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The genetic architecture of the human cerebral cortex
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The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the 

specific genetic loci that influence human cortical structure. To identify genetic variants that affect 

cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic 

resonance imaging data from 51,665 individuals. We analyzed the surface area and average 

thickness of the whole cortex and 34 regions with known functional specializations. We identified 

199 significant loci and found significant enrichment for loci influencing total surface area within 

regulatory elements that are active during prenatal cortical development, supporting the radial unit 

hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, 

which influence progenitor expansion and areal identity. Variation in cortical structure is 

genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, 

neuroticism, and attention deficit hyperactivity disorder.

Abstract

INTRODUCTION: The cerebral cortex underlies our complex cognitive capabilities. Variations in 

human cortical surface area and thickness are associated with neurological, psychological, and 

behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in 

model organisms have identified genes that influence cortical structure, but little is known about 

common genetic variants that affect human cortical structure.

RATIONALE: To identify genetic variants associated with human cortical structure at both global 

and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data 

from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of 

the whole cortex and 34 cortical regions with known functional specializations.

RESULTS: We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated 

with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 

299 loci for which replication data were available, 241 loci influencing surface area and 14 

influencing thickness remained significant after replication, with 199 loci passing multiple testing 

correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common 

genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 

2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = 

−0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects 

on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced 

by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal 

development. By contrast, average thickness is influenced by active regulatory elements in adult 

brain samples, which may reflect processes that occur after mid-fetal development, such as 

myelination, branching, or pruning. When considered together, these results support the radial unit 

hypothesis that different developmental mechanisms promote surface area expansion and increases 

in thickness.

To identify specific genetic influences on individual cortical regions, we controlled for global 

measures (total surface area or average thickness) in the regional analyses. After multiple testing 

correction, we identified 175 loci that influence regional surface area and 10 that influence 

regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt 

signaling pathway, which is known to influence areal identity.
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We observed significant positive genetic correlations and evidence of bidirectional causation of 

total surface area with both general cognitive functioning and educational attainment. We found 

additional positive genetic correlations between total surface area and Parkinson’s disease but did 

not find evidence of causation. Negative genetic correlations were evident between total surface 

area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive 

disorder, and neuroticism.

CONCLUSION: This large-scale collaborative work enhances our understanding of the genetic 

architecture of the human cerebral cortex and its regional patterning. The highly polygenic 

architecture of the cortex suggests that distinct genes are involved in the development of specific 

cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal 

pathway that leads from genetic variation to differences in general cognitive function.▪

Graphical abstract

Identifying genetic influences on human cortical structure. (A) Measurement of cortical 

surface area and thickness from MRI. (B) Genomic locations of common genetic variants that 

influence global and regional cortical structure. (C) Our results support the radial unit hypothesis 

that the expansion of cortical surface area is driven by proliferating neural progenitor cells. (D) 

Cortical surface area shows genetic correlation with psychiatric and cognitive traits. Error bars 

indicate SE.

The human cerebral cortex is the outer gray matter layer of the brain and is implicated in 

multiple aspects of higher cognitive function. Its distinctive folding pattern is characterized 

by convex (gyral) and concave (sulcal) regions. Computational brain mapping approaches 
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use the consistent folding patterns across individual cortices to label brain regions (1). 

During fetal development, excitatory neurons—the predominant neuronal cell type in the 

cortex—are generated from neural progenitor cells in the developing germinal zone (2). The 

radial unit hypothesis (3) posits that the expansion of cortical surface area (SA) is driven by 

the proliferation of these neural progenitor cells, whereas thickness (TH) is determined by 

the number of their neurogenic divisions. Variation in global and regional measures of 

cortical SA and TH have been reliably associated with neuropsychiatric disorders and 

psychological traits (4) (table S1). Twin and family-based brain imaging studies indicate that 

SA and TH measurements are highly heritable and are influenced by largely different 

genetic factors (5–7). Despite extensive studies of genes affecting cortical structure in model 

organisms, our current understanding of the genetic variation affecting human cortical size 

and patterning is limited to rare, highly penetrant variants (8, 9). These variants often disrupt 

cortical development, leading to altered postnatal structure. However, little is known about 

how common genetic variants influence human cortical SA and TH.

To identify genetic loci associated with variation in the human cortex, we conducted 

genome-wide association meta-analyses of cortical SA and THmeasures in 51,665 

individuals, primarily (~94%) of European descent, from60 cohorts fromaround the world 

(tables S2 to S4). Cortical measures were extracted from structural brain magnetic resonance 

imaging (MRI) scans in 34 regions defined by the commonly used Desikan-Killiany atlas, 

which establishes coarse partitions of the cortex. The regional boundaries are based on gyral 

anatomy labeled from between the depths of the sulci (10, 11). We analyzed two global 

measures, total SA and average TH, as well as SA and TH for the 34 regions averaged 

across both hemispheres, yielding 70 distinct phenotypes (Fig. 1A and table S1).

Within each cohort, we used an additive model to conduct a genome-wide association study 

(GWAS) for each of the 70 phenotypes. To identify genetic influences specific to each 

region, the primary GWAS of regional measures included the global measure of SA or TH as 

a covariate. To estimate themultiple testing burden associated with analyzing 70 phenotypes, 

we used matrix spectral decomposition (12), which yielded 60 independent traits, and a 

multiple testing significance threshold of P ≤ 8.3 × 10−10.

The principal meta-analysis comprised results from 33,992 participants of European 

ancestry (23,909 from49 cohorts participating in the ENIGMA consortium and 10,083 from 

the UK Biobank). We sought replication for loci reaching genome-wide significance (P ≤ 

5×10−8) in an additional ENIGMA cohort (777 participants) and the CHARGE consortium 

(13) (13,952 participants). In addition, wemeta-analyzed eight cohorts of non-European 

ancestry (2944 participants) to examine the generalization of these effects across ancestries. 

High genetic correlations were observed between the metaanalyzed ENIGMA European 

cohorts and the UK Biobank cohort using linkage disequilibrium(LD) score regression (total 

SA rG = 1.00, z-score PrG = 2.7 × 10−27; average THrG =0.91, z-score PrG = 1.7 × 10−19), 

indicating consistent genetic architecture between the 49 ENIGMA cohorts and data 

collected from a single scanner at the primary UK Biobank imaging site.

Across the 70 cortical phenotypes, we identified 306 loci that were genome-wide significant 

in the principal meta-analysis (P ≤ 5 × 10−8) (Fig. 1B and table S5). Of these, 118 have not 
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been previously associated with either intracranial volume (ICV) or cortical SA, TH, or 

volume (13–18). Twenty of these loci were insertions or deletions (INDELs). Eleven 

INDELs had a proxy single-nucleotide polymorphism (SNP) available in the European 

replication data; no proxieswere available for six INDELs and one SNP. Of the 299 loci for 

which the SNP or a proxywas available, 255 (SA: 241, TH: 14) remained genome-wide 

significant when the replication data were included in themetaanalysis, with 199 passing 

multiple testing correction (P ≤ 8.3 × 10−10; SA: 187, TH: 12). Of the 255 loci, 244were 

available in the meta-analysis of non-European cohorts. The 95% confidence intervals (CIs) 

around the non-European metaanalysis effect sizes included those from the European meta-

analysis for 241 of these loci. Of the 244 loci available in the non-European cohorts, 189 had 

effects in the same direction in both the European and non-European meta-analyses, and 111 

became more significant when the whole sample was metaanalyzed (table S5 and fig. S1). 

Variability in effects across ancestrymay be due to differences in allele frequency; however, 

the power for these comparisons is limited, and further comparisons with larger non-

European cohorts will help clarify the generalizability of these effects (table S5). We 

examined gene-based effects (allowing for a 50-kb window around genes) and found 

significant associations for 253 genes across the 70 cortical phenotypes (table S6). The 

meta-analytic results are summarized as Manhattan, QQ, Forest, and LocusZoom plots (figs. 

S2 to S5).

Genetics of total SA and average TH

Common variants explained 34% (SE = 3%) of the variation in total SA and 26% (SE = 2%) 

in average TH. These estimates account for more than a third of the heritability estimated 

from the Queensland Twin Imaging cohort (91% for total SA and 64% for average TH) 

(table S7), indicating thatmore genetic variants, including rare variants, are yet to be 

identified. To examine the extent to which our results could predict SA and TH, we derived 

polygenic risk scores (PRSs) fromthe principal meta-analysis results. These scores 

significantly predicted SA and TH in an independent sample of 5095 European participants, 

explaining between 2 and 3% of the trait variance (given a PRS threshold of P ≤ 0.01 R2 SA 

= 0.029, linear regression coefficient t test P = 6.54 × 10−50; R2 TH = 0.022, t test P = 3.34 × 

10−33) (table S8).

We observed a significant negative genetic correlation between total SA and average TH (rG 

= −0.32, SE = 0.05, z-score PrG=6.5 × 10−12) (Fig. 2A), which persisted after exclusion of 

the chromosome 17 inversion region known to influence brain size (14) (rG = −0.31, SE = 

0.05, z-score PrG = 3.3 × 10−12). Genetic correlations could indicate causal relationships 

between traits, pleiotropy, or a genetic mediator influencing both traits. Latent causal 

variable (LCV) analysis, which tests for causality using genome-wide data (19), showed no 

evidence of causation [LCV genetic causality proportion (gcp) = 0.06, t test 

Pgcp=0=0.729].The negative correlation suggests that genetic influences have opposing 

effects on SA and TH, which may result from pleiotropic effects or genetic effects on a 

mediating trait that, for example, might constrain total cortical volume. The absence of 

causality and the small magnitude of this correlation are consistent with the radial unit 

hypothesis (3), whereby different developmental mechanisms promote SA expansion and 

increases in TH.
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As expected, total SA showed a positive genetic correlation with ICV. This correlation 

remained after controlling for height, which demonstrates that this relationship is not solely 

driven by body size (Fig. 2A and table S8). The global cortical measures did not show 

significant genetic correlations with the volumes of major subcortical structures (Fig. 2A). 

The genetic correlation between total SA and the hippocampus is consistent with their 

shared telencephalic developmental origin.

To identify whether common variation associated with cortical structure relates to gene 

regulation within a given tissue type, developmental time period, or cell type, we performed 

partitioned heritability analyses (20) using sets of gene regulatory annotations from adult 

and fetal brain tissues (21, 22). Total SA and average TH showed the strongest enrichment 

of heritability within genomic regions of active gene regulation (promoters and enhancers) 

in brain tissue and in vitro neural models derived from stem cell differentiation (Fig. 2B and 

fig. S6A). To examine temporally specific regulatory elements, we selected active regulatory 

elements that are specifically present in either the mid-fetal brain or the adult cortex. Total 

SA showed significant enrichment of heritability only within mid-fetal–specific active 

regulatory elements, whereas average TH showed significant enrichment only within adult-

specific active regulatory elements (Fig. 2C and fig. S6B). Stronger enrichment was found in 

regions of the fetal cortex with more accessible chromatin in the neural progenitor–enriched 

germinal zone than in the neuron-enriched cortical plate (fig. S6C), similar to a previous 

analysis for ICV (21). We then performed an additional partitioned heritability enrichment 

analysis using regulatory elements associated with cell type–specific gene expression 

derived from a large single-cell RNA sequencing study of the human fetal brain (23). This 

analysis revealed significant enrichment of total SA heritability in all progenitor cell types, 

including those in active phases of mitosis as well as three different classes of progenitor 

cells, including outer radial glia cells, a cell type associated with expansion of cortical SA in 

human evolution (2) (Fig. 2D and fig. S6D). We also identified significant enrichments in 

upper layer excitatory neurons, oligodendrocyte progenitor cells, and microglia. These 

findings suggest that total SA is influenced by common genetic variants that may alter gene 

regulatory activity in neural progenitor cells during fetal development, supporting the radial 

unit hypothesis (3). By contrast, the strongest evidence of enrichment for average TH was 

found in active regulatory elements in the adult brain samples, which may reflect processes 

that occur after mid-fetal development, such as myelination, branching, or pruning (24).

We conducted pathway analyses to determine whether there was enrichment of association 

near genes in known biological pathways (25). We found 91 significant gene sets for total 

SA and 4 significant sets for average TH (table S9). Gene sets associated with total SA 

included chromatin binding, a process that guides neurodevelopmental fate decisions (26) 

(table S9 and fig. S7A). In addition, consistent with the partitioned heritability analyses 

implicating neural progenitor cells in total SA, gene ontology terms relevant to the cell cycle 

also showed significant enrichment in these analyses.

Loci influencing total SA and average TH

Seventeen of the 255 replicated loci were associated with total SA; 12 survived correction 

for multiple testing (Fig. 2E and table S5). Eight loci influencing total SA have been 
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previously associated with ICV (14). These include rs79600142 (principal meta-analysis 

PMA=2.3 × 10−32; replication Prep=3.5 × 10−43; P values reported from all meta-analytic 

results were for z-scores from fixed-effectmetaanalyses) in the highly pleiotropic 

chromosome 17q21.31 inversion region, which has been associated with Parkinson’s disease 

(27), educational attainment (28), and neuroticism(29). On 10q24.33, rs1628768 (z-score 

PMA = 1.7×10−13; Prep = 1.0 × 10−17) was shown by our bioinformatic annotations (30) to be 

an expression quantitative trait locus (eQTL) that influences expression levels of the INA 

gene and the schizophrenia candidate genes (31) AS3MT, NT5C2, andWBP1L [linear 

regression coefficient t test false discovery rate (FDR)– corrected P value for the association 

of rs1628768 with expression data from surrounding genes FDRCommonMindConsortium(CMC) 

< 1.0 × 10−2] (tables S11 and S12). This regionhas been associated with schizophrenia; 

however, rs1628768 is in low LD with the schizophreniaassociated SNP rs11191419 (r2 = 

0.15) (32). The 6q21 locus influencing total SA is intronic to FOXO3 (which also showed a 

significant genebased association with total SA) (table S6). The major allele of the lead 

variant rs2802295 is associated with larger total SA (z-score PMA = 2.5 × 10−10; Prep = 2.5 × 

10−13) and is in complete LD with rs2490272, a SNP previously associated with higher 

general cognitive function (33).

One locus not previously associated with ICV is rs11171739 (z-score PMA = 8.4 × 10−10; 

Prep = 8.1 × 10−11) on 12q13.2. This SNP is in high LD with SNPs associated with 

educational attainment (28) and is an eQTL for RPS26 in the fetal (34) and adult cortex (30) 

[t test of Pearson’s r FDRFETAL = 2.0 × 10−24, empirical t test of Pearson’s r 
FDRGenotype-Tissue Expression(GTEx) = 3.3 × 10−40] (tables S11 and S12). On 3p24.1, 

rs12630663 (z-score PMA = 1.3 × 10−8; Prep = 1.4 × 10−8) is of interest because of its 

proximity (~200 kb) to EOMES (also known as TBR2), which is expressed specifically in 

intermediate progenitor cells in the developing fetal cortex (35). rs12630663 is located in a 

chromosomal region with chromatin accessibility specific to the germinal zone in the human 

fetal cortex (21). Putatively causal SNPs in this region (table S13) show significant 

chromatin interactions with the EOMES promoter (36). The region also contains many 

regulatory elements that, when excised via CRISPR-Cas9 in differentiating neural progenitor 

cells, significantly reduced EOMES expression (21). A rare homozygous chromosomal 

translocation in the region separating the regulatory elements from EOMES (fig. S8) 

silences EOMES expression and causes microcephaly (37), demonstrating that rare and 

common noncoding variation can have similar phenotypic consequences but to different 

degrees.

The two replicated loci associated with average TH, neither of which have been previously 

identified,survivedcorrection for multipletesting (Fig. 2E and table S5). On 3p22.1, rs533577 

(z-score PMA = 8.4 × 10−11; Prep = 3.7 × 10−12) is a fetal cortex eQTL (t test FDRFETAL = 

1.8 × 10−4) for RPSA, encoding a 40S ribosomal protein with a potential role as a laminin 

receptor (38). Laminins are major constituents of the extracellular matrix and have critical 

roles in neurogenesis, neuronal differentiation, and migration (39). On 2q11.2, rs11692435 

(z-score PMA = 3.2 × 10−10; Prep = 4.5 × 10−10) encodes a missense variant (p.A143V) 

predicted to affect ACTR1B protein function (40) and is an ACTR1B eQTL in the fetal 

cortex (ttest FDRFETAL = 3.9 × 10−2) (tables S11 and S12). ACTR1B is a subunit of the 
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dynactin complex involved in microtubule remodeling, which is important for neuronal 

migration (41).

Genetics of regional SA and TH

The amount of phenotypic variance explained by common variants was higher for SA (8 to 

31%) than TH (1 to 13%) for each of the specific cortical regions (Fig. 3, A and B, and table 

S7). To focus on region-specific influences, we controlled for global measures in the 

regional GWAS, which reduced the covariance between the regional measures (tables S14 

and S15). Similar to the genetic correlation between global SA and TH, when significant, 

genetic correlations between regional SA and TH within the same region were moderate and 

negative (tables S14 and S15). This suggests that genetic variants that contribute to the 

expansion of SA in a specific region tend to also contribute to thinner TH in that region.

Genetic correlations between regions were calculated separately for SA and TH. Most 

genetic correlations between regions did not survive multiple testing correction. For SA, 

significant positive genetic correlations were generally found between physically adjacent 

regions and negative correlations between more distal regions (Fig. 3A). This pattern 

mirrored the phenotypic correlations between regions and was also observed for TH (Fig. 3, 

A and B). Consistent with this finding, hierarchical clustering of the genetic correlations 

resulted in a general grouping by physical proximity (fig. S9). These positive genetic 

correlations were strongest between SA of regions surrounding the major, early-forming 

sulci (e.g., the pericalcarine, lingual, cuneus, and lateral occipital regions surrounding the 

calcarine sulcus), which may reflect genetic effects acting on the development of the sulci 

(11).

To further investigate biological pathways that influence areal (regional) identity, we used 

multivariate GWAS analyses (42) to aggregate association statistics separately for regional 

SA and TH. These analyses identify variants shared across regions and those within specific 

regions while accounting for the phenotypic correlations between regions. Pathway analyses 

of the multivariate SA results showed significant enrichment for 903 gene sets (table S10), 

many of which are involved in Wnt signaling, with the canonical Wnt signaling pathway 

showing the strongest enrichment (z-score, P = 8.8 × 10−11). Wnt proteins regulate neural 

progenitor fate decisions (43, 44) and are expressed in spatially specific manners that 

influence areal identity (45). Pathway analyses of the multivariate TH results did not yield 

any findings that survived multiple testing correction.

Loci influencing regional SA and TH

A total of 224 loci were nominally associated with regional SA and 12 with regional TH; of 

these, 175 SA and 10 TH loci survived multiple testing correction (table S5). As shown in 

Fig. 1B, most loci were associated with a single cortical region. Of the loci influencing 

regional measures, a few were also associated with global measures. Those that were 

associated showed effects in the same direction, indicating that the significant regional loci 

were not due to collider bias (46) (fig. S10).
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The strongest regional association was observed on chromosome 15q14 with the precentral 

SA (rs1080066, z-score PMA = 1.8 × 10−137; Prep = 4.6 × 10−189; variance explained = 

1.03%) (Fig. 4A). Across 11 traits, we observed 41 independent significant associations 

from 18 LD blocks (r2 threshold ≤ 0.02) (Fig. 4B and table S5). As we observed strong 

association with the SA of both pre-and post-central gyri (Fig. 4C), we localized the 

association within the central sulcus in 5993 unrelated individuals from the UK Biobank. 

The most significant association between rs1080066 and sulcal depth was observed around 

the pli de passage fronto-pariétal moyen (linear regression coefficient t test P = 7.9 × 10−21), 

a region associated with hand fine-motor function in humans (47), which shows distinctive 

depth patterns across different species of primates (48) (Fig. 4D). rs1080066 is a fetal cortex 

eQTL for a downstream gene, EIF2AK4 (t test FDRFETAL = 4.8 × 10−2), that encodes the 

GCN2 protein, which is a negative regulator of synaptic plasticity, memory, and 

neuritogenesis (49). The functional data also highlight THBS1 via chromatin interaction 

between the rs1080066 region and the promoter in neural progenitor cells and an eQTL 

effect in whole blood (z-score FDRBIOSgenelevel = 6.1 × 10−6). THBS1 has roles in 

synaptogenesis and the maintenance of synaptic integrity (50).

Consistent with enrichment in the pathway analyses, many other loci were located in regions 

with functional links to genes involved in Wnt signaling (fig. S7B), including 1p13.2, where 

rs2999158 (lingual SA, z-score PMA = 1.9 × 10−11, Prep = 3.0 × 10−11; pericalcarine SA, z-

score PMA = 1.9 × 10−11; Prep = 9.9 × 10−16) is an eQTL for ST7L and WNT2B (t test 

FDRCMC < 1.0 × 10−2) in the adult cortex (tables S11 and S12). On 14q23.1, we observed 

20 significant loci (table S5) from four LD blocks. The strongest association here was for the 

precuneus SA (rs73313052: z-score PMA = 1.1 × 10−24; Prep = 2.2 × 10−35). These loci are 

located near DACT1 and DAAM1, both of which are involved in synapse formation and are 

key members of the Wnt signaling cascade (51, 52). rs73313052 and high-LD proxies are 

eQTLs for DAAM1 (t test FDRCMC < 1.0 × 10−2) in the adult cortex (tables S11 and S12). 

Several of our regional associations occur near genes with known roles in brain 

development. For example, on chromosome 1p22.2, rs1413536 (associated with the inferior 

parietal SA: z-score PMA = 1.6 × 10−10; Prep = 3.1 × 10−14) is an eQTL in the adult cortex 

for LMO4 (t test FDRCMC < 1.0 × 10−2), with chromatin interactions between the region 

housing both this SNP and rs59373415 (associated with the precuneus SA: z-score PMA = 

1.6 × 10−10, Prep = 5.3 × 10−12) and the LMO4 promoter in neural progenitor cells (tables 

S11 and S12). Lmo4 is one of the few genes already known to be involved in areal identity 

specification in the mammalian brain (53).

Genetic relationships with other traits

To examine shared genetic effects between cortical structure and other traits, we performed 

genetic correlation analyses with GWAS summary statistics from 23 selected traits. We 

observed significant positive genetic correlations between total SA and general cognitive 

function (54), educational attainment (28), and Parkinson’s disease (27), indicating that 

allelic influences resulting in larger total SA are, in part, shared with those influencing 

greater cognitive capabilities as well as increased risk for Parkinson’s disease. For total SA, 

significant negative genetic correlations were detected with insomnia (55), attention deficit 

hyperactivity disorder (ADHD) (56), depressive symptoms (57), major depressive disorder 
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(58), and neuroticism (29) (Fig. 5A and table S16), again indicating that allelic influences 

resulting in smaller total SA are partly shared with those influencing an increased risk for 

these disorders and traits. To map the magnitude of these effects across the brain, we 

calculated genetic correlations across cortical regions without correction for the global 

measures (Fig. 5B). Genetic correlations with average TH did not survive multiple testing 

correction, perhaps owing to the weaker genetic associations detected in the TH analyses. At 

the regional level, significant genetic correlations were observed between precentral TH and 

general cognitive function (rG = 0.27, z-score PrG = 2.5 × 10−5) and educational attainment 

(rG = 0.25, z-score PrG = 4.0 × 10−4), as well as between the inferior parietal TH and 

educational attainment (rG = −0.19, z-score PrG = 5.0 × 10−4). To confirm that these 

correlations were not driven by the presence of cases within the meta-analysis, genetic 

correlations were recalculated from a meta-analysis of GWAS from population-based 

cohorts and GWAS of controls from the case-control cohorts (N = 28,503 individuals). All 

genetic correlations remained significant,with the exception of the genetic correlation 

between total SA and depressive symptoms (table S17).

We performed bidirectional Mendelian randomization (MR) (59) and LCV (19) analyses to 

investigate potential causal relationships underlying the observed genetic correlations with 

total SA. Both methods provided evidence of a causal effect of total SA on general cognitive 

function (inverse variance–weighted MR bMR-IVW = 0.15, SE = 0.01, z-score P = 4.6 × 10−8; 

LCV gcp = 0.40, 95% CIs: 0.23 to 0.57, t test Pgcp=0 = 1.4 × 10−9) and educational 

attainment (bMR-IVW = 0.12, SE = 0.01, z-score P = 2.1 × 10−21; gcp = 0.49, 95% CIs: 0.26 

to 0.72, t test Pgcp=0 = 8.0 × 10−9) (tables S18 and S19). The MR analyses also indicated 

association in the reverse direction for both general cognitive function and educational 

attainment (table S18); however, this was not supported by the LCV analyses (table S19). 

We found limited to no support for a causal relationship in either direction between total SA 

and the six other traits that showed significant genetic correlations (tables S18 and S19). 

Taken together, these findings suggest that the previously reported phenotypic relationships 

between cortical SA and general cognitive function (60, 61) may partly reflect underlying 

causal processes.

Discussion

Here we present a large-scale collaborative investigation of the effects of common genetic 

variation on human cortical structure using data from 51,665 individuals from 60 cohorts. 

Current knowledge of genes that affect cortical structure has been derived largely from 

creating mutations in model systems, such as the mouse, and observing effects on brain 

structure (8). Given the differences between mouse and human cortical structures (62), this 

study provides genome-wide insight into human variation and genes that influence a 

characteristically human phenotype. Previous studies have identified rare variants that have 

substantial effects on cortical structure in humans (8), and this study adds to the catalog of 

the type of variation that affects human cortical structure.

We show that the genetic architecture of the cortex is highly polygenic and that variants 

often have a specific effect on individual cortical regions. This finding suggests that there are 

distinct genes involved in the development of specific cortical areas and raises the possibility 
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of developmental and regional specificity in eQTL effects. We also find that rare variants 

and common variants in similar locations in the genome can lead to similar effects on brain 

structure, albeit to different degrees. For example, a balanced chromosomal translocation 

near EOMES leads to microcephaly in a region abutting a common variant signal associated 

with small changes in cortical SA (fig. S8).

We provide evidence that genetic variation affecting gene regulation in progenitor cell types, 

present in fetal development, affects adult cortical SA. This is consistent with the radial unit 

hypothesis, which states that an increase in proliferative divisions of neural progenitor cells 

leads to an expansion of the pool of progenitors, resulting in increases in neuronal 

production and cortical SA (3, 62). Notably, we see an enrichment of heritability in cortical 

SA within regulatory elements that influence outer radial glia cells, a cell type that is 

considerably more prevalent in gyrencephalic species such as humans and has been 

hypothesized to account for the increased progenitor pool size in humans (2).

We also find that Wnt signaling genes influence areal expansion in humans, as previously 

reported in model organisms such as mice (45). Cortical TH was associated with loci near 

genes implicated in cell differentiation, migration, adhesion, and myelination. Consequently, 

molecular studies in the appropriate tissues, such as neural progenitor cells and their 

differentiated neurons, will be critical for mapping the involvement of specific genes.

We demonstrate that genetic variation associated with brain structure also affects general 

cognitive function, Parkinson’s disease, depression, neuroticism, ADHD, and insomnia. This 

implies that the genetic variants that influence brain structure also shape brain function. 

Although most of the differences in cortical structure observed in these disorders have been 

reported for TH, our results show significant genetic correlations for SA, perhaps suggesting 

that the phenotypic differences observed in cortical TH (table S1) partially reflect 

environmental influences or effects of illness or treatment. We find evidence that brain 

structure is a key phenotype along the causal pathway that leads from genetic variation to 

differences in general cognitive function and educational attainment.

In summary, this work identifies genomewide significant loci associated with cortical SA 

and TH and enables a deeper understanding of the genetic architecture of the human cerebral 

cortex and its patterning.

Materials and methods summary

Participants

Participants were genotyped individuals, with corticalMRI data, from60 cohorts.Participants 

in all cohorts gave written informed consent, and each site obtained approval from local 

research ethics committees or institutional review boards. Ethics approval for the 

metaanalysis was granted by the QIMR Berghofer Medical Research Institute Human 

Research Ethics Committee (approval: P2204).
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Imaging

Measures of cortical SA and TH were derived from in vivo whole-brain T1-weighted MRI 

scans using FreeSurfer MRI-processing software (1). SA and TH were quantified for each 

individual across the whole cortex and within 34 distinct gyral-defined regions, according to 

the Desikan-Killiany atlas. The regions were averaged across both hemispheres (10).

Genetic association analyses

Within each cohort, GWASs were conducted on each of the 70 imaging phenotypes. After 

quality control, these data were meta-analyzed using METAL (63). Initially the GWASs 

from European cohorts were meta-analyzed together, yielding the principal results that were 

used in all subsequent analyses. We sought replication of the genome-wide significant loci 

with data from the CHARGE Consortium. To examine generalization of effects, the GWASs 

from the non-European cohorts were meta-analyzed together, and we then collectively meta-

analyzed the European and non-European results. Polygenicrisk scores werederived fromthe 

principal meta-analysis and used to predict the amount of variance explained by the 

association of common genetic variants with the cortical SA and TH in an independent 

sample.

SNP heritability and tests for genetic correlations and causation

Heritability explained by common genetic variants (SNP heritability) was estimated using 

LD score regression (64). Genetic correlations between cortical regions were estimated 

using cross-trait LD score regression (65). To examine genetic relationships with other traits, 

we estimated genetic correlations using cross-trait LD score regression. To determine 

whether these correlations were causal, we used MR (59) and LCV analyses (19).

Partitioned heritability

Partitioned heritability analysis was used to estimate the percentage of heritability explained 

by annotated regions of the genome (66). Heritability enrichment was first estimated in 

active regulatory elements across tissues and cell types (21, 22). Subsequently, heritability 

enrichment was estimated in midfetal–specific active regulatory elements and adult cortex–

specific active regulatory elements. Finally, heritability enrichment was estimated in 

regulatory elements of cell type–specific genes in the fetal brain (23).

Functional follow-up

After obtaining the principal meta-analytic results, we followed up with gene-based 

association analysis using MAGMA (67). A multivariate analysis of the regional association 

results was conducted using TATES (42). Pathway analyses were conducted on the global 

measures and the results from the multivariate analyses using DEPICT to identify 

enrichment of association in known genetic functional pathways (25). To identify putatively 

causal variants, we performed fine-mapping with CAVIAR (68). Potential functional impact 

was investigated using FUMA (30), which annotates the SNP location, nearby enhancers or 

promoters, chromatin state, associated eQTLs, and the potential for functional effects 

through predicted effects.
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Fig. 1. Regions of the human cortex and associated genetic loci.
(A) The 34 cortical regions defined by the Desikan-Killiany atlas. (B) Ideogram of loci that 

influence cortical SA and TH.
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Fig. 2. Genetics of global measures.
(A) Genetic correlations between global measures and selected traits (red indicates 

significant correlation, FDR < 0.05). Error bars indicate SE. (B) Partitioned heritability 

enrichment in active regulatory elements across tissues and cell types. ESC, embryonic stem 

cells; iPSC, induced pluripotent stem cells; ES–deriv, embryonic stem derived; HSC, 

hematopoietic stem cells; Mesench, mesenchymal; Myosat, myosatellite; Neurosph, 

neurosphere; Sm. Muscle, smooth muscle. (C) Partitioned heritability enrichment in 

temporally specific active regulatory elements. (D) Partitioned heritability enrichment in 

regulatory elements of cell type–specific genes in the fetal brain. (E) Manhattan plot of loci 

associated with total SA (top) and average TH (bottom). Green diamonds indicate lead SNPs 
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in the principal meta-analysis, black diamonds indicate changes in P value after replication, 

dashed horizontal lines denote genome-wide significance, and solid horizontal lines 

represent the multiple testing correction threshold.
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Fig. 3. Genetic and phenotypic correlations between cortical regions.
(A) Surface area. (B) Thickness. Regions are numbered according to the inset key of Fig. 

1A. The proportion of variance accounted for by common genetic variants is shown in the 

first column (h2
SNP). Phenotypic correlations from the UK Biobank are in the upper right 

triangle. Genetic correlations from the principal meta-analysis are in the lower left triangle. 

Only significant correlations are shown.

Grasby et al. Page 37

Science. Author manuscript; available in PMC 2021 March 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Genetics of regional measures.
(A) Regional plot for rs1080066, including additional lead SNPs within the LD block and 

surrounding genes, chromatin interactions in neural progenitor cells, chromatin state in 

RoadMap brain tissues, and BRAINSPAN candidate gene expression in brain tissue. (B) 

Ideogram of 15q14, detailing the significant independent loci and cortical regions. (C) 

rs1080066 (G allele) association with SA of regions. (D) rs1080066 association with central 

sulcus depth and depth of several primate species. RoadMap chromatin states: TssA, active 

transcription start site (TSS); TssAFlnk, flanking active TSS; TxFlnk, transcription at gene 
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5′ and 3′; Tx, strong transcription; TxWk, weak transcription; EnhG, genic enhancers; Enh, 

enhancers; Het, heterochromatin; TssBiv, bivalent/poised TSS; BivFlnk, flanking bivalent 

TSS/enhancer; EnhBiv, bivalent enhancer; ReprPC, repressed Polycomb; ReprPCWk, weak 

repressed Polycomb; Quies, quiescent/low. BRAINSPAN cortical tissue types: DFC, 

dorsolateral prefrontal cortex; VFC, ventrolateral prefrontal cortex; MFC, anterior cingulate 

cortex; OFC, orbital frontal cortex; M1C, primary motor cortex; M1C-S1C, primary motor-

sensory cortex; PCx, parietal neocortex; S1C, primary somatosensory cortex; IPC, 

posteroventral parietal cortex; A1C, primary auditory cortex;TCx, temporal neocortex; STC, 

posterior superior temporal cortex; ITC, inferolateral temporal cortex; Ocx, occipital 

neocortex; V1C, primary visual cortex.
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Fig. 5. Genetic correlations with neuropsychiatric and psychological traits.
(A) Genetic correlations with total SA and average TH. Significant positive correlations are 

shown in red; significant negative correlations are shown in blue. Error bars indicate SE. (B) 

Regional variation in the strength of genetic correlations between regional SA (without 

correction for total SA) and traits showing significant genetic correlations with total SA.
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