
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Manifold learning techniques for non-rigid structure from motion

Permalink
https://escholarship.org/uc/item/5v4252b0

Author
Rabaud, Vincent C.

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v4252b0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Manifold Learning Techniques For Non-Rigid Structure From Motion

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Computer Science

by

Vincent C. Rabaud

Committee in charge:

Professor Serge Belongie, Chair
Professor Sanjoy Dasgupta
Professor David Kriegman
Professor Gert Lanckriet
Professor Truong Nguyen

2009

Copyright

Vincent C. Rabaud, 2009

All rights reserved.

The dissertation of Vincent C. Rabaud is approved

and it is acceptable in quality and form for publica-

tion on microfilm and electronically:

Chair

University of California, San Diego

2009

iii

DEDICATION

This document is dedicated to my family and the Ecole Polytechnique.

iv

EPIGRAPH

If your eye were more acute you would see everything in motion: just like ignited paper

becomes deformed, every thing unfolds and deforms.

– Friedrich Nietzsche, Posthumous Fragments.

Then all motion, of whatever nature, creates ?

– Edgar Allan Poe, The Power of Words, 1945.

Bust a move

– Young MC.

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

Acknowledgements . xi

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Camera Model and Image Formation . 2
1.2 Feature Paradigm . 4
1.3 Rigid SFM . 6
1.4 Non-Rigid SFM . 7
1.5 Current Limitations . 9

1.5.1 Problematic Closed Form . 9
1.5.2 Problematic Iterative Solution . 10
1.5.3 Limited Model . 10

Chapter 2 Linear Embedding . 11
2.1 Problem Formulation . 12
2.2 Outline . 12

2.2.1 Generalized Non-metric Multi-Dimensional Scaling Overview . 13
2.2.2 Constraints . 14

2.3 Ordering Set F . 16
2.3.1 Triplet Distance Infimum . 17
2.3.2 Triplet Distance Supremum . 18
2.3.3 Computing the Ordering Set F . 19
2.3.4 Practicality . 19

2.4 Optimal Shape Basis and Rotation . 21
2.4.1 Rank Constraint . 21
2.4.2 Kronecker Constraint . 22
2.4.3 Rotation Constraint . 23

vi

2.4.4 Orthonormality of S . 23
2.4.5 Final Optimization . 24

2.5 Experiments . 25
2.5.1 Shark Data . 25
2.5.2 Roller-Coaster Data . 26
2.5.3 Real Data . 26

2.6 Pushing the Limits . 31
2.6.1 Gradient Descent Iterations . 31
2.6.2 Triplet/Pair Sampling . 32
2.6.3 Noise Robustness . 32

2.7 Acknowledgements . 35

Chapter 3 LSML . 36
3.1 Related Work . 37

3.1.1 Common Manifold Learning Techniques 37
3.1.2 Previous Work Overview . 39

3.2 LSML . 40
3.2.1 Motivation and Error Function . 42
3.2.2 Regularization . 43
3.2.3 Linear Parametrization . 43
3.2.4 Radial Basis Functions . 44

3.3 Analyzing Manifold Learning Methods . 44
3.3.1 Model Evaluation . 45
3.3.2 Model Complexity . 46
3.3.3 Model Selection . 49
3.3.4 LSML Test Error . 50

3.4 Working withHθ . 51
3.4.1 Projection . 51
3.4.2 Manifold De-noising . 52
3.4.3 Geodesic Distance . 54
3.4.4 Manifold Transfer . 55

3.5 Conclusion . 56
3.6 Acknowledgements . 56

Chapter 4 Non-Linear Embedding for NRSFM . 57
4.1 Problem . 58
4.2 Method . 62

4.2.1 Initialization . 62
4.2.2 Minimization . 64

4.3 Experiments . 67
4.3.1 Synthetic Data . 67
4.3.2 Real Data . 69

4.4 Acknowledgements . 72

vii

Chapter 5 Conclusion . 73
5.1 Contributions . 73
5.2 Future Work . 74

Appendix A General Math Considerations . 75
A.1 Notations . 75
A.2 General Linear Algebra . 76

A.2.1 General Rules . 76
A.2.2 The Curious Case of Cn . 77

A.3 Derivations in Linear Algebra . 78

Appendix B Linear Embedding Formulas . 79
B.1 Infimum Computation . 79
B.2 Computational Considerations . 81

Appendix C LSML Appendix . 82
C.1 Notations . 82
C.2 Centered Error Function - General Form . 82
C.3 Centered Minimization for General Manifolds 84
C.4 Derivatives and Hessian for different solving 86
C.5 Manifold Denoising . 88
C.6 Snakes on a Local Plane . 90

Appendix D Non-Linear Embedding Formulas . 92
D.1 Best N-view Reconstruction . 92
D.2 Simplifying the problem for 2 views . 93
D.3 Gradient of the error . 94

D.3.1 Gradient with respect to ti . 94
D.3.2 Gradient with respect to Ri . 95
D.3.3 Gradient with respect to Si . 95

References . 96

viii

LIST OF FIGURES

Figure 1.1: Orthographic Model . 2
Figure 1.2: Validity of the Orthographic Model . 3

Figure 2.1: Pairwise Affinities . 16
Figure 2.2: Shape Embedding for the Shark Dataset 20
Figure 2.3: Shark Dataset . 27
Figure 2.4: Roller Coaster Dataset . 28
Figure 2.5: Real Sheet Dataset . 29
Figure 2.6: Real Sheet Dataset Samples . 30
Figure 2.7: Importance of the Number of Iterations . 31
Figure 2.8: Importance of the Triplet Sampling . 33
Figure 2.9: Robustness to Noise . 34

Figure 3.1: A New Shape Manifold Interpretation . 37
Figure 3.2: LSML Fundamentals . 38
Figure 3.3: LSML Overview . 41
Figure 3.4: Finite Sample Performance . 47
Figure 3.5: Bias-Variance Tradeoff . 48
Figure 3.6: LSML Test Error . 50
Figure 3.7: Manifold De-noising . 52
Figure 3.8: Geodesic Distance . 53
Figure 3.9: Missing Data . 55

Figure 4.1: Initialization of MSFM . 61
Figure 4.2: Gradient Projection for MSFM . 66
Figure 4.3: Roller Coaster Dataset . 68
Figure 4.4: Bending Shark Dataset . 70
Figure 4.5: Slinky Dataset . 71

ix

LIST OF TABLES

Table 4.1: Parameter Count for MSFM . 61

Table A.1: General Math Notations . 75
Table A.2: SFM Notations . 77

Table C.1: Table of LSML Variables . 83

x

ACKNOWLEDGEMENTS

First I would like to thank my advisor, Serge Belongie, who is the main reason

why I decided to do a PhD in computer vision. I always had a special interaction with

images but only for leisure. Serge is a passionate person that can communicate his

enthusiasm very easily and he made me aware of how exciting computer vision research

can be. I also really appreciated the trust and freedom he gave me over the years; we

did not believe the ideas developed in this dissertation could ever work but Serge let me

play with them and follow my instincts. Serge was also a great personal advisor over

the years, which made me realize how much research and personal life are linked.

I would also like to acknowledge Sanjoy Dasgupta for the inspiration he pro-

vided me. While our interactions were definitely not as frequent as I would have liked

(mostly because my research was not using much machine learning), I still remember

his words about the importance of research over classes, ironically enough given during

one of his classes. I am also grateful to him for being able to explain anything in the

simplest fashion, thus providing me the hope that I could understand anything as long

as I could find the right manual/person to provide explanations.

These years at UCSD were also an occasion to work with people from really

different backgrounds, and therefore, ways of thinking. Piotr Dollár introduced me to

machine-learning and made me approach and think about problems differently. He also

made me adopt a better scientific approach: rigorous, open and generous towards others.

Kristin Branson was also a huge influence on the development of my scientific mind: she

made me appreciate and believe in probabilistic approaches ! She is also an extremely

kind person who has always been there to talk about any subject. Sameer Agarwal had

the same influence: his exhaustive knowledge always made him the first person to talk

to about a new problem I had. I wish I had started a year earlier so that we could have

worked together on structure from motion. Manmohan Chandraker also taught me to

appreciate another mathematical field: I now agree, the answer to life, the universe, and

everything is optimization, not 42.

xi

I also would like to acknowledge the “graphics” people who I shared an office

with: they introduced me to efficient and new programming techniques. Thank you

Wojciech Jarosz, Neel Joshi, Will Chang and mostly Craig Donner. A special thanks to

Neil Alldrin for being my conference buddy and a good friend: too bad I do not study

your field. Finally, I would like to thank the older crowd that I barely met for sharing

their wisdom: Lawrence Cayton, Satya Mallick, Ben Ochoa, Matt Tong, Eric Wiewora

and Josh Wills. Similarly, I wish good luck to the younger crowd ! Daniel Hsu, Boris

Babenko, Steve Branson, Carolina Galleguillos and Kai Wang.

I would also like to thank the following grants which supported my research over

the years: the NSF Career Grant #0448615, the Alfred P. Sloan Research Fellowship and

the UCSD Division of Calit2.

While a great effort has been put on optimization in this thesis, I also went

through hours of trials which would not have been possible without the computer grid

UCSD FWGrid Project (NSF Research Infrastructure Grant Number EIA-0303622) that

provided me with a total 17 years worth of CPU processing ...

Finally, I would like to acknowledge my family. They provided me with support,

comfort and love. My mother Catherine, father Hervé, sister Blandine, and girlfriend

Brittany McLaren. I owe everything to them.

Chapter 2, is a reprint of the material as it appears in Linear Embeddings in

Non-Rigid Structure from Motion, V. Rabaud and S. Belongie, IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

Chapter 3, is a reprint of the material as it appears in Non-Isometric Manifold

Learning: Analysis and an Algorithm, P. Dollár, V. Rabaud and S. Belongie, Interna-

tional Conference on Machine Learning, 2007 and Learning to Traverse Image Man-

ifolds, P. Dollár, V. Rabaud and S. Belongie, Neural Information Processing Systems,

2006.

Chapter 4, is a reprint of the material as it appears in Re-Thinking Non-Rigid

Structure from Motion, V. Rabaud and S. Belongie, IEEE Conference on Computer

Vision and Pattern Recognition, 2008.

xii

VITA

1979 Born, Nantes, France

2001 B.S./M.S. Ecole Polytechnique, Paris, France

2003 M.S. SUPAERO, Toulouse, France

2009 Ph.D. UCSD, California, USA

PUBLICATIONS

P. Dollár, V. Rabaud, G. Cottrell and S. Belongie, “Behavior Recognition via Sparse
Spatio-Temporal Features,” IEEE Transaction on Pattern Analysis and Machine Intelli-
gence (PAMI, in preparation), 2008.

V. Rabaud and S. Belongie, “Shape Embeddings and Non-Rigid Structure From Mo-
tion” , IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), 2009.

V. Rabaud and S. Belongie, “Re-Thinking Non-Rigid Structure From Motion” , IEEE
Conference on Computer Vision and Pattern Recognition, (CVPR), 2008.

S. Steinbach, V. Rabaud and S. Belongie, “Soylent Grid: it’s made of People !” , Inter-
active Computer Vision, in conjunction with ICCV, (ICV), 2007.

P. Dollár, V. Rabaud and S. Belongie, “Non-Isometric Manifold Learning: Analysis and
an Algorithm”, International Conference on Machine Learning, (ICML), 2007.

P. Dollár, V. Rabaud and S. Belongie, “Learning to Traverse Image Manifolds” , Neural
Information Processing Systems, (NIPS), 2006.

V. Rabaud and S. Belongie, “Counting Crowded Moving Objects,”, IEEE Conference
on Computer Vision and Pattern Recognition, (CVPR), 2006, pp. 705- 711, vol. 1.

P. Dollár, V. Rabaud, G. Cottrell and S. Belongie, “Behavior Recognition via Sparse
Spatio-Temporal Features,” Joint International Workshop on Visual Surveillance and
Performance Evaluation of Tracking and Surveillance, (VS-PETS), 2005.

S. Belongie, K. Branson, P. Dollár, and V. Rabaud, “Monitoring Animal Behavior in the
Smart Vivarium,” International Conference on Methods and Techniques in Behavioral
Research, 2005.

V. Rabaud and S. Belongie, “Big Little Icons,” IEEE Workshop on Computer Vision
Applications for the Visually Impaired, in conjunction with CVPR, (CVAVI), 2005.

xiii

K. Branson, V. Rabaud and S. Belongie, “Three Brown Mice: See How They Run,” Joint
International Workshop on Visual Surveillance and Performance Evaluation of Tracking
and Surveillance, (VSPETS), 2003, pp. 78-85.

V. Rabaud and B. Deguine “A Geometrical Approach To Determine Blackout Windows
At Launch,” AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, (AAS),
2003, 03-187

FIELDS OF STUDY

Major Field: Structure from Motion
Rigid Structure from Motion, Non-Rigid Structure from Motion,
Image Panoramas.

Major Field: Motion Analysis
Motion Segmentation, Blob Tracking, Real-Time Tracking,
Human Motion Analysis.

Major Field: Manifold Learning
Manifold Tangent Learning, Embedding Technique Comparison,
Image Manifold Learning.

Minor Fields
CAPTCHAs, Visual Perceptions.

xiv

ABSTRACT OF THE DISSERTATION

Manifold Learning Techniques For Non-Rigid Structure From Motion

by

Vincent C. Rabaud

Doctor of Philosophy in Computer Science

University of California, San Diego, 2009

Professor Serge Belongie, Chair

This dissertation establishes the foundations for treating non-rigid structure

from motion as a manifold learning problem. Non-rigid structure from motion (or

NRSFM) is the computer vision technique that recovers the 3D structure of a de-

formable object from a monocular video sequence. State of the art techniques assume

that the object is generated from a linear combination of basis shapes and several tech-

niques (like EM or matrix decomposition) are then used to exploit this assumption.

So far, nobody has ever considered this setup as a linear manifold learning prob-

lem. In this dissertation, we show how NRSFM can be formulated as a manifold embed-

ding recovery problem. First, the different frames of the video sequence are embedded

in a low dimensional manifold, from which the shape coordinates are discovered and

then used to recover the camera parameters and the shape basis.

We also push the limits of this model by relaxing the linearity assumption of

the manifold and only constraining its dimensionality. This looser assumption is proven

to be much more valid than the simple linearity one for certain objects where only the

xv

number of degrees of freedom is known. To solve this problem, a new manifold learning

technique, named LSML, is introduced. LSML focuses on learning tangents rather than

points themselves as done in conventional manifold learning.

Both methods are validated and compared with state of the art techniques on real

and synthetic data.

xvi

Chapter 1

Introduction

In this dissertation, we address the problem of reconstructing the 3D structure of

a scene from a movie taken with a single camera.

In computer vision, images can be analyzed at different levels of understanding.

For example, in segmentation the image of a scene is divided into meaningful entities,

like objects. Similarly, in recognition, an object is identified in an image, not necessarily

by segmenting it. When analyzing videos, the temporal dimension brings a whole new

set of information but also challenges.

The setup considered in this dissertation is the following: a unique monocu-

lar camera films a scene where an unknown object deforms over time. The goal is to

recover, by using the motion of the camera filming the scene, the 3D-structure of the

deforming object. This is Non-Rigid Structure From Motion, or NRSFM.

The goal of this dissertation is to demonstrate how NRSFM can be considered as

a manifold learning problem focused on recovering the low-dimensional shape embed-

ding of an object. We will show how this new interpretation improves on current state

of the art techniques and also overcomes the limitations of currently used assumptions.

Finally, while notations are conventional and will be explained along this disser-

tation, we refer the reader to Section A.1 for a list of used notations.

1

2

Figure 1.1: An orthographic camera is the simplest camera model: the scene is simply

projected onto the image plane by removing the depth in the scene. There is therefore

no perspective distortion. This model is usually used to simplify the projective camera

which is used for conventional pinhole cameras, CCD cameras and X-ray images.

1.1 Camera Model and Image Formation

In Structure From Motion (a.k.a. SFM), the goal is to recover from a monocular

video stream, the structure of a scene as well as the motion of the camera.

A camera projects an observed 3D point of coordinates
[
X Y Z

]>
onto the

image plane where only its 2D coordinates
[
x′ y′

]>
are measured.

In this dissertation, we limit ourselves to the case of an orthographic camera.

Figure 1.1 illustrates the properties of such a device while Figure 1.1 shows when the

orthographic gets valid. The following equation defines the image formation for an

orthographic camera:

x′
y′

 = ΠK

R∗

X

Y

Z

+ t∗

 , with Π =


1 0 0

0 1 0

0 0 0

 (1.1)

3

Figure 1.2: Suppose Zavg is the average distance of an object from the camera and

davg is the average width of the object (measured along the optical axis of the camera).

As a rule of thumb, the orthographic camera model is reasonable to use when Zavg ≥

10davg. In the figure above from Faugeras and Luong (2004), on the right, we see a

scene containing a rectangular sign viewed by a projective camera as the photographer

moves farther away from the sign. On the left, the portion of each image containing the

sign is cropped and re-sized so that the sign occupies approximately the same area. It

is evident as the camera moves farther away that the perspective effects diminishes. In

particular, the vanishing point for the parallel lines on the top and bottom of the sign

moves increasingly close to innity. Alfred Hitchcock pioneered the use of this effect

(the so-called “Hitchcock zoom”) in the movie Vertigo.

4

where (R∗, t∗) are a rotation and translation and define the position of the scene with

respect to the camera, and K is the internal parameter matrix:

K =


αx s 0

0 αy 0

0 0 1

 (1.2)

where αx and αy are the scale factors for the x/y coordinate directions s is the skew.

In this dissertation, we also assume that the internal parameters are known in

advance, i.e. the camera is calibrated. This simplifies the image formation equation to:

x
y

 = Π

R∗

X

Y

Z

+ t∗

 = R


X

Y

Z

+ t (1.3)

where (R, t) are the first two rows of (R∗, t∗) (this notation will be used throughout the

dissertation).

1.2 Feature Paradigm

While certain methods (Kutulakos and Seitz (2000); Cheung et al. (2005)) con-

sider the scene data as dense, we use the feature-paradigm in this dissertation: only

a few features are tracked during the video sequence and their image coordinates are

considered as input of the SFM problem. Noise might be present.

Formally, the video sequence contains n features tracked over f frames. The[
x y

]>
coordinates of each feature in each image are horizontally stacked in a 2 ×

n matrix called the measurement matrix Wt (t indexes time). The goal of the SFM

problem is to recover the 3D positions of all the features over time (horizontally stacked

in the 3× n shape matrix St) as well as the camera position parameters (Rt, tt).

Equation (1.3) can now be extended to all the features in the object:

Wt = RtSt + tt1
>
n (1.4)

5

where 1n is the n-dimensional vector composed of 1’s. Per frame, 2× n measurements

are given while the following parameters need to be recovered:

• 3 for rotation

• 2 for translation

• 3× n for the shape of the object

As 5 + 3n > 2n, the problem is very underconstrained: to solve for the ambiguity, one

needs additional constraints on the object like the following ones:

• the object is rigid. In this case, the shape matrix is constant and St = S. This is

Rigid SFM.

• the object is non-rigid but its shape is assumed to be a linear combination of

basis shapes. This is classical non-rigid SFM.

• the object is non-rigid and its shape is assumed to belong to a low-dimensional

manifold, not necessarily linear as in the previous constraint.

This dissertation extends the current state of the art for the second constraint and intro-

duces the third constraint as well as a solution for it.

Finally, it is worth noting that every solution (R∗t , t
∗
t , St) of Equation (1.4) is am-

biguous up to any global rigid transformation (R∗, t∗) as (R∗tR
∗−1, tt−R∗tR∗−1t, R∗St+

t) would also be a solution. This is the global ambiguity.

6

1.3 Rigid SFM

In rigid SFM, the shape matrix to recover is constant: St = S. Therefore, we

can write the following identities:

Wt = RtSt + tt1
>
n (1.5)

W1

...

Wf

 =


R1 t1

...

Rf tf


 S

1n
>

 (1.6)

As there is a global ambiguity, we can constrain the 3D points of the shape to

be centered (the average of S along the second dimension is 0). If the measurements

Wt are now normalized to Wt (the average of Wt along the second dimension is 0), the

optimal tt’s simply are tt = 0 and the rigid SFM equation becomes:

W
∆
=


W1

...

Wf

 =


R1

...

Rf


︸ ︷︷ ︸
Motion

S︸︷︷︸
Structure

(1.7)

This equation is due to Tomasi and Kanade (1992) and illustrates how the measurement

matrix has rank 3 and can be decomposed into the motion matrix and the structure ma-

trix. Therefore, computing these two matrices can be reduced to a rank approximation

of the measurement matrix by SVD. Nonetheless, the motion matrix needs to be com-

posed of rotations, therefore, some orthonormality constraints also need to be imposed

when decomposing the measurement matrix (as detailed in Tomasi and Kanade (1992)).

The global ambiguity is resolved by imposing that R∗1 = I leading to a unique

ambiguity for f ≥ 3:
W1

...

Wf

 =


R1

...

Rf

QQ−1S, where Q =


1 0 0

0 1 0

0 0 ±1

 (1.8)

which is called the Necker reversal and can simply be interpreted as the ambiguity of

wether the object is in front or behind the camera.

7

To perfect the solution, what is called the reprojection error is minimized:

errreproj =

∥∥∥∥∥∥∥∥∥∥∥∥
W −


I2×3

R2

...

Rf

S
∥∥∥∥∥∥∥∥∥∥∥∥

2

2

(1.9)

using gradient descent over all the rotation parameters and the 3D shape. This method

is called bundle adjustment (Triggs et al. (2000)) and already has a few years of devel-

opment. Some techniques, like Lourakis and Argyros (2004), are both fast, accurate and

memory efficient.

While rigid SFM is pretty much solved in its basic form for an orthographic

camera, it has been extended to the projective camera model (Soatto and Perona (1994)),

multiple rigid bodies (Costeira and Kanade (1998)) and articulated bodies (Yan and

Pollefeys (2005)).

Its practicality has also been increased by embedding occlusion-handling (Chen

and Suter (2004); Jacobs (1997)) and outlier robustness (using techniques like Fischler

and Bolles (1981) or Li (2007)).

A lot of exciting recent new work has been put into making it more robust for

the projective model by using the L∞ norm (Kahl (2005)), more practical, and also to

work with large scale datasets (Agarwal et al. (2008)).

1.4 Non-Rigid SFM

When assuming the object of study is non-rigid, the current state of the art Torre-

sani et al. (2008) assumes that the 3D shape belongs to a linear subspace of dimension-

ality s and can therefore be explained as a linear combination of s canonical shapes Si

(3×n matrices) added to a constant shape S0. The measurements can then be explained

with the following image formation equation:

Wt = Rt

(
S0 +

s∑
i=1

litS
i

)
+ tt1n

> (1.10)

8

We choose the notation: lt =
[
l1t . . . lst

]>
. It is worth noting that in earlier versions of

NRSFM, like in Bregler et al. (2000); Brand (2001); Torresani et al. (2001); Xiao et al.

(2006a), a shape St was considered as a linear combination of s shapes, which is simpler

but less intuitive (and not just deformations as in the model we choose). This previous

model was simply different because the first component of lt was not necessarily 1.

As in the rigid case (Tomasi and Kanade (1992)), we can eliminate the tt by

subtracting the mean of the measurements. By imposing the Si to also be centered, the

measurement matrix can be factorized into the motion matrix and the shape basis matrix:

W =


W1

...

Wf

 =


R1 l11R1 · · · ls1R1

...

Rf l1fRf · · · lsfRf



S0

...

Ss

 =


[
1 l>1

]
⊗R1

...[
1 l>f

]
⊗Rf


︸ ︷︷ ︸

Motion


S0

...

Ss


︸ ︷︷ ︸

Shape Basis

(1.11)

where ⊗ is the Kronecker product.

This formulation inspired the pioneers of NRSFM to treat the problem as a ma-

trix factorization problem, just like for rigid SFM. Bregler et al. (2000) choose to fac-

torize the matrix by first assuming the object to be rigid (like in Kim and Hong (2005))

or having a dominant rigid component. This provides an initialization to several opti-

mization techniques like gradient descent Bregler et al. (2000) or an EM-type algorithm

(Torresani et al. (2003)). These techniques usually have two problems: they require a

good initialization (which might not be provided if the object does not comply to their

assumptions) and their optimization usually does not consider all the parameters at once.

Nonetheless, they have been improved by combining a feature tracker Torresani

et al. (2001); Del Bue et al. (2007) and including noise models Torresani et al. (2008).

Finally, while Xiao et al. (2006a) and Brand (2005) provided a closed-form solution in

the noiseless case, the same formulation was used to extend the analysis to the projective

case (Xiao and Kanade, 2005; Llado et al., 2005; Vidal and Abretske, 2006).

9

1.5 Current Limitations

1.5.1 Problematic Closed Form

Wrong Rank Approximation in Presence of Noise

Many previous NRSFM methods tried to solve for an ambiguity matrix G in

Equation (1.11):

W =


W1

...

Wf

 =


[
1 l>1

]
⊗R1

...[
1 l>f

]
⊗Rf


︸ ︷︷ ︸

M= motion


S0

...

Ss


︸ ︷︷ ︸
S= shape

∆
= MS = AGG−1B (1.12)

where A and B have the right dimensions and can be obtained by SVD on W . While

the above stands for a noise-free setup, there is no reason to believe that M and S are

close to the best rank-4 approximation of W due to the special form of M.

Wrong Rank Considerations

Moreover, the above is true for a full rank matrix S. When the shape basis has

some degeneracies (when the rank of S, and therefore W , is not 3s but rS
∆
= rank (S) <

3s as explained in Xiao and Kanade (2004)), S is assumed to be formed of K3 shapes

of rank 3, K2 of rank 2 and K1 of rank 1. Where the mentioned paper is wrong is that

it assumes that rS = 3K3 + 2K2 + K1. It seems that the paper made a confusion by

misinterpreting the rank of S (that considers the rows of S) and the rank of the basis S

(which considers the rows of S three by three).

While this seems tempting and its implementation showed some qualities, it can

happen that each element of the basis is full rank but not S (as is the case with the

bending shark from Torresani et al. (2003)).

10

Numerical Instability

We have implemented Xiao and Kanade (2004) and actually improved on the

method (by using more modern math like SDP programming) but realized that this

method is numerically unstable (due to the fact that only the ambiguity matrix is recov-

ered, which is small compared to the dimensions of the problem) and performs poorly

in certain degenerate cases (but perfectly in non-degenerate cases and some degenerate

ones).

1.5.2 Problematic Iterative Solution

As mentioned above, the iterative solutions to this problem suffer from unstable

initialization. The common assumption is to consider that the observed object has a

main rigid component. While this is true for many objects (e.g. faces, persons . . .),

there is no reason to believe that this applies for all objects.

Iterative solutions also suffer from poor optimization: parameters are usually

optimized alternatively (rotations, then shapes, then shape coefficients) which can result

in local minima, slow convergence and “ping-pong” effects during optimizations.

1.5.3 Limited Model

Finally, and that will be a major point of this dissertation, while the linear model

assumption appears to be valid for many real-world objects, there is no reason to believe

that it is general enough.

We will demonstrate that allowing the shape manifold to be of a low dimen-

sionality, but non-linear, can be solvable and applicable where current state-of-the-art

fails.

Chapter 2

Linear Embedding

We first propose to solve the NRSFM problem by conserving the linear assump-

tion that has been commonly used in previous works.

Let us take a step back from the matrix formulation of the problem. The linear

assumption can be interpreted as having all the 3D-shapes the object can undergo as

belonging to a linear embedding. While camera positions and the full St seem complex

to compute, recovering the low s-dimensional shape embedding seems much simpler.

It is nonetheless a complex task and this chapter is dedicated to recovering the

shape embedding from a video sequence. Mathematically, we will show how to recover

the lt coefficient independently from any other parameters. To that extent, we will ex-

ploit motion repetitions for SFM as it was used for action recognition Laptev and Perez

(2007), motion segmentation Laptev et al. (2005) and sequence alignment Carceroni

et al. (2004).

Additionally, we demonstrate how we can recover the rest of the parameters

(shape basis S and camera rotations Rt) from this embedding, and therefore how we can

perform full NRSFM.

Comparisons to state of the art methods will be presented as well as several

experiments testing the robustness of this approach.

11

12

2.1 Problem Formulation

First we assume that a non-rigid object deforms in 3D shapes that can be ob-

served several times in a video sequence.

As mentioned in Equation (1.11), the measured data can be explained with the

following factorization:

W =


W1

...

Wf

 =


R1 l11R1 · · · ls1R1

...

Rf l1fRf · · · lsfRf



S0

...

Ss

 =


[
1 l>1

]
⊗R1

...[
1 l>f

]
⊗Rf


︸ ︷︷ ︸

M= motion


S0

...

Ss


︸ ︷︷ ︸
S= shape

= MS

(2.1)

As mentioned in Equation (1.8), the rigid structure of a scene can be recon-

structed with only one ambiguity from three views or more.

Intuitively, if the 3D reconstruction from a triplet of frames has a low repro-

jection error (cf .Equation (1.9)), the three frames should represent a similar 3D shape.

Similarly a high reconstruction error would probably be due to a poor matching of the

three views. Due to the impossibility of relating this reconstruction error to a metric, we

propose to only get an ordering between two triplets of frames; this is used next into a

Multi-Dimensional Scaling (MDS) framework.

2.2 Outline

In traditional linear NRSFM methods, the basis elements Si are only assumed

to be centered at the origin. The Gram-Schmidt process can orthonormalize any basis

but it also preserves the centering. Therefore, if a basis exists, a centered orthonormal

basis can be built from it: the Si’s can consequently be assumed to be centered and

orthonormal. But, as we use 1 for the first coordinate, we cannot impose ‖S0‖F = 1.

Therefore, we can only impose the Si’s to be orthogonal, and ‖Si‖F = 1,∀i 6= 0

13

Now, in this basis, every shape St has coordinates [1, l>t] and therefore:

‖Si − Sj‖F = ‖li − lj‖2 (2.2)

Let us consider the function:

aF (i, j, k) =
∑

h∈{i,j,k}

∥∥∥∥Sh − Si + Sj + Sk
3

∥∥∥∥2

F

(2.3)

Let us assume for now that we can build a set of pairs of triplets of frames as

follow:

F = {((i, j, k) , (i′, j′, k′)) |aF (i, j, k) ≤ aF (i′, j′, k′)} (2.4)

Basically, we are considering ordering between triplets of frames according to

the function aF . As we will see in Section 2.3, this set does not contain every pair

{(i, j, k), (i′, j′, k′)} and it might even contain some outliers. Therefore, only certain

triplets of frames have to be considered; this makes Generalized Non-metric Multi-

Dimensional Scaling (GNMDS) from Agarwal et al. (2007) the appropriate choice to

solve for the lt’s.

2.2.1 Generalized Non-metric Multi-Dimensional Scaling Overview

Let us consider the positive semi-definite Gram matrix K = [Kij]1≤i,j≤f =

[l>i lj]1≤i,j≤f and let use define:

a2 (i, j, k) =
∑

h∈{i,j,k}

∥∥∥∥lh − li + lj + lk
3

∥∥∥∥2

2

(2.5)

By using Equation (2.2), aF (i, j, k) = a2 (i, j, k).

Solving for the lt’s can therefore be reduced to finding a positive semi-definite

matrix K such that:

a2 (i, j, k) ≤ a2 (i′, j′, k′) if ((i, j, k), (i′, j′, k′)) ∈ F (2.6)

14

By introducing slack variables, solving for the lt’s is equivalent to solving the

following Semi-Definite Programming (SDP) problem:

min
K,ξ(i,j,k),(i′,j′,k′)

∑
((i,j,k),(i′,j′,k′))∈F

ξ(i,j,k),(i′,j′,k′)

subject to a2 (i, j, k) ≤ a2 (i′, j′, k′) + ξ(i,j,k),(i′,j′,k′)

ξ(i,j,k),(i′,j′,k′) ≥ 0, K � 0

(2.7)

Also, the constraints are linear in the elements of K as:

a2 (i, j, k) =

(
4Kii +Kjj +Kkk − 4Kij − 4Kik + 2Kjk

9

)
+(

Kii + 4Kjj +Kkk − 4Kij + 2Kik − 4Kjk

9

)
+(

Kii +Kjj + 4Kkk + 2Kij − 4Kik − 4Kjk

9

)
+

=
2

3
(Kii +Kjj +Kkk −Kij −Kik −Kjk)

(2.8)

We can also notice for the future that this is equivalent to:

aF (i, j, k) =
1

3

(
‖Si − Sj‖2

F + ‖Si − Sk‖2
F + ‖Sj − Sk‖2

F

)
(2.9)

2.2.2 Constraints

Note the Kij’s can be recovered up to a similarity. We choose to constrain the

rotation/translation/scale differently from Agarwal et al. (2007):

• Scale. If (lt, Rt, S) is a solution of Equation (2.1), so is (αlt, Rt,
1
α
S), ∀α 6= 0.

Therefore, scale ambiguity is already inherent to our formulation. Nonetheless,

to prevent the lt’s from collapsing to the origin, and as we have chosen the Si’s

to be of norm 1, we choose to enforce the scale constraint as follows:

‖li − lj‖2
2 = ‖Si − Sj‖2

2 ≥ amin(i, j) (2.10)

where amin(i, j) is defined in Section 2.3.1.

15

• Rotation. The rotation ambiguity is also inherent to our formulation as the shape

formation equation contains an invertible matrix ambiguity:

vec (St) =
[
vec (S0) · · · vec (Ss)

]1

lt

 =
[
vec (S0) · · · vec (Ss)

]
Q−1Q

1

lt


(2.11)

where vec (·) is the operator that stacks the columns into a vector. No constraints

therefore needs to be enforced to resolve this ambiguity.

• Translation. Finally, the translation ambiguity is also inherent to our formula-

tion, and therefore unimportant, as for every vector t:

vec (St) =
[
vec (S0) · · · vec (Ss)

] 1

lt + t

 =
[
vec
(
S0′) · · · vec (Ss)

]1

lt


(2.12)

where vec
(
S0′) = vec (S0) +

[
vec (S1) · · · vec (Ss)

]
t. Nonetheless, to avoid a

drifting of the lt’s during their computation, we impose that the lt’s be centered:

f∑
t=1

lt = 0⇐⇒

(
f∑
t=1

lt

)>(f∑
t=1

lt

)
= 0⇐⇒

∑
t,t′

Ktt′ = 0 (2.13)

We also add a regularization term to impose a smooth deformation of the object

over time: λ
∑f−1

t=2 ∆′′(lt), where λ weighs the regularization and ∆′′ is a finite differ-

ence approximation of the second derivative of lt at t (and can be expressed in terms of

Ktt′). We therefore have the new SDP formulation:

min
K,ξ(i,j,k),(i′,j′,k′)

∑
((i,j,k),(i′,j′,k′))∈F

ξ(i,j,k),(i′,j′,k′) + λ

f−1∑
t=2

∆′′(lt)

subject to a2 (i, j, k) ≤ a2 (i′, j′, k′) + ξ(i,j,k),(i′,j′,k′)

‖li − lj‖2
2 ≥ amin(i, j), ∀(i, j)∑

t,t′

Ktt′ = 0, ξ(i,j,k),(i′,j′,k′) ≥ 0, K � 0

(2.14)

The lt’s are then obtained from K by using its rS-rank SVD decomposition

(where rS = rank (S) = rank (W)).

16

(a) Ideal Pairwise Affinity (b) Uncalibrated 2-View

Pairwise Affinity

(c) Calibrated 2-View Pairwise

Affinity

Figure 2.1: Pairwise Affinities. These figures relate to the 240-frame shark sequence

from Torresani et al. (2003) where a shark rotates its tail circularly twice (as illustrated

in Figure 2.3). As there is an exact repetition in the observed shape over time, one

would expect frames separated by one period to have a high affinity (white in Figure

(a)) while others should have a low affinity (black). For example, the first frame (first

row of Figure (a)) should match best frames 1 and frame 121, frame 2 should match

best frame 2 and 122 etc. If one chooses to use the uncalibrated reprojection error as

an affinity, many false positives arise, due to ambiguities in orthographic reconstruction

as shown in Figure 2.1(b). Finally, if one uses calibrated reconstruction, as shown in

Figure (c), some ambiguities can be removed but it is still not fully usable.

2.3 Ordering Set F

We have shown in the previous section how the coordinates of every shape St

in the basis S can be computed by using an ordering between triplets of frames. In the

projective case, one could simply compute the best reconstruction from two frames and

compute the reprojection error to see how well it matches the measurements. A low

error would indicate that the two frames are more likely to be of the same shape while a

large error would indicate a higher dissimilarity.

In the orthographic case, as there is no depth information, the 3D reconstruction

from two views has ambiguities (like Necker reversal or bas-relief ambiguity) as shown

17

in Figure 2.1. This problem can, however, be alleviated using triplets of frames. In the

calibrated orthographic case, three centered measurements Wi,Wj and Wk give rise to

only two optimal reconstructions Sijk and QSijk as:
Wi

Wj

Wk

 =


Ri

Rj

Rk

QQSijk, where Q =


1 0 0

0 1 0

0 0 ±1

 (2.15)

where Ri =

1 0 0

0 1 0

 and Rj, Rk are the top two rows of two rotation matrices.

Let us now define an infimum and a supremum to aF (i, j, k) based on measure-

ments only. To this end, we need to define the 3D measurement matrix W ∗
i whose first

two rows are Wi, but whose third row is what would be obtained if the depth could be

measured. If there is no noise, W ∗
i = R∗iSi. For the sake of simplicity, we will assume

that there is no noise, but what follows would hold by adding an extra term of lower

order.

2.3.1 Triplet Distance Infimum

Considering two frames i and j, we have:

‖Si − Sj‖2
F =

∥∥∥R∗i>W ∗
i −R∗j

>W ∗
j

∥∥∥2

F
=
∥∥∥W ∗

i −R∗iR∗j
>W ∗

j

∥∥∥2

F
(2.16)

Hence:

‖Si − Sj‖2
F ≥

min
R∗,x,y

∥∥∥∥∥∥
Wi

x>

−R∗
Wj

y>

∥∥∥∥∥∥
2

F

subject to R∗ is a rotation matrix

centering conditions: x = 0,y = 0

∆
= amin(i, j) (2.17)

The expression on the right can be interpreted as a pose estimation problem

where the third coordinates/depths are unknown.

18

It is a Procrustes problem with missing entries and linear constraints. x and y

can be computed in closed form with respect to R∗. The minimum can be computed

by gradient descent on the quaternion of R∗ with initialization provided by neighboring

pairs of frames: (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1). The very first pair is chosen at

random and the process is stopped when all the minima for the possible pairs are stable.

We denote this minimum by amin(i, j). Hence:

aF (i, j, k) ≥ 1

3
(amin(i, j) + amin(j, k) + amin(k, i)) (2.18)

We now have an infimum for aF (i, j, k), that we name amin(i, j, k).

2.3.2 Triplet Distance Supremum

For the supremum, we can notice that:

aF (i, j, k) = min
S

1

3

(
‖Si − S‖2

F + ‖Sj − S‖2
F + ‖Sk − S‖2

F

)
(2.19)

Therefore:

aF (i, j, k) ≤ 1

3

(
‖Si − Sijk‖2

F + ‖Sj − Sijk‖2
F + ‖Sk − Sijk‖2

F

)
(2.20)

where Sijk is the optimal reconstruction for the 3 frames i, j and k. We defineR′i, R
′
j, R

′
k

are the corresponding optimal rotation matrices (different from Ri, Rj, Rk but close for

shapes that are close-by).

Now, if we assume that the reconstruction error in depth is similar to the re-

projection errors in abscissa and ordinate, each term ‖Si − Sijk‖F can be approximated

by:

‖Si − Sijk‖F ' ‖W
∗
i −R′iSijk‖F '

3

2

∥∥Wi −R′i
∗
Sijk

∥∥
F

(2.21)

The terms on the right in the expression above can be computed as part of the

3D reconstruction of frames i, j, k and therefore, we obtain a supremum for aF (i, j, k):

aF (i, j, k) ≤ amax(i, j, k) (2.22)

19

2.3.3 Computing the Ordering Set F

Now, given two triplets of pairs (i, j, k) and (i′, j′, k′), we can compute:

amin(i, j, k) ≤ aF (i, j, k) ≤ amax(i, j, k)

amin(i′, j′, k′) ≤ aF (i′, j′, k′) ≤ amax(i′, j′, k′)
(2.23)

Therefore, if amax(i, j, k) ≤ amin(i′, j′, k′), we have ((i, j, k), (i′, j′, k′)) ∈ F

(and respectively with amax(i′, j′, k′) ≤ amin(i, j, k)).

Such triplets exist as amax(i, j, k) = 0 for pairs representing the same shape.

Similarly, amin(i, j, k)� 0, usually, for frames representing very different shapes.

2.3.4 Practicality

In practice, the amin(i, j, k) and amax(i, j, k) are computed for several triplets

and if an ordering exists, it is used in the SDP problem.

While we could compute amax(i, j, k) for every triplet, the task is computation-

ally very expensive (it is O(f 3)). Therefore, to speed up the process and obtain low

amax(i, j, k), we first compute all the amin(i, j)’s, and, given a frame i, we draw j and k

from a distribution based on this error, leading to i, j and k more likely to be views of

the same shape. Figure 2.2 illustrates this procedure.

20

(a) Sampling Procedure (b) Recovered lt’s

Figure 2.2: These two figures are also based on the shark sequence. Frame Triplet

Selection Procedure. Figure (a) illustrates how the sampling is performed: for every

frame i in the vertical axis, two frames j and k leading to a low reconstruction error are

chosen: these two are plotted in green on the line number i. Then, two views j′ and k′

are chosen so that amax(i, j, k) ≤ amin(i, j′, k′): they are plotted in red on the same line.

If no such pair (j′, k′) exists, the pair (j, k) is not considered. As we can see, the green

couples are almost only present on the diagonals and sub-diagonals while the red are

located anywhere. 2000 triplets are sampled and represented on this figure. This amount

was chosen with respect to limitations of the SDP solver. Recovered Embedding.

Figure (b) illustrates the recovered lt’s for s = 2, each linked to its previous and next

temporal neighbors (in blue) as well as to the same point a period after (in black). What

we see is one path almost overlapping with itself once (hence the periodicity of the

motion). In green are displayed the points 1, 121 and 240, while in red are displayed the

points 61 and 181 (these points are important as the video sequence has 240 frames and

a period of 1200. The green points should indicate when the shark returns to its initial

state (hence their proximity) while the red ones indicate the half period (hence the fact

they are furthest from the green points and actually symmetric). While these points are

not perfectly overlapping, they are close and enough for us to perform full SFM. More

samples also improve this embedding as shown in Figure 2.8.

21

2.4 Optimal Shape Basis and Rotation

Let us re-mention Equation (2.1)

W =


W1

...

Wf

 =


[
1 l>1

]
⊗R1

...[
1 l>f

]
⊗Rf


︸ ︷︷ ︸

M= motion


S0

...

Ss


︸ ︷︷ ︸
S= shape

= MS (2.24)

Now that we have obtained a good approximation of the lt’s, we are going to use

them to first find a good estimate of the optimal shape basis S and then obtain the Rt’s.

We will then use these parameters as an initialization to a gradient descent procedure.

The proposed full structure from motion method now detailed does not suffer

from the rank problems from Xiao et al. (2006a) and that were approached but not

clearly solved in Xiao and Kanade (2004). It also does not face problems when som

shape coefficients are small when trying to recover the rotation matrices (like in Xiao

and Kanade (2004)).

In the following, we will assume that S is of rank rS (rS ≤ 3(s + 1); it was

assumed that rS = 3(s + 1) in Xiao et al. (2006a)) and that it is given by the user or

guessed from W (as rank (S) = rank (W))

2.4.1 Rank Constraint

Now, let us consider an optimal rank decomposition of W (e.g. provided by

SVD): W = AB with A and B full rank (of rank rS). As the rows of B and S span the

same spaces, we have S = GB where G is a 3(s+ 1)× rS ambiguity matrices.

We will first recover G, which will give us S and therefore, knowing the lt, the

St’s. Recovering the Rt will then just be an instance of pose estimation.

22

2.4.2 Kronecker Constraint

By using the definition of S in Equation (1.12), S must verify for every t:([
1 l>t

]
⊗Rt

)
S = W t or again Rt

([
1 l>t

]
⊗ I3

)
G = W tB

+ (2.25)

as B has full row rank. We also add a regularization term so that the rotation matrices

do not change much from frame to the next, and obtain the following bilinear problem:

min
Rt,G

f∑
t=1

∥∥∥Rt

([
1 l>t

]
⊗ I3

)
G−W tB

+
∥∥∥2

F
(2.26)

We also add a regularization term so that the rotations do not change much from frame to

frame: λR
∑f

t=2 ‖Rt −Rt−1‖2
F . In order not to have the Rt’s shrink to 0 and G diverge

to infinity (as for any (Rt, G), (αRt,
1
α
G) is also a solution), we also need a counter-

balancing regularization term: λG ‖G‖2
F . In practice, we choose λR = λG = 1. Hence

the new bilinear problem:

min
Rt,G

f∑
t=1

∥∥∥Rt

([
1 l>t

]
⊗ I3

)
G−W tB

+
∥∥∥2

F
+ λR

f∑
t=2

‖Rt −Rt−1‖2
F + λG ‖G‖2

F

(2.27)

While recent work like Chandraker and Kriegman (2008) improves the solving

of bilinear problems if one of the two sets of variables as a much lower dimensionality,

it is impractical in our case as the dimensions of G are too high.

We therefore solve it by generating several random initializations for G and pro-

ceed by alternate optimization between the Rt’s and G. We also drop, for now, the

rotation constraint on the Rt’s.

Knowing G and by posing C =
([

1 l>t

]
⊗ I3

)
G, Rt is a solution of:

2
(
RtC −W tB

+
)
C> + 2λR (Rt −Rt−1 +Rt −Rt+1) = 0 (2.28)

Rt

(
CC> + 2λRI3

)
− λR (Rt−1 +Rt+1) = W tB

+C> (2.29)

Similarly, knowing the Rt’s, G is a solution of:

2M>(MG−WB+) + 2λGG = 0 (2.30)

23

(
M>M + λGI3(s+1)

)
G = M>WB+ (2.31)

In practice, we use 10 random initializations and 50 alternate optimization itera-

tions.

It is worth noting that after this optimization, an approximation to the best solu-

tion is obtained up to an ambiguity matrix Q as:

Rt

([
1 l>t

]
⊗ I3

)
G = RtQ

([
1 l>t

]
⊗ I3

) (
Is+1 ⊗Q−1

)
G (2.32)

2.4.3 Rotation Constraint

So far, we have recovered Rt’s and G optimizing
([

1 l>t

]
⊗Rt

)
S = W t but

the Rt’s were not imposed to be rotation matrices.

We now seek the ambiguity matrix Q such that the Rt’s are as close to rotation

matrices as possible by optimizing:

f∑
t=1

∥∥RtQQ
>R>t − I2

∥∥2

F
(2.33)

which is an SDP in QQ>.

2.4.4 Orthonormality of S

Finally, the orthonormality on the basis can be interpreted as having the rows of[
C1S C2S C3S

]
=
[
C1GB C2GB C3GB

]
=
[
C1G C2G C3G

]
(I3 ⊗B) be

orthonormal. In the previous expression, C1 = Is ⊗
[
1 0 0

]
, C2 = Is ⊗

[
0 1 0

]
,

C3 = Is ⊗
[
0 0 1

]
.

We therefore have the property:[
C1G C2G C3G

]
(I3 ⊗B) (I3 ⊗B)>

[
C1G C2G C3G

]>
= D (2.34)

where D is Is+1 except for the element (1, 1) which is unknown (as ‖S0‖F 6= 1). This

results in a quadratic SDP constraint in
[
C1G C2G C3G

]
which we actually do not

use in the recovery of G.

24

2.4.5 Final Optimization

G is first recovered using the Kronecker and the rotation constraints. From there,

S is recovered and therefore all the St. Recovering an initial estimate of Rt’s is then

multiple instance of pose estimation. While we could perform the full computation for

every frame, we first only perform it for a few frames, but very accurately (we had little

chance with EPnP from Lepetit et al. (2008) so we used our own implementation relying

on a simple polynomial formulation and a solving by Henrion and Lasserre (2003)). We

then compute the optimal Rt’s by performing gradient descent on ‖RtS −Wt‖2
F with

an initial estimate of Rt−1 and Rt+1.

Once an initial estimate of all the parameters lt, Rt and S is obtained, what fol-

lows is a gradient descent over all the parameters at once to minimize the factorization

error ‖W −MS‖2
F . To take advantage of the sparsity of the problem, we interpret it

as a sparse bundle-adjustment with points of dimensionality 3(s + 1) instead of 3 in

the normal 3D-case (the camera parameters being extended to (Rt, tt, lt)) and then use

Lourakis and Argyros (2004) to obtain a fast and accurate solution.

25

2.5 Experiments

We tested our approach on two synthetic datasets: the classical Shark Data from

Torresani et al. (2003) and on our own data named Roller Coaster. We also experi-

mented with real data.

The reconstruction error considered in these experiments is computed in percent-

age points: the average distance of the reconstructed point to the correct point divided

by the span of the shape, as defined in Torresani et al. (2001). We also compare our

approach (named TSFM for Triplet-based Structure From Motion) to two standard al-

gorithms: Torresani et al. (2008) and Xiao and Kanade (2004). For the latter, we have

our own implementation of the code which uses more modern math and does reach an

error of 0 (as it is a closed-form solution) in the assumption of the paper (that were

previously explained and that do not match the shark data).

The running time for these experiments is usually a few minutes on a 3GHz

machine except for the following parts of the algorithm:

• the computation of the amin takes 10 minutes. It is very optimized and results

in an average of 3 steps of gradient descent for every pair. The speed could be

improved with a specifically tuned gradient descent algorithm and a conversion

to a lower-level language (like C++).

• the final gradient descent takes 15 minutes. The efficient Sparse Bundle Adjust-

ment code from Lourakis and Argyros (2004) is used. The computation time

seems hard to improve but it is worth oticing that 50 iterations are used while

much fewer could be used (cf .Figure 2.7.

2.5.1 Shark Data

The shark data was first introduced in Torresani et al. (2003). It features a shark

rotating its tail twice over 240 frames. In terms of performance, our method reaches

0.00% of error while Torresani et al. (2008)’s with 100 EM iterations reaches 1.67%

26

(1.24% in their paper) . Both cases were computed for s = 2. Several reconstructions

and the errors are detailed in Figure 2.3.

2.5.2 Roller-Coaster Data

The next synthetic data can be thought of as a bike chain bent in its middle

(cf .Figure 2.4(a)). The points are forced to evolve on a one-dimensional track and they

perform 6 and their speed varies randomly. As shown in Figure 2.4(b), PCA cannot

explain the data very well: this proves that the shape manifold is non-linear and that

the shape basis assumption is not well suited for this data. However, we think it is

interesting that our method still provides a good approximation of the shape manifold

as shown in Figure 2.4(c) where the periodicity of the motion appears.

As far as 3D reconstruction is concerned, since this scenario does not fit the

assumptions of neither our approach or Torresani et al. (2008), neither performs better

than a 15 % error. Torresani et al. (2008) performs slightly better for a certain shape

basis size, probably because it encompasses a temporal smoothness assumption. This

assumption is only considered in our case when computing the lt’s but ignored after.

A regularization term in the final optimization is a further improvement that could be

implemented.

2.5.3 Real Data

The final experiment is a video of a sheet of paper twisted laterally back and

forth. 51 features are tracked during the 190 frames of the sequence. The motion is

repetitive but not circular: the sheet is bent to an extreme before being bent to normal.

Figure 2.5 illustrates how this impacts the reconstruction of the shape embedding.

This deformation seems fairly easy to explain with the shape basis and choosing

s = 2 was enough to reproduce equivalent 3D deformations.

27

(a) Camera Positions

60 120 180 240
0

2

4

6

8

Frame Number

A
ve

ra
ge

 F
ra

m
e

E
rr

or
 (

%
)

Performance for Every Frame

THB

XCK

TSFM

TSFM No Opt.

(b) Depth Error over Time

(c) Frame 100 (d) Frame 200

Figure 2.3: Shark Dataset from from Torresani et al. (2003). Figure (a) shows

the camera positions used in our experiment: the camera has a smooth random path

over a sphere. Figure (b) shows the reconstruction error produced by Xiao-Chai-

Kanade CVPR04 (XCK), Torresani-Hertzmann-Bregler PAMI08 (THB) and our al-

gorithm (TSFM), with and without the final gradient descent. Figure (c),(d) illustrate

some novel views (in blue) overimposed with the ground truth in red of the shark data.

28

(a) Example of the

Roller-Coaster Sequence

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

45

N. of Bases

A
ve

ra
ge

 F
ra

m
e

E
rr

or
 (

%
)

Influence of the Number of Bases

PCA

THB

XCK

TSFM

(b) Reconstruction Error for

Different Techniques

(c) Shape Embedding Based on

the First 3 Coordinates

Figure 2.4: Roller Coaster Dataset. Figure 2.4(a) is an example of the video sequence:

points are moving on the same track like a roller coaster (the square is simply used to

help visualize the movement of the points on the “rail”). Figure 2.4(b) compares the

errors provided with PCA, Xiao-Chai-Kanade CVPR04 (XCK), Torresani-Hertzmann-

Bregler PAMI08 (THB) and our algorithm (TSFM). While our approach performs as

poorly as the other ones as shown in Figure 2.4(c), the embedding we get is fairly good

knowing that the data is not explainable by a shape basis. The periodicity of the motion

is obvious as several tracks overlap.

29

(a) Sampling (b) Recovered Embedding

Figure 2.5: Bending Sheet Dataset Figure (a) illustrates the sampling as described in

Figure 2.2(a). We can notice the periodicity of the motion with the different green de-

scending diagonals. On the other hand, the ascending green diagonals illustrates the fact

that when reaching an end, it looks equivalent to having the sequence going forward or

backward in time. This is even more obvious when looking at the recovered manifold in

Figure (b). The sheet is twisted between two extremes. When it goes from state yellow

to state light blue (frames 18 and 44), it goes from one extreme position to another:

hence their extreme position on the manifold. On the other hand, similar positions (like

light blue, blue and darkest gray) according to the sampling matrix, will reflect close-by

points on the manifold. Finally, the black point and its neighbor do not belong to an end

of the manifold as the sheet was not twisted fully (leading to some horizontal lines with

few green/similarities around rows 70-80).

30

(a) Sample Frames from the Sheet video sequence

(b) Reconstructions corresponding to the above frames, rendered from novel view

points

Figure 2.6: Figure (a) shows 3 frames from the original sequence where the sheet is

twisted. In Figure (b), three reconstructed views are presented under a novel view point:

a quadratic surface was fit through the points and illuminated so as to highlight the

bending.

31

0 1 2 4 8 16 32 64
0

0.5

1

1.5

2

2.5

3

N. Iterations

A
ve

ra
ge

 F
ra

m
e

E
rr

or
 (

%
)

Influence of the Number of Iterations

THB 3D

TSFM 3D

THB Reproj.

TSFM Reproj.

Figure 2.7: Importance of the Number of Iterations. The reprojection error (full line)

and the 3D reconstruction error (dashed) are reprensented for the THB algorithm and

our approach. The iterations for THB correspond to the EM iterations while the ones

for TSFM are the ones for the gradient descent.

2.6 Pushing the Limits

2.6.1 Gradient Descent Iterations

Figure 2.7 demonstrates the (un-)importance of iterations in TSFM. While the

original estimate is worse than THB (both in reprojection and 3D error), it only requires

one iteration of gradient descent to be better, and a few more to reach a very small

reconstruction error. After 50 iterations, the 3D reconstruction error is also virtually

null (we consider 10−27 as null).

This can be explained by the fact that the original estimate is more a loose es-

timate than a close estimate: the obtained embedding and variables are not perfect but

are similar enough to the true one that gradient descent seems to converge to the global

optimum. The EM optimization of THB seems slower and also only seems to affect the

reprojection error, hence leading to a wrong reconstruction.

32

2.6.2 Triplet/Pair Sampling

Figure 2.8 demonstrates the importance of sampling when computing the initial

shape embedding of the shark data. As expected, the more samples, the better the em-

bedding. Unfortunately, the computation increases in a non-linear way, and the usual

compromise between accuracy and speed arises.

2.6.3 Noise Robustness

Figure 2.9 illustrates the robustness of out method to noise. For low levels of

noise, our method performs better than state of the art: this is due to the fact that recov-

ering the embedding is not really sensitive to the noise, as all that is needed is a loose

approximation. It is worth noting that TSFM seems more usntable than THB as the re-

sults it give (though better in average) have a larger standard deviation. This is probably

due to the low sampling as explained in Section 2.6.2

33

(a) 1× 240 (b) 2× 240 (c) 4× 240

(d) 6× 240 (e) 8× 240 (f) 14× 240

Figure 2.8: Importance of the Triplet/Pair Sampling. These different figures show the

embeddings constructed by the first part of our algorithm. The video sequence consid-

ered is the shark one and different amount of samples are chosen (They are all multiple

of the length of the sequence: 240 frames). Below each figure is indicated the number

of triplet sample chosen to compute the embedding (the number of pairs is chosen to be

the same).

34

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

% of Noise Level

A
ve

ra
ge

 F
ra

m
e

E
rr

or
 (

%
)

Performance with Noise

THB

TSFM

(a) Performance with Noise (b) Frame with 10% of noise

Figure 2.9: Robustness to Noise Figure (a) displays the performance of THB and

TSFM with respect to noise (XCK was excluded because of its poor performance).

The amount of noise (in percentage) is ‖err‖ / ‖W‖. As an example of how much noise

is 10%, we display a frame in Figure (b).

35

2.7 Acknowledgements

Chapter 2, is a reprint of the material as it appears in Linear Embeddings in

Non-Rigid Structure from Motion, V. Rabaud and S. Belongie, IEEE Conference on

Computer Vision and Pattern Recognition, 2009.

Chapter 3

LSML

In the previous section, we showed a new approach to NRSFM that competes

with state of the art techniques but that still uses a linear model for the shape manifold.

While this method can be computationally efficient and well-suited to common

objects of study (e.g. faces), there is no reason to believe that the possible 3D shapes of

an object lie on a linear low-dimensional manifold (cf .Figure 3.1).

If we relax this assumption by assuming that only small neighborhoods of shapes

are well-represented by a linear subspace, the set of possible 3D shapes can now be

described as a smooth and low-dimensional manifold. Also, as a local neighborhood

contains the different instances of how a 3D shape can deform, its dimensionality (and

therefore, that of the manifold) is the number of degrees of freedom of the object.

With such an interpretation, a new manifold technique needs to be developed in

order to focus on the tangents of the manifold, and not the points themselves. This chap-

ter is dedicated to presenting LSML (Locally Smooth Manifold Learning), a method I

developed with Piotr Dollár to learn the tangent field of a manifold

36

37

Figure 3.1: State of the art in non-rigid structure from motion assumes that a deformable

3D shape can be expressed as a linear combination of basis shapes. While this is a well-

studied Cootes et al. (2001) and convenient assumption (e.g. for faces), there is no reason

to believe that the manifold of the possible shapes of an object is linear (e.g., as we will

discover further, it is highly non-linear for a Slinky®/spring toy). In this work, the only

constraint imposed on the 3D shape manifold is its dimensionality.

3.1 Related Work

3.1.1 Common Manifold Learning Techniques

A number of methods have been developed for dealing with high dimensional

data sets that fall on or near a smooth low dimensional nonlinear manifold. Such data

sets arise whenever the number of modes of variability of the data is much smaller

than the dimension of the input space, as is the case for image sequences and objects

deforming. Unsupervised manifold learning refers to the problem of recovering the

structure of a manifold from a set of unordered sample points. Usually, the problem is

formulated in terms of finding an embedding or “unrolling” of a manifold into a lower

38

Figure 3.2: Given the linear subspace (manifold) found by PCA, it is straightforward to

project points onto the manifold, measure the distance between a point and the manifold,

measure distance between points after projection, and to predict the structure of the

manifold in regions with little or no data. In this work we present an algorithm that

treats manifold learning as a problem of generalizing to unseen portions of a manifold

and can be used much like PCA but for nonlinear manifolds. Also, unlike nonlinear

embedding methods, LSML can be used with non-isometric manifolds like the one

above.

dimensional space such that certain geometric relationships between the original points

are preserved, as in the seminal works of ISOMAP (Tenenbaum et al. (2000)) and (LLE

Roweis and Saul (2000)).

Although good embedding results have been obtained for a number of manifolds,

embedding methods are limited in two fundamental ways. First, they are by definition

well suited only for manifolds that are isometric (or conformal) to a subset of Euclidean

space. There is little reason to believe that many manifolds of interest have this property,

e.g. a sphere does not. Secondly, embedding methods are designed to describe a fixed

set of data and not to generalize to novel data. Although out-of-sample extensions have

been proposed (Bengio et al. (2004)), these are typically applicable only in regions

39

of a manifold that have already been sampled densely. Such methods cannot be used

to predict manifold structure where no samples are given, even if the manifold has a

smooth, consistent form.

Consider classical MDS, used to find a distance preserving embedding from a

matrix of Euclidean distances, and PCA, which finds a low dimensional subspace that

explains observed data (Hastie et al. (2001)). Although both are designed to deal with

linear subspaces, classical MDS is used primarily for data visualization and exploration

while PCA is used for finding a low dimensional subspace that can be used to analyze

novel data. PCA tends to be more versatile than MDS: given the linear subspace (man-

ifold) found by PCA, it is straightforward to project points onto the manifold, measure

the distance between a point and the manifold, measure distance between points after

projection, and to predict the structure of the manifold in regions with little or no data.

Nonlinear embedding methods are used much like MDS but for nonlinear man-

ifolds; however, they cannot be used for manipulating novel data. In this work we

present an extension of LSML Dollár et al. (2006), and show that it can be used much

like PCA but for nonlinear manifolds (see Figure 3.2). LSML treats manifold learning

as a problem of generalizing to unseen portions of a manifold, and is applicable to non-

isometric cases. Instead of only finding an embedding for visualization, LSML learns

a representation of a manifold or family of related manifolds that can be used for com-

puting geodesic distances, finding the projection of a point onto a manifold, recovering

a manifold from points corrupted by noise, generating novel points on a manifold, and

more.

3.1.2 Previous Work Overview

Traditional methods of nonlinear manifold learning include self organizing maps,

principal curves, and variants of multi-dimensional scaling (MDS) among others, see

Hastie et al. (2001) for a brief introduction to these methods. In recent years, the field

has seen a number of interesting developments. Schölkopf et al. (1998) introduced a

40

kernelized version of PCA. A number of related embedding methods have also been in-

troduced, representatives include LLE (Saul and Roweis, 2003), ISOMAP (Tenenbaum

et al., 2000), h-LLE (Donoho and Grimes, 2003), and more recently MVU (Weinberger

and Saul, 2006). Broadly, such methods can be classified as spectral embedding methods

(Weinberger and Saul, 2006); the embeddings they compute are based on an eigenvector

decomposition of an n×nmatrix that represents geometrical relationships of some form

between the original n points. Out-of-sample extensions have been proposed in Bengio

et al. (2004).

Four methods that LSML shares inspiration with are (Brand, 2003; Keysers

et al., 2001; Bengio and Monperrus, 2005; Rao and Ruderman, 1999). Brand (2003)

employs a novel charting based method to achieve increased robustness to noise and de-

creased probability of pathological behavior vs. LLE and ISOMAP; we exploit similar

ideas in the construction of LSML but differ in motivation and potential applicability.

Bengio and Monperrus (2005) proposed a method to learn the tangent space of a man-

ifold and demonstrated a preliminary illustration of rotating a small bitmap image by

about 1◦. Although our approach to the problem differs, the motivation for LSML is

based on similar insights. Work by Keysers et al. (2001) is based on the notion of learn-

ing a model for class specific variation, the method reduces to computing a linear tangent

subspace that models variability of each class. Rao and Ruderman (1999) shares one of

our goals as it addresses the problem of learning Lie groups, the infinitesimal generators

of certain geometric transformations.

Finally, there is a vast literature on computing distances between objects under-

going known transformations Miller and Younes (2001); Simard et al. (1998), which is

essentially the problem of computing distances between manifolds with known struc-

ture.

3.2 LSML

Here we give details of LSML. For an introduction to LSML see Figure 3.3.

41

(a) (b) (c)

(d) (e)

Figure 3.3: Overview. Twenty points (n=20) that lie on 1D curve (d=1) in a 2D space

(D=2) are shown in (a). Black lines denote neighbors, in this case the neighborhood

graph is not connected. We apply LSML to trainH (with f = 4 RBFs). H maps points

in R2 to tangent vectors; in (b) tangent vectors computed over a regularly spaced grid

are displayed, with original points (blue) and curve (gray) overlayed. Tangent vectors

near original points align with the curve, but note the seam through the middle. Regu-

larization fixes this problem (c), the resulting tangents roughly align to the curve along

its entirety. We can traverse the manifold by taking small steps in the direction of the

tangent; (d) shows two such paths, generated starting at the red plus and traversing out-

ward in large steps (outer curve) and finer steps (inner curve). In (e) two parallel curves

are shown, with n=8 samples each. Training a common H results in a vector field that

more accurately fits each curve than training a separateH for each (if their structure was

very different this need not be the case).

42

3.2.1 Motivation and Error Function

Let D be the dimension of the input space, and assume the data lies on a smooth

d-dimensional manifold (d� D). For simplicity assume that the manifold is diffeomor-

phic to a subset of Rd, meaning that it can be endowed with a global coordinate system

(this requirement can easily be relaxed) and that there exists a continuous bijective map-

pingM that converts coordinates y ∈ Rd to points x ∈ RD on the manifold. The goal

is to learn a warping function W that can take a point on the manifold and return any

neighboring point on the manifold, capturing all the modes of variation of the data.

Define W(x, ε) = M(y + ε), where y = M−1(x) and ε ∈ Rd. Taking the

first order approximation of the above gives: W(x, ε) ≈ x + H(x)ε, where each col-

umn H·k(x) of the matrix H(x) is the partial derivative of M w.r.t. yk: H·k(x) =

∂/∂ykM(y). This approximation is valid given ε small enough.

The goal of LSML is to learn the function Hθ : RD → RD×d parameterized

by a variable θ. Only data points xi sampled from one or several manifolds are given.

For each xi, the set N i of neighbors is then computed (e.g. using variants of nearest

neighbor such as kNN or εNN), with the constraint that two points can be neighbors

only if they come from the same manifold. The original formulation of LSML was

based on the observation that if xj is a neighbor of xi, there then exists an unknown εij

such thatW(xi, εij) = xj , or to a good approximation:

Hθ(x
i)εij ≈ ∆i

·j, (3.1)

where ∆i
·j ≡ xj − xi. An interpretation of the above is that ∆i

·j is the un-centered

estimate of a directional derivative at xi. However, ∆i
·j could also serve as the centered

estimate of the directional derivative at xij ≡ xi+xj

2
:

Hθ(x
ij)εij ≈ ∆i

·j. (3.2)

xij may lie slightly off the manifold, however, as Hθ is a smooth mapping over all of

RD, this does not pose a problem. Although the change is subtle, in practice use of

(3.2) provides significant benefit, as the centered approximation of the derivative has no

43

second order error. So, roughly speaking (3.1) is valid if locally the manifold has a good

linear approximation while (3.2) is valid where a quadratic approximation holds.

To solve forHθ, we define the following error:

err(θ) = min
{εij}

∑
i,j∈N i

∥∥Hθ(x
ij)εij −∆i

·j
∥∥2

2
. (3.3)

We want to find the θ that minimizes this error. The εij are additional free parameters

that must be optimized over; they do not affect model complexity.

3.2.2 Regularization

We can explicitly enforce the mapping Hθ to be smooth by adding a regular-

ization term (in addition to implicit smoothness that may come from the form of Hθ

itself). For each i, the learned tangents at two neighboring locations xij and xij
′

should

be similar, i.e. ‖Hθ(x
ij)−Hθ(x

ij′)‖2
F should be small. Note that this may not always be

possible, e.g. the Hairy Ball Theorem states there is no non-trivial smooth vector field

on a sphere. To ensure that the Hθ’s do not get very small and the ε’s very large, ‖εij‖2
2

must also be constrained. We add the following term to (3.3):

λE
∑∥∥εij∥∥2

2
+ λθ

∑∥∥∥Hθ(x
ij)−Hθ(x

ij′)
∥∥∥2

F
. (3.4)

The overall error can be rewritten using a single λ if for any scalar a > 0 we treatHθ and

aHθ as essentially the same. The error ofHθ with regularization parameters (λE, λθ) is

the same as the error of aHθ with regularization parameters (a2λE,
1
a2λθ). Thus there is

a single degree of freedom, and we always set λE = λθ = λ.

3.2.3 Linear Parametrization

Although potentially any regression technique is applicable, a linear model is

particularly easy to work with. We use radial basis functions (RBFs) to define additional

features for the data points Hastie et al. (2001). The number of basis functions, f , is an

additional parameter that controls the smoothness of the final mapping Hθ. Let f ij be

44

the f features computed from xij . We can then define Hθ(x
ij) =

[
Θ1f ij · · ·ΘDf ij

]>,

where each Θk is a d× f matrix. Re-arranging (3.3) gives:

err(θ) = min
{εij}

∑
i,j∈N i

D∑
k=1

(
f ij
>

Θk>εij −∆i
kj

)2

. (3.5)

Solving simultaneously for the ε’s and Θ’s is complex, but if either the ε’s or Θ’s are

fixed, solving for the remaining variables becomes a least squares problem (details omit-

ted for space). We use an alternating minimization procedure, with random restarts to

avoid local minima.

3.2.4 Radial Basis Functions

For the features we use radial basis functions (RBFs) Hastie et al. (2001), the

number of basis functions, f , being an additional parameter. Each basis function is of

the form f j(x) = exp(−‖x − µj‖2
2/2σ

2) where the centers µj are obtained using K-

means clustering on the original data with f clusters and the width parameter σ is set

to be twice the average of the minimum distance between each cluster and its nearest

neighbor center. The feature vectors are then simply f i = [f 1(xi) · · · fp(xi)]>. The

parameter f controls the smoothness of the final mapping Hθ; larger values result in

mappings that better fit local variations of the data, but whose generalization abilities to

other points on the manifold may be weaker (see Section 3.3.2).

3.3 Analyzing Manifold Learning Methods

In this section we seek to develop a methodology for analyzing nonlinear mani-

fold learning methods without resorting to subjective visual assessment of the quality of

an embedding. The motivation is twofold. First, we wish to have an objective criterion

by which to compare LSML to existing manifold learning methods. Second, and more

importantly, in order to work with non-isometric manifolds (which may not have mean-

ingful embeddings), we need to establish some guidelines for how to properly control

45

the complexity and evaluate the performance of a manifold learning method.

A key issue in supervised learning is the generalization performance of a learn-

ing method, defined by its prediction error computed on independent test data (Hastie

et al. (2001)). Such a notion is of central importance for supervised learning because it

provides a principled approach for choosing among learning methods, controlling their

complexity, and evaluating their performance. We will show how some of these ideas

can be applied in the context of nonlinear manifold learning.

3.3.1 Model Evaluation

A number of works have established the theoretical relationships between var-

ious manifold embedding methods Bengio et al. (2004); Xiao et al. (2006b). Also,

asymptotic guarantees exist for ISOMAP, h-LLE and MVU, and conceivably similar

bounds could be shown for other methods. Here, however, we are more interested in

how these methods perform with a finite sample. We begin by introducing a simple yet

intuitive evaluation methodology.

By definition, if a manifold is isometric to a convex subset of a low dimensional

Euclidean space, there exists a diffeomorphism that maps the metric of such a manifold,

defined by geodesic distance, to the Euclidean metric. A natural measure of the quality

of an embedding for this class of manifolds is how closely distance is preserved1. Given

a sufficient number of samples from an isometric manifold, geodesic distance can be

estimated accurately, and this estimate is guaranteed to converge as the number of sam-

ples grows (this forms the basis for ISOMAP, we refer the reader to Tenenbaum et al.

(2000) for details). We evaluate finite sample performance, using a much larger sample

to obtain ground truth distances. This methodology is applicable for manifolds that can

be sampled densely, for example for toy data or for image manifolds where we know

the underlying transformation or generative model for the manifold.

1LLE, MVU and LSML are applicable to larger classes of manifolds. However, any method should work with isometric
manifolds. There have also been some results on conformal embeddings (which preserve angles but not distances); a similar
methodology could be developed for this case. Finally, note that LLE finds an embedding that can differ by an affine transformation
from a distance preserving embedding, and so must be adjusted accordingly.

46

We assume we are given two sets of samples from the manifold, Sn containing

n points, which serves as the training data, and a very large set S∞, used only during the

evaluations stage. The ground truth geodesic distances dij for each pair of points i, j in

Sn are computed using S∞. Let d′ij denote the Euclidean distance between points i, j in

a given embedding. We define the error of an embedding as:

errGD ≡
1

n2

∑
ij

|dij − d′ij|
dij

. (3.6)

All experiments presented here were averaged over 10 trials. Reasonable effort

was made to maximize the performance of each method tested. We compared LSML to

three embedding methods: ISOMAP Tenenbaum et al. (2000), LLE Roweis and Saul

(2000) and (fast) MVU Weinberger and Saul (2006), each of which has code available

online. The embedding methods require a fully connected neighborhood graph; we sim-

ply discarded data that resulted in disconnected graphs. We sampled at most 1000 pairs

of neighboring points to train LSML, under these conditions training takes around two

minutes regardless of n or the number of neighbors k. Details of how to use the learned

model for geodesic distance computation are given in Section 3.4.3. Since computing

pairwise distances is time consuming for large n, we sample 100 landmark points.

The first experiments examine finite sample performance (see Figure 3.4). The

performance of the embedding methods ranked as ISOMAP �MVU � LLE, with the

performance of LLE being quite bad even for large n. To be fair however, LLE can

recover embeddings for classes of manifolds where MVU and ISOMAP cannot (and

likewise MVU is more general than ISOMAP). LSML performed better than these

embedding methods, especially for small n. LSML-U refers to the version of LSML

from Dollár et al. (2006), it generally performs similarly to LSML, except for small n

or large k (when curvature is non-negligible).

3.3.2 Model Complexity

The first step of many embedding methods is to construct a neighborhood graph

of the data, using for example the k-nearest neighbors of each point. Thus all these

47

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

n

er
r G

D

S−curve [best k]

LSML
IsoMap
MVU
LLE
LSML−U

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

n

er
r G

D

Hemisphere [k=5]

LSML
IsoMap
LSML−U

Figure 3.4: Finite sample performance. Performance of various algorithms, measured

by errGD as n is varied. All results shown are averaged over 10 repetitions. Left: S-curve

error for various methods (k chosen optimally for each data point). ISOMAP, MVU

and LSML all performed well for large n. LSML performed quite well even with

n=25. Qualitatively similar results were obtained for other manifolds. Right: ISOMAP

(geodesic distance computation only) and LSML results on a hemisphere. Here k = 5

was fixed, preventing ISOMAP from converging to a lower error solution. LSML’s

performance did not improve after n=100 because of sampling (see text).

methods have at least one parameter, k, usually set by hand. If k is too small estimates

of local geometry may have high error or variance, either due to noise or lack of in-

formation. If k is too large estimates of local geometry may be biased by manifold

curvature. For the trivial case of a linear subspace, which has no curvature, increasing k

should continuously decrease error since there is no bias term.

In these terms the choice of k is reminiscent of the classic bias-variance tradeoff

in supervised learning. Another view of the tradeoff is that enlarging k increases the

number of constraints on the embedding, except that additional constraints become in-

creasingly inaccurate. See Figure 3.5 for the effects of neighborhood size and noise on

performance for each method.

In addition to k, LSML has two more smoothing parameters: the number of

RBF’s and the regularization parameter λ. LLE also has a regularization term whose

48

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

k

er
r G

D

S−curve [n=400]

LSML
IsoMap
MVU
LLE
LSML−U

0 200 400 600 800 1000
0

20

40

60

80

100

120

n

be
st

 k

S−curve

LSML
IsoMap
MVU
LLE
LSML−U

10
−3

10
−2

10
−1

0

0.1

0.2

0.3

0.4

0.5

σ

er
r G

D

Swiss Roll [n=600, best k]

LSML
IsoMap
MVU
LLE
LSML−U

10
−3

10
−2

10
−1

30

40

50

60

70

80

σ

be
st

 k

Swiss Roll [n=600]

LSML
IsoMap
MVU
LLE
LSML−U

Figure 3.5: Bias-Variance Tradeoff. Top: Effects of neighborhood size. Left: Error as

a function of k for n=400 points from S-curve; note ‘U’-shaped curves. Note also the

robustness of LSML to very small (k=1) and very large (k=100) neighborhood sizes

(eventually LSML does break down, not shown). The reason for this robustness is due

to use of the centered error (LSML-U is not quite as robust for large k), see Section

3.2.1. Right: Best value of k for each method as a function of n. For all but MVU k

increases sub-linearly with n. Bottom: Effects of noise. Left: As the amount of noise

σ increases, the error of each method increases. LSML performs well, even without

the de-noising introduced in Section 3.4.2. Right: Best value of k for each method as a

function of σ. For MVU and ISOMAP k increases to compensate for additional noise,

LSML always prefers fairly large k given noise.

effects can be significant and MVU has a parameter ω that balances between maxi-

mizing variance and penalizing slack. Ideally, we would like some way of automati-

49

cally performing model selection; i.e. automatically selecting the value for each of these

parameters for a given problem instead of relying on a visual assessment of the final

embedding.

3.3.3 Model Selection

errGD can be used to analyze model complexity in certain settings, as above.

However, in general there is no large sample set available from which to compute ground

truth distances, in which case errGD cannot be used to perform model selection. Also,

for the same reasons that in general the quality of an embedding cannot be evaluated,

neither can the quality of out-of-sample extension, so this does not provide an answer2.

The key difficulty stems from the fact that most manifold embedding methods make no

testable predictions.

If manifold learning can be posed in such a way that it makes testable predic-

tions, the quality of the predictions can potentially be used to perform model selection.

For example, if in addition to an embedding the reverse mapping back to RD is also

learned, error can be measured by how well a test point is encoded. This principle

formed the basis for auto-encoding neural nets DeMers and Cottrell (1993).

Given a notion of test error, standard techniques from supervised learning, such

as cross-validation, can be used for performing model selection and evaluation for man-

ifold learning. However, although any testable prediction gives rise to an error measure,

not all error measures are necessarily useful. errGD gives a way to evaluate performance

in certain scenarios; at minimum prediction error should roughly correlate with errGD

when it is available.

50

10 20 30 40 50 60 70 80
number rbf’s

no
rm

al
iz

ed
 e

rr
or

Mobius strip [n=500, k=10]

err
LSML

err
GD

Figure 3.6: LSML Test Error. When errGD can be computed it is strongly correlated

with errLSML, supporting our use of errLSML to perform model evaluation. Left: Points

drawn from a Möbius strip, a manifold with d = 2, with a small amount of noise added.

Right: errLSML and errGD, each normalized to lie between 0 and 1, as the number of

RBFs was varied. Of 500 points, 2
3

were used for training, 1
3

for testing. According to

both error measures approximately 10 to 20 RBFs was best.

3.3.4 LSML Test Error

LSML predicts the tangent planes H at all points on a manifold. We can define

the test error of LSML according to how well the predicted tangent planes fit unseen

data (see Eq. (3.2)). Given unseen test points xi, the error is:

errLSML ≡
∑
i

min
εii′

∥∥∥Hθ(x
ii′)εii

′ − (xi − xi
′
)
∥∥∥2

2
, (3.7)

where xi
′ is the closest neighbor of xi, either another test point or a training point.

errLSML is strongly correlated with errGD both for isometric and non-isometric

manifolds. For example, in Figure 3.6 we show the effect of changing the number of

RBFs on both errors for data that lies on a Möbius strip; note that the minima of the

errors occur at roughly the same spot. This correlation is important, because it allows us

to use errLSML in place of errGD to perform model evaluation, select model parameters,
2Bengio et al. (2004) evaluated the out-of-sample extension of various methods by seeing how consistent the out-of-sample

prediction was compared to simply including the point in the original embedding. However this is only a partial solution since
consistency does not imply accuracy (consider a trivial embedding which maps all points to the origin).

51

etc. Although we can only prove the utility of errLSML for manifolds for which errGD is

defined, errLSML is most useful when errGD cannot be computed.

Finally, note that errLSML cannot be used to choose d, since as d increases errLSML

will decrease. This is the same challenge as choosing k in K-means clustering. A simple

rule of thumb is to choose the smallest value of d such that further increasing d results

in only a small decrease in error.

3.4 Working withHθ

We now develop a number of uses for the representation Hθ learned by LSML,

including projection, manifold de-noising, geodesic distance computation, and manifold

transfer. For all experiments we use errLSML to select model parameters, including the

number of RBF’s, k, and the regularization parameter λ. Given low test error, we expect

geodesic distance computation, de-noising, etc. to be accurate (see Section 3.3.4).

Hθ is a function defined everywhere on RD, not just for points from the original

manifold. This allows us to work with points that don’t lie precisely on the manifold.

Finally, note that in addition to Hθ at least one training point is necessary to identify a

manifold, and in practice keeping more training points is useful.

3.4.1 Projection

The projection of a point onto a linear subspace is unique and can be computed

in closed form. For nonlinear manifolds this is in general not the case. x′ is an or-

thogonal projection of a point x onto a manifold if it minimizes ‖x − x′‖2
2 in an open

neighborhood. We can find such a point by initially setting x′ to be some point from the

manifold and then performing gradient descent, being careful not to leave the support

of the manifold. x′ is therefore bound to only follow the projection of the gradient on

the local tangent space defined by Hθ(x
′). Let H ′ ≡ orth(Hθ(x

′)) be the d × D ma-

trix that denotes the orthonormalized tangent space at x′, and H ′H ′> the corresponding

52

Figure 3.7: Manifold De-noising. Red (square) points are the noisy training data used

to learn Hθ. After, the de-noising procedure from Section 3.4.2 was applied to recover

the blue (circular) points. Original manifolds shown in gray. Left: Circle (D=2, d=1,

n=200). Right: S-curve, side view (D=3, d=2, n=500).

projection matrix. The update rule for x′ (with step size α) is:

x′ ← x′ + αH ′H ′>(x− x′). (3.8)

There may be multiple orthogonal projections but we generally are interested in the

closest one. A simple heuristic is to initially set x′ to the nearest point in the training

data.

3.4.2 Manifold De-noising

Assume we have learned or are given the mappingHθ that describes the tangent

space of some manifold or family of manifolds. Suppose we are also given samples

xi from a manifold that have been corrupted by noise so they no longer lie exactly on

the manifold (these can be the same samples from which Hθ was learned). Here we

show how to recover a set of points χi that are close to the noisy samples xi but lie on a

manifold consistent withHθ.

The key to the approach is the observation that, as in Eq. (3.3), if χj is a neighbor

of χi then there exists an unknown εij such that ‖Hθ(χ
ij)εij − (χi−χj)‖2

2 is small. We

53

(a) (b) (c)

Figure 3.8: Geodesic Distance. We can find a geodesic path between two points by

using a snake. The key idea is to start with a discretized path between x and x′ and

perform gradient descent until the length of the path cannot decrease. (a) Initial path

between two points on S-curve. (b) Locally shortest path (geodesic) obtained after gra-

dient descent. (c) Embedding computed using classical MDS on geodesic distances

(only applicable for isometric manifolds). Hθ was trained on the n=100 points shown.

can thus find a series of points χi that are close to the original points xi and satisfy the

above. The error to minimize is the sum of two terms:

errM(χ) = min
{εij}

∑
i,j∈N i

∥∥Hθ(χ
ij)εij − (χi − χj)

∥∥2

2
(3.9)

errorig(χ) =
n∑
i=1

∥∥χi − xi
∥∥2

2
(3.10)

The second term is multiplied by a constant λnoise to weigh the importance of

sticking to the original points. We assume that for a small change in χi, ∂Hθ
∂χi

is negligible

with respect to the other quantities. Under such an assumption, the gradient of errM(χ)

can easily be rewritten as a product of matrices. We find a minimum energy solution by

initially setting χi = xi for each i and then performing gradient descent on the χi’s, this

time using only the component of the gradient that is orthonormal to the manifold (we

54

cannot correct the noise in the co-linear direction).

Manifold de-noising has received some attention in the literature Park et al.

(2004); the approach presented here is simpler and does not suffer from the “trim the

peak and fill the valley” phenomenon. We show results in Figure 3.7.

3.4.3 Geodesic Distance

Given two points on a manifold, x and x′, we want to compute the geodesic

(locally minimal) distance between them. To find such a minimal path we use an active

contour model, also known as a ‘snake’ Kass et al. (1988); Blake and Isard (1998), where

the length of a discretized path between x and x′ is optimized by gradient descent.

Let χ1 = x and χm = x′, and χ1, . . . , χm denote a sequence of points on the

manifold forming a path between them. The length of the path is given by:

m∑
i=2

∥∥χi − χi−1
∥∥

2

For computational reasons, we use the following instead:

errlength(χ) =
m∑
i=2

∥∥χi − χi−1
∥∥2

2
. (3.11)

We minimize errlength via gradient descent, keeping the ends of the snake fixed and again

being careful not to leave the support of the manifold. The update rule for each χi is

very similar to the update rule for projection given in Eq. (3.8).

To get an initial estimate of the snake, we apply Dijkstra’s algorithm to the orig-

inal points (also the first step of ISOMAP). To increase accuracy, additional points are

linearly interpolated, and to ensure they lie on the manifold they are ‘de-noised’ by the

procedure from Section (3.4.2) (with λnoise = 0 and neighbors being adjacent points).

Figure 3.8 shows some example snakes computed over an S-curve. In Figure

3.9 we show an example snake that plausibly crosses a region where no points were

sampled.

55

Figure 3.9: Missing Data. Hθ was trained on n=100 points sampled from a hemisphere

with the top portion removed. Hθ plausibly predicted the manifold structure where no

samples were given. Shown are two views of a geodesic computed between two points

on opposite sides of the hole (see Section 3.4.3).

3.4.4 Manifold Transfer

A related problem to learning the structure of a single manifold is to simultane-

ously learn the representation of multiple manifolds that may share common structure

(cf . Figure 3.3e). Such manifolds can arise whenever a common transformation acts on

multiple objects, e.g. in the image domain this is quite common. One possibility is to

relate representations learned separately for each manifold Elgammal and Lee (2004),

however, learning simultaneously for all manifolds allows sharing of information.

An even more interesting problem is generalizing to novel manifolds. Given

multiple sets of points, each sampled from a single manifold, we can formulate the

problem as learning and generalizing to unseen manifolds. Once again errLSML serves

as the test error, except now it is computed from points on the unseen manifolds. LSML

can already be trained on data of this form; two points being defined as neighbors if they

are close in Euclidean space and come from the same manifold. Results of manifold

transfer were shown in Figure 6 of Dollár et al. (2006).

56

3.5 Conclusion

In this chapter, we presented a novel examination of nonlinear manifold learn-

ing, posing it as the problem of learning manifold representations in a manner that allows

for the manipulation of novel data. Drawing on concepts from supervised learning, we

presented a theoretically sound methodology for quantifying the generalization perfor-

mance of manifold learning approaches. With this formalism in hand, we presented

LSML and showed how it can be applied to tasks including nonlinear projection, man-

ifold de-noising, geodesic distance computation and manifold transfer.

The main feature of LSML we will now use for NRSFM is its manifold denois-

ing property.

3.6 Acknowledgements

Chapter 3, is a reprint of the material as it appears in Non-Isometric Manifold

Learning: Analysis and an Algorithm, P. Dollár, V. Rabaud and S. Belongie, Interna-

tional Conference on Machine Learning, 2007 and Learning to Traverse Image Man-

ifolds, P. Dollár, V. Rabaud and S. Belongie, Neural Information Processing Systems,

2006.

Chapter 4

Non-Linear Embedding for NRSFM

In this chapter, we are moving away from the linear shape manifold assumption:

just like in the previous chapter, the only constraint imposed on the shape manifold is

its dimensionality. This evolution of the model is “natural” in the sense that it hap-

pened to other areas of computer vision. For example, shape models moved away from

PCA/linear basis developed in Cootes et al. (2001) to non-linear models like in Tenen-

baum and Freeman (2000) or Elgammal and Lee (2004).

By moving away from the linear basis interpretation and adopting a manifold-

learning framework to constrain the number of degrees of freedom of a deforming ob-

ject, we can model more complex types of deformation and demonstrate success in cases

where existing techniques fail.

The proposed method first relies on a new initialization that quantizes the non-

rigidity into a temporal succession of rigid shapes. An optimization then follows to

minimize, at the same time, the reprojection error as well as constraints on the smooth-

ness of the 3D shape deformations. A constraint on the shape manifold dimensionality

is also enforced to make sure the recovered 3D shapes have a given number of degrees

of freedom.

57

58

4.1 Problem

We want to recover the different parameters (camera ones (Rt, tt) (2 × 3 and

2×1 matrices respectively as defined earlier) and shape ones St) and they are a solution

of the following reprojection error minimization:

arg min
Rt,tt,St

f∑
t=1

∥∥(RtSt + tt1n
>)−Wt

∥∥2

F
(4.1)

As this equation is severely underconstrained, some assumptions need to be

made.

Camera Motion

First, we assume the camera motion is smooth: the camera position does not

change much from one frame to the next. Therefore, we add two regularization terms to

Equation (4.1):

λR

f∑
t=2

‖Rt −Rt−1‖2
F + λt

f∑
t=2

‖tt − tt−1‖2
F (4.2)

where λR and λt are regularization constants.

Smooth Deformation

Next, another valid assumption is that the observed object does not change much

from one frame to the next: this is also a physical constraint that is usually assumed by

the feature tracker prior to SFM. Hence a new term is added to Equation (4.1):

λS

f∑
t=2

‖St − St−1‖2
2 (4.3)

where λS is another regularization constant. Higher order smoothness terms could be

used, but this one proved sufficient for all our experiments.

59

Degrees of Freedom

While previous methods only allow for linear deformations, the proposed ap-

proach only constrains the shape deformation to have at most d degrees of freedom,

hence allowing for non-linear deformations. This means that all the possible shapes

St lie on a d-dimensional manifold or that, locally, several nearby shapes lie on a d-

dimensional linear subspace. We will make this constraint explicit in Section 4.2.2.

Complete Problem Formulation

Our problem can now be re-formulated as the following optimization:

min
Rt,tt,St

f∑
t=0

∥∥(RtSt + tt1n
>)−Wt

∥∥2

F
+ λS

f∑
t=2

‖St − St−1‖2
F

+ λR

f∑
t=2

‖Rt −Rt−1‖2
F + λt

f∑
t=2

‖tt − tt−1‖2
F (4.4)

with the St’s constrained to lie on a d-dimensional manifold.

Ambiguities

In SFM problems, there is usually an overall rigid ambiguity on the camera

position. In our formulation, if the 3D shapes are modified by an overall rigid transform

(R, t), we obtain the following new unknowns: S ′t = RSt + t, R′t = RtR
> and t′t =

tt − R′tt. As RtSt + Tt = R′tS
′
t + T ′t , the first term of Equation (4.4) will not change.

As the Frobenius norm is rotation-invariant, the terms 2 and 3 will also be unchanged.

Nonetheless, the last term becomes:
∥∥t′t − t′t−1

∥∥
2

=
∥∥tt − tt−1 − (R′t −R′t−1)t

∥∥
2
6=

‖tt − tt−1‖2 except if t = 0.

Therefore, with our formulation, there is only a global rotation ambiguity, that

we resolve by imposing R1 = I3.

Also, the third component of the tt’s only matters in the last term of Equation

(4.4) and a trivial optimum is reached by setting them to the same value. This arbitrary

value is an ambiguity inherent to the orthographic model.

60

Over-Constrained Problem

We must recover 3f camera rotation angles, 2f camera translation parameters

(2 and not 3, as there is a depth ambiguity with orthographic cameras) and 3n × f 3D

shape parameters. On the other hand, 2n× f coordinates are given in the Wt matrices.

A d-dimensional linear subspace is parametrizable by a point and a basis of d

elements, each of size 3n. The point can be chosen anywhere in the subspace and

therefore has 3n − d degrees of freedom. Also, the basis only has 3nd − d2 degrees

of freedom. The subspace can therefore be explained with 3n − d + 3nd − d2 = (d +

1)(3n− d) parameters.

In our formulation, the shapes lie on a d-dimensional manifold, and locally on

a d-dimensional linear subspace. Therefore, if the data is uniformly distributed on

the manifold, there exists a neighborhood size s such that every neighborhood of s

shapes approximately lies on a d-dimensional linear subspace. Consequently, every s-

neighborhood can be explained by s linear combinations and a d-dimensional subspace.

As a result, each frame can be explained, on average, by 1
s
(sd + (d + 1)(3n − d)) =

d+ 1
s
(d+ 1)(3n− d) parameters.

As shown in Table 4.1, our model requires more parameters than traditional SFM

techniques but it is still over-constrained provided 5f + fd+ f
s
(d+ 1)(3n− d) < 2nf

or again:

5 + d+
1

s
(d+ 1)(3n− d) < 2n (4.5)

To give a sense of magnitude, we can assume that usually, d < 10 and n >

100. Therefore, the inequality can be approximated by s & 1.5(d + 1). Practically,

this implies that the observed shapes have to appear in similar configurations at least

1.5(d + 1) times (similar but not necessarily exact: our approach does not require a

perfect repetitiveness of the motion).

61

Table 4.1: Number of parameters defining the model in rigid SFM, traditional Non-

Rigid SFM, and the proposed approach (all in the orthographic case). This statistics

concerns a sequence of f frames with n features whose shape lie on a d-dimensional

subspace (d = 0 in the rigid case). s is such that every s neighboring shapes constitute

a linear subspace.

Rigid Classical NRSFM Proposed NRSFM

camera 3f + 2f

basis (d+ 1)(3n− d) (((

shape 3n d d+ 1
s
(d+ 1)(3n− d)

total 5f+3n 5f+fd+(d+1)(3n−d) 5f+fd+ f
s
(d+1)(3n−d)

Figure 4.1: NRSFM is initialized by a Rigid Shape Chain. First of all, pairs and triplets

of frames of the original video sequence are extracted. Each pair or triplet is then as-

sumed to be projections of the same 3D view: the corresponding reprojection error is

computed and used to define an affinity matrix/affinity tensor (only triplet composed

of pairs with high affinities are considered for efficiency, hence the missing data in the

image). These are then combined into a hypergraph that is flattened and clustered using

clique expansion and normalized cut. The resulting clusters represent prototypical 3D

shapes and they are then aligned to create a first estimate of the St’s.

62

4.2 Method

4.2.1 Initialization

In order to minimize Equation (4.4), several techniques will be used including

a partial closed-form solution, gradient descent and manifold denoising. The system is

initialized by assuming that the object can be modeled at any frame as a rigid transfor-

mation of one of a collection of shape templates.

Hypergraph Interpretation

We first cluster the shapes St. We assume that if St and St′ are in the same

cluster, they are derived from different rigid transformations of the same shape template

and the corresponding reprojection error errtt′ is computed. We can then interpret the

video sequence as a graph whose nodes are the frames and whose edges are weighted

with the following reprojection affinity:

wtt′ = e
−

err2
tt′

σ2

An affinity close to 0 means the two 3D shapes are not in the same state. On the

other hand, if it close to 1, it can indicate either a similar state, or an ambiguity due to a

view point that “hides” the shape differences.

In order to disambiguate these cases, we compute higher order affinities using the

reprojection error of triplets of frames using Tomasi and Kanade (1992). This method

is known to be more stable than epipolar geometry but is also more expensive. There-

fore, only pairs of frames that already have a high pairwise epipolar-based affinity are

considered to form triplets.

Once these dyadic and triadic affinities have been computed, we obtain a hyper-

graph with dyadic and triadic connections. In order to cluster the object shapes, the hy-

pergraph is approximated by a graph using clique expansion Schweikert and Kernighan

(1972).

63

Rigid Shape Chain

In order to deal with noise and outliers and to lower the dimensionality of the

initialization, quantization is performed on the frames by separating them into clusters of

equivalent 3D shape. To this end, a simpleK-way clustering is applied using normalized

cuts Shi and Malik (2000) to the previously defined frame affinity graph. K is chosen

as the biggest number of clusters such that no cluster has less than 3 frames (in practice,

K was between 10 and 30 for a 200-frame sequence).

Next, each cluster Ci is considered and its corresponding 3D shape Si, i =

1, . . . , K is computed (using Tomasi and Kanade (1992)).

The resulting clustering is an initialization that actually explains the observed

non-rigidity by a succession of rigid problems. We name this approach a Rigid Shape

Chain (cf .Figure 4.1).

Initial Shape Alignment

The shapes obtained so far have been computed without regard to any deforma-

tion smoothness. This smoothness is enforced by applying a rigid transform (Ri,Ti) to

the Si’s in order to minimize the following temporal smoothness criterion:

min
(Ri,Ti)

f∑
t=2

∥∥Ri(t)Si(t) + Ti(t) −Ri(t−1)Si(t−1) −Ti(t−1)
∥∥2

F
(4.6)

where i : t 7→ i|St ∈ Ci. This minimization is simply a continuous version of the

exterior orientation problem Horn (1986). It can be solved by least squares optimization

with random initialization and rotation constraints on the Ri’s. In practice, we found that

finding the closed form solution of the problem with no rotation constraints, and then

projecting it onto SO(3) Horn (1987) gave very good and fast results. The advantage

of this approach is that it can rectify 3D shapes that have been flipped because of the

possible chirality ambiguities appearing during the rigid shape chain.

Finally, the Ri(t)Si(t) +Ti(t) are set to be the initial estimates of the St’s (modulo

a global rotation to ensure that R1 = I3).

64

4.2.2 Minimization

After initialization, we obtain a reasonable approximation of the shapes and cam-

era positions over time. The minimization of Equation (4.4) proceeds by alternating

between the different unknowns, assuming the others are fixed.

Optimizing Camera Positions

If the St’s and Rt’s are fixed, finding a global optimum to Equation (4.4) with

respect to t is trivial: it is the closed form solution of a sparse linear system.

Concerning the Rt’s, the global optimum is as trivial, provided they are not con-

strained to be rotation matrices. In practice, we compute this global optimum and project

it to SO(3). If the result lowers the error, it is kept. Otherwise, we perform a projection-

based gradient descent (at every step of gradient descent, the result is reprojected onto

SO(3)).

LSML

When performing optimization on the St’s, there are two criteria to take into

account: the smoothness term in Equation (4.4) and the shape manifold dimensionality

constraint. Optimizing the first one is just a least square optimization, but the second

one needs a new interpretation.

The problem of imposing this dimensionality constraint can be seen as trying to

force the St to lie on a d-dimensional manifold (as previously defined, d is the number of

freedom of the observed object). After initialization, the St’s are close to this manifold

but are not on it: it is as if they formed a noisy low-dimensional manifold. As mentioned

earlier, we have no reason to believe that this manifold is planar or isometric to a plane,

hence our motivation for using LSML Dollár et al. (2007).

LSML is a manifold learning technique that seeks to learn from training data a

65

smooth mapping from every point on the manifold to its local tangents. Consider:

M :
Rd → RD

y 7→ x
(4.7)

a smooth mapping from a low d-dimensional space to a higher D-dimensional space

(e.g. y is the coordinate on a manifold of a high dimensional point x), d � D. LSML

seeks to recover the mapping:

H :
RD → RD×d

x 7→
[
∂/∂y1M(y) . . . ∂/∂ydM(y)

] (4.8)

whereM(y) = x and y =
[
y1 . . .yd

]>
∈ Rd.

The strength of this technique is that the mapping is not only learned for the

training points but, by continuity, it is applicable to any new given point in RD.

LSML can also learn H from noisy data and then denoise it by making the

points follow the gradient of an optimization criterion detailed in Dollár et al. (2007).

It is important to notice that LSML is limited to noise orthogonal to the manifold and

cannot deal with collinear noise.

At each of our optimization steps, LSML is used to learn the manifold of noisy

St’s and recover the gradient for the LSML noise criterion.

Optimizing 3D Shapes

Optimizing the St’s now needs to take two criteria into account - the one from

Equation (4.4) and the one from LSML- and we have computed an optimization gradi-

ent for both, which we define as ∇Smooth and ∇LSML. It is an instance of multi-objective

optimization. As, we do not want one of the constraints to be enforced more and impede

the other, we decide not to use a weighted linear combination of the two criteria or a

Lagrangian multiplier: we keep the constraints separate and and optimize them at the

same time using multi-level programming to favor the dimensionality contraint.

Instead of using our two gradients as they are, we keep ∇LSML responsible for

any variation orthogonal to the shape manifold but only restrict∇Smooth to its projection

66

Figure 4.2: Two gradients are involved when optimizing the St’s. First, there is a gra-

dient ∇LSML provided by LSML that tends to bring a noisy St back onto the shape

manifold (but that is only orthogonal to it). Then, there is a gradient ∇Smooth that mini-

mizes the smoothness of the shape deformation. In order not to interfere with the LSML

gradient, only its component orthogonal to∇LSML is considered: ∇⊥Smooth. A linear com-

bination of these two gradients is then searched to optimize the two criteria at the same

time.

∇⊥Smooth onto a plane tangent to ∇LSML: this way, ∇⊥Smooth does not interfere with any

effect of∇LSML. Figure 4.2 illustrates this approach.

What follows is a gradient descent step following the gradient: ∇ = a∇LSML +

b∇⊥Smooth, where a and b are chosen so that both criteria are optimized at the same time.

Outliers

As LSML is not robust to outliers, special care is taken for any 3D shape that

does not comply to the two following criteria:

• the distance to one of its neighbors is above three standard deviations (of the

distribution of distances from points to their neighbors)

• the distance to its temporal predecessor is above three standard deviations.

These points are simply optimized by disregarding the manifold dimensionality con-

straint and by assigning them to their globally optimal value (which can be obtained in

67

closed form, in a similar way as the tt’s).

Considerations

Each iteration of our optimization routine attains a lower error for Equation (4.4)

that in the previous one, so it is bound to converge. In our experiments, we did not

need to repeat the optimization (which could have been useful as it contains randomized

algorithms such as Normalized Cut or LSML) but we faced a slow convergence (100 to

200 iterations were required).

Also, most of the steps described previously take a few seconds to compute

except for the triadic affinity computation and the St gradient descent involving LSML.

Indeed, for each iteration, LSML needs to be retrained which can take up to a few

minutes leading to an overall time of an hour or two.

4.3 Experiments

We experimented our method on both synthetic and real data. These experiments

show the flexibility of our approach and its robustness as well as comparisons with state

of the art using code from Torresani et al. (2008) and our own implementation of Xiao

and Kanade (2005). We will respectively refer to these two methods as THB and XCK

while we name ours Manifold Structure From Motion or MSFM.

4.3.1 Synthetic Data

Roller Coaster

The first data set is a synthetic roller coaster. The video sequence consists of

200 frames with 42 points moving on a fixed closed track. As seen on Figure 4.3(a), it

looks like a closed roller coaster or a bent bike chain. The camera rotates around the

object while it deforms. Both the object and the camera evolve at random speeds (no

translation is involved for the camera).

68

(a) Frame Example (b) Reconstruction Performance

(c) Reconstruction Examples (respectively PCA, THB, MSFM)

Figure 4.3: Roller Coaster. Figure 4.3(a) is a typical frame from the sequence. The

black square refers to the first point of the coaster. Overall, the coaster loops 6 times.

Figure 4.3(b) illustrates the performances of the different algorithms the percentage error

refers to the average reconstruction error along the camera depth axis, normalized by the

depth of the roller coaster as in Torresani et al. (2008)). PCA on the 3D points beats

MSFM when the basis contains at least 6 elements which shows that the structure is not

easily representable by a linear basis. Figure 4.3(c) shows examples of reconstruction

for PCA (with 5 shapes in the basis), THB (with 4 shapes in the basis) and MSFM. The

corner of the roller coaster presented a challenge for PCA to capture even with a bigger

basis.

This motion only has one degree of freedom as the points have to move along

a fixed structure. Nonetheless, this motion causes problem for THB because it is not

easily representable by a linear basis (for comparison, we show how hard it is for PCA

to characterize the data given the full 3D points in Figure 4.3(b)). Also, the object does

69

not have a main component that could be considered as rigid and be used as initialization

for THB.

THB seems to fail in this case while MSFM only has 1.2% of error (the com-

puted error is similar to Torresani et al. (2008) and detailed in Figure 4.3). Figure 4.3(b)

also shows an interesting limitation of using a linear basis: as its focus is to minimize

the reprojection error at any cost, more elements in the basis can help lowering it but at

the cost of getting a worse 3D reconstruction.

It is also worth mentioning that the sequence of recovered St is also moving on

itself (in addition to its intrinsic one degree of freedom): this is due to the fact that this

optimizes the overall smoothness.

Bending Shark

The next experiment uses the shark data from Torresani et al. (2008). It con-

sists of 240 frames during which 91 points form a shark that bends its tail left/right or

up/down (hence 2 degrees of freedom). In Torresani et al. (2003), they obtain errors of

1.24% and 2.5%. With our setup, we obtain 3%, which is comparable to their second

best method. Several details are shown in Figure 4.4

4.3.2 Real Data

The final round of experiments involves a calibrated video sequence of a Slinky®

toy: this spring has a complex motion but, in this instance, only one degree of freedom.

27 painted features were tracked during a 300 frame long video sequence. There are

approximately three periods of up/down movement that occur.

This data set is difficult for two reasons: the feature trajectories are noisy and

the baseline between two extreme views is small. MSFM reconstructed a 1D-manifold

of the different 3D-shapes with an average reprojection error of 1.4%. Examples are

illustrated in Figure 4.5. THB fails in this case as the object does not have a main rigid

part and because it undergoes non-linear deformations (like compression).

70

(a) MSFM Initialization

(b) New Views

Figure 4.4: Bending Shark. Figure 4.4(a) illustrates the initial camera position estima-

tion after the rigid shape chain computation. The ground truth camera movement of the

camera is a view from below first followed by a full rotation around the shark. There are

of course a few outliers but the overall camera trajectory is already well approximated.

Figure 4.4(b) shows two reconstructions of the shark sequence. In the right image, the

camera was pointing down leading to a lower quality reconstruction because of the depth

ambiguity.

71

(a) Some Frames of the Slinky Sequence

(b) MSFM Reconstruction

Figure 4.5: Slinky. Figure 4.5(a) shows a few frames of the slinky sequence with some

tracked features. The lines are just drawn to help visualize the 3D structure in the re-

construction Figure 4.5(b). These three frames demonstrate the compression the object

undergoes: this property is difficult for a linear basis to model, even in 2D, hence the

failure of THB. On the other hand, MSFM seems to recover correct 3D feature posi-

tions: the structure contains compression and seems to have a correct orientation.

72

4.4 Acknowledgements

Chapter 4, is a reprint of the material as it appears in Re-Thinking Non-Rigid

Structure from Motion, V. Rabaud and S. Belongie, IEEE Conference on Computer

Vision and Pattern Recognition, 2008.

Chapter 5

Conclusion

5.1 Contributions

Throughout this dissertation, we have developed and built upon a new interpre-

tation of non-rigid structure from motion. The manifold of all the possible shapes of a

3D object is smooth and has a dimensionality that reflects its number of degrees of free-

dom, which is usually low. By focusing on studying this object first instead of having a

matrix interpretation, we showed how we can reach performance better than the current

state of the art techniques.

By keeping the linear manifold assumption, we showed how our approach TSFM

performs better, even in noisy cases. As TSFM relies on recent math development we

can expect more robust and faster performance in the upcoming years. Mostly, SDP

problems with rank constraints have been the subject of recent research, and improve-

ments in the current techniques could drastically improve our approach.

Finally, this thesis was also the occasion to make a theoretical jump and move to

looser assumptions concerning the shape manifold by only restricting its dimensionality.

Here again, we showed how MSFM can overcome problems with current techniques

and assumptions by being more flexible.

73

74

5.2 Future Work

There are a few simple extensions that could be added to TSFM and MSFM.

First, just like in previous SFM works, dealing with occlusions and the projective case

could be easily incorporated. This is because only pairs and triplets of frames are con-

sidered, and the theory for such simple cases has been established a decade or more

ago.

Also, it might be possible to incorporate TSFM into MSFM just to obtain the

rigid shape chain. As only clusters of coherent frames need to be used, just the manifold

recovery part of TSFM could be used to this end.

It seems that more information about the object could be used when recovering

the embedding. Information like periodicity. exact state repetitions, object symmetry,

and deformation curvature on the manifold could help constrain the shape manifold

even more and probably help dealing with the sampling issues by providing stronger

constraints.

Finally, and this is more of a dream at this stage: it should also be possible

to move away from the feature paradigm and incorporate dense information into the

pipeline: in TSFM, the shape manifold only involves coordinates in a shape basis (or

local shape basis as in MSFM). These have no tie with the basis itself, which could help

abstracting it to some dense basis. But sometimes dreams do come true . . .

Appendix A

General Math Considerations

A.1 Notations

Table A.1: The different math notations used throughout this

thesis are explained in the table below.

Variables Definition

a Scalar

a Vector

ai Vector indexed for some purpose

ai ith element of the vector a

A Matrix

Ai Matrix indexed for some purpose

A·j j th column of the matrix A

Ai· ith row of the matrix A

Ai:j,k:l submatrix of the matrix A composed of the rows from i to j

and the columns from k to l.

A·,k:end submatrix of the matrix A composed of the kth column up to

the last.

75

76

I, In identity matrix, identity matrix of size n× n.

0,0n vector composed of 0’s only. If its dimensionality n is am-

biguous, it is indicated as a lower index.

0, 0n matrix composed of 0’s only. If it is square and its dimension-

ality n is ambiguous, it is indicated as a lower index.

1,1n same as the 0 case defined above.

1, 1n same as the 0 case defined above.

vec (A) vector version of the matrix A

A⊗B Kronecker product of A by B

A+ Pseudo-inverse of A

‖x‖2
2 squared L2 norm of x

‖A‖2
F squared Frobenius norm of A

[[i; j]] set of integers between i and j

Cn n× (n+ 1) matrix such that Cn =


1 0 . . . 0 −1

0
.

...
... . . . 0

...

0 . . . 0 1 −1



A.2 General Linear Algebra

A.2.1 General Rules

If A,B,X are matrices:

vec (AXB) = (B> ⊗ A)vec (X) (A.1)

tr (AB) = vec (A)>vec (B) = tr
(
B>A>

)
= vec

(
A>
)>

vec
(
B>
)

(A.2)

(In + 1n)−1 = In −
1

n+ 1
1n (A.3)

The solution of min ‖AX −B‖2
F is X = A+B + V where V is such that AV =

0. Equivalently, the solution of min ‖XA−B‖2
F is of the form: X = BA+ + V where

77

Table A.2: The different notations related to structure from motion are detailed in the

table below.

Variables Definition

n Number of tracked features in the video sequence

f Number of frames in the video sequence

s Number of basis element in the shape basis

Wt 2× n measurement matrix: each column contains the measured coor-

dinates of a feature on frame t

W ∗
t 3 × n measurement matrix: each column contains the measured 3D-

coordinates of a feature on frame t. This quantity is never measured,

but is used during computation. Only a projection of these measured

3D coordinates is give via Wt

St 3 × n shape matrix: each column contains the 3D coordinates of a

feature at time t

(R∗t , t
∗
t) 3×3 rotation matrix and 3×1 translation matrix at time t defining the

camera position

(Rt, tt) Rt and tt contains the first two rows of R∗t and t∗t

V A=0.

A.2.2 The Curious Case of Cn

Cn is defined in the previous tables and by definition: CnC>n = In + 1n.

78

A.3 Derivations in Linear Algebra

If A,B,C,D,X are matrices:

∂‖A‖2
F = ∂tr

(
AA>

)
= tr

(
∂AA> + A(∂A)>

)
= 2tr

(
A(∂A)>

)
(A.4)

Now, if A = BXC +D, and we take the derivative with respect to X:

d
dX
‖A‖2

F =
d

dX
tr
(
(BXC +D)(BXC +D)>

)
(A.5)

=
d

dX
tr
(
BXC(BXC)>

)
+ 2tr

(
BXCD>

)
(A.6)

= B>BXCC> +B>BXCC> + 2B>DC> (A.7)

= 2B>(BXC +D)C> (A.8)

Chain Rule: if U = f(X), then:

∂

∂Xij

g(U) = tr

((
∂

∂U
g(U)

)>
∂

∂Xij

U

)
(A.9)

Appendix B

Linear Embedding Formulas

B.1 Infimum Computation

We want to solve for:

min
R∗,x,y

∥∥∥∥∥∥
W1

x>

−R∗
W2

y>

∥∥∥∥∥∥
2

F

subject to R∗ is a rotation matrix

centering conditions: x = 0,y = 0

(B.1)

x can be chosen to nullify the third row of the difference, leading to the following new

problem:

min
R,y

f(R,y) =

∥∥∥∥∥∥W1Cn−1 −R

W2

y>

 Cn−1

∥∥∥∥∥∥
2

F

subject to R is the top two rows of a rotation matrix

(B.2)

with y,W1 and W2 being shorter by one element, Cn−1 =


1 0 . . . 0 −1

0
.

...
... . . . 0

...

0 . . . 0 1 −1

 such

that y>Cn−1 =
[
y> −y>1

]
(centering condition is forced) and R parametrized by a

79

80

quaternion (a, b, c, d)>.Hence:

∂

∂yi
f(R, y) = tr

 ∂

∂B

(
‖W1Cn−1 −RBCn−1‖2

F

)> ∂

∂yi

W2

y>

 (B.3)

= tr

2Cn−1 (RBCn−1 −W1Cn−1)>R
∂

∂yi

W2

y>

 (B.4)

= tr

2Cn−1C>n−1

R
W2

y>

−W1

>R
 0

0 . . . 0 1 0 . . . 0



(B.5)

= tr

2(In−1 + 1n−1)

R
W2

y>

−W1

>R·3 [0 . . . 0 1 0 . . . 0
]

(B.6)

=
[
0 . . . 0 1 0 . . . 0

]
2(In−1 + 1n−1)

R
W2

y>

−W1

>R·3
(B.7)

∂

∂y
f(R, y) = 2(In−1 + 1n−1)

R
W2

y>

−W1

>R·3 (B.8)

As it is null at the optimum and as (In−1 + 1n−1)−1 = In−1 − 1
n
1n−1 (and is

therefore invertible), we have: W2

y>

>R>R·3 = W>
1 R·3 (B.9)

[
W>

2 y
]
R>R·3 = W>

1 R·3 (B.10)

W>
2 R

>
·,1:2R·3 + yR>·3R·3 = W>

1 R·3 (B.11)

R>·3R·3y = W>
1 R·3 −W>

2 R
>
·,1:2R·3 (B.12)

81

Therefore:

y =
1

R>·3R·3

(
W>

1 −W>
2 R

>
·,1:2

)
R·3 (B.13)

Now:

f(R) =

∥∥∥∥∥∥R
W2

y>

 Cn−1 −W1Cn−1

∥∥∥∥∥∥
2

F

(B.14)

=
∥∥R·,1:2W2Cn−1 −W1Cn−1 +R·3y

>Cn−1

∥∥2

F
(B.15)

=

∥∥∥∥R·,1:2W2Cn−1 −W1Cn−1 +
1

R>·3R·3
R·3R

>
·3 (W1 −R·,1:2W2) Cn−1

∥∥∥∥2

F

(B.16)

=

∥∥∥∥(1

R>·3R·3
R·3R

>
·3 − I

)
(W1 −R·,1:2W2) Cn−1

∥∥∥∥2

F

(B.17)

B.2 Computational Considerations

The following is useful to perform gradient descent on R. We pose:

W ′
1 = W1Cn−1, W ′

2 = W2Cn−1, W ′ =

W ′
1

W ′
2

 (B.18)

R1 =
1

R>·3R·3
R·3R

>
·3 − I, R2 = −R1R·,1:2 (B.19)

R′ =
[
R1 R2

]
(B.20)

Then:

f(R) = ‖R′W ′‖2
F (B.21)

∂

∂a, b, c, d
f(R) = tr

(
2 (R′W ′)

> ∂

∂a, b, c, d
(R′W ′)

)
(B.22)

= tr
(

2 (R′W ′)
> ∂

∂a, b, c, d
(R′)W ′

)
(B.23)

∂2

∂2a, b, c, d
f(R) = tr

(
2 (R′W ′)

> ∂2

∂2a, b, c, d
(R′)W ′

)
+ (B.24)

tr

(
2

(
∂

∂a, b, c, d
(R′)W ′

)>(
∂

∂a, b, c, d
(R′)W ′

))
(B.25)

Appendix C

LSML Appendix

C.1 Notations

C.2 Centered Error Function - General Form

The centered form of the error function is:

err(θ) = min
{εij}

n∑
i=1

∑
j∈N i

∥∥∥∥Hθ

(
xi + xj

2

)
εij − (xj − xi)

∥∥∥∥2

2

(C.1)

= min
{εij}

∑
i,j∈N i

∥∥Hθ(x
ij)εij −∆i

·j
∥∥2

2
(C.2)

Here xij = xi+xj

2
and ∆i

·j = xj−xi. If we treat ∆i
·j as an approximation of a directional

derivative on the manifold, then the approximation is best for the point on the manifold

directly between xi and xj . To see that this is the case, consider that given a function

f , the centered approximation of the derivative ∂f
∂x

= (f(x + h) − f(x − h))/2h has

no second order error while the un-centered approximation ∂f
∂x

= (f(x + h)− f(x))/h

does. If xi and xj are close enough so that a linear approximation of the manifold is

sufficient then the un-centered form works well. If, however, a quadratic approximation

is necessary, the centered version prevails.

We can explicitly enforce the mapping Hθ to be smooth by adding a regulariza-

tion term to the error function (in addition to implicit smoothness that may come from

82

83

Table C.1: Table describing the different variables used in the LSML algorithm

Variables Dimensions Definition

D dim. of original space

d dim. of projected space

n number of data points

f number features per point

xi [D × 1] i ∈ [n], data point

xij [D × 1] xij = xi+xj

2

f ij [f × 1] features of xij

N i indices of neighbors of xi

Hθ Hθ : RD → RD×d

H ij [D × d] H ij = Hθ(x
ij) (for θ fixed)

εij [d× 1] alignment free parameter

∆i [D × |Ni|] ∆i
·j = xj − xi

the form of Hθ itself). For each i, the learned tangents at two neighboring locations xij

and xij
′

should be similar, i.e. ‖Hθ(x
ij) − Hθ(x

ij′)‖2
F should be small. To ensure that

the Hθ’s do not get very small and the ε’s very large, ‖εij‖2
2 must also be constrained.

The regularized error function is:

err(θ) = min
{εij}

 ∑
i,j∈N i

∥∥Hθ(x
ij)εij −∆i

·j
∥∥2

2
+ λε

∑
i,j∈N i

∥∥εij∥∥2

2


+ λΘ

∑
i,(j,j′)∈N i

∥∥∥Hθ(x
ij)−Hθ(x

ij′)
∥∥∥2

F
(C.3)

where λΘ is the normalized λε: λΘ = λε
P

#N iP 1
2

#N i(#N i−1)
It can be shown that using

separate λs for the two regularization terms is equivalent to having a shared λ (set ac-

cordingly).

84

C.3 Centered Minimization for General Manifolds

The linear parametrization ofHΘ is specified by Θ = (Θ1, · · · ,ΘD), where each

Θk is a d × f matrix. The total number of parameters is thus Ddf . HΘ has the form:

Hθ(x
ij) =

[
Θ1f ij · · ·ΘDf ij

]>. The error function becomes:

err(θ) = min
{εij}

 ∑
i,j∈N i

∥∥Hθ(x
ij)εij −∆i

·j
∥∥2

2
+ λε

∑
i,j∈N i

∥∥εij∥∥2

2


+ λΘ

∑
i,(j,j′)∈N i

∥∥∥Hθ(x
ij)−Hθ(x

ij′)
∥∥∥2

F
(C.4)

= min
{εij}

 ∑
i,j∈N i

D∑
k=1

(
f ij
>

Θk>εij −∆i
kj

)2

+ λε
∑
i,j∈N i

∥∥εij∥∥2

2


+ λΘ

∑
i,(j,j′)∈N i

D∑
k=1

∥∥∥f ij>Θk> − f ij
′>

Θk>
∥∥∥2

F
(C.5)

= min
{εij}

 ∑
i,j∈N i

D∑
k=1

((
εij
> ⊗ f ij

>
)

vec
(

Θk>
)
−∆i

kj

)2

+ λε
∑
i,j∈N i

∥∥εij∥∥2

2


+ λΘ

D∑
k=1

∥∥∥∆FΘk>
∥∥∥2

F
(C.6)

= min
{εij}


D∑
k=1

∥∥∥Avec
(

Θk>
)
− bk

∥∥∥2

2
+ λε

∑
i,j∈N i

∥∥εij∥∥2

2

+ λΘ

D∑
k=1

∥∥∥∆FΘk>
∥∥∥2

F

where A =


...

εij
> ⊗ f ij

>

...

 ,bk =


...

∆i
kj

...

 ,∆F =


...

f ij
> − f ij

′>

...



85

To minimize the error:

1. Initialize Θ randomly.

2. Loop:

(a) For each (i, j), we define H ij ≡ Hθ(x
ij) (for fixed Θk). We then solve for

the best εij:

εij = arg min
{εij}

{∥∥Hθ(x
ij)εij −∆i

·j
∥∥2

2
+ λε

∥∥εij∥∥2

2

}
(C.7)

= arg min
{εij}

{∥∥H ijεij −∆i
·j
∥∥2

2
+ λε

∥∥εij∥∥2

2

}
(C.8)

= (H ij>H ij + λεI)+H ij>∆i
·j (C.9)

(b) For each k, solve for the best Θk given the εij’s:

Θk = arg min
Θk

{∥∥∥Avec
(

Θk>
)
− bk

∥∥∥2

2
+ λΘ

∥∥∥∆FΘk>
∥∥∥2

F

}
(C.10)

= arg min
Θk

{∥∥∥Avec
(

Θk>
)
− bk

∥∥∥2

2
+ λΘ

∥∥∥(I ⊗∆F)vec
(

Θk>
)∥∥∥2

2

}
(C.11)

vec
(

Θk>
)

= (A>A+ λΘ(I ⊗∆F)>(I ⊗∆F))+A>bk (C.12)

= (A>A+ λΘ(I ⊗ (∆F
>∆F))−1A>bk (C.13)

86

C.4 Derivatives and Hessian for different solving

We want to minimize:

err(θ, εij) =
D∑
k=1

∥∥∥A · vec
(

Θk>
)
− bk

∥∥∥2

2
+ λε

∑
i,j∈N i

∥∥εij∥∥2

2

+ λΘ

D∑
k=1

∥∥∥(I ⊗∆F)vec
(

Θk>
)∥∥∥2

2
(C.14)

For that, we can use any gradient descent/LM algorithm using the gradient/Hessian

computed as follows:

∂

∂εij
err(θ, εij) =

D∑
k=1

2Θkf ij
(
f ij
>

Θk>εij −∆i
kj

)
+ 2λεε

ij (C.15)

∂

∂vec
(

Θk>
)err(θ, εij) = 2A>

(
A · vec

(
Θk>

)
− bk

)
+ 2λΘ

(
I ⊗

(
∆F
>∆F

))
vec
(

Θk>
)

(C.16)

And the second order for the Hessian:

∂2

∂2εij
err(θ, εij) =

D∑
k=1

2Θkf ijf ij
>

Θk> + 2λεI (C.17)

∂2

∂2vec
(

Θk>
)err(θ, εij) = 2A>A+ 2λΘ

(
I ⊗

(
∆F
>∆F

))
(C.18)

87

∂2

∂εij∂vec
(

Θk>
) =

∂

∂vec
(

Θk>
)2Θkf ij

(
f ij
>

Θk>εij −∆i
kj

)
(C.19)

= 2
∂

∂vec
(

Θk>
)Θkf ijf ij

>
Θk>εij − 2

∂

∂vec
(

Θk>
)∆i

kjBvec
(

Θk>
)

with Bij = I ⊗ f ij
> which is d× df (C.20)

= 2

 ∂

∂vec
(

Θk>
) (Bijvec

(
Θk>

))(
Bijvec

(
Θk>

))>
εij


− 2∆i

kjB
ij (C.21)

= 2
(
εij
>
Bijvec

(
Θk>

))
Bij + 2Bijvec

(
Θk>

)
εij
>
Bij − 2∆i

kjB
ij

(C.22)

88

C.5 Manifold Denoising

Assume we have learned or are given the mappingHΘ that describes the tangent

space of some manifold or family of manifolds. Suppose we are also given samples

xi from a manifold that have been corrupted by noise so they no longer lie exactly on

the manifold (these can be the same samples from which HΘ was learned). Here we

show how to recover a set of points χi that are close to the noisy samples xi but lie on a

manifold consistent with HΘ. The key is the simple observation that, as before, if χj is

a neighbor of χi then there exists an unknown εij such that
∥∥Hθ(χ

ij)εij − (χi − χj)
∥∥2

2

is small. We can thus find a series of points χi that are close to the original points xi

and satisfy the above. The error is the sum of two terms (λnoise weighs the importance

of sticking to the original points):

errnoise(χ) = min
{εij}

∑
i,j∈N i

∥∥Hθ(χ
ij)εij − (χi − χj)

∥∥2

2
+ λnoise

n∑
i=1

∥∥χi − xi
∥∥2

2
(C.23)

=
∑
i,j∈N i

∥∥∥(Hθ(χ
ij)Hθ(χ

ij)
+ − I

)
(χi − χj)

∥∥∥2

2
+ λnoise

n∑
i=1

∥∥χi − xi
∥∥2

2

(C.24)

We solve the above expression by initially setting χi = xi for each i and then

performing gradient descent on the χi’s. We assume that for a small change in χi,
∂Hθ
∂χi

is negligible with respect to the other quantities. We can therefore define Bij ≡

Hθ(χ
ij)Hθ(χ

ij)
+ − I . The derivative w.r.t. χi is:

89

∂errnoise(χ)

∂χi
=

∂

∂χi

∑
j∈N i

∥∥Bij(χi − χj)
∥∥2

2
+
∑
j|i∈N j

∥∥Bji(χj − χi)
∥∥2

2

+ λnoise
∥∥χi − xi

∥∥2

2

)
(C.25)

=
∂

∂χi

2
∑
j∈N i

∥∥Bij(χi − χj)
∥∥2

2
+ λnoise

∥∥χi − xi
∥∥2

2

 (C.26)

= 4
∑
j∈N i

Bij>Bij(χi − χj) + 2λnoise
(
χi − xi

)
(C.27)

We could solve for the best value of χi given χj for all j 6= i; however, our

assumption that ∂Hθ
∂χi

is negligible might no longer hold. Instead we simply perform

gradient descent by only using the component of the gradient that is orthonormal to the

manifold (we cannot correct the noise in the colinear direction). We find a (possibly

local) minimum of errnoise by iterating until convergence.

90

C.6 Snakes on a Local Plane

We are given two points on a manifold, x and x′, and we want to find the

geodesic distance between them. We will find a minimal path between these two points

by employing an active contour model (snake). The snake will be composed of points

χ1, . . . , χm, where χ1 = x and χm = x′. It will have to obey the following constraints:

1. The overall length of the snake should be minimal. The length is given by∑m
i=2 ‖χi − χi−1‖2. However, this sum is hard to work with, so for computa-

tional reasons, we will use the following approximation instead:

errlength(χ) =
m∑
i=2

∥∥χi − χi−1
∥∥2

2
(C.28)

2. As in the previous section, the points should be consistent with HΘ. Here, each

point i that is not an extremity of the snake has a neighborhood: N i = {i−1, i+

1}. This constraint can be expressed as the minimization of:

errM(χ) = min
{εij}

∑
i,j∈N i

∥∥Hθ(χ
ij)εij − (χi − χj)

∥∥2

2
(C.29)

=
∑
i,j∈N i

∥∥Bij(χi − χj)
∥∥2

2
(C.30)

The derivatives of these energies should be 0 for the fixed extremity points i = 1 and

i = m. For the points in between:

∂errlength

∂χi
(χ) =

∂

∂χi

(∥∥χi − χi−1
∥∥2

2
+
∥∥χi+1 − χi

∥∥2

2

)
(C.31)

=
∑
j=i±1

∂

∂χi
∥∥χi − χj∥∥2

2
= 2

∑
j=i±1

(χi − χj) (C.32)

∂errM
∂χi

(χ) = 4
∑
j∈N i

Bij>Bij(χi − χj) (C.33)

We use the following algorithm to minimize the length of the snake while keep-

ing it on the manifold:

91

• The snake is initialized by finding a path between x and x′ using Dijkstra’s al-

gorithm on points from the original dataset. These points form an initial snake.

Then, depending on the accuracy wanted for the result, extra points are added

between the existing points by linear interpolation.

• This initial snake is first optimized to be as much as possible on the manifold.

This is done by minimizing errM using gradient descent but by forcing the di-

rection of minimization to be orthogonal to the gradient field on the manifold.

• The length of the snake is then optimized by minimizing errlength using gradient

descent too, this time by forcing the direction of minimization to be colinear to

the gradient field on the manifold. To prevent drifting, the snake is sometimes

“brought back” onto the manifold using the previous step.

Appendix D

Non-Linear Embedding Formulas

D.1 Best N-view Reconstruction

We want to solve for:

min
S,Rt

f∑
t=1

‖Wt −RtS‖2
F (D.1)

subject to Rt is the top two rows of a rotation matrix (D.2)

S is centered (D.3)

Wt is centered (D.4)

R1 = Π =

1 0 0

0 1 0

 (D.5)

The equation can be re-written as:

min
Rt,S

f(S,Rt) =

f∑
t=1

‖WtCn−1 −RtSCn−1‖2
F (D.6)

subject to Rt is the top two rows of a rotation matrix (D.7)

R1 = Π =

1 0 0

0 1 0

 (D.8)

92

93

by using the same Cn−1 as in Section B.1, and shortening Wt’s and S by one element.

We have:

∂

∂S
f(S,Rt) =

f∑
t=1

−2R>t (WtCn−1−RtSCn−1)C>n−1 = −2

f∑
t=1

R>t (Wt−RtS)Cn−1C>n−1

(D.9)

As Cn−1C>n−1 is invertible and as the expression above is null at the optimum, we

have there:

Sopt =

(
f∑
t=1

R>t Rt

)−1 f∑
t=1

R>t Wt (D.10)

D.2 Simplifying the problem for 2 views

If f = 2 in f(S,Rt), the first rotation is Π and let the second rotation be R. We

now have the two terms in the sum at the optimum in R:

‖W1 − ΠSopt‖2
F

=
∥∥∥W1 − Π

(
Π>Π +R>R

)−1 (
Π>W1 +R>W2

)∥∥∥2

F
(D.11)

=
∥∥(I− ΠAΠ>

)
W1 − ΠAR>W2

∥∥2

F
(D.12)

‖W2 −RSopt‖2
F

=
∥∥∥W2 −R

(
Π>Π +R>R

)−1 (
Π>W1 +R>W2

)∥∥∥2

F
(D.13)

=
∥∥−RAΠ>W1 +

(
I−RAR>

)
W2

∥∥2

F
(D.14)

with A =
(
Π>Π +R>R

)−1. A rotation can be found to transform the first equation

in the norm to the second one (this can be done by expressing R in its quaternion form

and solving for such a matrix). I could only find such a solution throught the symbolic

toolbox of Matlab. If the quaternion of R is
[
a, b, c, d

]
, then, this rotation matrix is

simply:

1

a2 + d2

d2 − a2 2ad

−2ad d2 − a2

 (D.15)

Therefore, the problem now becomes:

min
R

f(R) = 2
∥∥(I− ΠAΠ>

)
W1 − ΠAR>W2

∥∥2

F
(D.16)

subject to R is the top two rows of a rotation matrix (D.17)

94

Let us consider the rotation R
∗

= R∗>. Then it can easily be shown that:

(
I− ΠAΠ>

)
= −1

2

(
1

R
>
·3R·3

R·3R
>
·3 − I

)
(D.18)

ΠAR> = −1

2

(
−

(
1

R
>
·3R·3

R·3R
>
·3 − I

)
R·,1:2

)
(D.19)

Therefore, solving for this problem is equivalent to solving for the infimum in Section

B.1, the minimum being twice smaller.

D.3 Gradient of the error

Let us recall the equation of the error to optimize in MSFM (cf .Equation (4.4)):

min
Rt,tt,St

f∑
t=0

∥∥(RtSt + tt1n
>)−Wt

∥∥2

F
+ λS

f∑
t=2

‖St − St−1‖2
F

+ λR

f∑
t=2

‖Rt −Rt−1‖2
F + λt

f∑
t=2

‖tt − tt−1‖2
F (D.20)

D.3.1 Gradient with respect to ti

The derivative of Equation (4.4) with respect to ti is:

∂

∂ti
errMSFM =

∂

∂ti

(
f∑
t=1

∥∥(RtSt + tt1n
>)−Wt

∥∥2

F
+ λt

f∑
t=2

‖tt − tt−1‖2
2

)
(D.21)

= 2(RiSi + ti1n
> −Wi)1n

> + 2λt (ti − ti−1 + ti − ti+1) (D.22)

(D.23)

95

D.3.2 Gradient with respect to Ri

The derivative of Equation (4.4) with respect to Ri is:

∂

∂Ri

errMSFM =
∂

∂Ri

f∑
t=0

∥∥(RtSt + tt1n
>)−Wt

∥∥2

F
+ λR

f∑
t=2

‖Rt −Rt−1‖2
F (D.24)

= 2
(
RiSi + ti1n

> −Wi

)
S>i + 2λR (2Ri −Ri−1 −Ri+1) (D.25)

(D.26)

We then use the composition of derivation rule to get the derivation with respect to the

quaternions.

D.3.3 Gradient with respect to Si

The derivative of Equation (4.4) with respect to Si is:

∂

∂Si
errMSFM =

∂

∂Si

f∑
t=0

∥∥(RtSt + tt1n
>)−Wt

∥∥2

F
+ λR

f∑
t=2

‖St − St−1‖2
F (D.27)

= 2R>i (RiSi + ti1n
> −Wi) + 2λS (Si − Si−1 + Si − Si+1) (D.28)

(D.29)

References

Agarwal, S., Snavely, N., and Seitz, S., 2008: Fast algorithms for l∞ problems in multi-
view geometry. In IEEE Computer Vision and Pattern Recognition or CVPR.

Agarwal, S., Wills, J., Cayton, L., Lanckriet, G., Kriegman, D., and Belongie, S., 2007:
Generalized non-metric multidimensional scaling. In AISTATS.

Bengio, Y., and Monperrus, M., 2005: Non-local manifold tangent learning. In NIPS.

Bengio, Y., Paiement, J., Vincent, P., Delalleau, O., Le Roux, N., and Ouimet, M., 2004:
Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering.
In NIPS.

Blake, A., and Isard, M., 1998: Active Contours. Springer, Berlin Heidelberg New York.

Brand, M., 2003: Charting a manifold. In NIPS.

Brand, M., 2005: A direct method for 3d factorization of nonrigid motion observed in
2d. In CVPR, 122– 128.

Brand, W., 2001: Morphable 3d models from video. In CVPR, II–456– II–463.

Bregler, C., Hertzmann, A., and Biermann, H., 2000: Recovering non-rigid 3d shape
from image streams. In CVPR, 690–696.

Carceroni, R. L., Padua, F. L. C., Santos, G. A. M. R., and Kutulakos, K. N., 2004:
Linear sequence-to-sequence alignment. CVPR, 01, 746–753. ISSN 1063-6919. doi:
http://doi.ieeecomputersociety.org/10.1109/CVPR.2004.150.

Chandraker, M., and Kriegman, D., 2008: Globally optimal bilinear programming for
computer vision applications. In IEEE Computer Vision and Pattern Recognition or
CVPR.

Chen, P., and Suter, D., 2004: Recovering the missing components in a large noisy
low-rank matrix: Application to SFM. IEEE Trans. Pattern Analysis and Machine
Intelligence, 26(8), 1051–1063.

96

97

Cheung, K., Baker, S., and Kanade, T., 2005: Shape-from-silhouette across time part i:
Theory and algorithms. International Journal of Computer Vision, 62(3), 221–247.

Cootes, T., Edwards, G., and Taylor, C., 2001: Active appearance models. In PAMI, 6,
681–685.

Costeira, J. P., and Kanade, T., 1998: A multibody factorization method for indepen-
dently moving objects. In IJCV, volume 29.

Del Bue, A., Smeraldi, F., and Agapito, L., 2007: Non-rigid structure from motion using
ranklet-based tracking and non-linear optimization. In IVC, volume 25, 297–310.

DeMers, D., and Cottrell, G., 1993: Non-linear dimensionality reduction. In NIPS.

Dollár, P., Rabaud, V., and Belongie, S., 2006: Learning to traverse image manifolds. In
NIPS, volume 19.

Dollár, P., Rabaud, V., and Belongie, S., 2007: Non-isometric manifold learning: Anal-
ysis and an algorithm. In ICML.

Donoho, D., and Grimes, C., 2003: Hessian eigenmaps: locally linear embedding tech-
niques for high dimensional data. Proc. of National Academy of Sciences.

Elgammal, A., and Lee, C., 2004: Separating style and content on a nonlinear manifold.
In CVPR.

Faugeras, O., and Luong, Q., 2004: The Geometry of Multiple Images: The Laws That
Govern the Formation of Multiple Images of a Scene and Some of Their Applications.
MIT Press.

Fischler, M. A., and Bolles, R. C., 1981: Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Com-
mun. ACM, 24(6), 381–395. ISSN 0001-0782. doi:10.1145/358669.358692.

Hastie, T., Tibshirani, R., and Friedman, J., 2001: The Elements of Statistical Learning.
Springer.

Henrion, D., and Lasserre, J.-B., 2003: Gloptipoly: Global optimization over polyno-
mials with matlab and sedumi. ACM Trans. Math. Softw., 29(2), 165–194. ISSN
0098-3500. doi:http://doi.acm.org/10.1145/779359.779363.

Horn, B., 1986: Robot Vision. MIT Press.

Horn, B., 1987: Closed form solutions of absolute orientation using orthonormal matri-
ces. In Journal of the Optical Society of America, volume 5, 1127–1135.

98

Jacobs, D., 1997: Linear fitting with missing data: Applications to structure from mo-
tion and to characterizing intensity images. In IEEE Computer Vision and Pattern
Recognition or CVPR, 206–212.

Kahl, F., 2005: Multiple view geometry and the l∞-norm. In International Conference
on Computer Vision, II: 1002–1009.

Kass, M., Witkin, A., and Terzopoulos, D., 1988: Snakes: Active contour models. IJCV.

Keysers, D., Macherey, W., Dahmen, J., and Ney, H., 2001: Learning of variability for
invariant statistical pattern recognition. ECML.

Kim, T., and Hong, K.-S., 2005: Estimating approximate average shape and motion of
deforming objects with a monocular view. In IJPRAI, volume 19, 585–601.

Kutulakos, K., and Seitz, S., 2000: A theory of shape by space carving. International
Journal of Computer Vision, 38(3), 199–218.

Laptev, I., Belongie, S. J., Perez, P., and Wills, J., 2005: Periodic motion detection and
segmentation via approximate sequence alignment. In ICCV, volume 1, 816–823.

Laptev, I., and Perez, P., 2007: Retrieving actions in movies. In ICCV, 1–8.

Lepetit, V., Moreno-Noguer, F., and Fua, P., 2008: Epnp: An accurate o(n) solution to
the pnp problem. In International Journal of Computer Vision.

Li, H., 2007: A practical algorithm for l triangulation with outliers. 1–8.

Llado, X., Del Bue, A., and Agapito, L., 2005: Non-rigid 3d factorization for projective
reconstruction. In BMVC.

Lourakis, M., and Argyros, A., 2004: The design and implementation of a generic sparse
bundle adjustment software package based on the levenberg-marquardt algorithm.
Technical Report 340, Institute of Computer Science - FORTH, Heraklion, Crete,
Greece. Available from http://www.ics.forth.gr/˜lourakis/sba.

Miller, M., and Younes, L., 2001: Group actions, homeomorphisms, and matching: A
general framework. IJCV.

Park, J. H., Zhang, Z., Zha, H., and Kasturi, R., 2004: Local smoothing for manifold
learning. In CVPR.

Rao, R., and Ruderman, D., 1999: Learning Lie groups for invariant visual perception.
In NIPS.

Roweis, S. T., and Saul, L. K., 2000: Nonlinear dimensionality reduction by locally
linear embedding. Science, 290.

99

Saul, L. K., and Roweis, S. T., 2003: Think globally, fit locally: unsupervised learning
of low dimensional manifolds. JMLR.

Schölkopf, B., Smola, A., and Müller, K., 1998: Nonlinear component analysis as a
kernel eigenvalue problem. Neural Information Processing Systems.

Schweikert, D. G., and Kernighan, B. W., 1972: A proper model for the partitioning of
electrical circuits. In DAC ’72: Proceedings of the 9th workshop on Design automa-
tion, 57–62. ACM, New York, NY, USA. doi:http://doi.acm.org/10.1145/800153.
804930.

Shi, J., and Malik, J., 2000: Normalized cuts and image segmentation. In PAMI, 8,
888–905.

Simard, P., LeCun, Y., Denker, J. S., and Victorri, B., 1998: Transformation invariance
in pattern recognition-tangent distance and tangent propagation. In Neural Networks:
Tricks of the Trade.

Soatto, S., and Perona, P., 1994: Recursive estimation of camera motion from uncali-
brated image sequences. In ICIP, III: 58–62.

Tenenbaum, J. B., de Silva, V., and Langford, J. C., 2000: A global geometric framework
for nonlinear dim. reduct. Science, 290.

Tenenbaum, J. B., and Freeman, W. T., 2000: Separating style and content with bilinear
models. Neural Computation, 12(6).

Tomasi, C., and Kanade, T., 1992: Shape and motion from image streams under orthog-
raphy: a factorization method. In IJCV, volume 9.

Torresani, L., Hertzmann, A., and Bregler, C., 2003: Learning non-rigid 3d shape from
2d motion. In NIPS.

Torresani, L., Hertzmann, A., and Bregler, C., 2008: Non-rigid structure-from-motion:
Estimating shape and motion with hierarchical priors. In PAMI.

Torresani, L., Yang, D., Alexander, E., and Bregler, C., 2001: Tracking and modeling
non-rigid objects with rank constraints. In CVPR, I–493– I–500.

Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W., 2000: Bundle
adjustment - a modern synthesis. In ICCV, 298–372. Springer-Verlag, London, UK.
ISBN 3-540-67973-1.

Vidal, R., and Abretske, D., 2006: Nonrigid shape and motion from multiple perspective
views. In ECCV, II: 205–218.

Weinberger, K. Q., and Saul, L. K., 2006: Unsupervised learning of image manifolds by
semidefinite programming. International Journal of Computer Vision.

100

Xiao, J., Chai, J., and Kanade, T., 2006a: A closed-form solution to non-rigid shape and
motion recovery. In IJCV, volume 67.

Xiao, J., and Kanade, T., 2004: Non-rigid shape and motion recovery: degenerate de-
formations. In CVPR, I–668– I–675 Vol.1.

Xiao, J., and Kanade, T., 2005: Uncalibrated perspective reconstruction of deformable
structures. In ICCV, 1075– 1082 Vol. 2.

Xiao, L., Sun, J., and Boyd, S., 2006b: A duality view of spectral methods for dimen-
sionality reduction. In ICML.

Yan, J., and Pollefeys, M., 2005: A factorization-based approach to articulated motion
recovery. In CVPR, 815– 821.

	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Chapter 1 Introduction
	Camera Model and Image Formation
	Feature Paradigm
	Rigid SFM
	Non-Rigid SFM
	Current Limitations
	Problematic Closed Form
	Problematic Iterative Solution
	Limited Model

	Chapter 2 Linear Embedding
	Problem Formulation
	Outline
	Generalized Non-metric Multi-Dimensional Scaling Overview
	Constraints

	Ordering Set F
	Triplet Distance Infimum
	Triplet Distance Supremum
	Computing the Ordering Set F
	Practicality

	Optimal Shape Basis and Rotation
	Rank Constraint
	Kronecker Constraint
	Rotation Constraint
	Orthonormality of S
	Final Optimization

	Experiments
	Shark Data
	Roller-Coaster Data
	Real Data

	Pushing the Limits
	Gradient Descent Iterations
	Triplet/Pair Sampling
	Noise Robustness

	Acknowledgements

	Chapter 3 LSML
	Related Work
	Common Manifold Learning Techniques
	Previous Work Overview

	LSML
	Motivation and Error Function
	Regularization
	Linear Parametrization
	Radial Basis Functions

	Analyzing Manifold Learning Methods
	Model Evaluation
	Model Complexity
	 Model Selection
	 LSML Test Error

	Working with H-Theta
	Projection
	Manifold De-noising
	 Geodesic Distance
	Manifold Transfer

	Conclusion
	Acknowledgements

	Chapter 4 Non-Linear Embedding for NRSFM
	Problem
	Method
	Initialization
	Minimization

	Experiments
	Synthetic Data
	Real Data

	Acknowledgements

	Chapter 5 Conclusion
	Contributions
	Future Work

	Appendix A General Math Considerations
	Notations
	General Linear Algebra
	General Rules
	The Curious Case of Cn

	Derivations in Linear Algebra

	Appendix B Linear Embedding Formulas
	Infimum Computation
	Computational Considerations

	Appendix C LSML Appendix
	Notations
	Centered Error Function - General Form
	Centered Minimization for General Manifolds
	Derivatives and Hessian for different solving
	Manifold Denoising
	Snakes on a Local Plane

	Appendix D Non-Linear Embedding Formulas
	Best N-view Reconstruction
	Simplifying the problem for 2 views
	Gradient of the error
	Gradient with respect to ti
	Gradient with respect to Ri
	Gradient with respect to Si

	References

