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How Persuasive is a Good Fit? 
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Quantitative theories with free parameters often gain credence when they "fit" data closely. This is a 
mistake, we argue. A good fit reveals nothing about (a) the flexibility of the theory (how much it cannot 
fit), (b) the variability of the data (how firmly the data rule out what the theory cannot fit), and (c) the 
likelihood of other outcomes (perhaps the theory could have fit any plausible result)–and a reader needs 
to know all three to decide how much the fit should increase belief in the theory. As far as we can tell, the 
use of good fits as evidence receives no support from philosophers of science nor from the history of 
psychology; we have been unable to find examples of a theory supported mainly by good fits that has led 
to demonstrable progress. We consider and rebut arguments used to defend the use of good fits as 
evidence–for example, that a good fit is meaningful when the number of free parameters is small 
compared to the number of data points, or when one model fits better than others. A better way to test a 
theory with free parameters is to (a) determine how the theory constrains possible outcomes (i.e., what it 
predicts); (b) assess how firmly actual outcomes agree with those constraints; and (c) determine if 
plausible alternative outcomes would have been inconsistent with the theory, allowing for the variability 
of the data. 

 
 

How Persuasive is a Good Fit? 
 

Many quantitative psychological 
theories with free parameters are supported 
mainly or entirely by demonstrations that 
they can "fit" data–that the parameters can 
be adjusted so that the output of the theory 
resembles actual results. The similarity is 
often shown via a graph with two functions: 
one labeled observed (or data), the other 
labeled predicted (or theory or simulated). 
That the theory fits data is supposed to show 
that the theory should be taken seriously–
should be published, for example.  

This type of argument is common; 
judging from a search of Psychological 
Abstracts, the research literature probably 
contains thousands of examples. Early 
instances involved sensory processes 
(Hecht, 1934) and animal learning (Hull, 
1943), but it is now used in many areas. 
Here are three recent examples: 
 

1. Cohen, Dunbar, and McClelland 
(1990) proposed a parallel-distributed-
processing model to explain the Stroop 
effect and related data. The model was 
meant to embody a "continuous" view of 
automaticity, in contrast to an "all-or-none" 
(p. 332) view. The model contained many 
adjustable parameters, including number of 
units per module, ratio of training 
frequencies, learning rate, maximum 
response time, initial input weights, indirect 
pathway strengths, cascade rate, noise, 
magnitude of attentional influence (two 
parameters), and response-mechanism 
parameters (three). The model was fit to six 
data sets. Some parameters (e.g., number of 
units per module) were separately adjusted 
for each data set; other parameters were 
adjusted based on one data set and held 
constant for the rest. The function relating 
cycle time (model) to average reaction time 
(observed) was always linear but its slope 
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and intercept varied from one data set to the 
next. That the model could fit several data 
sets led the authors to conclude that 
compared to the all-or-none view, "a more 
useful approach is to consider automaticity 
in terms of a continuum" (Cohen et al., 
1990, p. 357)–although they did not try to fit 
a model based on the all-or-none view. 

2. Zhuikov, Couvillon, & Bitterman 
(1994) presented a theory to explain goldfish 
avoidance conditioning. It is a quantitative 
version of Mowrer’s two-process theory, in 
which some responses are generated by fear, 
some by reinforcement. When some 
simplifying assumptions are made, the 
theory has three equations and six adjustable 
parameters. The authors fit the theory to data 
from four experiments, and concluded that 
"the good fit suggests that the theory is 
worth developing further" (Zhuikov, 
Couvillon, & Bitterman, 1994, p. 32). 

3. Rodgers and Rowe (1993) 
proposed a theory that explains how 
teenagers come to engage in various sexual 
behaviors for the first time. It emphasizes 
contact with other teenagers--a "contagion" 
(p. 479) explanation. The theory has eight 
equations with twelve free parameters. 
Rodgers and Rowe fitted the theory to 
survey data about the prevalence of kissing, 
petting, and intercourse in boys and girls of 
different ages and races and concluded that 
the theory "appears to have successfully 
captured many of the patterns in two 
empirical data sets" (p. 505). This success 
was the main support for the theory. 
 
Why the Use of Good Fits as Evidence is 
Wrong 
 

This type of argument has three 
serious problems. First, what the theory 
predicts–how much it constrains the fitted 
data–is unclear. Theorists who use good fits 

as evidence seem to reason as follows: if our 
theory is correct, it will be able to fit the 
data; our theory fits the data; therefore it is 
more likely that our theory is correct. 
However, if a theory did not constrain 
possible outcomes, the fit is meaningless.  

A prediction is a statement of what a 
theory does and does not allow. When a 
theory has adjustable parameters, a 
particular fit is just one example of what it 
allows. To know what a theory predicts for a 
particular measurement you need to know 
all of what it allows (what else it can fit) and 
all of what it does not allow (what it cannot 
fit). For example, suppose two measures are 
positively correlated, and it is shown that a 
certain theory can produce such a relation–
that is, can fit the data. This does not show 
that the theory predicts the correlation. A 
theory predicts such a relation only if it 
could not fit other possible relations between 
the two measures–zero correlation, negative 
correlation–and this is not shown by fitting a 
positive correlation.  

When a theory does constrain 
possible outcomes, it is necessary to know 
how much. The more constraint–the 
narrower the prediction—the more 
impressive a confirmation of the constraint 
(e.g., Meehl, 1997). Without knowing how 
much a theory constrains possible outcomes, 
you cannot know how impressed to be when 
observation and theory are consistent. 

Second, the variability of the data 
(e.g., between-subject variation) is unclear. 
How firmly do the data agree with the 
predictions of the theory? Are they 
compatible with the outcomes that the 
theory rules out? The more conclusively the 
data rule out what the theory rules out, the 
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more impressive the confirmation. For 
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example, suppose a theory predicts that a 
certain measure should be greater than zero. 
If the measure is greater than zero, the 
shorter the confidence interval, the more 
impressive the confirmation. That a theory 
fits data does not show how firmly the data 
rule out outcomes inconsistent with the 
theory; without this information, you cannot 
know how impressed to be that theory and 
observation are consistent. 

Adding error bars may not solve this 
problem; it is variability on the constrained 
dimension(s) that matters. For example, 
suppose a theory predicts that several points 
will lie on a straight line. To judge the 
accuracy of this prediction, the reader needs 
to know the variability of a measure of 
curvature (or some other measure of non-
linearity). Adding vertical error bars to each 
point is a poor substitute (unless the answer, 
linear or non-linear, is very clear); the 
vertical position of the points is not what the 
theory predicts. 

 
Figure 1: Four possible relationships between theory and data. 
(Measures A and B are both measures of behavior. For both 
measures, the axes cover the whole range of possible values. The 
dotted areas indicate the range of outcomes that would be 
consistent with the theory. The error bars indicate standard errors. 
In every case, the theory can closely fit the data, but only when 
both theory and data provide substantial constraints does this 
provide significant evidence for the theory.) 

 

To further illustrate these points, 
Figure 1 shows four ways a "two-
dimensional" prediction–a constraint 
involving two measures at once–can be 
compatible with data. Measures A and B in 
Figure 1 are both derived from 
measurements of behavior. Either might be 
quite simple (e.g., trials to criterion) or 
relatively complex (the quadratic component 
of a fitted function); it does not matter. The 
axis of each measure covers the entire range 
of plausible values of the measure before the 
experiment is done (e.g., from 0 to 1, if the 
measure is a probability). The dotted area 
shows the predictions of the theory, the 
range of outcomes that are consistent with 
the theory. In the two upper panels of Figure 
1, the theory tightly constrains possible 
outcomes; in the two lower panels, it does 
not. In each case there is one data point. In 
the two left-hand panels, the observations 
tightly constrain the population value; in the 
two right-hand panels, they do not. In every 
case, the data are consistent with the theory 
(the data point is within the dotted area), 
which means in every case the theory can 
closely fit the data. But only the situation in 
the upper left panel is substantial evidence 
for the theory. 

Third, the a-priori likelihood that the 
theory will fit--the likelihood it will fit 
whether or not it is true--is ignored. Perhaps 
the theory could fit any plausible result. It is 
well-known that a theory gains more support 
from the correct prediction of an unlikely 
event than from the correct prediction of 
something that was expected anyway. 
Lakatos (1978) made this point vividly: "It 
is no success for Newtonian theory that 
stones, when dropped, fall towards the earth, 
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no matter how often this is repeated. . . . 
What really count are [the confirmation of]  
dramatic, unexpected, stunning predictions" 
(p. 6), such as the return of Halley’s comet. 
"All the research programmes [i.e., theories] 
I admire have one characteristic in common. 
They all predict novel facts, facts which had 
been either undreamt of, or have indeed 
been contradicted [i.e., predicted to not 
occur] by previous or rival programmes" (p. 
5).  

Bayes’s Theorem, interpreted as a 
statement about degrees of belief, is a 
quantitative version of this idea. Bayes’s 
Theorem is 
 

         P(E | H) 
P (H | E) = ------------- P (H), 

P(E) 
 

where H (hypothesis) is a theory and E 
(event) is a particular outcome (Howson & 
Urbach, 1993, p. 28). P(H) is the plausibility 
of H before data collection, P(E) is the 
perceived likelihood of P before data 
collection, P(E | H) is the likelihood of E 
given that H is true, and P(H | E) is the 
plausibility of H after data collection–after E 
has been observed. When E is a prediction 
of H, P(E | H) = 1. Thus, according to this 
theorem, when P(E) is large–close to 1–
observation of E will have little effect on 
belief in H. "Strong inference" experiments 
(Platt, 1964)–where different theories make 
contradictory predictions–are a practical 
application of this idea. They embody the 
notion that the best evidence for a theory is 
evidence that would be otherwise unlikely. 
For more discussion of the importance of the 
a-priori likelihood of a prediction, see 
Howson and Urbach (1993, especially pp. 
123-126). 

This principle–predictions should be 
surprising–is relevant to psychology because 

psychological data is often not surprising. 
Therefore prediction of such data cannot 
provide much support for any theory. 
Quantitative theories are usually fit to 
functions: A measure of behavior (y) 
recorded at several values of a procedural 
variable (x)–for example, probability of 
correct recall as a function of retention 
interval. It is never plausible that the points 
on the function are independent of each 
other, in the sense that knowing the y values 
of some of the points does not help you 
predict the y values of rest of the points. 
And the lack of independence is not trivial; 
inevitably the plausible outcomes are a tiny 
fraction of the possible outcomes. 

The need to make predictions that 
are at least a little implausible seems to have 
been overlooked by quantitative theorists. 
When a theory with three free parameters is 
used to fit a function with 20 data points, 20 
(x, y) pairs, it is obvious that the theory must 
somehow constrain the function; it could not 
fit all possible functions with 20 points 
(keeping the x values fixed but allowing the 
y values to vary). Plainly, some results 
would contradict the theory. This seems to 
have been the sort of reasoning, either 
implicit or explicit, that has convinced 
theorists and reviewers that the data provide 
a test of the theory. But whether any 
plausible results would contradict the theory 
is not so clear. 

An especially simple example of the 
problem involves asymptotic behavior. 
Suppose a learning experiment measured 
percent correct as a function of trial number. 
Performance improved for several trials but 
eventually–say, after 15 trials--leveled off at 
a value less than 100% correct–say, 93%. To 
fit this data, a theory will presumably need a 
parameter that somehow corresponds to the 
asymptotic level of performance (93% 
correct) and a parameter that corresponds to 
when this level is reached (after 15 trials). It 
needs these two adjustable parameters 
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because both aspects of the data, 15 trials 
and 93%, surely depend on procedural 
details. Yet once these two parameters are 
properly set the theory will accurately 
predict performance at an unlimited number 
of trial numbers: It will predict 93% correct 
on Trial 16, on Trial 17, etc. If the 
experiment measured asymptotic 
performance for 50 trials (Trials 16-65), a 
theory–any theory–could quite accurately 
predict 50 data points with just two free 
parameters. Yet this success would add 
nothing to the theory’s credibility. 

A defender of the use of good fits as 
evidence might reply that fits are often 
judged by the percentage of variance 
explained, which fitting the same data value 
(e.g., 93%) many times does not increase 
very much. However, the problem does not 
go away when the fitted data vary. The 
functions used to assess psychological 
theories are almost always "smooth," in the 
sense that if you know, for example, the 
extreme y values and alternate intermediate 
values (e.g., if x = 1, 2, . . . , 9, the values of 
y for x = 1, 3, 5, 7, and 9), you can estimate 
the remaining values of y quite closely by 
linear interpolation. This means that any 
theory that does a good job of fitting about 
half of the data will do a good job fitting the 
other half–regardless of the theory’s 
correctness. Suppose, for example, the 
function consists of 9 points at x = 1, 2, . . ., 
9. A theory with five orthogonal parameters 
is fit to the data for x = 1, 3, 5, 7, and 9, 
which it will fit perfectly. (The n parameters 
of a formula or theory are orthogonal if the 
function can fit exactly n data points. For 
example, a + bx has two orthogonal 
parameters, but ax + bx does not.) Then the 
fitted parameters are used to predict the 
values of y for x = 2, 4, 6, and 8. The 
theory–any plausible theory--will do a very 
good job. Although it is standard practice to 
say there were four degrees of freedom with 
which to "test" the theory, this is misleading; 

the goodness of fit was inevitable, and 
therefore provides no support for the theory. 
The smoothness of almost any psychological 
function seems inevitable (i.e., is very 
plausible before measurement) because of 
both (a) previous data (the number of 
smooth functions in that area of research is 
large, the number of jagged functions is zero 
or near zero) and (b) extant theories (which 
predict smooth functions). If jagged 
functions began to be observed, or if 
plausible theories predicted jagged 
functions, then–and only then–would the 
prediction that a function will be smooth be 
interesting. 

But the heart of the problem is not 
using constant functions or smooth functions 
to test theories; it is using functions that 
have simple shapes. Most functions 
measured by psychologists, and most of the 
functions to which quantitative theories are 
fit, are concave up, concave down, or 
indeterminate between the two (i.e., close to 
linear). For example, learning curves 
(performance as a function of number of 
training trials) and retention functions 
(memory as a function of time since 
learning) usually fit this description. With 
typical amounts of data, we suspect, several 
equations with three orthogonal parameters, 
such as a quadratic equation, will fit 
reasonably well. The residuals may appear 
systematic, but the remaining structure (the 
structure in the residuals after the three-
parameter fit is removed) will probably be 
impossible to detect reliably. The number of 
psychological research reports that have 
found a reliable cubic component, or reliable 
structure in the residuals after a three-
parameter fit is removed, is very low; we do 
not know of even one example. For 
indications of the typical precision of 
retention functions, see Rubin and Wenzel 
(1996) and Rubin, Hinton, and Wenzel (in 
press).  



Psychological Review (in press) 
Running head: Testing Theories With Free Parameters 

 
 

The practical effect of these 
considerations is that such functions can 
usually provide only a little guidance in 
choosing a theory–regardless of how many 
points they contain. The "first-degree" 
structure (overall level) is uninteresting; the 
sign of the "second-degree" structure (slope) 
is usually obvious (e.g., memory decays 
with time, performance improves with 
practice) and its size is uninteresting 
(because it will presumably depend on 
procedural details not covered by theory); 
and the "fourth-degree" and higher 
structures cannot be made out. That leaves 
the "third-degree" structure (curvature) as a 
source of guidance. If the data were 
remarkably close to linear on some scale 
(the original y or x scales, or some 
transformation, such as logarithmic, of 
either or both), that would be quite useful 
because most two-parameter theories would 
fail to predict it (they would produce only 
curved functions on that scale); but that is 
rare. If the data were convincingly concave 
up (say), and this is not due to floor or 
ceiling effects, the best one can do is 
determine what sort of theories do not 
predict this, i.e., what this finding rules out; 
perhaps it will cut the number of plausible 
candidate theories in half. That is progress, 
of course, but it cannot strongly favor any 
one theory. (The difficulty of extracting 
much information from the usual functions 
suggests that theorists should also look for 
predictions that relate two measures of 
behavior–as in Figure 2, described below.) 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  A prediction of a version of Ashby’s (1982) cascade 
model, and some data. (Each of the many small points is derived 
from the results of a simulated 2 x 2 experiment. The large points, 
with standard-error bars, are from actual experiments.  From 
Roberts & Sternberg [1993]). 

It matters that the plausible outcomes 
are a small fraction of the possible outcomes 
because the plausible theories are crowded 
into the same small space, in the sense that 
they can predict the plausible outcomes and 
no others (e.g., they can only predict smooth 
functions). In the early days of chemistry, it 
was repeatedly determined that when 
hydrogen gas and oxygen gas combined to 
form water, the volume of oxygen used up 
was very close to half the volume of the 
hydrogen used up (Ihde, 1964). After several 
repetitions of this result, it became the only 
plausible, in the sense of unsurprising, 
outcome of those measurements. However, 
the predictions of plausible theories of the 
composition of water (HO? HO2? H2O?) 
remained scattered--that is, predicted a wide 
range of combining ratios. This is why the 
actual ratio could be used to choose between 
them. In contrast, the psychological results 
we have been discussing–behavior at 
asymptote, smooth functions, functions with 
simple shapes–are both (a) likely on the 
basis of experience and (b) easily explained. 
When performance reaches asymptote and 
stays there–no sudden drops–we are not only 
not surprised, we are not puzzled. It is easy 
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to think of a theory of learning that predicts that after performance reaches asymptote it
will stay there; indeed, it is hard to think of a 
theory that predicts anything else. When a 
function turns out to be smooth, this is not 
only unsurprising but un-mysterious; it is 
hard to think of a theory that would not 
produce a smooth function. Likewise for 
functions with simple shapes: At the level of 
precision to which they are measured in 
most experiments, these results are not only 
unsurprising but could be produced by many 
different plausible theories. 

Clearly, then, showing that a theory 
fits data is not enough. By itself, it is nearly 
meaningless. Because of the flexibility of 
many theories, the variability of 
measurements, and the simplicity of most 
psychological data functions, it is often quite 
possible that the theory could fit any 
plausible outcome to within the precision of 
the data. The reader has no way of knowing 
which panel of Figure 1 the evidence 
resembles. 

 
Similar Criticisms 
 

Criticisms of the use of good fits as 
evidence have been made by others, usually 
in the context of specific models (Coltheart 
& Coltheart, 1972; Hintzman, 1991; 
Johnston, van Santen, & Hale, 1985; 
Massaro, 1988; Roberts & Sternberg, 1993; 
Roediger & Neely, 1982; Wexler, 1978). 
When discussing specific models, these 
critics have often shown, or pointed out, not 
just that this sort of evidence may be 
misleading–as we argue–but that it has been 
misleading. These demonstrations fall into 
three categories: 

1. A theory "fits too much"–it can 
generate such a wide range of outcomes that 
the fact that it can generate the actual results 
means little. Two examples: (a) Massaro 
(1988) showed that " a single connectionist 
model can simulate results that imply [i.e., 
were generated by] mutually exclusive 

psychological processes" (Massaro, 1988, p. 
219). (b) Wexler (1978), reviewing 
Anderson’s ACT theory, noted that "ACT 
can model not only the Sternberg result, but 
also its opposite, or anything else of the 
sort" (Wexler, 1978, p. 338). This flexibility 
makes the theory "so weak that there is no 
way to find evidence either for or against it" 
(Wexler, 1978, p. 346).  

2. The same data can be closely fit 
by a similarly-flexible theory making quite 
different assumptions. This means, of 
course, that the fits do not meaningfully 
support the assumptions of the theory. One 
example: Salasoo, Shiffrin, and Feustel 
(1985) found that a model with 14 free 
parameters could fit a variety of word-
recognition data. Johnston, van Santen, and 
Hale (1985), using the Salasoo et al. data, 
showed that "a large family of rather 
different models" (Johnston et al., 1985, p. 
507) with roughly the same number of free 
parameters could also fit the data. Johnston 
et al (1985, p. 507) conclude, "because our 
models fit the data [equally well] assuming 
only one higher level memory 
representation, there is no support for the 
assumption [of Salasoo et al.’s model] that 
two kinds of memories–episodic and 
permanent–underlie the effects of repetition 
on identification."  

3. Although a theory closely fits 
data, at least one of its assumptions is 
wrong. Three examples: (a) As pointed out 
by Coltheart and Coltheart (1972), the 
concept-learning model of Bower and 
Trabasso (1964) "achieved extraordinary 
correspondences between predicted and 
obtained results" (Coltheart & Coltheart, 
1972, p. 294) yet one of the assumptions of 
the model (independence of path) turned out 
to be wrong (Trabasso & Bower, 1966). (b) 
Coltheart and Coltheart (1972) pointed out 
that four assumptions of Rumelhart’s (1970) 
model of tachistoscopic recognition were 
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incompatible with experimental evidence, yet the model fit data quite closely. Like us, 
Coltheart and Coltheart (1972) conclude "it 
is poor strategy to evaluate a mathematical 
theory only by assessing how well" (p. 294) 
it can fit data. (c) According to Hinztman 
(1991), Bower’s (1961) model of paired-
associate learning fit numerous data sets 
with "incredible precision" (p. 50) although 
its central assumption was evidently quite 
wrong. 

Although each critique (with the 
exception of Coltheart and Coltheart’s) 
focused on a particular theory, the diversity 
of the theories raises the possibility that the 
fundamental problem is not with any one 
theory or class of theories (e.g., 
connectionist theories are too flexible) but 
something broader. We suggest that the 
fundamental problem, as Coltheart and 
Coltheart (1972) argued, is a method of 
theory evaluation (fitting theories to data) so 
inadequate that serious flaws go undetected. 
In the fields of statistics and computer 
science, a problem related to what we 
criticize here, called overfitting, has been 
familiar for many years (e.g., Anscombe, 
1967; Leahy, 1994; Schaffer, 1993). The 
possibility of overfitting arises when a 
model that does a good job of fitting data 
performs poorly in other ways. For instance, 
a neural-network program trained to classify 
fruit using one sample eventually achieved 
90% accuracy, but did much worse with a 
second sample from the same population 
(Donlin & Child, 1992). Overfitting occurs 
when the model is too flexible. Such 
experiences have taught statisticians and 
computer scientists that models should not 
be judged only by how well they fit a data 
set; there must be assessment of, and penalty 
for, flexibility (e.g., Hurvich, 1997). 

Although the arguments against the 
use of good fits as evidence strike us as 
overwhelming, we nevertheless try to 
present the other side, arguments in favor of 
the practice. In what follows, we consider 

several ways the use of good fits as evidence 
might conceivably be justified–by 
philosophy of science, the history of 
psychology, and arguments that the practice 
is acceptable when certain conditions are 
met. 
 
Does Philosophy of Science Support the Use 
of Good Fits as Evidence? 

 
Can the use of good fits to support 

theories be justified by some well-accepted 
doctrine in the philosophy of science? 
Philosophers of science do not appear to 
have considered this particular practice, but 
of course much has been written about the 
general question of how to test theories, with 
considerable consensus (Kitcher, 1993; 
Howson & Urbach, 1989). Suppose we have 
a theory that we want to test. According to 
this consensus, there are essentially two 
ways to do this: 

First, we can test a prediction of the 
theory, i.e., make an observation that might 
yield results that would contradict the 
theory. Karl Popper, probably the most 
influential philosopher of science (Bondi, 
1992), advocated "falsifiability" as the 
essential feature of scientific inquiry. 
According to Popper (1959), a theory must 
specify some possible observations that 
could falsify it, and a theory is supported by 
observations only if the observations might 
have had outcomes inconsistent with the 
theory.  

Second, if there are competing 
(incompatible) explanations of the facts our 
theory explains, we can test a prediction of a 
competing theory. In many cases, alternative 
theories are incompatible, i.e, if one theory 
(T0) is correct other explanations (T1, T2, 
etc.) of the same facts must be wrong. In 
these cases elimination of alternatives 
supports T0. This approach was first 
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sketched by Bacon (1620/1960; Urbach, 1987)

If alternative theories exist and make 
differing predictions (e.g., one theory says a 
certain measurement should be zero, another 
theory says it should be positive), we can 
combine the two approaches and test a 
prediction of the theory and a prediction of a 
competing theory at the same time. When 
the two predictions are incompatible (non-
overlapping), this is what Platt (1964) called 
strong inference. (Efficient inference might 
have been a better name. The results will not 
be decisive–"strong"–unless several other 
conditions are met.) 

When it is claimed that a good fit 
supports a theory, what sort of test is this? 
Nothing is said about competing theories, 
eliminating the second method. Perhaps 
theorists who support theories with good fits 
to data believe that they have tested a 
prediction of the theory (the prediction that 
the theory will fit the data), a Popperian test. 
But they have not shown that, given the 
precision of the data, there were any 
plausible outcomes that the theory could not 
have fit. 

Thus we do not find any support 
among philosophy of science for the use of 
good fits to support theories. 

 
Does the History of Psychology Support the 
Use of Good Fits as Evidence? 
 

The use of close fits as evidence 
might be justified by showing that it has 
"worked"–led to demonstrable progress. We 
have searched the history of psychology for 
theories originally supported mainly or 
entirely by good fits to data that eventually 
found support from other sources (e.g., tests 
of specific assumptions, confirmation of 
new predictions). We have been unable to 
find even one example. Although several 
reviewers of this article have disagreed with 
our conclusions, they did not provide 
examples of such a theory.  

An early example of the use of close 
fits by themselves to support a theory is 
Hecht’s (1931) theory of color vision–a 
theory that is nowadays almost completely 
forgotten. In contrast, Hering’s theory of 
color vision, based on quite different data, is 
still important (Hurvich, 1981). Another 
early example of the practice was Principles 
of Behavior (Hull, 1943), which may have 
been cited more often in the experimental-
psychology literature of the 1940s and 1950s 
than any other work. In spite of numerous 
excellent fits, it seems fair to say that none 
of Hull's theoretical ideas supported by 
fitted curves is still influential. Mackintosh 
(1983), for instance, refers to the "legacy" 
(p. 2) of Thorndike, Pavlov, Konorski, and 
Tolman--but not Hull.  

Later quantitative learning theories 
were much simpler than Hull's but still 
relied on good fits for support. In what 
Jenkins (1979) called a "ground-breaking 
paper" (p. 206), Estes (1950) used the 
following equation, derived from a theory of 
learning, for the mean latency to fit some 
runway learning data, with L the latency to 
leave the start box and T the trial number: 

 

 
 
The parameters 2.5, .9648, and -.12 

were of course estimated from the data. 
According to Estes, the fit was "satisfactory" 
(p. 101). Satisfactory or not, a reader could 
not know what to make of this. The 
variability of the data was not shown, so it 
was unclear if the deviations were reliable. 
Nor was it clear that any plausible results 
could have contradicted the theory. 
Although many theorists seemed to have 
been impressed at the time--as Jenkins 
(1979) says, Estes’s (1950) work led to 
many similar theories--later theorists were 
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less impressed. A look at any recent animal- learning text suggests that the mathematical 
learning theorists of the 1950's and 60's, in 
spite of many successful fits, discovered 
nothing that formed the basis for current 
theories of learning. The use of good fits as 
evidence probably received a boost from the 
advent of cheap and powerful computers, 
which made it much easier to search a large 
parameter space for the best fit. 
Connectionist theorizing, in particular, took 
advantage of the new flexibility in model-
building that seemed to be available. An 
influential early paper in this area 
(Anderson, 1973) proposed an explanation 
of some reaction-time results with short 
memorized lists. Empirical support for the 
theory consisted almost entirely of 
demonstrations that it could fit a variety of 
data. The fits involved 5-8 free parameters, 
which changed from one data set to the next. 
It was unclear what the theory predicted, 
that is, what it could not fit; because the 
constraints were unclear, variability on the 
constrained dimensions was of course 
unclear. Because the number of data points 
was much larger than the number of free 
parameters, the theory surely ruled out many 
possible outcomes; but whether it ruled out 
any plausible outcomes was not clear. 

An example of later work along 
these lines is Seidenberg and McClelland’s 
(1989) theory of visual word recognition and 
pronunciation. Their goal was a 
connectionist model "that exhibited many of 
the basic phenomena of word recognition 
and naming" (p. 529). The evidence for the 
model consisted of numerous graphs that 
showed a close fit between two measures: 
reaction time (observed in experiments) and 
squared error (produced by the model). 
What the model could not fit was unclear.  

In Hinton and Anderson (1981) and 
Rumelhart, McClelland, and the PDP 
Research group (1986), the first influential 
books on connectionism, the issue of how to 
test such flexible theories received almost no 

attention. In spite of the popularity of 
connectionist models, and numerous good 
fits, we have yet to encounter even one such 
model whose predictions have been 
determined, much less verified or shown to 
rule out plausible results. Massaro (1988) 
made similar points. Without accurate 
predictions in cases where the prediction 
could have plausibly been wrong, the claim 
that connectionist theories have helped us 
understand the brain seems to rest entirely 
on belief in the assumptions of these 
theories. 

So we do not find any support in the 
history of psychology for the use of good 
fits to support theories.  
 
Defenses of the Use of Good Fits as 
Evidence 
 

Many psychologists, we suspect, 
realize that not all good fits provide 
substantial support for a theory. Yet they 
believe that their example is sound because 
it satisfies certain conditions. Although the 
use of good fits as evidence may in general 
be flawed, they believe that in certain 
restricted situations it is helpful. Here we 
consider the arguments along these lines we 
have encountered most frequently. 

Defense 1. A good fit is impressive 
when there are more observations in the data 
set than free parameters in the model. "A 
standard rule of thumb states that a model 
has too many [free] parameters to be testable 
if and only if it has at least as many 
parameters as empirically observable 
quantities" (Bamber & Van Santen, 1985, p. 
443). For example, if a model has 5 free 
parameters and there are 20 data points, this 
supposedly gives 15 degrees of freedom for 
assessing the fit. 

It is a generous rule of thumb. In 
fact, the number of free parameters in a 
theory provides an upper bound on its 
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flexibility. If a theory has five orthogonal free parameters, then it will be able to fit 
exactly any five data points; if the 
parameters are not orthogonal, however, the 
number of data points the theory can fit 
exactly is less (as in the example given 
earlier, ax +bx, which has two parameters, a 
and b, but cannot fit any two data points). 
The more serious distortion, however, is the 
idea that the number of data points indicates 
the range of possible outcomes–that if there 
are ten data points, the possible outcomes 
could have plausibly been anywhere in a 
ten-dimensional space. As argued above, 
this is usually a great overstatement. A more 
realistic view is that most functions provide 
only one useful piece of information for 
testing theories: whether the function is 
concave up, nearly linear, or concave down 
(when the data are scaled so that all three 
possibilities are plausible).  

Defense 2. My model fits better than 
another model. Theorists often compare the 
fits produced by different models and 
assume that the best-fitting one deserves 
belief because it has won a kind of 
competition (e. g., Ashby & Lee, 1991; 
Atkinson & Crothers, 1964; Bush & 
Mosteller, 1959; Nosofsky, Kruschke, & 
McKinley, 1992). There are several 
problems with this approach. First, the best-
fitting model may merely be the most 
flexible model rather than the best model 
(Collyer, 1985)–a lesson that statisticians 
and computer scientists learned long ago, as 
discussed above. To equate the flexibility of 
the theories being compared, psychologists 
sometimes adjust goodness-of-fit statistics 
according to a general formula (Akaike, 
1974; Takane & Shibayama, 1992). 
Unfortunately, this is inadequate because the 
flexibility added by a free parameter 
depends on the details of the theory 
(compare ax + bx with ax + b–both have two 
parameters but the latter is more flexible). 
The only accurate way to "allow" for the 
flexibility of a theory, as far as we know, is 

to determine what the theory predicts. 
Second, it takes no account of the variability 
of the data. Suppose, for example, that 
Theory X predicts that a certain 
measurement should be 5 while Theory Y 
predicts it should be 7. If the actual result is 
5.5 ± 10, Theory X will fit better, yet there 
is no good reason to prefer it. 

Fitting several plausible models to 
learn if any can be ruled out makes sense, 
especially when combined with an effort to 
find features of the data that are hard to fit. 
But this is not what is usually done. For 
example, Zhuikov, Couvillon, and Bitterman 
(1994) compared the fit of two models--the 
favored model and a simpler model--to some 
of their data. Because the simpler model was 
a subset of the favored model, with fewer 
free parameters, it was certain that the 
favored model would fit better, yet Zhuikov 
et al. apparently took this result to be 
meaningful. They did not show that the data 
ruled out the simpler model. Rodgers and 
Rowe (1993), in their study of teenage 
sexual behavior, fit two different models 
making somewhat different assumptions. 
Although "both models were consistent with 
the data according to chi-square tests" (p. 
495), Rodgers and Rowe favored one of 
them. 

Comparing the fit of several theories 
should not be confused with comparing their 
predictions, which is always worthwhile. In 
these fit-comparison situations, the 
predictions–that is, the constraints–of the 
various theories are not even determined, 
much less compared, at least in the examples 
we have seen. 

Defense 3. The research and editorial 
processes protect readers from too-flexible 
models. During the theory-building process, 
the argument goes, many models are 
rejected because they cannot fit the data. 
When the theorist finally finds a model that 
can fit the data, he or she hurries to publish 
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it, and does not describe in the publication all the failures. A problem with this 
argument is that a reader has no way of 
knowing if it is true; nor can the reader be 
sure that the published theory is no more 
flexible than the rejects. A similar argument 
is that reviewers can supposedly tell when a 
model is too flexible. Again, a reader has no 
way of knowing if this is true. The 
plausibility of contradictory outcomes, 
outcomes that the theory cannot fit, is 
crucial information that should be made 
explicit. 

 
Better Ways to Judge Theories with Free 
Parameters 
 

The problems described earlier have 
straightforward solutions. 

Problem 1: What the theory predicts 
is unclear. Solution: determine the 
predictions. To determine the predictions of 
a theory with free parameters requires 
varying each free parameter over its entire 
range, in all possible combinations (i.e., 
surveying the entire parameter space). For 
each combination of parameters (each point 
in the parameter space) the theory generates 
simulated behavior. The prediction of the 
theory, for any measure (any function of the 
observations, real or simulated), is the range 
of outcomes that the theory can produce 
(Sternberg, 1963, pp. 89-90). For example, 
suppose a theory has two free parameters, a, 
which can range from 0 to 10, and b, which 
can range from 0 to 1. To determine what 
the theory predicts for, say, trials to 
criterion, one would vary both a and b over 
their entire ranges, in all possible 
combinations (i.e., over the whole two-
dimensional parameter space) and determine 
the predicted trials to criterion for each 
combination of parameter values (i.e., for 
each point in the parameter space). The 
prediction of the theory for this dimension 
of data would be the entire range of trials to 
criterion that the theory could produce. 

Using intuition, experience, and trial and 
error, the theorist must search among the 
many predictions of a theory to find those 
narrow enough to plausibly be falsified. 

Problem 2: The variability of the 
data is unclear. Solution: Show the 
variability of the data. As discussed above, it 
is variability on the constrained dimensions 
that is important. This means that Problem 1 
(predictions unclear) must be solved first. 

Solutions to Problems 1 and 2 are 
illustrated by Roberts and Sternberg (1993), 
who tested Ashby’s (1982) version of 
McClelland’s (1979) cascade model. The 
tested version of Ashby’s (1982) model had 
two free parameters–the time constants of 
two processes. Roberts and Sternberg varied 
those parameters over all plausible values 
they could have in a 2 x 2 experiment. 
Examination of simulated results covering 
the entire parameter space showed that a 
certain measure derived from reaction times 
(a main-effect difference statistic) was 
constrained by the model, and that this 
constraint varied with a second measure (a 
variance-change statistic). Both statistics 
vaguely resemble measures of interaction. 
Figure 2, from Roberts and Sternberg 
(1993), shows this prediction and some data. 
Each small point represents the results of a 
simulated 2 x 2 experiment; the area filled 
by these points is the prediction of the 
theory. The large points, with standard-error 
bars based on between-subjects variation, 
represent data. Some of the points fall within 
the predicted area, but none firmly; and 
several points fall firmly outside the 
predicted area, inconsistent with the model. 
Thus the model fails the test. 

Problem 3: Perhaps the theory could 
fit any plausible result. Solution: Show that 
there are plausible results the theory cannot 
fit. It is not enough to show that there are 
some results the theory cannot fit; to 
meaningfully constrain the data, there must 
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be some plausible results the theory cannot fit. 

Suppose you test a theory, and 
discover that it accurately predicts the 
results–theory and data are consistent. 
Which quadrant of Figure 1 does the 
evidence resemble? To find out, you need to 
determine the range of plausible alternative 
results–predictions different from the 
prediction of the theory being tested. How 
we decide what is plausible is a big subject 
(e. g., Hogarth, 1980), but everyone agrees 
that both theory (beliefs about how the 
world works) and data (actual observations) 
are important, that we use both to judge the 
likelihood of future events. For example, 
Lakatos (1978), in the statement quoted 
earlier, mentions both. It is important, he 
says, that predictions be surprising--differ 
from "stones falling to earth when dropped" 
(expectations based on experience) or from 
expectations based on "rival programmes" 
(predictions of other theories). 

Determining what other theories 
predict needs no explanation. However, the 
idea of determining what experience 
(unexplained by any theory) predicts may be 
unfamiliar. Earlier measurements similar to 
the current measurement may have 
generated a range of outcomes, which would 
suggest that the current measurement could 
have a similar range. Or earlier 
measurements may have suggested 
empirical generalizations that predict a 
specific value or range of values in the 
current case. 

The range of plausible outcomes is 
the union of the predictions based on other 
plausible theories and expectations based on 
other data. For example, if other theories 
suggest the measurement might be 10 to 30, 
and other data suggest it might be 20 to 50, 
the plausible range is 10 to 50. For the 
observed consistency of theory and data to 
be meaningful, it is necessary only that some 
of this range fall outside what the tested 

theory predicts. Of course, the more of this 
range that the tested theory cannot explain, 
the more impressive the observed 
consistency. Because pointing out plausible 
alternatives is rare, many theorists may not 
have realized that doing so would strengthen 
the case for the theory they favor. 

To compare plausible alternative 
outcomes with what the tested theory could 
explain, it is necessary to combine (a) the 
flexibility of the tested theory and (b) the 
variability of the actual results. As Figure 1 
illustrates, the evidence will not be 
convincing if either is large compared to the 
range of plausible outcomes. 

In practice, this comparison requires 
four steps. First, determine what the theory 
of interest predicts. For example, suppose it 
predicts that the measurement will be 
between 40 and 50. Second, determine the 
95% confidence interval based on the data. 
Suppose the confidence interval is the 
average ± 10. Third, widen the prediction 
interval appropriately. In the example, the 
widened interval is 30 (40 -10) to 60 (50 + 
10). The new interval (30 to 60) is the range 
of results (i.e., averages) consistent with the 
theory, given the variability of the data. 
Unlike familiar intervals, the actual result 
will probably not be in the middle of the 
interval. Fourth, compare actual and 
plausible results to the widened interval. The 
results should increase belief in the theory 
only if the actual result is within the 
widened interval and at least one plausible 
alternative result is outside the widened 
interval. 

Figure 3 shows two examples. The 
solid line shows what the theory predicts; 
the dotted lines extend the prediction to 
allow for the variability of the data. In both 
cases, the tested theory could closely fit the 
result. But only the lefthand pattern of 
results should increase belief in the theory.
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Figure 3: How the plausibility of other results affects the 
interpretation of the observed results. (The solid lines indicate the 
prediction of the tested theory. Dotted lines, based on the 
variability of the data, indicate 95% confidence intervals.) 
 

Sternberg’s (1966) memory-scanning 
data allow a simple real-life illustration. In 
the varied-set procedure, the subject saw a 
list of one to six digits. After a brief delay, 
the subject saw a test digit, and indicated as 
quickly as possible whether it was on the 
list. The measure of interest was the reaction 
time to respond "yes" or "no." Mean 
reaction time increased with list length. An 
interesting theoretical question is whether 
the results support a theory of serial memory 
scanning, a simple version of which implies 

that the increase should be linear with list 
length.  

All possible outcomes were not 
equally plausible, of course. Based on 
previous results, it was quite likely, before 
the experiment was done, that reaction time 
would change monotonically with list 
length–for example, that the reaction time 
with list length 2 would be between the 
reaction time for list length 1 and the 
reaction time for list length 3 (within 
experimental error). This restriction should 
be taken into account when deciding how 
impressed to be with observed linearity–or, 
more precisely, a failure to reject the 
hypothesis of linearity–because a large 
fraction of the results that would have 
rejected that hypothesis were implausible. 
To not take this into account would give the 
hypothesis of linearity an undeserved boost. 

A realistic assessment of the 
evidence for linearity thus requires a 
plausible alternative prediction (or range of 
predictions). One alternative is provided by 
the empirical generalization that reaction 
time is linear with logarithm of the number 
of stimulus-response combinations (Hick, 
1952; Hyman, 1953). Considering each  

stimulus-response combination as one item 
(or two items) to be remembered suggests 
the empirical generalization that reaction 
time is linear with the logarithm of the 
number of items to be remembered. This 
generalization might be wrong, of course, 
but before Sternberg collected his data it 
was plausible, and therefore could be used to 
generate plausible outcomes. In Sternberg’s 
(1966) experiment–assuming that each digit 
to be remembered is an item--it implies that 
reaction time would be linear with the 
logarithm of list length (the number of digits 
to be remembered). Certain theories also 
suggest this relation (Sternberg, 1966).  

When at least one plausible 
alternative to linearity has been identified, it 

becomes possible to assess how much 
results consistent with linearity support a 
theory that predicts linearity. One way to 
test the prediction of linearity is to use the 
reaction times with lists of length one and 
six to predict by interpolation the average 
reaction time with lists of length three and 
four. The logarithmic prediction can be 
tested in a similar way. Figure 4 shows the 
results of this analysis. The results agree 
with the linear prediction, but reliably differ 
from the logarithmic prediction. Because the 
results rule out a plausible alternative, the 
fact that they are consistent with a prediction 
of the serial-scanning theory provides real 
support for that theory. 
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Why Has the Use of Good Fits as Evidence 
Persisted? 
 
Why has the practice of using good fits to 
support theories been so popular? Its flaws--
it hides the flexibility of the theory and the 
variability of the data, and ignores the 
plausible range of the data–are large and 
easy to understand. There are several 
possible reasons:  

1. A desire to imitate physics. This 
may have been important initially. In 1929, 
Clark Hull "purchased and became deeply 
familiar with Newton’s Principia, a work 
which strongly influenced his thinking from 
that time on" (Beach, 1959, pp. 128-9). 
Presenting a graph with several data points 
and a line through the points makes it appear 
that the theory being fit makes narrow 
quantitative predictions, like many physical 
theories. 

2. Confirmation bias (J. Palmer, 
personal communication, November 1, 
1996). Confirmation bias is a tendency to 
test beliefs in ways likely to confirm them. 
To regard a good fit as substantial evidence 
is of course to adopt a testing strategy that 
tends to confirm flexible theories. Nickerson 
(1998) concluded that "a great deal of 
empirical evidence supports the idea that the 
confirmation bias is extensive and strong 
and that it appears in many guises" (p. 177); 
he described several examples involving 
scientific practice. In many theoretical 
publications, the authors test only one 
theory–a theory that they created and that, 
naturally, they wish to confirm. 

3. Repetition. Once a new result or 
method has appeared in print a few times, it 
gathers a certain respect, and a certain 
momentum, unrelated to merit. Sheer 
repetition–if it is repetition of a mistake--can 
be strong enough to push whole scientific 
fields off track for many years, which is 
what we claim happened here. A famous 

example in physics involves the charge on 
the electron. In 1909, when Millikan 
measured this quantity for the first time, he 
used a wrong value for the viscosity of air. 
Subsequent measurements of the charge on 
the electron shifted only gradually from 
Millikan’s value to the correct value 
(Feynman, 1985). Biology provides another 
example. From the 1930s until 1955, 
mammalian cytologists were "virtually 
certain" (Kottler, 1974, p. 465) that human 
cells contain 48 chromosomes, although the 
correct number is 46. This conclusion was 
based on "chromosome counts made during 
the 1920s and 1930s by a number of 
esteemed cytologists all over the world" 
(Kottler, 1974, p. 465). By 1954, the 
existence of 48 human chromosomes was 
"an established fact" (Kottler, 1974, p. 466), 
according to one cytologist. The correct 
number was discovered only when improved 
techniques made counting chromosomes 
much less error-prone (Kottler, 1974). 
Similarly, the use of good fits as evidence in 
experimental psychology may have 
remained popular at least partly due to 
repetition and inertia.  

4. Theory complexity. As theories 
have grown in complexity, it has become no 
easy task to determine how they constrain 
possible outcomes. It is computationally 
much easier to fit them to data. 

5. Neglect of basic principles. The 
most basic principles of theory testing--the 
ideas that (a) to test a theory, you must 
collect data that could plausibly disprove it; 
and (b) the more plausible the possibility of 
disproof, the stronger the test–receive little 
attention in psychology. They are far from 
obvious; as Lakatos (1978) pointed out, 
Popper himself failed to appreciate the 
crucial role of plausibility.  

A larger lesson of this article may be 
that these principles–and the related 
questions "what would disprove my 
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theory?" and "what theories do these data rule out?"–deserve more emphasis.  
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