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Abstract

Hardness of Maximum Constraint Satisfaction

by

Siu On Chan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Elchanan Mossel, Chair

Maximum constraint satisfaction problem (Max-CSP) is a rich class of combinatorial op-
timization problems. In this dissertation, we show optimal (up to a constant factor) NP-
hardness for maximum constraint satisfaction problem with k variables per constraint (Max-
k-CSP), whenever k is larger than the domain size. This follows from our main result con-
cerning CSPs given by a predicate: a CSP is approximation resistant if its predicate contains
a subgroup that is balanced pairwise independent. Our main result is related to previous
works conditioned on the Unique-Games Conjecture and integrality gaps in sum-of-squares
semidefinite programming hierarchies.

Our main ingredient is a new gap-amplification technique inspired by XOR-lemmas.
Using this technique, we also improve the NP-hardness of approximating Independent-Set
on bounded-degree graphs, Almost-Coloring, Two-Prover-One-Round-Game, and various
other problems.
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Chapter 1

Introduction

Max-k-CSP is the task of satisfying the maximum fraction of constraints when each con-
straint involves k variables. Despite much progress on this problem, there remains a huge
multiplicative gap between NP-hardness and algorithmic results. When the domain Σ is
boolean, the best algorithm by Makarychev and Makarychev [2012] has approximation ratio
Ω(k/2k), but the best NP-hardness result by Engebretsen and Holmerin [2008] has hardness

ratio 2O(
√
k)/2k, which is significantly larger by the factor 2Ω(

√
k).

A related question is to identify constraint satisfaction problems (CSPs) that are ex-
tremely hard to approximate, so much so that they are NP-hard to approximate better than
just outputting a random assignment. Such CSPs are called approximation resistant; fa-
mous examples include Max-3-SAT and Max-3-XOR [H̊astad 2001]. Previous works focused
on CSPs whose constraints involve the same number k of literals, and each constraint accepts
the same collection C ⊆ Σk of local assignments. A lot is known about such CSPs of arity
at most four. For arity two, a CSP is never approximation resistant [H̊astad 2008]. For
arity three, a boolean CSP is approximation resistant precisely when its predicate C con-
tains all even-parity or all odd-parity bitstrings [H̊astad 2001; Zwick 1998]. For arity four,
an extensive study was made by Hast [2005b]. But for higher arity, results were scattered:
four families of approximation resistant CSPs were known in [H̊astad 2001, Theorem 5.9],
[Engebretsen and Holmerin 2008], [Hast 2005b, Theorem 5.2], and [H̊astad 2011] (apart from
CSPs obtained by padding irrelevant variables).

To make progress, conditional results were obtained assuming the Unique-Games Conjec-
ture of Khot [2002b]. Under this conjecture, Samorodnitsky and Trevisan [2009] showed that
Max-k-CSP is NP-hard to approximate beyond O(k/2k), matching the best algorithm up to
a constant factor, and later Raghavendra [2008] obtained optimal inapproximability (and
algorithmic) results for every CSP. Under the same conjecture, Austrin and Mossel [2009]
showed that a CSP is approximation resistant if its predicate supports a balanced pairwise
independent distribution. However, the UG conjecture remains uncertain, and it is desirable
to look for new hardness reduction techniques.

In this work, we obtain a general criterion for approximation resistance (unifying [H̊astad
2001, Theorem 5.9], [Engebretsen and Holmerin 2008], [Hast 2005b, Theorem 5.2], and
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[H̊astad 2011, Theorem 4]1), and settle the NP-hardness of Max-k-CSP (up to a constant
factor and modulo P 6= NP). We show hardness for CSPs whose domain is an abelian group
G, and whose predicate C ⊆ Gk is a subgroup satisfying a condition similar to Austrin and
Mossel [2009] (see Chapter 4 for definitions).

To state our results, we say it is NP-hard to (c, s)-decide a Max-CSP if given an instance
M of the CSP, it is NP-hard to decide whether the best assignment to M satisfies at least
c fraction of constraints, or at most s fraction. The parameters c and s are known as
completeness and soundness, respectively. The hardness ratio is s/c.

Theorem 1.1 (Main). Let k > 3 be an integer, G a finite abelian group, and C a balanced
pairwise independent subgroup of Gk. For some ε = on;k,|G|(1),2 it is NP-hard to (1 −
ε, |C|/|G|k + ε)-decide an Max-C instance of size n.

A random assignment satisfies |C|/|G|k fraction of constraints in expectation, so our
hardness ratio is tight. Like Austrin and Mossel [2009], we actually show hereditary approxi-
mation resistance, i.e., any predicate containing a pairwise independent subgroup also yields
an approximation resistant CSP. Compared with Austrin and Mossel’s, our result requires
an abelian subgroup structure on the predicate, but avoids their UG Conjecture assumption.
Consequently, we throw away the same assumption in an earlier result of H̊astad [2009],
showing that almost all CSPs given by a predicate are hereditarily approximation resistant,
answering his open problem.

Our result is inspired by integrality gaps for sum-of-squares programs. Direct construc-
tion of such integrality gaps by Schoenebeck [2008] and Tulsiani [2009] requires both pairwise
independence and abelian subgroup structure — abelian subgroup seems indispensable in
the Fourier-analytic construction of SDP solution, and in this case balanced pairwise inde-
pendence is necessary [Chan and Molloy 2013] for another ingredient of the construction,
namely exponential resolution complexity of random instances. Conversely, these two con-
ditions (pairwise independence and subgroup) are also sufficient for the construction (Ap-
pendix D). This observation has motivated our Theorem 1.1, even though the theorem is
proved using techniques different from integrality gap construction.

Theorem 1.1 settles the approximability of boolean Max-k-CSP (up to a constant factor),
by choosing C to be a Samorodnitsky–Trevisan hypergraph predicate (Appendix C.1).

Corollary 1.2. For any k > 3, there is ε = on;k(1) such that it is NP-hard to (1−ε, 2k/2k+
ε)-decide Max-k-CSP over boolean domain.

Below are additional results that follow from our main theorem. Readers not interested
in these results may go directly to Chapter 2.

1We thank Madhu Sudan for pointing out that Theorem 1.1 also covers [H̊astad 2011, Theorem 4].
2The notation ε = on;k,|G|(1) means that for any fixed k, any fixed |G|, the quantity ε goes to zero as n

goes to infinity.
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Problem NP-Hardness

Max-k-CSP 1/2Ω(k) Note (1)

(over Z2) 2O(
√
k)/2k Note (2)

2k/2k This work

Max-k-CSP qO(
√
k)/qk Note (3)

(domain size q) O(q2k/qk) This work
O(qk/qk) (k > q) This work

2-Prover-1-Round-Game 1/RΩ(1) Note (4)
(alphabet size R) 4/R1/6 Note (5)

O(logR)/
√
R This work

Independent-Set 1/DΩ(1) Note (6)
(degree bound D) exp(O(

√
logD))/D Note (7)

O(logD)4/D This work
Almost-Coloring 1/K2 Note (8)
(almost K-colorable) 1/ exp(Ω(logK)2) Note (9)

1/2K/2 This work

Table 1.1: Main NP-hardness results

(1) [H̊astad 2001; Trevisan 1998; Sudan and Trevisan 1998; Khot et al. 2013]
(2) [Samorodnitsky and Trevisan 2000; Engebretsen and Holmerin 2008]
(3) [Engebretsen 2004]
(4) [Raz 1998; Holenstein 2009; Rao 2011]
(5) [Khot and Safra 2011]
(6) [Alon et al. 1995]
(7) [Trevisan 2001]
(8) [Dinur et al. 2010]
(9) [Khot and Saket 2012]

1.1 Query-efficient PCP

Another way to state Corollary 1.2 is a Probabilistically Checkable Proof (PCP) that is query-
efficient, optimally. Put differently, this PCP has the largest gap between completeness and
soundness, among all PCPs reading k bits from a proof. Query efficiency is measured by
amortized query complexity, defined as k/ log2(c/s) when a PCP verifier read k bits from a
proof, and has completeness c and soundness s [Bellare et al. 1998, Section 2.2.2].

Corollary 1.3. For every k > 3, for some ε = on;k(1), there is a PCP for n-variable 3SAT
that reads k bits, uses randomness (1 + ε)k log n, has completeness 1− ε, and has amortized
query complexity 1 + (1 + ok(1))(log k)/k + ε.
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Our amortized query complexity is tight up to the ok(1) term unless P = NP [Hast 2005a].
We also reduce the amortized free bit complexity of a PCP. A PCP has free bit complexity
f if on every choice of randomness, there are at most 2f accepting local views (out of the 2k

possibilities for the k bits read). Amortized free bit complexity is then f/ log2(c/s) [Bellare
et al. 1998, Section 2.2.2]. Our PCP has amortized free bit complexity (1 + ok(1))(log k)/k,
up to additive on;k(1). Our result also yields a new simple proof for the inapproximability
of Max-Clique within n1−ε, first shown by H̊astad [1999] and simplified by Samorodnitsky
and Trevisan [2000] and by H̊astad and Wigderson [2003] (see also the derandomization by
Zuckerman [2007]).

1.2 Independent-Set on bounded-degree graphs

The task of finding an independent set of maximum size in a graph of degree at most D was
considered by Papadimitriou and Yannakakis [1991].

Theorem 1.4. For all sufficiently large D, there is ν = on;D(1) such that it NP-hard to
approximate Independent-Set on degree-D graphs beyond O(logD)4/D + ν.

The previous best NP-hardness ratio is exp(O(
√

logD))/D by Trevisan [2001]. Our The-
orem 1.4 is not far from factor Ω(logD)/(D log logD) approximation algorithms of [Halperin
2002; Halldórsson 1998]. The best hardness ratio under the UG Conjecture is O(logD)2/D
by Austrin et al. [2011]. Theorem 1.4 also slightly improves the hardness of Induced-Matching
on d-regular graphs and related problems in game theory [Chalermsook et al. 2013].

1.3 Almost-Coloring

Theorem 1.5. For any K > 3, there is ν = on;K(1) such that given a graph with an induced
K-colorable subgraph of fractional size 1 − ν, it is NP-hard to find an independent set of
fractional size 1/2K/2 + ν.

The previous best NP-hardness result of Khot and Saket [2012] has soundness exp(−Ω(logK)2).
Almost-2-Coloring has arbitrarily small constant soundness under the UG Conjecture [Bansal
and Khot 2009]. Given a K-colorable graph, Khot [2001] showed NP-hardness of finding an
independent set of fractional size exp(−Ω(logK)2) for sufficiently large K, and Huang [2013]
has subsequently improved Khot’s result to exp(−Ω(K1/3)) using ideas in this paper. See
[Khot and Saket 2012] for additional references on approximate coloring problems.

1.4 Non-boolean Max-k-CSP

We can choose C of Theorem 1.1 to be an O’Brien predicate of [Austrin and Mossel 2009,
Theorem 1.2].
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Corollary 1.6. For any prime power q, any integer k > 3, there is ε = on;k,q(1) such that
it is NP-hard to (1− ε, q(q − 1)k/qk + ε)-decide Max-k-CSP over size-q domain.

The previous best NP-hardness result by Engebretsen [2004] has soundness qO(
√
k)/qk.

Like Austrin and Mossel [2009], the soundness in our Corollary 1.6 can be improved to
O(qk/qk) + ε for infinitely many k. Alternatively, one can plug in H̊astad predicates (Ap-
pendix C.2) to tighten the hardness ratio for every k > q.

Corollary 1.7. For any integers q > 2 and k > q, it is NP-hard (under randomized reduc-
tion) to approximate Max-k-CSP over size-q domain beyond O(qk/qk).

The randomized reduction can be replaced with a deterministic truth-table reduction,
using k-wise δ-dependent distributions [Charikar et al. 2009, Section 3.4] (as pointed out
to the author by Yury Makarychev). The best algorithm by Makarychev and Makarychev
[2012] has a matching approximation ratio Ω(qk/qk) when k > Ω(log q).

1.5 Two-Prover-One-Round-Game

Theorem 1.8. For any prime power q, there is ε = on;q(1) such that it is NP-hard to
(1− ε,O(log q/q) + ε)-decide 2-Prover-1-Round-Game of alphabet size q2.

In terms of alphabet size R = q2, the hardness ratio is O(logR/
√
R). The previous

best inapproximability result by Khot and Safra [2011] has soundness 4/R1/6 with alphabet
size R = q6. 2-Prover-1-Round-Game with perfect completeness have soundness 1/RΩ(1) [Raz
1998; Holenstein 2009; Rao 2011]. Hardness of 2-Prover-1-Round-Game is related to hardness
of Quadratic-Programming [Arora et al. 2005], which was the original goal of Khot and Safra.
Even though Theorem 1.8 improves soundness of the former problem, it does not imply any
quasi-NP-hardness result for Quadratic-Programming, because our 2-Prover-1-Round-Game
has a much worse soundness-size tradeoff.

Theorem 1.8 also has applications to many other optimization problems. Recently,
Laekhanukit [2012] gave randomized reductions from 2-Prover-1-Round-Game to the follow-
ing undirected network connectivity problems: Rooted k-Connectivity, Vertex-Connectivity
Survivable Network Design, and Vertex-Connectivity k-Route Cut. His hardness results im-
prove a number of previous ones, and our Theorem 1.8 further strengthens his results. See
[Laekhanukit 2012] for details.
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Problem Hardness

Rooted k-Connectivity kΩ(1) [Cheriyan et al. 2012]

Ω̃(k1/18) [Laekhanukit 2012] + [Khot and Safra 2011]

Ω̃(k1/10) [Laekhanukit 2012] + This work

Vertex-Connectivity kΩ(1) [Chakraborty et al. 2008]

Survivable Network Design Ω̃(k1/16) [Laekhanukit 2012] + [Khot and Safra 2011]

Ω̃(k1/8) [Laekhanukit 2012] + This work

Vertex-Connectivity kΩ(1) [Chuzhoy et al. 2012]

k-Route Cut Ω̃(k1/14) [Laekhanukit 2012] + [Khot and Safra 2011]

Ω̃(k1/6) [Laekhanukit 2012] + This work

Table 1.2: NP-hardness of connectivity problems
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Chapter 2

Techniques

Despite progress on Unique-Games-based conditional results, unconditional NP-hardness of
Max-k-CSP has lagged behind. This is due to limitations of existing proof composition tech-
niques [Bellare et al. 1998, Section 3.4], which were known when dictator test was introduced.

To illustrate, consider H̊astad’s reduction from Label-Cover to Max-3-XOR. For our dis-
cussion, think of Label-Cover as a two-party game, where two parties try to convince a verifier
that a Max-CSP instance L has a satisfying assignment A. The verifier randomly picks a
clause Q from L and randomly a variable u from Q. The verifier then asks for the satisfying
assignment A(Q) to the clause from one party and the assignment A(u) to the variable from
the other party. The verifier is convinced (and accepts) if A(Q) and A(u) agree at their
assignment to u.

When Label-Cover is reduced to Max-3-XOR, the above two-party game is transformed
into a three-player game. The verifier now asks for a boolean reply from each player, and
will accept or reject based on the XOR of the replies. Therefore the verifier will choose a
subset z(1) of assignments to u and ask the first player whether A(u) ∈ z(1). The verifier also
chooses two subsets z(2), z(3) of satisfying assignments to Q and asks the other two players
whether A(Q) ∈ z(2) and A(Q) ∈ z(3). The subsets z(1), z(2), z(3) will be chosen carefully in
a correlated way, and constitute a dictator test.

The above trasformation, known as composition of a dictator test with Label-Cover,
naturally generalizes to more than three players. Note that each player belongs to one of the
two parties. The above composition scheme is known not to yield optimal hardness for Max-
k-CSP ([Bellare et al. 1998, Section 3.4] and [Sudan and Trevisan 1998]), because replies from
the same party may conspire and appear correct, even if the Label-Cover instance has no good
assignment. To get around the barrier, previous works focused on strengthening Label-Cover
and adjusting the composition step (say by creating more parties), as well as improving the

dictator test analysis. A sequence of works brought soundness down to 2O(
√
k)/2k, which is

still far from optimal.
In this work, we leapfrog the barrier with a new approach. We view a Max-k-CSP

instance as a k-player game, and reduce soundness by a technique we call direct sum, which
is inspired by XOR-lemmas. Direct sum is like parallel repetition, aiming to reduce soundness
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by asking each player multiple questions at once. However, with direct sum each player gives
only a single answer, namely the sum of answers to individual questions. Direct sum (or
XOR-lemma) is invaluable to average-case complexity [Goldreich et al. 2011] and central to
communication complexity [Barak et al. 2010; Sherstov 2012], but (to our knowledge) has
never been used for amplifying gap in hardness of approximation. As it turns out, a natural
formulation of a multiplayer XOR-lemma is false (see Remark 5.2), which may explain its
absence in the inapproximability literature.

Unable to decrease soundness directly, we instead demonstrate randomness of replies.
Randomness means lack of correlation. The crucial observation is that correlation never
increases with direct sum (Lemma 5.3). It remains to show that, in the Soundness case
of a single game, we can isolate any player of our choice, so that his/her reply becomes
uncorrelated with the other k−1 replies after secret shifting (Theorem 5.4). Then the direct
sum of k different games will isolate all players one by one, eliminating any correlation in
their shifted replies.

We prove Theorem 5.4 using the canonical composition technique. In the soundness
analysis of the dictator test, we invoke an invariance-style theorem (Theorem 7.2), based
on O’Donnell and Wright [2012] and Wenner [2012]. We show invariance for the correlation
(Definition 4.2) rather than the objective value.

Our approach also bypasses the composition barrier for other problems, with simple
proofs. We improve the hardness of 2-Prover-1-Round-Game as an easy corollary (Chap-
ter 9). Our low free-bit PCP also facilitates further reductions, improving hardness of
Almost-Coloring (Chapter 8) and Independent-Set on bounded-degree graphs (Appendix B).

Previous reductions that bypassed the UG Conjecture for other problems [Khot 2002a;
Guruswami et al. 2012; Feldman et al. 2009; Khot and Moshkovitz 2011] started from Khot’s
Smooth-Label-Cover [Khot 2002a]. By contrast, our reduction starts from the usual Label-
Cover. In fact, the reduction in Theorem 1.1 maps a 3SAT instance on n variables to
an Max-k-CSP instance of size N = nk(1+on;k,|G|(1)). Assuming the Exponential Time Hy-
pothesis [Impagliazzo et al. 2001] (that deciding 3SAT on n variables requires exp(Ω(n))
time), our Theorem 1.1 implies certain Max-k-CSP remain “approximation resistant” against
exp(N (1−o(1))/k) time algorithms — a conclusion unlikely to follow from the UG Conjecture
because Unique-Games have subexponential time algorithms [Arora et al. 2010].
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Chapter 3

Preliminaries

As usual, let [q] = {1, . . . , q}. Denote `p-norm of a vector x ∈ Rm by ‖x‖`p = (
∑

i∈[m]|xi|p)1/p.

Let 4Σ = {x ∈ RΣ
>0 | ‖x‖`1 = 1} denote the set of probability distributions over Σ. We

also write 4q for 4[q].
Random variables are denoted by italic boldface letters, such as x.
By the size of a constraint satisfaction problem (including Label-Cover), we mean the

number of constraints/hyperedges (disregarding weights).
We recall basic facts about characters. A character χ of a finite abelian group G is a

homomorphism from G to the circle group T of complex numbers of modulus one (under
multiplication). The constant 1 function, denoted 1, is always a character, known as the
trivial character. Any character χ of a power group Gk has a unique decomposition as a
product of characters χi : G→ T in each coordinate, so that

χ(a1, . . . , ak) = χ1(a1) . . . χk(ak) (3.1)

for any (a1, . . . , ak) ∈ Gk.

Definition 3.1. Given j ∈ [k], a character χ of Gk is j-relevant if its j-th component χj is
non-trivial (i.e. not the constant 1 function).

Given two random variables x and y on a set Σ, their statistical distance d(x,y) is the
statistical distance of their underlying distributions,

d(x,y) = max
A⊆Σ
|P[x ∈ A]− P[y ∈ A]|.

The following bound relating statistical distance and character distance is well known, see
e.g. [Bogdanov and Viola 2010, Claim 33], who stated the result when G is a finite field, but
whose proof can be easily adapted for general abelian groups.

Proposition 3.2. If |E[χ(x)]−E[χ(y)]| 6 ε for all characters χ, then 2d(x,y) 6
√
|G| − 1 ·

ε.
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Chapter 4

Max-CSP given by a predicate

We now define maximum constraint satisfaction problem Max-C given by a predicate C.
Our definition departs from previous works in that the underlying constraint hypergraph of
our instance is k-partite. This is because a Max-C instance represents a k-player game, and
different players can give different replies on the same question.

Let G be an abelian group and C a subset of Gk. An instance M = ((V1, . . . , Vk),Q)
of Max-C is a distribution over constraints of the form Q = (v, b), where v = (v1, . . . , vk) ∈
V1 × · · · × Vk is a k-tuple of variables and b = (b1, . . . , bk) ∈ Gk is a k-tuple of shifts. We
think of an instance as a k-player game: a constraint is tuple of questions to the k players,
and an assignment fi : Vi → G is a strategy of player i. Naturally, upon receiving a variable
vi, player i responds with fi(vi). A constraint Q = (v, b) is satisfied if

f(v)− b , (f1(v1)− b1, . . . , fk(vk)− bk) ∈ C.

The k players aim to satisfy the maximum fraction of constraints. The value of the game,
denoted by val(M), is the maximum possible P[f(v)−b ∈ C] over k assignments fi : Vi → G.
For boolean domain (G = Z2), the shifts specify whether the literals are positive or negative.
Note that a game without shifts (equivalently, all shifts are the identity element 0G) is trivial,
since players have a perfect strategy by always answering 0G. The shifts, unknown to the
players, make the game challenging.

Definition 4.1. A subset C of Gk is balanced pairwise independent if for every two distinct
coordinates i 6= j ∈ [k] and every two elements a, b ∈ G,

P[ci = a, cj = b] = 1/|G|2,

where c = (c1, . . . , ck) is a uniformly random element from C.

We will often choose C to be a subgroup of Gk. Examples of balanced pairwise indepen-
dent subgroups are dual Hamming codes and Reed–Solomon codes of dimension at least two.
Dual Hamming codes have been used to obtain inapproximability results based on the UG
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Conjecture [Samorodnitsky and Trevisan 2009] or in the Lasserre hierarchy [Tulsiani 2009].
Reed–Solomon codes have appeared in low-degree tests.

Let A be the class of predicates over a balanced pairwise independent subgroup C ⊆ Gk

for some k > 3. In other words, these are the predicates satisfying the hypothesis of Theo-
rem 1.1. These are also the predicates currently admitting a direct construction of integrality
gaps for sum-of-squares programs (Appendix D). The class A is closely related to the bigger
class B of predicates supporting a balanced pairwise independent distribution (possibly not
subgroups), known to give approximation resistant CSPs under the UG Conjecture [Austrin
and Mossel 2009] and in weaker SDP hierarchies [Benabbas et al. 2012; Tulsiani and Worah
2013]. Even though A is a proper subclass of B (personal communication with Madhur
Tulsiani), many interesting predicates in B also belong to A. In particular, the following
predicates implicitly satisfy our abelian subgroup property: [H̊astad 2001, Theorem 5.9],
Samorodnitsky and Trevisan [2000; 2009], Engebretsen and Holmerin [2008], Guruswami
and Raghavendra [2008], O’Brien predicates of [Austrin and Mossel 2009, Theorem 1.2], and
H̊astad (Appendix C.2). Not all approximation resistant CSPs satisfy our (or Austrin and
Mossel’s) condition; an notable exception is Guruswami et al. [1998] predicate (see [Hast
2005b, Theorem 7.1]).

When there is no prefect strategy, the shifted replies f(v) − b may not have perfect
correlation. We measure correlation of the best strategy by the following quantity.

Definition 4.2. Given Max-C instance M and character χ : Gk → T, let

‖M‖χ , max |Eχ(f(v)− b)| = max |Eχ(f1(v1)− b1, . . . , fk(vk)− bk)|,

where the maximum is over k assignments fi : Vi → G.
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Chapter 5

Direct sum

To make the game even more difficult for the players, we can take direct sum of instances.
Recall that direct sum is a variant of parallel repetition, where each player receives ` questions
at once. In direct sum, each player only gives a single answer, namely the sum of answers
to the ` questions. We first define the direct sum of ` = 2 games.

Definition 5.1. Let M = ((V1, . . . , Vk),Q) and M ′ = ((V ′1 , . . . , V
′
k),Q

′) be Max-C instances.
Their direct sum M ⊕M ′ is defined as ((V1× V ′1 , . . . , Vk × V ′k),Q⊕Q′). Player i in M ⊕M ′

receives a pair of variables (vi, v
′
i) ∈ Vi × V ′i from M and M ′.

The random question Q ⊕Q′ in M ⊕M ′ is the direct sum of two independent random
questions Q and Q′, one from M and the other from M ′. By the direct sum Q ⊕ Q′ of
two questions Q = (v, b) and Q′ = (v′, b′), we mean sending every player i the variable pair
(v ⊕ v′)i , (vi, v

′
i) and receiving a reply gi(vi, v

′
i). The shifts for Q ⊕ Q′ is b + b′. To wit,

Q⊕Q′ = (v ⊕ v′, b+ b′).

We expect players’ strategy to be independent across the two coordinates, that is gi(vi, v
′
i) =

(fi ⊕ f ′i)(vi, v
′
i) , fi(vi) + f ′i(v

′
i), where f = (f1, . . . , fk) is an assignment for M and

f ′ = (f ′1, . . . , f
′
k) an assignment for M ′. However, players need not use such a strategy.

Bounding the value of M ⊕M ′ in terms of the values of M and M ′ is thus a daunting task.

Remark 5.2. Common sense suggests that by repeatedly taking direct sum, the `-fold re-
peated game M⊕` ,M⊕ . . .⊕M will have no strategy better than a random one, as long as
the original game M has no perfect strategy. More precisely, val(M⊕`) should converge to
the expected value of a random assignment as `→∞, provided ‖M‖χ < 1 for all non-trivial
characters χ (so that shifted replies are never contained in a proper subgroup of Gk). Such a
result, if true, may be called a multiplayer XOR-lemma. This result is true for one- and two-
player games, but turns out to be false for three-player games, as pointed out by Briët et al.
[2013]. A counterexample to the three-player XOR-lemma, known as Mermin’s game, has a
perfect quantum strategy but no perfect classical strategy. Briët et al. observed that certain
perfect quantum strategies of the repeated game can be “rounded” to a non-trivial classical
strategy, via a multilinear Grothendieck-type inequality. Amazingly, the counterexample
was discovered via quantum considerations, even though the setting is entirely classical.
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Fortunately, we can bound the value of M ⊕M ′ indirectly. As hinted earlier, we instead
bound correlation of shifted replies. The following lemma shows that correlation can only
decrease upon taking direct sum.

Lemma 5.3. For any Max-C instances M and M ′, any character χ : Gk → T,

‖M ⊕M ′‖χ 6 min{‖M‖χ, ‖M ′‖χ}.

Proof. Fix arbitrary assignments fi : Vi × V ′i → G. The bias is∣∣∣∣ E
QQ′

χ(f(v,v′)− b− b′)

∣∣∣∣ 6 E
Q

∣∣∣∣E
Q′
χ(f(v,v′)− b− b′)

∣∣∣∣ .
The RHS is at most ‖M ′‖χ, because after fixing a question Q to M , we get assignments

gQi (v′i) = fi(vi, v
′
i) − bi to M ′. Since fi’s are arbitrary, we have ‖M ⊕M ′‖χ 6 ‖M ′‖χ. The

same argument also yields ‖M ⊕M ′‖χ 6 ‖M‖χ.

Of course, a simple induction shows that ‖M1 ⊕ . . .⊕M`‖χ 6 mini∈[`]‖Mi‖χ.
The following theorem will be proved in Appendix A, based on a dictator test described

in Chapter 6. See Definition 3.1 for j-relevant characters.

Theorem 5.4. Let C be a balanced pairwise independent subset of Gk. There are η, δ =
on;k,|G|(1) such that for any j ∈ [k], it is NP-hard to decide the following cases given a Max-C
instance Mj:

1. Completeness: val(Mj) > 1− η.

2. Soundness: ‖Mj‖χ 6 δ for all j-relevant characters χ : Gk → T.

We can now prove Theorem 1.1. The reduction constructs k instances M1, . . . ,Mk, one
for each j ∈ [k], as guaranteed by Theorem 5.4. The reduction then outputs the direct sum
instance M = M1 ⊕ . . .⊕Mk. If each Mj has size at most m, then M has size at most mk,
which is polynomial in m for fixed k.

Proof of Theorem 1.1. Completeness. For every j ∈ [k], let f (j) = (f
(j)
1 , . . . , f

(j)
k ) be an

optimal assignment tuple for Mj. Consider the assignment tuple g = (g1, . . . , gk) for M that
is independent across the k component games, that is

gi(v
(1)
i , . . . , v

(k)
i ) = f

(1)
i (v

(1)
i ) + · · ·+ f

(k)
i (v

(k)
i ),

Consider a question R = (u,a) = ((v(1), . . . ,v(k)), b(1) + · · · + b(k)) in M . If each of its
component question (v(j), b(j)) is satisfied by f (j), then

g(u)− a =
∑

j f
(j)(v(j))− b(j) ∈ C,

because C is closed under group operations. Hence g also satisfies R. Therefore M has value
at least (1− η)k > 1− kη.
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Soundness. Fix assignments fi : Vi → G. Let χ be a non-trivial character of Gk. Then
χ is j-relevant for some j ∈ [k], so

|Eχ(f(v)− b)| 6 ‖M‖χ 6 ‖Mj‖χ 6 δ,

using Definition 4.2, Lemma 5.3, and Theorem 5.4. Let a be a uniformly random element
from Gk, so E[χ(a)] = 0 for any non-trivial character χ. By Proposition 3.2, f(v) − b and
a have statistical distance

d(f(v)− b,a) 6 δ ·
√
qk/2 =: ε.

Therefore

P[f(v)− b ∈ C] 6 P[a ∈ C] + ε = |C|/|G|k + ε.

Note that we prove something stronger than the statement of Theorem 1.1: In the Sound-
ness case, the shifted replies are almost uniformly random. This explains the approximation
resistance of Max-C, and shows that C is useless in the sense of Austrin and H̊astad [2012].
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Chapter 6

Dictator test

Theorem 5.4 is based on a natural dictator test T , which we now describe. Throughout this
chapter, C is a balanced pairwise independent subset of Gk.

6.1 Properties

We will compose a k-player dictator test with a Label-Cover instance, which is a game
involving the clause party and the variable party. Before composition, the clause party
replies over alphabet [dR] and the variable party replies over alphabet [R]. Both alphabets
are partitioned into R blocks, each of which has size 1 for the variable party and size d for
the clause party. Define the t-th block

B(t) = {s ∈ [dR] | (t− 1)d < s 6 td}

as the subset of clause party’s alphabet associated with variable party’s answer t ∈ [R]. After
composition, the players replies over domain G. When assigning players to the parties, we
single out player j as the lonely player, who is in the variable party, while all other players
are in the clause party.

A k-player, j-lonely, d-blocked C-test T is a k-tuple of random variables (z(1), . . . ,z(k)) ∈
GD1 × · · · ×GDk . Here dimension Di is Di = dR for i 6= j, and Dj = R for the lonely player
j ∈ [k]. The test satisfies the completeness property: If players use strategies fi : GDi → G
that are “matching dictators” at the same block, the test accepts with high probability,
say with probability c ≈ 1. The test also satisfies the soundness property: If players use
strategies far from matching dictators, then player j’s reply should be uncorrelated other
players’ replies.

Formally, the completeness property says that if there are t ∈ [R], s ∈ B(t) such that
fi(z) = zs for i 6= j and fj(z) = zt, then

P[(f1(z(1)), . . . , fk(z
(k))) ∈ C] > c.

To state the soundness property, it is helpful to allow functions fi to return a random
element from G, by considering fi as having codomain 4G that specifies the distribution
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of the random element. Functions are far from dictators if they have small influences, a
quantity we now define.

Definition 6.1. Let Σ be a set (such as G) and H be a normed linear space (such as RG).
Given f : ΣD → H, define ‖f‖2

2 = Ex∈ΣD [‖f(x)‖2
H ] and Var[f ] = ‖f−E[f ]‖2

H . The influence
of a subset B ⊆ [D] is the expected variance of f after randomly fixing coordinates outside
of B, namely

InfB[f ] , E
xB

[
Var
xB

[f(x)]

]
,

where B = [D] \B. We also write Inft[f ] for Inf{t}[f ].

We measure correlation of players’ replies fi by the Fourier coefficients of f(z).

Definition 6.2. For a character χ : Gk → T, define

BiasT,χ(f) , |Eχ(f(z))| =
∣∣Eχ(f1(z(1)), . . . , fk(z

(k)))
∣∣ .

Ideally, we want the soundness property that whenever functions fi : GDi → 4G have
small common influences,

max
i 6=j

∑
t∈[R]

Inft[fj] InfB(t)[fi]

 6 τ,

then BiasT,χ(f) = oτ ;k,|G|(1) for any j-relevant character χ of Gk.
The goal of this chapter is to construct a test T satisfying the completeness and soundness

properties for a restricted class of functions.

6.2 Block distribution, noisy functions

The correlated random variables z = (z(1), . . . ,z(k)) in our test T will be independent across
the R blocks. Each block is chosen from a block distribution µ over Gd1 × · · · × Gdk . Here
dimension di is d for all i 6= j, and dj = 1 for the lonely player j ∈ [k]. Therefore z is drawn
from the product distribution T = µ⊗R. We think of z as an R× k matrix where blocks are
rows, and the i-th column is a string in GdiR. Entries in this matrix have different lengths:
an entry in column j is an element from the base group G, while entries elsewhere are from
the product group Gd.

The distribution µ will be the uniform distribution of choosing length-k tuples z1, . . . ,zd
independently from C, conditioned on the tuples agreeing at position j. The tuples together
represent an element in Gd1 × · · · × Gdk because any position other than j gets a sequence
of d elements from G, while position j gets the common element of the tuples.

Since C is balanced pairwise independent, the i-column of z is uniformly random over
GDi . In fact, more is true: Looking only at column j and any other column i ∈ [k] of a single
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block, the marginal distribution is uniform over G × Gd. We call this property “pairwise
independence at column j”. This property is weaker than pairwise independence, because
columns i and i′ need not be independent. To verify this property, let y be a random block
over Gd1 × · · · × Gdk sampled according to µ. For any a ∈ G and b ∈ Gd, the event “j-th
column of y equals a and i-th column of y equals b” holds with probability

P[y(j) = a,y(i) = b] = P[y(j) = a] · P[y(i),1 = b1] · · · · · P[y(i),d = bd],

where we have used pairwise independence of C and conditional independence in the defini-
tion of µ.

Our test is only sound against η-noisy functions.

Definition 6.3. Given a string x ∈ Gm, an η-noisy copy is a random string ẋ ∈ Gm, so
that independently for each s ∈ [m], ẋs = xs with probability 1− η, and ẋs is set uniformly
at random with probability η. For a function f : Gm → 4G, define the noise operator
T1−ηf(x) = E[f(ẋ)]. A function g is η-noisy if g = T1−ηf for some function f : Gm →4G.

When C is the collection of 3-bit strings of even parity, our dictator test becomes the
Max-3-XOR test of [H̊astad 2001, Section 5].

6.3 Soundness analysis

Inspired by O’Donnell and Wright [2012], we also consider an uncorrelated version of the
test in our analysis.

Definition 6.4. The uncorrelated test T ′ = (µ′)⊗R has block distribution µ′, as defined
below. A block from µ′ is chosen exactly the same as in µ, and then the j-th entry is
re-randomized to be a uniformly random element from G, independent of the other entries.

The following invariance-style theorem will be proved in Chapter 7. The theorem says
that functions fi’s with small common influences cannot distinguish between the correlated
test T from the uncorrelated version T ′.

Theorem 6.5. Let T be the test from Section 6.2, and T ′ be its uncorrelated version. Suppose
fi : GDi →4G are η-noisy functions satisfying

max
i 6=j

∑
t∈[R]

Inft[fj] InfB(t)[fi]

 6 τ.

Then for any character χ : Gk → T,

BiasT,χ(f) 6 BiasT ′,χ(f) + δ(|G|, k, η, τ).

Here δ(q, k, η, τ) 6 4k poly(q/η)
√
τ .
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We wish to show the term BiasT ′,χ(f) in Theorem 6.5 is negligible. This term is not
small in general, if fi are constant functions. To combat this, we apply the standard trick
of folding.

Definition 6.6. Given a function f : Gm → G, its folded version f̃ : Gm → 4G is the
function which, upon receiving x ∈ Gm, picks a random y ∈ G and returns f(x+(y, . . . ,y))−
y.

The folding shift y is the same shift appearing in a constraint of Max-C.
Consider applying the uncorrelated test T ′ to functions fi’s, where fj is folded. For any

j-relevant character χ,

BiasT ′,χ(f) = |E[χj(fj(z
(j)))]E[χJ(fJ(z(J)))]|,

where J = [k] \ {j} denotes all players or columns other than j. The term E[χj(fj(z
(j)))] is

zero, because folding forces fj(z
(j)) to be uniformly random over G. Thus

BiasT ′,χ(f) = 0.

Our preceding discussion implies the following bound on the bias of T for folded functions.

Theorem 6.7. Let χ : Gk → T be a j-relevant character. Suppose η-noisy functions fi :
GdiR →4G satisfy

max
i 6=j

∑
t∈[R]

Inft[fj] InfB(t)[fi]

 6 τ.

Assume further fj is folded. Then BiasT,χ(f) 6 δ(|G|, k, η, τ) 6 4k poly(|G|/η)
√
τ .

The test T can be turned into an NP-hardness reduction by standard techniques (Ap-
pendix A).

Our dictator test can be generalized to the setting where C ⊆ Gk is a subgroup that
supports a balanced pairwise independent distribution. The proof of Theorem 6.5 goes
through without change. Therefore our Theorem 1.1 still holds in this more general setting,
bringing it closer to Austrin and Mossel [2009]. We choose to state the simpler version in
this paper.
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Chapter 7

Invariance-style theorem

In this chapter, we prove an invariance-style theorem for functions with small common
influences. Our proof is based on [O’Donnell and Wright 2012, Section A] and [Wenner
2012, Theorem 3.21], who used ideas from [Mossel et al. 2010; Mossel 2010; O’Donnell and
Wu 2009].

Invariance principle is a generalization of Berry–Esseen Central Limit Theorem. Let us
informally recall the principle and the theorem. Berry–Esseen theorem says that a weighted
sum of independent Rademacher variables {xi} (weighted by 1/

√
n) is close to a standard

gaussian. Since a standard gaussian has the same distribution as a weighted sum of inde-
pendent standard gaussian {gi}, we get

1√
n

∑
i∈[n]

xi ≈
1√
n

∑
i∈[n]

gi.

Invariance principle generalizes this fact, and shows that a polynomial F of independent ran-
dom variables {zi} is close in distribution to the same polynomial of some other independent
random variables {z′i}, that is,

F (z1, . . . ,zn) ≈ F (z′1, . . . ,z
′
n),

under certain technical conditions. An important condition is that zi and z′i have identical
first and second moments. Note that a Rademacher variable xi and a standard gaussian gi
indeed agree in their first and second moments.

When we apply invariance principle in our setting, the random variable zi is a block rather
than a scalar. To demonstrate matching second moments, we need “pairwise independence
at column j” (see Chapter 6). This is the intuition behind in an earlier version of our paper
on ECCC. Below we give a shorter proof by incorporating ideas of Wenner [2012].1

1We thank an anonymous referee for suggesting that our proof may be simplified using Wenner’s ideas.
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7.1 Hoeffding decomposition

We will consider Hoeffding decomposition (or Efron–Stein decomposition) for functions f
from Σm to a vector space H (such as Rq). We need the following fact from [Mossel 2010,
Definition 2.10].

Fact 7.1. Every function f : Σm → H has a unique decomposition f =
∑

S⊆[m] f
S, where

the functions fS : Σm → H satisfy

1. fS depends only on xS , {xi}i∈S.

2. For any T + S and any xT ∈ ΣT , E[fS(x) | xT = xT ] = 0.

As a result, we get an orthogonal decomposition whenever H is an inner product space,
so that Ex∈Σm〈fS(x), fT (x)〉H = 0 for any S 6= T . Therefore ‖f‖2

2 =
∑

S⊆[m]‖fS‖2
2. Further,

the influence on B ⊆ [m] may be expressed as

InfB[f ] =
∑

S:S∩B 6=∅

‖fS‖2
2.

A proof is essentially [Blais 2009, Appendix A.1]. As a result, the influence of η-noisy a
function equals

InfB[T1−ηf ] =
∑

S:S∩B 6=∅

(1− η)2|S|‖fS‖2
2.

This follows from the commutivity relation (T1−ηf)S = T1−ηf
S [Mossel 2010, Proposi-

tion 2.11], and the fact that T1−ηf
S = (1− η)|S|fS by property (2) of the decomposition.

7.2 Complex-valued functions

Theorem 6.5 is based on the following invariance-style theorem. In this version, the functions
gi take values in the closed unit disk D in the complex plane. In the statement, z has
distribution µ⊗R, where µ is a distribution over Σ1 × · · · × Σk that is pairwise independent
at column j (Section 6.2). Likewise z′ has distribution (µ′)⊗R, where µ′ is the uncorrelated
version of µ (Definition 6.4).

Theorem 7.2. Suppose gi : ΣR
i → D are functions satisfying

∑
t∈[R] Inft[gi] 6 A for all

i ∈ [k], and

max
i 6=j

∑
t∈[R]

Inft[gj] Inft[gi]

 6 τ.

Then
|E[g(z)]− E[g(z′)]| 6 4k

√
Aτ,

where g(z) =
∏

i∈[k] gi(z
(i)).
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Proof. Similar to Lindeberg proof of Berry–Esseen theorem, we consider random variables
that are hybrids of z and z′. For t = 0, . . . , R, the t-th hybrid is z(t) = (z1, . . . ,zt, z

′
t+1, . . . ,z

′
R),

where every zs is distributed according to µ and every z′s according to µ′, independently.
Recall that we think of each zs or z′s as a row of the matrix z(t).

Consider the error for switching from z(t−1) to z(t)

errt , E[g(z(t))]− E[g(z(t−1))].

Our goal is bounding
∑

t∈[R]|errt|.
Fix t ∈ [R]. Decompose each gi as (L

‖
t + L⊥t )gi via the operators

L
‖
tgi =

∑
S3t

gSi and L⊥t gi =
∑
S 63t

gSi .

Note that L⊥t gi is independent of the row t, as guaranteed by Hoeffding decomposition
Fact 7.1. We can rewrite errt as

errt =
∑
K⊆[k]

(
E[LKt g(z(t))]− E[LKt g(z(t−1))]

)
,

where

LKt g(z) =
∏
i∈[k]

Li,Kt gi(z
(i)), Li,K =

{
L
‖
t if i ∈ K

L⊥t if i /∈ K
.

We bound the contribution to errt for each K. Split K into Kj = K ∩ {j} and KJ =
K\{j}. We now show that the contribution is zero unless |Kj| = 1 and |KJ | > 2. If |Kj| = 0,
the contribution is zero, because LKt g is independent of the entry (t, j), but z(t) and z(t−1)

have identical joint marginal distributions everywhere else. If |KJ | = 0, the argument is
similar, and now LKt g is independent of the entries (t, i) for all i 6= j.

What remains is |Kj| = |KJ | = 1. Suppose KJ = {h}. Then LKt g can only depend on
two entries on row t, namely j and h. Since z(t) and z(t−1) have identical joint marginals on
all rows except t, and they also have identical joint marginals at (t, j) and (t, h) (by pairwise
independence at column j), the contribution is zero.

Let H denote the collection of all K ⊆ [k] such that |Kj| = 1 and |KJ | > 2. Therefore
we have shown

errt =
∑
K∈H

(
E[LKt g(z(t))]− E[LKt g(z(t−1))]

)
.

Proposition 7.3. For any hybrid z, any K ∈ H, any distinct h, ` ∈ KJ ,∣∣E[LKt g(z)]
∣∣ 6 2k−3

√
Inft[gj] Inft[gh] Inft[g`].
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Assuming the proposition, we can bound∑
t∈[R]

|errt| 6 2k
∑
K∈H

∑
t∈[R]

√
Inft[gj] Inft[gh] Inft[g`],

where h = hK , ` = `K are distinct elements in KJ . By Cauchy–Schwarz, the RHS is at most

2k
∑
K∈H

√∑
t∈R

Inft[gj] Inft[gh]

√∑
t∈[R]

Inft[g`] 6 22k
√
Aτ,

proving our theorem.
It remains to prove Proposition 7.3. By Hölder’s inequality,

E[|LKt g(z)|] 6
∥∥∥L
‖
tgjL

‖
tgh

∥∥∥
2

∥∥∥L
‖
tg`

∥∥∥
2

∏
i 6=j,h,`

∥∥∥Li,Kt gi

∥∥∥
∞
. (7.1)

We analyse each factor on the RHS. By pairwise independence at column j,∥∥∥L
‖
tgjL

‖
tgh

∥∥∥
2

=
∥∥∥L
‖
tgj

∥∥∥
2

∥∥∥L
‖
tgh

∥∥∥
2
.

Also, ∥∥∥L
‖
tgj

∥∥∥
2

=
√

Inft[gj].

Finally, to bound the sup-norms, note that

L⊥t gi(x) = E
[
gi(x) | x[R]\t = x[R]\t

]
∈ D,

and likewise L
‖
tgi(x) = gi(x)−L⊥t gi(x) ∈ 2D. Therefore Eq. (7.1) implies Proposition 7.3.

We remark that by slightly modifying the proof, the bound 4k
√
Aτ in Theorem 7.2 can

be improved to k2
√
Aτ .

7.3 Simplex-valued functions

Recall the following bound on total influence for η-noisy functions. O’Donnell and Wright
[2012] has a different definition of noisy influence, but their noisy influence is always bigger,
so their upper bound still holds.

Fact 7.4. ([O’Donnell and Wright 2012, Fact A.3]) Let Aη = 2
η

ln( 1
η
). Then for any d,R ∈ N

and any h : ΣdR → R,
R∑
t=1

InfB(t)[T1−ηh] 6 Aη‖h‖2
2.
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We now prove the invariance theorem for 4G-valued functions, restated below.

Theorem 6.5. Let T be the test from Section 6.2, and T ′ be its uncorrelated version. Suppose
fi : GDi →4G are η-noisy functions satisfying

max
i 6=j

∑
t∈[R]

Inft[fj] InfB(t)[fi]

 6 τ.

Then for any character χ : Gk → T,

BiasT,χ(f) 6 BiasT ′,χ(f) + δ(|G|, k, η, τ).

Here δ(q, k, η, τ) 6 4k poly(q/η)
√
τ .

Proof. Apply Theorem 7.2 to the functions gi , Xi(fi) : GDi → D, where Xi : RG → C is
the linear map naturally derived from χi and satisfy

Xi(ea) = χi(a) ∀a ∈ G.

To bound Inft[gi], we will use

InfB[Xi(fi)] 6 ‖Xi‖op · InfB[fi], (7.2)

where

‖Xi‖op , sup
y 6=0

|Xi(y)|
‖y‖`2

6 |G|.

To prove Eq. (7.2), fix xB ∈ GB, and let h(xB) = f(xB, xB). We have

|Xi(hi)− E[Xi(hi)]| = |Xi(hi − E[hi])| 6 ‖Xi‖op‖hi − E[hi]‖`2 .

Taking expectation over xB and using Definition 6.1, the last inequality implies Eq. (7.2).
Eq. (7.2) implies

Inft[gi] 6 |G| · InfB(t)[fi]

where we now interpret gi as having domain ΣR
i with Σi = Gdi . Theorem 7.2 now implies

Theorem 6.5, because the hypothesis of the former is justified by the hypothesis of the latter,
together with the last inequality and Fact 7.4.
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Chapter 8

Almost-Coloring

In this chapter, we prove Theorem 1.5. In our opinion, our proof is simpler than [Dinur et al.
2010; Khot and Saket 2012].

We construct a PCP with small covering parameter apart from small fraction of random-
ness. Our notion of covering parameter is a variant of Feige and Kilian’s [1998]. We then
turn the PCP into an FGLSS graph [Feige et al. 1996].

Let M be a Max-C instance. We say that M has covering parameter K if there are K
assignments f (1), . . . , f (K) covering every question (v, b) of M , that is for every c ∈ C, some
f (t) satisfies f (t)(v)− b = c.

Proposition 8.1. Let C be a balanced pairwise independent subset of Gk. There is a Max-C
instance MC with covering parameter |C|.

Proof. Let K = |C|. Enumerate tuples c(1), . . . , c(K) in C. There is only one question

Q = (v, 0Gk) in MC , where v ∈ V1×· · ·×Vk. Consider the assignments f (t) = (f
(t)
1 , . . . , f

(t)
k ),

where f
(t)
i : Vi → G is given by f

(t)
i (vi) = c

(t)
i . Then f (t)(v) = c(t), and the K assignments

f (1), . . . , f (K) cover Q.

We recall the definition of an FGLSS graph, specialized for Max-C.

Definition 8.2. Given an Max-C instance M , its FGLSS graph H has a vertex (Q, c) for
every question Q = (v, b) of M and every c ∈ C. A vertex (Q, c) represents an accepting
configuration for M . The vertex has weight w(Q, c) = P[Q = Q]/|C|. Two vertices ((v, b), c)
and ((v′, b′), c′) are connected if their corresponding configurations are conflicting, that is
vi = v′i and bi + ci 6= b′i + c′i for some i ∈ [k].

Denote by val(H) the maximum fractional size w(S) ,
∑

u∈S w(u) of an independent set
S in H (a vertex subset S is an independent set if no edge in H has both endpoints in S).

The value of M determines the fractional size of a maximum independent set in H.

Proposition 8.3 ([Feige et al. 1996, Lemma 3.5]). val(M) = val(H)/|C|.
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From now on, C will be a subgroup (not just a subset). Let M be the instance from
Theorem 1.1, which either has value at least 1− η or at most |C|/|G|k + ε. We construct a
PCP M ′ which is the direct sum MC ⊕M . The output instance is the FGLSS graph H for
M ′.

Proof of Theorem 1.5. Completeness. There are K assignments g(1), . . . , g(K) covering
1 − η fraction of questions (v, b) of M ′. Indeed, we can take g(t) = f (t) ⊕ f , where f (t)

is a dictator assignment assignment from Proposition 8.1 and f is an assignment satisfying
1−η questions of M . Then for any question Q = (v, b) of M satisfied by f and any question
QC of MC , the question QC ⊕ Q is covered by the g(t)’s, since the map c 7→ c + z is a
permutation of C whenever z = f(v)− b ∈ C.

In the FGLSS graph H, the K assignments g(t)’s correspond to K independent sets
containing 1− η fraction of vertices in total.

Soundness. By the proof of Theorem 1.1, M ′ inherits the soundness property from M .
By Proposition 8.3, no independent set in H has fractional size more than

1

|C|

(
|C|
|G|k

+ ε

)
=

1

|G|k
+

ε

|C|
.

To get the result, fix C to be a Samorodnitsky–Trevisan hypergraph predicate (Ap-
pendix C.1). Then K 6 2k, so soundness is 1/2k 6 1/2K/2, up to additive ε/|C|.
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Chapter 9

Two-Prover-One-Round-Game

We prove Theorem 1.8 in this chapter.
Let M = ((V1, . . . , Vk),Q) be an instance of Max-C. We convert M into a two-prover-

one-round game LM = ((U,W ),P ) between the clause player and the variable player. The
variable player receives a variable u ∈ U , V1 ∪ · · · ∪ Vk, and the clause player receives a
clause Q ∈ W , supp(Q) ⊆ (V1× · · · × Vk)×Gk. In the new game LM , a clause Q = (v, b)
is chosen from M , and a variable u is chosen uniformly at random from v = (v1, . . . ,vk),
so that u = vj for a random index j ∈ [k]. The clause player responds with a satisfying
assignment g(Q) ∈ C to Q; the variable player responds with an assignment f(u) ∈ G to
u. The players win if their replies agree,

g(Q)j = f(u)− bj .

Then LM is a two-prover-one-round game of alphabet size |C|. This game (as well as other
two-prover-one-round games mentioned in the Introduction) is a projection games, i.e., the
reply of the first player determines the only correct reply of the second player.

Consider the instance LM when M is the output instance of Theorem 1.1. It is straight-
forward to show that val(LM) > 1− ε if val(M) > 1− ε. For the Soundness case, we again
consider randomness in variable player’s reply. Define h(v) = (f(v1), . . . , f(vk)) ∈ Gk for
v ∈ V1 × · · · × Vk.

Recall the multiplicative Chernoff bound (e.g. [Schmidt et al. 1995, Theorem 2(I)]).

Proposition 9.1. Suppose Y is a sum of independent {0, 1}-valued random variables. Let
µ = E[Y ]. Then for any λ > 1,

P[Y > (1 + λ)µ] 6 exp(−λµ/3).

Proof of Theorem 1.8. Soundness. Let q = |G|. For a fixed question Q = (v, b), the
winning probability (over the random index j) is precisely

agr(g(Q), h(v)− b) , P[g(Q)j = (h(v)− b)j ].
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We can approximate the random variable h(v)−b with a random variable a that is uniform
over Gk. Then for any potential answer c ∈ C ⊆ Gk of the clause player, the fractional
agreement agr(c,a) is a random variable Y /k, where Y is Binomial with parameters k and
1/q. Write t = O(log(q|C|)) · k/q, and assume k > q. By multiplicative Chernoff bound
(Proposition 9.1),

P[agr(c,a) > t/k] = P[Y > t] 6 1/(q|C|).

It follows by union bound that

P[∃c ∈ C, agr(c,a) > t/k] 6 1/q.

Therefore val(LM) is bounded by

E[agr(g(Q), h(v)− b)] 6 t/k + P[∃c ∈ C, agr(c, h(v)− b) > t/k]

6 O(log(q|C|)/q) + 1/q + d(h(v)− b,a).

As in the proof of Theorem 1.1, the statistical distance d(h(v) − b,a) = on;k,|G|(1) and is
negligible.

To bound the first term, we can choose k = q and C to be Reed–Solomon code over Fq
of dimension two, so that |C| = q2.
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Chapter 10

Open problems

Our PCP in Corollary 1.3 has optimal query complexity, but lacks perfect completeness.
Getting optimal query complexity and perfect completeness is an interesting open problem.
Our PCP has large blow-up in size due to the use of long code, while a previous query-efficient
PCP has a smaller variant using the Hadamard code [Khot 2001]. Getting a small PCP with
optimal query-efficiency is another natural problem (it requires something different from
Hadamard code [Samorodnitsky and Trevisan 2009; Lovett 2008]).
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Appendix A

Composition

In this chapter, we prove Theorem 5.4. Our reduction closely follows those in previous works
[H̊astad 2001; O’Donnell and Wright 2012], with one notable difference to H̊astad’s reduction:
we allow different strategies from different players, so our output instance is k-partite. We
will need this feature for the direct sum operation.

As usual, we will reduce from Label-Cover LCR,dR. An instance of LCR,dR is a weighted
bipartite graph ((U, V ), e). Vertices from U are variables with domain [R], and vertices from
V are variables with domain [dR]. Every edge e = (u,v) ∈ U × V has an associated d-to-1
map πe : [dR] → [R]. Given an assignment A : U → [R], V → [dR], the constraint on e is
satisfied if πe(A(v)) = A(u).

The following theorem of Moshkovitz and Raz [2010] asserts hardness of Label-Cover (see
also Dinur and Harsha [2010]).

Theorem A.1. For some 0 < c < 1 and some g(n) = Ω(log n)c, for any σ = σ(n) >
exp(−g(n)), there are d,R 6 exp(poly(1/σ)) such that the problem of deciding a 3-SAT
instance with n variables can be Karp-reduced in poly(n) time to the problem of (1, σ)-
deciding a LCR,dR instance L of size n1+o(1). Furthermore, L is a bi-regular bipartite graph
with left- and right-degrees poly(1/σ).

Our reduction from Label-Cover to Max-C produces an instance that is a k-uniform, k-
partite hypergraph on the vertex set V1∪· · ·∪Vk. The j-th vertex set Vj is U×GR, obtained
by replacing each vertex in U with a G-ary hypercube. Any other vertex set Vi is a copy of
V × GdR. All vertices are variables with domain G (that has q elements). We think of an
assignment to variables in u ∈ Vj as a function fj,u : GR → G, and likewise an assignment
to variables in v ∈ Vi as a function fi,v : GdR → G.

For every constraint e = (u,v), the reduction introduces C-constraints on the (folded
versions of) η-noisy assignments fj,u and fi,v, as specified by a dictator test T under blocking
map πe.

The following theorem, together with Theorem A.1, implies Theorem 5.4.
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Theorem A.2. Let T be the test from Chapter 6. Suppose σ 6 δητ 2/(k − 1), where τ =
τ(q, k, η, δ) = poly(ηδ/q)/16k is chosen to satisfy δ 6 4k poly(q/η)

√
τ in Theorem 6.7.

The problem of (1, σ)-deciding a LCR,dR instance L can be Karp-reduced to the problem
of deciding the following cases given a Max-C instance Mj:

1. Completeness: val(Mj) > 1− η.

2. Soundness: ‖Mj‖χ 6 2δ for all j-relevant characters χ.

Further, if L has size m, then Mj has size m · qO(kdR).

Proof. Completeness. Let A be an assignment to the Label-Cover instance with value 1.
Consider the assignment fj,u(z) = zA(u) and fi,v(z) = zA(v). These are matching dictators
since A satisfies the constraint on e. Therefore for every e, at least 1 − kη fraction of the
associated C-constraints from T are satisfied by fj,u and fi,v’s.

Soundness. We prove the contrapositive. Let χ : Gk → T be a j-relevant character.
Suppose there are folded assignments fi,v : GdiR →4q for Mj causing the bias to exceed 2δ.
Then

‖M‖χ =

∣∣∣∣E
e
E
z
χ(fe(z))

∣∣∣∣ 6 E
e

∣∣∣∣E
z
χ(fe(z))

∣∣∣∣ ,
where fe = (f1,w1 , . . . , fk,wk

) with wi = v for i 6= j and wj = u. The RHS is at most

E
e

BiasT,χ(fe).

Therefore at least δ fraction of the edges e satisfy BiasT,χ(fe) > δ. We call such edges good.
For any good edge e, some ie 6= j satisfies∑

t∈[R]

Inft[fj,u] Infπ−1
e (t)[fie,v] > τ (A.1)

by Theorem 6.7.
We use the following randomized decoding procedure to generate an assignment A for

the LC instance. Since fi,u is η-noisy, fi,u = T1−ηhi,u for some hi,u. For every u ∈ U ,
choose S ⊆ [R] with probability ‖hSj,u‖2

2. (These numbers sum to at most 1 by the discussion
following Fact 7.1. For the remaining probability, pick S arbitrarily.) Then pick A(u) as a
uniformly random element in S (or assign arbitrarily if S = ∅). To get a label A(v), we first
pick a random position i ∈ [k] different from j, then go on as before using ‖hSi,v‖2

2 as the
probability distribution.



APPENDIX A. COMPOSITION 38

Then for any B ⊆ [R] and any u ∈ U ,

P[A(u) ∈ B] >
∑

S:S∩B 6=∅

‖hSj,u‖2
2 · |S ∩B|/|S|

>
∑

S:S∩B 6=∅

‖hSj,u‖2
2 · η(1− η)|S|/|S∩B|

(since α > η(1− η)1/α for α > 0 and 0 6 η 6 1)

> η · InfB[fj,u].

And similarly

P[A(v) ∈ B] > η · E
i 6=j

InfB[fi,v].

For a good edge e,

P[A(u) = πe(A(v))] =
∑
t∈[R]

P[A(u) = t and A(v) ∈ π−1
e (t)]

=
∑
t∈[R]

P[A(u) = t]P[A(v) ∈ π−1
e (t)]

>
η2

k − 1

∑
t∈[R]

Inft[fj,u] Infπ−1
e (t)[fie,v] >

η2τ

k − 1
.

Therefore the expected fraction of constraints in L satisfied by A exceeds δη2τ/(k − 1) >
σ.
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Appendix B

Independent-Set

We prove Theorem 1.4 in this chapter. In the Independent-Set problem, a graph H is given,
and the goal is to find the largest independent set in H. The application of low free-bit
PCP to Independent-Set is well known [Samorodnitsky and Trevisan 2009], but the actual
hardness ratio is not explicitly computed before, so we include a proof for completeness.

Our proof closely follows Trevisan’s [2001, Section 6]. We will construct an FGLSS
graph H (Definition 8.2) for our PCP, and reduce degree by replacing bipartite complete
subgraphs in H with “bipartite δ-dispersers” (close relatives of bipartite expanders). The
degree bound O(δ−1 log(δ−1)) for dispersers determines the hardness ratio. Unlike Trevisan
[2001], we do not use efficient deterministic constructions of dispersers, since none of the
known constructions matches the degree bound offered by probabilistic ones. Luckily, bipar-
tite complete subgraphs in H have size bounded by a function of 1/ε and 1/η, so we can
find good dispersers by exhaustive search.

Proof of Theorem 1.4. By Corollary 1.2, there is a PCP Π with completeness c = 1 − η,
soundness s = 2k/2k + ε, and free bit complexity at most log2(2k). Construct the FGLSS
graph H for Π.

Following [Dinur and Safra 2005, Proposition 8.1], we now turn H into an unweighted
graph H ′ (equivalently, vertices in H ′ have equal weight), by duplicating vertices. Suppose
H is a weighted independent set instance of size m with minimum weight λ and maximum
weight κ, and 0 < σ 6 λ be a granularity parameter. Construct an unweighted instance
H ′ of size O(mκ2/σ2) as follows: Replicate each vertex u in H of weight w(u) by bw(u)/σc
copies in H ′; if u and v are connected in H, connect all copies of u to all copies of v in H ′.
Then weights are roughly preserved: any vertex u of weight w(u) in H will have copies of
total weight w(u)(1±O(λ/σ)) in H ′. Therefore, it is not hard to see that objective value is
roughly preserved, val(H ′) = val(H)(1 ± O(λ/σ)). Further, any vertex u in H has at most
κ/σ copies in H ′.

As observed by Trevisan [2001], the graph H is a union of bipartite complete subgraphs.
More precisely, for every index i in the proof for Π, there is a bipartite complete subgraph
between the sets Zi and Oi of configurations, where configurations in Zi query index i and
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expect an answer of zero, and configurations in Oi query index i and expect an answer of
one. Further, the set of edges in H is the union of all such bipartite complete subgraphs over
index i. This bipartite complete subgraph structure is preserved by the vertex duplication
process.

Also, the sets Zi and Oi in H have the same total weight, and in fact there is a weight-
preserving bijection between Zi and Oi. This bijection is inherited from the corresponding
bijection of the subgroup C, thanks to its balanced property. As a result, in the instance H ′

after duplication of vertices, the vertex sets Zi and Oi have the same size `i.
We now replace the bipartite complete subgraph between Oi and Zi with a bipartite

disperser on ([`i], [`i]), for all index i. The graph after replacement is H ′′.

Proposition B.1. For every δ > 0 and any ` > 1, there is a bipartite graph on (([`], [`]), E)
of degree at most d = O(δ−1 log(δ−1)) such that for any A,B ⊆ [`], |A| > bδ`c and |B| > bδ`c,
some edge in E goes between A and B, so (A×B) ∩ E 6= ∅.

A random bipartite graph is well-known to be a δ-disperser (for completeness, we include
a proof below). We can therefore find (and verify) a disperser deterministically by exhaustive
search in time exp(poly(`i)).

To bound `i, we first bound the maximum size W of Zi in H (measured by the number
of vertices, disregarding weights). Then W times the maximum number of copies of a vertex
will upperbound `i. It is not hard to see that W = Oε,k(1), where Oε,k(1) denotes a quantity
bounded by a function of ε and k. Indeed, W is at most 2f∆(M), where ∆(M) is the
maximum number of constraints incident on a variable in the instance M of Theorem 1.1
(disregarding weight on constraints). To bound ∆(M), observe that ∆(L) = Oε,k(1) for the
Label-Cover instance L of Theorem A.1. Also, ∆(Mj) = Oε,k(1), where Mj is the instance
from Theorem 5.4. Further, direct sum preserves boundedness of ∆, since ∆(M ⊕M ′) =
∆(M)∆(M ′). This shows that W = Oε,k(1).

We bound the number of copies of a vertex in the replication step by κ/σ. To bound κ/σ,
we first bound the ratio ρ(M) = κ(M)/σ(M) of the maximum weight constraint to minimum
weight constraint in a CSP instance M . Then ρ(L) = 1 for the Label-Cover instance L in
Theorem A.1, because L is a bi-regular bipartite graph. After composing with the dictator
test, ρ(Mj) is at most Oε,η,k(1). Finally, ρ(M ⊕M ′) = ρ(M)ρ(M ′). Hence the ratio κ/λ for
the FGLSS graph H is Oε,η,k(1). If we pick σ = ελ, then `i = Oε,η,k(1).

The disperser replacement step increases the objective value by at most kδ [Trevisan
2001]. We will therefore choose δ = s2−f/k, and the degree bound for H ′′ becomes D =
O(k/δ · log(1/δ)) = O(k32k). The hardness ratio is O(c/s) = O(k/2k) = O(logD)4/D.

Proof of Proposition B.1. We may assume ` > δ−1 log(δ−1) (otherwise, just take the bipar-
tite complete graph). Assume for now that δ` is an integer.

Denote by U, V the two vertex subsets of size `. We pick a random degree-d bipartite
(multi)-graph on (U, V ), generated as the union of d independent random perfect matchings.

Consider A ⊆ U of size δ` and B ⊆ V of size δ`. The probability that in a perfect
matching, all edges from A miss B is

(
(1−δ)`
δ`

)
/
(
`
δ`

)
6 (1− δ)δ`. Hence A shares no edges with
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B with probability at most (1− δ)dδ`. Taking union bound over all choices of A and B, the
random graph is a δ-disperser except with probability at most(

`

δ`

)(
`

δ`

)
(1− δ)dδ` 6

(
e2

δ2
(1− δ)d

)δ`
,

where we have used
(
n
r

)
6 (en/r)r. The quantity in bracket on the RHS is less than 1 when

d = O(δ−1 log(δ−1)).
When δ` is not an integer, it is easy to get the same conclusion using ` > δ−1 log(δ−1)

and appropriate approximations.
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Appendix C

Some predicates

C.1 Samorodnitsky–Trevisan hypergraph predicates

Let k = 2r − 1. The Samorodnitsky and Trevisan [2009] hypergraph predicate of arity k is
the dual Hamming code (or truncated Hadamard code) C of block length k and dimension
r over F2. If we index the positions of a codeword c = (cS)∅6=S⊆[r] by nonempty subsets S of
[r], the codewords are given by

C =

c =

(∑
i∈S

yi

)
∅6=S⊆[r]

∣∣∣∣∣∣ y1, . . . , yr ∈ Z2

 .

C.2 H̊astad predicates

We describe a predicate due to Johan H̊astad and announced in [Makarychev and Makarychev
2012]. This predicate is used in Corollary 1.7.

Let k 6 2t, q = 2s, and suppose t > s. A H̊astad predicate is over G = Zs2. We pick a
random tuple c ∈ Gk as follows. Pick random a ∈ F2t and b ∈ Zs2, and set

ci = π(a · i) + b,

where i denotes the i-th element from F2t , and π : F2t → Zs2 is any surjective group ho-
momorphism (e.g. π takes the first s bits in some vector space representation of F2t over
F2).

Let C be the collection of random tuples c generated as above. Then C has size at most
qk. Further, C is balanced pairwise independent, because for every i 6= j ∈ [k], the difference

ci − cj = π(a · i)− π(a · j) = π(a · (i− j))

is uniformly random over Zs2, for any fixed b.
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H̊astad predicates require q to be a prime power. To obtain Corollary 1.7 where q
is arbitrary, pick the smallest power of two q′ > q, and apply Makarychev’s randomized
reduction [Austrin and Mossel 2009, Proposition B.1] from domain size q′ to domain size q.
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Appendix D

Sum-of-squares integrality gaps

Sum-of-squares programs are powerful hierarchies of semidefinite programs proposed inde-
pendently by Parrilo [2000], Lasserre [2001], and others (see [Barak et al. 2012; O’Donnell
and Zhou 2013] for the history). In this chapter, we observe that Schoenebeck’s [2008] sum-
of-squares gap construction for Max-k-XOR also works for the CSPs in Theorem 1.1, drawing
a pleasing parallel between sum-of-squares gap construction and NP-hardness results. Even
without the result in this chapter, Theorem 1.1 implies a such a gap via reduction, but the
rank of the sum-of-squares solution will not be linear, due to the blow-up in size from direct
sum.

Previously, Tulsiani [2009] extended Schoenebeck’s construction to any predicate that is a
linear code of dual distance at least 3 over a prime field. Later Schoenebeck [2008] simplified
his own proof of Max-k-XOR using Fourier analysis. Not surprisingly, his new proof can be
further generalized to arbitrary abelian group using Pontryagin duality, as shown below. For
intuition about the construction, see [Schoenebeck 2008]. We remark that Schoenebeck’s
proof was based on Feige and Ofek [2006], and some of Schoenebeck’s ideas were applied
independently by Grigoriev [2001] to related problems.

D.1 Preliminaries

Given an abelian group G, its dual group Ĝ is the abelian group of characters on G, under
pointwise multiplication. The inverse of χ ∈ Ĝ is therefore χ. Pontryagin duality says that
G is naturally isomorphic to the dual of Ĝ (i.e. double dual of G), via the “evaluation map”

g ∈ G 7→ {χ ∈ Ĝ 7→ χ(g)}.

Given a subgroup H of G, denote by H⊥ = {χ ∈ Ĝ | χ(h) = 1 ∀h ∈ H} the annihilator of
H. We remark that annihilator is only defined with respect to an ambient group G, which
will always be clear from the context. The following fact is well known.

Proposition D.1 ([Hewitt and Ross 1994, Theorems 23.25 and 24.10]). Let Λ be a subgroup

of a finite abelian group Γ. Then (a) Γ̂/Λ ∼= Λ⊥ and (b) (Λ⊥)⊥ = Λ.
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A (linear) equation is a pair (χ, z) ∈ ĜV × T, encoding the constraint χ(f) = z for an

assignment f : V → G. Since ĜV is isomorphic to ĜV , we write ĜV in place of ĜV for better
typography. The support of χ ∈ ĜV is supp(χ) , {v ∈ V | χ is v-relevant}, and the degree
of χ is the size of its support. Denote by Ωt the collection of χ of degree at most t.

Definition D.2. Given a collection R of equations, its width-t resolution Πt(R) ⊆ ĜV × T
contains all equations in R and those derived via the resolution step

(χ, z), (ψ, y) ∈ Πt(R) and χψ ∈ Ωt =⇒ (χψ, zy) ∈ Πt(R).

The resolution has no contradiction if (1, z) ∈ Πt(R) implies z = 1.

In this chapter, a Max-C instance M = (V,Q) will not be k-partite, so all variables
v1, . . . ,vk of the k-tuple v in a question Q = (v, b) come from the same variable set V . Let
RM be the set of equations from constraints in M , defined as

RM , {(χ, χ(b)) | (v, b) ∈M,χ ∈ C⊥ ⊆ Ĝv}.

We say that M has resolution width at least t if Πt(RM) has no contradiction.
We state the results below in terms of Lasserre integrality gaps, but our lower bound also

rules out sum-of-squares refutations in Parrilo’s hierarchy (Remark D.4). Our definition of
Lasserre solution is a rephrasing of the one in [Tulsiani 2009].

Definition D.3. A rank-t Lasserre solution U for a CSP instance M = (V,Q) over domain
Σ is a collection {Uf | f ∈ ΣS, S ⊆ V s.t. |S| 6 t} of vectors, one for each partial assignment
f : S → Σ on a subset S of size at most t.

The Lasserre solution induces a collection of distributions {µW ∈ 4ΣW | W ⊆ V s.t. |W | 6
2t} over partial assignments, subject to the following condition: For any two partial assign-
ments f ∈ ΣS and g ∈ ΣT with |S|, |T | 6 t, we have

〈Uf , Ug〉 = P
h∼µS∪T

[h �S= f and h �T= g]. (D.1)

The value of the Lasserre solution is val(M,U) = EQ P[Q is satisfied under µ〈Q〉], where
〈Q〉 ⊆ V denotes the set of variables that Q depends on.

Remark D.4. Sum-of-squares refutations in Parrilo’s hierarchy are slightly stronger than
sum-of-squares proofs in Lasserre’s hirerachy [O’Donnell and Zhou 2013], but the difference
is inconsequential in our setting. A degree-t sum-of-squares refutation for a Max-C instance
M = (V,Q) involves multivariate polynomials over indeterminates {xv,a}v∈V,a∈G. The refu-
tation is associated with equality relations {p = 0}p∈A for a collection A of polynomials p;
these relations state that (1) P[Q is satisfied under µ〈Q〉] = 1 for all Q; (2) total probability
mass of local assignments on S is one for any S ⊆ V, |S| 6 t; and (3) xv,a’s are {0, 1}-indicator
variables. The refutation takes the form

−1 = s+
∑
p∈A

qpp,
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where s is a sum of squares and qp’s are arbitrary polynomials such that deg(s), deg(qpp) 6 2t.
Because our rank-t Lasserre solution will satisfy conditions (1), (2) and (3), it also satisfies
all the equality relations from A, ruling out any degree-t refutation.

D.2 From resolution complexity to SDP solution

A key step will be the following generalization of [Tulsiani 2009, Theorem B.1].

Theorem D.5. Let G be an abelian group, and C a subgroup of Gk. If a Max-C instance
M has resolution width at least 2t, then there is a rank-t Lasserre solution to M of value 1.

Given the resolution proof Π = Π2t(RM), denote by Λ = {χ | (χ, z) ∈ Π} the collection
of χ’s appearing in an equation. If Π has no contradiction, then for every χ ∈ Λ, there is a
unique z(χ) ∈ T such that (χ, z(χ)) ∈ Π. Otherwise the existence of distinct (χ, z), (χ, y)
in Π implies (1, 1) 6= (1, zy) ∈ Π, a contradiction (pun intended). By definition of the
resolution step, if χ, ψ, χψ ∈ Λ, then

z(χψ) = z(χ)z(ψ), (D.2)

so z : Λ→ T is a homomorphism wherever it is defined.
The key observation is that if χ /∈ Λ, then χ does not enforce any constraint on partial

assignments. We make this precise in Eq. (D.3) below. For W ⊆ V , let ΛW = {χ ∈ Λ |
supp(χ) ⊆ W}, which will be considered as a subgroup of ĜW . Let HW be the set of partial
assignments on W that satisfy all the constraints contained in W ,

HW = {h ∈ GW | ∀χ ∈ ΛW , χ(h) = z(χ)}.

We now show that for every W of size at most 2t and every χ ∈ ĜW \ ΛW ,

E
h∈HW

χ(h) = 0. (D.3)

Indeed, HW is a coset of Λ⊥W , so Eq. (D.3) follows from Proposition D.6 with Λ := ΛW ,Γ :=
ĜW , H := HW .

Proposition D.6. Let Λ be a subgroup of an abelian group Γ, and H ⊆ Γ̂ be a coset of Λ⊥.
Then for any χ ∈ Γ,

χ ∈ Λ ⇐⇒ E
h∈H

h(χ) 6= 0.

Proof. Let H = hΛ⊥. We have

E
h∈H

h(χ) = h(χ) · E
h∈Λ⊥

h(χ) = h(χ) · E
z∈χ(Λ⊥)

z,

where second equality uses the fact that χ is a homomorphism from Γ̂ to T, by Pontryagin
duality. Now the RHS is non-zero if and only if χ(Λ⊥) contains only one element, that is
χ(Λ⊥) is the trivial subgroup {1} of T. The latter condition is equivalent to χ ∈ (Λ⊥)⊥, and
the result follows by Proposition D.1(b).
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Partition Ωt into equivalence classes [χ]’s so that [χ] = [ψ] if χψ ∈ Λ. It is easily
checked that the latter condition is indeed an equivalence relation. Also fix an arbitrary
representative χ′ for each equivalence class [χ]. In the Lasserre vector construction, there
will be an orthonormal set of vectors e[χ]’s, one for each equivalent class.

Our goal is Lasserre vectors Uf for partial assignments f : S → G, and to this end we first
construct Lasserre vectors UA for any t-junta A, which is a function A : GV → C depending
on at most t variables. Formally, let supp(A) be the smallset subset S ⊆ V on which there
is B : S → G satisfying A(h) = B(h �S) for all h ∈ GV . Then A is a t-junta if supp(A) has
size at most t. Since any t-junta A is a linear combination of characters of degree at most t,
it suffices to define the Lasserre vector

Uχ = z(χχ′)e[χ]

for χ ∈ Ωt and extend the definition to an arbitrary t-junta A by linearity, i.e.,

A =
∑
χ∈ĜS

Â(χ)χ =⇒ UA =
∑
χ∈ĜS

Â(χ)Uχ,

where S = supp(A).
The following proposition highlights the main property.

Proposition D.7. For any t-juntas A,B : GV → C, let W = supp(A) ∪ supp(B). Then

〈UA, UB〉 = E
h∈HW

[A(h)B(h)].

Proof. By linearity, it suffices to show that for any χ, ψ ∈ Ωt, if W = supp(χ) ∪ supp(ψ)
(which has size at most 2t), then

〈Uχ, Uψ〉 = E
h∈HW

[χ(h)ψ(h)] = E
h∈HW

[χψ(h)].

When [χ] 6= [ψ], the LHS is zero because e[χ] and e[ψ] are orthogonal, and the RHS is also
zero by Eq. (D.3).

When [χ] = [ψ], the LHS is z(χχ′)z(ψχ′) = z(χψ) by Eq. (D.2), and the RHS is also
z(χψ) by definition of HW and the fact that χψ ∈ Λ.

Proof of Theorem D.5. We will consider the indicator function A : GV → R for a partial
assignment f : S → G, defined as

A(h) = I(h �S= f).

Then A is a t-junta. We then define Uf as UA.
For any partial assignments f ∈ GS, g ∈ GT ,

〈Uf , Ug〉 = E
h∈HW

[I(h �S= f)I(h �T= g)]
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by Proposition D.7. Taking µW as the uniform distribution over HW , the vectors Uf ’s satisfy
the Lasserre constraints Eq. (D.1).

The Lasserre solution has value 1, because every constraint Q ∈ M is satisfied by every
f ∈ H〈Q〉. Indeed, since Q = (v, b) induces linear equations {(χ, χ(b)) | χ ∈ C⊥ ⊆ Ĝv} in
Π, we have

f ∈ HW =⇒ χ(f − b) = 1 ∀χ ∈ C⊥ ⇐⇒ f − b ∈ (C⊥)⊥ = C,

where the equivalence is Pontryagin duality and the last equality is Proposition D.1(b).
The vectors Uf may have complex entries, but equivalent real vectors exist. Indeed, the

Gram matrix [〈Uf , Ug〉]f,g has only real entries and is positive semidefinite over C, and hence
over R.

D.3 Resolution complexity of random instances

As usual, a random Max-C instance M will be a Lasserre gap instance. To be precise, the
m constraints of M are chosen independently (with replacement), where each constraint
Q = (v, b) is uniformly random in

(
V
k

)
×Gk.

Theorem D.8. Let G be a finite abelian group, and C a balanced pairwise independent
subgroup of Gk for some k > 3. Let M be a random instance of Max-C with m = ∆n
constraints and n variables. Then M has resolution width n/∆O(1) with probability 1−on;∆(1).

Proof sketch. This follows by Tulsiani’s proof [Tulsiani 2009, Theorem 4.3]. As in his proof,
we need M to be expanding (i.e. every set of s 6 Ω(1/∆)25n constraints contains at least
(k−6/5)s variables); the expansion property is guaranteed by [Tulsiani 2009, Lemma A.1(2)].
In our setting, the number of variables involved in an equation (χ, z) is simply the degree of
χ.

Also, a subgroup C ⊆ Gk has dual distance at least 3 (i.e. non-trivial characters in C⊥

have degree at least 3) if and only if C is balanced pairwise independent. To see this, for any
i 6= j ∈ [k], let Cij , {(ci, cj) | c ∈ C} ⊆ G{i} ×G{j} ∼= G2 be the projection of C to i and j
coordinates. Balanced pairwise independence of C means for all i 6= j ∈ [k], we have Cij ∼=
G2, which is equivalent to (Cij)⊥ = {1} ⊆ T, by Proposition D.1(a) and the isomorphism
Γ̂ ∼= Γ for any finite abelian group Γ. Now the condition (Cij)⊥ = {1} ∀i 6= j ∈ [k] is the
same as non-trivial characters in C⊥ having degree at least 3.

One can check that Tulsiani’s proof goes through. We omit details.

It is also well known that a random Max-C instance has value close to |C|/|G|k [Tulsiani
2009, Lemma A.1(1)]. We summarize the result of this chapter in the next theorem, which
follows by combining Theorem D.5, Theorem D.8 and [Tulsiani 2009, Lemma A.1(1)], and
choosing ∆ = O(|G|k/ε2).
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Theorem D.9. Let G be a finite abelian group, and C be a balanced pairwise independent
subgroup of Gk for some k > 3. For any ε > 0, some Max-C instance M on n variables has
a rank-(poly(ε/|G|k) · n) Lasserre solution of value 1 and satisfies val(M) 6 |C|/|G|k + ε.

Our Theorem D.9 is a generalization of Tulsiani’s [2009, Theorem 4.6] and a sum-of-
squares gap analogue of Theorem 1.1. Examples of predicates satisfying our theorem but
not Tulsiani’s are H̊astad predicates in Appendix C.2.
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