows immediately from the scattering-ord. decomposition of the equation of transfer:

$$
\begin{align*}
& \underset{\sim}{\xi} \cdot \nabla N^{0}+(1 / v) \partial N^{0} / \partial t=-\alpha N^{0}+N_{\eta} \\
& \underset{\sim}{\xi} \cdot \nabla N^{j}+\left(1 / v^{j}\right) \partial N^{j} / \partial t=-\alpha N^{j}+\int_{\equiv} \sigma N^{j-1} d \Omega, j=1,2, \ldots
\end{align*}
$$

in which the two incident radiance distributions and the emission function have been assigned scattering order zero. The components $N^{N}{ }^{j}$ of the radiance function N consisting of scattering order $j \geq 1$ are defined inductively by means of (32). Hence the solution N of the equation of transfer may be formally written as

$$
N=\sum_{j=0}^{\infty} N^{j}
$$

and by defining

$$
N^{i}=\sum_{j=1}^{\infty} N^{j}
$$

woe have

$$
\begin{equation*}
N=N^{0}+N^{*} \tag{1351}
\end{equation*}
$$

Tins c'ecompesition of iv in tum gives rise to the decomposition $H^{\circ}+i \neq u f$ tin Light field, and in general any a biometric quantify derived from or relateto M. N^{*} is referred to as the diffuse component of N, and $N \circ$ as the reduced component.

For the steady state case in the slab geometry, (31) becomes

$$
\begin{equation*}
-\mu \lambda N^{\prime o} / \alpha Z=-\alpha N^{0}+N_{\eta} \tag{36}
\end{equation*}
$$

Summing each side of (32) over the range $1 \leqslant j<\infty$, we have (for the steady state case, slab geometry)

$$
-\mu d N^{*} / d Z=-\alpha N^{*}+\int_{=} \sigma N^{*} d \Omega+\int_{=} \sigma N^{0} d \Omega
$$

Equation (36) may be solved immediately:

$$
N^{0}\left(z_{1}-\mu, \phi\right)=T_{1}(z,-\mu, \phi) N^{0}(0,-\mu, \phi)+\int_{0}^{r} T_{r-\mu^{\prime}}\left(z^{\prime},-\mu, \phi\right) N_{\eta}\left(z^{\prime},-\mu, \phi,\right.
$$

where

$$
\operatorname{Tr}(z,-\mu, \phi)=e x p\left\{-\int_{0}^{r} \alpha\left(z^{\prime}\right) d t^{\prime}\right\}, r^{\prime}=z^{\prime} / \mu, 0<\mu \leq 1 .(39)
$$

A similar expression exists for $N^{0}(x,+\mu, \phi)$.
Hence the values $N^{\circ}(z, \mu, \phi)$ of the reduced component of N are known for all depths and directions. Under the present decomposition of N, it follows that the boundary conditions for the diffuse component $N *$ are

$$
\begin{align*}
& N^{*}(0,-\mu, \phi)=0, \quad 0<\mu \leq 1, \quad 0 \leq \phi<2 \pi \\
& N^{*}\left(z_{1},+\mu, \phi\right)=0, \tag{40}
\end{align*}
$$

'jo solve (37), supjose for the moment that the radiance distrinutions at the vonem and lower bounciaries ars collimated:

$$
\begin{align*}
& N^{0}(0,-\mu, \phi)=N^{0} \dot{\delta}\left(i-\mu_{0}\right) \delta\left(\phi-\phi_{0}\right), \\
& N^{0}\left(\Sigma_{1}, \cdots, \phi\right)=N^{0} \delta\left(\mu-\mu_{0} ; \lambda\left(\phi-\phi_{0}\right), \quad 0<\mu_{0}=1, \quad 0 \leq \phi_{0}<2 \pi\right.
\end{align*}
$$

Zinur, extending a ceneral procedure injtiated by imbarmumiano and developed by (Aardrasekhar?, the solution of (37) subject in turn to the boundary condtion (ijc) anc? oach of the incident lighting conditions in (4l), yields two pairs ($\mathrm{R}_{\mathrm{H}}, \mathrm{T}$) , ($\mathrm{R}:$, of functions with the general pronerties:

$$
\begin{align*}
& \hat{v}^{\prime}\left(0,+\mu, \omega_{i}^{\prime}=\left(1 / \mu^{\prime}\right) I_{\underline{\prime}} R_{-}\left(z_{1} ; \mu^{\prime} \phi^{\prime} ; \mu^{\prime} \phi^{\prime}\right) N\left(0,-\mu^{\prime}, \phi^{\prime}\right) d \mu^{\prime} d \phi^{\prime}\right. \\
& +(1 / \mu))_{E+} T_{+}\left(z_{1} ; \mu, \phi ; \mu^{\prime}, \phi^{\prime}\right) N\left(z_{1},+\mu^{\prime}, \phi^{\prime}\right) d \mu^{\prime} d \phi^{\prime}, \\
& \wedge^{*}\left(Z_{1},-\mu, \phi\right)=(1 / \mu) \int_{-+} T\left(Z_{1} ; \mu^{\prime} \phi^{\prime} ; \mu^{\prime} ; \phi^{\prime}\right) N\left(D,-\mu^{\prime}, \phi^{\prime}\right) d \mu^{\prime} d \phi^{\prime} \tag{il}\\
& +(1 / \mu) \int_{E_{+}} R_{+}\left(z_{1} ; \mu_{i} \phi_{i} \mu^{\prime}, \phi^{\prime}\right) N\left(z_{1}+\mu^{\prime}, \phi^{\prime}\right) d \mu^{\prime} d \phi^{\prime} .
\end{align*}
$$

The functions R_{-}and T_{-}are the diffuse reflectance and diffuse transmittance functi for radiance incident at the $u_{j} p e r$ boundary of the slab. A similar designation holci for \mathbb{R}_{+}and T_{+}. If the slab is homogeneous (or separable, i.e., $3 \% \alpha$ is a const function) then the two pairs (R_{-}, T_{-}) and (R_{+}, T_{+}) are identical. However, in the eve of a general inhomogeneity, the pairs are distinct ${ }^{29}$. The functions R and T are cle akin to σ. This is illustrated by ouserving that the volume scattering function has the property that

$$
N_{-k}(z, \mu, \phi)=\int_{=} \sigma\left(z ; \mu, \phi^{\prime} ; \mu^{\prime} \phi^{\prime}\right) N\left(z, \mu^{\prime}, \phi^{\prime}\right) d \mu^{\prime} d \phi^{\prime},
$$

29 Partial evidence for this may be found in the irradiance context (ref. 22). is pro that $R_{-} \neq R_{+}$in the case of isotropic scattering may be based on the results in $R . B e$ and K. Kalaba, Proc. Lat. Acad. Sci. 42, 629(1956). In lieu of a general direct pro the assertion, $R_{-}=R_{+}, T_{-}=T_{+}$, may be countered by the folloving exanple: consider t contiguous homogeneous slabs in vhich $\alpha \neq 0$ but $\sigma=0$ in one and $\sigma \neq 0$ in the other.
and that $N_{*}(z, \mu, \phi)$ is the scattered radiance generated per unit length in the direction (μ, ϕ) ．Hence $N_{k}(z, \mu, \phi) /|\mu|$ is the corresponding radiance generated I unit depth in the slab．If the above integration is carried out explicitly or三fand 三－then：

$$
\begin{aligned}
& N_{*}(z, \mu, \phi) / \mu=(1 / \mu) \int_{三_{+}}^{\left.\sigma\left(z ; \mu, \phi ; \mu^{\prime} ; \phi^{\prime}\right) N\left(z, \mu^{\prime} \phi^{\prime}\right) d \mu^{\prime} \phi^{\prime} \phi^{\prime}, \phi^{\prime}\right)} \\
& +(1 / \mu) \int \equiv+{ }^{\sigma}\left(z^{\prime} \mu, \phi ;-\mu^{\prime}, \phi^{\prime}\right) N\left(z,-\mu^{\prime} \phi^{\prime}\right) \alpha^{\prime} \mu^{\prime} d \phi^{\prime}
\end{aligned}
$$

Since $\bar{F}+$ anc $三$＿difer only by a set of Ω－measure zero， \bar{I}_{+}may replace $\overline{=}$ the second integral．The similarity between（45）and either one of（L2）or（Li goes deeper than these superficial appearances．For example，if we define＊ （read upper signs together and lover signs together）：

$$
\begin{align*}
& \sigma_{+}\left(z ; \mu, \phi ; \mu^{\prime}, \phi^{\prime}\right) \equiv \sigma\left(z ; \pm \mu, \phi ; \pm \mu^{\prime} ; \phi^{\prime}\right)=\sigma\left(z ; \mp \mu^{\prime} ; \phi^{\prime} ; \mp \mu, \phi\right), \\
& \sigma_{-}\left(z ; \mu, \phi ; \mu^{\prime}, \phi^{\prime}\right) \equiv \sigma\left(z ; \pm \mu, \phi ; \mp \mu^{\prime} ; \phi^{\prime}\right)=\sigma\left(z ; \pm \mu^{\prime}, \phi^{\prime} ; \mp \mu, \phi\right), \\
& 0 \leq \mu \leq 1,0 \leq \phi<2 \pi ; 0 \leq \mu^{\prime} \leq 1,0 \leq \phi^{\prime}<2 \pi
\end{align*}
$$

then the functions σ_{+}and σ_{-}have the properties
$\lim _{z_{1} \rightarrow 0} R_{+}\left(z_{;} \mu, \phi^{\prime} ; \mu^{\prime} ; \phi^{\prime}\right) / z_{1}=\lim _{z_{1} \rightarrow 0} R_{-}\left(z_{1} ; \mu, \phi ; \mu_{1}^{\prime} \phi^{\prime}\right) / z_{1}=\sigma_{-}\left(0 ; \mu, \phi_{i} \mu_{j}\right.$
$\lim _{z_{1} \rightarrow 0} T_{+}\left(z_{1} ; \mu, \phi ; \mu^{\prime} ; \phi^{\prime}\right) / z_{1}=\lim _{z_{1} \rightarrow 0} T_{-}\left(z_{1} ; \mu, \phi_{i} ; \mu^{\prime}, \phi^{\prime}\right) / z_{1}=\sigma_{+}\left(0 ; \mu_{1}, \phi_{i} \mu^{\prime} ; \phi^{\prime}\right.$. （47）emphasizes the fact that R and T play the same role for a slab of finite thickness as does the volume scattering function for a slab of infinitesimal thickness．Further relations between the functions R, T ，and σ_{+}, σ_{-}may be exhibited，such as the differential forms of the first four principles of inva： iance，but these matters will not be pursued here．

[^1]Wo derive the Schneter equations for the decomposed lifht field, we begin

 derivatac: $: \sin ^{+1}$: $\mathrm{in}_{1}+$ roc'astion of a buttery of ceafficiont functions for each Jf tee two comonenes of the nember: of the Ananysic:

$$
\left.1 \mathrm{H}^{n}(z,+)+\mathrm{H} \because(z,+), \mathrm{Hu}(z,-)+\mathrm{H} \dot{2}(z,-)\right) .
$$

These oncix:.in: finctions awe defined by the general definitions (16), (17);

$$
\begin{align*}
\mp d H^{*}(z, \pm) / d Z= & -\left[a^{x}(Z, \pm)+b^{*}(Z, \pm)\right] H^{*}(Z, \pm)+b^{*}(Z, \mp) H^{*}(Z, \mp)+ \tag{45}\\
& +f^{0}(Z, \pm) H^{\prime 0}(Z, \pm)+b^{0}(Z, \mp) H^{o}(Z, \mp) .
\end{align*}
$$

THE CLASSICAL EQUATIONS FOR THE TWO-FLOW ANALYSIS

The classical equations associated with the two-flow Analysis as studied by Schuster, Silberstein, Ryde, Duntley, et cetera were in each study derived de novo for the case of the decomposed light field. The geometrical setting of the optical medium was the slab geometry; honogeneity was assumed. The boundaries were non-reflecting, the usual plan being that the equations were first solved for this case, and an interreflection study was to be taken into account subsecuently if desired. The light field was generated by an incident radiance distribution at the upper boundary which was either uniform, collimated, or a combination of both. The diffuse component of the radiance distribution was invariably assumed to be uniform at all depths, thus : $D H(z, \pm)=2, \quad 0 \leqslant z \leqslant z_{1}$.

Each coefficient function was therefore to be constant. Ryde gave the first detailed description of the coefficient functions, under the above incident and internal lighting conditions, and related them to the volume scattering function, but in a manner which neglected the general effect on the coefficients of the angular structure of the inward and outward radiance distributions. In the extension of Ryde's work by Duntley, some of the conditions jmposed on the coefficients by Ryde were relaxed, but the basic definitions remained unaltered. For the purposes of comparison, Table I exhibits the coefficient functions of the present work with those used by Ryde and Duntley.

After applying the present definitions of the coefficient functions to the classical assumptions given above, we will compare some of the results with those found by the earlier methods. Of the incident lighting conditions discussed, the collimated radiance distribution is the most basic.
ficcordingly, we will assume that

$$
N^{0}(0,-\mu, \phi)=N^{0} S\left(\mu-\mu_{0}\right) \delta\left(\phi-\phi_{i}\right), 0<\mu_{0} \leq 1,0 \leq \phi_{0}<2 \pi
$$

TABLE I Comparison of the general coefficient functions for reduced and diffuse flux with those occuring in the works of Ryde and Duntley.

$\begin{gathered} \text { Undecomposed } \\ \text { flux } \\ \hline \end{gathered}$	Reduced flux		Diffuse flux			
$H(0 \pm)$	$\mathrm{H}^{\circ}(,-)$	I ' z	$\mathrm{H} *(,+)$	s	$\mathrm{H} \div(,-)$	t
$\alpha(, \pm)$	$\alpha^{\circ}(,-)$	${ }^{\prime \prime}+B^{\prime}+F^{\prime}$	ळ* (, +)	$\mu+B+F$	$\alpha *(,-)$	$17 \mathrm{~B}+\mathrm{F}$
$a(, \pm)$	$a^{\circ}(,-)$	μ	$a_{\square} \ldots(,+)$	μ	$a *(,-)$	μ.
$b(, \pm)$	$b^{\circ}(,-)$	B^{\prime}	$\mathrm{B} *(,+)$	B	$b *(,-)$	B
$f(, \pm)$	$f^{\circ}(,-)$	F'	$\mathrm{f}^{*}($, +)	F	$\mathrm{f}^{*} \times(,-)$	F
$s(, \pm)$	$s^{\circ}(,-)$	S^{\prime}	s* (, +)	S	$s^{*}(,-)$	S
$D(, \pm)$	$\mathrm{D}^{\circ}(,-)$		D* (, +)		$B^{*}(,-)$	

For the adduced comocnert of the light field:

$$
N^{0}(z,-\mu, \phi)=N^{0} e^{-\alpha z / \lambda^{\prime}} \dot{o}\left(\mu,-\mu_{0}\right) \delta\left(\phi-\phi_{0}\right)
$$

İ: f:?7.0ッs from. i.75) that

$$
\square^{\prime}(\vec{z},-)=1 / \mu_{0}, \quad o \approx \vec{z} \leq \neq 1
$$

Further, from (1ú:

$$
f^{c}(\ddot{i},-\cdots)=\left(1 /, \mu_{0}\right) \int_{E_{+}} \sigma_{+}\left(\mu, \phi ; \mu_{0}, \phi_{0}\right) d \mu d \phi \equiv\left(1 / \mu_{0}\right) \sigma_{+}\left(\mu_{0}\right)
$$

and from (17)

$$
\left.b^{0}(z,-)=\left(1 / \mu_{0}\right)\right)_{\equiv+} \sigma\left(\mu, \phi ; \mu_{0}, \phi_{0}\right) d \mu d \phi \equiv\left(1 / \mu_{0}\right) \sigma-\left(\mu_{0}\right)
$$

For the diffuse component of the light field, we have

$$
D^{*}(z, \pm)=2, \quad 0 \leqslant z \leqslant z_{1}
$$

and

$$
\begin{aligned}
f^{*}(z,-) & =f^{*}(z,+)=(1 / \pi) \int_{\equiv+}\left[\int_{\equiv+} \sigma_{+}\left(\mu, \phi ; \mu^{\prime}, \phi^{\prime}\right) d \mu^{\prime} d^{\prime} \phi^{\prime}\right] \\
& =(1 / \pi) \int_{\equiv+} \sigma_{+}\left(\mu^{\prime}\right) d \mu^{\prime} d \phi^{\prime}=2 \int_{0}^{1} \sigma_{+}\left(\mu^{\prime}\right) \phi \mu^{\prime} \equiv 2 \bar{\sigma}_{+}
\end{aligned}
$$

$$
b^{*}(z,-)=b^{*}(z,+)=(1 / \pi) \int_{\equiv+}^{\sigma_{-}}\left(\mu^{\prime}\right) d \mu^{\prime} d \phi^{\prime}=2 \int_{0}^{1} \sigma_{-}\left(\mu^{\prime}\right) d \mu^{\prime} \equiv 2 \overline{\sigma^{\prime}}
$$

From the general properties of the f and b functions, or directly from above, it follows that

$$
\begin{aligned}
& A^{\circ}(z,-)=f^{0}(z,-)+b^{\circ}(z,-)=(1 / \mu 0) \Delta \\
& A^{*}(z, \pm)=f^{*}(z, \pm)+b^{*}(z, \pm)=2 \mathbb{A}
\end{aligned}
$$

Ryde' s^{l} Sunclusior. was that $B+F=B^{\prime}+F^{\prime}$, ine. that $S=S^{\prime}$, a disagreement with the jresent conciusion $s^{*}=2 \mu_{0} s^{\circ}$, which apjorently arises from different dennit.a me of B and b, F and f_{c} According to the present formulations,
 $\theta_{1}=0^{\circ}, H_{0}: Z$ ani $s^{*}=2 s^{\circ}$, a conclusion correctly reuched, for exainple, by Hulber: ${ }^{2}$

In the aziencion of Ryde's results, Duntley ${ }^{13}$ introduced a nev constiait $\mu^{\prime \prime}$ which coiresponds, according to Table I, to $a^{\circ}(,-)$. Under the present assumptions, i.t follows from (23) that

$$
a^{\circ}(z,-)=\left(1 / \mu_{0}\right) \cdot a
$$

and

$$
a^{*}(z,-)=2 a
$$

Duntley rightly concluded that μ and μ^{\prime} differ by virtue of the difference in angular structure of the reduced and diffuse raciance distributions. However the simple relation

$$
a^{k}=2 \mu_{0} a^{0}
$$

between the two that existed by virtue of the assumed character of the light field was not given. If $\theta_{0}=0^{\circ}$, then $a^{*}=2 a^{\circ}$, another observa correctly made by Hulburt 21 The preceding relations are special examples of the general relations

$$
\begin{align*}
& a^{*}(z, \pm)=\left[D^{*}(z, \pm) / D^{0}(z, \pm)\right] a^{\circ} \cdot(z, \pm) \\
& \Delta^{*}(z, \pm)=\left[D *(z, \pm) / D^{0}(z, \pm)\right] A^{0}(z, \pm)
\end{align*}
$$

The preceding discussion was concerned with radiance distributions of restriciod angular structure and a volune scattering function of arbitrary angul structime. Below we examine the consequences of revering this situation: the angulas: su"atume o" the radiance distributions will be arbitwary and in fact
 3riug. Ther, fy riutie of' the general definitions,

$$
\begin{equation*}
\sigma=(1 / 4 \pi) \Delta, \tag{6a}
\end{equation*}
$$

and

$$
\begin{align*}
& f(z, \pm)=\frac{1}{2} D(z, \pm) \Delta \tag{63}\\
& b(z, \pm)=\frac{1}{2} D(z, \pm) \tag{64}
\end{align*}
$$

lurther,

$$
\begin{align*}
& a(z, \pm)=D(z, \pm) a \tag{65}\\
& \mathcal{L}(z, \pm)=D(z, \pm) \alpha \tag{66}
\end{align*}
$$

so that in this case the burden of depth dependence is carried by the distribution functions. Thus (26), the general equations for the undecomposed light fie: talie the form:

$$
\begin{equation*}
\mp d H(Z, \pm) / d Z=-\frac{1}{2}[2 a+\Delta] D(Z, \pm) H(Z, \pm)+\frac{1}{2} D(Z, \mp) \Lambda H(Z, \mp)+ \tag{67}
\end{equation*}
$$

since $D(,+)$ and $D(,-)$ clearly depend upon the unknown siructure of the radiance distributions, equation (67), as it sta ds, has unknown variable coefficients. If the usual assumption is now made that $D(z,+)$ and $D(z,-)$ are known
constants (or that thoy vary in some relatively innocuous manner) then the precec ing systen is solvalle. Ey initiaily decomposing the light field and allowing (to takn it.s appropriate form, such assumptions invariably lead to relatively use: approximaie descriptions of the linelysis of the light, field. a recent paper by Kubelca ${ }^{22}$ precents a pair of differential equations whith are related in structu: +o (67) (rith h. $=0$). The derivation of the pair proceeded in the usial manner by means of vonserition argumerts.

It is of jriee cise th oberve that (ó) is just two steps away from a steady state diffusion equation for photons. By adding the members of (67), the left side becomes the divergence $(\nabla \cdot H)$ of the light field. assuming for the moment i Fick's law of diffusion is val id for photons,

$$
\underset{\sim}{H}(z)=-C(z) \nabla h(z),
$$

where C is a diffusion function, (67) leads to

$$
\nabla(c(z) \nabla h(z))=a h(z)-h_{\eta}
$$

If C is a constant, the more familiar form involving $C \nabla^{2} h$ is obtained. By decomposing the light field, a pair of: equations in h° and h^{*} is obtained. The equation involving h° is readily solved. Under the isotropic sea assumption, it may be shown that Fick's law holds rigorously for the diffuse comy of the light field, so that in this case an exact diffusion theory discussion of the lisht field is possible.

THE TWO-D THEORY

The chain of successive seneralizations of the two-flow theory fron Schuster's oricinal work in 1905 to Duntley's work in 19i42 increased the number of optical constants used in the theory fron two to six. Aside from certain acedenic sophistications to which the classical two flow theory can be subjected (e.t., extension to the transient case, to rioro general eeonetries to n flows: and to the inclusion of arbitrary anission functions) there remains one final extension of sone practical inportance, namely the endorment of each of the two flows with a distinct geonetrical structure. That is, the inward and the outward radiance distributions are assigned arbitrary but fixed shapes. Equivalently, to each nember of the Analvisis is assigned an arbitrary but fixed distribution factor.

This extension was made some time ago ${ }^{30}$, out the result rerained only as an idle curiosity of acadenic interest. However, scne recent experinental work 28 on the measurenent of radiance distributions in natural hydrosols has supplied some evidence in favor of the two-D hypothesis. This evidence is summarized in Table II. In the course of the experimental work, radiance distributions were measured from the surface down to depths of about 200 feet. The mediurl was found to be honcgeneous in this depth interval. Further, the ineasurements were taken under a variety of incident radiance distributions varying from sunny to completely overcast skies. The presently available data was kindly put at the disposal of the author by J. I. Tyler and his staff prior to their publication of the experinental results.

30 W. Wreisendorfer, Lectures on Radionetry and Geophysical Optics, unpublishe lecture notes (Visibility Laboratory, Scripps Institution of Oceanography, Fall, 1954).

Table II Experimentally Detemined Distribution irunctions

Clear Sunny Slar			Completely Overcast Sky		
Depth z , ft.	$12(7,+)$	$D(z,-)$	Depth z, ft	$D(2,+)$	$D(2,-)$
13	2.67	1.25	10	2.75	1.22
33	2.70	1.26	40	2.82	1.32
53	$\therefore .79$	1.28	80	2.85	1.31
93	2.16	1.31	120	2.93	1.33
133	2.78	1.31	160	2.86	1.33
173	2.77	1.30			

Before embarking on the details of the two-D theory, it should be noted that a slight additional generalization can be incorporated in the present extension if. one assunes that the nedium is inhomogeneous in such a way that α and σ vary in t same manner with dopth, so that s / α is a constant function. Such a generalizat is inessential to the structure of the resulting equations since the equations ars imnediately reducible to the homogeneous case, for example, by a transformation f_{2} geometrical depth z to optical depth $\tau=\int_{0}^{z} \alpha\left(z^{\prime}\right) d z^{\prime} \quad$. On the other han d, tr assumption of a general type of inhomogeneity introduces essential modifications which vitiate the customary utility of the Schuster equations arising $:$. . from the presence of constant coefficient functions. For these reasons the medium is assumed homogeneous at the outset with \propto and σ othemise arbitrary.

Basic Properties

We begin by agreeing that, (i) the incident radiance distribution at the upper boundary is of the form: $\quad N^{0}(0,-\mu, \phi)=N^{0} \delta\left(\mu-\mu_{0}\right) \delta\left(\phi-\phi_{0}\right), 0<\mu_{0}$: $0 \leqslant \phi_{0}<2 \pi$, (ii) $N^{0}\left(z_{1},+,\right) \equiv 0$, (iii) the upper and lower boundaries are
non reflecting, (iv) $W_{\eta}(),, \quad \equiv 0$, (v) $D^{*}(z, \pm)=D^{*}(\pm)$, two generally different constants if the response of the medium to a collimated incident radiate dis tion can be determined, the response of the medium to an arbitrary incident rad distribution is readily synthesized from the results developed below.

The requisite equations for the two-flow Analysis follow from (48), (50), and (51):

$$
\begin{align*}
\mp d H^{*}(z, \pm) / d z= & -\left[a^{*}(\pm)+b^{*}(\pm)\right] H^{*}(z, \pm)+b^{*}(\mp) H^{*}(z, \mp) \\
& +N^{\circ} e^{-\alpha z / \mu_{0}} \sigma_{\mp}\left(\mu_{0}\right)
\end{align*}
$$

where, in view of the homogeneity assumption, the depth dependence of the coeff functions has been dropped from the notation.

The general solution of the system (70) is readily obtained and nay be expressed in the form

$$
H^{*}(z, \pm)=m_{+} g_{+}(\pm) e^{k_{+} z}+m-g_{-}(\pm) e^{k_{-} z}-N^{\circ} C\left(\mu_{0} \pm\right) e^{-\alpha z / \mu_{0}}
$$

where m_{+}and m_{-}are two constants (for given μ_{0} and z_{l}) which are determined by using the boundary conditions (which follow from (40)):

$$
\begin{equation*}
H^{*}(0,-)=H^{*}\left(Z_{1},+\right)=0 \tag{72}
\end{equation*}
$$

It follows that

$$
m_{ \pm}=N^{0}\left[g_{\mp}(-) C\left(\mu_{0},+\right) e^{-\alpha z_{1} / \mu_{0}}-g_{\mp}(+) C\left(\mu_{0},-\right) e^{k_{\mp} z_{1}}\right] / \Delta!
$$

where

$$
\begin{equation*}
\Delta\left(z_{1}\right)=g_{+}(+) g_{-}(-) e^{k_{+} z}-g_{+}(-) g_{-}(+) e^{k_{-} z} \tag{74}
\end{equation*}
$$

and where

$$
\begin{equation*}
g+(\pm)=1 \pm \frac{a(\mp)}{k+} ; \quad y(\pm)=1 \pm \frac{a(+)}{h-} \tag{75}
\end{equation*}
$$

 and are defined by

$$
\begin{align*}
& h_{1} \pm=\frac{1}{2}\left\{\left[a^{*}(+)+b^{*}(+)-a^{*}(-)-b^{*}(-)\right] \pm\left[\left(a^{*}(+)+b^{*}(+)+a^{*}(-)+b^{*}(-)\right)^{2}\right.\right. \\
&\left.\left.-4 b^{*}(+) 6^{*}(-)\right]^{1 / 2}\right\} \tag{76}
\end{align*}
$$

These constants have the property that

$$
x+>0>k-i f a>0 ; x \cos x+=k-=0 \text { if }=0
$$

Finally,

$$
\begin{equation*}
C\left(\mu_{0}+ \pm\right)=\frac{\sigma \pm\left(\mu_{0}\right) b^{*}(+)+T+\left(\mu_{0}\right)\left[a^{*}(\mp)+b^{*}(\mp)+\left(\alpha / \mu_{0}\right)\right]}{\left(\mu_{+}+\frac{\alpha}{\mu_{0}}\right)\left(k+\frac{\alpha}{\mu_{0}}\right)} \tag{77}
\end{equation*}
$$

The above expressions reduce readily to those of the one-D theory by assuming $D_{3}^{*}(+)=D_{*}^{*}(-)=2$. It follows that $a^{*}(+)=a^{*}(-)=2 a_{s} b^{*}(+)=b^{*}(-)=2 \sigma_{-}$, so that $k x=-k-2 E(a+\bar{\sigma}=)]^{1 / 2}=k$. Further $g+(+)=g-(-)=1+(2 a / k)(g+(-)=i, i+1-1-12 a!$ Under these conditions, and setting $\mu_{c}=1$, (71) reduces to the equations originally considered by Ryde if in addition the identifications $A^{*} \equiv$ $a^{*} \equiv a^{0}$ are made.

Diffuse Reflectance and Transmittance Functions

The diffuse reflectance and transmittance functions $P\left(Z, j, \mu_{0}\right)$ and $T\left(Z, j \mu_{0}\right)$ for irradiance are defined by the relations

$$
\begin{align*}
& M^{\circ} R\left(Z ; \mu_{0}\right)=A^{*}\left(O_{3}+\right) \tag{78}\\
& N^{0} T\left(Z ; \mu_{0}\right)=H^{*}(Z,-) \tag{79}
\end{align*}
$$

Using (71), these functions are readily found:

$$
\begin{align*}
R\left(z_{1 ;} \mu_{0}\right) & =\left(\left(j_{0},-\right) g+(+) g-(+)\left[e^{k+z_{1}}-e^{k-z}\right] / \Delta\left(z_{i}\right)+\right. \\
& +C\left(\mu_{0},+\right)\left[(\Delta(0) / \Delta(z,)) e^{-\alpha z_{1} / m_{1}}-1\right], \tag{80}
\end{align*}
$$

$$
\begin{align*}
T\left(z_{1}, \mu_{0}\right) & =C\left(\mu_{0}+\right) g+(-) g-(-)\left[e^{k+z_{1}}-e^{k-z_{1}}\right] / \Delta\left(z_{1}\right)+ \\
& +C\left(\mu_{0},-\right)\left[\left(\Delta(0) / \Delta\left(z_{1}\right)\right) e^{\left(k_{+}+k-\right)} z_{1}-e^{-\alpha z_{1} / \mu_{0}}\right] . \tag{81}
\end{align*}
$$

To see $R\left(z_{1}, \mu_{0}\right)$ nd $T\left(z_{1} ; \mu_{j}\right)$ in their proper perspective, it is instructive to reti to the exact solutions of the standard problem as given in (42), (43). Under the present assumptions,

$$
\begin{aligned}
& \lambda^{*} K_{i}(0,+\mu, \phi)=(1 / \mu) N^{0} R\left(z_{1} ; \mu, \phi ; \mu_{0}, \phi_{0}\right), \\
& V^{*}\left(z_{1},-\mu, \phi\right)=(1 / \mu) N^{\circ} T\left(z_{1} ; \mu, \phi ; \mu_{0}, \phi_{0}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& h^{*}\left(0_{1}+\right)=S_{+} N^{*}(0,+\mu, \phi) \mu d \mu d \phi \\
& H^{*}\left(z_{1},-\right)=S_{E_{-}} N^{*}\left(z_{1},-\mu, \phi\right) \mu d \mu d \phi
\end{aligned}
$$

we have froin the exact theory

$$
\begin{aligned}
& H^{*}(0,+)=N^{0} \int_{E_{+}} R\left(Z_{1} ; \mu_{1} \phi ; \mu_{0}, \phi_{0}\right) d \mu d \phi_{\eta} \\
& H^{*}\left(Z_{1},-\right)=N^{0} \int_{\equiv+} T\left(Z_{1} ; \mu_{1} \phi_{i}, \mu_{0}, \phi_{0}\right) d \mu d \phi
\end{aligned}
$$

In the exact theory one may make the definitions

$$
\begin{aligned}
& R\left(z_{1} ; \mu_{0}\right) \equiv \int_{=+} R\left(z_{1} ; \mu_{1} \phi ; \mu_{0}, \phi_{0}\right) d \mu d \phi \\
& T\left(z_{1} ; \mu_{0}\right) \equiv \int_{=+} T\left(z_{1} ; \mu_{1} \phi ; \mu_{0}, \phi_{0}\right) d \nu d \phi
\end{aligned}
$$

Hence if the tro-D hypothesis were to hold exactly, then the latter functions wo: be identical with those introduced in (78) and (79). In any event, the diffuse reflectance and transmittance functions intaroduced in (78) and (79) have the properties that, for an arbitrary incident radiance distribution,

$$
\begin{aligned}
& H^{*}(0,+)=\int_{三_{+}} R\left(z_{1} ; \mu\right) N^{0}(0,-\mu, \phi) d \mu d \phi, \\
& H^{*}\left(Z_{1} ;-\right)=\int_{\Xi_{+}} T\left(z_{1} ; \mu\right) N^{0}(0,-\mu, \phi) d \mu d \phi
\end{aligned}
$$

'The similarity of the \mathbb{R} and T functions of the two-D theory with those of the exi theory is strengthened by noting that

Tre above sets of sinultaneous equations are statements in the exact the ory, are just as difficuit to solve ast he general equation of transfer itself. ioverr Wher have been celiberately formulated so that the ir appearance is that of a set : simutaneous linear alrebraic enuations with the irradiames as unknowns, and if it are to be sol: ed as such, the various coefficients R^{*}, T^{*}, r_{0}^{*}, and rir must be ass known. Thus, the parallel with the general two-flow equations for the inalysis i: complete: in order to solve the above sets of equations as alceuraic equations, j follows from (83)-(86) that some assumption must ve madc about the ancular structi of the diffuse radiance uistributions, and the reflected radia nce distriuutions at the boundaries. As far as the diffuse radiance distri, utions are concerned, one may adopt a one-D or a two-iD theory; and for thereflected radi nce distributions, matte or specular reflecting characteristics of the ooundaries are the customary concessions to coaplexity. If the one-D and spocular assumptions are made, (88) will yield, upon solution, the correct forms of the transmittanc e and reflectance of the slab with reflecting voundaries which will reduce to the classieal results of ityde ${ }^{12}$, for example, after adopting the appropriate assumptions nade it each case. Though we shall not do so here, it would be of interest to apply the two-j theory to the systens (88) and (89) to complete the generalizations berun in the preceding section.

GENERALIZED SCHUSTER ANALYSIS

We now indicate briefly the generalization of the classical two-flow inalysis to geonetries other than the slab geometry, and then finally the two-flow Analysis is generalized, in the spirit of the proceding sections, to n-f lows.

Let \mathbb{A} now be an arbitrary suoset of Euclidean three space, $x_{m}=\left(x_{1}, x_{2}, x_{3}\right)$ a point of X, and \bar{Z} the collection of all unit vectors in E_{3}. In the slab geomet the vector k wes used to partition \equiv into $\equiv+$ and \equiv. . In the present case, select at each $i:$. fixed unit vector $n(\underset{m}{n})$, or $\underset{\sim}{n}$ for short. Then at x, partition
 to $\underset{N}{H}(x, t)$ y define

$$
\underset{\sim}{H}\left(\underset{\sim}{x}, \pm n_{m}, t\right)=\int_{\Xi \pm\left(n_{m}\right)} \underset{m}{\xi} N(\underset{m}{x}, \underset{m}{\underset{m}{s}}, t) d \Omega(\underset{m}{\xi}) \text {, }
$$

then

$$
\left|n \cdot H\left(\underset{m}{n} \pm n_{m}, t\right)\right|=H(x, \pm n, t)
$$

similarly, define

$$
h(x, \pm n, t)=\int_{\Xi \pm(n)} N(\underset{m}{x}, \underset{m}{\xi}, t) d \Omega(\underset{m}{E}) .
$$

A corresponding definition exists for $h_{\eta}\left(x, t_{m}, t\right)$. Holding $\underset{\sim}{x}$ fixed, (7) is now integrated over $\Xi_{+}\binom{n}{m}$ and $\Xi_{-}\binom{n}{m}$, which supplies the general analogy to (26):

$$
\begin{array}{rl}
\nabla \cdot H & H(x, \pm n, t)+(1 / v) \partial[D(x, \pm n, t) H(x, \pm n, t)] / \partial t= \\
= & -\left[a(x, \pm n, t)+b\left(x, \pm n_{m}, t\right)\right] H\left(x, x_{m}, n, t\right)+b(x, \mp n, t) H(x, \mp n, t) \\
& +h_{n}(x, \pm n, t) .
\end{array}
$$

The $\mathrm{f}^{\prime} \mathrm{s}$ and b's are defined as in (16) and (17), the integrations now being taken
 presented by spherical, cylindrical, or generally some curvilinear coordinate syst
the diversences $\nabla \cdot H(x, \pm n, t)$ take their characteristic form in that system Ihe divergences reduce to the familiar derivatives in the slab geometry. for th Generalizea Schistai unalysis to be nost effective, one must choose the coordina Fystem in such 2% that the memors of the analysis are constant over each sur: of some space-fililise nne-parameter fanily of surfaces (e. 3. , spheres, cylinders planeig, etc.).

The general n-flow equations are ostained by partitioning 三 into n matua: exclusive suusets whose union is $三$ (rigure 2(b)). as before, let $n(x)$ ve somi chosen unit vector at x. ' 'hen with respect to n, partition $=$ into n subsets $\equiv_{j}, j=l, \ldots, n$, in some well-duiined manner (e.g., in the slab geometry, let th. partition be n equiangular concentric zones about $n=k$; if $n=2$, the usual par tion is obtained). Define

$$
\begin{equation*}
\underset{m j}{H_{j}}(x, n, t)=\int_{\Xi_{j}} \xi_{w} N(x, \underline{\xi}, t) d \Omega(\underset{m}{\xi}), \tag{94}
\end{equation*}
$$

along with

$$
\begin{equation*}
|\underset{m}{n} \cdot \underset{\sim}{H}(x, \underset{\sim}{H}, t)|=H_{j}(x, n, t), \tag{95}
\end{equation*}
$$

which is the irradiance at time t on a unit area at $\underset{\text { x normal to }}{\sim}$ n induced by the radiant flux in the directions \bar{F}_{j}. ($H_{1}, H_{2}, \ldots, H_{n}$) is the n-flow schuster inalysis of the light field, of n-flow inalysis, for short. Purther, set

$$
\begin{equation*}
h_{j}\left(x, n_{\sim}, t\right)=\int_{\Xi_{j}} N(\underset{\sim}{x}, \underline{w}, t) d \Omega(\underset{w}{\xi})_{g} \tag{96}
\end{equation*}
$$

with $h_{\eta, j}(x, n, t)$ defined analogously, and agree to define the j th distrioution factor by

$$
\begin{equation*}
D_{j}(x, n, t)=h_{j}(x, n, t) / H_{j}\left(x, n_{w}, t\right) \tag{97}
\end{equation*}
$$

Finally, the general counterparts to (16) and (17) must be of the form

$$
\begin{aligned}
& j=1, \cdots, n, \hat{N}=1: \cdot, n, ;
\end{aligned}
$$

and c_{j}, \hat{a}_{j}, and s_{j} ane ciefre! analorously to (22), (23), and (2L), Inon holdine ifixed, integrate (7) orer F via tne n partitions. .ith tho above definitions, the result is reduciole to

$$
\begin{aligned}
& \nabla \cdot \underset{\sim}{H}+(1 / v) \partial\left[D_{j} H_{j}\right] / \partial t=-\alpha_{j} H_{j}+\sum_{k=1}^{n} \Delta_{j k} H_{k}+h_{\eta, j} \\
& j=1, \cdots, n .
\end{aligned}
$$

vespite the generality of the partition it is still possicle to define "forward" ank "backward" scattering functions f_{j} and b_{j} by adopting the following device: let $f_{j}=s_{j j}$, for $j=1, \ldots, n$; and if $\sum_{k \neq j}$ denotes summation over all k from 1 to n excluding j, then let $b_{j}=\sum_{k \neq j} s_{k j}$. Consequently, $f_{j}+b_{j}=s_{j}=D_{j} s$. Final. set $b_{j k}=s_{j k}$ for $j \neq k$. Then (99) becomes

$$
\begin{aligned}
& \nabla \cdot H_{j}+(1 / v) \partial\left[D_{j} H_{j}\right] / \partial t=-\left[a_{j}+b_{j}\right]_{j}+\sum_{k \neq j} b_{j k} H_{k}+h_{\eta, j} \\
& j=1, \cdots, n_{j}
\end{aligned}
$$

which establishes the final generalization. By letting $n \rightarrow \infty$ such that $\max \left\{\Omega\left(\bar{\Xi}_{j}\right), j=1, \ldots, n\right\} \rightarrow 0,(100\}$ returns to the equation of transfer (7), and the circle is complete.

CAPTIONS

Figure 1. Illustruting the slab geometry. k denotes the basin outwad direct. $-\frac{k}{k}$, the vasic inward direction. The z-coordinate increases as one procrosse: into the mediun from the upper boundary (the $x-y$ plane). The origin is at 0 \equiv denotes the sphere of init directions about the point x.

Higure 2. (a) Illustrating the partition of the unit sphere as used in the derivation of the two-flow equations for an arit: ary coordinate system.
(b) Illustrating the partition of the wit sphere as used in the derivation of the n-flow oquations.

Figure 1. Rudolph W. Preisendorfer

Figure 2. Rudolph W. Preisendorfer

[^0]: $\dagger_{\text {Contribution }}$ from the Scripps Institution of Oceanography, New Series No. This paper represents results of research which has been supported by the bureau of Ships, U. S. Navy.

[^1]: ＊（46）summarizes the following assuned property of the medium：（i）isotropy of

 procity of reflection processes will also be tacitily assumed for r_{0}, r_{1}（equa－ tion（82））．Clearly，of the two ，isotropy is the more restrictive．From（47） it appears that σ_{-}acts like a reflectance，σ_{+}like a transmittance function．

