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The effect of long-term implantation on metabolically active devices is of utmost
importance for not only the success of implanted glucose sensors used in diabetic
therapy, but also for the development of artificial tissues and encapsulated cell devices.
Such devices are dependent on the constant, predictable supply of metabolites from the
local vasculature. Long-term implantation leads to the formation of a foreign body

capsule whose purpose is the protection of the host and isolation of the foreign material

XX



from local tissue resources. While this encapsulation is successful in protecting tissues
from invading agents, metabolite flow continues, albeit at greatly reduced levels. The
understanding of this encapsulation process is critical for the design and successful
implementation of active implants dependent on metabolite supply.

The project goal is to utilize implantable wireless telemeters designed and
manufactured by Glysens, Inc. to understand changes in oxygen levels of the
surrounding subcutaneous tissues over the course of implantation in pigs. This is
performed in three distinct, yet interrelated parts, namely: the analysis of oxygen signals
collected from the long-term implantation of telemeters, the histological analysis of
serial tissue samples collected from regions adjacent to the telemeter-like shams over
the course of implantation, and the investigation of an accurate model for the dynamics
of metabolite supply to implanted devices over the long-term.

Oxygen signals collected from sensors implanted into the subcutaneous tissues
of pigs were found to contain several salient features. First, a long-term trend exhibiting
exponential decay properties was discovered and is attributed to the impedance of
mass transfer by the formation of a thick, avascular, fibrous foreign body capsule. The
existence of such a capsule is demonstrated via histological examinations, and its impact
on mass transfer of oxygen from the underlying vasculature to implant surface is
investigated utilizing analytical and numerical methods. Second, a dominant frequency
with a period of oscillation of 7-14 days was found for most of the signals examined. A
model is proposed detailing the critical components of such an oscillations and how they

might correlate with specific stages of the wound healing response.
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The successful completion of this project provide a better understanding of the
tissue changes that occur during the foreign body reaction, and the findings will be of
direct benefit to the implant and device community allowing for better design

parameters and device performance.
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CHAPTER 1 -

Introduction

1.1 Background

Within the last 5 decades we have come to expect more from our implants.
Performing a simple mechanical support function is no longer enough and these devices
are carefully designed to integrate and interact with the body. We require cellular
ingrowth and anchorage, adaptation to surrounding tissue mechanics, the leaching of
factors, promotion of tissue restructuring surrounding the implant, transfer of
mechanical information, metabolic transfer to and from the implant, etc. [1-3]. Our
implants are now becoming more a part of the intricate functioning of the human body
than ever before. However, despite the above mentioned expectations and functions
one problem still exists: we do not fully understand the response of the body to the
intimate placement of foreign devices into living tissues.

Of the many functions that engineered implants have come to perform, this
work investigates the use of implants that require a metabolite to interact on its
surface. With the current development of glucose sensors for diabetic monitoring [4-
12], oxygen sensors for monitoring of proper oxygenation in hospital intensive care
environments [13], lactose sensors for monitoring of fatigue under physical stress [14],

stem-cell constructs for replacement/regulation of biological function [15-18], $-cell



islet devices for pancreatic supplementation [19-21], etc., it is clear that this field has a
bright future ahead of it. One of the best ways to improve performance and usefulness
of such devices is to better understand the complex relationship between an implant
and its host tissue, in this case through the transfer of metabolites to and from the
metabolically active implant. Specifically, the interaction of an implanted

electrochemical oxygen sensor within subcutaneous tissues will be examined.

1.1.1 Electrochemical oxygen sensor

The electrochemical oxygen sensor has been around for many decades [22, 23].
The Clark electrode design discussed here, involves the presence of a cathode platinum
electrode surface that is held at a constant negative potential with respect to a silver-
chloride (AgCl) counter electrode [24, 25]. As oxygen comes in contact with the surface,
it is instantly reduced in the presence of water into hydrogen peroxide, creating a
current flow. This current can then be readily measured. The overall chemical reaction

is as follows:

%20, + H,0 — H,0, + 4e’ (Eq. 1)

In order to prevent the adsorption of proteins and increase selectivity to oxygen, the

electrodes are coated in a hydrolyte/PDMS coating that is highly permeable to oxygen



molecules and impermeable to larger molecules. A schematic representation of the

electrode setup is shown in Figure 1.

surface Coating
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Figure 1. Oxygen electrode schematic illustrating the PDMS rubber coating and showing
necessary boundaries and orientations.

The flux of oxygen to the electrode surface, j, can be mathematically described using

one-dimensional Fick’s law of diffusion:

j=-D— (Eq. 2)

where D is the diffusion coefficient of oxygen and c is the concentration of oxygen.

Using the following initial and boundary conditions:



z=2. =0 at the electrode surface, c=0,
O0<z<zy, D=D,,

Z =z, at the membrane boundary, ¢ = ¢y,
ZIm<z<2z,D=Dy,

z — z;in the bulk tissue, ¢ = ¢;,

and evaluating this equation at steady state separately for oxygen flux, j, between the

electrode and the membrane surface, and oxygen flux between the electrode and the

bulk tissues:
. del™ c,
=D —| =D where 8 =z -z (Eq. 3)
.] m aZ m m m e
0 m
and
ac|” ¢, -c,
j=D, o D, where 6, =z, -z, (Eq. 4)

we can solve for the total flux at the electrode surface. By inspection [26] of Equations 3

and 4 we obtain:



)+ -e)= 3% +i%, (£q. 52)

(Eq. 5b)

et
(5, .6,
(®n,+%,)

which represents the total flux through the tissue and membrane layers. Defining the
Biot number, Bi, as the ratio of internal to external permeability and recognizing the

linear relationship between flux at the electrode surface and generated current [25]:

J= %FA (Eq. 6)

via rearrangement we obtain:

nFAc, D, )

i= - Eq.7
(+8™) (Eq.7)

where n is the electron equivalent per mole of oxygen (in this case 4), F is Faraday’s
constant and A is the area of the electrode surface.

The implants utilized in the proceeding work are shown in Figure 2. The
electrodes rely on this basic electrochemical principle, however many individual

electrodes are arranged in an array fashion, allowing multiple signals to be collected



simultaneously. This provides redundancy in case of electrode malfunction and
accounts for tissue heterogeneity. 18 platinum oxygen electrodes are present on each
array, eight of which are dedicated to oxygen) with a 300um diameter. A schematic
representation of an electrode array is shown in Figure 3, where the 8 working oxygen
electrodes are located on the left half (colored red). These electrodes are held at a
constant -500 mV potential with respect to the counter electrode and the resulting
current required to maintain this potential, equal to the current flow caused by
consumption of oxygen at the surface, is recorded. Each array also contains a battery
power supply capable of lasting the length of the implantation. Variable measurement
and data recording rates can be selected, depending on the data needed, and remaining
battery life. Internal telemetry is also present that allows for wireless data transmission
to an external receiver. Sensor signal data is recorded and wirelessly transmitted in a
continuous fashion to a nearby receiver. Data is output in terms of voltage (mV) which
can be readily converted to the current produced at the electrode surface using a linear

conversion.
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Figure 2. Photographs of the electrochemical oxygen sensor assembly.
(courtesy of Glysens, Inc.)
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Figure 3. Schematic representation of the electrode array of the implantable telemeters.
18 working electrodes are present on the surface, with the left hemisphere (W1 - W8, colored
red) dedicated to oxygen measurement.



1.1.2 Oxygenation of the subcutaneous tissues

Oxygen is a small, non-polar molecule that readily passes through aqueous
environments and lipid membranes. After inspiration in the lungs, oxygen enters the
bloodstream by passing through permeable alveolar tissues and is pumped through the
vasculature into the tissues and organs. There, the oxygen tension between the highly
oxygenated blood and the hypoxic tissues drives the outwardly flow of oxygen. This
flow is dictated by numerous factors including the permeability of the tissues and
vasculature, the consumptive rates of the tissues, the distances that oxygen has to
travel, the distribution of sources, blood flow rate and pressure, etc. Obviously, this is
an extremely complicated process and as a result has been extensively studied over the
years. For this work, we are primarily interested in the tissue morphology and related
properties that affect how oxygen travels from a nearby vessel, through the tissue bulk,
to an implanted device.

The supply of oxygen from the vasculature is variable in the subcutaneous
tissues. Over the years, the work of Dr. Marcos Intaglietta’s group has yielded much
information regarding the supply and distribution of oxygen in the microcirculation and
the surrounding tissues [27-30]. The effects of longitudinal and radial distributions,
vessel order, blood oxygenation [28, 29], vascular motion [31], etc. have all been shown
to contribute. Most of these effects however are constrained to the short time-scale
(<6 hours), and their effects on oxygen signals is currently being investigated by other

researchers. Frequencies related to vasomotion on the order of seconds to minutes



have been identified in both hamster and pig subcutaneous tissues for a limited number
of signals however further analysis is required.

The distribution of vessels in the tissues, and their order (diameter), can have a
pronounced effect on oxygen flux trends lasting from days to months. Data on the
spatial distributions of vessels in subcutaneous tissues adjacent to an implant is limited.
Ertafai and Gough [32, 33], using serial histology of tissue collected from the rat window
chamber model, demonstrated a characteristic distribution of blood vessels as a
function of distance from the surface of an implant. This distribution shows that after
10 days of implantation, the majority of blood vessels occur closest to the implant.

Using micro-needle electrodes, Tsai and her colleagues tracked oxygen
concentrations from the lumen of various sized vessels, out towards the vessel walls,
through the endothelial and smooth-muscle into the extracellular space adjacent to the
vessel. A correlation was found between the vessel diameter and the oxygen
concentration at its external wall surface, and is shown in Figure 4 [29]. This
relationship between increasing vessel diameter and its corresponding oxygen supply
can be used to guide the modeling of oxygen supply from vessels in tissues.

The experimentally determined diffusion coefficients of oxygen through
subcutaneous tissues have previously been reported comparable to that of oxygen
diffusion through water (Doz/120 = 2.3 - 10° cmz/s, at physiologic temperature and
pressure) [24, 34]. This value is deemed acceptable due to the relatively non-fibrous,

highly aqueous nature of bodily tissues.
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Figure 4. Distribution of oxygen in the microcirculation of hamster skinfold preparation.
Intravascular values are shown as solid bars, and extravascular values immediately outside the
wall are shown as hatched bars. The vessel diameters for each order of branching are as follows
(in wm, means + SD): A1, 85.1+23.1; A2,28.4+11.7; A3,9.8+3.2; A4,6.4+2.1;Vc,21.0+5.9;
VI, 88.7 + 34.5. Al through A4, arteriolar orders; cap, capillary; tis, tissue; Vc, collecting venule;
VI, large venule. PO, values can be readily converted to units of mol/cm?® using Henry’s Law and
range from approx. 4 —8 - 10”7 mol/cm®. (Reprinted from Tsai et al. [29])

1.1.3 Injury, wound healing and the foreign body response

The implantation of a device, such as the oxygen telemeter discussed in this
work, triggers very specific and effective defense mechanisms by the body [1, 2, 35-48].
The initial injury involved in creating an implantation site starts a cascade of events

intended to protect the area from excessive bleeding, and begin cleanup and repair of
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the site as soon as possible. Previous literature demonstrates the dynamic nature of the
wound site [37, 48]. The time scale for such an event is 10-14 days, during which time
the prominence of various cells and structural components in the wound site change
dramatically. In addition, the long-term isolation of an implant from bodily resources
and prevention of further infection and damage lead to what is known as the foreign
body response; which is in essence a modified wound healing event.

Wound healing has been previously identified to occur in several distinct stages,
namely: onset, progression and resolution [35, 37, 48]. Onset involves initial bleeding
following injury and an immediate clotting and vasoconstriction response. Blood plasma
components (fibrin, 1gG, platelet, etc.) adhere to the implant surface and signal for
inflammatory action. This includes the release of powerful chemokines such as
complement proteins (C3a, C3b) which trigger the fibrin cascade and reverse
vasoconstriction following clotting, and cellular chemotractants (C5a, histamine,
thrombin). Progression brings about the influx of leukocytes (granulocytes,
macrophages/monocytes, etc.), endothelial proliferation and remodeling, and the
signaling of fibroblasts. The tell-tale signs of inflammation (edema, macrophage
proliferation, etc.) occur. Hypoxic conditions also bring about angiogenesis in an
attempt to better oxygenate starved tissues and meet metabolic demands. The arrival
of fibroblasts instigates fibrosis with the deposition of type | and Ill collagen at the
wound site and remodeling of the ECM.

Oxygen in the wound site drops sharply immediately following the initial injury

[45, 46]. However, since elevated O, levels are critical for the metabolic needs of
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inflammatory, immune and remodeling cells, vasodialation and vessel permeability are
quickly restored. Oxygen is a necessary component for generating energy equivalents
via the Krebs cycle and is the electron donor in the electron transport chain within
tissues. The production of reactive oxygen species (ROS; eg. peroxide anion, hydroxyl
ion, etc.), a common class of oxidative molecules used to signal for the degradation of
foreign substances, is especially vital for the cleansing of the wound site. The activity of
many cell types involved in the wound healing response is strongly correlated with the
levels of available oxygen (eg. neutrophils, macrophages, fibroblasts). While temporary
local hypoxia may occur in isolated locations in order to instigate angiogenesis, the
sufficient oxygenation of the overall wound site is critical for full, healthy repair.

As the wound progresses it can either resolve acutely, leading to a return to
normal tissue conditions, or become arrested in a perpetual stage of
granulation/inflammation [35-37, 46]. The presence of an implant leads to what has
been coined in the literature as a “chronic wound” where the final resolution step is
halted. Fibrosis continues and a tough collagenous capsule is created (the extent of
which has been shown to vary with material type, shape, size, etc. [41-43]).
Additionally, a continued presence of macrophages/giant cells engulfing the implant is
also maintained. It is this capsule formation and long-term presence of inflammatory
cells that is suspected to cause a measureable impact on oxygen signals reported by
implanted telemeters. Not only is the fibrotic tissue relatively avascular, it is also
believed to increase the distance between existing vessels and the implant surface, thus

increasing the diffusion path of oxygen. Therefore, if the stability of the sensors
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themselves is unaltered [34], then any changes in oxygen signals reported must be due

to changes in the tissues within which the sensors are placed.

1.2 Need

The effect of long-term implantation on metabolically active devices is of utmost
importance not only for the success of implanted enzymatic sensors such as glucose
sensors used in diabetic therapy [4], but also for the development of artificial tissues
and encapsulated cell devices [15, 19, 49]. Such devices are dependent on the constant,
predictable supply of metabolites from the local vasculature [21]. Till now, the common
understanding has been that implants placed into subcutaneous tissues become walled
off within 1-2 weeks, and that long-term implantation is not viable for sufficient supply
and measurement. As a result, for clinical glucose monitoring purposes, cumbersome
direct blood-draw and percutaneous measurement methods are used, and full
implantations require more invasive locations. Determining the available supply
characteristics of the subcutaneous tissues is needed for use of implants in these
favorable locations.

A direct need for oxygen sensing also exists in the field of pulmonary diseases.
Chronic obstructive pulmonary disease (COPD) is one such disease where the constant
presence of foreign particles or gases (such as those encountered during smoking or in
polluted environments) causes an abnormal inflammatory response [50]. Fishman
states in his recent book, that “COPD is the fourth leading cause of chronic morbidity

and mortality in the United States” [51]. By 2020 it is projected that COPD will become
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the world’s third leading killer. The inability of such patients to adequately oxygenate
tissues and organs presents immense stress on the organism leading to damage and
possible necrosis, weakness, and a variety of other maladies possibly leading to death.
The effective monitoring and measurement of not only the oxygen levels at a given time
point, but also to track oxygenation dynamics would be of tremendous benefit both in
and out of a hospital setting. Oxygen levels could be tracked at key organs that are
particularly susceptible to hypoxic damage, and care could ideally be administered
before the onset of significant damage. The use of implanted oxygen sensors for
monitoring of patients suffering from COPD or other pulmonary disorders could be ideal

for such treatment and therapy.

1.3 Hypothesis and project methodology

It is hypothesized that O, flux from the porcine subcutaneous tissue
environment to the surface of an implanted oxygen electrode (and the resultant
collected signals) correlates with the tissue structure — specifically the vascular density
and distribution, cellular content, collagen content, and dimensions — over the long-
term. Any fluctuations in the oxygen signals can be tracked via changes in the tissues
within which sensors are placed. This will be investigated in three interrelated specific

aims.
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Aim 1: The characterization of signals from long-term implanted oxygen sensors into the
porcine subcutaneous environment

Data from eleven sensor arrays, each comprised of eight oxygen electrodes, has

been provided from Glysens, Inc. Removing any inactive or defective oxygen sensor
signals, a total of 60 working electrode signals were provided for analysis. The 11 arrays
were implanted into three animals at one of four specific locations on the animals back:
right cephalic, left cephalic, right caudal, left caudal. Oxygen current signals were then
recorded as a function of time for a period of 13 plus weeks. The signals are analyzed
for the trend/pattern characteristics in the following time scales: >4 weeks, 1-4 weeks,
and <1 week (but >6 hours). Trend analysis includes the use of the following signal
processing tools:

* filtering and decimation to achieve desired sampling rates and remove
unwanted noise,

* signal auto-correlation analysis to determine signal periodicity and pattern
repetition, and cross-correlation analysis is used to identify patterns
occurring between different electrodes, arrays and animals,

* power-spectrum analysis to identify most powerful frequencies within the
signals,

* and wavelet analysis to determine whether any oscillatory behavior changes

in time or remains constant.
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Aim 2: Analysis of Encapsulation Dynamics Surrounding Long-Term Implanted Devices
via Quantitative Histology

The encapsulation process that occurs in the porcine subcutaneous tissue
surrounding the implant is quantified in order to mathematically represent the changes
in cellular density, fibrous tissue density and vascular distribution. This is accomplished
experimentally by implanting sham sensor constructs into the dorsal subcutaneous
tissues of pigs. These shams are then serially removed them along with adjacent
tissues. The shams are designed to mimic the shape, size and tissue-adjacent structure
of functional sensor arrays. The tissues removed along with each sham are then
prepared for standard and immunological histology. Specifically, stains are utilized to
best identify the distribution and density of the following structures: cell nuclei,

collagen, endothelial cells, granulocytes and macrophages.

Aim 3: Computational analysis of oxygen flux dynamics due to long-term subcutaneous
porcine environment remodeling

Computational and analytical models are utilized in order to examine various
tissue/sensor geometries and conditions in an attempt to better understand the oxygen
diffusion process in the tissues and to provide explanations for the dynamic changes and
in-sensor variations that have been observed in the long term implanted sensor data.
Data and findings from Aims 1 & 2 are used to guide the computational simulations and
necessary values for oxygen supply, diffusion in the tissues and consumption are

obtained from the literature.
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The modeling concentrates on four areas of interest regarding the long-term
implantation of oxygen sensors. Specifically, how the oxygen flux to the electrode
surface is affected by:

* the mass transfer properties of the bulk as defined by the permeability

(dimension to diffusion ratio),

* the physical distribution of the microvascular metabolite supply (due to

rearrangement, shunting of blood vessels, etc.),

* the metabolic consumption rates of encapsulation tissues,

¢ and vessel size and location.

1.4 Goal

The understanding of this encapsulation process and the resulting changes in
metabolite supply is critical for the design and successful implementation of active
implants dependent on metabolite supply. The goal of this project is to elucidate the
complex behavior of the implant/subcutaneous tissue environment. This is
accomplished by utilizing actual long-term signals of oxygen current (and as a result
flux), examining the dynamics in tissue structures and morphology that occur over the
course of implantation, and devise a mathematical model that attempts to predict and
explain the effect of encapsulation on the behavior of metabolically active implants.
Specifically, we aim to answer the following question: how will the encapsulation

process affect the mass transfer properties of oxygen between tissue and implant?
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1.5 Scope

This thesis tackles a very broad, involved, and complicated subject. The contents
span a vast number of technical and multidisciplinary fields, including: electrical
engineering, materials science, signals processing and analysis, standard and
immunochemical histology, automated image processing, statistics, computational
model analysis (both analytical and numerical), etc. It would be very easy to get lost in
the minutia of any one of these aspects of the project. The reasoning behind the
Bioengineering approach is to pick and choose selected tools from each of these diverse
fields and apply them to the investigation and understanding of a biomedical problem.
Attempts have been made to customize the tools to aid in the timely and accurate
processing and analysis of the collected data, however the intent of this project is not to
improve already well developed fields of study.

In addition, the immense amount of data provided by others (Glysens, Inc.) and
collected during the thesis work leads to numerous analytical directions that could be
taken. This thesis will deal with the relationship between the signals collected from live
oxygen sensors and the changes in the underlying tissues that could result in such signal
dynamics. A rigorous materials comparison, the development of new and novel signals
processing techniques tailored to biological signals, the development of new and novel
histological procedures, modifications to finite element techniques, etc. is avoided. This

does however open up the possibility of much work utilizing this data set for the future.



CHAPTER 2 -

Characterization of oxygen signals

2.1 Methodology

An affiliated biotech company specializing in the development of wireless
implantable metabolite sensors (Glysens, Inc.) provided sensor recordings from
telemeter arrays that were implanted into the dorsal subcutaneous tissues of Yorkshire
farm pigs. For more information regarding the experimental procedures, please refer to
the Appendix, Section 7. Data from 60 functioning electrodes spanning eleven arrays
implanted into one of three pigs were supplied. The signals contain up to 13 weeks of
information, depending on battery life and electronic stability. Given that battery life is
a concern, the telemeters have variable data transmission rate capability, and for this
experiment one data point was recorded every 2 minutes to ensure 3 months of
continuous data. The data was transmitted in the form of millivolts linearly proportional
to the oxygen current (consistent with Equation 7) with a corresponding time stamp
from which elapsed time was calculated. In accordance with the goals of this project,
we were primarily interested in the long-term trends in the signals, here defined as
anything occurring on or greater than a half-day time-scale. Cursory observations were
first made by plotting the data and are discussed in Section 2.2 followed by more

rigorous quantitative analysis presented in Section 2.3.
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For this rigorous analysis, both well established and novel signal processing and
time-series analysis techniques are utilized. Cross-correlation and Fourier based power
estimation techniques are employed to identify the presence of dominant frequencies
in the collected signals. Wavelet analysis, a relatively new approach previously used to
investigate heart beat [52], blood flow [53, 54] and glucose dynamics in the blood [55],
is employed for simultaneous time/frequency analysis. In addition, similarities between
individual electrodes and between arrays are examined to determine larger tissue and

animal dependent trends.

2.2 Data
2.2.1 Recorded Signals

Of the eleven sensors that were implanted across four animals, 60 functioning
oxygen electrode signals were recorded. The signals are composed of measurements
made every two minutes for a period of over 13 weeks. Due to the volume of data, and
the fact that our interest extended only to the long-term information present in these
signals, the data was averaged to more manageable sets. This averaging is indicated
where necessary. Four example signals are shown in Figure 5, where it can be readily
observed that signal behavior varies from array to array. The four following
characteristics are displayed in Figure 5a-d, respectively: (a) a large initial drop followed
by a low equilibrium point, (b) slow signal decay reaching equilibrium slightly below the
starting value, (c) a large initial drop followed by slow decay reaching equilibrium, (d)

decay to low equilibrium followed by recovery/deviations. However, it is interesting to
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note, that despite some minor differences, the signals from the electrodes on one array
demonstrate the same long-term trends. Moreover, in all the collected signals there is a

pronounced decay from the initial value at the start of the experiment, to the equilibrium

level at the end of the experiment.
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Figure 5. Examples of oxygen electrode signals from four sensor arrays illustrating various signal
characteristics.
(a) Large initial drop followed by low equilibrium point, (b) slow signal decay reaching
equilibrium slightly below starting value, (c) large initial drop followed by slow decay reaching
equilibrium, (d) decay to low equilibrium followed by recovery/deviations.
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2.2.2 Exponential decay

This decay can be readily seen when all the signals are averaged together, as is
shown in Figure 6. When observing the individual array averages (Figure 6a) and the
cumulative average of all 60 electrode signals (Figure 6b), the decay characteristics
become pronounced. In particular, there is a clear empirically observed exponential
decay in the oxygen current, io, that can be readily fitted using a 1** order exponential

equation:

i, = C+4-el] (Eq. 8)

where A represents the magnitude change from initial position to final equilibrium, C,
via time constant, B. These parameters are included in Figure 6b along with the R? value
indicating the goodness of fit. In addition, the 95% confidence interval is provided on
the figure, which being narrow indicates the average value is quite highly repeatable
from a similar sample set. Fitting was performed using non-linear regression analysis in

Mathematica [56].
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Figure 6. Long-term oxygen decay trends.
(a) Examples of 4 averaged arrays illustrating the various trends that occur in the signals, (b)
smoothed average of all 60 signals spanning all eleven arrays including the 95% confidence
interval.
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2.2.3 Selection of signals for further analysis

As stated earlier, all sensor arrays were calibrated before and after the
implantation (see Appendix, Section 7.1.3 for more information). Only those sensors
with a magnitude change in calibration less than 30% were chosen for the remainder of
the analysis (see Table 6). The average of these 12 identified signals is presented in
Figure 7 with a similar exponential decay fit and 95% confidence interval. Here the
exponential decay fit remains quite similar to the fit for all 60 electrode signals, but with
a slightly higher equilibrium value. The confidence interval however is much broader,
partly due to the lower number of signals analyzed, and in part due to the greater

standard deviation.
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Figure 7. Smoothed average of selected 12 signals with a less than 30% magnitude change in
calibration.
The 95% confidence interval bounds are included.
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2.3 Analysis

2.3.1 Data processing and preparation
23.1.1 Signal filtering and decimation

For all numerical analysis of signal characteristics in this manuscript, the afore-
mentioned 12 selected signals were reduced to one point per hour. This was done so as
to minimize calculation time given the fact a complete sensor signal is composed of
approximately 65,000 data points and to minimize high frequency noise in the
computation of frequency characteristics, yet still retain enough data resolution for the
intended signals analysis. Signal reduction was performed using a low-pass equiripple
filter created in Matlab [57] with an appropriate 1-hour cutoff frequency followed by
decimation in order to reduce the data set to the desired sampling rate. The Nyquist
sampling theorem dictates that the highest frequency which can be identified within a
discrete signal is half the sampling frequency [58]. Given the 1-hour final sampling rate
of the signals analyzed, the Nyquist frequency limit is 0.5 hour™, well above our imposed
long-term time-scale limit of 1 day™. Validation of the filtering/decimation method is
presented later in this manuscript in section 2.3.3.2 entitled “Frequency

characterization”.

2.3.1.2 Signal trend removal
The long-term trend (> 4 weeks) needed to be removed to unmask the low
frequency characteristics of the signals. These trends, which have been largely

identified as exponential in nature, were individually calculated for each signal by
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performing averages of the data at 1 week intervals, then using a cubic spline to
interpolate the points between in order to match the number of data points to the
original signals. At this point these long-term decay trends could be either subtracted
from the original signals (implying an additive effect of the trend) or the original signals
could be divided by the trends and then de-meaned (implying a multiplicative effect).

Multiplicative trends are readily explained using the mass transfer paradigm of
the sensor/tissue interface in question. If the hypothesis that the signals recorded by
the electrodes are dependent on the mass transfer characteristics of the tissues and
subject to any dynamics thereof is accurate, an attenuation of the signal would be
expected. The signal decay would also decrease the signal deviation from the trend as
the decay process progresses. An additive trend, on the other hand, would imply
electronic noise interference of the sensor system which would more likely have no
impact on the range of deviation around the trend, regardless of the decay process.
Therefore, both the multiplicative and additive trend removal was performed and
compared for each signal.

Figure 8 illustrates two sample signals (a and b) that have had their trends
removed using both methods. A minimum and maximum value for a moving 1-day
window of the 1 sample per hour filtered and decimated signals is plotted versus time.
The normalized average of all 12 selected signals is presented in Figure 8c. Note that
the spread for the signals with the removed additive trend is greater at the start of the
implant experiment and decreases over time, whereas the signals with the removed

multiplicative trend show no visible change in spread. This indicates that the trend is
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multiplicative, supporting the hypothesis that the signals are attenuated by physical

mass transfer alterations over the course of implantation. Multiplicative trend removal

was carried out for the remainder of this work.
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Figure 8. Analysis of data spread in the 12 selected signals.

(a and b) Data spread of two sample signals which have been detrended using both the additive
(red) and multiplicative (blue) methods, (c) normalized, averaged data spread of all 12 selected
signals after additive (red) and multiplicative (blue) detrending.
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2.3.2 Frequency analysis methodology
2.3.21 Autocorrelation

In order to further identify the information contained within the signals over the
course of the 3+ month implantation, a series of signal analysis techniques was applied.
The first was autocorrelation of the signals (convolution of a signal with itself) in order
to identify any type of repetitive pattern that might exist over the course of the
implantation. The autocorrelations of detrended signals were performed using the
following method [57]. Signals x and y (x = y for autocorrelation) are of length N shifted

with respect to each other by time-lag 7, Ry(7) is the correlation coefficient defined by:

N-t-1

Ro(m)=) D Yn TR0 (Eq. 9)
xy n= i .
R (~1) r<0

The correlation is then scaled so that a zero-lag (7=0) autocorrelation of the reference
signal produces a value of 1.

The resulting autocorrelelograms were subsequently analyzed to identify periods
of oscillation. The first five (if available) full, identifiable oscillatory periods were

identified by hand, and piece-wise fitted to the following sinusoidal function:

R =c(Cos[27-a-(x +b)]), (Eq. 10)
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where R,y is the autocorrelation coefficient, Tis the time-shift (days) and a, b and c are
constants representing the period (days), offset (days) and magnitude (scaled
correlation coefficient), respectively. The oscillatory period was calculated using a
nonlinear regression algorithm [56] for each of these segments and an R? value was

obtained to judge the quality of the fit.

2.3.2.2 Frequency Characterization
23.2.2.1 Welch Method for Power Spectrum Analysis

Using the Fourier-based Welch approximation algorithm, power spectra of the
12 selected signals were computed identifying the frequencies with maximum power.
The Welch method was chosen for its noise reducing properties and ease of calculation,
the details of which are presented elsewhere [59]. The Welch algorithm effectively
transforms discrete time series data into the frequency space using a sinusoidal basis.
Frequency power is plotted either linearly or logarithmically as a function of frequency.
This method presents no information regarding where in these signals these frequencies

temporally occur; for that more advanced techniques are required.

2.3.2.2.2 Wavelet Analysis
Wavelet analysis is a useful technique for not only corroborating the information
given by standard Fourier-based approaches, but for additionally identifying the times at

which powerful frequencies occur. A detailed explanation of the fundamentals and
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intricate details of wavelet analysis can be found elsewhere [52, 60, 61]; only a
superficial explanation is given here.

Whereas the basis for Fourier-based approaches is set for the user as sinusoidal,
much of the power of wavelet analysis comes from the fact that the basis is user
selected. Several features such as whether the wavelet is orthogonal, complex or
“wide”, or its shape play a key role in its usefulness in analyzing a specific signal. Non-
orthogonal wavelets are particularly adept for signals with many overlaying frequencies
as they produce smooth, undisturbed variations in amplitude, whereas orthogonal
wavelets will produce discontinuities as scale is changed. Additionally, for non-
orthogonal wavelets spectra are conserved if aperiodic shifts in time occur, which is not
the case for orthogonal wavelets. Complex wavelets can provide useful amplitude and
phase information regarding the oscillations in a signal. The “width” of the wavelet
refers to its resolution as judged by the ratio of width in the time domain to its width in
the frequency domain. This gives rise to the notion that no two wavelets will have the
same temporal and frequency resolution. Finally, a qualitative judgment of the shape of
the wavelet function is needed to ensure it matches the shape of features in the signal
of interest. The user can decide the basis that best suits the data set and necessary
analysis, as long as the function obeys certain rules and conditions [52, 57, 60].

Wavelet analysis of a discrete time series such as an oxygen signal s(t) is
performed by the following continuous transform to compute the wavelet coefficient,

Wp(a), at scale a and position b:
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N-

W,(a) = Z]S(f)w *Eﬁ (Eq. 11)

7

where ¢ is the wavelet of interest. The squared magnitude of the amplitude gives the
associated power of the wavelet spectrum. The information provided by wavelet
analysis is in the form of a 3 dimensional graph with time on the x-axis, scale (related to,
but not the same as Fourier scale) on the y-axis and power is represented on the z-axis.
This data can then be analyzed to show not only which high power frequencies are
present, but also when in the signal they occur. The imaginary (phase) components of
the complex spectra can also be analyzed if necessary; however this is has been omitted
in this work.

Unfortunately, with the choice of a basis comes the detriment of wavelet
analysis. For general trends and identifying ranges for both frequency and time
resolution, the choice of wavelet is not so critical. If on the other hand it is necessary to
identify specific and accurate frequencies and times, wavelet selection becomes key.
Moreover, in general no wavelet will provide both good frequency and good time
resolution simultaneously. Here we chose both the Morlet and Mexican Hat (a 2"
derivative of the Gaussian function) wavelets for further analysis where both wavelets
are non-orthogonal, however Morlet is complex whereas the Mexican Hat is not [57, 60]

and the two functions have different “widths”. The Mexican Hat wavelet is defined as:
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2 —% 2 ) -n%/2
Yo =|—=mx *|U-n" """, (Eq. 12)
= 2 i)
where n is a non-dimensional time parameter. The Morlet Wavelet is defined as:

1 o2 e—nz/.f},

Yo(n) =—— , (Eq. 13a)
0 ]'[f‘b

where f, and f. are the bandwidth parameter and wavelet center frequency,
respectively. In the case of the built-in implementation of the Morlet wavelet in Matlab,
simplification and isolation of the real component of the equation is performed to

obtain one that allows for faster computation [57], namely:

Y,(m) = C'e'%, (Eq. 13b)

where Cis a normalization constant. The resulting wavelet scale, g, is related to Fourier
time-scale, A (1/frequency) and can be computed [60]. In the case of the Morlet
wavelet A = 1.23a, which is nearly identical to the Fourier time-scale. For the Mexican
Hat wavelet A = 4q, indicating that the wavelet scale is 4 times smaller than the Fourier
time-scale. The derivations and a more detailed description of these calculations can be

found elsewhere [57, 60].
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2.3.3 Analysis results
2331 Autocorrelation

Two examples of the autocorrelelograms are presented in Figure 9. A clear
sinusoidal pattern can be observed in both, indicating reasonably strong periodicity in
the signals. This observation was found for all but one of the 12 signals chosen for
signals analysis. In order to identify the period of oscillation, a sinusoidal function was
fitted to the autocorrelation results using non-linear regression. These fits are also
presented in Figure 9 with labels indicating the oscillatory period in days.

The period of oscillation for the twelve selected signals was calculated and
ranges from 5-30 days as shown in Table 3. For those signals that demonstrated this
periodicity, the amount of said periodicity is highly variable. Some signals demonstrate
periodicity for a majority of the temporal offset, while others have 2 or 3 oscillations
and then show no further trend. The average period of oscillation for those regions that
could be clearly identified is 12.29 days with a standard deviation of 5.4 days. The
autocorrelation results provide a cursory indication that there is strong periodic nature
to the signals; a more detailed analysis can be obtained using various frequency analysis

techniques.
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Figure 9. Examples of two autocorrelelograms for the detrended signals.
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Sinusoidal segments that were individually fitted to the data averaged to 1 point per hour using

non-linear regression and the period (in days) of those fits are also displayed.



Table 1. Oscillatory periods in oxygen signal autocorrelelograms.
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Accompanying R* values and standard deviation values (where applicable) are included.
t,% represent signals from the same array (226 and 230, respectively).

st

nd

rd

th

th

Signal 1 2 3 4 5 Average

No. Oscillation Oscillation Oscillation Oscillation Oscillation  *S.D. [days]
[days] (R)  [days](R")  [days](R’)  [days](R’) [days] (R")
1 17.48 (0.72) 9.50 (0.77) - - = 13.49+5.64
2 - - - - - -

3 13.37 (0.38) 32.15 (0.39) 17.85 (0.82) - = 21.12 +9.81

4 7.76 (0.85) 7.11 (0.66) 8.82 (0.73) 7.51(0.75) - 7.8+0.73
5 6.09 (0.59) 17.14 (0.63) 20.46 (0.68) 12.84 (0.83) = 14.13 +6.20
6t 17.48 (0.62)  17.23(0.91) 7.28(0.78)  20.56 (0.84) - 15.64 +5.77
7t 10.73 (0.85) 6.78 (0.25) 10.40 (0.92) 10.24 (0.81) = 9.54 +1.85
8t 14.76 (0.78)  10.93 (0.84) 6.56 (0.61)  11.64 (0.68) 7.24(0.72) 10.23 +3.37
9 12.61 (0.52) 20.13 (0.66) - - = 16.37 £ 5.32

10% 10.03 (0.88)  10.11(0.93) 8.06 (0.86) - - 9.4+1.16
11% 9.07 (0.91) 12.32(0.12) 8.69 (0.73) - = 10.03 + 2.00
121 9.49 (0.76) 13.85(0.64)  10.46 (0.61) - - 11.27 £2.29
Average of all oscillations across the 12 selected signals 12.29 £5.40
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2.3.3.2 Frequency characterization

Examples of two signals and their corresponding frequency information are
presented in Figure 10. For the signals in Figure 10a and e, the power spectra, are
presented in Figure 10b and f. For both signals presented, as for all 12 selected signals,
the maximum power occurs for frequencies well below 0.5 days™. Several signals also
show a pronounced peak at 1 day'l, an observation consistent with biological signals
due to the diurnal cycle important in many living organisms.

For the two signals previously subjected to Fourier-based analysis, two wavelet
power spectra are presented as well. The first is computed using the Morlet wavelet
(Figure 10c and g), the second using the Mexican Hat wavelet (Figure 10d and h).
Comparing the two spectra for each signal, one can readily see that the Mexican Hat-
based spectra provide much better time localization without the “echoes” due to
separation of the real and imaginary components that are seen in the Morlet-based
spectra (for example, see Figure 10d at times of 500 and 700 hours). Even though both
functions are non-orthogonal and have similar “width”, the spectra clearly have
different time and frequency resolutions. The Morlet-based spectra provide much
cleaner discretization of frequency information; whereas the Mexican Hat-based spectra
tend to “smear” the frequencies (see Figure 10c at a scale of 100-200 and time of 950
hours). It should also be noticed that the scale values from the Mexican Hat-based
spectra do not coincide with the scale values from the Morlet-based spectra. Therefore,
equivalent Fourier scales of 100-400 hours are indicated with the red lines in Figure 10c,

d, gand h.
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Figure 10. Fourier and wavelet frequency analysis of the 12 selected signals.

(a,e) Two examples of the detrended oxygen current vs. time signals averaged to 1 point per
hour, (b,f) the associated Fourier power spectra computed using the Welch algorithm, (c,g) and
the associated wavelet analysis using the Mexican Hat wavelet (DOG, n=2) and (d,h) the Morlet
wavelet. Red colored lines in (c,g) and (d,h) indicate equivalent Fourier time-scales of 100 — 400

hours.
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Figure 10 (continued). Fourier and wavelet frequency analysis of the 12 selected signals.
(a,e) Two examples of the detrended oxygen current vs. time signals averaged to 1 point per
hour, (b,f) the associated Fourier power spectra computed using the Welch algorithm, (c,g) and
the associated wavelet analysis using the Mexican Hat wavelet (DOG, n=2) and (d,h) the Morlet
wavelet. Red colored lines in (c,g) and (d,h) indicate equivalent Fourier time-scales of 100 — 400
hours.
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2.3.3.3 Validation of filtering/decimation regime

In order to validate this filtering procedure, the power spectra of the unfiltered,
averaging filtered and low pas filtered signals were plotted and examined in Figure 11a
for 3 sample signals. The intended cutoff frequency is 1 hour (24 days'l). It can be
readily seen that the filtering process using the averaging filter disturbs the higher
frequency information starting at 5 days™ for all three signals (blue unfiltered spectrum
compared with red averaging filtered spectrum). The low-pass filtering (see green
spectra in Figure 11a) on the other hand do not disturb the signal before the cutoff
frequency. The un-decimated low-pass filtered signal was then subtracted from the
original signal leaving the remaining residuals, which were binned and plotted using a
histogram. Figure 11b shows these binned residuals for the three sample signals. Note
that the distribution of residuals is symmetric with no skew in either direction, although
a difference is seen in distribution width. Analysis revealed that high frequency
information has little bearing on low frequency characteristics of these signals and
filtering cleanly reduces the data sets with no distortion of the low frequency

characteristics of interest.
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Figure 11. Validation of filtering method using power spectrum and residuals analysis.
(a) Power spectra for three sample unfiltered (blue), 1-hour averaging filtered (red), 1-hour low-
pass filtered (green) signals and (b) histograms of 1-hour low-pass filtered residuals.
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2.3.34 Comparison of 12 selected signals

Wavelet spectra for all 12 signals were computed just like for the two signals in
Figure 10. Then the mean power and standard deviation of each spectrum was
calculated, and then any values greater than the mean plus one standard deviation were
set to 1 and all other values were set to 0. This in effect identified the most contributing
areas of the spectra for each signal. These data sets were then added together,
indicating the levels of similarity amongst all 12 signals for both Mexican Hat-based
spectra and the Morlet-based spectra. The average Fourier-based power spectrum,
along with these Wavelet similarity plots are presented in Figure 12. From Figure 123,
we can readily identify that the frequencies with the most power occur between 0.05
and 0.15 days™, which corresponds to a 6-20 day time-scale. Additionally, a significant
peak is present at 1 days'l, an expected feature of long term mammalian biological
signals. The information gathered from the wavelet analysis (see Figure 12b and c)
corroborate this finding. The most powerful frequencies occur between 100-400 hours
on the Fourier time-scale (see horizontal red lines), and these most powerful frequencies
tend to be clustered within the first 1000 hours (approx. 40 days, see vertical red lines) of
the experiment. That is not to say that there is no information in the later stages of the

experiment, just that the signals show more distinct behavior from 1000 hours onward.
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Figure 12. Quantitative frequency comparisons of all 12 selected signals.

(a) Averaged and scaled Welch power spectra of 12 selected signals sampled once per hour
indicating maximum signal power in the 0.06-0.15 days-1 frequency range and a pronounced
peak at 1 days-1, (b) similarity in regions of Mexican Hat wavelet power spectra where the
values are greater than the mean plus one standard deviation, (c) same as (b) but using the
Morlet wavelet. The horizontal red lines in (b) and (c) indicate equivalent Fourier time-scales of
100 — 400 hours and the vertical lines indicate the 600 hour time point.
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2.335 Comparison of signals originating from the same arrays

To examine the effect of electrode proximity and array variability, signals that
originated from the same arrays were compared using both cross correlation and
wavelet analysis techniques described earlier. Of the 12 signals used for signals analysis
in this study, two sets of three signals from two different arrays were selected. The two
arrays (labeled 226 and 230) were located on different animals, in different anatomical
locations. It should be noted that electrodes on one array can be no more than 1 cm
apart (see Figure 3).

Correlation and wavelet analysis consistent with the techniques described
previously were applied to these signals separately in order to investigate signal
similarity. Correlation results are shown in Figure 13a and b for Array 226 and 230,
respectively. Three sets of curves are shown for each array, one set calculated with
respect to each individual electrode. Wavelet analysis is presented in Figure 14a-d.
Both arrays show similarity amongst their respective electrode signals, as can be
observed in both the wavelet and cross-correlation plots. However, array 230 shows
much stronger similarity both in terms of the cross-correlations, which are almost
identical and wavelet power spectra comparisons, which contain considerably more

overlap.
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Figure 13. Cross-correlation between 3 signals originating from the same array.
(a) Array 226 and (b) Array 230. The star (*) denotes the signal against which all three signals

are cross-correlated.
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Figure 13 (continued). Cross-correlation between 3 signals originating from the same array.
(a) Array 226 and (b) Array 230. The star (*) denotes the signal against which all three signals
are cross-correlated.
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Figure 14. Wavelet comparison of 3 signals originating from the same array.
Mexican Hat (3° D.0.G.)(a and c) and Morlet (b and d) wavelet analyses of 3 signals on same
array; (a and b) Array 226 and (c and d) Array 230. The colors depend on how many of the 3

signals exhibit the same power characteristics (light blue = 1, yellow = 2 and red = 3).
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Figure 14 (continued). Wavelet comparison of 3 signals originating from the same array.
Mexican Hat (3° D.0.G.)(a and c) and Morlet (b and d) wavelet analyses of 3 signals on same
array; (a and b) Array 226 and (c and d) Array 230. The colors depend on how many of the 3

signals exhibit the same power characteristics (light blue = 1, yellow = 2 and red = 3).



CHAPTER 3 -

Analysis of encapsulation dynamics via quantitative serial histology

3.1 Methodology

The vast majority of histological studies have been performed at a single
terminal time point after the removal of an implant, with little focus on the change in
tissue composition and morphology over the course of implantation. Due to
attenuating effects of prolonged implantation on oxygen signal strength of implanted
oxygen telemeter arrays that have been previously reported [4] and presented earlier in
this work (see Section 2.2.2), a need for understanding the complex dynamics of
encapsulation tissue formation and progression has arisen. It is hypothesized that the
mass transfer characteristics of the tissues themselves would be responsible for the
changes in reported metabolite levels at the implant surface due to hindered metabolite
flow through the tissues. Therefore, it is necessary to examine and quantify the
development and progression of capsule formation, and specifically answer the
following questions: what are the critical cell types present during the progression of
wound healing, encapsulation and immune response?, how do their distributions
change?, what are morphological dynamics of the implant site?, and what trends can be
identified in the tissues that could account for the decay that is seen in the oxygen

signals over the course of long-term implantation?
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Specifically, the following features were selected for analysis: overall cellular
density, collagen density, vascular (endothelial) density and distribution, macrophage
and granulocyte density and distribution, granular layer dimensions. Each of these
variables could account for a large change in the mass transfer of oxygen (and other
metabolites) to the tissues. A large increase of deposited collagen over time, for
example, could inhibit permeability of oxygen and increase diffusion distance, thus
lowering the amount of oxygen reaching the sensor surface and lessening the resultant
generated signal. Similarly, the development of a strong immune/inflamed state with
the presence of many metabolically active white blood cells could potentially decrease
the amount of oxygen making its way to the implant surface as it is consumed along the
way. The ability to quantify these compositional and morphological dynamics will allow
for a deeper understanding on encapsulation and its effect on mass transfer of
metabolites.

To accomplish this goal, we have devised a time-course experiment where six
shams, in essence structurally and materialistically identical to functional array
telemeters sans electronics, are implanted into the subcutaneous tissues on the back of
an adult Yucatan mini-pig. At six predetermined time-points, chosen to coincide with
notable points of interest on the oxygen signal decay curve (see Figure 6) [4], one of the
shams is removed along with surrounding tissue samples. These samples are then
subjected to rigorous histological analysis aimed at identifying and quantifying each of

the features of interest. A combination of standard and immunological histology is
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implemented in this study to not only determine general morphology and composition
of the tissues, but also to identify specific cell types of interest.

Standard image processing algorithms are employed in Matlab [57] for color
channel separation, object identification, analysis (shape, size, solidity, orientation, etc.),
sorting and exclusion to quantify our histological findings. Image analysis is commonly
employed to quantify and analyze biological findings [62-69]. Our methodology
combines many of these techniques for the expressed purpose of not only quantifying
the levels that certain histological features are expressed, but to also determine the
distributions with respect to implant location. Ideally, changes in not only the amount
of a constituent but its distribution throughout the surrounding tissue will provide a

better understanding of the impact on mass transfer of metabolites.

3.2 Materials/methods

3.2.1 Shams

Six sham implants, designed to mimic the size, weight and texture of functioning
oxygen telemeters and assembled using the same materials and techniques with which
real telemeters are built were used in this study. Medical grade titanium is used for the
housing which is comprised of two halves that are welded together for a hermetic seal.
Next, a spin coating of PDMS is applied to the top surface in order to mimic the PDMS
coated sensor array. The titanium backside of the sham is left exposed save for four
polyester velour tabs which where adhered to the backside in order for tissue growth

into the fabric to hold the sham in place to prevent sliding within the tissue pocket. The
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shams were sterilized using an FDA approved chemical sterilant procedure prior to

implantation [70].

3.2.2 Implant procedure

At the start of the procedure, six implant locations (see Figure 15a) were chosen
on the dorsal skin of one anesthetized adult female Yucatan mini-pig, offset on either
side of the spine. The animal was 56 weeks old and weighed 62.1 kg at the start of the
experiment. The implant locations where kept a minimum of 15 cm away from each
other. A5 cm long, 1-2 cm deep incision was made in each location, splitting open the
skin, and exposing the dermal layers, as shown by the schematic in Figure 15b. A pocket
was created using blunt dissection between the sub dermal fat and underlying muscle
while not disturbing the fascia. Each implant location was kept as similar to every other
location as possible, however variability due to the manual nature of the implantation
procedure was to be expected. The shams were placed into the pockets with the PDMS
surface facing in towards the muscle layer. Once the sham was seated in the pocket,
the skin was sutured together, cleaned, and bandaged. Figure 15c presents a cross-
section photograph of a pocket at week 13 that has been totally excised after sacrificing
the animal. No severe abnormalities, defects or injury can be seen indicating healthy
tissue and implant pocket.

In addition to the implants, a modified dual-lumen Hickman catheter (Bard
Access Systems) was introduced into the central vena cava for blood sampling and fluid

infusion, with the catheter ports exteriorized at the midscapular region. The catheter
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was maintained patent between uses with a dilute solution of heparin. Sterile technique
was used in the procedures, and all animal activities were performed pursuant to NIH

guidelines [71].
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Figure 15. Details of the sham implantation.

The implantation of shams was performed at six sites in the dorsal skin off-center from the spine
as shown in (a). Each implant was placed into a pocked created between the subcutaneous fat
and underlying fascia/muscle via blunt dissection exposing the layers of the skin as illustrated in
(b). A cross-section photograph of the implant pocket with sham at week 13 is presented in (c).
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3.2.3 Explantation times

Explantation of the implants was timed with the oxygen signal decay
characteristics demonstrated in earlier (see Figure 6b) where it has been shown that
oxygen signals lose approximately half their initial values within 4 weeks of implantation
and that the signals have plateaued to their minimum by 12 weeks. Therefore, the six
shams were removed at times corresponding to the decay trend. Specifically removal of
the shams was performed at 1, 2, 4, 6, 8 and 13 weeks. Locations were picked at

random for sham removal. After 13 weeks of implantation the animal weighed 77.1 kg.

3.2.4 Tissue collections

At each explantation the animal was given a combination of general and local
anesthetic at the wound site. An incision in the skin directly over the sham sensor was
made, exposing the sham underneath. The sensor was removed and examined for any
damage or anomalies, and the PDMS surface was dabbed with glass slides to collect any
cellular material present. Once the sham was out of the way, tissue samples were
excised from regions of the pocket adjacent to the PDMS and Ti surfaces and
immediately placed in the according fixative. The incision was sutured and wound site
cleaned with antibiotic fluid. Sterile techniques were used for all implant and explant
procedures maintaining absolute cleanliness of the wound sites and materials in direct

contact with the animal.
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3.2.5 Histology
3.25.1 Tissue fixation and preparation

The subcutaneous tissue was fixed in either 10% neutral buffered formalin
(Fisher Scientific) for standard histological staining, or in tris-based buffer with zinc ions
(BD PharMingen IHC Zinc Fixative, BD Biosciences) for immunohistochemical processing.
The tissues were fixed for 24 hours according to manufacturer recommendations for
both fixatives. Following fixation, the tissues were slowly dehydrated in graded alcohol
solutions and xylene, and then embedded in paraffin blocks. The use of isotonic
fixatives and a slow dehydration protocol allowed us to minimize tissue shrinkage and
maintain the proportions of salient features during sectioning and staining [72]. The
tissue samples were aligned in the blocks to allow cross-sections to be sliced through
the subcutaneous layers. For both standard and immunohistochemical samples, 5 um

thick slices were professionally cut.

3.25.2 Staining, microscopy and imaging

Standard hematoxylin and eosin (H&E) staining was performed for analysis of
general morphology and cell nuclear density. To investigate collagen content of the
tissues, PROTOCOL Gomori Trichrome Stain (Fisher Scientific) was used as instructed by
the manufacturer.

Immunohistochemical staining was utilized in order to identify endothelial cells,

macrophages and granulocytes in the tissues. Antibodies targeting specific epitopes on
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cell surfaces were employed (see Table 2). Endothelial cells were labeled using BD
PharMingen purified mouse anti-rat CD31 unconjugated antibodies, which cross react
with pig CD31 (BD Biosciences). CD31 (also known as PECAM-1) is a cell surface
receptor that, in part, is present on the internal walls of blood vessels allowing for the
biding of platelets in cases of vessel damage and provides adhesion points for white
blood cell “rolling” and extravasation [73, 74]. Macrophages were labeled using purified
mouse anti-pig CD4 unconjugated antibodies, (Abcam, Inc.). CD4 is a cell surface
receptor present on several white blood cells including monocytes/macrophages [75].
Granulocytes were labeled using anti-pig 6D10 unconjugated antibodies (Abcam, Inc.).
6D10 is a surface marker found of porcine granulocytes in various stages of
development [76]. Staining was completed using a HRP/DAB enzymatic detection kit
(Abcam, Inc) with goat anti-mouse IgG biotinalated antibodies. Counterstaining of was
achieved using Mayer’s hematoxylin solution (Sigma-Aldrich). No antigen retrieval steps

were required.
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Table 2. Salient details regarding antibodies utilized in immunohistochemistry.
Included are the features of interest, targeted epitope, antibody type, vendor information and
associated references

Feature of Epitope Antibody Vendor Info. References
Interest

Vascular CD-31 Mouse anti-rat BD [73, 74]
Endothelial (PECAM-1) (cross reacts Biosciences,

Cells with pig) Inc.

Macrophages/ CD-4 Mouse anti-pig Abcam, Inc. [75]
T-Cells

Granulocytes 6D10 Mouse anti-pig Abcam, Inc. [76]

The resulting slides were qualitatively observed using an Olympus VANOX-S slide
microscope at 40, 100, 200 and 400x magnifications. Imaging of entire slides was
performed using an Olympus E-30 DSLR with microscope lens mount. The images were
taken using the 4x objective on the microscope providing a scale factor of 0.34
um/pixel. Constant exposure and sensor sensitivity settings were maintained during the
imaging of a slice to maintain identical light levels as measured by the camera’s internal
light meter. Depending on the size of the tissue slice, between 10 and 50 full resolution
images were captured in a raster pattern in order to cover the entire sensor interface
region and were then stitched together via software (Adobe Photoshop CS2, Adobe,
Inc.). Regions of interest that were used for further analysis on the CD4 and 6D10
antibody labeled slides were additionally imaged using the 10x objective with a final
magnification factor of 0.14 um/pixel. After digital stitching of the images, brightness

and contrast levels were adjusted to maintain consistency between slides of a given
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stain, however natural differences in staining intensity were present and some

discrepancy still exists.

3.253 Quantification methods

Once a slide was digitally imaged, five regions of 250um width and 500um depth
(away from the sensor surface) were selected for quantitative histology analysis in
Matlab. Region selection was kept random, however regions with staining artifacts and
tissue damage were avoided, and whenever possible selection was avoided towards the
edges of samples to minimize effect of tissue distortion due to manhandling. Of the five
selected regions, one region was chosen as a reference (based on quality of staining and
representative feature content) to which the other four regions’ color histograms were
later equalized.

The region to be analyzed was first split into RGB color channels, and each
channel was passed through a median filter to reduce noise and preserve edges. Each
channel’s histogram was equalized to the corresponding channels of the reference
region, and the image was then reconstructed. The reconstructed image was
horizontally sliced into 20 regions (250x25um each), corresponding to 25um depth
increments away from the sensor surface.

Each slice was split into RGB and NTSC channels, and thresholds for the RGB and
NTSC channels were chosen and applied to each slice. The applied thresholds were

manually chosen for every region and verified by comparing an image of the original
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region to an image of the region following threshold filtering. This manual method with
user chosen thresholds ensured effective filtering of the areas of interest. Variability in
the applied thresholds was necessary due to variations in stain intensity, slice thickness,
digital imaging, etc. The area, solidity ratio, eccentricity ratio, and orientation of the
remaining regions were calculated, and additional restrictions to these morphology
values were applied. The number, area, eccentricity ratio, solidity ratio, and orientation
of the remaining parts of each slice were then calculated and output for data analysis.

This process is summarized in Figure 16.

Image Processing Flowchart Image (JPG) Reference Image (JPG)

Select proper RGB, NTSCand Split RGB Channels Split RGB Channels

Morphological Criteria |
__________________________________________________ J I
r : Image (RGB) I i ’ Reference Image (RGBU J
Image (RGB, filtered, Hist. EQ) -I ! o . :[;7
E Apply 2D Median Filter E Apply 2D Median Filter
Recombine RGB Channels into JPG ; \I/ i I \J/ J
! ; - J : LRef Ima i
! - ' : ge (RGB, filtered)
Mage (JPG, filtered, Hist. EQ) | | Image (RGB, filtered) i T lf — —I
L. J/ ' Histogram Equalization w.r.t. ' Calculate Histogram Distributions
Cut Slice i of 20 Starting from Top of Image Ref. Image RGB Channels ) for RGB Color Channels

k Slicei/20 (JPG, filtered, Hist. EQ) \
T

N v Data Output
Split RGB Channels Convert and Split NTSC Channels for All 20 Slices
Slicei/20 (RGB, \ Slicei/20 (NTSC, H Count, Sort, ID Regions in Slice i, Analyze
filtered, Hist. EQ) filtered, Hist. EQ) For Area, Solidity, Eccentricity and Orientation
L |
PP \l,(b h RGB and NTSC) KSIicei/ZO (Monochrome, Color &\
pply Color Restrictions (bot! ani ) i .
Sum Restriction Data into Monochrome Image Morphologically Restricted)

. . Apply Morphological Restrictions:
k Slicei/20 (Monochrome, Color Restricted) \—) Area, Solidity, Eccentricity, Orientation

Figure 16. Flow chart diagram of the computational image processing workflow.
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3.3 Results
3.3.1 Histology images

High magnification images (either 40x, 0.03 um/px or 20x, 0.07 um/px) are
shown of all five different stains illustrating feature coloration and morphology that is of
interest in this study. Note the nuclear location and definition in the H&E stained slides
stained dark blue/purple demonstrating the cellular density of the tissues (see Figure
17). The Gomori Trichrome (GTC) stained slides shown in Figure 18 demonstrate
excellent collagen identification with a strong bluish/green cast that readily stands out
from the reddish/gray background. Figure 19 illustrates the labeling of various sized
microvessels where the strong contrast of the brown HRP/DAP stain against the light
blue hematoxylin counterstain is ideal for image analysis. Figure 20 exceptionally
demonstrates the presence of granulocytes in the tissues (labeled with a T), in the
lumen of a vessel (labeled with an L) and as they extravasate (labeled with an E). Finally,
macrophages in the tissues are shown in singular form in Figure 21a, and as
multinucleated giant cells (labeled with an M) engulfing polyester velour fibers (labeled

with a P) in Figure 21b.



Figure 17. Subcutaneous tissue stained with standard H&E process illustrating general
morphology and composition.
Note the dark blue/purple stained nuclei. (a) 0.03 um/px, (b) 0.07 um/px resolution.
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(b)

Figure 18. Subcutaneous tissue stained with Gomori’s Trichrome process meant to identify
extracellular collagen.
Note the blue/green collagen deposit (C). (a) 0.03 um/px, (b) 0.07 um/px resolution.
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Figure 19. Subcutaneous tissue endothelial cells labeled with CD31 antibodies.
Stained with HRP/DAP and hematoxylin counterstain.

Figure 20. Subcutaneous tissue granulocytes labeled with 6D10 antibodies.
Stained with HRP/DAP and hematoxylin counterstain. Granulocytes in the tissues (labeled with
aT), in the lumen of a vessel (labeled with an L) and as they extravasate (labeled with an E).
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Figure 21. Subcutaneous tissue macrophages labeled with CD4 antibodies.
(a) Normal tissue and (b) engulfing embedded Dacron fibers. Stained HRP/DAP and hematoxylin
counterstain. Multinucleated giant cells (labeled with an M) engulfing polyester velour fibers
(labeled with a P)
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Each time point (1, 2, 6 and 13 weeks) and each staining (H&E, GTC, CD31, CD4
and 6D10) resulted in a composite image made up of many individual high resolution
micrographs. Two sample mosaics of H&E and GTC stained PDMS adjacent tissues at
Week 4, composed of at least 25 individual micrographs each, are presented in Figure
22. This figure illustrates the scope of imaging such a slide. In both mosaics, the sham
was in contact with the tissue along the top surface. The regions for analysis were kept
as consistent as possible between the different stains, but local tissue damage and
staining abnormalities did not always allow for this.

A progression of representative 250 x 500 um H&E, GTC and CD31, 6D10 and
CD4 images over the 13 week course of implantation are presented illustrating the
morphology of the tissues surrounding the sham implant. Images from tissues adjacent
to both the titanium (see Figure 23) and PDMS (see Figure 24) surfaces are shown where
the top surface is adjacent to the implant. These images were subsequently subjected

to image analysis for quantification.
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(b)

Figure 22. Full-slide mosaic images of PDMS adjacent tissue collected at week 4 stained with
H&E (a) and GTC (b).
From these mosaics, individual regions adjacent to the implant (top edge in both images) were
chosen for further analysis. Mosaics were created from 25+ micrographs with 0.34 um/pixel
resolution.
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Figure 23. Histology micrographs of tissues adjacent to the titanium surface subjected for
guantification via image analysis.
The five images from left to right represent H&E, GTC, CD31, CD4 and 6D10 staining for (a) week
1, (b) week 2, (c) week 6 and (d) week 13. All images are 250 x 500 um in scale.
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3.3.2 Data and analysis
3.3.2.1 Standard histology: H&E/nuclear density and GTC/collagen

Qualitative analysis of the H&E stained slides indicates no significant
abnormalities in staining for the titanium and PDMS adjacent slides. The PDMS adjacent
tissues present a higher number of interstitial red blood cells (RBCs) than their titanium
adjacent counterparts. This can be readily seen when observing the GTC stained slides
at weeks 2 and 6 (see Figure 24b and c, second images from the left). A very prominent
red stain is seen that, when magnified, clearly shows large quantities of red blood cells,
both individual and fused (clotted). It is not clear if this presence of RBCs is related to
the material in question, but by week 13 (see Figure 24d) this “bleeding” is absent,
indicating that whatever caused the event either dissipates within the time course of
the experiment or was localized to those two implant locations and sham surfaces.

For both H&E and GTC stained slides, the features of interest (cell nuclei and
collagen deposits) appear clearly and distortion free. Visual assessment of H&E stained
slides provided no clues as to any nuclear density trends in the tissues. GTC stained
slides, when visually inspected, readily demonstrated increases in the blue/green
collagen deposits indicating the presence of a trend.

Image quantification was performed for nuclear density on the H&E stained
slides. This was done by isolating the dark purple/black nuclei from the red/pink/light
purple background. By relating the nuclear presence to tissue activity, seeing as the
nuclei in H&E staining are not distinguished from each other, we can approximate how

tissue activity relates to the presence of the sham over the course of the implantation.
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The percent nuclear density is presented as a function of time and as a function of depth
for both the titanium (see Figure 25a and b) and PDMS (see Figure 25c and d) adjacent
tissues. Linear regressions were performed on this data, and R° and p values for the
student’s t-test were calculated for each fit. For titanium adjacent tissues, a positive
trend was found for nuclear density as a function of time (p < 0.001), but no trend was
found with respect to depth. For PDMS adjacent tissues, a negative trend was found

with respect to depth (p < 0.001) and no trend was present with respect to time.
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Figure 25. Quantification results for the nuclear density in H&E stained slides.
Presented as nuclear density as a function of (a) implant time for Ti adjacent tissue, (b) depth
from sensor surface for Ti adjacent tissue, (c) implant time for PDMS adjacent tissue, and (d)

depth from sensor surface for PDMS adjacent tissue. Included are the linear regression fits and
corresponding R? values.
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Figure 25 (continued). Quantification results for the nuclear density in H&E stained slides.
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Presented as nuclear density as a function of (a) implant time for Ti adjacent tissue, (b) depth
from sensor surface for Ti adjacent tissue, (c) implant time for PDMS adjacent tissue, and (d)
depth from sensor surface for PDMS adjacent tissue. Included are the linear regression fits and

. 2
corresponding R values.
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Collagen density was calculated from the GTC stained slides. Collagenous
material appears blue/green in these images (see Figure 18) and can be readily isolated
from the remaining pink/red/purple background. Similar to nuclear density, percent
collagen density is presented as a function of time and as a function of depth for both
the titanium (see Figure 26a and b) and PDMS (see Figure 26¢ and d) adjacent tissues.
Again, R’ and p values are presented for the corresponding linear regression fits and
student’s t-tests. For titanium adjacent tissues, only a positive trend was found for
collagen density with respect to time (p < 0.001), whereas PDMS adjacent tissues
showed both a strong trend with respect to time (p < 0.001) and a less prominent, yet

statistically significant trend with respect to depth (p < 0.01).
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Figure 26. Quantification results for the collagen density in GTC stained slides.
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Presented as nuclear density as a function of (a) implant time for Ti adjacent tissue, (b) depth

from sensor surface for Ti adjacent tissue, (c) implant time for PDMS adjacent tissue, and (d)

depth from sensor surface for PDMS adjacent tissue. Included are the linear regression fits and

. 2
corresponding R° values.
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Figure 26 (continued). Quantification results for the collagen density in GTC stained slides.
Presented as nuclear density as a function of (a) implant time for Ti adjacent tissue, (b) depth
from sensor surface for Ti adjacent tissue, (c) implant time for PDMS adjacent tissue, and (d)

depth from sensor surface for PDMS adjacent tissue. Included are the linear regression fits and
corresponding R’ values.
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3.3.2.2 Immunohistochemical staining: CD31, CD4 and 6D10 antibody stains
3.3.2.2.1 CD31 Ab/endothelial cells

Qualitative observation of the CD31 labeled and immunohistochemically stained
slides demonstrated clear staining of the features of interest. Few staining artifacts are
present (save for the edges and regions of damage). Vessels of various dimensions and
shapes are present and stain intensity is conserved among them. This is especially
important for the smaller, single-celled capillaries. Faint stain intensity would most
readily impact identification of such small structures, but this was not seen to be the
case. Trends were difficult to grade visually as they seem to change somewhat moving
from one end of the sample to the other. The selection of random regions for further
guantitative analysis was therefore deemed necessary to ensure a representative trend
for an entire tissue slice.

CD31 antibody labeled tissues were quantified in the same manner as the H&E
and GTC tissues except, the individual distributions as a function of time were
examined. The distributions are presented in Figure 27 for both the titanium (a-d) and
PDMS (e-h) adjacent tissues. Percent of CD31 antibody labeled image as a function of
depth from sensor surface is reported for weeks 1, 2, 6 and 13. The distributions were
smoothed using a 5-point moving average to remove some of the noise due to the small
number of samples per point. The error bars on the distributions represent the
minimum and maximum values illustrating the range of occurrence. The narrowest
depth ranges of the distributions which contain 50% or more of the CD31 labeled tissue

were calculated and are highlighted. It can be readily observed that the distributions
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shift over time with more heavily stained tissues occurring at larger depths over the
course of the experiment. Similar distribution shifts occur for both titanium and PDMS
adjacent tissues, however for titanium adjacent samples, the depth of labeled tissue at 1
week is 100 um, whereas the PDMS adjacent tissues contain significant staining near the

surface of the implant.
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Figure 27. Quantification results for endothelial cell density from CD31 antibody stained slides.
Percentage of 25 x 250 um tissue sections stained with CD31 antibodies as a function of depth
from sham implant edge. Shaded regions represent the smallest distance of tissue with at least
50% of available staining. (Error bars represent minimum and maximum values)



79

3.3.2.2.2 CD4 Ab/macrophages

A preliminary visual inspection of the CD4 antibody labeled and
immunohistochemically stained slides indicated minimal cellular presence and no
readily discernable trends. For select cases (see Figure 23b, c and Figure 24b, top
surface is the interface with the sham) an increased staining at the tissue/sham
interface is present which is consistent with the findings of other researchers describing
macrophage engulfment of foreign material. The slides in general present no staining
artifacts (again, if the edges and regions of slide damage are avoided) and positively
stained cells were readily identified. Of interest is a sample collected on week 2 from
the titanium surface that happened to include the velour patch with ingrown tissue.
Labeling of this tissue with the CD4 antibodies demonstrated excellent examples of
macrophage/multinucleated giant cells attempting to engulf the velour fibers (Figure
21b) and serves as positive control for the stain.

The macrophages were clearly and readily observed and identified
computationally. They exist in very few numbers and are sporadically distributed. No
obvious trends can be visibly discerned from the distribution data shown in Figure 29
and statistical analysis confirmed no trends with respect to either depth or time (linear
regression with t-test, results not shown). Averages across all depths and times for both
the titanium and PDMS adjacent tissues were calculated with titanium adjacent tissues
showing 0.0074% with a standard deviation of 0.0051% and PDMS adjacent tissues
showing 0.0080% with a standard deviation of 0.0076%. The large spread in these

values makes any definitive statements unwarranted at this time.
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Figure 28. Quantification results for macrophage density from CD4 antibody stained slides.
Percentage of 25 x 250 um tissue sections stained with CD31 antibodies as a function of depth
from sham implant edge. (Error bars represent plus/minus one standard deviation)
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3.3.2.2.3 6D10 Ab/granulocytes

Similar to the analysis performed for the CD31 and CD4 antibody labeled tissues,
6D10 antibody labeled tissues were also analyzed for their distributions. While the cells
were clearly and readily observed and identified computationally, they exist in very few
numbers and are sporadically distributed. No obvious trends can be visibly discerned
from the distribution data shown in Figure 29 and statistical analysis confirmed no
trends with respect to either depth or time (linear regression with t-test, results not
shown). Averages across all depths and times for both the titanium and PDMS adjacent
tissues were calculated with titanium adjacent tissues showing 0.0040% with a standard
deviation of 0.0056% and PDMS adjacent tissues showing 0.0073% with a standard
deviation of 0.0090%. Due to the small number of granulocytes present in the tissues,
and the limited number of data points, too much spread is present to warrant any

definitive statements.
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Figure 29. Quantification results for granulocyte density from 6D10 antibody stained slides.
Percentage of 25 x 250 um tissue sections stained with CD31 antibodies as a function of depth
from sham implant edge. (Error bars represent plus/minus one standard deviation)



CHAPTER 4 -

Computational analysis of oxygen flux dynamics

4.1 Methodology

Findings from signals analysis (Chapter 2) and quantitative serial histology
(Chapter 3) have to this point supported the hypothesis that oxygen signals (and
resultantly flux, see Equation 7) are affected by the changes in the tissues that arise
from the foreign body response. The exponential decay that was described in Section
2.2.2 can therefore be further mathematically modeled in order to explain and predict
the long-term decay trends that arise from changes in tissue morphology and
composition. Specifically, we will look at the changes in the tissues that might affect the
diffusion coefficient of oxygen through the tissues, Do, (tissue density, collagen
content), the diffusion distance, o; (vascular distribution, granular layer thickness),
oxygen concentration, c; (vessel size, type) and consumption of oxygen (metabolic rates
of tissues) (see Table 4). Both analytical and numerical computational techniques are
used to quantifiably elucidate the impact that each of these variables might have on

long-term oxygen signals reported from an implanted oxygen sensor.
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4.2 Histological data used for mathematical analysis

4.2.1 Microvessel distribution and location

The CD31 staining distributions shown in Figure 27 were fitted to two common
distribution types in an attempt to quantifiably relate the prominence of staining with
the depth away from the sensor surface, ;. The normal (Gaussian) and beta
distributions were used to create probability density functions (PDFs) to aid in the
mathematical modeling of microvessel distributions within tissues [57]. The finding of
Ertefai and Gough [32] discussed previously (see Section 1.1.2) was the impetus for the
use of PDF functions to mathematically describe vessel distributions within the tissues.
The normal (Guassian) distribution, Gppe(0:) was chosen for its modifiable nature, where
the peak position and width can be mathematically related using the mean, u, and

standard deviation, g, as a function of distance from sensor surface, 6

1

o2

o -
Gppr(0,) = - Exp _% . (Eq. 14)

2

The Beta distribution, Bppr(d;) was also chosen for its modifiable nature, where the peak
position and width can be readily described mathematically using two parameters, o

and f, as a function of distance from sensor surface, d;:

BPDF((St;a>ﬁ) =ﬁ6ta_l(l_5r)ﬁ_] (Eq 15)
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The parameters, a and £, are related to the mean, u, and standard deviation, o of the

function by the following equations:

"= (04

a+p (Eq. 16a)
U=J of

(a+/3)z(a+/3+1). (Eq. 16b)

The eight distributions were fitted seeing as the data tends to not follow one
distribution strictly. R? values were calculated for the fits to judge quality. Examples of
this fitting presented in Figure 30 and the accompanying parameters a, 8, uand o are
included along with the corresponding R’ values in Table 3. Note that both the quantity
of staining and the depth away from the sensor surface in Figure 30 have been
normalized to unity. Shifts in peak position, seen in changes in u, from sensor proximal
to sensor distal occur over the course of 13 weeks. No trend in the width of the peaks
(standard deviation), o, can be seen as a function of time or material, most likely due to
the highly variable nature of the measurement and the limited amount of data available.
Of importance is the lack of consensus between distribution type and quality of fit.

Therefore, both the normal and beta distributions will be examined in simulation.
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Figure 30. Normal PDF, Gppe(0:/Otmax), and Beta PDF, Bppe(Oy/Ormax), fitted to all eight normalized

CD31 stain distributions as a function of normalized distance from sensor surface, 8,/3;max-

Titanium (left) and PDMS (right) adjacent tissues are presented for weeks 1, 2, 4 and 13 (top to

bottom)
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Table 3. Normal PDF, Gppe(Oy/Or:max), and Beta PDF, Bppe(Oy/Or.may), beST fit parameters.
Parameters a, 3, u and o for both the titanium and PDMS adjacent tissues at weeks 1, 2, 6 and
13 and the corresponding R’ values for each are presented.

Titanium PDMS
PDF Type Normal PDF  Beta PDF | Normal PDF Beta PDF
u=0.56 a =228 |u=041 a=0.99
Week 1 0=0.21 p =170 o=0.27 p=143
R’ =0.80 R°=051 |R°=-049 R°=0.90
u=0.54 a=1.23 u=0.53 a=141

Week 2 0=0.26 f=106 |0=0.26 f=1.22
R°=-0.05 R’=-241|R’=-034 R’=0.24

u=0.67 a=2.05 |u=0.44 a=1.70

Week 6 0=0.23 f=105 |0=0.21 f=2.07
R?=0.78 R°=0.89 |R?’=0.17 R?=-0.54
u=0.61 a=120 | u=0.46 a=1.14

Week13  0=0.29 $=079 |0=0.26 £=1.30

R°=-2.05 R’=055 |R’°=0.27 R’=-0.77

4.2.2 Vessel diameter and number

As discussed earlier, a relationship was observed between the microvessel
diameter (order) and the potential deliverable oxygen supply (oxygen concentration at
vessel/tissue interface) (see Section 1.1.2, Figure 4). An analysis was performed on the
CD31 histology presented earlier by an undergraduate volunteer, investigating the size
and shape distributions of vessels in the tissues via hand selection of vessels in the
micrographs. For a further description, please see the Appendix, Section 7.2. The
number of vessels in a 250 x 500 um region of tissue adjacent to sham implants was

found to be 11.5 + 4.3. Additionally, a full range of diameter distributions in the CD31
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stained tissues presented in this thesis was demonstrated to be consistent with the

findings of Tsai et al. [29].

4.2.3 Collagen and cellular density

The cellular (nuclear) density in the tissues demonstrated little to no change with
regards to time or depth over the course of the 13-week implantation for both the
titanium and PDMS materials (see Section 3.3.2.1). Collagen density on the other hand
showed considerable change. There is a pronounced increase in collagen content for
both the materials with respect to time (titanium 40%, PDMS 80%) and depth (titanium
5%, PDMS 15%). However, no direct correlation of this change to tissue oxygen
diffusivity is currently available. Dense, collagenous materials, whether natural [77, 78]
or synthetic [79] have demonstrated much lower (by as much as 3 fold) oxygen diffusion
than that of water. Using these literature obtained values for synthetic and natural
collagenous materials as a sample range, the Do; is varied between 0.5 — 2.3 - 10 cm?/s
(the upper representing the diffusion of oxygen through water, commonly applied to

low density tissues).



Table 4. Variables used for mathematical sensitivity analysis of oxygen transfer in tissues.

Variable of Biological Features Range of Variance References
Interest Responsible
Ot Vascular distribution, 0-5-107 cm (position)  [33]
and position, number (Distribution width)
4 —32 (number)
Do, Collagen and cellular 0.2-2.3-10° cm?/s [24, 34, 77-
density 79]
e Vessel diameter and 4-8-10% mol/cm® [29, 30]
perfusion
R Tissue metabolic rate 4-10°-1.25-10° [60, 80]

mol/cm?/s

4.3 1-D Tissue/implant interface model

Using the data from the literature along with the findings from the histological

analysis, the flux observed at the electrode surface (and corresponding generated

current) was simulated for various conditions using Equation 7. A rigorous sensitivity

analysis is presented comprised of an investigation of each of these variables that

attempts to identify which, if any, has a dominant effect on the resultant reported

oxygen signals.

The following assumptions have been made for the proposed model:

* Temperature and pressure were invariant.

* No convection is present in either the tissue bulk or the vessels. This is

appropriate due to the time-scales in question; any convection effects

occur on the seconds-days time-scale.
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* Electrode surface is diffusion limited and consumes all oxygen that comes
in contact.

* Partition coefficients are incorporated into “effective” diffusion
coefficients.

* Vessel surface concentrations, c;, are kept proportional to their diameter,

per the findings of Tsai et al [29].

4.3.1 Diffusion path length, 6;

First, the diffusion path length, J;, was varied. The number and distribution of
vessels within a region of interest surrounding the electrode is of importance. Ina 1-D
system, this cannot be investigated using traditional methods, therefore the use of
random number selection from a pool in accordance with the aforementioned normal
and beta PDFs (see section 4.2.1) was employed. For each simulated “depth”, a
distribution is calculated with an associated mean (peak position), ¢, and standard
deviation (width), 0. From this distribution, n random distances are chosen and for
each, a flux is calculated (as discussed in Section 4.2.2). The average of these fluxes is

calculated by:

2
Jj=- (Eq. 17)
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where j, is calculated from equation 7 for each vessel as discussed in Section 1.1.1. The
mean and standard deviation are calculated in order to effectively gauge the variability.
Ten simulated “depths” were calculated for each distribution type. Sample profiles of
both the normal and beta distributions are presented in Figure 31.

The calculated flux for these distribution “depths” are presented in Figure 32.
Note the decay process seen in these flux plots, reminiscent of the decay seen in the
long-term oxygen current signals presented earlier in Figure 6. Flux can be readily
converted to current using Equation 6 and was calculated for each “depth” value, &;,
using the following constants: D, = 3.2 - 10 cm?/s, Dm = 2.3 - 10 cm?/s, ¢;= 4.3 - 10

mol/cm?, &, = 35 um, no reaction term present (R = 0).
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Figure 31. Sample distributions with varying peak position as a function of distance from sensor
surface.
Distributions based on the (a) normal PDF (solid line has ¢ =250 um and o= 62.5 um) and (b)
beta PDF (solid line has g =227.25 um and o =100 um).
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Figure 32. Flux calculations for the corresponding “depth” distributions shown in Figure 30.
Calculations based on the (a) normal PDF and (b) beta PDF are presented as a function of
distribution mean, u. Error bars represent plus/minus one standard deviation of the
calculations.
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Examining the CD31 distributions in Figure 27 (CD31 distribution in Chapter 3),
we see that there is a noticeable difference in the spread of the distributions. For
example, the titanium adjacent tissues at week 1 and the PDMS adjacent tissues at
week 6 show significantly different distribution types, where Ti week 1 has a broad
distribution to its peak, spanning almost the entire depth range. PDMS week 6 on the
other hand is much narrower, spanning 150 um of the entire depth range. To examine
this effect of peak spread on the simulated flux calculations, the following two
distribution sets in Figure 33 were created, for the normal and beta PDF, respectively.
The corresponding flux calculations were carried out and plotted as a function of
standard deviation (proportional to width); they are shown in Figure 34. The flux stays
constant as the distribution standard deviation increases; however, the error bars
indicate that the standard deviation of the calculation increases. In essence, as the

width of the distribution increases, the repeatability of the flux calculation decreases.
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Figure 33. Sample distributions with varying width as a function of depth from sensor surface as
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Distributions based on the (a) normal PDF (solid line has y =250 um and o =75 um) and (b) beta

PDF (solid line has =250 um and o= 96.25 um).
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Figure 34. Flux calculations for the corresponding “depth” distributions shown in Figure 32.
Calculations based on the (a) normal PDF and (b) beta PDF are presented as a function of
distribution standard deviation, o. Error bars represent plus/minus one standard deviation of

the calculations.
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The number of oxygen supplying vessels within the immediate vicinity of the
electrode is also of importance. The CD31 staining discussed in Section 3.3.2.2.1 marks
the vast majority of endothelial lined structures in the tissues, however the number of
actively blood-perfused vessels versus unperfused (shunted, damaged) or non-blood
carrying vessels (lymph, etc.) can vary [ref]. It has been found that there is on average
11.5 £ 4.3 vessels in a 250 x 500 um region of tissue, a region of tissue deemed critical
for the generation of an electrode signal. The number of vessels used for the
calculations was varied by factors of 2 from 2 to 64, encompassing a wide range of
possibilities in order to investigate the relationship between number of vessels and the
resultant calculated flux. The simulated flux as a function of number of simulated vessel
calculations, n, is presented in Figure 35. Apart from an expected noticeable effect on
the variability in calculations with small numbers of vessel calculations, n, the effect of

vessel number on resultant flux is negligible for the 1-D analytical model.
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Figure 35. Simulated oxygen flux as a function of the number of simulated vessel calculations, n.
Flux calculations based on the (a) normal PDF (u =250 um and o =75 um) and (b) beta PDF (a
and = 5) distributions. Error bars represent plus/minus one standard deviation of the
calculations.



99

4.3.2 Oxygen diffusion coefficient in the bulk tissue, D;

The oxygen diffusion coefficient in the bulk tissue, D;, was varied for one normal
and one beta distribution, both with © =250 um, and similar ovalues. A maximum D;
value of 2.3 - 10®° cm?/s equal to the diffusion coefficient of oxygen in water at
physiological temperature and pressure was chosen as a starting point, and successively
reduced to 1/10™ the original value. Oxygen flux was calculated for each value using the
following constants: D, =3.2 - 10° cm?/s, ¢, = 4.3 - 10® mol/cm?, &, = 250 um (according
to uand o), o, = 35 um, no reaction term present (R = 0). These flux calculations are
presented in Figure 36, where a strong dependence of D; on the resultant flux is
present. While it is highly unlikely that a 10 fold decrease in D; occurs in the tissues,
even a 10% decrease results in an approximately 50-75% drop in calculated flux, for both

distribution types, which is within the range of physiologically possible effects [78].
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Figure 36. Simulated oxygen flux as a function of the bulk tissue oxygen diffusion coefficient, D;.
Flux calculations based on the (a) normal PDF (¢ =250 um and o =75 um) and (b) beta PDF («
and = 5) distributions. Error bars represent plus/minus one standard deviation of the
calculations.
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4.3.3 Oxygen concentration in tissues at vessel/tissue interface, c;

The range of oxygen source concentrations was defined consistent with the
findings of Tsai et al. shown in Figure 4 [29]. Capillaries, defined as vessels with
diameters less than 6 um, were found to have an average oxygen concentration, c;, at
their external wall surface of approximately 4 - 10® mol/cm®. Large A1 arterioles, with a
diameter greater than 70 um, were found to have an average oxygen concentration, ¢;,
at their external wall surface as high as 8 - 10® mol/cm®. It should be noted these
results were produced from the hamster skin-fold chamber model, and values in the pig
model might be significantly different. However, the relationship between the size of
the vessel in question and the oxygen tension on its external wall surface is assumed to
remain for the pig subcutaneous model.

The oxygen concentration at the external vessel wall (source) in the bulk tissue,
ct, was varied for one normal and one beta distribution, both with ¢ =250 um, and
similar ovalues. A minimum c; value of 4 - 10® moI/cm3 and successively increased to 8
-10® mol/cm>. Oxygen flux was calculated for each value using the following constants:
Dm=3.2-10"° cm?/s, D;= 2.3 - 10 cm?/s, & = 250 um (according to uand o), 6, = 35
um, no reaction term present (R = 0). These flux calculations are presented in Figure 37.
The dependence of the resulting flux calculation appears to be linear with respect to the
changing concentration, c;, as is readily apparent by observing Equation 7. This change
is in fact lost within the error bounds (error bars represent plus/minus one standard

deviation). Thus the effect of changing the source oxygen concentration is not nearly as
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critical for the resultant flux as is the diffusion distance, dy, or bulk tissue diffusion

coefficient, D;.

— 10x10
v
~ -
€
= 8 - -
o
g V
E 6f i
Q
= [T |
m i
| | |

| | | | | |
3.5 4 45 5 5.5 6 6.5 7 7.5 8 8.5
Oxygen concentration at external vessel wall (source), c, [moI/cm3] x10°

(a)

10

— 15%10
2] [
s
€
(%]
=
o]
2 1l ]

S

8
'~
>=<'~ 0.5 T 1- l —
T I’l 1

| | |

1 | | | | |
8.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
Oxygen concentration at external vessel wall (source), c, [mol/cm3] x10°

(b)

Figure 37. Simulated O, flux as a function of oxygen concentration at the external vessel wall, c;.
Flux calculations based on the (a) normal PDF (¢ =250 um and o =75 um) and (b) beta PDF («
and =5) are presented as a function of distribution standard deviation, o. Error bars
represent plus/minus standard deviation of the calculations.
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4.4 2-D FEM simulations of the tissue/implant interface

Due to the complexity of the source distributions found in the histological
analysis presented earlier, a validation of the 1-D approach is necessary. The 1-D
analytical model simplifies the source distribution by averaging all the individual flux
contributions into one final flux value. In order to ascertain whether this is an
appropriate simplification, a more rigorous 2-D approach is employed that allows better
simulation of the 2-D histological data found in Chapter 3 and accounts for the complex

spatial distributions of vessels. For this the finite element method (FEM) is utilized.

4.4.1 Proposed 2-D tissue/sensor interface model
Mathematical investigation of the mass transfer in the tissue/implant interface is
performed using FEM. The system is governed by the following partial differential

equation:

%+V-(—DV(:)=R (Eq. 18)

where, and R is the reaction term. Because we are interested in the concentration
distributions and resultant fluxes at specific time-points, and the time-scale is very long

compared to the rate of physical modification in the tissues, this equation can be
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simplified to its steady-state form where dc/dt = 0. For a 1-D problem with either no
reaction term, or a linear one, this solution does not present much of a problem and can
be readily solved analytically. Due to the complex geometries imparted by the random
placement of vessels according to a specified distribution, however, the solutions
become quite complex. The following 2-D model is proposed: a bulk tissue with a
uniform diffusion coefficient for oxygen, D;, and dispersed vessels throughout with a
boundary oxygen supply, c;, adjacent to a membrane coating with uniform diffusion
coefficient for oxygen, D, on an underlying electrode with a constant oxygen drain, c. =
0. The geometry of the various boundaries and surfaces is varied accordingly. A

schematic is presented in Figure 38.
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Figure 38. A proposed 2-D model of the tissue/sensor interface.
Included are labels of pertinent subdomains and boundaries and the accompanying initial and
boundary conditions used for analysis.



106

4.4.2 Model criteria affecting the finite element analysis
A detailed description of the finite element method can be found elsewhere as it
is a technique commonly employed to solve complex non-linear problems and problems
involving variable system geometries [81]. In brief, the three steps involve defining the
problem (either graphically or in code) and assigning appropriate initial and boundary
conditions, breaking down a complex structure into smaller simple geometrical
segments (mesh elements), and solving the problem using iterative techniques. Care
must be taken at each step to ensure a stable, converging solution. Particularly, a dense
enough mesh must be drawn of appropriately selected mesh elements to ensure
minimal singularities and boundary discrepancies, proper solver tolerances must be
obeyed to balance computation time and solution accuracy, and any solution must be
examined to ensure physically accurate results [82]. All FEM computations were
performed using a combination of COMSOL Multiphysics 3.2b and Matlab 2007b [57,
82].
The following assumptions have been made for the proposed model:
* Temperature and pressure were invariant.
* No convection is present in either the tissue bulk or the vessels. This is
appropriate due to the time-scales in question; any convection effects

occur on the seconds-days time-scale.



107

* Tissue bulk is homogenous (bulk tissue subdomain and boundary settings
are kept homogenous throughout each individual simulation, but may be
varied between different simulations, e.g. Dy ¢;)

* Electrode surface is diffusion limited and consumes all oxygen that comes
in contact.

* Partition coefficients are incorporated into “effective” diffusion
coefficients.

* Uniform concentration gradient fields are assumed and allow for the use
of less complex, computationally efficient mesh elements (triangular
Lagrangian-quadratic elements are used).

* Vessel surface concentrations, c;, are kept proportional to their diameter,

per the findings of Tsai et al [29].

4.4.3 Vessel distribution and number effects

As in the case of the 1-D analytical solution, the vessel position was patterned
using PDF functions. For the 2-D FEM models, only the beta distributions were utilized,
seeing as the differences in the final calculations between the normal and beta
distributions were minimal. Vessels were distributed with equal probability along the x-
axis of the model, and with probability consistent with the beta PDF along the z-axis.
Again, a and 3 parameters were varied to control the mean, u, and the standard
deviation, o. In Figure 39, 8 models created using the beta PDF with varying aand 3 are

shown and where o'is kept relatively constant and u is altered from sensor proximal to
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sensor distal. Meshing was performed to illustrate the adaptive nature of the mesh to

feature size.
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Figure 39. 2-D meshed models of the sensor/tissue interface spanning 8 different beta PDF-
based vessel distributions with varying distribution mean, u.
These distributions range from sensor proximal (top row, left) to sensor distal (bottom row,
right).
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A solution to one such model is presented in Figure 40. Specifically, o and
values of 5 were used and 16 distinct vessels (n) are dispersed within that distribution
(see Figure 40a and b). The following subdomain and boundary conditions were used to
obtain the solutions in this section: D; = 2.3 - 10™ cm?/s, Dy = 3.2 - 10 cm?/s, c;= 4 - 10
mol/cm?, no reaction term present (R = 0). Upon inspection of the concentration profile
(Figure 40c) we see that the tissue bulk above the first group of vessels nearest the
sensor is homogenously supplied with oxygen. In contrast, between that first group of
vessels and the tissue/sensor membrane interface there is a drop-off of concentration
as a strong gradient is established between the vasculature and the electrode surface.
Looking at the arrow plot of diffusive flux (Figure 40d), we see that the flux values
confirm the existence of this gradient, and increase strongly close to the electrode
surface. Integrating the flux along the entire electrode surface, and normalizing for
electrode size, we can calculate a normal diffusive flux, j (units of mol/(cm?®s)). This value
represents the total flux at the electrode normalized by the electrode area.

Plotting normal diffusive flux at the electrode surface as a function of the
distribution peak mean relative to the sensor surface (see Figure 41), we see the same
trend that was observed in the 1-D analytical simulations presented in Figure 32. Not
only is the trend conserved, but the flux values are well within an order of magnitude,
albeit slightly higher. This difference is a result of the previously mentioned undue

prominence that distant vessels are given relative to those vessels closer to the sensor



surface in the 1-D approach. It is believed that the 2-D FEM model results in more

accurate calculations based on the distributed vessels.
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Figure 41. Normal diffusive flux, j, as a function of distribution mean, u, from sensor surface.
Error bars represent plus/minus one standard deviation of 5 repeated calculations.

The effects of distribution spread are investigated by modeling distributions with
constant mean, u, but varying the standard deviation, o. Eight meshed models based
on such distributions are presented in Figure 42 where u =250 um, but oranges from
25to 133 um. In the 1-D analytical model, the effect of distribution spread on flux was
minimal, only the range of calculated fluxes was affected. For the 2-D FEM models,
there is a clear impact of a wider spread distribution on the calculated flux at the
electrode surface, as is demonstrated in Figure 43. Again, this is attributed to the

heavier prominence that proximal vessels have over distal ones in the 2-D approach.
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Figure 42. 2-D meshed models of the sensor/tissue interface spanning 8 different beta PDF-
based vessel distributions with varying distribution spread, o.
These distributions range from wide spread (top row, left) to narrow spread (bottom row, right).
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The effects of varying the number of vessels within a distribution are
investigated by modeling distributions with constant mean, u, and standard deviation,
g, but varying the number of vessels, n. 7 meshed models based on such distributions
are presented in Figure 44 where © =250 um, =55 um, and n ranges from 2 to 128. In
the 1-D analytical model, the effect of vessel number on flux was minimal, only the
range of calculated fluxes was affected. For the 2-D FEM models, there is a clear impact
of having more vessels within the distribution up to a certain point on the calculated flux
at the electrode surface. As the number of vessels surpasses 30, the flux stops changing

as rapidly, as is demonstrated in Figure 45. As with the effects of spread, this is
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attributed to the heavier prominence that proximal vessels have over distal ones in the

2-D approach.
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Figure 44. 2-D meshed models of the sensor/tissue interface spanning 7 different beta PDF-
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These distributions range from wide spread (top row, left) to narrow spread (bottom row, right).
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oand u are held constant. Error bars represent plus/minus one standard deviation of 5
repeated calculations.

The effect of vessel distributions was found to be influential for the 1-D
analytically simulated flux calculated using Equation 7, where small disturbances in the
distance away from the sensor surface resulted in very noticeable changes in flux. The
use of a 1-D approximation in the previous section gives us some idea of the range of
values that could result, but unfortunately, taking an average of n random vessel
calculations gives each vessel inaccurately equal prominence in the resulting value of
flux. This is problematic due to the concentration gradients that are expected in such a
vessel distribution field. Even if two vessels are located in line normal to the electrode
surface, the concentration gradient between the proximal vessel and the electrode

surface is very large. The gradient established between the proximal and distal vessels
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however is small (or nonexistent) producing little to no oxygen flux. Therefore the
assumption in the 1-D component of this work that each vessel has an equal
contribution on the resulting flux is insufficient. As a result, a more rigorous 2-D

approach as described in this section is required.

4.4.4 Effects of tissue oxygen consumption rates on flux to the electrode

The tissue consumption of oxygen can potentially have a significant effect on the
reported flux values of the electrodes. Tissue reaction rates have been identified in the
literature for rat mesentery and vessel wall proximal [80], rat loose connective and
mesentery [28] tissues. These tissues are believed to represent a good range of activity,
with tissues near vessel walls expected to consume more than mesentery and loose
connective tissue. Converting the values found in the literature to consistent units, a
range of 4 - 10— 1.25 - 10° mol/cm®/s was identified for analysis. Along with the
following additional subdomain and boundary conditions: D; = 2.3 - 10®° cm?/s, Dy =3.2 -
10° cm?/s, ¢, = 4 - 10°® mol/cm?, this oxygen consumption “reaction” rate, R, was
instituted in the models as the following linear bulk tissue subdomain condition:

R {R, if c(x,z)>0 (Eq. 19)

0if c(x,z)=0

A constant distribution of 16 vessels was maintained with azand f equal to 5 for a u of

250 um and a oof 38 um. Three various oxygen concentrations at the external vessel
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wall, ¢;, and three various bulk tissue diffusion coefficients, D;, are simulated to illustrate
the effect of changing oxygen supply and permeability.

The results from these simulations are presented in Figure 46 and Figure 47. The
flux values remain stable regardless of a reaction term from 10" to 10 mol/cm’/s. This
includes the region of interest identified from the literature, marked as the shaded
region in the figure. Only at values 3 orders of magnitude greater than those found in
the literature for similar tissue types do the calculated fluxes begin to rapidly approach
zero. The effect of changing the vessel wall concentration has a predictable upwards
shift in flux (see Figure 46a), however it also produces a slight right shift in the flux drop-
off as the reaction rate is increased which is easily observed when dividing normal
diffusive flux by the concentration (see Figure 46b). A similar, yet more pronounced

shift is seen when different diffusion coefficients are simulated (see Figure 47a and b).
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Figure 46. Normal diffusive flux, j, as a function of a linear reaction rate, R, in the bulk tissue and
the oxygen concentration at the external vessel wall, c;.
oand u are held constant and three various oxygen concentrations at the external vessel wall,
¢;, are simulated. (a) Normal diffusive flux and (b) concentration normalized diffusive flux are
shown where the green shaded range of reaction rates represents the literature derived range
of interest mentioned in the text. Error bars represent plus/minus one standard deviation of 5
repeated calculations.
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CHAPTER 5 -

Discussion

5.1 Signals content

Findings from the rigorous analysis of the collected oxygen signals demonstrate
two important levels of dynamic information contained within. The first is the long-
term decay trend with a time-scale ranging from 1 to 2 months. It is hypothesized that
this type of signal behavior is due to the response of the surrounding tissues via
formation of a foreign body capsule to the placement of the sensor array. The second
level of information contained within these signals is a 1-2 week repeatable oscillation
with readily identified characteristics that is hypothesized to be due to wound healing
resultant from minor injury caused by animal repositioning of the implant, aggravation
to the wound site (scratching), and general impact from daily animal activity and
manhandling. The following presents a thorough discussion of these signals features,
and the corroborating evidence from both quantitative histology and computational

simulations of the mass transfer behavior in the tissue/sensor interface.

5.2 Exponential decay in oxygen signhals

Observing all the oxygen signals obtained for this work, whether they are

individual electrodes, averaged arrays, or an average of all signals collected, there is a

120
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clearly visible decay process that takes place over the course of the implantation.

During those three months the signals drop by approximately 80% of their original levels
(see Figure 5b) and reach equilibrium near the 2-month mark. This decay process is
hypothesized to occur due to several possible reasons, all resulting from the wound
healing and foreign body response triggered by the implantation.

The current (ipz) measured by the electrodes is related to the oxygen flux as was
shown earlier by Equations 6 and 7. The formation of the foreign body capsule around
the implanted sensor array results in the deposition of a dense, fibrous, avascular tissue
in front of the sensor. This is expected to decrease the flow of oxygen (and other
metabolites) to the electrode surfaces caused by (1) decreased diffusivity in tissues (D)
due to the formation of dense fibrous tissue, (2) increased diffusion distance (J;) from
the nearby vascular supply by either shunting blood flow away or remodeling the tissues
adjacent to the sensor, (3) increasing the presence of highly metabolically active cells
(macrophages, neutrophils, fibroblasts, etc.) that consume metabolites (R) before they
reach the electrodes, (4) buildup of a fluid exudate between the sensor and tissue thus

further increasing diffusion distance (6).

5.2.1 Tissue histology and computer simulation as corroboration
Any change in the composition of the tissues requires some form of cellular
activity, whether it is fibroblast deposition of new fibrous material, white blood cell

activation to a foreign body, granulocyte breakdown of damaged tissues, macrophage
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engulfment of particles, etc. H&E staining was used to investigate this, as it is adept at
illustrating nuclear, cytoplasmic and extracellular components. Nuclear density was
shown to increase slightly in titanium adjacent tissue, but no change was found for
tissues adjacent to PDMS (see Figure 25a,b). This is not a surprising result as both
materials are deemed biocompatible and have been utilized extensively in the past.
With respect to depth, there is a slight decrease in cellular density in the tissue adjacent
to PDMS and no change in tissue adjacent to titanium (see Figure 25c,d). Again, the
changes, if any, are very slight and consistent with the biocompatibility of both
materials. Even though no significant changes in the overall nuclear density were found,
this does not imply that the ratios of individual cell types did not change. Therefore the
changes seen in the signals are due to factors other than the change in the number of
cells within adjacent tissues.

The transport of solutes and metabolites to and from the tissues is dependent on
the permeability of the tissues themselves. It has been previously shown that mass
transfer through various collagenous substances, both natural and manmade, is directly
dependent on the collagen content [77-79]. Values for the diffusion of oxygen through
tissues have been for the most part assumed to be equal to that of oxygen through
water at physiological temperature and pressure (2.3 - 10° cm?/s). This is believed
reasonable due to the prominently cellular and loose extracellular composition where a
small, non-polar molecule like O, would very easily pass through interstitial fluids, cell
membranes, cytosol, etc. However, in tissues and artificial structures with very high

collagen content, the diffusion rate drops by as much as 50% (for example, Do, in aortic
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valve cusps is reported as 1.06 - 10®° cm?/s [78]). A dense, solid structure like a
collagenous network would impede that flow. Ergo, a thorough understanding of the
rate and distribution of collagen deposition near the sensor surface is vital. The results
from the image analysis of GTC stained slides presented in Figure 26 indicate that
collagen levels increase with implant time from approximately 10% at 1 week post
implantation to >50% adjacent to titanium and >90% adjacent to PDMS after 13 weeks.
Additionally, in the case of both materials, collagen increases as a function of depth.
Particularly in the PDMS adjacent tissues, the collagenous layer encompassed the entire
500 um image analysis region. Both findings lead to the conclusion that the
permeability of the tissues decreases substantially as encapsulation progresses.

Computer simulations of the tissue/sensor interface attest to this. The effect of
the diffusion coefficient of oxygen in the tissues, D;, on resultant flux calculations is
quite pronounced. Even a slight decrease in the diffusivity of oxygen in tissues can
result in significant downward changes in flux. The histology results demonstrate strong
increases in collagen deposits within the tissues at the senor interface. While this will
not cause a 10-fold drop in diffusion coefficient as was simulated earlier, a 10%
decrease of the coefficient is not unreasonable. Such a drop could result in upwards of
a 50% decrease in flux (see Figure 36).

As metabolites pass from the vessels to the surface of the implant, consumption
occurs by metabolically active cells in between. As the deposition of collagen, the

formation of new vasculature and infiltration of phagocytic and inflammatory cells to
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the area occurs, the metabolic cost increases and a need for nutrients rises. Therefore,
a portion of the metabolic supply provided by the vasculature is consumed before ever
reaching the implant. The change in vessel distribution and the increase in collagen
content are both present as demonstrated by GTC and CD31 antibody staining, however
consumption by tissues is a much more difficult factor to investigate. We can infer
about consumption rates of various cell types present, but a rate of consumption itself
cannot be determined from histological slides. Given previous studies, we have
identified the macrophage and the granulocyte as cell types of interest given their
primary response to the wound site. In particular, macrophages are of interest due to
their continued presence throughout the duration of the implant as they fuse forming
multinucleated giant cells and attempt to engulf the entire foreign body.

Slides labeled with CD4 and 6D10 antibodies showed clear and readily
identifiable cells present in relatively similar levels throughout the implant duration (see
Figure 20 and Figure 21). No significant changes occurred with respect to depth or time
for the 6D10 stained slides indicating that the presence of granulocytes remains fairly
constant during the course of implantation. Macrophages cluster near the surface of
the tissue directly at the implant/tissue interface, consistent with the findings of others
in the field; however, this only occurs in certain histology samples. Their distribution
deeper in the tissues is consistent with those of 6D10 labeled granulocytes. It is
believed that the layer of macrophages/giant cells directly at the sensor/tissue interface
is very delicate and easily disturbed and lost in the sham removal, fixation and staining

process. These cells occurred in such low numbers that a positive control was beneficial
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to ensure the staining was accurate. Figure 21b illustrates CD4 antibody staining of
tissue ingrown into the polyester velour pad on the surface of one of the explanted
sensors. There is clearly positive staining for CD4+ cells that are morphologically
consistent with macrophage/giant cell structure.

The computational simulations of tissue oxygen consumption (via a linear
reaction rate term, R) presented in Figure 46 and Figure 47 indicated that levels of
oxygen consumption commonly reported in the literature for loose connective,
mesentery and vessel wall adjacent tissues in rats are well below those required to
affect the resultant flux. In fact, reaction rates 3 orders of magnitude higher are
required in order to impart any change in flux levels at the sensor surface. The points at
which the flux values begin to drop off are influenced by the oxygen concentration
adjacent to the vessel wall, ¢, and by the bulk tissue oxygen diffusion coefficient, D;.
However even these effects only occur at much greater reaction rates than are likely to
occur in subcutaneous tissue.

How far a solute needs to travel from source to sink (electrode surface) is also
critical. In subcutaneous tissues the oxygen supply is the microvasculature. This
includes capillaries, arterioles of various sizes and larger feeding arteries in the vicinity,
all of which can be found in the subcutaneous tissues (see Figure 19 for an example of
several various sized vessels in close proximity). CD31 antibody staining yielded some
fascinating results. For tissues adjacent to both titanium and PDMS, there is a
pronounced shift in endothelial cell distribution from near the implant surface to

implant distal as implantation progresses. Looking at the depth ranges containing 50%
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of CD31 staining on Figure 27, the shift in distribution is approximately 200 um in depth.
This is a considerable increase in distance that oxygen now must traverse before
reaching the implant surface. Taking this in conjunction with the permeability decrease
due to collagen deposition over the same time-frame, the decay in oxygen flux to the
surface of a metabolically active implant can be assumed to be substantial. This could
conceivably account for the decay in oxygen signals measured by long-term implanted
electrodes as reported in Chapter 2 and in [4].

Additionally, there is an almost 200 um difference in initial endothelial cell
distribution between the two materials. For titanium adjacent tissues, endothelial cell
presence begins almost instantly at the implant interface. However, in the PDMS
adjacent tissues a 200 um region of avascular tissue exists. It is not clear why this
difference exists, but it is most likely due to the blunt dissection used to create the
pocket for implant placement. The subcutaneous tissue of mammals has a very regular,
stratified structure that would lend itself well to separation at repeatable locations
along any fibrous boundaries. The surgeon in charge of the implantation has had much
experience with placing these implants at repeatable depths in numerous animals, and
it is believed that the same strata were exposed during the initial placement of the
implants. Since the respective materials of an implant face opposing directions (PDMS
faces down into the core of the animal, titanium faces the exterior), different strata are
experienced by both materials. Regardless, a similar shift in distribution occurs in both

cases, most likely as a result of fibrous tissue deposition in front of the implant.
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The investigation of the diffusion path, &;, via both the position and spread of
vessel distributions indicates that the oxygen flux (and therefore reported current) is
highly sensitive to variations in the distance of the vessels away from the electrode
surface. Interestingly, in the case of the 1-D simulations the spread of the distribution
(see Figure 31) has little effect on the magnitude flux change (see Figure 32), however,
the variability in calculated fluxes becomes considerable with greater spread. In the 2-D
simulations this is not the case (see Figure 43). Additionally, the number of vessels
present within a tissue area of influence near the electrode surface is also of
importance. There is a discrepancy when observing the distribution spread results from
the 1-D analytical and 2-D FEM simulations. The 1-D solution shows no change in
calculated flux as the number of vessels within the distribution increases (see Figure 35),
whereas the flux calculated from the 2-D FEM approach (shown in Figure 45) is very
susceptible to low numbers of vessels and stabilizes from about 30 vessels on.

These differences between the 1-D analytical and 2-D numerical approaches are
attributed to the manner in which the complex PDF based distributions are simulated in
the 1-D approach, where each calculated vessel is given equal prominence on the final
mean flux result. When the 2-D FEM model is solved, this is not shown to be the case.
Figure 40c and d show the solution to one sample model. There is a strong
concentration gradient established between the sensor and the proximal vessels,
causing high oxygen flux; however the distal vessels are in a homogenously oxygenated

region of tissue and little to no resultant flux occurs. Flux calculations plotted versus the
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spread of the vessel distributions used to generate the models are presented in Figure
34 for the 1-D analystical model and in Figure 43 for the 2-D FEM model. The 1-D
solution shows no change in mean flux as the spread increases, whereas the 2-D
solution shows considerable effect. This indicates the mean peak position, while
important for flux calculation, is heavily modulated by its spread and where the closest
vessels occur. Therefore, for geometry unrelated variables such as subdomain and
global boundary conditions the 1-D model is sufficient to investigate effects. However,
complex vessel distributions such as the ones presented in this work require more

complex 2-D approaches such as the FEM.

5.2.1.1 Comparison with histology collected by Glysens, Inc.

Histological findings from tissues surrounding the live sensors from which oxygen
signals reported in Chapter 2 were collected (see Appendix, Section 7.1.4) indicate that
there is in fact a thickening of the tissue adjacent to the sensor/PDMS regions of the
implants as compared to the titanium regions (see Figure 50). Observing the GTC
stained slides, a considerable increase in collagen deposition is present as well.
Comparing the tissue regions adjacent to the titanium case, and those adjacent to the
sensor/PDMS, a much greater collagen concentration is visible (blue/green coloration in
Figure 50b and c). This is consistent with the findings reported from sham adjacent
tissues in Chapter 3. However, a considerable increase in cellular density near the
proximity of the sensors indicates a highly active tissue zone, which most likely

corresponds to a high rate of metabolic activity (dark blue coloration in Figure 50b-¢e).
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This was not observed in the histology collected from the implanted shams presented in
Chapter 3.

The live sensors differed from the shams in one especially important
characteristic. Half of the live sensor electrode array surface was dedicated to oxygen
measurement, and smooth PDMS is used to coat that half. The opposing half however
(see Figure 3, working electrodes 11-16) is dedicated to the measurement of a glucose
oxidase modulated oxygen current, where the immobilized enzyme consumes oxygen
before it strikes the electrode surface. This immobilization is achieved in gluteraldehyde
cross-linked albumin wells, which are believed to leach small, yet irritating, amounts of
glutaraldehyde and enzyme into the surrounding tissues initiating a strong cellular
response. Since it was not possible at the time of tissue collection to track the precise
location from which histology was analyzed (the actual working electrodes underneath),
it is possible that the histology presented in Figure 50 came from glucose sensor

adjacent tissue.

5.3 Signal periodicity

5.3.1 Analysis technique independence

The analysis of the oxygen signals yielded the same findings from three
independent techniques (see Chapter 2, Section 2.3.3). There is a pronounced
oscillatory nature in the signals with a period of 7-15 days, as shown in the
autocorrelation and Fourier based approaches (Table 1 and Figure 10a, respectively). In

addition, most of the power in these signals occurs early on in the experiment, well



130

before 1000 hours of implantation as demonstrated by wavelet analysis (see Figure 10b,
c). This is also where most of the similarity in the signals occurs. After 1000 hours, the
signals become much more diverse with some signals showing powerful trends all the
way through the end of the implantation, while others die out and equilibrate steadily
for the remainder of the experiment. There is a clear indication, that even though the
signals lose much of their initial strength within the first 2-4 weeks as shown in Figure 6,
there are still measurable, resolvable oxygen values throughout the entire 3+ month
implantation. This finding in and of itself is quite remarkable. Up till now it has been
widely thought that the encapsulation process of tissues around implants is so efficient
and pronounced, that there is an almost complete cut-off of nutrients (oxygen, glucose,
etc.) to the implant site [2, 35, 36, 47]. However, the results from these long-term
oxygen sensor implantation experiments clearly show that albeit decreased from
original levels, after 3 months of implantation and encapsulation there is still a strong,

resolvable oxygen signal that can be measured.

5.3.2 Physiological periodicity

Animal activity is not to be ignored. The sensors are placed within the dorsal
skin off-center of the spine at a relatively shallow depth of 1-2 cm. The implantation
locations are protected by wrapping the animals in gauze bandage, foam, and adhesive
tape, however this would not prevent compression that would occur from the animal
placing its weight on the skin tissue in question for an extended period of time (e.g.

overnight), or shifting the array in the pocket from a strong impact. If the damage to
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the sensor pocket is severe enough, re-aggravation of the wound site would most surely
take place. This would restart the wound healing process, bringing on bleeding,
inflammation, white blood cell recruitment, proliferation of fibroblasts, and renewed
fibrosis and extra cellular matrix deposition/remodeling as discussed earlier (see Section
1.1.3).

The wound healing response has been shown to have implications on the oxygen
levels at the wound site [45, 46]. Wound healing is therefore hypothesized to have a
measurable impact on oxygen signals generated from sensors implanted in the
subcutaneous tissues. These signals are characterized by 7-14 day oscillations in the
signals; whereas previous work on wound healing has identified a 12-day time course
for the process of wound onset, progression and resolution [35, 37, 48]. Figure 48
illustrates a representative oxygen signal with its long-term decay trend removed. At
approximately 700 hours, an oscillatory event begins with a pronounced drop in oxygen
current from the baseline. This event is magnified in the bottom plot of Figure 48 and

key events are marked.
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Figure 48. Proposed model of oxygen signal response to an acute wound healing event at the
implant location.
A representative signal from one electrode is depicted in the top plot, and the oscillation

beginning at 700 hours is magnified and shown in the bottom plot. The trend tracing was
performed by hand to illustrate behavior of the trend over the course of the 12 days. A-G
represent important points in the 4 proposed stages of signal oscillation due to wound healing,
namely: injury, onset, progression and resolution (see text for further description).
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The steps of oxygen signal oscillation and corresponding hypothesized wound response
stage presented in the preceding figure are as follows.
e Injury (Days 0-2):

A) The initial dip in oxygen signal occurs due to the injury of tissues surrounding
the sensor. Initial bleeding and sensor/tissue interface disruption via protein
adsorption ceases direct flow of O,. In addition, vasoconstriction reduces
perfusion to the area.

e Onset (Days 2-6):

B) Within 1-2 days, the formation of a clot and protein aggregation near the
sensor face results in the signal reaching a local minimum.

C) Release of chemokines leads to the onset of wound healing. Formation of a
fibrin network is initiated causing release of thrombin and other vasodilators.
Protein adsorption, including 1gG and platelets, cytokine release (C3a and C5
cofactors), etc. cause edema and recruitment of leukocytes (inflammation).
Hypoxia dependent vascular remodeling begins with proliferation of
endothelial cells . As a result oxygen supply begins to steadily resume.

D) Asthe numbers of phagocytic, immune, and endothelial cells increase, the
oxygen requirements increase and levels of available O, to the sensor
stabilize at a maximum.

e Proliferation (Days 6-9):
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E) Repair and remodeling is fully underway and oxygen is consumed
significantly. Oxygen measured at electrode surface drops significantly as
new cells infiltrate. Fibroblast presence increases as scar tissue is deposited.

F) Maximum numbers of macrophages and fibroblasts in the area occur; oxygen
values reach another local minimum.

e Resolution (Days 9-12):

G) Macrophage, fibroblast and endothelial activity is concluded and cells exit
repaired wound site. This leads to the restoration of oxygen to levels prior
the oscillatory event.

If another injury is sustained from continued animal activity, this process could
potentially restart before full resolution, appearing in the signals as a continued
oscillation (see Figure 10a).

In most of the signals studied, the oscillatory behavior is strongest at the onset
of the experiment and weakens over time. The progression of fibrous encapsulation
and hypothesized signal attenuation would result in a corresponding decrease in
magnitude as the experiment progressed. Additionally, it should also be noted that the
animals used to collect these signals increased in mass more than three-fold over the
course of the experiment (see Table 5), where most of this weight gain has been
previously attributed to fat [83, 84]. As fat is deposited in the subcutaneous tissues, the
effects of force transfer to the sensor from scratching, rubbing and strong impacts
would be greatly lessened leading to much milder wound healing, thus lessening

disruptions in oxygen flow. However, this weakening occurs even after the signals were
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subjected to multiplicative trend removal shown in Figure 8. This form of detrending is
expected to normalize the entire signal with respect to the global exponential decay
trend identified. The presence of oscillatory attenuation indicates that an additional
phenomenon is responsible. Since the animals from which these signals were collected
increased in mass several-fold, a natural protective layer around each telemeter was
most likely created and lessened the damage sustained from scratching, impacts, etc. A
further analysis on oscillatory amplitude as a function of signal time would be necessary
for a more adequate explanation.

While the strong 12 day oscillations contained the most power (see Figure 10),
there is a noticeable peak at the 0.9 to 1.1 day™ frequency. This is consistent with the
findings of other researchers who have investigated the frequency content of long-term
biological signals in mammals [85, 86]. The diurnal activity of human and animal alike is
strong with a sleep — feeding — activity pattern. The pigs used in this study were no
different. The animals would become very excited when fed, which occurred at a
regular daily intervals, the animals would sleep at night and be active during the day.

The animals were simultaneously subjected to a myriad of other testing at the
same time as the oxygen signals were collected. At regular intervals, the animals were
collected from their pens, herded into a sling and subjected to blood collections,
intravenous glucose infusions for glucose sensor testing, weighing, etc. Understandably,
this can be an exciting process for the animals, raising their heart rates, blood pressure,
changing the local blood flow patterns and thus altering the resulting oxygen signals.

Depending on the amount of time that the animals required to in effect “calm down”
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from this process, the magnitude of the signal oscillations could alter dramatically. This
series of tests was performed twice weekly and could account for much of the
intermediate frequency information seen in the power spectra (see Figure 12a).

While it cannot be presently stated with absolute certainty that these shorter
course animal behaviors and occurrences are the definite causes of the intermediate
oscillations, it is safe to assume that local changes in blood flow due to animal activity
(whether due to changes in blood pressure, heart rate, local shunting etc.) have a strong
impact. The work of Persson et al. [87] demonstrated in dogs, that over a period of 30
days daily maximum mean arterial pressures (MAP) can vary by as much as 20 mmHg or
approximately 15-20. The effects of this change to the microvasculature could lead to
disturbances in flow near individual electrodes affecting the resultant signals. It is not
clear whether this type of behavior has periodicity to it, but this definitely seems
plausible and warrants further investigation. Utilizing this oxygen sensor setup would
be most beneficial for this type of work as blood flow measurements could be
corroborated with full-time oxygen signals produced by the telemeters. Further work is

required for a full analysis of the oscillatory nature of long-term oxygen signals.

5.3.3 Tissue heterogeneity

The oscillations are also shown to be conserved between signals from the same
array. Figure 13 and Figure 14 illustrate that as many as three individual electrodes on
an array show very similar signal behavior, despite differences in electrode location,

leading us to believe that these oscillatory events affect the entire array, and not just
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individual electrodes. Moreover, individual electrodes can be as far as 1 cm away from
each other; a significant distance with respect to the mass transfer limitations of oxygen
in tissues. This is consistent with the proposed model of wound healing modulated
oscillations. If the sensor is jarred to such an extent that damage to the underlying
tissues occurs, it stands to reason that all electrodes on the array within that pocket will
be affected by compositional and morphological changes that result. This does not bar
electrode local tissue behavior from introducing differences between signals, as is seen
when examining Array 226 in Figure 13 and Figure 14 which demonstrates noticeably

weaker similarity among its signals than does Array 230.

5.4 Limitations of this work

Numerous limitations imposed on this work are presented throughout where
appropriate. These range from limitations of selected techniques, time constraints,
financial constraints, etc. However, most of these revolve around one central issue.
The bulk of the histological information presented within this thesis was collected from
one animal. This was due to the expense of both maintaining an animal of this size, the
costs associated with the surgeries, materials, and husbandry. The use of one animal
greatly limits statistical impact of the results. While great care was taken to maximize
data collection and ensure representative selection for analysis, the results still derive
from one animal. The findings presented in this work are deemed representative for
mammalian tissue based on similar results reported in the literature (especially for the

histological aspects of this work). Absolute numbers generated from the histology are
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generally to be taken with speculation; however trends and relationships are believed to
hold true if repeated.

In Chapter 3, tissue at each individual time point comes from a different location
on the animals back and therefore variability in skin tissue cannot be discounted. While
the animal was observed to be healthy with no skin abnormalities, scars, growths, etc.
of any kind pre-operatively, it cannot be discounted that the locations differed
somewhat in cellular and compositional morphology. The implant locations span the
majority of the animal’s dorsal length originating near the base of the neck and
extending to the lower portion of the rib cage. The removal of the shams was
performed randomly with respect to location and no correlation between changes in
composition and location along the animals back were found. It is therefore believed
that the skin was of uniform constitution at the start of the experiment, and any

changes observed are due to the encapsulation process.



CHAPTER 6

Conclusions and future directions

6.1 Conclusions

A rigorous signal processing methodology is presented in Chapter 2 for analyzing
complex biological signals with multileveled characteristics. Using cursory visual
observations of the signals, a filtering and decimation routine is presented and validated
for the handling of large data sets containing more information than necessary. Also,
appropriate trend removal is discussed and presented illustrating its impact on signals
from complex biological tissues. In order to obtain irrefutable evidence of signal
characteristics, the use of several relatively novel and well established techniques (the
Welch algorithm, cross-correlation and wavelet analysis) is presented as an example of
such workflow for future investigations.

Subsequently, a novel sham implantation experiment is described in Chapter 3
that provides for tissue sample removal at specific time points chosen to coincide with
corresponding signal features. The use of standard and immunochemical histology
processes is detailed capable of providing a wealth of information regarding the tissues
collected. In order to deal with such an abundance of information obtained, several
automated and semi-automated image analysis processes are developed for efficient

workflow.
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Chapter 4 presents the analytical and numerical investigation of oxygen flux
through subcutaneous tissues. The novel use of normal and beta probability density
functions to model the change in vascular distributions found in histology is detailed in
an attempt to quantify the shift in vessel position during implantation. Despite the
significant variability in the histological data, expected for a complex biological system,
such PDFs lend themselves rather well to such a task. Using these distribution models,
an in-depth sensitivity analysis of the various mass transfer properties of tissues is
performed and discussed.

Analysis of oxygen signals from sensors implanted over the long term in porcine
subcutaneous tissues revealed several salient features that have changed our
understanding of metabolic behavior and sensing in tissues. Primarily, contained within
signals oxygen electrodes implanted for a period of 13 weeks there is a pronounced
decay process that strongly displays an exponential behavior with a greater than 80%
reduction in signal strength and a decay constant of approximately 2 weeks.

Histological evidence from tissues excised after removal of the sensors indicates that a
deposition of collagenous material in front of the PDMS coated electrodes in addition to
a pronounced increase in vascular depth is the most likely culprit for this decay.
Surprisingly, minimal cellular activity change, including macrophage and granulocyte
activity, is seen in the histology. Computer simulations of the mass transfer properties
within the subcutaneous tissue/sensor interface in conjunction with histological findings

further corroborate the collected signals and strongly support our hypothesis that it is in
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fact morphological and compositional changes in the tissues that affect the mass
transfer of metabolites.

Moreover, strong evidence of periodicity is present in the signals with most
oscillatory power occurring in the 7 - 15 day and 0.9 - 1.1 day periods. It is believed that
these oscillations are due to the wound healing and diurnal processes, respectively. A
model is proposed that attempts to synchronize the critical events in the wound-healing
process with specific milestones in one oscillatory cycle. In particular, the initial injury
and subsequent onset, progression and resolution steps of wound healing are shown to
correlate with the specific falling and rising oxygen levels near a sensor during one of
these events. Comparisons between signals collected from the same telemeters
demonstrate that these oscillations affect entire arrays indicating this is a wound site-

specific event and not localized to only one electrode.

6.2 Future Directions

The investigation of oxygen transfer through subcutaneous tissues during the
presence of a metabolically active implant has provided a wealth of information
regarding the complex nature of encapsulation, wound healing and mass transfer
dynamics. It stands to reason that a similar investigation be performed for the
numerous other metabolites currently under investigation for clinical use in implanted
device modalities. Using the methodology presented, similar studies could be
performed on the behavior of glucose, lactose, signaling factors, etc. as they are

impacted by the placement of a foreign body. Glucose, for which wireless,
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subcutaneously implanted sensors are currently being developed, is subject to many of
the same effects that we see for oxygen. It stands to reason it’s passage from
vasculature to implant, through the tissues, will also be affected by the development of
a foreign body capsule and modulated by wound healing events.

As mentioned previously, this study is statistically limited by the use of one
animal for the sham and histology experiment presented in Chapter 3. It would be
beneficial to perform that work with more animals to provide more statistical power to
the results. Additionally, the histological samples were collected from subcutaneous
tissues adjacent to non-functioning shams. The findings were then compared against
signals collected from electronically functional sensors implanted into different animals.
The use of live sensors, where the signals collected correlate directly with tissue samples
retrieved upon excision would be extremely beneficial for such studies. Until now this
has been limited by the prohibitive cost and availability of such sensor telemeters, but
as commercialization progresses, this limitation will be removed.

Moreover, the investigation of other tissues besides the subcutaneous would be
of benefit to various fields where oxygen flow, thorough oxygenation and hypoxia are of
serious concern. Brain and lung tissue come to mind, among a myriad of sensitive
organs, for studies investigating pulmonary disorders where patients are unable to
inspire requisite amounts of oxygen and hypoxic stress occurs. COPD, as discussed
briefly in Chapter 1, is caused by elevated inflammation of the airways and a correlation

between inflammation severity graded from histology and oxygen signals collected in an
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organ of choice could be informative. This type of study could be of enormous benefit

in the future.



APPENDIX

7.1 Supplemental information pertaining to Chapter 2.

The sensor design, implantation and removal, and signal collection presented in
Chapter 2 was performed by Glysens, Inc. The following experimental procedure and
necessary information is provided for the reader, but was not performed by the

dissertation author. Permission has been obtained for reproduction in this document.

7.1.1 Animals

Three female juvenile Yorkshire farm pigs (company providing animals) were
used for this study. The animals were approximately 2-3 months old at the start of the
experiment and were kept under a weight of 30 kg. The pertinent details concerning

the animals are included in Table 5.

Table 5. Animal age, weight information (at start and end of experiment) and duration of sensor
implantation.

Subject # Age at Implant Weight at Weight at Implant
Implant Explant Duration

1 11 weeks 28 kg 93 kg 151 days

2 7 weeks 17 kg 73 kg 136 days

3 7 weeks 17 kg 68 kg 136 days

144
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7.1.2 Implantation procedure

The sensor arrays (see Figure 2) were implanted into one of four pockets created
via blunt dissection in the subcutaneous tissue on the dorsal side of juvenile Yorkshire
farm pigs. These pockets were created about 1 cm below the surface of the skin,
between the underlying fat and muscle layers. Orientation was kept such that the
electrode array faced into the core of the animal while the antenna on the back of the
case faced out of the body. No mechanical fastening was applied to the sensors in order
to anchor them to the tissues; the pocket was sized just large enough to fit the array so
fastening was unnecessary. The sensors were then left implanted in the animals for a
period of 13+ weeks. The animals were kept in their pens, however they were not
restrained. Twice a week the animals were subjected to glucose testing procedures
which required their removal from their pens, herding into a lab facility, suspension in a

sling, and the injection of glucose and collection of serial blood samples.

7.1.3 Sensor calibration

To verify that any changes in the oxygen signals were due to the surrounding
tissues and not changes in the performance of the oxygen sensors themselves,
calibrations were performed before implantation and after removal for each array. This
process involved placing the active sensor array into a physiologic buffer solution
through which various known oxygen concentration gas mixtures were sparged. The
resulting currents measured by each electrode were recorded and a calibration slope

was measured for current as a function of oxygen concentration. These slopes were
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then compared before and after implantation for each functioning electrode. Table 6
presents the magnitude calibration change from initial calibration performed before

implantation to final calibration after removal.

Table 6. Magnitude of calibration change (%) for all 8 electrodes spanning the 11 implanted
arrays.

Red boxes indicate those electrodes where calibration could not be calculated both before
implantation and/or after removal, gray boxes indicate that magnitude change was too great,
yellow boxes indicate appropriate magnitude change however signals were not available, and

green boxes indicate signals who have appropriate magnitude change and were available.
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* Arrays damaged upon removal, calibration could not be completed.
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7.1.4 Histology collection

At the conclusion of the experiments, the animals were euthanized via an
overdose of anesthesia. The sensor arrays and the surrounding tissue were then
surgically excised, the sensors carefully removed to protect the delicate PDMS coating,
and the tissue sectioned as shown in Figure 49. The two quadrants of tissue adjacent to
the electrode face were fixed in 10% buffered formalin, paraffin embedded, sliced, and
stained using either H&E or GTC. The slides were then imaged at high magnification and

composite images were created allowing a macroscopic view.

Ticasing
Excised Tissue

Cut——

PDMS Coated Electrode Array

PDMS Sensor Array Face _—— = = =
Titanium Housing —— = = -

Figure 49. Schematic of sensor array/tissue removal.
Procedure for sensor removal, histological cutting planes, and identifying orientation of sensor
with respect to collected histology is illustrated.
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Figure 50a shows an example of one of these tissue segments. This image has
been labeled indicating the regions of tissue adjacent to the titanium casing of the
sensor, and those regions adjacent to the PDMS coated electrode array. In addition,
two regions are identified were magnified views of the cellular structure are shown in
Figure 50b-e. It can be clearly seen that there is a distinct difference in the
subcutaneous tissue adjacent to the titanium casing from the tissue adjacent to the
PDMS coated electrode array. Taking a close look at Figure 50b and d, H&E and GTC
stains of the same region of titanium adjacent tissue respectively, we can see a regular
and dispersed nuclear presence (dark blue/black color in Figure 50c) and intracellular
collagen (light blue/green color seen in Figure 50e). Observing the corresponding
images from the PDMS/electrode array adjacent tissue (Figure 50b and d), it is clear that
there is a marked increase in cellular density, seen in the heavy concentration of cell
nuclei in the H&E stained image, and in the lack of prominent intracellular collagen in

the GTC stained image.
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7.2 Vessel size and number distribution analysis

Akshay Chaudhari, an undergraduate volunteer in the Biosensors Lab at the
Dept. of Bioengineering, UCSD performed a rigorous analysis of vessel size and number
in the CD31 stained tissues. The following is a more in-depth description of his work,
the findings of which are utilized in Chapter 4.

The goal of this part of the study was to study the distribution patterns of
capillaries from histology that was obtained from porcine specimens. This was
undertaken in order to see if there existed a correlation between vasculature
distribution and the signal decay of the oxygen sensor. Several vasculature
characteristics were evaluated towards this end. Image manipulation was done using
Adobe Photoshop Creative Suite 4. Image analysis was conducted using MATLAB v2008b
and the MATLAB Image Processing Toolbox.

CD-31 stained porcine histological images were obtained 1, 2, 6 and 13 weeks
after sensor implantation, from either side of the sensor. Ten evenly spaced sections
(see Figure 51a and b) of dimensions 271um x 488 um were chosen from each of the
larger histological images (except for the PDMS week 1 and PDMS week 13 samples,
which had 15 and 8 image sections, respectively). For each of the sectioned images, a
separate image layer was created overlapping the original image. In this new layer, the
outlines of capillaries from the original section were drawn manually. Once all the
capillaries were drawn onto the new layer, the layer was saved individually and this was
the image that was analyzed in MATLAB (see Figure 51c-e). In this way, a semi-

automated procedure for the analysis of the vasculature was created.
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(a) (b) ()

Figure 51. Microvessel image analysis.

a) An original histological sample collected from the Titanium surface at 2 weeks post
implantation. b) 10 evenly spaced out sections, each with dimensions of 271um x 488 um, were
created. c) Each section (Section 4 in this case), where the capillaries are represented by the
dark brown areas, was used for capillary distribution analysis. d) A new image layer was created,
in which the capillaries are highlighted, which was overlaid on top of the original image. e) Only
the highlighted image layer from Figure 1d. This is the image used for the image analysis.
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7.3 Matlab code

The following is a collection of code written by the author with help from
numerous collaborators (mentioned individually where applicable). The code is
annotated as necessary (“%” in the code indicates a line of annotation and not
functioning code) and is presented in a way that can be readily comprehended by the

reader with the necessary background in Matlab.

7.3.1 Signals processing code

The following program performed all the necessary filtering, decimation,
autocorrelation, and wavelet analysis presented in Chapter 2. Power spectrum
estimation was performed using the “Signal Processing Toolbox”. All charts, graphs and

data were later extracted and generated by hand from the workspace in Matlab.

Begin Matlab code for SigPower_filt.m

clear, clc

tic

Al=xlIsread('[path to *.xIs file]');
sizeAl = size(Al);

% ------m-m-—- Check for NaN
forn=1:sizeA1(1,1)
form =1 :sizeA1(1,2)
ifisnan(Al(n,m)) ==1
Al(n,m)=0;

end, end, end

%

% ---------- Averaging Filter
windowsSize = 30; % Sampling Freq. = 0.5 min”~(-1), windowSize = 30 for 1 hour averaging
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AvgFlt = ones(1,windowsSize)/windowsSize;
Bla(:1) = A1(:,1);

forn=2:sizeA1(1,2)

Bla(:,n) = filter(AvgFIt,1,A1(:,n));

end

% resampling at 1/30 of original sample rate
Blb = Bla;

Blb = resample(B1b,1,30);

%

% ----------- Lowpass Filter
lowpass % calls lowpass.m, a low-pass equiripple filter designed to cut off at 1/30 samples

Cla(:1) = A1(:,1);
forn=2:sizeA1(1,2)
Cla(:,n) = filter(ans, Al(:,n));
end
% resampling at 1/30 of original sample rate
Clb =Cla;
Clb =resample(C1b,1,30);
% offset application
fori=2:sizeA1(1,2)
C1_min(i) = min(C1b(,i));
if CL_min(i)<0
C1b(:,i) = C1b(:,i) + (C1_min(i)*(-1));
end, end
%

% ------------ Residuals
% Averaging Filter residuals
D1 =A1-Bla;

% Lowpass Filter residuals
E1=A1l-Cla;

%

% -----mmmmmmmmmnem Averaging
ASF = (24*7); % averaging rate

sizeB1b = size(B1b);

forn=1:(sizeB1b(1,1)/ASF)

form =2 :sizeB1b(1,2)

Fla(1,m) = mean(B1b(1:ASF/2,m));

Fla(1,1)=1;

Fla(n+1,m) = mean(B1lb((n-1)*ASF+1:n*ASF,m));

Fla(n+1,1) = (n*ASF)-(ASF/2);

Fla(n+2,m) = mean(B1b((sizeB1b(1,1)-(ASF/2)):sizeB1b(1,1),m));




Fla(n+2,1) = sizeB1b(1,1);

Gla(1,m) = mean(C1b(1:ASF/2,m));

Gla(1,1) = 1;

Gla(n+1,m) = mean(Clb((n-1)*ASF+1:n*ASF,m));

Gla(n+1,1) = (N*ASF)-(ASF/2);

Gla(n+2,m) = mean(C1b((sizeB1b(1,1)-(ASF/2)):sizeB1b(1,1),m));
Gla(n+2,1) = sizeB1b(1,1);

end, end

sizeFla = size(F1a);

F1b = zeros(sizeB1b(1,1),sizeB1b(1,2));
G1b = zeros(sizeB1b(1,1),sizeB1b(1,2));
forn=1:sizeFla(1,1)

F1b(F1a(n,1),:) = Fla(n,:);
G1b(G1la(n,1),:) = Gla(n,:);

end

%

% --------m--- Cubic Spline Interpolation
sizeF1b = size(F1b);
forn=1:sizeFlb(1,1)
Flb(n,1) = n;
G1lb(n,1)=n;

end

sizeFla = size(F1a);
sizeF1b = size(F1b);
forn =2 :sizeFla(1,2)
fori=1:sizeFla(1,1)
x(i) = Fla(i,1);

y(i) = F1a(i,n);

xg(i) = G1a(i,1);

yg(i) = Gla(i,n);
forj=1:sizeF1b(1,1)
xx(j) = F1b(j,1);

xxg(j) = G1b(j,1);

end, end

yy = spline(x,y,xx);
yyg = spline(xg,yg,xxg);

Flcl =['SplineF', num2str(n-1), ' = yy;'];
eval(Flcl);

G1lcl = ['SplineG', num2str(n-1), ' = yyg;'];
eval(Glcl);
end
forn =2 :sizeF1b(1,2)
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form =1 :sizeF1b(1,1)

F1c5 = ['F1b(',num2str(m),',",num2str(n),') = SplineF', num2str(n-1),'(',num2str(m),');'];
eval(F1c5);

G1c5 = ['G1lb(',num2str(m),',',num2str(n),') = SplineG', num2str(n-1),'(',num2str(m),');'];
eval(G1c5);

end, end

%

R — DETRENDING

% --------m-m-- Subtracting Trend from Original Data---------------------
% ------m-m--m-- (additive trend)

forn=1:sizeFlb(1,1)

for m =2 :sizeF1b(1,2)

F1d(n,1) = F1b(n,1);

F1d(n,m) = Blb(n,m) - F1b(n,m);
G1d(n,1) = G1lb(n,1);

G1d(n,m) = C1lb(n,m) - G1lb(n,m);

end, end
% ------------ Dividing out Trend from Original Data---------------------
% -----m--mmm-- (multiplicative trend)

forn=1:sizeFlb(1,1)

for m =2 :sizeF1b(1,2)

Fle(n,1) = F1b(n,1);
Fle(n,m)=B1b(n,m)/ Flb(n,m);
Gle(n,1) = G1lb(n,1);

Gle(n,m) = Clb(n,m) / G1lb(n,m);
end, end

for m =2 :sizeF1b(1,2)
MeanFle(m) = mean(Fle(:,m));
Fle(:,m) = Fle(:,m) - MeanFle(m);
MeanGle(m) = mean(Gle(:,m));
Gle(:,m) = Gle(:;,m) - MeanGle(m);
end

%

% ----mmmmmmmmmemne- Cross-Correlation Detrended
sizeF1d = size(F1d);

XCS = -(sizeF1d(1,1)-1):(sizeF1d(1,1)-1);

for j = 2:sizeF1d(1,2)

fori=2:sizeF1d(1,2)

XCTempF = ['XCF',num2str(j-1),'(:,',num2str(i),')=xcorr(F1d(:,j),F1d(:,",num2str(i),')," coeff");'];
eval(XCTempF);

XCTempG = ['XCG',num2str(j-1),'(:,',num2str(i),')=xcorr(G1d(:,j),G1d(:,",num2str(i),")," coeff");'];
eval(XCTempG);
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end, end
%

% --------m-mm-m- 1-D Continuous Wavelet

sizeGle = size(Gle);

fori=2:sizeF1b(1,2)
SigTemp = ['Sig', num2str(i-1), ' = Gle(:,i);'];
eval(SigTemp);
end
fori=1:sizeF1b(1,2)-1

WaveTempla = ['Sig', num2str(i),'_mexh256_coeffs = cwt(Sig', num2str(i),', 1:256, "'mexh");'];
eval(WaveTempla);

WaveTemplb = ['Sig', num2str(i),'_mexh256_scales = 1:256;'];
eval(WaveTemplb);

WaveTemplc = ['Sig', num2str(i),'_mexh256_power = Sig', num2str(i),'_mexh256_coeffs.A2;'];
eval(WaveTemplc);

WaveTempld = ['Meanl = mean(mean(Sig', num2str(i),'_mexh256_power));'];
eval(WaveTemp1ld);

WaveTemple = ['STD1 = mean(std(Sig', num2str(i),'_mexh256_power));'];
eval(WaveTemple);

WaveTemplf = ['COEFFSP1 = Sig', num2str(i),'_mexh256_power;'];
eval(WaveTemplf);

WaveTemp2a = ['Sig', num2str(i),'_morl512_coeffs = cwt(Sig', num2str(i),', 1:512, "morl");'];
eval(WaveTemp2a);

WaveTemp2b = ['Sig', num2str(i),'_morl512_scales = 1:512;'];
eval(WaveTemp2b);

WaveTemp2c = ['Sig', num2str(i),'_morl512_power = Sig', num2str(i),'_morl512_coeffs. 2;'];
eval(WaveTemp2c);

WaveTemp2d = ['Mean2 = mean(mean(Sig', num2str(i),'_morl512_power));'];
eval(WaveTemp2d);

WaveTemp2e = ['STD2 = mean(std(Sig', num2str(i),'_morl512_power));'];
eval(WaveTemp2e);

WaveTemp2f = ['COEFFSP2 = Sig', num2str(i),'_morl512_power;'];
eval(WaveTemp2f);

% ----------- Wavelet Comparison of All Signals
SizeCOEFFSP1 = size(COEFFSP1);
forn=1:SizeCOEFFSP1(1,1)

for m =1 : SizeCOEFFSP1(1,2)

if COEFFSP1(n,m) > Mean1 + (1 * STD1)
Eval5 = ['Sig',num2str(i),'_mexh256_Mean1STD(n,m) = 1;'];
eval(Eval5);

else

Eval6 = ['Sig',num2str(i),'_mexh256_Mean1STD(n,m) = 0;'];
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eval(Eval6);
end, end, end

SizeCOEFFSP2 = size(COEFFSP2);
forn=1:SizeCOEFFSP2(1,1)

for m =1 : SizeCOEFFSP2(1,2)

if COEFFSP2(n,m) > Mean2 + (1 * STD2)

Eval5 = ['Sig',num2str(i),'_morl512_Meanl1STD(n,m) = 1;'];
eval(Eval5);

else

Eval6 = ['Sig',num2str(i),'_morl512_Meanl1STD(n,m) = 0;'];
eval(Eval6);

end, end, end, end

SumSigWave_mexh256_Meanl1STD = Sigl_mexh256_Mean1STD + Sig2_mexh256_Mean1STD + ...
Sig3_mexh256_Meanl1STD + Sigd_mexh256_Meanl1STD + Sig5_mexh256_Mean1STD +...
Sigb_mexh256_Meanl1STD + Sig7_mexh256_Meanl1STD + Sig8_mexh256_Mean1STD + ...
Sig9_mexh256_Meanl1STD + Sigl0_mexh256_Meanl1STD + Sigll_mexh256_Meanl1STD + ...
Sigl2_mexh256_MeanlSTD;

SumSigWave_morl512_Meanl1STD = Sigl_morl512_Mean1STD + Sig2_morl512_Mean1STD + ...
Sig3_morl512_Meanl1STD + Sigd_morl512_Meanl1STD + Sig5_morl512_Mean1STD + ...
Sigb_morl512_Meanl1STD + Sig7_morl512_Meanl1STD + Sig8_morl512_Mean1STD + ...
Sig9_morl512_Meanl1STD + Sig10_morl512_Meanl1STD + Sigll_morl512_Meanl1STD + ...
Sigl2_morl512_Meanl1STD;

%

End Matlab code.
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7.3.2 Image processing code

The following image processing program performed all the computations
presented in Chapter 3 as outlined in the workflow diagram illustrated in Figure 16.
Mark Chapman (NSF REU Student 2009, B.S.Biomedical Engineering, U. of Minnesota)
and Robert Turner (B.S. Bioengineering, UC San Diego) were instrumental in the writing,
testing and implementation of this code. Dr. Jared Goor’s work on computational image
processing (HistoQuant 0.96 [69]) was heavily influential in the writing of our code, and

a great debt of thanks is extended.

Begin Matlab code for improc.m:

tic

clear, clc,

NumReg = 20; % Number of Region Images for analysis

filename_big = 'Image.jpg';

filename_Ref = 'Reference_Image.jpg'; % filename of reference image used in histogram equalization
IM_Big = imread(filename_big);

IM_Ref = imread(filename_Ref);

SizeBig = size(IM_Big);

SizeRef = size(IM_Ref);

fori=1:3

if i ==

IM_Red_Big_Prefilt = IM_Big(:,:,i);
IM_Ref_Red_Prefilt = IM_Ref(:,:,i);
elseif i ==

IM_Green_Big_Prefilt = IM_Big(:,:,i);
IM_Ref_Green_Prefilt = IM_Ref(:,:,i);
elseifi==3

IM_Blue_Big_Prefilt = IM_Big(:,:,i);
IM_Ref_Blue_Prefilt = IM_Ref(:,:,i);
end, end

IM_Ref _Red =0;
IM_Ref_Green =0;
IM_Ref_Blue =0;



IM_Red_Big_histeq = 0;
IM_Green_Big_histeq = 0;
IM_Blue_Big_histeq = 0;

IM_Red_Big = medfilt2(IM_Red_Big_Prefilt); % medfilt2 function for 2D Median Filter
IM_Green_Big = medfilt2(IM_Green_Big_Prefilt);
IM_Blue_Big = medfilt2(IM_Blue_Big_Prefilt);

IM_Ref_Red = medfilt2(IM_Ref_Red_Prefilt); % medfilt2 function for 2D Median Filter
IM_Ref_Green = medfilt2(IM_Ref_Green_Prefilt);
IM_Ref_Blue = medfilt2(IM_Ref_Blue_Prefilt);

IM_Red_Big_histeq = histeq(IM_Red_Big,imhist(IM_Ref_Red)); % Histogram equalization to a
Reference image (IM_Ref)

IM_Green_Big_histeq = histeq(IM_Green_Big,imhist(IM_Ref_Green));

IM_Blue_Big_histeq = histeq(IM_Blue_Big,imhist(IM_Ref_Blue));

IM_Big_EQ(:,:,1) = IM_Red_Big_histeq; % Reconstructed IM_Big after histogram equalization for
% comparison

IM_Big_EQ(:,:,2) = IM_Green_Big_histeq;

IM_Big_EQ(:,:,3) = IM_Blue_Big_histeq;

IM_Big_EQ = uint8(IM_Big_EQ);

% -------------- Section Image into NumReg Slices
forz=1:NumReg

fs1 =['Slice',num2str(z),' = imcrop(IM_Big_EQ,[0 SizeBig(1)/NumReg*(z-1) SizeBig(2)...
SizeBig(1)/NumReg]);'];
eval (fs1);

fs2 = ['imwrite(Slice',num2str(z),',"Slice',num2str(z),".jpg","jpg");'l;
eval (fs2);
end

clear a;

try

clf(1), clf(2), clf(3), clf(4), clf(5),...
clf(6), clf(7), clf(8), cIf(9), clf(10)
end

fora=1:NumReg
fnl =""'Slice’;
fn2 ="jpg";
fn3 = 'filename = ;
fn4 = [fn1,num2str(a),fn2,";'];
fn5 = [fn3,fn4];
eval (fn5);
IM_Orig = imread(filename);
SizeOrig = size(IM_Orig);
TotArea = SizeOrig(1)*SizeOrig(2);
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% ----mmmmmmmmmneee- RGB Min and Max Values --------------------
Red_Min =0; % Default=0
Red_Max = 120; % Default = 255
Green_Min = 100; % Default=0
Green_Max = 255; % Default = 255
Blue_Min =0; % Default=0
Blue_Max = 175; % Default = 255

% ----mmmmmmmmmnene- NTSC Min and Max Values -------------------
Y_Min =0; % Default=0
Y_Max =1; % Default=1
I_Min =-0.596; % Default =-0.596
I_Max = 0.05; % Default =0.596
Q_Min =-0.523; % Default =-0.523
Q_Max =0.523; % Default =0.523

% -----mmmmmmmm Morphology Min and Max Values ----------------
Area_Min = 20; % area in pixels
Area_Max = Inf; % area in pixels, 'Inf' is infinite
Solid_Min = 0; % solidity ratio
Solid_Max = 1; % solidity ratio
Eccentr_Min = 0; % Eccentricity ratio
Eccentr_Max = 1; % Eccentricity ratio

IM_Red =0;
IM_Green =0;
IM_Blue = 0;

fori=1:3

if i ==

IM_Red = IM_Orig(,:,i);
elseif i ==

IM_Green = IM_Orig(:,:,i);
elseif i ==

IM_Blue = IM_0Orig(:,:,i);
end

end

% ---- Red Color Restriction Application -------------=---------
SIZE_Red = size(IM_Red);
IM_Red_RES = 0;
IM_Red_RES_BIN = 0;

forj=1:SIZE_Red(1)

for k=1 :SIZE_Red(2)
ifIM_Red(j,k) <Red_Min
IM_Red_RES(j,k) = 0;
IM_Red_RES_BIN(j,k) = 0;
elseifIM_Red(j,k) >Red_Max
IM_Red_RES(j,k) = 0;
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IM_Red_RES_BIN(j,k) = 0;

else

IM_Red_RES(j,k) = IM_Red(j,k);
IM_Red_RES_BIN(j,k) = 1;

end, end, end

% ---- Green Color Restriction Application ---------------------
SIZE_Green = size(IM_Green);
IM_Green_RES =0;
IM_Green_RES_BIN =0;

forj=1:SIZE_Green(1)

for k=1 :SIZE_Green(2)
ifIM_Green(j,k) <Green_Min
IM_Green_RES(j,k) = 0;
IM_Green_RES_BIN(j,k) = 0;
elseiflM_Green(j,k) >Green_Max
IM_Green_RES(j,k) = 0;
IM_Green_RES_BIN(j,k) = 0;

else

IM_Green_RES(j,k) = IM_Green(j,k);
IM_Green_RES_BIN(j,k) = 1;
end, end, end

% ---- Blue Color Restriction Application ------------=---------
SIZE_Blue = size(IM_Blue);
IM_Blue_RES = 0;
IM_Blue_RES_BIN = 0;

forj=1:SIZE_Blue(1)

for k=1 :SIZE_Blue(2)
ifiIM_Blue(j,k) <Blue_Min
IM_Blue_RES(j,k) = O;
IM_Blue_RES_BIN(j,k) = 0;
elseifIM_Blue(j,k) >Blue_Max
IM_Blue_RES(j,k) = 0;
IM_Blue_RES_BIN(j,k) = 0;
else

IM_Blue_RES(j,k) = IM_Blue(j,k);
IM_Blue_RES_BIN(j,k) = 1;
end, end, end

% -----m-mmmm- Split NTSC Color Channels & Display -------------
IM_Orig_NTSC = rgb2ntsc(IM_Orig);

fori=1:3

ifi ==

IM_Y_Prefilt = IM_Orig_NTSC(:,:,i);
elseif i ==

IM_I_Prefilt = IM_Orig_NTSC(:,:,i);
elseif i ==



IM_Q_Prefilt = IM_Orig_NTSC(:,:,i);
end, end

IM_Y = IM_Y_Prefilt; % medfilt2 function for 2D Median Filter
IM_I = IM_|_Prefilt;
IM_Q = IM_Q_Prefilt;

% ---- Luminance (Y) Restriction Application -------------------
SIZE_Y = size(IM_Y);

IM_Y_RES = 0;

IM_Y_RES_BIN =0;

forj=1:SIZE_Y(1)

fork=1:SIZE_Y(2)

if IM_Y(j,k) <Y_Min
IM_Y_RES(j,k) = 0;
IM_Y_RES_BIN(j,k) = 0;

elseif IM_Y(j,k) >Y_Max
IM_Y_RES(j,k) = 0;
IM_Y_RES_BIN(j,k) = 0;

else
IM_Y_RES(j,k) = IM_Y(j,k);
IM_Y_RES_BIN(j,k) = 1;

end, end, end

% ---- Chrominance (l) Restriction Application -----------------
SIZE_| = size(IM_I);

IM_I_RES = 0;

IM_I_RES_BIN = 0;

forj=1:SIZE_I(1)

fork=1:SIZE_I(2)

if IM_I(j,k) <I_Min
IM_I_RES(j,k) = 0;
IM_I_RES_BIN(j,k) = 0;

elseif IM_I(j,k) >1_Max
IM_I_RES(j,k) = 0;
IM_I_RES_BIN(j,k) = 0;

else
IM_I_RES(j,k) = IM_I(j,k);
IM_I_RES_BIN(j,k) = 1;

end, end, end

% ---- Chrominance (Q) Restriction Application -----------------
SIZE_Q = size(IM_Q);

IM_Q_RES = 0;

IM_Q_RES_BIN =0;

forj=1:SIZE_Q(1)
for k=1 :SIZE_Q(2)
if IM_Q(j,k) <Q_Min
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IM_Q_RES(j,k) = 0;

IM_Q_RES_BIN(j,k) = 0;
elseif IM_Q(j,k) >Q_Max

IM_Q_RES(j,k) = 0;

IM_Q_RES_BIN(j,k) = 0;
else

IM_Q_RES(j,k) = IM_Q(j,k);

IM_Q_RES_BIN(j,k) = 1;
end, end, end

%o =-=-mnmmmmmemememeeeeee Restrictions
% Color restrictions only
IM_RES_Temp = IM_Red_RES_BIN + IM_Green_RES_BIN + IM_Blue_RES_BIN +...
IM_Y_RES_BIN + IM_|_RES_BIN + IM_Q_RES_BIN;
MAX_IM_RES_Temp = max(max(IM_RES_Temp));
ifMAX_IM_RES_Temp< 6 % 'if' statement to prevent MAX_IM_RES_Temp matrix from being
% comprised of only zeroes.

IM_RES_Temp(1,1) = 6;
end

for|=1:SIZE_Green(1)
form =1 :SIZE_Green(2)
ifIM_RES_Temp(l,m) ==
IM_RES_BIN(l,m) = 1;
else
IM_RES_BIN(l,m) = 0;
end, end, end

MAX_IM_RES_BIN = max(max(IM_RES_BIN));

ifa>=2

clear('M_RES_BWLABEL'), clear('IM_RES_BWLABEL_MAX'),
clear('M_RES_BWLABEL_REGIONPROPS_STRUCT'),...
clear('M_RES_BWLABEL_REGIONPROPS_DUB'), clear('IM_RES_BWLABEL_REGIONPROPS'),...
clear('M_RES_BWLABEL_REGIONPROPS_SUMAVG')

end

[IM_RES_BWLABEL,IM_RES_BWLABEL_MAX] = bwlabel(IM_RES_BIN);
IM_RES_BWLABEL_REGIONPROPS_STRUCT = regionprops(IM_RES_BWLABEL,...
'Area’,'Solidity','Eccentricity’,'Orientation’'); % regionprops function

forn=1:IM_RES_BWLABEL_MAX
IM_RES_BWLABEL_REGIONPROPS_DUB(1,n
IM_RES_BWLABEL_REGIONPROPS_DUB(2,n
IM_RES_BWLABEL_REGIONPROPS_DUB(3,n) = ...
IM_RES_BWLABEL_REGIONPROPS_STRUCT(n).Eccentricity;

)=1
):
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IM_RES_BWLABEL_REGIONPROPS_STRUCT(n).Area;

IM_RES_BWLABEL_REGIONPROPS_DUB(4,n) = IM_RES_BWLABEL_REGIONPROPS_STRUCT(n).Solidity;

IM_RES_BWLABEL_REGIONPROPS_DUB(5,n) = ...
IM_RES_BWLABEL_REGIONPROPS_STRUCT(n).Orientation;
if IM_RES_BWLABEL_REGIONPROPS_DUB(2,n) <Area_Min
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IM_RES_BWLABEL_REGIONPROPS(1:5,n) = 0;

elseif IM_RES_BWLABEL_REGIONPROPS_DUB(3,n) <Eccentr_Min
IM_RES_BWLABEL_REGIONPROPS(1:5,n) = 0;

elseif IM_RES_BWLABEL_REGIONPROPS_DUB(4,n) <Solid_Min
IM_RES_BWLABEL_REGIONPROPS(1:5,n) = 0;

elseif IM_RES_BWLABEL_REGIONPROPS_DUB(2,n) >Area_Max
IM_RES_BWLABEL_REGIONPROPS(1:5,n) = 0;

elseif IM_RES_BWLABEL_REGIONPROPS_DUB(3,n) >Eccentr_Max
IM_RES_BWLABEL_REGIONPROPS(1:5,n) = 0;

elseif IM_RES_BWLABEL_REGIONPROPS_DUB(4,n) >Solid_Max
IM_RES_BWLABEL_REGIONPROPS(1:5,n) = 0;

else
IM_RES_BWLABEL_REGIONPROPS(1:5,n) = IM_RES_BWLABEL_REGIONPROPS_DUB(1:5,n);

end, end

fori=1:5
IM_RES_BWLABEL_REGIONPROPS_SUMAVG(i,1) = ...
sum(IM_RES_BWLABEL_REGIONPROPS(i,1:IM_RES_BWLABEL_MAX));
IM_RES_BWLABEL_REGIONPROPS_SUMAVG(i,2) = ...
sum(IM_RES_BWLABEL_REGIONPROPS(i,1:IM_RES_BWLABEL_MAX))...
.JIM_RES_BWLABEL_REGIONPROPS_SUMAVG(1,1);
end

tmp1 = ['IM_RES_BWLABEL_REGIONPROPS_SUMAVG_Slice',num2str(a),' = ...
IM_RES_BWLABEL_REGIONPROPS_SUMAVG;'];
eval(tmp1l);
tmp2 = ['IM_RES_BWLABEL_REGIONPROPS_Slice',num2str(a),' = IM_RES_BWLABEL_REGIONPROPS";'];
eval(tmp2);

IM_RES_BWLABEL_RES = IM_RES_BWLABEL;

forn=1:IM_RES_BWLABEL_MAX

if IM_RES_BWLABEL_REGIONPROPS(1,n) == 0
[r,c,v] = find(IM_RES_BWLABEL == n);
IM_RES_BWLABEL_RES(r,c) = 0;

end, end

MAXofMAX(a) = IM_RES_BWLABEL_MAX;

% ----------- Combining Morphology and Color Restrictions----------------
IM_RES_Temp2 = IM_RES_BIN + IM_RES_BWLABEL_RES;

for|=1:SizeOrig(1)
for m =1 : SizeOrig(2)
if IM_RES_Temp2(l,m) >= 2
IM_RES_BIN2(I,m) = 1;
else
IM_RES_BIN2(l,m) = 0;
end, end, end



fori=1:SizeOrig(1)
forj=1:SizeOrig(2)

for k =1 : SizeOrig(3)

if IM_RES_BIN2(i,j) ==
IM_Orig_MinusRES(i,j,k) = 0;

else

IM_Orig_MinusRES(i,j,k) = IM_Orig(i,j,k);
end, end, end, end

IM_Orig_MinusRES = uint8(IM_Orig_MinusRES);
end

b = max(MAXofMAX);

7 Data Prep for Excel
fora=1:NumReg
ifa==

AREA_PREXLS = zeros(b,NumReg);

ECCEN_PREXLS = zeros(b,NumReg);

SOLID_PREXLS = zeros(b,NumReg);

NUMBER_PREXLS = zeros(b,NumReg);

ORIENT_PREXLS = zeros(b,NumReg);
end

tmp3 = [NUMBER_PREXLS(1:MAXofMAX(a),a) =
IM_RES_BWLABEL_REGIONPROPS_Slice',num2str(a),'(;,1);'];
eval(tmp3);

tmp4 = ['AREA_PREXLS(1:MAXofMAX(a),a) =
IM_RES_BWLABEL_REGIONPROPS_Slice',num2str(a),'(;,2);'l;
eval(tmp4);

tmp5 = ['ECCEN_PREXLS(1:MAXofMAX(a),a) =
IM_RES_BWLABEL_REGIONPROPS_Slice',num2str(a),'(;,3);'l;
eval(tmp5);

tmp6 = ['SOLID_PREXLS(1:MAXofMAX(a),a) =
IM_RES_BWLABEL_REGIONPROPS_Slice',num2str(a),'(;,4);'l;
eval(tmp6);

tmp6 = ['ORIENT_PREXLS(1:MAXofMAX(a),a) =
IM_RES_BWLABEL_REGIONPROPS_Slice',num2str(a),'(;,5);'];
eval(tmp6);
end

Header = {'Slice 1','Slice 2','Slice 3','Slice 4','Slice 5','Slice 6','Slice 7','Slice 8','Slice 9',...

'Slice 10','Slice 11','Slice 12','Slice 13','Slice 14','Slice 15','Slice 16','Slice 17','Slice 18',...

'Slice 19','Slice 20'};
warning off MATLAB:xIswrite:AddSheet
xlswrite('Cellspecs.xls', Header, 'Number');
xlswrite('Cellspecs.xls', NUMBER_PREXLS(1:b,1:NumReg), 'Number', 'A2');
xlswrite('Cellspecs.xls', Header, 'Area');
xlswrite('Cellspecs.xls', AREA_PREXLS(1:b,1:NumReg), 'Area’, 'A2');
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xlswrite('Cellspecs.xls', Header, 'Eccentricity');

xlswrite('Cellspecs.xls', ECCEN_PREXLS(1:b,1:NumReg), 'Eccentricity’, 'A2');
xlswrite('Cellspecs.xls', Header, 'Solidity');

xlswrite('Cellspecs.xls', SOLID_PREXLS(1:b,1:NumReg), 'Solidity', 'A2');
xlswrite('Cellspecs.xls', Header, 'Orientation');

xlswrite('Cellspecs.xls', ORIENT_PREXLS(1:b,1:NumReg), 'Orientation’, 'A2');
winopen('Cellspecs.xls');

toc

End Matlab code.

7.3.3 Matlab/COMSOL code for 2D tissue models

The following code, a combination of Matlab and COMSOL functions used in
unison, performed all FEA computations of the 2D electrode/tissue interface geometry
presented in Chapter 4. The code was modularized due to its length and complexity.
RCGM.m is the controlling code and calls the following successive codes:
COMSOL_version.m, COMSOL_modgeom.m, COMSOL_circdraw.m or
COMSOL_linedraw.m, COMSOL_solve.m, and COMSOL_savedata.m. Each of these is
presented here. The program is capable of representing capillaries and vessels either in
circular or line-segment fashion with variously constrained geometries. Capillaries and
vessels are drawn at random utilizing the appropriate probability density functions

(PDFs).

Begin Matlab code for RCGM.m

% Generating n random, non-overlapping capillaries (line-segments or

% circles) in a model of the sensor surrounded by bulk tissue. The bulk

% has dimensions of BW x BH and there is a sensor of dimensions MW x MH.
% The capillaries have a max length of 2 x CR and there is an edge

% tollerance of ET. The random distribution of capillaries in the y

% direction is based on a beta distribution with parameters A and B.

clear

tic
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% MODEL SETTINGS
% For Steady State, ST = 1. For Transient, ST = 2.
ST=1;

%
% For circular capillaries, CAP = 1. For Line Segment capillaries, CAP = 2.
CAP=1;

%
% If capillaries are line segments, HZA = 1 for random horizontal

% arrangement, HZA = 2 for only horizontal capillaries, and HZA = 3 for
% capillaries rotated by +/- ROTDEG from the horizontal.

HZA =1;

ROTDEG = 22.5;

%
% Geometry Values (units of cm)

% Note: CR has to be less than sqrt(((MH*0.99)72)/2) or 0.00245 in
% order to ensure that the proper boundary values are applied

BW =0.025 % Bulk Width

BH = 0.05; % Bulk Height

MH =0.0035; % Membrane Height

MW =0.0125; % Membrane Width

CR=0.0003; % Capillary radius/length

ET =0.0001; % Edge Tollerance

%
% Reaction Term for the bulk

% Example: RTERM ='-(1.5e-4)*(c>0)'
RTERM = 0; % '-(1.5e-2)*(c>0)';

%
% Beta Distribution Width and Height Factor
% idxD = 1 for A+B=5

% idxD = 2 for A+B=10

% idxD = 4 for A+B=20

% idxD = 10 for A+B=50

idxD = 2;

%

for idxN = 1:7 % Scaling the number of capillaries from 2-128 (1-7)

ifidxN==1,
n=2;

elseif idxN == 2,
n=4;

elseif idxN == 3,
n=8;

elseif idxN == 4,
n=16;

elseif idxN == 5,
n=32;

elseif idxN == 6,
n=64;

else idxN == 7,
n=128§;

end
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foridxA = 1:1 % Scaling of bulk height idxA*0.1 cm (1-3)
foridxB =1:5 % 5 - number of repetitions (1-5)
for idxC = 1:8 % Full range of beta distributions (1-8)
BH=BH*idxA;
if idxC==1,
A =0.5*idxD;
B = 4.5*idxD;
elseif idxC == 2,
A = 1*idxD;
B = 4*idxD;
elseif idxC == 3,
A = 2*idxD;
B = 3*idxD;
elseif idxC == 4,
A =2.5%dxD;
B = 2.5*idxD;
elseif idxC == 5,
A = 3*idxD;
B = 2*idxD;
elseif idxC == 6,
A = 4*idxD;
B = 1*idxD;
elseif idxC == 7,
A =4.25*idxD;
B = 0.75*idxD;
else idxC == 8§,
A = 4.5%dxD;
B = 0.5*idxD;
end

idxA
idxB
idxC
BH

W > >

flclear fem

COMSOL_version
COMSOL_modgeom

if CAP ==
COMSOL_circdraw
elseif CAP ==
COMSOL_linedraw
end

COMSOL_solve
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end
end

COMSOL_savedata
end

end
toc

Begin Matlab code for COMSOL_version.m

% COMSOL version

clear vrsn

vrsn.name = 'COMSOL 3.2;

vrsn.ext ='b’;

vrsn.major = 0;

vrsn.build = 304;

vrsn.rcs = 'SName: $';

vrsn.date = 'SDate: 2006/04/04 14:56:13 $';
fem.version = vrsn;

Begin Matlab code for COMSOL_modgeom.m

% Model Geometry
gl=rect2(BW,BH,'base','corner','pos',{(-BW/2),'0'},'rot','0");
g2=rect2(MW,MH,'base','corner','pos',{(-MW/2),(-MH)},'rot','0");

clearcs Gs
s.objs={g1, g2};
s.name={'R1', 'R2'};
s.tags={'gl', 'g2'};

Gs=""

Bs="'"

GsA=""
cobjs='c.objs={";
cname='c.name={';
ctags='c.tags={";

Begin Matlab code for COMSOL_circdraw.m

% Generating n random circles
i=1;
while i <= n+2
try
sobjs='s.objs={";
sname='s.name={';
stags='s.tags={";
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ifi>2
x1=((((BW-ET)/2)-CR)*rand*randsrc+ET/2);
y1=((BH-(CR)-ET)*betarnd(A,B))+CR+ET/2;
eval(['g',int2str(i),'=circ2(x1,y1,CR);'1);

end

% Generating the commands "s.objs", "s.name", and "s.tags".
ifi>=2

Gs =[Gs, 'g', num2str(i-1), ', '];

Bs = [Bs, "'R', num2str(i-2), """, ', '];

GsA = [GsA, "'g', num2str(i-1), """, ', '];
end

sobjs = [sobjs, Gs, 'g', num2str(i), '};'];
sname = [sname, Bs, '""R', num2str(i-1), """, '};'];
stags = [stags, GsA, "'g', num2str(i), """, '};'];

eval(sobjs)
eval(sname)
eval(stags)

% Verifying the number of boundaries and subdomains. If too
% many are created, indicates overlap and last drawn element is
% deleted and redrawn.

fem.draw=struct('s',s);
fem.geom=geomcsg(fem);
[nmr,nbs] = geominfo(fem.geom, 'Out’, {'nmr','nbs'});

ifi<n+2
clear sobjs sname stags
end

ifi>2
if nmr > i
clearfxn = ['clear g', num2str(i)];
eval(clearfxn)
i=i
elseif nbs > 9+((i-2)*4)
clearfxn = ['clear g', num2str(i)];
eval(clearfxn)
i=i
else
i=i+l;
end
else
i=i+1;
end
end



end

eval(sobjs)
eval(sname)
eval(stags)

%fem.draw=struct('c’,c,'s',s);
fem.draw=struct('s',s);
fem.geom=geomcsg(fem);

% Calculating the number of subdomains (nmr) and boundary segments (nbs)
[nmr,nbs] = geominfo(fem.geom, 'Out’, {'nmr','nbs'});

% Initialize mesh
fem.mesh=meshinit(fem);

% Application mode 1

clear appl

appl.mode.class = 'FIDiffusion’;
appl.border ='on';
appl.assignsuffix ="'_di';
clear bnd

bnd.type = {'N0O','cont’,'C','C'};
bnd.cO ={0,0,0,4.3e-8};

IndB=""

for i=10:nbs
bndind ='bnd.ind =[1,1,1,1,3,2,1,1,1,';
IndB =[IndB, '4', ", '];

end

bndind = [bndind, IndB, '];'];
eval(bndind)

% bnd.ind =(1,1,1,3,1,3,4,2,3,1,3,1,1,5,5,5,5,5,5,5,5];

appl.bnd = bnd;

clear equ

equ.D ={2.3e-5,3.2e-5,2.3e-5};

equ.init = {0,0,4.3e-8};

equ.R = {RTERM,0,0}; % Reaction terms for subdomains. Example: equ.R = {'-(1.5e-4)*(c>0)',0,0};

IndD="";

fori=3:nmr
equind ="'equ.ind = [1,2,";
IndD = [IndD, '3', ', '];

end

equind = [equind, IndD, '];'];
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eval(equind)
% equ.ind = [1,2,3,1,4,4];

appl.equ = equ;
fem.appl{1} = appl;
fem.frame = {'ref'};
fem.border =1;
fem.outform = 'general’;
fem.units = 'cgs.m’;

EBN =5;

Begin Matlab code for COMSOL_linedraw.m

% Generating n random line-segments
i=3;
while i <= n+3
try
cobjs='c.objs={";
cname='c.name={';
ctags='c.tags={";

if HZA ==

% Random rotational orrientation
x1=(((BW/2)-CR)*rand*randsrc);
x2=x1+(rand*CR*randsrc);
y1=((BH-(2*CR))*betarnd(A,B))+CR;
y2=yl+(rand*randsrc*CR);
eval(['g',int2str(i),'=curve2([x1,x2],[y1,y21);'1);

elseif HZA ==

% Purely horizontal rotational orrientation
x1=(((BW/2)-CR)*rand*randsrc);
x2=x1+(rand*CR*randsrc);
y1=((BH-(2*CR))*betarnd(A,B))+CR;
y2=y1;
eval(['g',int2str(i),'=curve2([x1,x2],[y1,y21);'1);

elseif HZA ==

% Horizontal orrientation +/- ROTDEG degrees
x1=(((BW/2)-CR)*rand*randsrc);
x2=x1+(rand*CR*randsrc);
y1=((BH-(2*CR))*betarnd(A,B))+CR;
y2=y1;
PR=[((x1+x2)/2), ((y1+y2)/2)];
eval(['g',int2str(i),'=curve2([x1,x2],[y1,y2]1);']);
eval(['g',int2str(i),'=rotate(g',int2str(i),', randsrc*rand*2*pi*(ROTDEG/360), PR);']);

end

% Generating the commands "c.objs", "c.name", and "c.tags".
ifi>=4
Gs =[Gs, 'g', num2str(i-1), ', '];
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Bs = [Bs, ""C', num2str(i-3), ", ', ';
GsA = [GsA, "'g', num2str(i-1), ", ', '];
end

cobjs = [cobjs, Gs, 'g', num2str(i), '};'];
cname = [cname, Bs, '"'C', num2str(i-2), "", '};'];
ctags = [ctags, GsA, "'g', num2str(i), """, '};'];

eval(cobjs)
eval(cname)
eval(ctags)

fem.draw=struct('c',c,'s',s);
fem.geom=geomcsg(fem);

[nmr,nbs] = geominfo(fem.geom, 'Out’, {'nmr','nbs'});
clear fem.geom

ifi<n+3
clear cobjs cname ctags
end

% Checking for excess domains and boundaries indicating
% overlap. If overlap detected, the last geometry object
% drawn is deleted and re-drawn.
ifi>2
if nmr>2
clearfxn = ['clear g', num2str(i)];
eval(clearfxn)
i=i
elseif nbs > 9+(i-2)
clearfxn = ['clear g', num2str(i)];
eval(clearfxn)
i=i
else
i=i+l1;
end
else
i=i+1;
end
end
end

eval(cobjs)
eval(cname)
eval(ctags)

%fem.draw=struct('c’,c,'s',s);
fem.draw=struct('c',c,'s',s);
fem.geom=geomcsg(fem);



174

% Calculating the number of subdomains (nmr) and boundary segments (nbs)
[nmr,nbs] = geominfo(fem.geom, 'Out’, {'nmr','nbs'});

% Calculating the vertex numbers (se) and vertex coordinates (mp)

% for each boundary segment

[se,mp] = geominfo(fem.geom, 'Out’, {'se’,'mp'});

% Calculating the length of each boundary segment
forj=1:(n+10)
BIG1(j,1) = j;
BIG1(j,2) = se(L,j);
BIG1(j,3) = se(2,j);
end
for j=1:((2*n)+10)
BIG2(j,1) = mp(L,j);
BIG2(j,2) = mp(2,j);
end
for j=1:(n+10)
BIG4(j,1)=j;
for k=1:((2*n)+10)
if BIG1(j,2) == k;
BIG4(j,1) = ;
BIG4(j,2) = BIG2(k,1);
BIG4(j,3) = BIG2(k,2);
end
if BIG1(j,3) == k;
BIG4(j,4) = BIG2(k,1);
BIG4(j,5) = BIG2(k,2);
end
end
end
for j=1:(n+10)
BIG4(j,6) = sqrt(((BIG4(j,4) - BIG4(j,2))*2) + ((BIG4(j,5) - BIGA4(j,3))*2));
end

% Initialize mesh
fem.mesh=meshinit(fem);

% Application mode 1

clear appl

appl.mode.class = 'FIDiffusion’;
appl.border ='on';
appl.assignsuffix ='_di';

clear bnd

bnd.type = {'N0','cont','C','C'};
bnd.cO ={0,0,0,4.3e-8};

% Assigning boundary conditions based on the length of the boundary
% segment and identifying the boundary number of the electrode
IndB="";

=1



while j <= (n+10)
BIG4(j, 6);
is

if BIG4(},6) < MH + (0.01 * MH) & BIG4(j,6) > MH - (0.1 * MH)

IndB = [IndB, '1,'];
A ='casel’;
=i+

elseif BIG4(j,6) >= (BW-MW)/2
IndB = [IndB, '1,'];
A ='case2';
=i+

elseif BIG4(j,6) < MH
IndB = [IndB, '4,'];
A ='case3’;
=i+

elseif BIGA(j,6) < MW + (0.01 * MW) & BIG4(j,6) > MW - (0.01 * MW) & BIG4(j,3) < 0 + 0.0001...

& BIGA4(j,3) > 0 - 0.0001
IndB = [IndB, '2,'];

A ='casedA’;

=i+

elseif BIGA(j,6) < MW + (0.01 * MW) & BIG4(j,6) > MW - (0.01 * MW) & BIG4(j,3) > -...

(MH + (0.01 * MH)) & BIG4(j,3) < -(MH - (0.01 * MH))
IndB = [IndB, '3,'];
A ='case4B';
EBN = j;
=i+
end
end

bndind = 'bnd.ind = [';
bndind = [bndind, IndB, '];'];
eval(bndind)

%Assigning domain conditions
appl.bnd = bnd;

clear equ

equ.D ={2.3e-5,3.2e-5};
equ.init = {0,0};

equ.R = {RTERM,0}; % Reaction terms for subdomains. Example: equ.R = {'-(1.5e-4)*(c>0)',0,0};

equ.ind =[1,2]; % equ.ind =[1,2,3,1,4,4];

appl.equ = equ;
fem.appl{1} = appl;
fem.frame = {'ref'};
fem.border =1;
fem.outform = 'general’;
fem.units = 'cgs.m’;
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Begin Matlab code for COMSOL_solve.m
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% Multiphysics
fem=multiphysics(fem);

% Extend mesh
fem.xmesh=meshextend(fem);

if ST==1;
% Solve problem
fem.sol=femlin(fem, 'solfile','on’, 'solcomp’,{'c'}, ...
‘outcomp’,{'c'});

% Save current fem structure for restart purposes
femO=fem;

% Integrate

BIF(idxC,idxB)=postint(fem,'ndflux_c_di', ...
'dl',[EBN], 'edim’,1);

else

% Solve problem

fem.sol=femtime(fem, 'solfile','on’, 'solcomp’,{'c'}, ...
'outcomp’,{'c'}, 'tlist',[0:5:1750], ...
'atol',{'1e-8'}, 'rtol',1e-7, 'tout', 'tlist');

% Save current fem structure for restart purposes
femO=fem;

% Integrate
BIF(idxC,idxB)=postint(fem,'ndflux_c_di', 'dl',[EBN], ...
'edim’,1, 'solnum’,'end');
end

Begin Matlab code for COMSOL_savedata.m

% File saved as BIFfile_nN_BHXXX_BetaY__STZ CAPW_HZAV_DATE.mat where N is the number of

% capillaries modeled, XXX is the thickness of the bulk tissue, Y

% is the Beta Distribution form (A+B), Z is the model solution type

% (steady state or transient), W is the capillary model form, V

% is capillary horizontal allignment, and DATE is the date the calculation was completed on.

eval(['save BIFfile_n', num2str(n),'_BH',num2str(idxA),'00_','Beta’,num2str(idxD*5),' _ST',...
num2str(ST), '_CAP',num2str(CAP),' _HZA', num2str(HZA),' Date_',date, ' BIF']);

End Matlab code.
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