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Abstract

We consider extra dimensional gauge theories on an interval. We first review the deriva-
tion of the consistent boundary conditions (BC’s) from the action principle. These BC’s
include choices that give rise to breaking of the gauge symmetries. The boundary con-
ditions could be chosen to coincide with those commonly applied in orbifold theories,
but there are many more possibilities. To investigate the nature of gauge symmetry
breaking via BC’s we calculate the elastic scattering amplitudes for longitudinal gauge
bosons. We find that using a consistent set of BC’s the terms in these amplitudes that
explicitly grow with energy always cancel without having to introduce any additional
scalar degree of freedom, but rather by the exchange of Kaluza–Klein (KK) gauge
bosons. This suggests that perhaps the SM Higgs could be completely eliminated in
favor of some KK towers of gauge fields. We show that from the low-energy effective
theory perspective this seems to be indeed possible. We display an extra dimensional
toy model, where BC’s introduce a symmetry breaking pattern and mass spectrum
that resembles that in the standard model.

http://arxiv.org/abs/hep-ph/0305237


1 Introduction

A crucial ingredient of the standard model of particle physics is the Higgs scalar. One of the
main arguments for the existence of the Higgs is [1, 2, 3, 4, 5] that without it the scattering
amplitude for the longitudinal components of the massive W and Z bosons would grow with
energy as ∼ E2, and thus violate unitarity at energies of order 4πMW /g ∼ 1.5 TeV. It has
been shown in [6, 7] that higher dimensional gauge theories maintain unitarity in the sense
that the terms in the amplitude that would grow with energies as E4 or E2 cancel (though the
theory itself becomes strongly interacting at a cutoff scale which depends on the size of the
extra dimension and the effective gauge coupling, and usually tree-level unitarity also breaks
down at a scale related to the cutoff scale due to the growing number of KK modes that
can contribute to the constant pieces of certain amplitudes). For a related discussion see [8].
This on its own is not so surprising, since one would naively expect that higher dimensional
gauge theories behave well in the energy range where they can be valid effective theories.
However, such higher dimensional theories can also be used to break the gauge symmetries
if one compactifies the theory on an interval instead of a circle. Then by assigning non-
trivial boundary conditions (BC’s) to the gauge fields at the endpoints of the interval one
can reduce the number of unbroken gauge symmetries, and thus effectively generate gauge
boson masses even for the modes that would remain massless when only Neumann BC’s are
imposed. This then raises the question, whether the cancellation in the scattering amplitudes
of the terms that grow with energy is maintained or not in the presence of such breaking
of gauge symmetries. This issue is related to the question of whether the breaking of gauge
invariance via boundary conditions is soft or hard. We would like to give a general analysis
of this question (which also have been recently addressed in some particular examples in
Refs. [9, 10], see also [11] for a related discussion in the case of KK gravity).

In this paper we investigate the nature of gauge symmetry breaking via BC’s. First we
review the derivation of the set of equations that the boundary conditions have to obey in
order to minimize the action, including a discussion of the issue of gauge fixing. The possible
set of BC’s (BC’s) include the commonly considered orbifold∗ BC’s [12,13,14,15] but as it was
already noted in [14] there are more possibilities. For example, it is easy to reduce the rank of
the gauge group with more general BC’s [14]. The question that such theories raise is whether
such a breaking of the gauge symmetries via BC’s yields a consistent theory or not. Since we
are insisting that the BC’s be consistent with the variation of a gauge invariant Lagrangian
that has no explicit gauge symmetry breaking, one would guess that such breaking should
be soft. In order to verify this, we investigate in detail the issue of unitarity of scattering
amplitudes in such 5D gauge theories compactified on an interval, with non-trivial BC’s. We
derive the general expression for the amplitude for elastic scattering of longitudinal gauge
bosons, and write down the necessary conditions for the cancellation of the terms that grow
with energy. We find that all the consistent BC’s are unitary in the sense that all terms
proportional to E4 and E2 vanish. In fact, any theory with only Dirichlet or Neumann BC’s

∗In orbifold theories one starts with a theory on a circle and then projects out some states not invariant
under a symmetry of the theory on the circle.
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is unitary. Surprisingly, this would also include theories where the boundary conditions can
be thought of as coming from a very large expectation value of a brane localized Higgs field,
in the limit when the expectation value diverges. For such theories with “mixed” BC’s, even
when the E4 terms cancel, the E2 term in the amplitude does not cancel in general. This is
not surprising, since such mixed BC’s would generically come from an explicit mass term for
the gauge field localized on the boundary. Thus cancellation of the E2 term would happen
only, if the explicit mass term is completed into a gauge invariant scalar mass term, in which
case the exchange of these boundary scalar fields themselves have to be included in order to
recover a good high-energy behavior for the theory. Indeed, we find that in some cases it may
be possible to introduce such boundary degrees of freedom which would exactly enforce the
given BC’s, and their contribution cancels the remaining amplitudes that grow with energy.

These arguments suggest that it should be possible to build an effective theory which has
no Higgs field present at all, but where the unitarity of gauge boson scattering amplitudes is
ensured by the presence of additional massive gauge fields. We show a simple example of an
effective theory of this sort where a single KK mode for the W ’s and the Z is needed to ensure
unitarity, and which are sufficiently heavy and sufficiently weakly coupled to have evaded
direct detection and would not have contributed much to electroweak precision observables.

In order to actually make an effective theory of this sort appealing one would have to give
a UV completion, for example at least in terms of an extra dimensional theory. Therefore, we
will consider several toy models of symmetry breaking with extra dimensions. The first two
models are prototype examples of orbifold vs. brane Higgs breaking of symmetries, which
we combine in the final semi-realistic model based on the breaking of a left-right symmetric
model by an orbifold using an outer automorphism. This model is similar to the standard
model, in that it has unbroken electromagnetism, the lightest massive gauge bosons resemble
the W and the Z, and their mass ratio could be close to a realistic one. However, the masses
of the KK modes are too light, and their couplings too strong. Nevertheless, we view this
model as a step toward a realistic theory of electroweak symmetry breaking without a Higgs
boson.

2 Gauge Theories on an Interval: Consistent BC’s

We consider a theory with a single extra dimension compactified on an interval with endpoints
0 and πR. We want to study in this section what are the possible BC’s that the bulk gauge
fields have to satisfy. We denote the bulk gauge fields by Aa

M(x, y), where a is the gauge
index, M is the Lorentz index 0, 1, 2, 3, 5, x is the coordinate of the ordinary four dimensions
and y is the coordinate along the extra dimension (we will use from time to time a prime
to denote a derivative with respect to the y coordinate). We will assume a flat space-time
background. We will consider several cases in this section. First we will look at the simplest
example of a scalar field in the bulk, which does not have any of the complications of gauge
invariance and gauge fixing. Then we will look at pure 5D Yang-Mills theory on an interval.
The cases of gauge theory with a bulk or brane scalar field are discussed in Appendix A.
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2.1 Bulk scalar

To start out, let us consider a bulk scalar φ field on an interval with an action

S =

∫

d4x

∫ πR

0

dy

(

1

2
∂N φ∂N φ − V (φ)

)

+

∫

y=0

d4x
1

2
φ2 M2

1 +

∫

y=πR

d4x
1

2
φ2 M2

2 . (2.1)

In order to find the consistent set of BC’s we impose that the variation of (2.1) vanishes.
Varying the action and integrating by parts we get

δS = −
∫

d4x

∫ πR

0

dy δφ

(

�5φ +
∂V

∂φ

)

−
∫

d4x
(

δφ
(

∂5φ + M2
1 φ
) ∣

∣

πR
− δφ

(

∂5φ + M2
2 φ
) ∣

∣

0

)

= 0 . (2.2)

Note, that we kept the boundary terms obtained from integrating by parts along the finite
extra dimension, while we have assumed as usual that the fields and their derivatives die off
as xµ → ∞. The variation of the bulk terms will give the usual bulk equation of motion

�5φ +
∂V

∂φ
= 0. (2.3)

In order to ensure that the action is minimized, one also has to ensure that the variation of
the action from the boundary pieces also vanish:

δφ
(

∂5φ + M2
i φ
) ∣

∣

0,πR
= 0. (2.4)

A consistent BC is one that automatically enforces the above equation. There are two ways
to solve this equation: either the variation of the field on the boundaries is zero, or the
expression multiplying the variation. Therefore the consistent set of BC’s that respects 4D
Lorentz invariance at y = 0, πR are

(i)
(

∂5φ + M2
i φ
)

|y=0,πR = 0 ; (2.5)

(ii) φ|y=0,πR = const. . (2.6)

Eq. (2.5) corresponds to a mixed BC and it reduces to Neumann for vanishing boundary
mass M2

i ; the value of φ at y = 0, πR is not specified. The second type of BC corresponds
to fixing the values of φ on the boundary, and reduces to a Dirichlet BC when const. = 0. It
is a matter of choice which one of these conditions one is imposing on the boundaries. One
could pick one of these conditions at y = 0 and the other at y = πR. When several scalar
fields are present, there is also the more interesting possibility to cancel the sum of all the
boundary terms without having to require that individually each term is vanishing by itself.
We will see an example for this in Section 6 of this paper.
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2.2 Pure gauge theory in the bulk

In this case the 5D gauge boson will decompose into a 4D gauge boson Aa
µ and a 4D scalar

Aa
5 in the adjoint representation. Since there is a quadratic term mixing Aµ and A5 we need

to add a gauge fixing term that eliminates this cross term. Thus we write the action after
gauge fixing in Rξ gauge as

S =

∫

d4x

∫ πR

0

dy

(

−1

4
F a

µνF
aµν − 1

2
F a

5νF
a5ν − 1

2ξ
(∂µA

aµ − ξ∂5A
a
5)

2

)

, (2.7)

where F a
MN = ∂MAa

N−∂NAa
M +g5f

abc Ab
MAc

N , and the fabc’s are the structure constants of the
gauge group. The gauge fixing term is chosen such that (as usual) the cross terms between
the 4D gauge fields Aa

µ and the 4D scalars Aa
5 cancel (see also [17]). Taking ξ → ∞ will

result in the unitary gauge, where all the KK modes of the scalars fields Aa
5 are unphysical

(they become the longitudinal modes of the 4D gauge bosons), except if there is a zero mode
for the A5’s. We will assume that every Aa

5 mode is massive, and thus that all the A5’s are
eliminated in unitary gauge.

The variation of the action (2.7) leads, as usual after integration by parts, to the bulk
equations of motion as well as to boundary terms (we denote by [F ] the boundary quantity
F (πR) − F (0)):

δS =

∫

d4x dy

(

∂MF aMν − g5f
abc F bMνAc

M +
1

ξ
∂ν∂σAa

σ − ∂ν∂5A
a
5

)

δAa
ν

−
∫

d4x dy
(

∂σF a
σ5 − g5f

abc F b
σ5A

cσ + ∂5∂σA
aσ − ξ∂2

5A
a
5

)

δAa
5

+

∫

d4x ([F a
5ν δAaν ] + [(∂σAaσ − ξ∂5A

a
5)δA

a
5]) . (2.8)

The bulk terms will give rise to the usual bulk equations of motion:

∂MF aMν − g5f
abc F bMνAc

M +
1

ξ
∂ν∂σAa

σ − ∂ν∂5A
a
5 = 0,

∂σF a
σ5 − g5f

abc F b
σ5A

cσ + ∂5∂σAaσ − ξ∂2
5A

a
5 = 0. (2.9)

However, one has to ensure that the variation of the boundary pieces vanish as well. This
will lead to the requirements

F a
ν5 δAaν

|0,πR = 0, (2.10)

(∂σAaσ − ξ∂5A
a
5)δA

a
5 |0,πR = 0. (2.11)

The BC’s have to be such that the above equations be satisfied. For example, one can fix all
the variations of the fields to vanish at the endpoints, in that case the above boundary terms
are clearly vanishing. However, one can also instead of setting δAa

5 |0,πR = 0 require that its
coefficient ∂σAaσ − ξ∂5A

a
5 vanishes. The different choices lead to different consistent BC’s
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for the gauge theory on an interval. There are different generic choices of BC that ensure
the cancellation of variation at the boundary and preserve 4D Lorentz invariance:

(i) Aa
µ| = 0, Aa

5| = const. ; (2.12)

(ii) Aa
µ| = 0, ∂5A

a
5| = 0 ; (2.13)

(iii) ∂5A
a
µ| = 0, Aa

5| = const. . (2.14)

However, besides these general choices where the individual terms in the sum of (2.11) vanish,
there could be more interesting situations where only the sum of the terms in (2.11) vanish.
We will see an example for this in Section 6 of this paper. While conditions (2.12) and
(2.13) are exact, condition (2.14) only satisfies Eq. (2.11) to linear order. The exact solution
requires F a

ν5 = 0 which imposes additional constraints especially in the case of an unbroken
gauge symmetry (i.e. zero mode gauge fields).

Generically, it is a choice which of these BC’s one wants to impose. One can impose a
different type of condition for every different field, meaning for the different colors a and
for Aµ vs. A5, as long as certain consistency conditions related to the gauge invariance of
massless gauge fields is obeyed. Different choices correspond to different physical situations.
An analogy for this is the theory of a vibrating rod. The equation of motion is obtained from
a variational principle minimizing the total mechanical energy, including the terms appearing
from the boundaries. Which of the BC’s one chooses depends on the physical circumstances
at its ends: if it is fixed at both ends the BC is clearly that the displacement at the endpoints
is zero. However, if it is fixed only on one end, then one will get a non-trivial equation that
the displacement on the boundaries has to satisfy, the analog of which is the condition F a

ν5 =
in (2.11).

Similarly in the case of gauge theories, it is our choice what kind of physics we are pre-
scribing at the boundaries, as long as the variations of the boundary terms vanish. A priori,
one can impose different BC’s for different gauge directions. However, some consistency
conditions on the gauge structure may exist. For instance, if one wants to keep a massless
vector, then in order to preserve 4D Lorentz invariance the action should possess a gauge
invariance. This means that the massless gauge bosons should form a subgroup of the 5D
gauge group.

One should note that there is a wider web of consistent BC’s than the one encountered
in orbifold theories. For instance, within each gauge direction, the BC (2.12) would have
never been consistent with the reflection symmetry y → −y symmetry of an orbifold. The
full gauge structure of the BC’s is also much less constrained: in orbifold theories, the gauge
structure was dictated by the use of an automorphism of the Lie algebra, which was a
serious obstacle in achieving a rank reducing symmetry breaking. As we will see explicitly in
Sections 5.2 and 6, these difficulties are easily alleviated when considering the most general
BC’s (2.12)-(2.14).

In order to actually quantize the theory one also needs to add the Faddeev–Popov ghosts
to the theory. One can add 5D FP ghost fields ca and c̄a using the gauge fixing function
from (2.7)

LFP = c̄a
(

−(∂µDµ)ab + ξ(∂5D5)
)

cb (2.15)
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The ghost fields have their own boundary conditions as well.
The cases for gauge theories with bulk scalars or localized scalars are discussed in Ap-

pendix A. For the case of a scalar localized at the endpoint the generic form of the BC for
the gauge fields (in unitary gauge) will be of the form

∂5A
a
µ|0,πR = V ab

0,πRAb
µ|0,πR. (2.16)

These are mixed BC’s that still ensure the hermiticity (self-adjointness) of the Hamiltonian.
In the limit V ab → 0 the mixed BC reduces to a Neumann BC, while the limit V ab → ∞
produces a Dirichlet BC.

Finding the KK decomposition of the gauge field reduces to solving a Sturm–Liouville
problem with Neumann or Dirichlet BC’s, or in the case of boundary scalars with mixed
BC’s. Those general BC’s lead to a Kaluza–Klein expansion of the gauge fields of the form

Aa
µ(x, y) =

∑

n

ǫµ fa
n(y)eipnx, (2.17)

where p2
n = M2

n and ǫµ is a polarization vector. These wavefunctions (due to the assumption
of 5D Lorentz invariance, i.e., of a flat background) then satisfy the equation:

fa
n
′′(y) + Ma 2

n fa
n(y) = 0, fa

n
′(0, πR) = V ab

0,πRf b
n(0, πR). (2.18)

The couplings between the different KK modes can then be obtained by substituting this
expression into the Lagrangian (2.7) and integrating over the extra dimension. The resulting
couplings are then the usual 4D Yang-Mills couplings, with the gauge coupling g4 in the cubic
and gauge coupling square in the quartic vertices replaced by the effective couplings involving
the integrals of the wave functions of the KK modes over the extra dimension:

gcubic → gabc
mnk = g5

∫

dyfa
m(y)f b

n(y)f c
k(y), (2.19)

g2
quartic → g2abcd

mnkl = g2
5

∫

dyfa
m(y)f b

n(y)f c
k(y)fd

l (y). (2.20)

Here a, b, c, d refer to the gauge index of the gauge bosons and m, n, k, l to the KK number.

3 Unitarity of the Elastic Scattering Amplitudes for

Longitudinal Gauge Bosons

We have seen above that gauge theories with BC’s lead to various patterns of gauge symmetry
breaking. The obvious question is whether these should be considered spontaneous (soft)
or explicit (hard) breaking of the gauge invariance. Since we have obtained the BC’s from
varying a gauge invariant Lagrangian, one would expect that the breaking should be soft.
We will now investigate this question by examining the high-energy behavior of the elastic
scattering amplitude of longitudinal gauge bosons in the theory described in the previous
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section. Using the couplings obtained above we are now ready to analyze these amplitudes.
First we will extract the terms that grow with energy in these amplitudes, then discuss
what BC’s will enable us to cancel the terms which grow with energies. We will restrict our
analysis to elastic scattering.∗

3.1 The elastic scattering amplitude

blabla

b (n) (n) d
a (n) (n) 


1

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Figure 1: Elastic scattering of longitudinal modes of KK gauge bosons, n + n → n + n, with
the gauge index structure a + b → c + d.

We want to calculate the energy dependence of the amplitude of the elastic scattering of
the longitudinal modes of the KK gauge bosons n + n → n + n with gauge index structure
a + b → c + d (see Fig. 1), where this process involves both exchange of the k’th KK mode
from the cubic vertex, and the direct contribution from the quartic vertex. We will also
assume, that the BC’s corresponding to the external modes with gauge indices a, b, c, d are
of the same type, that is they have the same KK towers (however we will not assume this
for the modes that are being exchanged). There are four diagrams as shown in Fig. 3.1:
the s, t and u-channel exchange of the KK modes, and the contribution of the quartic
vertex. The kinematics assumed for this elastic scattering is in the center of mass frame,
where the incoming momentum vectors are pµ = (E, 0, 0,±

√

E2 − M2
n), while the outgoing

momenta are (E,±
√

E2 − M2
n sin θ, 0,±

√

E2 − M2
n cos θ). E is the incoming energy, and θ

the scattering angle with forward scattering for θ = 0. The longitudinal polarization vectors
are as usual ǫµ = ( |~p|

M
, E

M

~p

|~p|) and accordingly the contribution of each diagram can be as bad

as E4/M4
n. It is straightforward to evaluate the full scattering amplitude, and extract the

leading behavior for large values energies of this amplitude. The general structure of the
expansion in energy contains three terms:

A = A(4) E4

M4
n

+ A(2) E2

M2
n

+ A(0) + O
(

M2
n

E2

)

. (3.1)

∗Working in the unitary gauge, there is a pole in the inelastic scattering amplitude when a massless gauge
boson is exchanged in the u- and t-channel. Technically, this requires to work in a general ξ gauge and more
computations are needed to derive sum rules equivalent to the ones we present for the elastic scattering.
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blabla

p�b (n)
p+a (n)

q� d(n)
q+ 
(n)


onta
t intera
tion p�b (n) (k) q� d(n)
p+a (n) q+ 
(n)

s 
hannel ex
hange
p�b (n) q� d(n)

(k)p+a (n) q+ 
(n)

t 
hannel ex
hange p�b (n)(k)p+a (n) q+ 
(n)
q�d(n)u 
hannel ex
hange

1Figure 2: The four gauge diagrams contributing at tree level to the gauge boson elastic
scattering amplitude.

It may seem inconsistent to formally expand the amplitude in energies, when for any
fixed energy there are KK modes that are much heavier and the series is potentially non-
convergent. However from the higher dimensional effective field theory we can see that the
heaviest modes are not important. Summing over all the modes is just the simplest way of
maintaining gauge invariance which would be broken by a hard cutoff on the spectrum.

To show this consider a non-Abelian gauge theory in D dimensions with a cutoff Λ. The
leading effect of integrating out the KK modes above Λ should be given by gauge invariant
higher dimensional operators. An example of such operators is given by

g3
D

Λ6−D
F 3

MN . (3.2)

All other gauge invariant operators of the same dimension should give similar results for the
scattering amplitudes. The coefficient of this operator can be fixed by first going into the
normalization where the coefficient of the kinetic term is −1/(4g2

D). In this normalization

8



FMN has dimension two, thus the prefactor 1/Λ6−D. Going back to canonical normalization
we get the higher order term of (3.2). Alternatively, we can see that this operator contains
three gauge fields, so if it comes from a loop of massive gauge fields it should contain three
gauge couplings. The contribution to longitudinal scattering from the ordinary F 2

MN term
is proportional to

g2
D (ER)4 (3.3)

(where we have assumed the incoming gauge boson mass is O(1/R), the inverse of the
compactification radius). This can be seen easiest by looking at the four-point coupling of
the gauge field. That has an explicit factor of g2

D, and there are four polarization vectors
which are of order E/M ∼ ER. Naively, the contribution from the higher dimensional
operator is growing faster with energy, with a power E6. However, gauge invariance will
actually soften this amplitude. One can see this explicitly by noting that from (3.2) one
needs two factors of ∂µAν − ∂νAµ, and two other factors of the gauge field. This will imply
that two of the polarization vectors appear in the combination pµǫν − pνǫµ, which after
explicitly substituting for the polarization vectors is just proportional to the mass of the
external particle, rather than growing with energy. Therefore the contribution from the
F 3

MN terms scales as

g4
D

Λ6−D
(ER)2 1

R2
, (3.4)

so the ratio of the correction term to the leading term is

g2
4

(ΛR)6−D(ER)2
, (3.5)

where we have used g2
D = g2

4R
D−4. Thus for E ≫ 1/R, ΛR > 1, and D < 6 the contributions

from the highest KK modes are suppressed. Note that here we have not used the non-trivial
cancellation of the E4 term in the amplitude. Once that is taken into account, the effects of
the KK modes are still suppressed as long as D < 6 and ΛR > 1. For a 5D theory ΛR can
be large as 24π3 [16].

We would like to understand under what circumstances A(4) and A(2) vanish. The vanish-
ing of these coefficients would ensure that there are no terms in the amplitude that explicitly
grow with energy. This is a necessary condition for the tree-level unitarity of a theory.
However, this is certainly not a sufficient condition. The finite piece in the amplitude A(0)

should also not be too large in order for the theory to be tree-unitary, for every possible
scattering. In theories with extra dimensions, since there are an infinite number of KK
modes available, there will always be some amplitudes that have finite pieces, which however
grow as the number of exchanged KK modes is allowed to increase. This simply reflects the
higher dimensional nature of the theory, and the fact that higher dimensional gauge theo-
ries are non-renormalizable. Therefore, tree unitarity is expected to break down at energies
comparable to the 5D cutoff scale, even when A(4) = A(2) = 0. When discussing unitarity
of these models we will simply mean the cancellation of the A(4) and A(2) amplitudes. We
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stress again that this does not imply that the conventional unitarity bounds on the finite
amplitudes have to be satisfied for all processes.

The largest term, growing with E4, depends only on the effective couplings and not on
the mass spectrum:

A(4) = i

(

g2
nnnn −

∑

k

g2
nnk

)

(

fabef cde(3 + 6 cos θ − cos2 θ) + 2(3 − cos2 θ)facef bde
)

. (3.6)

The expression for the amplitude that grows with E2 is:

A(2) =
i

M2
n

facef bde

(

4g2
nnnnM

2
n − 3

∑

k

g2
nnkM

2
k

)

− i

2M2
n

fabef cde

(

4g2
nnnnM

2
n

−3
∑

k

g2
nnkM

2
k +

(

12g2
nnnnM

2
n +

∑

k

g2
nnk(3M

2
k − 16M2

n)

)

cos θ

)

. (3.7)

Both in (3.6) and (3.7) everywhere below the KK indices n and k actually have to be
interpreted as double indices, that stand both for the color index and the KK number of
the given color index, e.g., k ∼ (k, e). Also, as stated above, we are assuming that all the
in-going and out-going gauge bosons satisfy the same boundary condition and thus the n
index is color-blind. In getting the expressions (3.7) or (3.9) for A(2), we used the Jacobi
identity which requires a sum over the gauge index of the exchanged gauge boson. Thus we
have implicitly assumed that the sums like

∑

k gabe
nnkg

cde
nnk or

∑

k gabe
nnkg

cde
nnkM

e 2
k are independent

of the gauge index e, which indeed is a true statement as we will show later on.
If one assumes the cancellation of the E4 terms (which we will show is indeed always the

case) one has the relation

g2
nnnn =

∑

k

g2
nnk. (3.8)

Using this relation the expression for the E2 terms can be simplified to the following:

A(2) =
i

M2
n

(

4gnnnnM
2
n − 3

∑

k

g2
nnkM

2
k

)

(

facef bde − sin2 θ
2

fabef cde
)

. (3.9)

Even though we will not consider constraints coming from the finite (E0) terms in the
elastic scattering amplitude, for completeness we present the relevant expression here (mak-
ing use of the conditions for cancelling the A(4) and A(2) terms):

A(0) = i
∑

k

g2
nnk

(

fabef cdeF (Mk/Mn, θ) + facef bdeG(Mk/Mn, θ)
)

, (3.10)

with

F (x, θ) = − 1

16 cos2 θ/2
(4 − 10x2 + 7x4 − 8(4 − 3x2) cos θ − (4 − 2x2 − x4) cos 2θ),

G(x, θ) =
1

2 sin2 θ
(4 − 6x2 + 3x4 + (12 − 10x2 + x4) cos2 θ). (3.11)
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We can summarize the above results by restating the conditions under which the terms
that grow with energy cancel:

g2
nnnn =

∑

k

g2
nnk, (3.12)

4g2
nnnnM

2
n = 3

∑

k

g2
nnkM

2
k . (3.13)

3.2 Cancellation of the terms that grow with energy for the sim-
plest BC’s

The goal of the remainder of this section is to examine under what circumstances the terms
that grow with energy cancel. Consider first the E4 term. According to (3.12) the require-
ment for cancellation is

∫ πR

0

dy f 4
n(y) =

∑

k

∫ πR

0

dy

∫ πR

0

dz f 2
n(y)f 2

n(z)fk(y)fk(z). (3.14)

One can easily see that this equation is in fact satisfied no matter what BC one is imposing,
as long as that BC still maintains hermiticity of the differential operator ∂2

y on 0, πR. The
BC maintains hermiticity of the differential operator if it is of the form f ′

|0,πR = V0,πRf|0,πR.

In this case one can explicitly check that
∫ πR

0
h∗g′′ =

∫ πR

0
h∗′′g. The reason why (3.14) is

obeyed is that for such hermitian operators one is guaranteed to get an orthonormal complete
set of solutions fk(y), thus from the completeness it follows that

∑

k

fk(y)fk(z) = δ(y − z), (3.15)

which immediately implies (3.14).† The completeness relation basically implies that any
function can be expanded in terms of the eigenfunctions of ∂2

y on the interval 0, πR, g(y) =
∑

k fk(y)
∫ πR

0
dzg(z)fk(z). There is a subtlety in this if the BC for the f ’s is f(0, πR) = 0,

since in that case only functions that are themselves zero at the boundary can be expanded
in this series. However, even in this case the expansion will converge everywhere except
at the two endpoints to the given function, and since we will integrate over the interval
anyway, changing the function at finite number of points does not matter. Thus we conclude
that (3.14) always holds, the E4 terms always cancel irrespectively of the BC’s imposed.
Therefore, we can now assume that the E4 terms cancelled, and using the equation that
leads to the cancellation of these terms we get that the condition for the cancellation of the
E2 terms is as in (3.13)

3
∑

k

M2
k

∫ πR

0

dy

∫ πR

0

dz f 2
n(y)f 2

n(z)fk(y)fk(z) = 4 M2
n

∫ πR

0

dy f 4
n(y). (3.16)

†Again we stress that, restoring gauge indices, the completeness relation holds
∑

k
fe

k
(y)fe

k
(z) = δ(y− z),

with no sum over e. This just says that there is completeness for every gauge index separately. This justifies
the manipulations used to get Eqs. (3.7)-(3.9), where the Jacobi identity was used without paying attention
to the remaining implicit gauge indices in the sum.
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Let us first assume that one can integrate by parts freely without picking up any boundary
terms (we will later see under what circumstances this assumption is indeed justified). In
this case we can easily derive a sum rule of the form

∑

k

M2p
k

(
∫ πR

0

dy f 2
n(y)fk(y)

)2

=
22p

3
M2p

n

∫ πR

0

dyf 4
n(y). (3.17)

Indeed, let us define

a(k)
p = M2p

k

∫ πR

0

dy f 2
n(y)fk(y), b(k)

p = M2p
k

∫ πR

0

dy f ′
n
2(y)fk(y). (3.18)

Using the 5D Lorentz invariant relation between the wavefunction and the mass spectrum,
M2

kfk(y) = −f ′′
k (y), a simple integration by part gives, neglecting the boundary terms that

we will include in the next section, the recurrence relations:

a
(k)
p+1 = 2M2

na(k)
p − 2b(k)

p , b
(k)
p+1 = 2M2

nb(k)
p − 2M4

na(k)
p , (3.19)

from which we obtain that

a(k)
p = 22p−1M2p−2

n

(

M2
na

(k)
0 − b

(k)
0

)

. (3.20)

The completeness relation (3.15) finally allows to evaluate the sums:

∑

k

(

a
(k)
0

)2
=

∫ πR

0

dy f 4
n(y),

∑

k

a
(k)
0 b

(k)
0 = 1

3
M2

n

∫ πR

0

dy f 4
n(y), (3.21)

which, combined with the recurrence relation, lead to the sum rule (3.17). For p = 1 this
relation exactly coincides with (3.16), and implies the cancellation of the E2 terms.

3.3 Sum rule with boundary terms

In the previous section, we have derived, neglecting some possible boundary terms, a sum
rule which ensures the cancellation of the terms that grow with the energy in the scattering
amplitude. We now would like to keep track of those boundary terms and see under which
circumstances the terms in the scattering amplitude that grow with energy still vanish. As
discussed above, the cancellation of the E4 terms is always ensured by the completeness of
the eigenfunctions of ∂2

y . However, the sum rule in (3.16) will be modified if there are non-
vanishing boundary terms picked up when integrating by parts. The resulting corrections
to the sum rule relevant for the E2 term is given by (we denote again by [F ] the boundary
quantity F (πR) − F (0))

∑

k

M2
k

(
∫

dyf 2
n(y)fk(y)

)2

= 4
3
M2

n

∫

dyf 4
n(y) − 2

3
[f 3

nf ′
n]

−
∑

k

[f 2
nf ′

k]

∫

dyf 2
n(y)fk(y) + 2

∑

k

[fnf
′
nfk]

∫

dyf 2
n(y)fk(y). (3.22)
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Thus one can see that (as expected) for arbitrary BC’s the E2 terms no longer cancel.
However, if one has pure Dirichlet or Neumann BC’s for all modes (some could have Dirichlet
and some could have Neumann, but none should have a mixed boundary condition as in
Eq. (2.16)) then all the extra boundary terms will vanish, and thus the cancellation of
the E2 terms would remain. Clearly, the terms in (3.22) involving [fnf

′
n] vanish, since

for the external mode either the function or its derivative should vanish on the boundary.
The one term that needs to be analyzed more carefully is

∑

k[f
2
nf ′

k]
∫

dyf 2
n(y)fk(y). If fn

satisfies Neumann BC’s, while fk Dirichlet, then the boundary piece itself is not vanishing.
However, in this case the expansion in terms of fk converges even on the boundary, and thus
∑

k f ′
k(x)

∫

f 2
n(y)fk(y)dy converges to 2fn(x)f ′

n(x), and thus we will again have a product
[fnf

′
n] on the boundaries, which will vanish.
Thus we can conclude that in theories with only Dirichlet or Neumann BC’s imposed the

E2 terms in the scattering amplitudes will always cancel. This implies, for example that all
models that are obtained via an orbifolding procedure (that is taking an extra dimensional
theory on a circle, and projecting onto modes that have a given property under y → −y
and πR − y → πR + y projections) will be tree-unitary at least up to around the cutoff
scale of the theory. In fact, we can see that for all consistent BC’s from (2.11) the E2

terms vanish. This shows that, as expected, those BC’s which follow from a gauge invariant
Lagrangian will have a proper high energy behavior. However, in the presence of mixed
BC, the boundary terms in the piece of the scattering amplitude that grows with E2 are
non-vanishing and prevent the theory to be tree-unitarity up to the naive cutoff scale of
the theory, e.g., the perturbative cutoff. The reason is that this corresponds to adding an
explicit mass term for the gauge bosons on the boundary which violates gauge invariance. If
however this comes from a gauge invariant scalar kinetic term via the Higgs mechanism, then
extra scalar degrees of freedom need to be added. As we will see explicitly in the example
of section 5.2, some extra degrees of freedom localized at the boundary are indeed needed to
restore tree-unitarity in this case. In some limits, however, these extra localized states can
decouple without spoiling tree-unitarity.

We close this section by presenting the corrections to the sum rule that is relevant for
the evaluation of the E0 terms of the scattering amplitude:

∑

k

(
∫

dyf 2
nfk

)2

M4
k = 16

3
M4

n

∫

dyf 4
n + 28

3
M2

n[f 3
nf ′

n] − 4[fnf
′
n
3
] +
∑

k

[f 2
nf ′

k − 2fnf
′
nfk]

2

−
∑

k

(

4M2
n[f 2

nf ′
k]

∫

dyf 2
nfk − 2[f ′

n
2
f ′

k]

∫

dyf 2
nfk − 2[f 2

nf ′
k]

∫

dyf ′
n
2
fk

)

.(3.23)

This is the relation that needs to be used if one were to try to find the actual unitarity
bounds on the finite pieces of the elastic scattering amplitudes, which is beyond the scope
of this paper.
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4 A 4D Effective Theory Without a Higgs

We have seen above that the necessary conditions for cancelling the growing terms in the
elastic scattering amplitudes are

g2
nnnn =

∑

k

g2
nnk, (4.1)

4g2
nnnnM

2
n = 3

∑

k

g2
nnkM

2
k . (4.2)

One can ask the question, in what kind of low-energy effective theories could these conditions
be possibly satisfied. Assuming, that there are N gauge bosons, one can clearly always
satisfy the relations (4.1)-(4.2) for the first N − 1 particles, as long as g2

nnnn ≥ g2
nnn. Given

the couplings g111 and g1111 and the mass of the lightest gauge boson M2
1 , the necessary

couplings and masses for the second gauge boson can be calculated from (4.1)-(4.2) to be

g2
112 = g2

1111 − g2
111, M2

2 =
M2

1

g2
112

(

4

3
g2
1111 − g2

111

)

, (4.3)

assuming that a single extra gauge boson is needed to cancel the growing amplitudes. Clearly,
there are many other possibilities as well to satisfy these equations for the N − 1 lightest
particles. However, the equation can not be satisfied for the heaviest mode itself. The reason
is that for the heaviest particle one would get the equations

g2
NNNN =

∑

k

g2
NNk, g2

NNNN =
∑

k

g2
NNk

3M2
k

4M2
N

. (4.4)

Since the ratio 3M2
k/(4M2

N) < 1 for the heaviest mode, these equations can not be solved no
matter what the solution for the first N −1 particles was, as long as one has a finite number
of modes. Thus we can see that there can not be a heaviest mode, for every gauge boson
there needs to be one that is more heavy if one wants to ensure unitarity for all amplitudes.
Thus a Kaluza-Klein type tower must be present by these considerations if the theory is to
be fully unitary without any scalars, and (4.1)-(4.2) can be satisfied only in the presence of
infinitely many gauge bosons.

From an effective theory point of view one should however consider the theory with a
cutoff scale. Then there would be a finite number of modes below this cutoff scale, for all of
which one could ensure the unitarity relations, except for the mode closest to the cutoff, for
which one has to assume that the UV completion plays a role in unitarizing the amplitude.
However, from this point of view we can see that the cutoff scale could be much higher than
the one naively estimated from the growing E2 amplitudes within the standard model. For
example, in the minimal case a single W ′ and Z ′ gauge bosons are necessary to unitarize the
W+

L W−
L and ZLZL scattering amplitudes. In fact, the relations (4.1)-(4.2) can be satisfied

with a W ′ and Z ′ that are heavy enough and sufficiently weakly coupled, so that their effects
would not have been observed at the Tevatron nor would they have significantly contributed
to electroweak precision observables.
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For example, in the SM the scattering W+
L W−

L → W+
L W−

L is mediated by s, t and u-
channel Z and γ exchange, and by the direct quartic coupling. The cancellation of the E4

term in the SM is ensured by the relations

g2
WWWW = g2, g2

WWZ = g2 cos2 θW , g2
WWγ = e2 = g2 sin2 θW . (4.5)

Let us now assume that the relation between g2
WWWW and g2

WWZ is slightly modified due
to the existence of a heavy Z ′, which has a small cubic coupling with the W ’s g2

WWZ′. The
values of the three gauge boson couplings gWWZ and gWWγ are not strongly constrained
by experiments, they are known to coincide with the SM values to a precision of about
3-5% , while there is basically no existing experimental constraint on g2

WWWW . Let us
therefore assume that the three gauge boson coupling g2

WWZ is smaller by a percent than
the SM prediction. Then in order to maintain the cancellation of the E4 terms one needs
g2

WWZ′ ∼ 0.01g2
WWZ. The cancellation of the E2 terms would then fix the mass of the Z ′ to

be about 560 GeV.
Note that one would not expect a quartic Z coupling or a ZZγ coupling, since there

is none in the SM, thus there are no contributions to ZLZL → ZLZL (contrary to the SM
where the Higgs exchange provides a finite term). However, to unitarize the WLZL → WLZL

amplitude there also needs to be a heavy W ′, with couplings to W and Z g2
WZW ′ similar

to g2
WWZ′. Thus (without actually having calculated the coefficients of the amplitudes for

the inelastic scatterings) we expect that W ′ would also have a mass of order 500 GeV. This
way all the amplitudes involving only SM W ’s and Z’s in initial and final states would be
unitarized. However, due to the sum rule explained above the scattering amplitudes involving
the W ′ and Z ′ in initial and final states can not all be cancelled by only these particles. We
expect that these amplitudes would become large at scales that are set by the masses of the
W ′ and Z ′ rather than the ordinary W and Z, so this would roughly correspond to a scale
of order 4πMW ′/g ∼ 10 TeV, were the theory with only these particles would break down.

Since the 4D effective theory below Λ = 10 TeV does not have an SU(2)L gauge invari-
ance (not even a hidden gauge invariance) there is an issue with the mass renormalization
for the gauge bosons: there will be quadratic divergences in the W and Z mass. (If the
theory is completed into an extra dimensional gauge theory with gauge symmetry breaking
by boundary conditions, then the masses will not really be quadratcially divergent, the di-
vergences will be cut off roughly by the radius of the extra dimension.) However the theory
is still technically natural since there is a limit where (hidden) gauge invariance is restored
and the divergence must be proportional to the gauge invariance breaking spurion. In the
present example we can estimate the divergent contribution to the Z mass to be at most

δM2
Z ≈ 0.01

g2
WWZ

16π2
Λ2 ≈ 0.7 GeV2 . (4.6)

The three gauge boson couplings required between the heavy and the light gauge bosons
is quite small. Therefore loop contributions to the oblique parameters S, T, U will be strongly
suppressed. However, one has to still ensure that no large tree-level effects appear due to
mixings between the heavy and light gauge bosons, which could spoil electroweak precision
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observables. In practice, this will probably require that the interactions of the heavy W ′ and
Z ′ obey a global SU(2)C custodial symmetry which ensures ρ = 1 in the SM

The masses of order 500 GeV would fall to the borderline region of direct observation,
assuming that their couplings to fermions is equal to the SM couplings. However, if the
coupling to fermions is just slightly suppressed, or it decays dominantly to quarks or through
cascades, then the direct search bounds could be easily evaded.

One should ask what kind of theories would actually yield low-energy effective theories
of the sort discussed in this section. We will see below that some extra dimensional models
could come quite close, though the masses of the gauge bosons are lower than 500 GeV,
while the ρ parameter has to be tuned to its experimental value. Before moving on to these
models, let us discuss whether any 4D theories with product group structure could result in
cancellations of the growing amplitudes. These models would correspond to deconstructed
extra dimensional theories. It has been shown in [18] that for finite number N of product
gauge groups there will be leftover pieces in the E2 amplitude (without including Higgs
exchange) that scale with N like 1/N3 (see Appendix B for details). Therefore, in any linear
or non-linear realizations of product groups broken by mass terms on the link fields the
amplitudes will not be unitary. However, already for N = 3 one would get a suppression
factor of 27 in the E2 piece of the scattering amplitude, which would mean that the scale
at which unitarity violations would become visible would be of order 8 TeV, rather than the
usual 1.5 TeV scale. Below we will focus on the models based on extra dimensions, where
the cancellation of the E2 terms is automatic without a scalar exchange.

5 Examples of Unitarity in Higher Dimensional Theo-

ries

In this section we will present two examples of how the unitarity relations (3.12)-(3.13) are
satisfied in particular extra dimensional theories. The first example will be based on pure
Dirichlet or Neumann boundary conditions, where the cancellation as expected is automatic,
while the second example will involve mixed BC’s for some of the gauge bosons, which will
imply the non-cancellation of the E2 terms. However, as we will show unitarity can be
restored by introducing a boundary Higgs field.

5.1 SU(2)→ U(1) by BC

Let us consider a 5D SU(2) Yang–Mills theory compactified on an orbifold that leaves only
a U(1) subgroup unbroken. We will further impose a Scherk–Schwarz periodic condition in
order to project out all the 4D scalar fields coming from the component of the gauge fields
along the extra dimension. The 5D gauge fields thus satisfy:

Aµ(x,−y) = PAµ(x, y)P−1 and A5(x,−y) = −PA5(x, y)P−1, (5.1)

Aµ(x, y + 2πR) = TAµ(x, y)T−1 and A5(x, y + 2πR) = TA5(x, y)T−1. (5.2)
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where AM = Aa
Mτa/2 (τa, a = 1 . . . 3 are the Pauli matrices) is the gauge field and P =

diag(1,−1), the orbifold projection and T = P , the Scherk–Schwarz shift. Note that the
orbifold projection and the Scherk–Schwarz shift satisfy the consistency relation [19]: PTP =
T−1. This setup could alternatively also be described by two Z2 projections y → −y and
πR−y → πR+y. The action of the first Z is just as in (5.1), while the second one is similar
with P replaced by PT = P 2 = 1.

Equivalently, we can describe this orbifold by a finite interval (y ∈ [0, πR]) supplemented
by the BC’s:

A1,2
µ (x, 0) = 0, ∂5A

3
µ(x, 0) = 0, ∂5A

a
µ(x, πR) = 0 (5.3)

∂5A
1,2
5 (x, 0) = 0, A3

5(x, 0) = 0, Aa
5(x, πR) = 0 (5.4)

Note that there is no zero mode coming from the fifth components of the gauge fields.
Therefore, we go to the unitary gauge which is the same as the axial gauge (A5 = 0). Then
the KK decomposition is

A1
µ(x, y) =

∞
∑

k=0

1√
πR

sin

(

(2k + 1)y

2R

)

(W+(k)
µ (x) + W− (k)

µ (x)), (5.5)

A2
µ(x, y) =

∞
∑

k=0

i√
πR

sin

(

(2k + 1)y

2R

)

(W+(k)
µ (x) − W− (k)

µ (x)), (5.6)

A3
µ(x, y) =

∞
∑

k=0

√

2

2δk,0πR
cos

(

ky

R

)

γ(k)
µ (x). (5.7)

The spectrum contains a massless photon, γ(0), and its KK excitations, γ(k), of mass Mγ(k) =

k/R as well as a tower of massive charged gauge bosons, W± (k), of mass MW (k) = (2k +
1)/(2R). With the above wavefunctions, it is easy to explicitly compute the cubic and quartic
effective couplings and check the general sum rules of Section 2. For instance, for the elastic
scattering of W ’s, the relevant couplings are:

gW (n)W (n)γ(k) =
g5

2
√

πR

(

δk,0 −
1√
2
δk,2n+1

)

, (5.8)

g2
W (n)W (n)W (n)W (n) =

3g2
5

8πR
. (5.9)

The BC’s conserve KK momenta up to a sign and therefore only γ(0) and γ(2n+1) can con-
tribute to the elastic scattering of W (n)’s. The sum rules (3.12)–(3.13) are trivially fulfilled.

The point of this section was to show that it is indeed possible to give a mass to gauge
boson without relying on a Higgs mechanism to restore unitarity. The orbifold symmetry
breaking mechanism illustrated with this example is however restrictive since it uses a Z2

symmetry of the action and in the simplest cases (abelian orbifolds using an inner automor-
phism) it is even impossible to reduce the rank the gauge group, which is a serious obstacle
to the construction of realistic phenomenological models. There are, however, more general
BC’s we can impose that are not equivalent to a simple orbifold compactification but still
lead to a well behaved effective theory.
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5.2 Completely broken SU(2) by mixed BC’s and the need for a
boundary Higgs field

In the previous section, we considered a breaking of SU(2) down to U(1) by an orbifold
compactification. We have shown that, in agreement with our general proof of Section 2, the
scattering amplitude of the gauge bosons that acquire a mass through compactification has
a good high energy behavior. The cancellation of the terms growing with energy is ensured
by the exchange of higher massive gauge bosons and does not require the presence of any
scalar field. We would like now to consider some more general boundary conditions than
the ones coming from orbifold compactification. In this case, we will see that the boundary
terms of the sum rule (3.22) are non vanishing and thus lead to a violation of the unitarity
at tree level, however unitarity can be restored by a scalar field living at the boundary. We
illustrate these results with an example of an SU(2) completely broken by mixed (neither
Dirichlet nor Neumann) BC’s.∗

Let us thus now consider the BC’s:

∂5A
a
µ(x, 0) = 0, ∂5A

a
µ(x, πR) = V Aa

µ(x, πR), (5.10)

Aa
5(x, 0) = 0, Aa

5(x, πR) = 0. (5.11)

A general solution can be decomposed on the KK basis

Aa
µ(x, y) =

∞
∑

k=1

fk(y)A(k)
µ (x), with fk(y) =

ak

sin(MkπR)
cos(Mky). (5.12)

The BC at the origin, y = 0, is trivially satisfied while the condition at y = πR determines
the mass spectrum through the transcendental equation:

Mk tan(MkπR) = −V. (5.13)

The parameter V controls the gauge symmetry breaking: when V = 0, the BC’s are those
of a orbifold compactification with no symmetry breaking and when V is turned on there
is no zero mode any more and the full SU(2) gauge group is broken completely. Note that
there is no zero mode either for the fifth component of the gauge field and thus A5 can be
gauged away, leaving no scalar field in the low energy 4D effective theory.

The normalization factor ak is determined by requiring that the KK modes are canonically
normalized,

∫ πR

0
f 2

k (y) = 1, leading to

ak =

√
2

√

πR(1 + M2
k/V 2) − 1/V

. (5.14)

Note that this KK decomposition can equivalently be obtained through a much more lengthy
procedure consisting in two steps (see [17] for details): (i) assume V = 0, get a KK de-
composition as in (5.7) and obtain the corresponding effective action; (ii) reintroduce the

∗Ref. [20] presented a model of GUT breaking using mixed BC’s.
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parameter V in the effective action as a mass term that mixes all the previous modes and
the true eigenmodes are obtained by diagonalizing the corresponding infinite mass matrix.

Unlike in the case of the previous section involving only Dirichlet or Neumann BC’s,
the mixed BC’s (5.10) give rise to boundary terms in the sum rule (3.22) needed for the
computation of the scattering amplitude. We obtain:

∑

k

M2
k

(
∫

dyf 2
nfk

)2

= 4
3
M2

n

∫

dyf 4
n + 1

3
V f 4

n(πR). (5.15)

Consequently, the scattering amplitude has a residual piece growing with the energy square
which is proportional to the order parameter, V :

A(2) =
ig2

5

M2
n

V f 4
n(πR)

(

−δabδcd + δacδbd sin2 θ/2 + δadδbc cos2 θ/2
)

. (5.16)

Besides the case V = 0, there is another limit where these boundary terms actually vanish.
Indeed, when V ≫ 1/R, the low-lying eigenmasses can be approximated by

Mk ∼ 2k + 1

2R

(

1 +
1

πRV
+ . . .

)

, k = 0, 1, 2 . . . (5.17)

and the normalization factor is ak ∼ 1/
√

πR, thus

V f 4
n(πR) ∼ (2n + 1)4

4π2R6V 3
. (5.18)

Therefore, the terms in the scattering amplitude that grow with the energy do cancel when V
goes to infinity. The physical reason of such a cancellation is clear: in the large V limit, the
brane localized mass term becomes large and the wavefunctions are expelled from the brane
thus the mixed BC ∂5fk(πR) = V fk(πR) in the limit V → ∞ simply becomes equivalent
to the Dirichlet BC fk(πR) = 0 which, as we already know, does not lead to any unitarity
violation.

As we already said, a finite and non-vanishing order parameter V can be interpreted as
an explicit gauge boson mass term localized at the boundary. This explicit breaking can be
UV completed using the usual Higgs mechanism. In our SU(2) model, we can introduce a
4D SU(2) doublet localized at y = πR. Giving a vacuum expectation value to the lower
component of the localized Higgs doublet

〈H〉 =
1√
2

(

0
v

)

(5.19)

gives rise to the mass term
∫

d4x1
8
g2
5v

2A2
µ(x, πR) in the 5D action. To obtain the BC (see

Appendix A.2 for technical details) we need to vary the action that contains both a bulk
and a boundary piece. The relevant part of the action is

(
∫ πR

0

dy 1
2
∂5Aµ∂5A

µ

)

+ 1
8
g2
5v

2A2
µ |πR. (5.20)
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Figure 3: Higgs exchange contributing at tree level to the gauge boson elastic scattering
amplitude. The Higgs boson is localized at y = πR and the vertex Higgs-Gauge-Gauge is
proportional to f 2

n(πR).

Varying the bulk terms will introduce, after integration by parts, the usual equation of
motion as well as boundary terms:

−
(
∫ πR

0

dy ∂2
5Aµ δAµ

)

+
(

∂5Aµ δAµ + 1
4
g2
5v

2Aµ δAµ
)

|πR
. (5.21)

The boundary terms thus impose the mixed BC:

∂5A
a
µ(x, πR) = V Aa

µ(x, πR), with V = −1
4
g2
5v

2. (5.22)

The three Goldstone bosons are eaten by the KK gauge bosons that would be massless when
V = 0 and we are left with only one physical real scalar field, the Higgs boson. At tree level,
the exchange of this Higgs boson also contributes to the gauge boson scattering amplitude
through the diagrams depicted in Fig. 5.2. The Higgs being localized at y = πR, its coupling
to the gauge bosons is proportional to f 2

k (πR). Thus we get a contribution to the scattering
amplitude that grows with the energy square:

A(2) =
ig4

5v
2

4M2
n

f 4
n(πR)

(

−δabδcd + δacδbd sin2 θ/2 + δadδbc cos2θ/2
)

. (5.23)

Using the relation (5.22), we get that (as expected) the Higgs exchange exactly cancels the
terms in scattering amplitude from the gauge exchange that grows like E2. Remarkably
enough, the Higgs boson can be decoupled (v → ∞ limit) without spoiling the high en-
ergy behavior of the massive gauge boson scattering. Note, that this limit would simply
correspond to the Aa

µ = 0 BC from (2.11).
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6 A Toy Model for Electroweak Symmetry Breaking

via BC’s

We want to study in this section the possibility to break the electroweak symmetry SU(2)L×
U(1)Y down to U(1)Q along the lines of the previous section, i.e., by BC’s without relying
on a Higgs mechanism either in the bulk or on the brane (a realistic model of electroweak
symmetry breaking without any fundamental scalar field has been constructed in [21], see
also [22]. Here we want to go further and totally remove any 4D scalar fields). The first idea
would be to extend the analysis of Section 5.2 to include a mixing between SU(2) and U(1).
However, considering the limit V → ∞, we would get a mass degeneracy for the W± and the
Z gauge bosons. Our point is to show that we can actually lift this degeneracy and obtain
a spectrum that depends on the gauge couplings. We do not claim to have a fully realistic
model but we want to construct a toy model that has the characteristics of the Standard
Model without the Higgs and that remains theoretically consistent.

Let us consider SO(4) × U(1) ∼ SU(2)L × SU(2)R × U(1) compactified on an interval
[0, πR] (for other models using a left-right symmetric extra dimensional bulk see [23], thought
the breaking patter of symmetries is very different in those models). At one end, we break
SO(4) down to SU(2)D by Neumann and Dirichlet BC’s. At the other end of the interval, we
break SU(2)R × U(1) down to U(1)Y by mixed BC’s and we will consider the limit V → ∞
in order to ensure unitarity without having to introduce extra scalar degrees of freedom
(alternatively, one can directly impose the equivalent Dirichlet BC’s, however, the gauge
structure is more transparent using the limit of mixed BC’s). Thus only U(1)Q remains
unbroken. We denote by AR a

M , AL a
M and BM the gauge bosons of SU(2)R, SU(2)L and U(1)

respectively; g is the gauge coupling of the two SU(2)’s and g′, the gauge coupling of the U(1).
We consider the two linear combinations∗ of the SU(2) gauge bosons A±a

M = 1√
2
(AL a

M ±AR a
M ).

We impose the following BC’s:

at y = 0 :

{

∂5A
+ a
µ = 0, A− a

µ = 0, ∂5Bµ = 0,

A+ a
5 = 0, ∂5A

− a
5 = 0, B5 = 0.

(6.1)

at y = πR :











∂5A
L a
µ = 0, ∂5A

R 1,2
µ = −1

4
g2v2AR 1,2

µ ,

∂5Bµ = −1
4
g′v2(g′Bµ − gAR 3

µ ), ∂5A
R 3
µ = 1

4
gv2(g′Bµ − gAR 3

µ ),

AL a
5 = 0, AR a

5 = 0, B5 = 0.

(6.2)

One has to check now, that the equations (2.11) are indeed satisfied requiring these BC’s.
We will only explain how the first of (2.11) is satisfied at y = 0, one can similarly check
all the other conditions. From A− a

µ = 0 we get that δALa
µ = δARa

µ . Thus we need to show
that F La

ν5 + F Ra
ν5 = 0, which is true due to the requirements ∂5A

+ a
µ = 0, A− a

µ = 0, and
A+ a

5 = 0. Note, that these BC’s are a non-trivial example of (2.11) being satisfied without

∗It can be seen that every other linear combinations, except the identity, would have not maintain any
gauge invariance. The particular combination chosen here preserves, at the boundary, an SU(2)D gauge
invariance.
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a term-by-term cancellation of the actual boundary variations, but rather by a cancellation
among the various terms.

One may wonder where these complicated looking BC’s originate from. In fact, they
correspond to a physical situation where one has an orbifold projection based on an outer
automorphism SU(2)L ↔ SU(2)R around one of the fixed points. Indeed the BC’s can be
seen as deriving from the orbifold projections (ŷ = y + πR):

AL a
µ (x,−y) = AR a

µ (x, y) , AR a
µ (x,−y) = ALa

µ (x, y) , Bµ(x,−y) = Bµ(x, y) , (6.3)

ALa
µ (x,−ŷ) = AL a

µ (x, ŷ) , AR a
µ (x,−ŷ) = AR a

µ (x, ŷ) , Bµ(x,−ŷ) = Bµ(x, ŷ) . (6.4)

The projections on the fifth components of the gauge fields are the same except an additional
factor −1. At the y = πR end point, a localized SU(2)R scalar doublet of U(1) charge 1/2
acquires a VEV (0, v)/

√
2 and breaks SU(2)R × U(1) down to U(1)Y . The mass terms is

responsible for the mixed BC’s (6.2).
For a finite VEV, the 4D Higgs scalar localized at y = πR is needed to keep the theory

unitary; we will however consider the limit v → ∞ where this scalar field can be decoupled
without spoiling the high energy behavior of the gauge boson scattering.

Due to the mixing of the various gauge groups, the KK decomposition is more involved
than in the simple example of Section 5.2 but it is obtained by simply enforcing the BC’s
(we denote by AL,R±

µ the linear combinations 1√
2
(AL,R 1 ∓ iAL,R 2)):

Bµ(x, y) = g a0γµ(x) + g′
∞
∑

k=1

bk cos(MZ
k y) Z(k)

µ (x) , (6.5)

AL 3
µ (x, y) = g′ a0γµ(x) − g

∞
∑

k=1

bk

cos(MZ
k (y − πR))

2 cos(MZ
k πR)

Z(k)
µ (x) , (6.6)

AR 3
µ (x, y) = g′a0γµ(x) − g

∞
∑

k=1

bk

cos(MZ
k (y + πR))

2 cos(MZ
k πR)

Z(k)
µ (x) , (6.7)

AL±
µ (x, y) =

∞
∑

k=1

ck cos(MW
k (y − πR)) W (k)±

µ (x) , (6.8)

AR±
µ (x, y) =

∞
∑

k=1

ck cos(MW
k (y + πR)) W (k)±

µ (x) . (6.9)

The normalization factors, in the large VEV limit, are given by

a0 =
1√
πR

1
√

g2 + 2g′2
, bk ∼

√
2√

πR

1
√

g2 + 2g′2
, ck ∼ 1√

πR
. (6.10)

The spectrum is made up of a massless photon, the gauge boson associated with the
unbroken U(1)Q symmetry, and some towers of massive charged and neutral gauge bosons,
W (k) and Z(k) respectively. The masses of the W±’s are solution of

MW
k tan(2MW

k πR) = 1
4
g2v2 , (6.11)
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and in the large v limit, we get the approximate spectrum:

MW
k =

2k − 1

4R

(

1 − 2

πg2v2R
+ . . .

)

, k = 1, 2 . . . (6.12)

The masses of the Z’s are solution of

MZ
k tan(MZ

k πR) = 1
8
(g2 + 2g′2)v2 − 1

8
g2v2 tan2(MZ

k πR) , (6.13)

and in the large v limit, we get two towers of neutral gauge bosons:

MZ
k =

(

M0 +
k − 1

R

)(

1 − 2

(g2 + g′2)v2πR
+ . . .

)

, k = 1, 2 . . . (6.14)

MZ′

k =

(

−M0 +
k

R

)(

1 − 2

(g2 + g′2)v2πR
+ . . .

)

, k = 1, 2 . . . (6.15)

where M0 = 1
πR

arctan
√

1 + 2g′2/g2. Note that 1/(4R) < M0 < 1/(2R) and thus the Z ′’s

are heavier than the Z’s (MZ′

k > MZ
k ). We also get that the lightest Z is heavier than the

lightest W (MZ
1 > MW

1 ), in agreement with the SM spectrum.
The BC’s break KK momentum conservation and as a consequence all the KK will

interact to each other. For instance, the cubic effective couplings between the W ’s and the
Z’s (and the Z ′’s) are, in the large VEV limit,

gW (n)W (n)Z(k) = − 2g2

√

π3R3(g2 + g′ 2)

MW 2
n

(4MW 2
n − MZ 2

k )MZ
k

, (6.16)

while the couplings between the W ’s and the photon are

gW (n)W (n)γ =
gg′

√

g2 + 2g′2
1√
πR

. (6.17)

Let us now discuss how to introduce matter fields. Locally at the y = 0 boundary, a
SU(2)D × U(1) subgroup remains unbroken. We can introduce some matter fields localized
on this boundary. Consider a SU(2) scalar doublet with a U(1) charge

√
2q. Its interactions

with the gauge boson KK modes are generated through the localized covariant derivative

DµΦ = ∂µΦ − i

2

(

2
√

2g′qBµ + gA+3
µ g(A+1

µ − iA+ 2
µ )

g(A+1
µ + iA+ 2

µ ) 2
√

2g′qBµ − gA+3
µ

)

|0
Φ. (6.18)

Using the KK decomposition (6.5)-(6.9), we evaluate the value of the gauge fields at the
boundary and the scalar covariant derivative becomes

DµΦ = ∂µΦ − i
√

2gg′a0

(

q + 1
2

0
0 q − 1

2

)

γµΦ −
∞
∑

k=1

ibkg
2

√
8

(

4qg′2

g2 − 1 0

0 4qg′
2

g2 + 1

)

Z(k)
µ Φ

−
∞
∑

k=1

igck cos(MW
k πR)

(

0 W
(k)+
µ

W
(k)−
µ 0

)

Φ. (6.19)
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The interactions between the scalar doublet Φ and the first massive KK gauge bosons Z(1) and
W (1) will exactly reproduce the SM interactions between a SU(2)L doublet of hypercharge
q and the Z and the W ’s provided that the normalization factors a, b1, c1 satisfy

b1 =
√

2a0, b1 =
2c1 cos(MW

1 πR)
√

g2 + 2g′2
. (6.20)

In the infinite VEV limit, from the expressions (6.10) it can be checked that these relations are
exactly satisfied and the 4D SM couplings are expressed in terms of the 5D gauge couplings
by

g4D =
g√
πR

, g′
4D =

√
2g′

√
πR

. (6.21)

In the same way the SM SU(2)L singlets will correspond to SU(2)D singlets charged under
U(1) and localized at the y = 0 boundary. When the corrections to the normalization factors
for a finite VEV are included, the interactions between the matter and the gauge bosons do
not reproduce exactly the structure of the SM. It has also to be noted that in the infinite
VEV limit the normalization factors are independent of the KK level, which means that the
couplings of matter to higher KK states will be unsuppressed.

One can also try to identify the couplings of matter localized at the y = πR end point.
In particular, it can be seen that the lowest component of a SU(2)R doublet of U(1) charge
1/2 does couple, in the v → ∞ limit, to none of the gauge bosons. This explains why the
localized Higgs boson does not contribute to restore unitarity in the massive gauge boson
scattering.

This toy model resembles the SM in that the lowest lying KK modes of the gauge bosons
have masses similar to the γ, W and Z, and the couplings of the brane localized fields can be
made equal to the couplings of the SM fermions. However, there are clearly several reasons
why this particular model is not realistic.

The first reason is the MW /MZ mass ratio. Even though we do get masses that depend
on the gauge couplings, which is a quite non-trivial step forward, nevertheless the ratio does
not exactly agree with the SM prediction. In the v → ∞ limit the ratio becomes

M2
W

M2
Z

=
π2

16
arctan−2

√

1 +
g

′2
4D

g2
4D

∼ 0.85, (6.22)

and hence the ρ parameter is

ρ =
M2

W

M2
Z cos2 θW

∼ 1.10 . (6.23)

Thus the mass ratio is close to the SM value, however the ten percent deviation is still huge
compared to the experimental precision. It is possible to get a more realistic value of the ρ
parameter by keeping a finite VEV v. The price to pay is that the coupling of matter to the
gauge boson will not exactly reproduce the structure of the SM couplings: for instance, if we
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match the coupling to the photon and to the W ’s, we will get a deviation of order M2
W /v2 in

the coupling to the Z. We can simply estimate the value of v needed in order to get ρ = 1:

M2
W

M2
Z

∼ π2

16
arctan−2

√

1 +
g

′2
4D

g2
4D

(

1 − 32(δM0 − δMW + δMZ)
M2

W

v2

)

(6.24)

where δM0, δMW , δMZ are complicated functions of the 4D gauge couplings. The mass ratio
can be tuned to exactly coincide with the experimental value, as long as v is lowered to about
v ∼ 640 GeV. However, we can see that a realistic mass ratio would require quite a low value
of v, which would imply that the scalar localized at y = πR has a significant contribution
to the scattering amplitude. Also, for finite values of v one can no longer match up all the
couplings of the brane localized fields to their SM values.

The next issue is the masses of the KK excitations of the W and Z. From the expression
MW

k ∼ (2k − 1)/(4R) one can see that MW
2 ∼ 3MW

1 ∼ 240 GeV. This is too low if the
coupling to the SM fermions is not suppressed (as would be the case for brane localized
fermions discussed above). The third issue is that with brane localized fermions of the sort
that we discussed above, it is not possible to give the fermions a mass. The SM Higgs serves
two purposes: to break electroweak gauge symmetry and to give masses to the SM fermions.
We have eliminated the Higgs and broken electroweak gauge symmetry by BC’s. In order to
be able to write down fermion masses one would have to include them into the theory in a
different manner.

In order to get a more realistic theory, we need to modify the structure of the model. For
fermion masses, putting the fermions into the bulk and only couple them to SU(2)L should be
sufficient. Other possible modifications are to put the Higgs that breaks SU(2)R×U(1)B−L in
the bulk, or to consider warped backgrounds. Work along these directions is in progress [24].

7 Conclusions

We have investigated the nature of gauge symmetry breaking by boundary conditions. First
we have derived the consistent set of boundary conditions that could minimize the action of
a gauge theory on an interval. These BC’s include the commonly applied orbifold conditions,
but there is a much wider set of possible conditions. For example, it is simple to reduce the
rank of gauge groups. To find out more about the theories where gauge symmetry breaking
happens via BC’s, we have investigated the high-energy behavior of elastic scattering ampli-
tudes. We have found, that for all generic consistent BC’s derived before the contributions
to the amplitude that would grow with the energy as E4 or E2 will always vanish, thus these
theories seem to have a good high-energy behavior just as gauge theories broken by the Higgs
mechanism would. However, since these are higher dimensional theories, tree unitarity will
still break down due to the non-renormalizable nature (growing number of KK modes) of
these models.

We have speculated, that perhaps the breaking of gauge symmetries via BC’s could
replace the usual Higgs mechanism of the SM. We have shown an effective field theory
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approach and a higher dimensional toy model for electroweak symmetry breaking via BC’s.
Clearly there is still a long way to go to find a fully realistic implementation of this new way
of electroweak symmetry breaking without a Higgs boson.
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Appendix

A BC’s for Gauge Theories with Scalars

In this Appendix we continue the discussion of BC’s for gauge theories on an interval. First
we will consider the case of a gauge theory with bulk scalar fields, then a gauge theory with
scalars localized at the endpoints.

A.1 Gauge theory with a bulk scalar

Let us now discuss how the BC’s and the bulk equations of motion are modified in the
presence of a bulk scalar field that gets an expectation value. We will use the notation of [25]
Chapter 21, where all complex scalars are rewritten in terms of real components denoted
by Φi, and expanded around their VEV’s as Φi = 〈Φi〉 + χi. The covariant derivative is
DMΦi = ∂MΦi + gAa

MT a
ijΦj , where the T a

ij generators are real and antisymmetric. The
quadratic part of the action is then given by

S =

∫

d4x

∫ πR

0

dy

(

−1

4
F a

µνF
aµν − 1

2
F a

µ5F
aµ5 − 1

2ξ
(∂µAaµ − ξ(∂5A

a
5 + gF a

i χi))
2

+
1

2
DµΦiD

µΦi +
1

2
D5ΦiD

5Φi − V (Φ)

)

. (A.1)
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Here we have added the modified form of the gauge fixing term. Expanding this Lagrangian
to quadratic order we get

S =

∫

d4x

∫ πR

0

dy

(

−1

2
Aa

ν(−∂ρ∂
ρgµν + ∂µ∂ν)Aa

µ +
1

2
(∂5A

a
ν − ∂νA

a
5)

2

− 1

2ξ
(∂µAaµ − ξ(∂5A

a
5 + gF a

i χi))
2 +

1

2
∂µχi∂

µχi +
1

2
g2F a

i F b
i Aa

µAνb + ∂µχiA
µagF a

i

−1

2
(∂5χi + gAa

5F
a
i )2 − M2

ijχiχj

)

. (A.2)

Note, that we have lowered all 5 indices. Here F a
i = T a

ij〈Φj〉, which as always is non-vanishing
only in the directions that would correspond to the Goldstone modes of the scalar potential.
Note, that the physics here is quite different than in the case with no bulk scalars. Before
the Aa

5’s were the would-be Goldstone modes eaten by the massive gauge fields. Now this
will change, and there is an explicit mass term for one combination of the A5’s and the
Goldstone components of the χ’s: ∂5χi + gAa

5F
a
i . These fields will be physical modes, that

do not decouple even in the unitary gauge ξ → ∞. The other combination ∂5A
a
5 + gF a

i χi

will provide the longitudinal modes of the gauge boson KK towers and will disappear in the
unitary gauge. Varying this action we get the linearized bulk equations of motion

∂σ∂
σAa ν − ∂2

5A
a ν −

(

1 − 1
ξ

)

∂ν∂σAa σ + g2F a
i F b

i Aνb = 0,

∂σ∂
σAa

5 − ξ∂2
5A

a
5 − (ξ − 1)g(∂5χi)F

a
i − ξgχi∂5F

a
i + g2F a

i F b
i Ab

5 = 0 ,

∂σ∂
σχi − ∂2

5χi + (ξ − 1)g(∂5A
a
5)F

a
i − gAa

5∂5F
a
i + ξg2F a

i F a
j χj + M2

ijχj = 0 . (A.3)

The BC’s will be modified to

F a
ν5 δAaν

|0,πR = 0, (A.4)

(∂σA
aσ − ξ∂5A

a
5 − ξgχiF

a
i )δAa

5|0,πR = 0, (A.5)

(∂5χi + gAa
5F

a
i )δχi = 0. (A.6)

A consistent set of BC’s is obtained by taking the previous set of BC from (2.11) and add
the condition χi = 0 on the endpoints. Note, that this does not imply the Higgs VEV on
the brane has to vanish, since the χ’s are the fluctuations around the expectation value.

A.2 Gauge theory with a scalar localized at the endpoint

Finally let us consider the case when one has a boundary scalar field φ, at y = 0. The
Lagrangian will be modified to

S =

∫

d4x

∫ πR

0

dy

(

−1

4
F a

µνF
aµν − 1

2
F a

5νF
a5ν − 1

2ξ
(∂µA

aµ − ξ∂5A
a
5)

2

)

+

∫

d4x

(

1

2
DµφiD

µφi − V (φ) − 1

2ξ
(∂µA

µa
|0 − ξgF a

i χi)
2

)

. (A.7)
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Expanding to quadratic order we get that the action is

S =

∫

d4x

∫ πR

0

dy Lbulk +

∫

d4x

(

1

2
∂µχi∂

µχi + g2F a
i F b

i Aa
µ|0

Aµb
|0 + g∂µχiF

a
i Aa

µ|0

− 1

2ξ
(∂µA

µa
|0 − ξgF a

i χi)
2 − 1

2
M2

ijχiχj

)

(A.8)

where we now had to add a gauge fixing term both in the bulk and on the brane. The bulk
equations of motions will be as in (2.9), the BC’s at y = πR will be the ones given in (2.11),
while the BC’s at y = 0 will now be given by

(F a
ν5 + g2F a

i F b
i Ab

ν +
1

ξ
∂ν∂µAaµ) δAaν

|0 = 0, (A.9)

(∂σAaσ − ξ∂5A
a
5)δA

a
5|0 = 0, (A.10)

(−∂µ∂µχi − ξg2F a
i F a

j χj − M2
ij)δχi = 0. (A.11)

In the limit ξ → ∞ we get the usual unitary gauge where both χi’s and A5’s (assuming
there are no A5 zero modes) are decoupled, and one is left with the physical KK tower of
Aµ and the non-Goldstone scalar modes (the physical Higgses) which are orthogonal to the
directions F a

i χi. In this limit the BC for the gauge fields will be of the form

∂yA
a
µ|0,πR = V ab

0,πRAb
µ|0,πR. (A.12)

We will refer to these mass term induced BC’s as mixed BC’s. Note that these are mixed
BC’s still ensure the hermiticity (self-adjointness) of the Hamiltonian. These are the BC’s
that should be used for the KK expansion of the gauge fields.

B Sum Rules and Unitarity in Deconstruction

It was suggested [26] two years ago that the physics of extra dimensions can be recovered in
the infrared in terms of a product of 4D gauge groups connected to each others by some link
fields (for the deconstruction of supersymmetric theories see [27]). We would like to see in
this appendix how this correspondence operates as far as the high energy behavior for the
amplitude of elastic scattering of massive gauge bosons is concerned (see also [18] for similar
computations).

Generically speaking, we have a set of gauge fields, Ai
µ(i = 1, . . . , N), living on the sites

of a lattice. For simplicity, we will assume that all the gauge group have the same gauge cou-
pling g. The dynamics of the link fields leads to a breaking of the product gauge group and,
accordingly, (some of) the gauge bosons acquire a mass (see [28] for some phenomenologi-
cal models mimicking extra dimensional orbifold models). The mass eigenstates are linear
combinations of the site gauge fields

A(m)
µ =

N
∑

i=1

α
(m)
i Ai

µ (B.1)
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where the coefficients α
(m)
i define an orthonormal basis

N
∑

i=1

α
(m)
i α

(n)
i = δmn,

N
∑

m=1

α
(m)
i α

(m)
j = δij. (B.2)

The cubic and quartic couplings (2.19)-(2.20) are replaced by

gcubic → gmnk = g
N
∑

i=1

α
(m)
i α

(n)
i α

(k)
i , (B.3)

g2
quartic → gmnkl = g

N
∑

i=1

α
(m)
i α

(n)
i α

(k)
i α

(l)
i . (B.4)

The expansion with the energy of the elastic scattering amplitude will be of the usual form:

A = A(4) E4

M4
n

+ A(2) E2

M2
n

+ A(0). (B.5)

The term growing with E4 is proportional to

A(4) ∝ g2

(

N
∑

i=1

α
(m) 4
i −

N
∑

k=1

N
∑

i,j=1

α
(m) 2
i α

(m) 2
j α

(k)
i α

(k)
j

)

. (B.6)

Again this term is just cancelling because of the orthonormality of the eigenstates.
The expression for the amplitude that grows with E2, after using the orthonormality

relation, is found to be proportional to

A(2) ∝ g2

(

4M2
n

N
∑

i=1

α
(m) 4
i − 3

N
∑

k

M2
k

N
∑

i,j=1

α
(m) 2
i α

(m) 2
j α

(k)
i α

(k)
j

)

. (B.7)

Unlike in the extra dimensional case and due to the absence of 5D Lorentz invariance, there
is no generic expression for the sum rule. In general the sum will not cancel but rather will
be suppressed by power of the replication number, N . There is one simplification which
allows to perform the sum over the mass eigenstates: indeed, from the definition of the
eingenstates, we get

N
∑

k

M2
k

N
∑

i,j=1

α
(m) 2
i α

(m) 2
j α

(k)
i α

(k)
j =

N
∑

i,j=1

α
(m) 2
i α

(m) 2
j M2

ij (B.8)

where M2
ij is the square mass matrix in the theory space. Therefore, in order to evaluate the

elastic scattering amplitude, we do not need to fully diagonalize the mass matrix and to find
all the eigenvectors: the computation of the elastic scattering amplitude of a particular mass
eigenstate requires only the knowledge of the decomposition of this particular eigenstate in
terms of the theory space gauge bosons.
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We will evaluate the scattering amplitude in two explicit examples. Let us first consider
the deconstruction version of the SU(2) → U(1) orbifold breaking of Section 5.1. The matter
content of the model is the following

SU(2)1 SU(2)2 . . . SU(2)N−1 U(1)
φ1

φ2
...

. . .

φN−2

φN−1 1/2

The breaking to a single U(1) is achieved by giving VEVs to the link fields φi, i = 1 . . . N−1,

〈φi〉 =
v√
2

1 for i = 1 . . .N − 2, 〈φN−1〉 =
v√
2

(

0
1

)

. (B.9)

The spectrum contains a massless photon, γ(0), and its KK excitations, γ(k) k = 1 . . . N − 1,
as well as a finite tower of massive charged gauge bosons, W± (k) k = 1 . . .N − 1. In the
lattice site basis, the N × N photon mass matrix has the form

g2v2

4















1 −1
−1 2 −1

. . .

−1 2 −1
−1 1















(B.10)

which is diagonalized by (k = 0 . . . N)

γ(k) =

√

2

2δkN

N
∑

i=1

cos
(2i − 1)kπ

2N
γi, Mγ

k = gv sin
kπ

2N
. (B.11)

The (N − 1) × (N − 1) W mass matrix is

g2v2

4















1 −1
−1 2 −1

. . .

−1 2 −1
−1 2















(B.12)

which is diagonalized by (k = 1 . . . N − 1)

W (k) =

√

4

2N − 1

N−1
∑

i=1

cos
(2i − 1)(2k − 1)π

4N − 2
W i, MW

k = gv sin
(2k − 1)π

4N − 2
. (B.13)
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This decomposition allows to evaluate as a function of N the sum rule appearing in the
elastic scattering amplitude. For instance for the W (1)W (1) → W (1)W (1) scattering,we get

4
N−1
∑

i=1

α
(1) 4
i − 3

N−1
∑

i,j=1

α
(1) 2
i α

(1) 2
j

M2
ij

MW 2
1

∼ 3.70 N−3. (B.14)

We will not discuss in details the deconstruction version of the left-right model of Section 6
but we would like to present how to deconstruct the outer-automorphism like BC’s. To this
end, let us simply consider a 5D SU(2)L×SU(2)R model broken to SU(2)D by the exchange
of the two SU(2)’s at one end-point of the interval. The matter content of the deconstructed
version of the model is the following

SU(2)L
N SU(2)L

N−1 . . . SU(2)L
1 SU(2)D SU(2)R

1 . . . SU(2)R
N−1 SU(2)R

N

φL
N−1

φL
N−2
...

. . .

φL
1

φ
φR

1
...

. . .

φR
N−2

φR
N−1

Note the presence of a link field, φ, charged under three gauge groups. The breaking to a
single SU(2) is achieved through the VEV pattern

〈φL,R
i 〉 =

v√
2
1, i = 1 . . .N − 1, 〈φα

β
γ
δ〉 =

v√
2

(

δα
β δγ

δ −
1

2
δγ

β δα
δ

)

. (B.15)

Here α is an SU(2)L
1 index, δ an SU(2)R

1 index, while β and γ are SU(2)D indices. Repro-
ducing the KK towers of the two particular linear combinations (AL ± AR)/

√
2 in the 5D

model, there are actually two kinds of gauge boson eigenvectors:

“ + ” states : (xN , xN−1, . . . , x1, y, x1, . . . , xN−1, xN), (B.16)

“ − ” states : (xN , xN−1, . . . , x1, 0,−x1, . . . ,−xN−1,−xN ). (B.17)

For the “+” eigenstates, we have relied on a numerical diagonalization. The “−” eigenstates,
however, can be found analytically from the zeros of the Chebyshev polynomial of order
2N +1, which allows for an analytical estimation of the E2 terms in the elastic scattering of
the “−” eigenstates. For instance, for the scattering of the lightest massive states, we found
a sum rule that, again, scales like 1/N3

4

2N+1
∑

i=1

α
(1−) 4
i − 3

2N+1
∑

i,j=1

α
(1−) 2
i α

(1−) 2
j

M2
ij

M2
1−

∼ 1.84 N−3. (B.18)
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