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Abstract
In this paper we present a new modelling framework for con-
cepts based on quantum theory, and demonstrate how the con-
ceptual representations can be learned from data. Our ap-
proach builds upon Gärdenfors’ classical framework of con-
ceptual spaces, in which cognition is modelled geometrically
through the use of convex spaces, which in turn factorise in
terms of simpler spaces called domains. We show how con-
cepts from the domains of SHAPE, COLOUR, SIZE and POSI-
TION can be learned from images of simple shapes, where indi-
vidual images are represented as quantum states and concepts
as quantum effects. Concepts are learned by a hybrid classical-
quantum network trained to perform concept classification. We
also use discarding to produce mixed effects, which can then
be used to learn concepts which only apply to a subset of the
domains, and show how entanglement (together with discard-
ing) can be used to capture interesting correlations across do-
mains.
Keywords: conceptual spaces; quantum cognition; quantum
machine learning

Introduction
The application of mathematical tools from quantum theory
to the modelling of cognitive phenomena has led to an emerg-
ing area called quantum cognition (Pothos & Busemeyer,
2013). The idea is that some of the features of quantum the-
ory, such as entanglement, can be used to account for psy-
chological data which can be hard to model classically. Ex-
amples include ordering effects in how subjects answer ques-
tions (Trueblood & Busemeyer, 2011) and concept combina-
tion (Aerts & Gabora, 2005).

Another recent development in concept modelling has been
the application of machine learning to the problem of how ar-
tificial agents can learn concepts from raw perceptual data
(Higgins et al., 2017, 2018; Shaikh et al., 2022). The motiva-
tion for endowing an agent with conceptual representations is
that this will enable it to reason and act more effectively, simi-
lar to how humans use concepts (Lake et al., 2017). One hope
is that the explicit use of concepts will ameliorate some of the
negative consequences of the “black-box” nature of neural ar-
chitectures currently being used in AI.

In this paper we present a new modelling framework for
concepts based on the mathematical formalism used in quan-
tum theory (Coecke & Kissinger, 2017; Nielsen & Chuang,
2000), and demonstrate how the conceptual representations
can be learned from data. We build upon the framework of
conceptual spaces (Gärdenfors, 2004, 2014), in which cog-
nition is modelled geometrically through the use of convex

spaces, which in turn factorise in terms of simpler spaces
called domains. We show how concepts from the domains
of SHAPE, COLOUR, SIZE and POSITION can be learned from
images of simple shapes, where individual images are repre-
sented as quantum states and concepts as quantum effects.
The factoring of the conceptual space is represented natu-
rally in our models through the use of the tensor product as
the monoidal product. We also show how discarding—which
produces mixed effects—can be used when the concept to be
learned only applies to a subset of the domains, and how en-
tanglement (together with discarding) can be used to capture
interesting correlations across domains.

We choose to implement our framework using a hybrid net-
work trained to perform concept classification, where the im-
age processing is carried out by a convolutional neural net-
work and the quantum representations are produced by a pa-
rameterised quantum circuit. Even though the framework can
be described at an abstract level independent of any imple-
mentation, the use-case we have in mind is one in which the
models are (eventually) run on a quantum computer. Here the
implementation is a classical simulation of a quantum com-
putation.1

What are the reasons for applying the formalism of quan-
tum theory to the modelling of concepts? First, it provides
an alternative, and interesting, mathematical structure to the
convex structure of conceptual spaces. Second, this structure
comes with features which are well-suited to modelling con-
cepts, such as entanglement for capturing correlations, and
partial orders for conceptual hierarchies. Third, the use of
the tensor product for combining domains leads to machine
learning models with different characteristics to the neural
networks typically employed in concept learning (Havlicek
et al., 2019; Schuld & Killoran, 2019), which may lead to
advantages in the future, especially with the development of
larger, fault-tolerant quantum computers.

Quantum Models
We provide a formalisation of our quantum model of con-
cepts, giving definitions in terms of category theory (Fong

1Note that we are not making any claims in this paper of “quan-
tum advantage” (Preskill, 2012). However, we do anticipate quan-
tum models of concepts which require quantum hardware for their
efficient use, especially as we scale to larger quantum circuits and
datasets.
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& Spivak, 2019) and in particular string diagrams which de-
scribe morphisms in a symmetric monoidal category (Coecke
& Kissinger, 2017; Selinger, 2010).2

We work in the category Quant of finite dimensional
Hilbert spaces H ,K . . . and completely positive maps. A
finite dimensional Hilbert space H is depicted as a wire la-
belled by H . A quantum process H → K is given by a com-
pletely positive map f : L(H ) → L(K ) between the spaces
of operators L(H ) and L(K ), respectively. We depict such a
process f with a box read from bottom to top. The sequential
composition g ◦ f of processes and tensor product f ⊗ g are
depicted as below:

g◦ f =

H
H

L
L

f

g

K f ⊗g

H ⊗H ′

K ⊗K ′

= f

H

K

g

H ′

K ′

Important special cases are processes with no input (or for-
mally with input I = C), called states, which correspond to
unnormalised density matrices ρ of H . Similarly morphisms
with no output are called effects, and correspond to positive
operators e ∈ L(H ).

Composing a state with an effect yields a scalar e◦ρ ∈R+.
In particular the discarding effect corresponds to the iden-
tity operator on H . A channel is a process f which pre-
serves discarding, so that ◦ f = , or equivalently is trace-
preserving as a CP map. In particular a state ρ is normalised
when ◦ρ = 1, corresponding to a (normalised) density ma-
trix (with trace 1).

Making use of our categorical formulation of conceptual
spaces now gives us our notion of a quantum model.

Definition 1. A quantum conceptual model is given by
a Hilbert space H along with a list of Hilbert spaces
H1, . . . ,Hn, called the factors of the space, and an embedding
H as a subspace of H1 ⊗·· ·⊗Hn. We depict the embedding
as follows.

. . .

H1 Hn

H

A concept of the model is an effect C on H :

C

H

Thus concepts correspond to positive operators C ∈ L(H ).
Concepts come with a natural partial order, which is given

2A more detailed theoretical treatment can be found in a longer
companion report: https://arxiv.org/abs/2302.14822.

by C ≤ D ⇐⇒ D−C is positive. This allows us to model
conceptual hierarchies, for example.

We define a crisp concept to be a concept corresponding to
a projection operator P onto a subspace H ′ ⊆H . In particular
any pure quantum effect |ψ⟩ gives a crisp concept, projecting
on to the ray spanned by ψ. Finally, an instance (following
the terminology in Clark et al. (2021)) is given by a pure state
of the form ψ = ψi ⊗·· ·⊗ψn for normalised pure states ψi ∈
Hi, i = 1, . . . ,n.

. . .

H1 Hn

=

ψ

. . .

H1 Hn

ψ1 ψnH

Composing a concept C with an instance yields a scalar which
determines how well the instance fits the concept:

C

ψ

H = Tr(C |ψ⟩⟨ψ|) ∈ R+

Our framework is inspired by that of conceptual spaces
(Gärdenfors, 2004), in which cognitive spaces are described
by convex spaces which further decompose into factors called
domains and dimensions. Here the factors Hi play the same
role, with the product of convex spaces replaced by the tensor
product of Hilbert spaces. Fuzzy concepts on a conceptual
space can also be modelled as effects in an appropriate cat-
egory (Tull, 2021). Nonetheless both classes of models are
distinct.

For example, on a qubit H = C2, instances correspond
to the Bloch sphere, which one could view as a convex set
and hence a conceptual space. However, the concepts in our
quantum model differ from those on a conceptual space; in
particular there are no quantum effects which measure an ar-
bitrary convex subset of the Bloch sphere, and conversely
general quantum effects do not satisfy the critertion of quasi-
concavity satisfied by fuzzy concepts on a conceptual space
(Tull, 2021).

Despite these differences, we claim that quantum models
share the benefits of conceptual spaces, with convex subsets
replaced by linear subspaces, including the factorisation in
terms of domains, and the hierarchy (partial order) on con-
cepts. Additionally, they come with certain benefits includ-
ing the presence of entanglement, which allows the represen-
tation of rich concepts which relate domains efficiently in a
quantum model.
Definition 2. A product concept is one of the form

C

H

=

. . .
C1 Cn

H

H1 Hn
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for effects C1, . . . ,Cn on the factors H1, . . . ,Hn. An entangled
concept is a concept C whose operator cannot be written as a
(weighted) sum of product concepts.

Entanglement allows us to describe concepts which cap-
ture correlations between domains beyond those which can
be described classically. For example, consider a model with
two factors COLOUR and TASTE, denoted C,T , and consider
the learning of the concept banana from two instances, one
which is yellow and sweet |Y ⟩ |S⟩ and one which is green and
bitter |G⟩ |B⟩, and assume |Y ⟩ and |G⟩ are orthogonal. We can
combine the instances classically by forming a sum of the two
instances at the level of operators.

D

C T

=
Y S G B

C T C T

+

Alternatively we can relate the instances via entanglement by
forming a new pure state via superposition

ψ = |Y ⟩ |S⟩+ |G⟩ |B⟩

and considering the pure concept

ψ

C T
with corresponding operator |ψ⟩⟨ψ|. Both concepts send the
exemplars |Y ⟩ |S⟩, |G⟩ |B⟩ to 1. However, the former (clas-
sical) combination D simply compares any given instance to
the two given exemplars, while the latter (entangled) concept
can be seen to encode a structural relationship between the
domains COLOUR and TASTE.

In particular if we consider an instance φ given by a unit
vector φ = (α |Y ⟩+β |G⟩)⊗ (α |S⟩+β |B⟩), with α2+β2 = 1,
which lies ‘in-between’ the exemplars, the entangled concept
ψ† gives value 1 while the classically correlated concept D
gives α4 +β4 < 1 in general. In this way entangled concepts
can encode relationships between domains, rather than sim-
ply (weighted) collections of exemplars.

Data, Networks and Circuits
In this section we describe how the quantum concept mod-
els described above can be implemented. The key idea is
to use a probabilistic classifier to implement a concept as
an effect, where the (binary) classifier learns to distinguish
between positive and negative examples of the relevant con-
cept. For the generation of training and test data, we use
the Spriteworld software (Watters et al., 2019) to generate
simple images. These consist of coloured shapes of partic-
ular sizes in particular positions in a 2D box, against a black
background. There are three shapes: {square, triangle, cir-
cle}; three colours: {red, green, blue}; three sizes: {small,
medium, large}; and three (vertical) positions: {bottom, cen-
tre, top} (see Fig. 1). We ran the sampler to generate a train-
ing set of 3,000 instances, and development and test sets with
300 instances each.

Figure 1: Example shapes: (green, large, triangle, centre);
(blue, small, square, bottom); (red, medium, circle, top).

CNN

Encoder PQC

Concept PQC

Image

θ

Concept
params

. . .

Classification

H1 Hn

. . .

Measurement

Figure 2: The hybrid classical-quantum network.

An input image is first processed by a convolutional neural
network (CNN) (Goodfellow et al., 2016, Ch.9) which out-
puts classical parameters which are fed into a parameterised
quantum circuit (PQC) (Benedetti et al., 2019). This PQC we
call the encoder PQC; it implements a quantum state z which
is the representation of the image in our model. Given a con-
cept C, a separate concept PQC implements a quantum ef-
fect corresponding to C which can be applied to the instance
z, as described above. We assume that the domains/factors
H1, . . . ,Hn are known by the model; in our experiments these
will be the four domains SHAPE, COLOUR, SIZE, POSITION.3

The overall setup is shown in Figure 2, with thin wires de-
noting classical data and each thick wire denoting a Hilbert
space given by some number of qubits.

Each instance is a pure quantum state of H1, . . . ,Hn given
by passing a particular image into the CNN and passing the
output as parameters into the encoder PQC. Each specific
concept C is given by running the concept PQC on some
learned parameters φC and then performing a binary Pauli-
Z measurement on each qubit. The value of the concept is
given by the probability that all measurements return 0:

3The question of whether, and how, the domains could be learned
automatically in the classical setting is an ongoing debate (Higgins
et al., 2017; Locatello et al., 2019).
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Concept PQC

. . .

H1 Hn

C

. . .

H1 Hn

:=

0

φC

0

(1)

The CNN consists of 4 convolutional layers followed by a
fully-connected layer, with the ReLU activation function used
throughout. The PQCs make use of the circuit ansatz U(θ) in
(2), containing entangling controlled Z gates, and where RX

θ
,

RY
θ

, RZ
θ

denote (potentially different) X ,Y,Z rotations. We de-
fine another ansatz V (θ) in the same way but with rotations in
the reverse order Z,Y,X . Sufficient layers of either ansatz will
implement any unitary, and hence any instance or concept.

RX
θ1

RY
θ1

RZ
θ1

U(θ) :=
. . .

. . .

. . .

RX
θ2

RY
θ2

RZ
θ2

RX
θ3

RY
θ3

RZ
θ3

RX
θn−1

RY
θn−1

RZ
θn−1

RX
θn

RY
θn

RZ
θn

. . .

(2)
Now let us describe the encoder and concept PQCs in more
detail. Both consist of some number of qubits per domain Hi.
The form of the encoder PQC is as follows:

Encoder PQC

H1 Hn

= U(θ1)

H1 Hn

U(θn). . .

. . .

θ 0 0

(3)

More generally we can compose multiple layers of such U
circuits on each domain. Here the |0⟩ states denote prod-
uct states |0 . . .0⟩ on each Hi. Thus by construction the en-
coder never involves entanglement across factors, and can be
viewed as a single encoder per factor.

In the initial experiments, we only have one qubit per do-
main Hi, and use one layer in the encoder. In this case the en-
coder simply carries an X ,Y and Z rotation per qubit, involv-
ing no entanglement. In this basic setup, the concept PQC
also involves no entanglement, taking the following form.

Concept PQC

H1 Hn

:= V (φC
1 )

H1 Hn

V (φC
n ). . .

. . .

. . .

H1 Hn H1 Hn
φC

(4)

In the extended experiments below, we use a richer form
for the concept PQC, allowing us to capture entangled and
mixed concepts. Here the full ansatz V (θ) is used over all
domains, with an ancillary copy of each domain H1, . . .Hn,
prepared in initial state |0⟩, and discarding used to introduce
mixing:

Concept PQC

H1 Hn

:=

H1 Hn

. . .

. . .

. . .

H1 Hn H1 Hn
φC

V (φC)

0

H1

H1

Hn

Hn

. . . . . .

. . .

0

(5)

More generally one can include multiple layers of the form
V (θ) prior to discarding.

Experiments
We train the quantum model to perform binary classification,
with the loss function being the standard binary cross entropy
(BCE) loss. The full set of parameters to be learned is ψ∪φ,
where ψ is the set of parameters in the classical encoder CNN
and φ is the set of PQC parameters associated with the set of
12 basic concepts. The training data contains 3,000 positive
examples (as described earlier) and 3,000 negative examples.
Each negative example is created from a positive one by ran-
domly sampling an incorrect concept for each domain.

We trained a model using the circuit shown in (4) above,
and tested it on the 300 examples in the development set.
At test time we choose the concept for each domain which
has the highest probability of applying to the input image.
The implementation was in Tensorflow Quantum (Abadi et
al., 2015), and the whole hybrid network—both the quantum
and the classical parts—were trained end-to-end in simula-
tion on a GPU. The training was run for 100 epochs (unless
stated otherwise), with a batch size of 64, and the Adam op-
timizer was used. The classification model performed with
almost perfect accuracy, obtaining 100% on the COLOUR and
SHAPE domains, and 99% and 97% on the POSITION and
SIZE domains, respectively. This accuracy carried over to the
300 examples in the test set, obtaining 100% on the COLOUR
and SHAPE domains, and 96% and 97% on the POSITION and
SIZE domains, respectively.

Fig. 3 visualises the pure effects for each of the 3 concepts
on the 4 domains, by plotting the corresponding pure states on
a Bloch sphere. The clusters of dots around each concept are
the corresponding instances (pure states) in the training data.
Note how the 3 concepts on each domain are being pushed
apart (strikingly so in the case of the POSITION domain) and
how the concepts sit neatly in the centre of each cluster of
instances.

Adding a Decoder Loss One notable feature of the visu-
alisations in Fig. 3 is how “tight” the instance clusters are.
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Figure 3: Visualisation of the pure concept effects and in-
stance states on the Bloch sphere, for SHAPE, COLOUR, PO-
SITION and SIZE (clockwise from top-left).

There may be use-cases where we would like the representa-
tion of instances to better reflect the variation in the underly-
ing images, for example in order to better capture correlations
across domains. In order to provide more of a “spread” of the
instances, we experimented with an additional decoder loss
in the loss function:

Loss(D,ψ,φ,χ) =

BCE(D,ψ,φ)+
λ

N ∑
i

SE(DeCNN(χ,CNN(ψ,Xi)),Xi)
(6)

The decoder is a deconvolutional neural network (DeCNN),
with parameters χ, which essentially is the CNN “in reverse”:
it takes as input the angles output by the CNN, given an image
Xi, and outputs RGB values for each pixel in the image. SE is
the sum of squared errors across all RGB values in the image,
and λ is a weighting term in the overall loss. The intuition
is that, in order to obtain a low SE loss, the encoder CNN
has to output angles which are sufficiently informative for the
DeCNN to accurately reconstruct the original image.

Figure 4 shows how the instances can be distributed more
broadly around the Bloch sphere, using the additional decoder
loss (with λ = 0.1). This model still performs well as a classi-
fication model on the development data, achieving over 98%
accuracy on all domains.

Capturing Correlations Here we show how entanglement
can be used to capture correlations across domains. We define
a new concept called twike, which is defined as (red and cir-
cle) or (blue and square) (i.e. it applies to images containing
red circles or blue squares). Figure 5 shows some examples
of twikes and non-twikes.

The basic concept PQCs in (4) are unable to learn twike,

Figure 4: Visualisation of the concept effects and instance
states with an additional decoder loss.

Figure 5: Example twikes (left) and non-twikes (right).

since the domains are treated independently. In order to cre-
ate connections between the domains, we can apply our full
ansatz V in (5). First we assume knowledge of the fact that,
for twike, the correlations are across SHAPE and COLOUR,
with entangling gates only between the qubits for these do-
mains. We also assume that the remaining domains are not
relevant and so are not measured. The resulting form of twike
is shown in Fig. 6.

The training of this model only updates the parameters of
the concept PQC; the parameters of the encoder (i.e. the
CNN) are kept fixed from the training of the basic model.
The loss function is binary cross entropy, with the 3,000 ex-
amples from before used as training data. Roughly 20% of
these instances are positive examples, and the remaining neg-
ative examples. We trained this model for 50 epochs, using 2
layers of the rotation and entangling V ansatz for the concept
PQC, and obtained 100% accuracy on the unseen test exam-
ples. It was only through the introduction of the entangling
gates that we were able to learn the twike concept at all.

Learning General Mixed Concepts One assumption made
in the twike experiments was that the relevant domains are
known in advance. One question is whether the concept PQC
could learn which domains are relevant, as well as which of
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twike
:=

0 0

V (φ1)

V (φ2)

V (φ3)

Hshp Hsize Hcol Hpos Hshp Hsize Hcol Hpos

Figure 6: Encoder PQC for learning twike, here shown with
3 layers of the rotation and entangling V ansatz.

those domains should be correlated, if provided with all 4
wires as input. The concept PQC needs to allow for entangle-
ment between any of its domains, and, to ignore a particular
domain, the concept should effectively discard it, producing a
mixed quantum effect. Both of these features can be included
by using our most general form of concept PQC (5).

We set up a similar experiment to twike, but with just red as
the concept to be learned. Of course the encoder had already
learned red when trained to perform classification as part of
the basic setup, but now we remove the knowledge of which
wire the COLOUR domain lives on, and see whether a new
concept PQC can learn red, given red and non-red instances
as input. Again the training of this model only updates the
parameters of the concept PQC; the parameters of the CNN
are kept fixed. The loss function is again binary cross entropy,
with the 3,000 examples used as training data. Roughly 33%
of these instances are positive examples of red, with the re-
maining being negative examples. We trained this model for
50 epochs, using 2 layers of rotation and entangling gates for
the concept PQC, and obtained 100% accuracy on the unseen
test examples. It was only through the introduction of the dis-
carding (plus entangling gates) that we were able to obtain
these high accuracies.

Concepts containing Logical Operators Finally, we in-
vestigated whether the entangling and discarding PQC in (5)
could learn concepts built from logical operators. The first
concept we consider is red and circle, firstly with the knowl-
edge of which domains are relevant. The encoder PQC is
the simple one in (4), but with only the COLOUR and SHAPE
wires. We used the same 3,000 training examples as previ-
ously, of which roughly 17% are positive and 83% negative
examples. In this case the learning is particularly easy, and
the model obtains 100% accuracy with only a single layer
of rotations, without any entangling gates or discarding. The
reason is that the factorisation of the domains through the ten-
sor product has effectively provided all the structure required
to use conjunction. When the knowledge of which domains
are relevant is removed, and the more general encoder PQC
in (5) is used, learning becomes harder but an encoder PQC
with 4 layers of rotation and entangling gates is able to learn

the concept with 100% accuracy.
Next we consider disjunction, but within rather than across

domains, with the concept to be learned being red or blue. Of
the 3,000 training examples, 61% are positive examples and
39% negative. Again, when knowledge of which domains
are relevant is provided to the concept PQC, the learning is
easy, with 100% accuracy obtained with a single layer of ro-
tations.4 When knowledge of which domains are relevant is
not provided to the PQC, red or blue can also be successfully
learned with the more general PQC in (5) with 3 layers of
rotation and entangling gates, including discarding.

Future Work
One avenue for future work is to apply the quantum con-
cepts model to data from a conceptual hierarchy—e.g. having
shades of colour such as dark-red—making use of the natu-
ral ordering on effects. In addition, concepts in Quant come
with a negation operation C⊥ := −C, which has been stud-
ied in natural language (e.g. Rodatz et al. (2021)). In contrast,
negation is harder to define for concepts in conceptual spaces;
for example the complement of a convex region is generally
non-convex.

Finally, even though all the practical work here has been
carried out in simulation on a classical computer, the num-
ber of qubits is relatively small, and the circuits relatively
shallow, and so the running of these models on real quan-
tum hardware is a distinct possibility. Also left for future
work is the search for tasks which could demonstrate advan-
tages for our quantum representations, for example establish-
ing whether non-separable effects in the theory do provide an
advantage over classical correlation in modelling conceptual
structure.
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