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1 INTRODUCTION

Let M be a recursive regression model, that is, a set of regression equations for ordered
variables Y7,...,Y,,, where each variable Y; is regressed on Y},...,Y; ; and where a set Cj
of coefficients are set to zero in advance, while others remain “free”. We wish to test if this
model fits a given set of data, namely, if the data support the starting assumption of setting
the coefficients in Cj to zero.

A straightforward way of testing this assumption would be to actually perform the re-
gressions and test if all members of Cj are indeed zero. This, however, may require high
order regressions, especially for large values of i, and the question arises whether we can
run a different set of regressions, each with a smaller number of variables, and still test the
original model M.

We show that the answer to this question is affirmative, and that the following procedure

accomplishes the task:
Graphical Procedure (GP)

1. Construct the directed acyclic graph of M, in which nodes represent variables and
arrows represent non-zero coefficients,

2. for each pair (4, j) of non adjacent variables, i > j, find a set Z;; of nodes such that:

2.1 Z;j d-separates ¢ from j in the graph, and

2.2 Z;; contains only nodes that are closer to ¢ than j is,
3. test the hypothesis r;;.z,. = 0 for each i > j.

We show in this paper that if the regression coefficients r;;.z., chosen according to the
procedure above, vanish, then all members of Cy and only those members, must vanish as
well.

A special, well known choice for Z;; is the set of parent nodes of 7, namely, Z;; = pa;,
which yields the standard test used in validating Bayesian networks. However, when the size
of pa; is large, it might be advantageous to use non-parental separators, as shown below.



2 AN EXAMPLE

Consider the set M of regression equations

X = anXi+e

X3 = CL31X1 +0X2 + €3 (1)
Xy = 0X1 40X+ a3 X3+ ¢4

X5 = 0X1 + 0X2 + a53X3 + a54X4 + €5

The assumptions embedded in this regression model are represented by the zero coeffi-
cients, and correspond to the vanishing of the following set of partial correlations:

Co = {P32-1 =0, pa1.23 = 0, pa2.13 = 0, p51.934 = 0, ps2.134 = 0} (2)
Xy
XQ/:LX?’_» X,
Y
X5
Figure 1:

The graph representing M is shown in Figure 1, from which the separating sets for each
nonadjacent pair of nodes can easily be identified. One choice of separators leads to the
following set of partial regression coefficients that need be tested:

B = {p321 =0, p11.3 =0, psz1 =0, p51.53 =0, psa.y = 0} (3)

We see that B and Cj contain the same number of elements, yet all elements of B have
at most three indices and will require, therefore, only two regressors in their corresponding
tests. (The parental scheme would require three regressors for testing pss.34 = 0.)

The paper proves that, in general, the elements of Cj are zero if and only if the elements
of B are zero, where B is any set that meets conditions 2.1 and 2.2. We further extend this
result to nonrecursive regression and outline economical ways of testing both directed and
undirected graph models with Gaussian variables.

3 THEORETICAL BACKGROUND

Definition 1 (basis) Let S be a set of zero partial correlations. A basis B for S is a set of
zero partial correlations that (1) implies (using the laws of probability) every element of S,
and (2) no proper subset of B sustains such implication.



The target of our investigation is a set S which corresponds to Cy, the zero elements in
a recursive system of regression equations. Such a set is characterized by a distinct feature:
the indices in every element of the i-th row are precisely the set of predecessors of i. It is
well known, that such sets of zero partial correlations can be represented by separation in
a directed acyclic graph D(M), such as the one constructed by procedure GP in Section 1.
This follows from the fact that in any DAG D, the parents of node i separate i from all its
nondescendants in D [Pearl, 1988, pp. 119-120]. Moreover, the DAG D(M) also enables us
to identify a basis for Cy, choosing the set of parents of node i as the conditioning variables
Z in each member 7;;.z of B. This follows from the d-separation' theorem [Verma and Pearl,
1988], which states that every separation conditions in G(M) corresponds to conditional
independence relationship in the model M from which G was constructed. When dealing
with regression models, conditional independence translates to zero partial correlation and,
therefore, every partial correlations that corresponds to pair-wise separations in D(M) is
guaranteed to vanish in M. We denote the set of all these vanishing partial correlations by
R(D), and we say that each member of R(D) is entailed by D.

Thus, an obvious choice of a basis for Cy, as well as for R(D), is the set of equalities
By = {pijpa; = 0|i > j}, where i ranges over all nodes in D, j ranges over all predecessors of
¢ in any order that agrees with the arrows of D, and pa; stands for the set of parents of node
¢ in D. For example, the parent basis for the model in Fig. 1 would consist of the elements:
Byo = {ps21 = 0,p11.3 = 0, p42.3 = 0, ps1a3 = 0, psa.a3 = 0} Testing for these equalities is
sufficient therefore for testing the vanishing of all elements of C\,. However, when the parent
sets pa; are large, it may be possible to select a more economical basis (see Eq. (3)), as stated
in the next theorem.

Theorem 1 Let (¢,j) be a pair of nonadjacent nodes in a« DAG D, and Z;; any set of nodes
such that:

(i) Zi; d-separates i from j in the graph, and
(i1) Zi; contains only nodes that are closer to i than j is.

The set of zero partial correlations Byep = {pij.z;; = 0|i > j}, consisting of one element per
nonadjacent pair, constitutes a basis for the set R(D) of all vanishing partial correlations
entailed by D.

That no proper subset of By, implies the vanishing of Cj follows from the observation
that for every DAG D there exists a covariance matrix whose vanishing partial correlations
coincide precisely with the separation conditions in D. Had any proper subset B’ of B,
been a basis for Cj, the missing inequalities would have to be implied by B’, and this would
mean that the diagram created by adding arrows to D for each element of Bj,,\ B would be
inconsistent, contrary to the theorem of [Geiger and Pearl, 1990].

Section 4 establishes several lemmas which provide weak versions of Theorem 1 and lead
the way toward the proof. These lemmas are based on two properties of partial correlations,

IThe d in d-separation connotes “directional.” In this paper, however, we will use the term “separation”
to mean d-separation.



called weak union and contraction in [Pearl, 1988].

weak union : Pij-z = 0& Pik-7z = 0 = Pij-zk = 0 (4)
contraction : iz =0& pkz =0 = pijz =0 (5)

To facilitate the derivation, we introduce additional notation. For any three sets of
variables, Si, Sy and S3, we shall write (S1, S3, S3)p if, in diagram D, the nodes associated
with S are separated from those associated with S3, by the nodes associated with set S,.
Correspondingly, we write (S, Ss, S3)p if, in a probability function P, the set of variables
S is conditionally independent of the set S3, given the variables in set S,. Thus, the d-
separation theorem mentioned above can be stated succinctly as:

(51, Sa, SS)D - (51, Sa, S3)P (6)

whenever (Y;,pa;, {Y1,...,Y; 1}\pa;)p holds for i = 2,3,... ,n. Whenever this implication
holds, we will say that D is an I-map of P (see [Pearl, 1988, p. 96]).

In this paper, our concern lies not with general conditional independencies but rather with
vanishing partial correlations. To this end, we will continue to use the notation (Si, Ss, S3)p
to denote zero partial correlation p;;.g, = 0, where 7 is any element of S; and j is any element
of S3. However, in addition to the properties of weak union and contraction, written

weak union : (Sl, SQ, Sg)p&(sl, SQ, S4)p = (Sl, 5254, Sg)p (7)
contraction : (Sl, 5254, Sg)p&(sl, SQ, S4)p = (Sl, SQ, Sg)p (8)

we now use a third property, called composition:
composition (Si, Sz, S3)p&(S1, S2, Sa)p € (51, Sa, S351)p

which holds for partial correlations. We will permit the sets 5753 to intersect with Sy, with
the understanding that (S7, Sa, S4)p stands for (S;\Ss, Sz, S3\52)p

4 PROOF OF THEOREM 1

Lemma 1 The set of independencies By, = {(i,pa;, j)pli > j} is a basis for R(D).

Proof: As mentioned in Section 2, Lemma 1 is a special case of the d-separation theorem, in
the context of compositional independencies, that is, independence of individual elements in
a set implies the independence of the entire set.

Lemma 2 The set Byy = {(i, Zij, j)pli > j} is a basis of R(D) if Z;; is any subset of pa;
that separates i from j in D.

Proof:
This proof will consist of two parts. In part 1 we will show that any set Z;; that separates ¢
from j also separates pa; from j, that is,

(7:7 Zl]a])D = (paiazijaj)D (9)

4



Indeed, if the r.h.s of Eq. (9) is false, then for some node ¢ in pa;\Z;; there must be a path
too.... k that is not blocked by Z;;. This implies that the path 7 <—¢...... k is, likewise,
not blocked by Z;;, which contradicts the assumption (4, Z;;, j)p. Thus, (¢, Z;;, j)p holds for

every t € pa;\Z;;, which establishes the first part of the proof.

For the second part, we proceed by induction. We assume that Lemma 2 is true for the
predecessors of i, i = 1,2,...,7 — 1 in some ordering of the nodes that agrees with the
arrows in D. This means that, D;_;, the subgraph induced by the nondescendants of 7, is
an I-map of P — all separations in D;_; stand for valid independencies in P. We then set to
prove that Lemma 2 holds in D;, the graph induced by ¢ together with its predecessors.

Noting that the separation condition on the r.h.s of Eq. (9), (pa;, Zi;, j)p, involves only
nondescendants of i, we have (pa;, Z;j,j)p, since D;_y is an I-map of P. We also have

(i, Zij, j)p by the assumption of Lemma 2. Thus, by composition and weak union,
(pa'ia Zl]?]) & (Z ZZ]a ) (ZapazZz]a])P (10)

Clearly, for Z;; C pa;, Eq. (10) implies (4, pa;, j) p, and establishes Lemma 2, because the set
of independencies
{(i,pa;,j)p | j <, (i,7) nonadjacent } (11)

coincides with the basis B,, of Lemma 1.
Proof of Theorem 1: Let d(i,j) denote the shortest distance between nodes j and 7, and
d(Z;j) the highest d(i, k) of any member k of set Z;;. We will prove Theorem 1 by double
induction; first on ¢ and, second, for any fixed i, on d(3, j).

For a fixed ¢, Eq. (10) holds for all j < ¢ whenever a separating set Z;; is found that
satisfies (7, Z;;, j ) . We need to show that the set of independencies

{(5,paiZij; 3)p | 5 <1, (4, Zij, )} (12)

implies Eq. (11), whenever Z;; satisfies d(Z;;) < d(i,7) of all i > j.

The lemma is certainly true for d(i, j) = 2, namely for any node j that is adjacent to
pa;. For any such node, the separating set Z;; that enters Eq. (12) must be a subset of pa;,
hence, we immediately obtain (from (10)):

(¢, pa; Zij, j)p = (4, pas;, j)p (13)

Now assume the relation (i, pa;, j)p holds for any j such that d(i,j) < d, and consider
an arbitrary node j such that d(i,j) = d > 2. Based on condition (i7) of the theorem, every
member k of Z;; must have d(i, k) < d and, therefore, the induction hypothesis entails

(i, pai, k)p = (i, pai, k) p (14)
and since every k in Z;; satisfies the Lh.s. of (14), we have
(1, pai, Zij)p (15)

Putting (12) and (15) together, and using contraction, we get
(1, paiZij, j)p and (i,pai, Zi;)p = (i,pai, j)p

which proves the lemma.
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5 REMARKS TOWARD EXTENDING THEOREM
1

Theorem 1 is sufficient for showing that Eq. (3) forms a basis for the model of Fig. 1. For
example, ps;.3 is justified because { X3} C pas. The term ps.1, though it does not satisfy the
conditions of Lemma 2, meets those of Theorem 1 and qualifies Eq. (3) as a basis.

To see why Theorem 1 may be extendable, consider the model in Fig. 2, the basis of
which is {(ps; = 0,7 = 1,2,3)}. The set {ps1.23 = 0, paz13 = 0, pag.12 = 0} forms a basis for
R(D), though it does not meet condition (i) of the theorem. This follows by applying the
axiom of intersection to the given three independencies:

(4,23,1),(4,13,2) — (4,3,12)
(4,3,12), (4,12,3) — (4,0,123).

which yields the correct basis (4,0,123)p

This example points to another method of testing bases. The statistics of regression
models is completely specified by the covariance matrix cov(s, j), which has n(n — 1)/2 off-
diagonal terms. Every nonadjacent pair (,j) in the diagram is separated by some set Z;;
and imposes a constraint p;;.z,; = 0 on the covariance matrix. If these constraints lead to a
unique solution p;j.,, = 0 for every pair 7 > j, then the sets Z;; constitute a basis. Else, if
the constraints are not sufficient for imposing a unique solution (= 0) on each p;j.pq,, then
Z;i; does not represents a basis. This algebraic approach to extending Theorem 1 should be
the used as a last resort, after exhausting the axiomatic approach.

To show that condition (i7) of Theorem 1 cannot be relaxed to allow just any sepa-
rating set Z;;, consider the model in Fig. 2, and assume we are given the following three

independencies:
(4,12,3), (4,3,2), (4,0,1)

each is represented by a genuine separation in the graph. To show that this set is not a
basis for Fig. 2, we note that none of the graphoid axioms is applicable to these triples, and
therefore we can’t prove (4,0, 23).

This is still not a proof, because the graphoid axioms are not complete relative to corre-
lational independencies; a direct proof is feasible in this case. Using the recursion relation
for partial correlations, we can obtain a non-zero solution for ps and pys3 and still satisfy the
three triplets. These three triplets impose the following constraints on pi2, p13 and pss:

Pys + Pro — Pasprsprz = 1.



and
P42
— = P32
P43
Clearly, one can easily satisfy these constraints and obtain a nonzero values for ps and pys,

as the following (positive definite) matrix shows:

(16)

ny)

Il
O OO =
G o = [
SN N U
— oot O

The last example illustrates some of considerations needed for extending Theorem 1 to
nonrecursive regression, such as the one used in Markov fields over undirected graphs. The
fundamental basis for Markov fields is given by the pair-wise Markov condition [Pearl 1988,
Chapter 3; Lauritzen 1996], which consists of all nonadjacent pairs, each separated by all
other nodes in the model. The local Markov condition (invoking the neighbors of each node
in the graph) is not a basis, because some neighborhood-based separations can be derived
from other such separations. If the graph is decomposable, it can be oriented into a DAG
(preserving I-mapness) and we can choose a basis by Theorem 1 along any such orientation.
The interesting question is how to deal with nondecomposable graphs when the pair-wise
basis is too wasteful. One possibility is to make the graph decomposable by filling-in some
edges, orient the graph and find a basis according to Theorem 1, and finally, to handle the
filled-in edges using a pair-wise Markov condition on the corresponding clicks. This and
other extensions to Theorem 1 will be discussed in a follow-up report.
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