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Unified Irradiance Iquations

by Rudolph U/. Preisendorfer

Scripps Institution of Oceanography, University of California, La Jolla, Californi.

ABSTRACT

The necessary structure of the coefficient functions occurring in the Schuste
equations is found in order that they be consistent with the scattering functions
of general radiative transfer theory. The general procewure followed yields a bas
for the unification of the manifold forms of the equations used in practice and
provides an objective means for their evaluation. Wecessary and sufficient condit
are given in order that the ochuster equations be exact. In illustration of the
theory, an extension, based on recent experimental evidence, is made of the class:
equations to the case of two flows vhose radiance distrivutions have distinct ang
structure. [inally, the n-flow non steady state Schuster equations are rigorousl;

derived from the equation of transfer for an arbitrary optical medium with sairce:

'rContribution from the sScripps Institution of Oceanography, Wew Series io.
This paper represents results of research which has been supported by the sureau

of Ships, U. S. Havy.



INTROUCTION

Our purpose is to derive the Schuster ecuations for irradiance from
the equation of transfer for radiance with particular emphasis on the resultin
radiometric structure of the coefficient functions in the equations and on
their relations to the scattering functions of general radiative transfer
theory, This procedure provides an objective means of evaluation of the various
forms of the Schuster equations that have been used in practiez and affords a
means of their unification under one general form,

The principal results are:an exact delineation of the intrinsic structurc

of the Schuster equations; the necessary and sufficient conditions under which
they become exact differential equations with known constant coefficients;
a generalization of the classical two-flow equations, based on recent experiment
evidence, such that each flow has its own distinctive fixed geometrical structur
and finaily, a generalization of the Schuster equations to arbitrary geometries
and arbitrary numbers of flows:

It is generally agreed that the history of the Schuster equations begins
with thé classical paper by Schusterl. The differential equations derived dealt
with a pair of irradiance functions representing two antlparallel flows of

radiant energy in a steller atmosphere. In the hands of Schwarzschild2 Kin33

L4, schuster, Astrophys. J. 21, 1 (1905),
% Schwarzschild, Nachr, Akad, 'iss, GSttingen, lath,-physik.Kl. 41(1906),

3L. V. King, Trans. Roy. Soc. (London) A212, 375 (1913),



and Milneh, Schuster's ap;prourh vas developed into & relatively more compleie
description of the light field by means of the couation of transfer fer
radiance (specific intensity)., Under Hopf5; Ambarzumiané; and Chandrasekhary_
the mathematical problems of radiative transfer were subsequently crystallize”
into forms generally used today, such as general integral equation approaches
along with the principles of invariance,

On the other hand, there followed from Schuster!s work another chain of
studies which dwelled almost exclusively on his original pair of equations for
irradiance, reshaping them, successively generalizing them, and applying them tq
all manners of optical media from paint and paper to the atmosphere and the sea.
The industrial researchers and the geophysicists took altermatms turns in the
formulations and applications, the results being typified by the papers of

Channon, Renwick and Storrg, Meckeg, Dietziuslo, Silbersteinll, Rydelz, and

L’E. A, Milne, "Thermodynamics of the Stars," Handbuch der Astrophysik (Springer,
Berlin, 1930), Vol.3, Chap.2,

5E, Hopf, Mathematical Problems of Radiative Equilibrium (Canbridge Tracts in
Math, and Math.Physics. No, 31, University Press, Cambridge, 1934).

6v; A, Ambarzumian, Compt. rend. (Doklady) Acad, Sci, U.R.S.S. 38, 229 (1943).
7S, Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950).

84, J, Channon, F, F, Rerwick and B, V. Storr, Proc. Roy. Soc. (London)A9L ,222(191:
R, Mecke, Ann, Physik, 65, 257(1921).

10R, Dietazius Beitr, Phys. freien Atm, 10, 202(1922).
L1, silberstein, Phil, Hag. 4, 129(1927),

125, w, Ryde, Proc. Roy, Soc. (London) Al3l, 451(1931),
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s and Alexandrovl'?, made lasting contributions to the Schuster theory.

‘.-)un'tleyj Concurrently cericin Russian authorss untably Gurevicu’ ’ Boldyrevli,

’L-ershunl
the latter papers are curious mixtures of the archaic forms of the squation:
during that period along_with some brilliant innovations which only much latex
came into widespread use,

With the formulation of neutron diffusion problems there arose a certain
amount of mutually profitable cross-fertilization of techniques between the
neutron diffusion and radiative transfer theories which stems principally from

18, and Chandrasekharl?, In these papers the Schuster equatior

the papers of Wick
were extended to handle n-flows with particular emphasis on the form of the
coefficients most suitable to numerical analysis, Some relatively recent works

based on or related to the Schmster theory are contained in the papers of Whitne

135, q. Duntley, J. Opt, Soc., Am, 32, 61 (1942),

Y, M. Gurevic, Trans. Opt. Inst. Leningrad, 6, No. 57, 1 (1931),

154, Boldyrev, Trans Opt, Inst. Leningrad, 6, No. 59. 1(1931).

16s, Gershun, Trans. Opt. Inst. Leningrad, 11, No. 99, 13(1936), '

171, Boldyrev and A. Alexandrov, Trans, Opt. Inst. Leningrad. 11, No. 99, 56(1931),
183, ¢, Wick, Z. Physik, 121, 702(1943),

195, Chandrasekhar, Astrophys. J. 100, 76(1944).

201, Vv, Yhitney, J. Opt. Soc Am, 31, 714(1941).



g 2L 22 23 . L2 .
Hulburt , Kubelka , Middleton , and a report by Sliepcevitch . A fairly

exhaustive bibliography of the Schuster theory may be compiled from the

references in the preceding papers.

In view of this immense array of works on the Schuster equations,
it may be felt that relatively little more of importance can be said
about them, Perhaps as fer as their practical ramifications are concerned
this is true. Further, by being instrumental in the introduction of modemn
mathematical techniques into the disciplines of radiative transfer and
neutron diffusion theory, it appears that the Schuster equations as
ground-breaking theoretical tools may now be respectfully laid to rest.
Despite these facts, the Schuster equations persistently reappear along
with an occasional novel twist, and continue to remain to this day as a
rough and ready tool of great practical interest. Thus the continuing
use (and abuse) of the Schuster equations appears to justify a study of
their intrinsic structure and the development of a means of unifying
the various forms they have taken in the past, principally in the studies

the industrial researchers and the geophysicists,

21 E, O, Hulburt, J. Opt. Soc. Am., 33, 42, (1943).

22 P, Kubelka, J. Opt. Soc. Am. 38, 448, (1948); AL, 330, (1954).
23 W. E. K. Middleton, J. Opt. Soc. Am. 4L, 793, (1954).

2L C. M. Sliepcevitch and others. Confidential report (Army Chem. Corps,
Contract No. DA18-108-CHML-4695. AFSWP-749, ERI-2089-2-F. Eng. Res,
Inst. Univ, of Mich., #nn Arbor, Michigan, (1954).



TWO~-FLOW ~NALYSIS FOR THE SL.B GEOMETERY

~ slab of depth 2y is a subset X of Euclidean three space Eg defined as
the sct of all points between and including two planes parallel to the x~y
plane and separated a distance zl. Using the usual vector notation for
Eq, (Fig. 1), a point in E3 is denoted by a vector x = /1,;, Z ), and
for the present discussion X may be defined as X= 5?: 0& 2 <L 7 j—

The plane z = O is the upper boundary of X, and the planec z = 2y is the

lower boundary of X, Let = denote the collection of all unit vectors

:E in EB' The radiance at time t at x into the direction § is

—AA AA A

.-

denoted by NS&(, 3 , t). The function N and all the other functions

Aoas
introduced below refer to a given fixed wavelength of radiant flux. The
light field in X is the vector-valued function H dcfined at each point x

of X by:

ﬁ/ﬁ,tk\f:_éN(i,ﬁ, t)ds /M). (1)

H(x,t) is thec vector irradiancc at x at the time t. The scalar irradiance
s s Al

hgic,t) is defined by

hie,t)=f_N(mE e)d N (3) (2

-/2. is the solid angle measure on — (c/_/lf 517’96{96(¢="‘{/" c{féa/‘:’co‘s 9)~

The radiance distribution at X and t is a function on =

obtained from the radiance function N by fixing X and t, and is denoted
by Ngf,‘,t). Let . be a unit vector, then the radiance distribution

N(x,-,t) gives rise to an irradiance H(x,n,t) on a unit area normal to n:
e ———— e e

sie P g

Hizt)= 50N, 3 e)dn ()
Snzo (3)



H(ss,vr}‘.t) is the radiant flux at time t across a unit area a.t}v in the direction

De V}J’(ﬁ"b) has the follewing property:
DeHex d)= Hex, 0, t) = HIZ,—n,E).

The structure of thc rudiance function is governed by the equation of

transfer:

S o et

[o®ex )/ vz, 0] DN § ) /e ]/Dt = ~eix HN(W.;

. + N n ( X, 5, £ ),
where n is the index of refraction function, v is the velocity of light

functjon, o( is the yolume attenuation functiocn, amt ¥, &e the path function
defined by

Nz, §.4) = 0@ §,5,4) N, FI 8 (L), (4

vhere g~ is the volume scattering function. Finally, N’f’ is the emission
1
function. The following discussion will require that n be constant on X and

indecpendent of t. In this case (5) reduces to:

S UN@E.EL) » (1/v) INEZ, E£)/IL = - AINGX EE) (g
+ N*‘:(s'é;ﬁ)
where: + N ,\_,,w,‘t))

V = J\‘. (9/(,7.3(' -+ g ;’/J‘a, “"/v%' 67/81‘ .

W



While for a greut pevi ol the present discussion.it is nol actually
nucagsery Lo do so, we shall in the interests of brevity make the customary
assumption that X is stratified, which means that ¥, o , o (Hence N, ) end
by, depand spatially only or. 2 . hus (7) reduces to the relatively rov:

ot llar form:

— U A2, u &,t)/dz + (i/?f’,‘c?N(F,,,u,i»L..é)/(Jf = -

. 5\:(2‘(:)[\](24/“.¢)’£J -+ /\/* (f,/.U, ¢/. é) -+ Nq(zf/“"/r c4‘-417-1/ 3

where x has been replaced by z, and ¥ by the pair (ﬂ,¢),ﬂ= cos 3 .

Pig. 1

The following definitions are necessary prerequisites to the derivation

¢f “he general Schuster cquations, First, the collection of all outward

directions is defined as = ;= {g’ ‘5k Zo} and the collection of all inward

directions is defined as = .= f e ,&(o}, An outward radiance distribution

is the restriction of a radiance distribution to the collection of outward

directions and is denoted by N(z,~+ , ,t), so that IJ(z,-J;//,#,t) is an outwax<

radiance, U= /=< | , 0% ¢ <2T , An invard radiance distribution is defined
analogously ond is denoted by N(z,= , ,t), so that N(z ,-//,ét) is an inward
radiance, O< &« = 1, 0= g{ <2T , Irradiances associated with the special

Airection .}f« play a central role in the sequel. From (3) with now n =X, defiue.
Hez+t)= Hez £ t) ) FU 2.-,t) = Hz,—4,t). (9

These irradiances are induced by the outward and 1n\rard radiance distributions

at z, at time t. The pair of functions (H( ,-‘,t), H( ,-,t)) is called the



swo~ido Schuster Analvsis of the lizht field, or Analysis for short. The

gt [ield is analyzed by this pair of functione in the sense of (4):

/Zf.\ti(z,é) = W (Z +¢) - H(Z;"»é) . (o

v

e eutvard and inward radiance distributions also give rise to two scalrr

jrradiances:

/7(;?,4-,2.‘) = f:‘ N(z'i,/uigélf) Ofua/‘;!,
hez~ &) = J= Nz pét) dpdd .

1f N is replaced by N,) in (11) and (12), we have h,)( ,*,t) and hq( s=,t) in

analogy to the functions h( ,+,t) and h( ,-,t).

Derivation of the Equations for the Analysis

The derivation of the equations forthe Analysis proceeds as follows:
holding z fixed, (3) is integrated over == in two steps : once over = ,and
once over = . . The resulting pair of equations is a conglomeration of
irradiance, scalar irradiance;and radiance functions. The immediate goal is
to arrive at a pair of equations explicitly involving only the members of the
Analysis, An attempt to reach this goal supplies the motivation for the intro-

duction of the so~called forward and backward scattering functions f and b and

the important distribution function D,

Holding 2z fixed, integrate (8) over = 4:

~dH(EZ,+,2)/dE + (/) dhiz,+,4) /It = —=(zt)h(z, +E) (13)
- S N*(z,/p,q’;,t)o/,ur/id
=y ‘

+ hytz,-,4),
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and then over = - 3

duce,- 1) )dz + ) dhez, 1) /ot = — stz t) hez -,t)
I iz p bt ohds
. h,)(z,‘,t') .
(2,2t )= h(Z*t)/H(Z 43

7~
\n
—

De-initions:

I( s+ ,t) is the di.stribution function for the outward radiance distributior,

D( ,=,t) is defined similarly,

Definitions: -
| - iz dip B YYNEZp bt ) dpd D
'F(Z)I){)':—‘ H(Z, Szi[gzi(z,/';¢,//u éli /‘l (lé)-j

[5 Tz g g b L) NE ] é)f///(’f,;f’-]

—~: g

I
b@tt) = Fez e>§

l

£( ,*+,t) and b( ,#,t) are the forward and backward scattering functions of the

Analysis. FEach member of the Analysis has associated with itan f and a
function, By observing that the integral for N, can be written as the sum of
two integralsione over = , and the other over =_, (13) and (14) can be writi
in the required forms:

= dH(E tb)/dz +(fr) P[0 %) HZ, £4)] /0t =
(18)

= ~ D2+ b (2, L) H(ZEE) + fez, 2 t)H(Z +4)
e bez, 3 A HE T4« by (2,3 8).

(18) is the sought—for general pair of equations for the Analysis of the light

field.



The transient cas2 has bceen carried along up to this point to show tha
zenerality of the present mode of derivation, With regard to the purposes cJf
this paper, however, no essential loss of generality will be engendered if *“he
asteady state form of (18) is considered instead:

T dH(z4)/dZ = —D(&,%) =<(#) H(2,%) + f(&,1)H(Z, %)

(19°
rhez,m)RE, =)+ h(2,1) .

Some Properties of the Coefficient Functions

From this point on, the main purpose of the discussion will be to relatc
(19) by successive stages to the classical Schuster equations with special
emphasis on the structure of the coefficient functions. The first term of

(19) suggests the

Definitions: X(2Z,t) = D(z,%)x(2), (20)

Now the total (volume) scattering function s is defined as:

Alz) = L_ T2 pl g pud)dpds (21)

and if @denotes the volume absorption function, we have from gensral radiative

transfer theory the relation:

X (2) = A(Z)+4(Z) . (22)

In analogy to (20) we make the

Definitions: a(z t) = D(E,¥) acs), (23)

A (Z,T)= D& T).A(E). (24)
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Freom (16) and (17) it follows that
fiz )+ b(z,2) =D(2,2) a(2) = 4 (2,%), (25

and (19) may then be written

T dH(z,1)/d2 = - [o(2,%) + b(z,*)]HZ, £) ~ b(a,'-;)r-:(z,(-z; +}
2

In certain contexts, notably in hydrological and meteorological optics,

it is useful to introduce into the equation of transfer the equilibrium

radiance Nq defined as:

Ny (2, §4) = Ny, £,¢)/=(2.¢), (D

and vhich is analogous to the source function used in astrophysicse Thus (8)

may be written:
(28)

~pANJdE = < (Neg=N) + Ny

In the absence of any emissive sources (N,) = 0) in X, NCl serves as a
eriterion for the test of whether N is locally increasing or decreasing along
a path of length r. For if NO>,N, then dN/dr >0 (dz = = udr) and if Nq< N,

then dN/dr < O, This points up the meaning of the term equilibrium radiance.

In a similar manner the notion of equilibrium irradiance Ho can be associated

with each member of the Analysis:

: (29)
b(Z,T)H(Z,F)

?
[acz, £) ~46c2,%)]
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go that in analogy to (28), (26) may be written:

FdHE, B dz = [acz. %) +bz,0)][He(2,%) ~ H(Z,l“)]+h.7(z;§30)

and in a similar way we have a criterion for the local increase or decreasz
with depth of each member of the Analysis,

The similarity in structure between the equation of transfer (29)
and the equations (30) of the Analysis only begins to lay bare the deeper lyin;
connections which must naturally exist between the two, Even at this stage
of the exposition; it is perhaps evident that the study of these connections
is most profitably pursued by riveting attention on the comparatively little
studied coefficient functions a; £, b; et cetera of the Analysis,

In previous studies of the system (26) the main object was, of course,
to solve it and apply the results to problems of immediate interest in the
particular field concerned, To attain this end the system (26), or some
minor variant, was considered as a pair of differential equations with constant
coefficients a, £, b, and h? was assumed known or absent, As to the constancy
of these coefficient functions, what conditions are necessary and sufficient
that this be true? Is the requirement that J be independent of z sufficient?
Even vithout the help of the definitions (16) and (17) the negative answer
would perhaps be easily and correctly reached. But with their help it is

at once clear that a sufficient condition that the forward and backward scatter:

functions be independent of depth is that both ¢~ and the radiance distribution:

b= independent of depth. The radiance distributions are defined to be indepence




of deth if M(Z, ,)/N11(Z,1,0) = N(EY , Yii(zt, 1,0) for a1l = wnd 2! in Lhe
slab, Such o condition on the radiance function implies that there is
multiplicative uncoupling of the denth and direction dependences, i.€.,
is of the form N(z,u, §) = 3(2)7)().1,0). iccording tc (16) and (17), a radiance
function with this property; along with 2 depth independent (T, results in
depth independent forward and backward scattering functions. (A slight gencood
zation of the preceding condition is effected if in addition to N, (7 has i%
depth and direction dependences multiplicatively uncoupled, Then once again,
after suitable modifications, the f and b functions can be made independent
of depth.:s

But vhat of the necessity of these conditions? That is, if £ and b are
independent of depth,is it necessarily true that N iust be factorable and that

0" is independent of depth? The answer, which depends upon some relatively

intricate mathematical analysis, is a qualified yes (exceptions can occur only

on the physically unimportant sets of z of zero measure) .

The necessity and sufficiency of these conditions are extendable to thw
functions os( ,+), s( ,+) and o ( ,+). In view of (22), (23), and (24)

atteibion in these cases is naturally directed toward the distribution functica

{ ,*). It turns out that in the homogeneous slal, the functions

S at), b r), al ), s( ,2) and ex (,x) arve independent of depth if amd

only if the radiance distributions are independent of depth, and this in turn

iz trae if ond only if the districution funsticns D( L x) are independent oo
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30 Jox ordy artlewotiz-? dinterrelationt  ameng the coefficient function:
s ohs optiee ard adiomatric properties of the med e heve been drawn. it
ecawatle e us't, is the wejor premise, nemely the denti iadeperdence of raciancn
distibations, cctuaily realizadlic in a given opticrl riedium with the slib seorn
P arswer Is:  in goneral no, However, sertuin "mevical calculations <3, 25
end exporimuntal cesults 20, 27, 28 bear evidence in Yavor of a limiting-~or
agmptotic~tcrm of the radiance distributicns in certain cptically deep scatteri
media. In such medic these asymplotic radiance distributions are, according to
some preliminacy mathematical investigations, independent of the external light.
ing conditions and dependent only on the inherent optical properties of the
media, Hence, under sush circumstances, the coefficient functions would be
sensibly constant below a certain depth, and the system (26) may bo considered s
a pair of diffowonidal oguald me,

The net conclusion is that the system (26) as a pair of differential
equations with constant coefficients is at best a good approximation, Some
recent experimental evidence 28 (sumnarized in Table II) has wrificd a

particular form of (26) which yields a theory of maximal accuracy for a two-

flow Analysis of the light field,

257, Lenoble, Rev. Optique, 35, 1(1956).
26y, Lenoble, Opt Acta, k, 1(1957).
273, Lenoble, Ann, Geophysique., 12, 16(1956)

28The Lake Pend Oreille experiments conducted in the Spring of 1957 by J. E, Tylex

of the Visibility Laboratory of the Scripps Institution ox Oceanography, La Joll
California, Publication of these results is planned,
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AUALYSTS OF 11 DBCO.urOsED LIGHT #TsL)

Tne clascicel fshuster couaticns were customnrily -mriltten in tems of
the diffuce flvx component of the light field. “his procedure wili nov' oe
clayified and e:tendel. In erder to draw out the full symetry of the foliowin.
formulations, iw will be assumed initially that there exist incident radianc:
dis*ribtuvicuar a* beth the upper an'd the lower boundaries of the slab, whose velu

%113 be designated by NO(0,-4,$) and ¥o(z ,w,$), OSU € 1, 0€ H< 2n,

The incident radiance distributions and the emission function W n generate
whe Light field alin Xo o Wov the radiar e function N from which M is derived mayv
te decumesad iuto the sum N° + W of two functions. These functions are such
that W° represents runiance vhich, relative to W°(0,- , ), N°(2zy,+ , ), and
N,}( » » ) has zero scattering order, N represents radiance which, relative to
N°(0,- , ), NO(zq,+ , ), and N,)( s 3 ) 'has scattering orders one, two, and highe
The existence of these two functions follows immediately from the scattering-ord:

decomposition of the equation of transfer:

E‘VN°+('I/V)BN°/3£=-—-o<N°+NV) (

. _ ' - _ i+ o NI N : .
E-UNI + (/) 5’:\/’/(7;! ot N j—__—_— d s f=,2,0
- (
in which the two incident radiance di stributions and the emission function have
3
been assigned scattering order zero. The components,’jof the radiance function N
consisting of scattering order j = 1 are defined inductively by means of (32).

Hence the solution N of the equation of transfer may be formally written as

szjl:i Nj) ¢



and by defining N* o= S50 MY (3L

we hfﬂ,', ? /‘/ == // < 1" /‘J * £l ‘ :S)

Tihis Cecompesition of N in turn gives rise to the deconposition H® + H¢ of

tao Zight field, and in general any radiometric quontily derived from or relat-:
to N, Nt is referred to as the diffuse component of N, and N° as the reduced
component.,

For the steady state case in the slab geometry, (31) becomes
a/ud/\/”/dg-_— - oLN°+/\/7 ) (36)

Summing each side of (32) over the range 1 € j< @ , we have (for the steady
state case, slab geometry)
W INFAE = - N+ [ e~N*on + [ o AL (37)

Equation (36) may be solved imediately:

+
N (2, ¢) = To (2, d)N OB + [T (i) My (2, b,
e (38)
where

f.
T2, ~HM ) = exp {;ofcx(z’) c//—'} , [ zéu, o< £ f.(39)

A similar expression exists for N°(z,,+//,¢).
Hence the values N°(z ,,u,q‘) of the reducéd éomponent of N are known for all
depths and directions, Under the present decomposition of N, it follows that

the boundary conditions for the diffuse component N¥ are

V¥ (o4, 4) =0 |

N*(fl,f/fl¢)=o, O</l:‘/l o< p<caT. (10)



o solve (37), suppose for the moment that the radiance distrivutions at tlie
voner and lower boundsaries ars collimated:
NOC, =i, d) = NO G pple) S(E - o) |

O<poz [ 05g§<277. o

N E ~p, d) = NeS(p-p.) Al P~ &) 5

iMer, extending a geueral procedure initiated by jmbarsumian® and developed Ly
(aandrasekhar(, the selutien of (37) subject in turn to the boundary condtion (i)
and each of ths incident lighting conditions in (L1), yields two pairs (R.,T.), (R.,
cf functions with the general prorerties:

Rz g pl @) No -, ) D!
+

N I PO I
VRO, U ) = (I//[,I.,.l

L) [ (b ML) NE ) dpt B
=4
/\/K[Z‘"_//' ¢)= (l//u) {:4—:(2(}/'/‘?5,'/”;¢,) A/(‘D)”/L/: ¢/) C—‘///’C/% ‘ 0
O [ R Cao s b p I B) N (BB A B

The functions R_. ard T. are the diffuse reflectance and diffuse transmittance functi

for radiance incident at the upper boundary of the slab. A similar designation holc
for R4 and T4. If the slab is homogeneous (or separable, i.e., '3 Vi is a const
function) then the two pairs (it-,T-) and (R+,T+) are identical. However, in the eve
of a general inhomogeneity, the pairs are distinct29. The functions R and T are clc
akin to U~ .+ This is illustrated by owserving that the volume scattering function

has the property that

N (2,0, $) = [tz pd; g )N (2] $) o' dé (L

g9Partial evidence for this may be found in the irradiancé context (ref. 22). i pro
that R~ # R+ in the case of isotropic scattering may be based on the results in R.Be
and H. Kalaba, Proc. .at. acad. Sci. 42, 629(1956). In lieu of a general direct pro

the assertion,R_ = Ry, T~ = T4,may be countered by the folloving example: consider t

contiguous homogeneous slabs in vhich ™¢#0 but o = 0 in one and ¢ # O in the other.
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and that N-r.u(z,ﬂ,?&) is the scattered radiance generated per unit lenzth in the

direction (}u,q‘). Hence N-)e(z,/l,g/;)/w( is the corresponding radiance generated j
unit depth in the slab. If the above integration is carried out explicitly o
= jand = _ ‘then: , ,
Ny (Ep, &) pt = ("//1)f3+o-(z;/f,¢>,ylﬁ¢$’) Nzl $') op'dd
() [ TEMB = BT) Nz ~uld)owidB ¢
Since = + anc -Z= _differ only by a set of {)-measure zero s = 4 May replace =
the second integral. The similarity between (L5) and either one of (42) or (L
goes deeper than these superficial appearances. For exasple, if we define®

(read upper signs together and lower signs together):

G jpdip )= TE b T8 = TR F@ A

- (2, u b, ' @' )SC(E, 2, Tp,¢) = G(Z tp' ') FH) ®*),

Ospust , ogp<ar ; os/u'sl, osd'<cem.

then the functions ¢, and o. have the properties

i‘j:{;o Ro(ZBipidip,d')/2, =é/.r_v:0 R—(2jp,b;p]d Vfm = T_(0; p, %4,

Lym, Te(2i0.8 54"} 2, = letf;c_ﬁ(24;///¢,'/uﬁ¢,)/i; = G0, 2,8, 0] 4
(47) emphasizes the fact that R and T play the same role for a slab of finite
thickness as does the volume scattering function for a slab of infinitesimal
thickness. Ffurther relations between the functions R, T, and 0,, o_ may be
exhibited, such as the differential forms of the first four principles of inva

iance, but these matters will not be pursued here.

*(hé) summarizes the following asswused property of the medium: (i) isotropy of
scattering, i.e., o(z;51382) = o(2;83;8)) if §1°52 =£3°5,0 52 5 29, from

which follows, (ii) reciprocity of scattering, i.e., 0(25‘51;.32) = o(z;-55581 )
procity of reflection processes will also be tacitly assumed for ry, ry (equa-
tion (82)). Clearly, of the two , isotropy is the more restrictive. From (47)

it appears that o_ acts like a reflectance, o, like a transmittance function..



o derive the Schuster equations for the decomposed light field, ve begin
“ih (37}, The derivation follows the procecurc ottlined enrlier for the
sese of th: underomposad Tight field., The »uly nsiel Jeature .n the preseat
lerivetac i ©5 *the Lutrodustior of a battery of ccafficiant functions for esach

of tie two comuonenty of the members of the Analysie:

(Hoyz,+ )+ (. ) ,Ho (2= )41 (2,=)) .
These snciitei ns finckions are defined by the general definiticns (16), a7),
ana are sereara.ce b Tolte L. The result of the derivation is:

e Kz E) + ¥z, =) %z, F) «+

T dWt (21 d2 = =z,
(48)

+ {%z, FYH" (2, )+ BUER)HU(E, F) .

THE CLASSICAL EQUATIONS FOR THE TWO-FLOW ANALYSIS

The classical equations associated with the two-flow Analysis as
studied by Schuster, Silberstein, Ryde, Duntley,et cetera were in each study
derived de novo for the case of the decomposed light field, The geometrical
setting of the optical medium was the slab geometry; hoogeneity was assumed,
The boundaries were non-reflecting, the usual plan being that the equations
were first solved for this case, and an interreflection study was to be taken
into account subsequently if desired. The light field was generated by an
incident radiance distribution at the upper boundary which was either uniform,
collimated, or a combination of both, The diffuse component of the radiance

distribution was invariably assumed to be uniform at all depths, thus :

D*(Z,ﬁ"’: 2 ? 0<z2 < 2.
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Each coefficient function was therefore to be constant. Ryde gave the first
detailed description of the coefficient functions, under the above incident
and internal lighting conditions, and related them to the volume scattering
function, but in a manner which neglected the general effeét on the coeffi-
cients of the angular structure of the inward and outward radiance distri-
butions. In the extension of Ryde's work by Duntley, some of the conditions
imposed on the coefficients by Ryde were relaxed, but the¢ basic definitions
remained unaltered. Tor the purposes of comparison, Table I exhibits the
coefficient functions of the present work with those used by Ryde and
Duntley.

After applying the present definitions of the coefficient functions to
the classical assumptions given above, we will compare some of the results
with those found by the earlier methods., Of the incident lighting conditions
discussed, the collimated radiance distribution is the most basic.

ficcordingly, we will assume that

N (Qors g)= NS omp) S (p-4.), 04 2 1, O & £ 22w,

TABLE I  Comparison of the general coefficient functions for reduced and
diffuse flux with those occuring in the works of Ryde and Duntley.

Undechﬁzsed Reduced flux Diffuse flux

HO ,e) HO( ,-)| T, (B, | s || (L0 | ot
A( ,+) A O( ,=) [m+BreFr  |[X%( ,+) |A+B+F|| % #( ,=) #B+F
al ,*) A=) S A3( ,+) S ax( ,-) | M
() o ,-)| B B( ,+) | B || v ,-) | B
£( ,4) £ ,-) F £t ,+) F e ,-) F
s( ,*) 5°( ,-) s! s#( ,+) S s*( ,-) S
D( ,+) po( ,-) D#( ,+) B#( ,-)
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For the ieduced cumocnert ¢f the licht field:

KE S

/V"(Z,“/U: ¢) = ./Vc’@‘ o OP'//U.-‘//U) J[¢~¢'o).

To £2710ms Frorm (15) tart

DV2-)= Yuo, ozz<yz,,

further, from (15

FCE ) = ’/,"O.U_?_f?fﬂ#;ﬂa,q‘o) It = (uo) 03 (o) ,

and from (17)

bo(2,=) = Cfpo) [ 0= (i, b1 o, ) leeld = Clfpo) T= (o) |

For the diffuse component of the light field, we have

D*(f,:‘:)=2J 0= F= 2 )

P =T @ = om o [ o u s o ds ]
-t =3

and

/
= (m) [_ T dpidpt <2 =20

Similarly

b¥(z,-) = b¥z4) = C1/m) /. Tz () dytd &’ = 2()[0:(///)0’;/’-—3 2q-.
=4

from the general properties of the f and b functions, or directly from abvove,

it follows that

A°(Z ,~) = FUE-)+ bO(Z,0) = ()4

2% (2 %) frcz,x) 4 b2, X)) = 24 .

]
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Ryde‘sl%unclusion vas that B + F =Bt + FI', i.e, that 5 = S'; a disagreement
with the present cenclusion s = 2L s° which apxrotly arises from different
delanitime of B aud b, F and £f. According to the present formulations,
there 3s ageeencny vnen and cnly when (o = ’/2 , i.7., vion &, = 60°, If
G, = C°, 4, L anl s = 2s°, a conclusion correctly reuched, for example,
by Hulber-‘;cz'
In ih2 elencion of Rydetfs results, Duntleyl3introduced a nevw
constant.le which courresponds, according to Table I , toa°( ,=)s Under
the present assumptions, it follows from (23) that
a.°(z,=) = (léﬂo)CL ) (5
and
at(z,=) =2& , (5
Duntley rightly concluded thatfxand/u' differ by virtue of the differepce
in angular structure of the reduced and diffuse radiance distributions,
However the simple relation
a¥ = 2U,00° (5
between the two that existed by virtue of the assumed character
of the light field was not given, If 0, = 0°, thenaX = 2¢C, another observa

21
correctly made by Hulburt™, The preceding relations are speclal examples of

the general relations
o#(z,2) = [0%(2,2)/0°(2,2)] 02 (2,2) (¢
4% (z,1) = [D*(z,:.)/D°(z,z_)]A;°(z,_t). (¢
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The preceding discussion was concerned with radiance distributions of
restricvea angular structure and a volune scattering function of arbitrary anzul
structiwe., Below we examine the consequences of ruversing this situation: the
angules suictura of the radiance distributions will Le zrbitrary and in fact
rlogea to asstw, twiv natweal forms in a medium which exhilits isotrepic scatt

aring.  Ther, Ty vielas of the general definitions,

C o= (I/4w) 4, (62)
and
tez,2) = $D,t)4, (63)
bez,t)= zP(Z,%) 4. )
Further,
Q(Z,1) = D(Z X))o, (65)
L(Z,+) = D(E )AL, (66)

so that in this case the burden of depth dependence is carried by the distribu-
tion functions. Thus (26), the general equations for the undecomposed light fie
talke the form:

T dHz,2)/d2 = ~1[2a+4]D(E ) H(Z,T) +-aLD(2,’¥)AH(z,(:6)+);
(67

Since D( ,+) and D( ,-) clearly depend upon the unknown siructure of the
radiarce distributions, equation (67), as it staxds, has unknown variable coeffi-

cients. If the usual assumption is now made that D(z,+) gnd D(z,~) are known
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constants (or that they vary in some relatively innocuous manner) then the precec
iny systen is solvaldl e, Ly initially decomposing thz light field and allowing (¢
to takn its appropriate form, such assumptions invariaB®ly lead to relatively usé
ell')pz;oximate descriptions of the finelysis of the ligh% field. 4 recent paper by

Kubelka?2 precents a poir of differential equations whizh are related in structu.
o (67) (with h,);=.0). The derivation of the pair proceedéd ~ in the usual manner

by means of conucrvation argumert s.

It is of irie.wsv tn obcerve that (67) is just two steps away from a steady
state diffusion equation for photons. By adaing the members of (67), the left
side becomes the divergence (V'\ﬁ.) of the_light field. assuming for the moment 1

Fick's law off diffusion is vd id for photons,

H2) = -C(@)Vh(z) ,

vhere C is a diffusion function, (67) leads to

V(ci)vh(z)) = ah(2) - h7 )

If C is a constant, the more familiar form involving C \7° h is obtained.

By decomposing the light field, a pair of . equations in h° and h* is
obtained. The equation involving h® is readily solved. Under the isotropic sva
assumption, it may be shown that Fick's law holds rigorously for the diffuse com
of the light field, so that in this case an exact diffusion theory discussion of

the light field is possible.
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THE TWO-D THEORY

The chain of successive generalizations ¢f th~ twe-flew theory frem
Schuster!s criginal worlk in 1905 to Duntley's work in 1942 inereased the
numder of optical constants used in the theory from twoc to six. Acide from
certain acederde sophistications tc which the classical “wo--flow theorvy can
be subjected (e.g., extensicn tc the transient case, to riore meneral geonmetrie:
to n flows, ord to the inclusion of arbitrary emission functions) there remains
one final extension of some practical importance, namely the endowment of each
of the two flows with a distinct geometrical structure. That is, the inward
and the outward radiance distributions are assigned arbitrary but fixed shapes,
Equivalently, to each nember of the Anal:'sis is assigned an arbitrary but

fixed distributicn factor,

This extension was made some time agoBO dut the result remained cnly as an
idle curiosity of acadenic interest, However, scne recent experiniental work28
on the measurement of radiance distributions in natural hydrosols has supplied
sornie evidence in favor of the two-D hypothesis. This evidence is summarized in
Table II. In the course of the experimental work, radiance distributions were
measured from the surface down to depths of about 200 feet. The medium was
found to be honcgeneous in this depth interval. Further, the ineasurements werc
taken under a variety of incident radiance distributions varying from swny to
completely overcast skies, The presently available data was kindly nut at the

disposal of the author by J. L. Tyler and his staff prior to their publication

of the experimental results,

BOR. W, Preisendorfer, Lectures on Radiometry and Geophysical Optics, unpublishe

lecture notes (Visibility Laboratory, Seripps Institution of Oceanography, Fall,

1954).


http://acr.dw.dc
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Table II Ixperimentally vetermined vistribution ifunctions

Clear Sunny Sl | Completely Overcast Sky
Depth z, f+t. i L{m,+) | D(z,-) Depth z, ft D(2z,+) D(z,-)
e e

13 | 2.67 1.25 10 2.75 1.22

33 | 2.70 1.26 Lo 2,82 1.32

53 : 2.9 1.28 80 2.85 1,31

93 2.6 1.31 120 2.93 1.33

133 2.78 1.31 160 2.86 1.33
173 2.77 1.30

Before embarking on the details of the two-D theory, it should be noted that
a slight additional generalization can be incorporated in the present extension if
one assunes that the medium is inhomogeneous in such a way that o« and 0 vary in t
same mamner with depth, so that s/%i is a constant function. Such a generaliszat
is inessential to the structure of the resulting equations since the equations are
imnediately reducible to the homogeneous case, for example, by a transformation f:
geometrical depth z to optical depth T = [:q;') dz’ . On the other haad, tt
assumption of a general type of inhomogeneity introduces essential modifications
which vitiate the customary utility of the Schuster equations -arising.. .. from
the presence of constant coefficient functions. For these reaséns the medium is

assumed homogeneous at the outset with o< and 0 otherwise arbitrary.

Basic Properties

We begin by agreeing that, (i) the incident radiance distribution at the

upper boundary is of the form: A (0, -, b) = N Y d (p-uo )J(¢~¢°) O<t:

O< $,< 27, (i1) N2+ , )= 0 , (iii) the upper and lower boundaries are
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non reflecting, (iv) U,( , , )=0, (v) D*(z,%) = D*(%), two gencrally different
! .

constants. If the rasponse of the medium to a collimated incident radiar ¢ dis’

tion can be doserminad, the response of the medium to an arbitrary incident rad:

distribution is readily synthesized from the results developsd below.

The r equisite equations for the two-flow Analysis follow from (LB), (50),

and (51);

— dHA (2,2 /dR = - [a¥ (1) +BH] HTEE) +bUF) H¥ 2,7

(7¢
+ N"é;e‘i//w g (Me),

vhere, in view of the homogeneity assumption, the depth dependence of the coeff

functions has been dropped from the notation.

The general solution of the system (70) is readily obtained ard may be

expressed in the form

H¥*(2,7) = g ) S F g (1) F VT e

2<7

vhere m, and m_ are two constants (for given &,and zl) which are determined

by using the boundary conditions (which follow from (LO)):

(72)
H*(o,-) = A*(Z,,+) =0,

It follows that

My zNo[gr; (<) C(/Uo,““) e_mio///o_ (j; (‘i’)C[ 0}_)84@;ZJ/A{
(7:

where

&_z (70

A(Z2) = 5+(+)3-(-)e%*2— 3+(—)5-(+)e p



29
g+ ¥)=/ % (%) , (D=2 a¥)

£+ - T L

(75)

The two constants £ + , £,— are obtained during the solution procedure
and are defined by

e . 2
£t =L ([ re hrt-ar(=)-b-)] % s b¥ 6 a1+ 651)
—teb¥ () &%) ] '4} (76)

These constents have the property that
é?")C) v e - RS D (5 AnA £y = %._. =0 /¥ o =o0.

Finally,

C (pee, ¥) TEL)b™(F)+ 0% O [T (7 2O )]
“ (%+ t‘g“; )(%" ’757 ) ()

The above expressions reducc rcadily to those of the .one-D theory by
assuming D*(+) = D¥*(-) = 2, It follows that a ®&%)= téj‘z-)=2a?3 B )= ¥ )=a 0:_7
so that €+= A =2f (msgs )| 5 A . Purther g4f+= 7= ()= (+(24/€ ) gutiey iuizr-g
Under these conditions, and sctting /‘-'E = / , (71) reduces to the equations
originally considered by Hyde if in addition the identifications A/*E 4/;
o= 4”  are made.

Diffuse Reflectance and Transmittance Functions

The diffuse reflectance and transmittance functions /)D(z-,;/.%) and

T(Z/)/«.o )for irradiance are defined by the relations

2R (2,5 p )= H 0, +), (78)

NOT(Z, f2) = 52, ). (79)
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Using (71), these functions are readily found:

RIZifs )= Clin - )arlg- fo) Je 2 e =2/ (2, ) +
*Clr D ](ato) iz e =2 - ] (80)

J

T2 e )= Clr f)jf-(—)j-/—,J[e'g"'zle{”zf]/d (2,)+
+C(/a.%~) [(A (¢)/7) (z/))e(%,,.f—g_)i, —e"‘i'%oj' (81)



To see Q(E.,‘//,)and'r(a.}/b) in their proper perspective, it is instructive to retu
to the exact solutions of the standard problem as given in (L42), (L3). Under the

present assumptions,

N0y, ) = (YPINCR(Z b 5 plo, #o)
NY (7 —p, ) = (L) N T2 4, & e, P,
usince
K¥o,+) = f___:* ,\/*(ol+/d,7§)/do/ﬂo/¢ :
HECZ - = f.;.._) A/’K(E_,’—-//,¢}/U c//ua/sﬁ o
we have from the exact theory
H¥Co,+) = N[ R(Zijp0, b, 000, %) I ¥,
H*(zl/‘—) = Nof

———

LTz b Moy Bo) Ap g -
In the exact theory one mey make the definitions
Rz pol = [ RC2, p.# ) plo, #o) dpolF
=+

T(Z//'/Udl = fsz(Z,}//,fé/'/”/ ¢a} Q/,UO/% .
Hence if the tvio-D hypothesis were to hold exactly, then the latter functions wo:
be identical with those introduced in (78) and (79). In any event, the diffuse
reflectance and transmittance functions intwoduced in (78) and (79) have the

properties that, for an arbitrary incident radiance distribution,

H*(0,+) = f3_+ R(Z); )N (0,4, ) Iradd

K (Z5-) = [_:__+ T(Z ) NOCo,~u, b)adw d/$ -
The similarity of the it ard T functions of the two-D theory with those of the ex:

theory is strengthened by noting that
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Te above sets of simultaneous equations are statements in the cxact tleory,
are just as difficuit to solve ast he general equation of transfer itself. iloweve
ihe,s have been deliberately formulated so that thei appearance is that of a set ¢
ssmutaneous lineer almebraic eauations with the irradiam es as unknowns, and if
are to e sol.ed s such, the various coefficients R¥, T%, rg, and r{ must be ass:
Imovn, Thug, the darallel with the general two-flow'equatioﬂs for tﬁe .nalysis i:
complete: ia order to solve the above sets of equations as algeuvraic ecquations, i
follows from (83)-(86) that some assumption must ve madc about the angular structv
of the difiuse radiance distributions,ggg the reflected radi® nce distriovutions at
the boundaries. As far as the diffuse radiance distri.utions are concerned, one
may adopt a omne-D or a two-D theory; and for thereflected radi nce distributions,
matte or specular reflecting characteristics of the ocoundaries are the customary
concessions to coaplexity. If the one-D and epecular assumptions are made, (88)
will yield, upon solution, the correct forms of the transmittarc e and reflctance
of the slab vrith reflecting voundarie s which will reduce to the classieal results
of LWdﬁlg , for example,after adopting the appropriate assumptions made i
~ each case. Though we shall not do so here, it would be of interest to apply the
two-u theory to the systems (88) and (89) to complete the generalizations besun

in the preceding section.

GENERALIZEyD SCHUSTHR ANALYSIS

We now indicate briefly the generalization of the classical two-flow Analysis
to geometries other than the slab geometry, and then finally the two-{low Analysis

is generalized, in the spirit of the prcceding sections, to n-flows.

fig. 2
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Let X now be an arbitrary suvset of Euclidean three space, x = (x7,%0,x3) &
point of X, and = the collection of all unit vectors in 3. In the slab geomet
the vector £ vas used to partition = into =4 and =_. In the present case,
select at each z 3 fixed unit vector vr&(ac‘), or Ar}vfor short, Then at .3 partition

D
-

Z dnto =,p) = -i‘,‘:;.u?_o} and E~(Q)=§£;E.Q\<c}(i‘igure 2(a)). In analo

v v A

to H(x,t ), define

EN(x,E ¢) dﬂ(}‘;)? (9

then

] (9
similarly, define
hez,xady=f_ ) Nea g 4) d00E). o
A corresponding definition exists for h &, tn,t). Holding X fixed, (7) is now
integrated over =,(n) and E_(Q),which supplies the general analogy to (26):
V-Hig, o)+ (Yv) o to fyHex, sn £)] /7t
(:

= - [ax,ro )+ b, 2n £)] H@, £ 4] + b2, 20 ¢) Hix, 70 ¢)

—s-lq (2. tn4).

The £'s and b's are defined as in (16) and (17), the integrations now being taken
Zyn)and=_()) ). The definition of D¢z, *y +)parallels that in (15). If X is r¢

presented by spherical, cylindrical, or generally some curvilinear coordinate sys{f
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the diversences V-“I-i (35,‘.':&’],}) take their characteristic form in that system
The divergences reduce to the familiar derivatives in the slab geometry. sor th
zeneralizeda Schuster analysis to be most effective, one must choose the coordina
system in such 12 that the members of the analysis are constant over each sur
of some space-fillirg mne-parameter family of surfaces (e.z., spheres, cylinders.

plurec, etc.). !

The general n-flow equations are ootained by partitioning = into n mutua;
exclusive suvsets whose union is = (figure 2(b)). 4s before, let n(x) ve som
chosen unit vector at X Then with respect to n, partition = into n subsets
=y j=1,...,ny in some well-dciined manner (e.g., in the slab geometry, let th.

partition be n equiangular concentric zones about n =AI£; if n = 2, the usual par:

tion is obtained). Define

H. (=
[V o

sczoatr= [ TNz g, ) dAE)

(9k)

L}

along with

lp-Hx, 0 ¢) = Hj(x

ot), (95)

which is the irradiance at time t on a unit area at X normal to n induced by the

radfent flux in the directions =, .« (Hy, Hp, e.. ,H,) is the n-flow Schuster

Analysis of the light field, ox n-flow .inalysis, for short. Further, set
hy(x,04) = fsj Nz, £ 4)IDE) (96,

n
!

with h.), J-(z "l:) defined analogously, and agree to define the jth distrioution

factor by
hij(z,0,¢) JHi(E 0, t)

D;(x,n t)= e wes T, (97)
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inally, the general counterparts to (16) and (17) must be of the form

IR e ER———— : ’ / (£
"LM (Z.8¢ FgCx,n,%) g’zj-[jzg(g'g'“f"éw(gé'ﬂ dlg )]d‘a “(9

d €L gy C“j’ and s, are definsl analomously to (22), (23), eid (2L). ‘Than holding
s fixed, integrate (7) over = via tnc n partitions. .ith tho above dufinitions,

-~

the result is reducivle to

Veldiv 0fr) ALDH;] ot = ~ G H; + Zgos Agp Hp v hy,y O

vespite the generality of the partition it is still possidle to define "forward" an
"backward" scattering functions f j and bj by adopting the following device: 1let
fj = 854 for j =1, ... ,n; and if E&,&j denotes summation over all k from 1
to n excluding j, then let b, =Z&¢jsk3.. Consequently, fj + by = s; = Djs. Final

set bjk 2 S5k for j # k. Then (99) becomes

. [ ‘ ] ' = - . . . .
V\ﬂj (l/U‘) QEDJ Hﬂ]/at [Qj*bd]Hg-l-Z&*j. bﬂ/&H»& +L7,]JJ' (1
j‘: {} (R } n7

which establishes the final generalization. By letting n—» oy such that
max{ﬂ(?.'j)) j'::l,...ﬂ‘)}-}O, (100} returns to the equation of transfer (7), and the

circle is complete.
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CAPTIONS

Figure 1. Illustrating the clab geometry. k denotes the basis outward direcs.
AAA

’,\lf,{ the vasic inward direction. The z-coordinate increases as one prosresss:

into the medium from the upper boundary (the x-y plane). The orizin is at O

= denotes the sphere of unit directions about the point X
figure 2. (a) Illustrating the partition of the unit sphere as used in the
derivation of the two-flow equations for an arbit: ary coordinate system.

(b) Illustratiny the partition of the uuit sphere as used in the

derivation of the n-flow equations.
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