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Abstract The paper reports on the prediction of flow in a reach of the Sacramento
River with focus on a part of the river’s bank where serious erosion has occurred.
The simulations were obtained using a three-dimensional Navier–Stokes solver
which utilized body-fitted coordinates to represent the complex river bathymetry.
Comparative predictions were obtained using a two-dimensional, depth-averaged
formulation. Local (nested) mesh refinement was employed to provide the necessary
resolution of the bank geometry in the region of interest. The study focuses on
the assessment of the effectiveness of a particular arrangement of groynes which
was found in physical model studies to significantly reduce the rate of erosion in
the region under consideration. To validate the computational models, predictions
were first obtained for the case of turbulent flow in a straight rectangular channel
with one groyne. Measurements of velocity and boundary shear stress were used
for model validation. For the reach of the Sacramento River under consideration,
velocity measurements obtained in the large-scale physical model were also used
to check the computational model prior to its use for prediction of the river flow
with groynes. Here, too, both depth-averaged and three-dimensional computations
were performed with the objective being to determine the influence of the groynes
on the flow velocity. The bank erosion rate was estimated by coupling the ‘excess
shear stress’ method to the computed mean velocity field. The results show that for
the groynes configuration that was found optimal in the physical-model studies, and
that was actually implemented in the Sacramento River, the groynes are effective in
reducing the bank erosion of the affected zone but at the cost of transferring a far
less severe problem further downstream.
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Nomenclature

Cε1 , Cε2 , Cμ constants in the k−ε model
d sediment particle diameter
g acceleration due to gravity
K erodibility coefficient
k turbulent kinetic energy
l length scale representative of the energy-containing eddies
Pk production rate of k
Pε production rate of ε

uiu j Reynolds-stress tensor
Ui Cartesian velocity components
U , V, W velocities in x, y, z directions
xi physical coordinates
x, y, z streamwise, spanwise and depthwise directions
Vxy velocity magnitude in depth averaged computation
υ t eddy viscosity
ε turbulence energy dissipation
φ angle of repose for the sediment
θ1 slope of the bank
σk, σε constants of k−ε model
τ bed shear stress
τ c critical shear stress
τ c21 critical shear stress for a particle of diameter d2 resting on a bed of

particles of diameter d1

τWC critical shear stress on the bank
ξ fluvial erosion rate

1 Introduction

The ability to accurately predict the physical processes that lead to riverbank erosion
is very important since erosion can be the cause of significant environmental and
economical problems such as land loss, hazards to aquatic habitats, and damage to
hydraulic structures such as bridge piers and abutments. Erosion, if extensive and
not mitigated in some way, can also be a source of sediment load in rivers. In the
Sacramento River, for example, approximately 60% of the total sediment inflow
is attributable directly to bank erosion (US Army Corps of Engineers 1983). The
physical processes involved are quite complex and involve the combined actions
of weathering, fluvial erosion, and geotechnical instability (Thorne 1982; Lawler
1992). In addition, factors such as the soil properties, the frequency of freeze–thaw,
the stratigraphy of the bank structure, the type and density of vegetation and the
grain size of the bed sediment at the toe of the bank significantly influence the
erosion processes. Pizzuto and Meckelnburg (1989) provide a comprehensive review
of studies on river migration due to erosion in which some of these factors are
considered.

There have been several studies that attempted to relate the rate of bank retreat
to channel characteristics. Notable among these are those by Brice (1982), Nanson
and Hickin (1983), Ikeda et al. (1981) and Parker (1983). Brice (1982) showed that
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the rate of bank retreat increases with increasing channel width while Nanson and
Hickin (1983) have found a strong correlation between the channel curvature and
the rate of bank retreat. Ikeda et al. (1981) assumed that the rate of the bank retreat
is proportional to the difference between the near-bank depth-averaged velocity and
the reach-averaged velocity. Parker (1983) developed a relationship between the
migration rate and channel curvature. He included a factor that parameterized the
role of the secondary currents that develop in planes normal to the main direction
of flow. Hasegawa (1989) related the bank erosion rate to the excess velocity which
was defined as the difference between near-bank and centerline depth-averaged flow
velocity. A generalized bank erosion coefficient was also defined as a function of
both hydraulic parameters as well as geotechnical properties of the bank. Recently,
Darby and Thorne (1996), Nagata et al. (2000), Duan et al. (2001), Darby et al.
(2002), Olsen (2003), and Jang and Shimizu (2005) have developed hydrodynamic
and sediment transport models with channel width adjustments. Darby and Thorne
(1996) simulated channel widening by coupling bank stability with flow and sediment
transport algorithms and used a probabilistic approach to estimate the longitudinal
extent of mass failures. Their model is applicable to non-cohesive sand-bed channels
with cohesive bank materials. Both Nagata et al. (2000) and Jang and Shimizu
(2005) applied the empirical approach by Hasegawa (1984) to predict bank erosion
processes. According to this approach, bank erosion occurs when the cross-sectional
gradient of the bank slope becomes steeper than the submerged angle of repose of
the bank material. Darby et al. (2002) developed a numerical model for meandering
channels with erodible cohesive banks. Their model was shown to be capable of
simulating the deposition of failed bank material debris at the toe of the bank and
its subsequent removal. Olsen (2003) used a 3D model to compute the development
of meandering pattern in an initially straight alluvial channel. The bed level changes
were computed by using the sediment continuity equation.

Although fluvial erosion drives bank retreat directly by removal of material from
the bank face and by triggering mass instability (ASCE Task Committee 1998),
detailed knowledge of the flow behavior in the near-bank regions remains very
limited. On the other hand, a significant portion of the uncertainties associated with
the computational modeling of near-bank flow is directly attributable to inadequate
surface definition and inadequacies in the computational meshes that are used to
resolve the flow there. These and other factors which contribute to uncertainties in
the computational modeling of river-scale flows are considered in detail in Ercan and
Younis (2008) where it was found, for example, that the choice of method used to
interpolate field survey data in order to define the computational flow domain exerts
a considerable influence on the quality of the computed results. In this study, we
use the best practices to emerge from that earlier study to obtain predictions of the
flow field and the associated bank erosion. Both two-dimensional (depth-averaged)
and three-dimensional simulations were performed and their results compared; the
former because depth-averaged simulations are commonly used in river applications
(e.g. Novikov and Bagtzoglou 2006) and the latter in order to assess the importance
of flow skewness on bank-erosion processes. The focus is on a region of the
Sacramento River, immediately upstream of a bridge pier and abutment, where
significant bank erosion has occurred. A strategy for mitigation of this problem was
proposed in the form of groynes that would act to deflect fast-moving flow away from
the eroding bank. As such solutions often resolve the erosion problem at one location
in the river only at the cost of transferring it further downstream, a large-scale
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physical model study was performed to check the suitability of several alternative
design configurations having different numbers of groynes, arranged at different
orientation relative to the bank. In this study, we conduct numerical simulations to
check the validity of the most optimal configuration to be identified in these tests,
and which was finally deployed in the river. Measurements of mean-flow velocities
were obtained in the physical model and these are used here to check the models
results. Bank erosion rates, which were not obtained in the physical model study,
are estimated in the present simulations using the excess shear stress method of
Partheniades (1965). Bank erosion computations, before and after the deployment of
the groynes, are compared with field observations. The effects of turbulence, another
important factor in determining erosion rates, are accounted for in the predictions
using the two-equation k − ε model of turbulence. Details of this model and of the
computational procedure are given next.

2 Computational Model

2.1 Mean-flow and Turbulence-model Equations

The computational model used in this study is based on the solution of the conti-
nuity and the Reynolds-Averaged Navier–Stokes equations in both two- and three
dimensions (hereafter 2D and 3D). These equations are written in Cartesian-tensor
notation as:

∂Ui

∂xi
= 0 (1)

∂Ui

∂t
+ U j

∂Ui

∂x j
= gi − 1

ρ

∂ P
∂xi

+ ∂

∂x j

(
υ

∂Ui

∂x j
− uiu j

)
(2)

In the above, Ui is the mean-flow velocity vector, P is the static pressure and repeated
indices imply summation.

The unknown Reynolds stresses that appear in Eq. 2 were obtained from
Boussinesq’s linear stress-strain hypothesis:

−uiu j = υt

(
∂Ui

∂x j
+ ∂U j

∂xi

)
− δijk (3)

The eddy viscosity in Eq. 3 was determined by using the standard form of the
widely-used k-ε model of turbulence:

υt = Cμ

k2

ε
(4)

∂k
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)
+ Pk − ε (5)

∂ε

∂t
+ Ui

∂ε

∂xi
= ∂

∂xi

(
υt

σε

∂ε

∂xi
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where

Pk = υt
∂Ui

∂x j

(
∂Ui

∂x j
+ ∂U j

∂xi

)
(7)

The turbulence-model coefficients
(
Cμ, σk, σε, Cε1 , Cε2

)
were assigned their usual

values of (0.09, 1.0, 1.3, 1.44, 1.92) respectively (Launder and Spalding 1972).
A schematic of the computational cross-sections is shown in Fig. 1. The boundary

conditions used in the present computations were as follows: At inlet, a velocity
distribution consistent with that of a fully-developed three-dimensional turbulent
boundary layer was specified with the cross-stream profiles of mean velocity pre-
scribed using a power-law distribution. The maximum velocity (Um) was set equal
to 1.3 m/s so that the integrated velocity profile yielded the same flow rate as in the
physical-model study. The profiles of k and ε were specified with the assumption
that the relative turbulence intensity (u′/Um) and the turbulence length scale (l)
at inlet were equal to 0.1 and 0.001 m, respectively. Thereafter, k was deduced
from k = u2 and ε was deduced from the relation ε = Ck3/2

/
1 where l is a length

scale representative of the energy-containing eddies. The free surface was treated
as a plane of symmetry in the three-dimensional calculations. At the exit plane,
the flow was assumed to be fully developed and hence the streamwise gradients
of all dependent variables were set equal to zero. At the riverbed, the no-slip
wall boundary condition was applied thereby the velocities tangential and normal
to the walls were set to zero and the flux of the streamwise velocity component
deduced from experimental correlations for bed friction. This treatment, which is
typically referred to as the ‘wall functions’ approach, requires the specification of an

Fig. 1 Schematic of cross-sections in the 2D and 3D computational model
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appropriate bed resistance formula. A number of alternative formulae are available
(see, e.g. Tsihrintzis and Madiedo 2000) and the particular one used here is based
on the assumption that the mean velocity close to the wall can be described with
the universal logarithmic law of the wall. In terms of implementation, the near wall
viscosity was replaced by the value μw determined from either the laminar relation
appropriate to the viscous sublayer or the universal logarithmic velocity profile
appropriate for the fully turbulent regions away from the wall:

μw = y+

u+ μ (8)

where u+ =
⎧⎨
⎩

y+, y+ < y+
v

1

κ
ln

(
Ey+)

, y+ ≥ y+
v

κ is the von Karman constant (= 0.41), E is the logarithmic profile constant (= 9),
and y+ is the dimensionless distance to the wall, obtained as an empirical fit to
turbulent flow data:

y+ = ρC1/4
μ k1/2

P0
δnP0

μ
(9)

Here μ is the molecular viscosity, Cμ is the turbulence model coefficient, δn is the
normal distance from the wall, P0 denotes the center of the control volume next
to the wall. The viscous sub-layer thickness y+ is the larger root of the non-linear
equation

y+
v = 1

κ
ln

(
Ey+

v

)
(10)

2.2 Model for Bank Erosion

In this study, the rate of bank erosion is obtained by coupling the solution of the
Reynolds-Averaged Navier–Stokes equations to the excess shear stress approach of
the Partheniades (1965). In this approach, the fluvial erosion rate is related to the
excess shear stress through a simple power relation of the form:

ξ = K (τ − τc)
a (11)

where ξ is the erosion rate in m/s, K is an erodibility coefficient in m3N−1 s−1 and
τ−τ c is the excess shear stress (τ being the bed shear stress and τ c is the critical
shear stress, both in Pa). In Eq. 11, ‘a’ is an exponent whose value is often taken to
be 1.0. The critical shear stress in the same equation is calculated from Shields’ curve
(Shields 1936) from knowledge of the local friction velocity.

The critical shear stress τ c21 for a particle of diameter d2 resting on a bed of
particles of diameter d1 can be written in terms of τ c1 for a particle of diameter d1

resting on particles of same size d1 (Julien 1998):

τc21

τc1
= d2

d1

√
2(

1 + d2
/

d1
)2 − 2

(12)
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A sediment grain on a sloping river bank is less stable than one on the bed because
the gravity force tends to move it downward (Ikeda 1982). According to Lane (1955),
the ratio of the critical shear stress τwc for a particle on a bank to that for the same
particle on the bed τ c is

τwc

τc
= cos θ1

√(
1 − tan θ1

tan φ

)2

(13)

where θ1 is the slope of the bank and φ is the angle of repose for the sediment. The
angle of repose of a particle can be found in Lane (1955) once the particle size is
known.

Based on stream-bed tests conducted in several streams of Nebraska, Iowa and
Mississippi, Hanson and Simon (2001) showed that K can be estimated as a function
of the critical shear stress as:

K=10−7τ−0.5
c (14)

In this equation the erodibility coefficient in m3 N−1 s−1 is found by substituting
the value of the critical shear stress in Pa.

3 Results and Discussion

3.1 Test Problem: Flow Near Groyne-Like Structures

The performance of the 2D (depth-averaged) and 3D models were first checked
against the experimental data of Rajaratnam and Nwachukwu (1983). In these exper-
iments, a straight rectangular flume with smooth bed and sides was used to quantify
the behaviour of the turbulent flow which occurs near groyne-like structures. The
flume was 0.915 m wide and 0.189 m deep with a uniform inlet velocity, U0 = 0.25 m/s.
The groyne used was an aluminum plate of thickness of 3 mm and length, b = 0.15 m.
Details of the experiment can be found in Rajaratnam and Nwachukwu (1983). The
results of the same experiment were also used by Tingsanchalli and Maheswaran
(1990), Molls and Chaudhry (1995) and Molinas and Hafez (2000) to verify their
predictions. Tingsanchalli and Maheswaran (1990) used a depth-averaged flow model
and the k − ε turbulence model to compute the velocity and bottom shear stresses
in the vicinity of the groyne. They also attempted to quantify experimental errors
inherent in the experiments of Rajaratnam and Nwachukwu (1983) and reported the
possible error to be about 7% for the mean velocity and 6% for the shear stress
measurements. Molls and Chaudhry (1995) presented a mathematical model to solve
the unsteady, depth-averaged equations with the turbulent stresses obtained from
Boussinesq’s eddy-viscosity concept. Molinas and Hafez (2000), on the other hand,
used a 2D finite element model to determine the velocities and the turning angles
around vertical wall abutments. The eddy viscosity in that study was determined by
using the depth-averaged turbulent viscosity formulation of Rastogi and Rodi (1978).

The boundary conditions for the test problem were similar to those described in
Section 2.1 except that a uniform velocity profile at the inlet boundary was used.
In order to obtain uniform inlet and outlet flow conditions, these boundaries are
required to be located sufficiently far away from the groyne so as not to influence
the flow behavior there. Thangam and Speziale (1992), in a study of the related
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problem of flow over a two-dimensional backward-facing step, found that the inlet
boundary must be at least five times the step height upstream of the step and the
outlet boundary must be at least 30 times the step height downstream of the step. In
the present computations, the inlet and outlet planes are placed at, respectively, 15
and 45 groyne lengths away from it.

The 2D computations were performed on three different grids having a total of
10,084, 22,084 and 48,484 computational nodes. The 3D computations, on the other
hand, were performed using 121,008, 265,008 and 581,808 computational nodes. In
the 2D computations, only one cell was used in the z-direction (i.e. the depth) while,
in the 3D computations a total of 12 cells were used to resolve this coordinate. A
schematic representations of the test problem and grid showing details around the
groyne are depicted in Fig. 2a and b. The flow is in the x direction with x = 0 defining
the upstream side of the groyne, and y = 0 is located at the bank with the groyne.

The resultant velocity is defined as Vxy = √
U2 + V2, where U and V are the

depth-averaged velocities in the x and y directions, respectively. U and V are
averaged in depthwise direction in the 3D model in order to obtain values for the
resultant velocity that can be compared with the experimental data. Non-dimensional
resultant velocity is obtained by dividing Vxy by the uniform inlet velocity, U0.
Profiles of Vxy/U0, computed in the 2D and 3D models, are plotted against x/b for
y/b = 1, 1.5, 2, 3 and 4 in Figs. 3 and 4, respectively. Upstream of the groyne, the
predictions of Vxy/U0 are very similar for all of the grids both in the 2D and 3D
computations. However, some differences are observed downstream of the groyne
where the flow is highly disturbed and the secondary velocities become significant.
At y/b = 1, 1.5, and 3, the 2D and 3D predictions compare well with the experiment.
On the other hand, the 3D predictions are better at y/b = 3 and 4.

In the 2D computations, the bed shear stress τ b was obtained from the Darcy–
Weisbach formula incorporating an explicit form of the Colebrook–White equation
with τb = C f ρV2

xy. The resultant velocity was determined using the results of the
finest grid while the friction coefficient C f was evaluated in a number of different

(a)

(b)

Fig. 2 a Planview of the test problem, b Planview of the grid zoomed around groyne
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Fig. 3 Predicted (2D) and measured resultant velocity showing grid effects

ways in order to assess the sensitivity of this parameter to the choice of experimental
correlation used. These approaches were:

1. Based on a depth-averaged velocity Vxy obtained by assuming a logarithmic
variation of the horizontal velocities with depth (Pierce and Zimmerman 1973).

2. Calculated by Pierce and Zimmerman (1973) using a correction for the 3D effects
suggested by Johnston (1960). Here, the turning angle between the limiting
bottom streamline and the main flow direction was assumed to be twice that
between the main flow and upstream approaching direction (Tingsanchalli and
Maheswaran 1990).

3. By using Chezy’s equation to be valid and by taking Chezy’s constant to be
118 m1/2/s.

4. By using Darcy–Weisbach formula incorporating an explicit form of the
Colebrook–White equation.

The predicted shear-stress distributions using these four alternative approaches are
presented in Fig. 5. From this figure it is clear that the approach suggested by Pierce
and Zimmerman (1973) and Colebrook-White equation (plotted as CW) obtain
nearly identical shear stress values. The method of Pierce and Zimmerman (1973),
modified using the proposals of Johnston (1960), gives better predictions near groyne
where the 3D effects are quite strong. Moreover, the predictions for the bed shear
obtained with Chezy’s equation are approximately half the values obtained with the
other formulae considered. More realistic values of Chezy constant can be found by
computer optimization but this was not pursued here.

Figure 6 depicts the angles of the velocity vectors with respect to the streamwise
direction at the nose of the groyne as obtained by both the 2D and 3D computations.
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Fig. 4 Predicted (3D) and measured resultant velocity showing grid effects

The angles are plotted for twelve nodes from the channel bed to the water surface
for the 3D computation. Node number one refers to the node nearest to bed where
the skewness of the velocity vector amounts to 75.9◦, which is the maximum value
attained by this parameter. The angle calculated by the 2D approach is only 55.6◦:
this more modest skewness is obtained in the 3D computations at the fifthnode away
from the bed. Compared with the 2D results, the average of the angles at the 12
nodes was 8% larger in the 3D computations. This represents a strong dependence of
flow skewness on depth which is characteristic of fully-developed three-dimensional
turbulent boundary layers.

To conclude, both the 2D and the 3D computations were found to yield adequate
results for this test flow with the depth-averaged velocities predicted with similar
degree of accuracy using either approach. The obvious advantage of the 3D compu-
tations is that the computed results yield a description of the variation of dependent
variables in depthwise direction though, in practice, such description is important in
only a few cases such as, for example, buoyancy-driven flows. On the other hand, the
2D computations are significantly less demanding of computational resources.

3.2 Computations for a Reach of the Sacramento River with Groynes

The particular reach of the Sacramento River under consideration is located about
60 miles north of the City of Sacramento, CA. Our interest is primarily focused on
the right bank of this reach, just upstream of a bridge, where extensive bank erosion
has been observed. Flora (2003) and Mishra and Lindsey (2000) provide a history
of the bank erosion at this location. Briefly, bridge inspection carried out in 1952
revealed that a 40 m section of the right bank had retreated by about 7 m relative
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Fig. 5 Predicted (2D) and measured bed shear stress using different formulae

to a previous survey. Continued erosion was noted in a survey conducted in 1963,
and, in 1970, it was noted that an additional 9 to 15 m of erosion had occurred and
threatened the bridge integrity. Floods in 1996 and 1997 eroded about 6 m in the right
bank. In 1997, a sheet pile containment structure was constructed around the pier at
the right bank. After 1997, continued bank erosion lead authorities to consider other
solutions. A physical model study for the river reach under consideration (see Fig. 7)
was performed at the Hydraulics Laboratory at the University of California, Davis.
The outcome of that study was a recommendation to deploy four groynes to deflect
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Fig. 6 Skewness of velocity vectors relative to streamwise direction at the nose of the groyne in 2D
and 3D computations
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Fig. 7 Location and orientation of field survey transects in river scale. Dashed line is the line
connecting centerlines of transects. y′ for each transect is distance in meters from the centerline.
Numbers at top are transect numbers

fast-moving flow away from the eroding bank. This recommendation was arrived
at from a combination of flow-velocity measurements with a miniature propeller
meter, and from flow visualization using both floating particles and dissolved dye.
Following the recommendations of this study, the four groynes were constructed
in 2004 and these have so far been successful in producing the required bank
stabilization. The physical-model study also revealed that the same groynes, while
providing protection to the river bank upstream of the bridge, will lead to bank
erosion immediately downstream of it due to the strengthening of an existing vortex
that forms downstream of the bridge abutment. Subsequent field observations have
confirmed this finding. In what follows, we describe the computations that were
carried out in support of the physical-model study.

A plan view of the reach of interest is presented in Fig. 8 which also defines the
coordinates system used. A schematic view of the 2D and 3D computation domains
are shown at Figs. 7 and 9. The inlet plane is located at x = 0. Cubic splines were
utilized for the construction of the computational grid. As pointed out in Ercan and
Younis (2008), the number and location of the survey points used to construct the
channel cross sections can profoundly affect the quality of the grid. In some cases, the
survey data are sparse leading to the generation of cross-sectional profiles that differ
in essential detail from the real ones. In other cases, the number and distribution of
the survey data are such that unrealistic surface discontinuities are produced. Such

Fig. 8 x–y plane schematic of 2D and 3D computations for the reach of the Sacramento River with
four groynes
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Fig. 9 x–y plane schematic of 2D and 3D computations for the reach of the Sacramento River with
five groynes

discontinuities are known to slow down the convergence of an iterative solution
procedure and, in some instances, produce instabilities that can cause the iterative
process to diverge. A detailed discussion of the procedure for grid generation for
complex river geometries, and the impact of the grid on the quality of the computed
results can be found in Ercan and Younis (2008).

The estimated 100-year flood discharge at this location of the Sacramento River
is about 7,000 m3/s. The computational and physical-model studies reported here are
based on the Sacramento River flow rate of 4,049 m3/s, which is approximately the
design discharge for an 8-year return period.

The 2D computations with five groynes were performed using three different
grids having a total of 24,064; 36,103 and 48,131 computational nodes. The 3D
computations were performed using 240,638; 336,888 and 385,080 computational
nodes. In both cases, the grid nodes were non-uniformly distributed in order to better
resolve the regions of the flow that most strongly influence bank erosion (Figs. 8 and
9). The results of computations obtained on different grids were used to quantify
the discretization errors which, in this study, was done using the Grid Convergence
Index (GCI) method. This method is based on Richardson extrapolation and was first
proposed by Roache (1994, 1997). Briefly, the method entails the determination of
an index which reflects the uncertainty present in a numerical solution obtained with
a particular grid. This estimate is based on comparisons with the solutions obtained
with two other grids. Further details of this method, together with a demonstration
of its utility in open channel flows, may be found in Hardy et al. (2003). Figure 10a–d
present the results for section 15 (x = 808 m). The streamwise velocity in the 2D
model and the streamwise velocity at the surface in the 3D model are given in
Fig. 10a and c. Figure 10b shows the GCI at section 15 for the finest grid of
the 2D computations. The average GCI using 38 data points is 3.6%. The largest
value of the GCI is obtained near the right bank where it amounts to 27.7%.
Oscillatory convergence (which is indicative of regions of the flow where the GCI
method becomes inapplicable) occurs at 21% of the total data points. An alternative
method for discretization error analysis is the so-called Power Law Method (Celik
and Karatekin 1997) and its application in this flow yielded average and maximum
relative error values of 3.3% and 13%, respectively.

For the 3D results, the discretization errors calculated by the GCI and the
Power Law methods at section 15 for the finest grid are shown at Fig. 10d. The
errors calculated by the GCI Method at 31 data points with an average 0.7% and
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Fig. 10 a Streamwise velocity at Section 15 versus y′ (as in Fig. 7) for different grids in 2D model
with five groynes. b Error calculated by the GCI and the Power Law methods versus y′ in 2D model
with five groynes. c Streamwise surface velocity in x direction at Section 15 versus y′ for different
grids in 3D model with five groynes. d Error calculated by the GCI and the Power Law methods
versus y’ in 3D model with five groynes

maximum 7.5%. Oscillatory convergence occurs at 87% of the total data points. The
discretization errors by Power Law Method are calculated at 34 data points with an
average of 0.7% and a maximum of 3.3%. These results are well within the accepted
limits for 3D computations of flows in complex domains where it is impractical to
maintain fine resolution throughout the flow domain due to the very large variation
in the length scales involved (e.g. Lane et al. 2000).

The computed velocities obtained with the 2D and 3D models are next compared
with experimental data. For this purpose, the velocities of sections 15, 16, 17, 18, 20,
24 and 25 are given in Fig. 11 and in Table 1 where they are presented against the
distance from the river centerline. These sections are located at distances of 808,
864, 931, 982, 1035, 1178, and 1252 m from the inlet. The normalized root mean
square errors for the 2D and 3D computations are 0.160 and 0.166, respectively. As
the error values associated with the 2D and the 3D calculations are close, and as
the uncertainties in both experiments and computations are unknown, it is difficult
to rank the 2D and the 3D models according to a definite measure of accuracy.
Nevertheless, it should be noted that the depth-averaged velocities are predicted to
the same degree of accuracy with both approaches. Therefore, if the purpose of the
computations is merely to obtain a general impression of the flow as represented
by depth-averaged values then the use of a depth-average model would be quite
sufficient. This conclusion is consistent with that arrived at in Ercan and Younis
(2008) from their 2D and 3D computations for the same reach with no groynes.
Although depth averaged velocities are predicted with similar degree of accuracy
using 2D and 3D models, 2D models do not provide depth wise variation of velocity.
Depth averaged velocity predicted by 2D model and velocity at the surface predicted
by 3D model are discussed next; unlike 2D model 3D model shows flow reversal
upstream of the bridge at the left and right banks.
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Fig. 11 Streamwise velocity versus y′ for 2D and 3D computations for the reach of the Sacramento
River with five groynes. The data refer to velocities obtained in the physical-model

Contours of the velocity predicted with the 2D model are shown as in Fig. 12.
The velocity vectors in the region 600 m < x < 1,300 m obtained with the 2D model
are plotted in Fig. 13. The 3D model results for the surface velocity magnitudes
and for the velocity vectors in the same region are presented in Figs. 14 and 15.
Figures 12 and 14 suggest that the velocity magnitudes predicted by the 2D model
are close to the ones predicted at the surface by 3D model. Both the 2D and 3D
velocity computations show that a region of reversed flow develops downstream of
the abutment at the right bank and the circular bridge pier in the main channel.
Relatively smaller recirculation zones are predicted to occur between the groynes.
The computations also show that the groynes reduce the cross-sectional flow area
where they are located and thus cause the flow to accelerate in the main channel.
The most striking impact of the groynes is seen in the flow velocity near the right
bank, upstream of the abutment which is quite high for the no-groyne case but which
is reduced considerably by the placement of the groynes. According to Fig. 15, flow
reversal is observed in the region 730 m < x < 810 m at the surface of the near-
bank region of the 3D model. This flow reversal is limited to the near-bank zone for
the no-groynes case of 3D model, and is not observed for the no-groyne case of 2D
model. Inspection of the surface velocity vectors between the upstream groynes for
the five-groyne and the four-groyne cases in the 3D computations reveal the presence
of strong recirculation zones between the groynes and away from the bank. The
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Table 1 Streamwise velocity versus y′ for 2D and 3D computations for the reach of the Sacramento
River with five groynes

Section 15 (x = 808 m)
Y ′ (m) −82.71 −66.17 −33.09 −16.54 0.00 16.54 33.09 49.63 66.17 82.71 99.26
Data 1.73 2.08 2.17 2.17 2.00 2.00 1.97 1.85 1.88 1.84 1.63
2D 2.06 2.26 2.44 2.37 2.31 2.38 2.31 2.25 2.17 2.01 1.82
3D 2.21 2.36 2.49 2.41 2.36 2.28 2.17 2.09 2.01 1.90 1.81

Section 16 (x = 864 m)
y′ (m) −82.71 −66.17 −49.63 −33.09 −16.54 0.00 16.54 33.09 49.63 66.17
Data 2.15 2.06 2.23 2.12 2.12 2.18 2.08 2.10 2.18 2.20
2D 2.08 2.31 2.45 2.47 2.39 2.47 2.48 2.43 2.44 2.36
3D 2.33 2.50 2.57 2.58 2.51 2.45 2.42 2.38 2.35 2.28

Section 17 (x = 931 m)
y′ (m) −82.71 −66.17 −49.63 −33.09 −16.54 0.00 16.54 33.09 49.63 66.17
Data 1.54 2.10 2.17 2.23 2.15 2.20 2.21 2.21 1.87 1.78
2D 1.59 1.97 2.25 2.40 2.38 2.38 2.51 2.42 2.45 2.49
3D 0.89 2.26 2.46 2.53 2.54 2.50 2.48 2.30 2.27 2.18

Section 18 (x = 982 m)
Y ′ (m) −82.55 −66.04 −49.53 −33.02 −16.51 0.00 16.51 33.02 49.53 66.04 99.06
Data 1.37 1.78 2.01 2.30 2.16 2.27 2.40 2.35 2.39 2.25 0.71
2D 1.50 1.90 2.22 2.40 2.40 2.33 2.45 2.41 2.39 2.44 1.62
3D 0.98 2.02 2.35 2.48 2.53 2.47 2.43 2.41 2.32 2.23 1.84

Section 20 (x = 1, 035 m)
y′ (m) −79.40 −39.70 −26.47 −13.23 26.47 39.70 52.94 66.17
Data 1.89 2.27 2.52 2.55 2.85 2.82 2.75 2.64
2D 1.92 2.58 2.63 2.48 2.40 2.52 2.57 2.55
3D 1.58 2.61 2.64 2.55 2.31 2.43 2.49 2.48

Section 24 (x = 1, 178 m)
y′ (m) −66.17 −49.63 −33.09 −16.54 49.63 66.17 82.71 99.26
Data 3.01 2.50 3.32 2.32 3.04 3.26 2.70 0.34
2D 2.55 2.91 3.05 2.60 2.64 2.43 2.05 1.30
3D 2.62 2.86 2.94 2.84 2.76 2.65 2.37 1.23

Section 25 (x = 1, 252 m)
y′ (m) −66.17 −49.63 −33.09 −16.54 16.54 33.09 49.63 66.17 82.71 99.26
Data 1.69 2.51 2.93 2.11 1.53 2.82 2.90 2.33 2.42 1.69
2D 2.37 2.84 2.99 2.44 2.42 2.68 2.55 2.40 2.08 1.69
3D 2.38 2.70 2.82 2.72 2.33 2.77 2.76 2.72 2.41 1.63

presence of these zones suggests that sedimentation will occur in the regions between
the groynes leading, eventually, to rehabilitation of the eroded bank. Subsequent to
the installation of the groynes in the river, it was indeed observed that sedimentation
did occur in these zones, facilitated by the detention of large floating elements such
as tree branches and other debris.

Figure 16 presents the predicted profiles of turbulence kinetic energy. This
parameter is seen to increase downstream of the bridge pier in the main channel and
downstream of the bridge abutment near the right bank. In general, high turbulence
activity is observed in regions of high shear. Another zone of high turbulence activity
is observed near the nose of the groyne.
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(a)

(b)

(c)

Fig. 12 Velocity magnitudes for a no groynes, b five-groynes and c four-groynes cases in 2D
computations

The bed shear stress calculated by wall functions in the 3D model is plotted in
Fig. 17. The shear stress, like the velocity magnitude, is quite high near the right
bank upstream of the abutment (x = 900 m). The placement of the groynes leads to
reduction in the magnitude of the bank shear stress and an increase in the magnitude
of this parameter in the main channel.
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(a)

(b)

(c)

Fig. 13 Velocity vectors at 600 m < x < 1,300 m for a no groynes, b five-groynes and c five-groynes
cases in 2D computations

Estimation of bank erosion rates here is based on the excess shear stress near
the bank as proposed by Partheniades (1965) in Eq. 11. Hanson and Simon (2001)
relate the erodibility coefficient to the critical shear stress that appears in Eq. 11.
The streamwise and spanwise shear stresses at the right bank for the no-groyne and
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(a)

(b)

(c)

Fig. 14 Velocity magnitudes at the river surface for a no groynes, b five-groynes and c five-groynes
cases in 3D computations

the four-groyne cases as calculated by the 3D computational model are presented in
Fig. 18a, b. As can be seen, the groynes cause reduction in streamwise and spanwise
shear stresses upstream of the bridge, where they are located, and increase the shear
stress by a small amount downstream of the abutment.



3140 A. Ercan, B.A. Younis

(a)

(b)

(c)

Fig. 15 Surface velocity vectors at 600 m < x < 1,300 m for a no groynes, b five-groynes and c four-
groynes cases in 3D computations

The critical shear stress, which depends on the physical properties of the erodible
material, was calculated here using the Shields curve (Shields 1936). Singer and
Dunne (2001) reported that the bed of the Sacramento River at the reach under
present consideration is composed of coarse, medium and fine sand layers overlain
by lobes of fine and medium gravels. The critical shear stress of a particle of diameter



Bank Erosion in a Reach of the Sacramento River 3141

(a)

(b)

(c)

Fig. 16 Turbulence kinetic energy at the river surface for a no groynes, b five-groynes and c four-
groynes cases in 3D computations

d2 resting on a bed of particles of diameter d1 can be found by Eq. 12 as described in
Julien (1998). Using the Shields curve and Eq. 12, the critical shear stress for medium
gravels on top of coarse sand layer is estimated to be 4.7 N/m2. The critical shear
stress for a particle on the bank is not the same as for one on the bed. The relation
between the critical shear stress for a particle on the bed and the bank can be found
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(a)

(b)

(c)

Fig. 17 Bed shear stress for a no groynes, b five-groynes and c four-groynes cases in 3D computations

by Eq. 13 as proposed by Lane (1955). The critical shear stress for the particle on the
bank with bank angle θ = 35◦ is estimated as 1.4 N/m2 and plotted in Fig. 18a.

The erosion rate at the right bank for the reach of the Sacramento River is
plotted in Fig. 18c based on Partheniades (1965) and Hanson and Simon (2001)
using the computed shear stresses and the critical shear stresses shown in Fig. 18a.
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(a)

(b)

(c)

Fig. 18 Streamwise shear (a), spanwise shear (b) and erosion rate (c) at the right bank for
no-groynes and four-groynes cases in 3D computation

The maximum erosion rate at the right bank of the river reach is predicted to be
5.6 m/year for the no-groyne case and 4.7 m/year for the four-groyne case. Near the
bridge abutment, the bank erosion rate reaches the local maximum value for the no-
groyne case at x = 902 m as 2.3 m/year and at x = 1140 m as 5.6 m/year. However,
for the same region, the bank erosion rate is reduced to almost zero for the four-
groyne case. According to Fig. 18c, the deployment of the groynes reduces or halts
the bank erosion where they are located and transfers a less severe problem further
downstream. As has already been mentioned, these results have subsequently been
confirmed by field observations conducted after the deployment of the four groynes
in the river.

Finally, Ikeda et al. (1981) provides an alternative method of calculating bank
erosion rate. For the reach of the Sacramento River under consideration, reach-
averaged velocity is assumed to be equal to the average velocity at inlet, which is
1.3 m/s. The velocities along the streamwise and the spanwise directions calculated
at the right bank for the no-groyne and the four-groyne cases in the 3D computations
are plotted against streamwise distance in Fig. 19a, b. The velocities are averaged in
the depthwise direction. With no groynes, the near-bank streamwise velocity exceeds
the reach-averaged velocity in three regions: 446 m < x < 601 m, 643 m < x < 712 m
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(a)

(b)

Fig. 19 Streamwise velocity (a) and spanwise velocity (b) at the right bank for no-groynes and four-
groynes cases in 3D computation

and 883 m < x < 930 m upstream of the bridge abutment. When the five groynes are
deployed, the streamwise and spanwise near-bank velocities are significantly reduced
in the region 732 m < x < 1,067 m and so the possibility of bank erosion occurring
at 883 m < x < 930 m is reduced or eliminated. However, when four groynes are
placed, the streamwise near-bank velocity exceeds the reach-averaged velocity at
1,228 m < x < 1,285 m and at 1,609 m < x < 1,649 m downstream of the bridge.
The placement of four groynes, on the other hand, helps reduce the negative velocity
peak at x = 1,134 m. The negative velocity at 730 m < x < 813 m for the no-groyne
case in Fig. 19 was only observed near the bank in the 3D computation and is not
observed with groynes (see Fig. 15). This negative velocity region near the bank was
also not captured for the no-groyne case in the 2D computation (see Fig. 13).

4 Conclusions

Computer simulations were performed for a straight rectangular channel with one
groyne, and the results were validated by comparisons with the experimental results
of Rajaratnam and Nwachukwu (1983). Predictions of resultant velocity obtained
with both 2D (depth averaged) and 3D approaches were quite close to the measured
values upstream of the groyne but some differences were observed downstream of
it where the flow was highly skewed and the secondary velocities were significant.
Predictions of the bed shear stresses using the approaches of Pierce and Zimmerman
(1973) and the Colebrook–White equation were also in accord with the experimental
results. Modifications to the approach of Pierce and Zimmerman (1973) along the
lines proposed by Johnston (1960) yielded improved predictions near the groyne
where the 3D effects are significant.
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The predictions of the streamwise velocity for the reach of the Sacramento River
with either four or five groynes obtained with the 2D and 3D approaches were com-
pared with the measurements of the physical model of the same reach. The results
for the streamwise depth-averaged velocities with groynes obtained in 2D and 3D
computations were found to be quite similar. The predicted and measured profiles
of mean velocity and contours of turbulence kinetic energy and bed shear stress
were compared for both cases with and without groynes. The velocity magnitudes
predicted by the 2D model were found to be close to the magnitudes predicted at
the surface in the 3D model. Flow recirculation was observed downstream of the
abutment near the right bank and downstream of the circular bridge pier in the
main channel. Smaller recirculation zones were also obtained in the regions of flow
between adjacent groynes. Enhanced turbulence activity was observed downstream
of the circular bridge pier in the main channel, and downstream of the bridge
abutment near the right bank. It was observed that the groynes limit the cross-
sectional flow area where they were located and cause the flow to accelerate in the
main channel. This in turn causes higher bed shear stress and increases the possibility
of erosion in the main channel downstream of where the groynes were located.

Finally, both the excess shear-stress method of Partheniades (1965) and the excess
velocity method of Ikeda et al. (1981) were used to estimate the bank erosion rate.
By applying the Partheniades method, the maximum erosion rate upstream of the
bridge abutment on the right bank of the river reach was calculated to be 5.6 m/year
without groynes, and 4.7 m/year with four groynes. It was observed that the groyne
structures considerably reduce bank erosion where they are located and transfer a
less severe problem further downstream.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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