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ABSTRACT OF THE DISSERTATION

Learning Representation for Scene Understanding:
Epitomes, CRFs, and CNNs

by

Liang-Chieh Chen
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Alan L. Yuille, Chair

Scene understanding, such as image classification and semantic image segmentation, has been a

challenging problem in computer vision. The difficulties mainly come from the feature represen-

tation, i.e., how to find a good representation for images. Instead of improving over hand-crafted

features such as SIFT or HoG, we focus on learning image representations by generative and dis-

criminative methods.

In this thesis, we explore three areas: (1) generative models, (2) graphical models, and (3)

deep neural networks for learing image representations. In particular, we propose a dictionary of

epitomes, a compact generative representation for explicitly modeling object co-relation within

edge patches, and for explicitly modeling photometric and position variability of image patches.

Subsequently, we exploit Conditional Random Fields (CRFs) to take into account the dependencies

between outputs. Finally, we employ Deep Convolutional Neural Networks trained with large-scale

datasets to learn feature representations. We further combine CRFs with deep networks to estimate

complex representations. Specifically, We show that our proposed model can achieve state-of-art

performance on challenging semantic image segmentation benchmarks.
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CHAPTER 1

Introduction

Teaching computers to understand an image, such as image classification and semantic segmen-

tation, has been a challenging problem in computer vision. In the context of supervised learning,

where annotations are provided, the learning process can be summarized as two main steps: Fea-

ture extraction and Classifier training. The most important part is the feature extraction step, and

researchers have spent a lot time on developing good image representations. Some researchers

have been mainly focusing on how to design the features manually. Among them, the most fa-

mous feature representations include SIFT [Low04] and HoG [DT05], which have been shown

to be insufficient for high-level computer vision tasks recently. On the contrary, instead of trying

to improve over the hand-crafted features, we focus on learning image representations for scene

understanding in this thesis.

To learn image representations for scene understanding, we mainly explore along three direc-

tions: (1) generative models, specifically epitomes, to model edge patches and image patches, (2)

graphical models, specifically Conditional Random Fields (CRFs), for structured prediction, and

(3) deep neural networks, specifically Deep Convolutional Neural Networks (DCNNs), for hierar-

chical image representations. This dissertation introduces a series of new methods, which combine

the advantages from those three areas.

1.1 Contributions

The contributions of this thesis can be analyzed with respect to four axes: (1) local representation

vs. hierarchical representation, (2) employing conditional random field for structured prediction

or not, (3) joint training vs. piecewise training, and (4) learning with strong vs. weak supervision.

1



In this section, we first analyze the contributions along those four axes, and then we discuss the

contribution of each chapter.

1.1.1 Overview of the contribution

In this subsection, we analyze the contribution of this thesis along the four axes:

Local vs. hierarchical representation Our dictionary of mini-epitomes represents local edge

structures or local raw image patches. The dictionary is learned unsupervisedly and is compact in

the sense that a mini-epitome is able to generate several similar edge templates or image patches

with similar appearance. On the other hand, deep neural networks, trained supervisedly with large-

scale datasets, learn feature representation hierarchically. Lower neural layers usually learn edge

structures, and higher layers start to learn semantic structures, such as car wheels.

CRF vs. non-CRF Conditional Random Fields are a powerful mathematical tool to capture the

output variable dependency. For example, neighboring pixels should have high probability to be

assigned by the same semantic label, and thus it refines the final prediction result. We have shown

that for strong classifiers, such as DCNNs, the prediction is usually very coarse due to the employed

down-sampling, and applying a fully-connected CRF can significantly improve the segmentation

result especially along the object boundaries.

Joint vs. piecewise training We also employed two schemes to train our models. Piecewise

training is efficient as it optimizes each module separately. However, this piecewise training pro-

cess is suboptimal since the training error gradients should focus on errors that can not be corrected

by all the modules jointly. We also show that joint training results in significant performance gains

over piecewise training.

Strong vs. weak supervision Training a model supervisedly requires a large amount of anno-

tations. Besides, labeling large-scale datasets with very high quality is both time-consuming and

expensive in terms of budget. Therefore, it is interesting to investigate training models with weak
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annotations, which requires significantly less annotation effort. In this thesis, we have explored two

settings. In the first setting, we explore training a car segmentation model with weak 3D bounding

box supervision, while in the second setting, we explore training a deep convolutional neural net-

work for semantic segmentation with simply weak 2D bounding box or image-level annotations.

In both cases, we show that it is possible to train models with weak supervision and attains perfor-

mance as good as the annotations by Mechanical Turkers or as when exploiting strong annotations

for training.

We identify the contributions of each chapter with respect to the four axes in Tab. 1.1.

Local representation Graphical model (CRF) Joint training Weak supervision

Chapter 2 X X

Chapter 3 X

Chapter 4 X X X

Chapter 5 X X

Chapter 6 X

Chapter 7 X X

Table 1.1: The contributions of each chapter analyzed along four axes: models employing (1) local

vs. hierarchical feature representation, (2) conditional random fields for structured prediction or

not, (3) joint or piecewise training, and (4) weak or strong supervision during training.

1.1.2 Overview of the thesis

Herein, we briefly overview the contribution of each chapter.

Epitomes for patch shape We learn an edge representation unsupervisedly, called a dictionary of

shape epitomes, in Chapter 2. These shape epitomes represent the local edge structure of the image

and include hidden variables to encode shift and rotations. They are learnt in an unsupervised

manner from groundtruth edges. This dictionary is compact but is also able to capture the typical

shapes of edges in natural images. We illustrate the shape epitomes by applying them to the image
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labeling task, and apply shape epitomes to image labeling by using Conditional Random Field

(CRF) Models. They are alternatives to the superpixel or pixel representations used in most CRFs.

In our approach, the shape of an image patch is encoded by a shape epitome from the dictionary.

Unlike the superpixel representation, our method avoids making early decisions which cannot

be reversed. Our resulting hierarchical CRFs efficiently capture both local and global class co-

occurrence properties. We demonstrate its quantitative and qualitative properties of our approach

with image labeling experiments on two standard datasets: MSRC-21 and Stanford Background.

Epitomes for patch intensity As an alternative to hand-crafted features (such as SIFT), we

develop a generative model, in Chapter 3, for the raw intensity of image patches and show that

it can support image classification performance on par with optimized SIFT-based techniques in a

bag-of-visual-words setting. Key ingredient of the model is a compact dictionary of mini-epitomes,

learned in an unsupervised fashion on a large collection of images. The use of epitomes allows us

to explicitly account for photometric and position variability in image appearance. We show that

this flexibility considerably increases the capacity of the dictionary to accurately approximate the

appearance of image patches and support recognition tasks. For image classification, we develop

histogram-based image encoding methods tailored to the epitomic representation, as well as an

“epitomic footprint” encoding which is easy to visualize and highlights the generative nature of

our model. We discuss in detail computational aspects and develop efficient algorithms to make

the model scalable to large tasks. The proposed techniques are evaluated with experiments on the

challenging PASCAL VOC-07 image classification benchmark.

3D information and weak supervision We explore a simple feature representation: employing

Gaussian Mixture Models to capture the pixel RGB color distribution and 3D information for cars

in Chapter 4. Specifically, we show how to exploit 3D information to automatically generate very

accurate object segmentations given annotated 3D bounding boxes. We formulate the problem

as the one of inference in a binary Conditional Random Field which exploits appearance models,

stereo and/or noisy point clouds, a repository of 3D CAD models as well as topological constraints.

We show that our method can segment cars with human-level accuracy (i.e., performing as well as

4



highly recommended MTurkers).

Deep structured models We bring together the advantages from graphical models (specifically,

CRFs) and DCNNs in Chapter 5 and Chapter 6. Many problems in real-world applications involve

predicting several random variables that are statistically related. CRFs are a powerful mathematical

tools to capture the correlation among random variables, while DCNNs have demonstrated state-

of-art performance on recognition tasks. Combining CRFs with deep learning is able to estimate

complex representations while taking into account the dependencies between the output random

variables. In Chapter 5, we employ a training algorithm to jointly learn structured models with

deep features that form the CRF potentials. Our method is efficient, as it blends learning and

inference, and makes use of GPU accelerations. We show that joint learning of the deep features

and the CRF parameters lead to significant performance gains in the tasks of word prediction and

image tagging.

In Chapter 6, we employ the fully connected CRF [KK11] as a post-processing step for the

outputs from DCNNs. Specifically, we show that responses at the final layer of DCNNs are not

sufficiently localized for accurate object segmentation. This is due to the very invariance proper-

ties that make DCNNs good for high level tasks. We overcome this poor localization property of

deep networks by combining the responses at the final DCNN layer with a fully connected CRF.

Qualitatively, our “DeepLab” system is able to localize segment boundaries at a level of accuracy

which is beyond previous methods. Quantitatively, our method sets the new state-of-art at the PAS-

CAL VOC-2012 semantic image segmentation task. We show how these results can be obtained

efficiently: Careful network re-purposing and a novel application of the ’hole’ algorithm from the

wavelet community allow dense computation of neural net responses at 8 frames per second on a

modern GPU.

Deep structured models with weak supervision We study the challenging problem in which

only weak annotations (such as image-level labels or bounding box annotations) or a small number

of strong annotations (i.e., pixel-level annotations) are available for training DCNNs in Chapter 7.

Deep convolutional neural networks (DCNNs) trained on a large number of images with strong

5



pixel-level annotations have recently significantly pushed the state-of-art in semantic image seg-

mentation. However, it is time-consuming and labor-intensive to collect the pixel-level annotations.

We use Expectation-Maximization (EM) methods for training DCNNs under these weakly super-

vised and semi-supervised settings. Extensive experimental evaluation shows that our techniques

can learn models delivering competitive results on the challenging PASCAL VOC 2012 image

segmentation benchmark, while requiring significantly less annotation effort.
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CHAPTER 2

Learning a Dictionary of Shape Epitomes

In this chapter, we employ a novel representation for local edge structure based on a dictionary of

shape epitomes, which were inspired by [JFK03]. This dictionary is learnt from annotated edges

and captures the mid-level shape structures. By explicitly encoding shift and rotation invariance

into the epitomes, we are able to accurately capture object shapes using a compact dictionary of

only five shape epitomes. We explore the potential of shape epitomes by applying them to the task

of image labeling. Most modern image labeling systems are based on Conditional Random Fields

(CRFs) [KH06, LMP01] for integrating local cues with neighborhood constraints. Image seg-

ments are typically represented in the pixel domain [Gou12, KK11, SWR09], or in the domain of

superpixels (a region of pixels with uniform statistics) [FVS09, GRB08, GFK09, HZR06, LVZ11,

MBH10].

One motivation for shape epitomes was the success of segmentation templates for image la-

beling [ZCL12]. These templates also represent the local edge structure but differ from pixels and

superpixels because they represent typical edges structures, such as L-junctions, and hence provide

a prior model for edge structures. Each patch in the image was encoded by a particular segmenta-

tion template with semantic labels assigned to the regions specified by the template, as illustrated

in Fig. 2.1. Segmentation templates, like superpixels, have computational advantages over pixel-

based approaches by constraining the search process and also allow enforcing label consistency

over large regions. Compared to superpixels, segmentation templates do not make early decisions

based on unsupervised over-segmentation and, more importantly, explicitly enumerate the possible

spatial configurations of labels making it easier to capture local relations between object classes.

See Table 2.1 for a comparison summary.

But those segmentation-templates [ZCL12] have limitations. Firstly, they were hand-specified.
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Figure 2.1: Proposed dictionary of Shape Epitomes in the context of image labeling. Segmentation

templates are generated from the shape epitomes, by specifying the values of the hidden variables.

Image labels are assigned to the regions within the templates, and thus the local relationship be-

tween object classes is explicitly modeled. Note the rotation and shift-invariance illustrated in the

second and third shape epitome, respectively.

Secondly, there were not invariant to shift and rotation which implies that a very large number of

them would be needed to give an accurate representation of edge structures in the images (Zhu et

al. [ZCL12] used only thirty segmentation-templates which meant that they could only represent

the edges very roughly).

Each shape epitome can be thought of a set of segmentation-templates which are indexed by

hidden variable corresponding to shift and rotation. More precisely, a shape epitome consists of

two square regions one inside the other. The hidden variable allows the inner square region to shift

and rotate within the the bigger square, as shown in Fig. 2.1. The hidden variable specifies the shift

and rotation. In the current work, each shape epitome corresponds to 81× 4 = 324 segmentation-

templates. Hence, as we will show, a small dictionary of shape epitomes is able to accurately

represent the edge structures (see Sec. 2.3.3.1). Intuitively the learned dictionary captures generic

mid-level shape-structures, hence making it transferable across datasets. By explicitly encoding

shift and rotation invariance, our learned epitomic dictionary is compact and only uses five shape

epitomes. We also show that shape epitomes can be generalized to allow the inner square to expand

which allow the representation to deal with scale (see Sec. 2.3.3.4).
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Pixel Superpixel Template

Computation − + +

Flexibility + + +

Long-Range − + +

Explicit Configuration − − +

Table 2.1: General comparison between representations from the aspects of Computation, Flex-

ibility (better align with object shapes), Long-Range consistency, and ability to Explicitly model

the local configuration of objects. We improve the flexibility of template-based representation by

learning a dictionary of shape epitomes.

We propose shape epitomes as a general purpose representation for edge structures (i.e. a mid-

level image description). In this chapter we illustrate them by applying them to the image labeling

task. For image labeling, we consider three increasingly more complex models, which adapt cur-

rent CRF techniques for shape epitomes. We use patches at a single fine resolution whose shape

is encoded by a segmentation template (i.e. a shape epitome with hidden variable specified). The

patches are overlapping, thus allowing neighbors to directly communicate with each other and find

configurations which are consistent in their area of overlap (Model-1). We explore two enhance-

ments of this basic model: Adding global nodes to enforce image-level consistency (Model-2) and

also further adding an auxiliary node to encourage sparsity among active global nodes, i.e., en-

courage that only few object classes occur within an image (Model-3). We conduct experiments

on two standard datasets, MSRC-21 and Stanford Background, obtaining promising results.

Our model is based on the success of several works. First, the ability to generate an image

from a condensed epitomic representation [JFK03]. We leverage on this idea to learn a dictionary

of shape epitomes. Each segmentation template is generated within a shape epitome. This encodes

the shift-invariance into the dictionary, since a segmentation template is able to move within a

shape epitome. Besides, we encode rotation invariance by allowing the shape epitome to rotate by

0, 90, 180, and 270 degrees.

Second, the potential of using template-based representation and overlapped patches. It has
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been shown that learning the generic patterns capturing statistics over large neighborhoods can be

beneficial for image denoising [RB09] and image labeling [KP09]. Besides, finding the mutual

consensus between neighboring nodes by using overlapped patches [ZW11] has shown to be ef-

fective. Similar ideas have been applied to image labeling [KBB11]. However, they did not learn

a dictionary for object shapes.

Third, the power of introducing simple global nodes for image labeling. Ladicky et al. [LRK09]

introduced global nodes that can take values from the predefined label set L and a “free” label.

There is no energy cost, when the global node takes the free label. Gonfaus et al. [GBW10]

proposed a harmony model to generalize the idea by allowing the global node to take labels from

the power set of L. However, it is computationally challenging to find the most probable state for

the global node from the power set. Then, Lucchi et al. [LLB11] proposed the Class Independent

Model (CIM) to decompose the global node into |L| global nodes. Our model moves further based

on the CIM by encoding the image-level co-occurrence, and adding an auxiliary node to encourage

the sparsity of active global nodes, similar to [DOI12].

2.1 Learning a dictionary of shape epitomes

In this section, we present our algorithm for learning the dictionary of shape epitomes from anno-

tated images.

To learn the generic dictionary, we use the BSDS500 dataset [AMF11], which provides ground

truth of object boundaries. Given that, we extract M ×M patches around the shape boundaries

(called shape patches). We cluster these shape patches using affinity propagation [FD07] to build

our shape epitomes (note that the size of shape patches is the same as that of shape epitomes).

The segmentation templates are of smaller size m × m (m < M ) than the shape epitomes, and

are generated as sub-windows of them. By generating the segmentation template from a larger

shape epitome, we are able to explicitly encode shift-invariance into the dictionary, as illustrated

in Fig. 2.1. Therefore, one shape epitome compactly groups many segmentation templates which

are shifted versions of each other.

Clustering by affinity propagation requires a similarity measure F (P1, P2) between two M ×
10



M shape patches P1 and P2. We induce F (P1, P2) from another similarity measure FT (T1, T2)

between two m × m segmentation templates T1 and T2 extracted from P1 and P2, respectively.

Specifically, let T (i, j) denote the segmentation template extracted from P and centered at (i, j),

with (0, 0) being the center of P . We define the similarity between the two shape patches P1 and

P2 to be

F (P1, P2) = max
m−M

2
≤i,j≤M−m

2

1

2
[FT (T1(i, j), T2(0, 0)) + FT (T1(0, 0), T2(−i,−j))] , (2.1)

as illustrated in Fig. 2.2. We employ the covering of the template T1 by the template T2 [AMF11]

as the similarity measure FT (T1, T2) between them:

FT (T1, T2) =
1

|T2|
∑
r2∈T2

|r2|max
r1∈T1

|r1 ∩ r2|
|r1 ∪ r2|

,

where r1 and r2 are the regions in templates T1 and T2, respectively, and |r| is the area of region r.

Note that FT (T1, T2) and consequently F (P1, P2) range from 0 (no similarity) to 1 (full similarity).

Directly applying affinity propagation results in many similar shape epitomes because simple

horizontal or vertical boundaries are over-represented in the training set. We follow [JT05] and

grow the dictionary incrementally, ensuring that each newly added shape epitome is separated

from previous ones by at least distance t, as follows:

1. Clustering. Apply affinity propagation to find one shape epitome that contains the most

members (i.e., the largest cluster) in current training set.

2. Assigning. For each shape patch in training set, assign it to the shape epitome found in step

1, if their distance, defined as 1− F (P1, P2), is smaller than t.

3. Update. Remove the shape patches that are assigned to the shape epitome from the current

training set.

4. Repeat until no shape patch is left in the training set.

2.2 Adapting CRFs for segmentation templates

Having learned the dictionary of shape epitomes, we now proceed to show how we can build

models for image labeling on top of it. We propose three models by adapting current CRF models
11



Figure 2.2: The similarity measure between two shape patches. The optimal value of shift variables

(i, j) is shown for this example.

to the template-based representation.

The problem of image labeling in this context can be formulated as follows. Given an image

I , we represent it by a set of overlapped m × m patches. The goal is to encode each patch by

a segmentation template, and by assigning labels (from a categorical set L) to each region in the

segmentation template. Specifically, the labeling assignmentx is represented by both segmentation

template and labels. That is, x = {xi}i∈V with xi = {si, li}, where V is the set of patches, si and

li denote the type of segmentation template and object labeling, respectively. Note that li is a

vector, whose length is the number of regions within the segmentation template. For example,

li = (cow, grass) means that label cow and label grass are assigned to the first region and second

region within segmentation template si. We call our models SeCRF, short for Shape epitome CRF.

2.2.1 Model 1: One-level SeCRF

We first introduce a flat model, which is represented by a graph with a single layer G = {Vl, El},

as shown in Fig. 2.3(a). Each node corresponds to a patch region, and it is encoded by both the
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type of segmentation template and the labels assigned to it. The image region represented by node

i (i.e., i-th patch) is denoted by R(i).

The energy of x given image I is given by:

E(x|I) = E1(x;α1) + E2(x;α2) + E3(s;α3) + E4(l;α4) + E5(x;α5) (2.2)

where α is the model parameters. Note we suppress the dependency on the image I in subsequent

equations. Each energy term is defined below.

The first term E1(x;α1) is the data term which accumulates the pixel features with respect to

certain type of segmentation template and labels assigned to the corresponding regions. We set

E1(x;α1) = −α1

∑
i∈Vl ψ1(xi), and

ψ1(xi) =
1

|R(i)|
∑
p∈R(i)

logPr(xpi |I)

where we define xpi as the labeling of pixel p in the region of segmentation template si. The value

Pr(xpi |I) is computed by a strong classifier with features (e.g., filter bank responses) extracted

within a region centered at position p.

The second term is used to encourage the consistency between neighboring nodes in their area

of overlap. For a pixel that is covered by both node i and j, we encourage node i to assign the

same label to it as node j. The consistency is defined by using the Hamming distance:

E2(x;α2) = −α2

∑
(i,j)∈El

ψ2(xi, xj)

where

ψ2(xi, xj) =
1

|O(i, j)|
∑

p∈O(i,j)

δ(xpi = xpj)

where O(i, j) is the overlapped region between nodes i and j, and δ(xpi = xpj) = 1 if xpi = xpj , and

zero, otherwise. In our experiments, we use 4-neighborhood.

The third term encodes the generic prior of segmentation templates. Specifically, we binarize

the type of si to be either 1, meaning that it contains some type of shapes, or 0, meaning that it

contains no shape.

E3(s;α3) = −α3

∑
i∈Vl

logPr(si)
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Figure 2.3: Adapting CRFs for segmentation templates. (a) Model 1 uses only a single layer of

local nodes. (b) Model 2 adds global nodes to encode global consistency, similar to [LLB11] (but

the energy value is soft in our model). (c) Model 3 encodes the pairwise co-occurrence between

global nodes, and adds an auxiliary node to encourage the sparsity of active global nodes.

The fourth term E4(x;α4) is used to model the co-occurrence of two object classes within a

segmentation template. Note that parameter α4 is a 2-D matrix, indexed by u and v, ranging over

the label set L.

E4(l;α4) = −
∑
i∈Vl

∑
u,v=1,...,|L|

α4(u, v)ψ4(u, v, li)

where |L| is the total number of object classes, and ψ4(u, v, li) is an indicator function which

equals one when both object classes u and v belong to li.

The fifth term E5(x;α5) models the spatial relationship between two classes within a segmen-

tation template. We model only the ”above” relationship. For example, we encourage sky to appear

above road, but not vice versa.

E5(x;α5) = −
∑
i∈Vl

∑
u,v=1,...,|L|

α5(u, v)ψ5(u, v, xi)

where ψ5(u, v, xi) is an indicator function which equals one when object class m is above class n

within a certain segmentation template. Note that for some segmentation template that does not

have the ”above” relationship (e.g., a template with vertical boundary), this term is not used.
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2.2.2 Model 2: Two-level SeCRF

Motivated by the Class Independent Model (CIM) in [LLB11], we add |L| independent global

nodes {Vg} to enforce image-level consistency, as shown in Fig. 2.3(b). A global node encodes

the absence or presence of a object class in the image (i.e., yi ∈ {0, 1}, ∀i ∈ Vg), and it is densely

connected to every local node. We denote the set of edges connecting global nodes and local nodes

as {Elg}, and then labeling assignment x = {{xi}i∈Vl ∪ {yi}i∈Vg}. An extra global-local energy

term is added to Equation 2.2 with each global node yj having a 2-D matrix parameter αj6:

E6(x;α6) = −
∑

(i,j)∈Elg

|L|∑
u=1

1∑
v=0

αj6(u, v)ψ6(u, v, xi, yj)

where

ψ6(u, v, xi, yj) =


1

|R(i)|
∑
p∈R(i)

δ(xpi = u), if yj = v

0, otherwise

Note that our Model 2 differs from CIM in two parts. First, the value of function ψ6 is proportional

to the number of pixels whose labels are u in the node xi. This formulation is different from

the energy cost used in the original CIM, which is either zero or one (i.e., a hard value). On the

contrary, we formulate this energy cost as a soft value between zero and one. Second, our local

nodes are based on overlapped segmentation templates (not superpixels) so that neighbors can

directly communicate with each other. Furthermore, unlike the robust P n model [KLT09], our

penalty depends on the region area within a segmentation template, and thus it is a function of the

segmentation template type.

2.2.3 Model 3: Three-level SeCRF

We further refine Model 2 by adding image-level classification scores to the unary term of global

nodes [SJC08]. Specifically, we train |L| SVM classifiers to predict the presence or absence of

object classes, following the pipeline of [CLV11]. The unary energy for global nodes is then

defined as follows.

E7(y;α7) = −α7

∑
i∈Vg

C(yi|I)

15



where C(yi|I) is the output of i-th classifier.

The independency among global nodes in Model 2 ignores the co-occurrence between object

classes in the image level. Hence, we add edges {Eg} to connect every pair of global nodes, and

define an energy term on them:

E8(y;α8) = −
∑

(i,j)=e∈Eg

1∑
u,v=0

αe8(u, v)δ(yi = u, yj = v)

where αe8 depends on the specific edge e = {i, j} that connects two different global nodes, yi and

yj .

As shown in Fig. 2.3(c), we also add an auxiliary node Va (then, x = {{xi}i∈Vl ∪ {yi}i∈Vg ∪

{zi}i=Va}). This node favors sparsity among global nodes (similar to [DOI12]) by introducing a

set of edges {Ega} from {Vg} to Va. Specifically, Va is a dummy node, which can take only one

meaningless state. We define an energy term on {Ega} to encourage only few global nodes to be

active as follows.

E9(y, zj;α9) = −α9

∑
(i,j)∈Ega

δ(yi = 0)

where δ(yi = 0) equals one when the global node yi is off. This energy term has the effect of

biasing the global nodes.

2.3 Experimental Evaluation

In this section, we first show the results of learning a dictionary of shape epitomes following the

methods described in Sec. 2. We then use this dictionary for image labeling using the SeCRF

models of Sec. 3.

2.3.1 Learned dictionary of shape epitomes

We learn the dictionary of shape epitomes from shape patches extracted from the BSDS500 dataset

[AMF11]. In the experiment, we fix the size of a shape patch to be 25 × 25, and the size of

segmentation template 17× 17, namely M = 25 and m = 17. After applying affinity propagation

incrementally with distance t = 0.05, the first 10 shape epitomes are shown at the top of Fig. 2.4.
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Figure 2.4: Top row: first 10 shape epitomes learned by our method. Bottom: a flat segmentation

template (i.e., no shape) and some others generated from the first 5 shape epitomes. Note that some

of them are generated from the rotated shape epitomes.

For computational and modeling purposes it is desirable to have a compact dictionary consist-

ing of only few shape epitomes. We have found that the first 5 shape epitomes contain most of the

shape patches in the training set of BSDS500, and the cluster size decreases very quickly.

In our setting, a segmentation template is allowed to move within a shape epitome for each

horizontal and vertical displacement up to ±4 pixels. We define stride as the step-size for hori-

zontal/vertical displacement. For example, if stride = 4, we can generate 9 templates from each

shape epitome, only considering the nine templates T (i, j) ∀i, j ∈ {−4, 0, 4} at all four possible

orientations (0, 90, 180 and 270 degrees), ending up with 45 = 9 × 5 templates per epitome. In

total, there are 181(5 × 45 + 1) segmentation templates, including the flat one that contains no

shape. On the other hand, if stride = 1, we use every template within a shape epitome, resulting in

1621 (81× 5× 4 + 1) segmentation templates.

Using this compact dictionary of 5 shape epitomes suffices to accurately encode the ground

truth segmentations in our datasets, as demonstrated in Sec. 2.3.3.1. As one can observe in

Fig. 2.4, our generated segmentation templates cover the common boundary shapes, such as ver-

tical/horizontal edges, L-junctions, and U-shapes. The learned dictionary thus captures generic

mid-level shape-structures and can be used across datasets. We emphasize that we learn it on the

BSDS500 dataset and use it unadapted for image labeling on MSRC-21 and Stanford Background

datasets.
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2.3.2 Implementation details for image labeling

MAP Inference. We use loopy belief propagation (LBP) to minimize the energy function in

Equation 2.2. We prune the unpromising states by rejecting the unlikely proposals whose E1 data

terms are too high, similar to [ZCL12]. We fix the number of states per node to be 100, since in

our experiments adding more states only improve the performance marginally at the sacrifice of

computation time.

Learning the parameters. We use the same structure-perceptron algorithm [Col02] as HIM

[ZCL12], because we would like to have a direct comparison with it by emphasizing on the repre-

sentation part of our model, not learning.

Fusion of predicted labels. The traditional Conditional Random Field models directly assign

an object class label to each pixel in the image. On the contrary, our model uses overlapped patches,

and each patch is encoded by a segmentation template and by labels assigned to the regions in the

template. The number of patches that will cover the same pixel depends on the size of overlap

between patches. We set the overlap size to be (m − 1)/2 pixels in all experiments. To find the

labels for every pixel, we fuse the predicted labels for each pixel by letting the patch having the

minimal unary energy (E1 + E3 + E4 + E5) determine the final result of the covered pixel, since

the pairwise term E2 already encourages consistency.

2.3.3 Results

For image labeling, we experiment on two datasets: (1) The MSRC-21 with 591 images and |L| =

21 classes, using the original splitting (45% for training, 10% for validation, and 45% for testing)

from [SWR09]. (2) The Stanford Background dataset [GFK09] consisting of 715 images and

|L| = 8 classes, which we randomly partition into training set (572 images) and test set (143

images). Note in all the experiments, we fix M = 25, and m = 17 except in Sec. 2.3.3.4.
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2.3.3.1 Encoding the ground truth

The ground truth provided by the datasets contains the true labeling for each pixel, not the true

states of segmentation template type with regions labeled. This experiment is designed to see if

our learned dictionary of shape epitomes can accurately encode the ground truth. We estimate the

true states of the local nodes by selecting the pairs of segmentation template type and labeling

(i.e., find true xi = (si, li) ) that have maximum overlap with the true pixel labels. For MSRC-

21 dataset, our result shows that this encoding of ground truth results in 0.27% error in labeling

image pixels, while HIM [ZCL12] reported 2% error. This shows that our learned dictionary of

shape epitomes is flexible enough to more accurately encode the MSRC ground truth than the

hand-crafted dictionary of [ZCL12].

Here, we show the advantage of using our learned dictionary of shape epitomes over directly

learning a dictionary of segmentation templates (in the latter case, the training shape patches have

size m ×m instead of M ×M ) by conducting experiments on the Stanford Background dataset,

which provides more detailed object boundaries. We propose to compare those two dictionaries

in terms of the error of encoding the ground truth, when given the same covered areas, which is

equivalent to learning the same number of parameters. Suppose the size of the dictionary of shape

epitomes is KE , and the size of the dictionary of segmentation templates is KT . Given KE , to

cover the same areas, we select KT = 252/172KE . As shown in Fig. 2.5, our learned dictionary

of shape epitomes attains better performance than the dictionary of segmentation templates when

given the same number of parameters.

2.3.3.2 Image labeling: MSRC-21 dataset

We generate 9 segmentation templates from each of the 5 shape epitomes in the labeling experi-

ments (i.e., 181 templates totally). In a first set of experiments we directly compare our models

with HIM [ZCL12]. We use the same boosting-based data term as HIM, provided by the authors,

the main difference between HIM and our model lying in the representation part. As shown in

Fig.2.7, our learned dictionary encodes the object shapes better than the hand-crafted dictionary

used by HIM. Furthermore, both our Model 2 and Model 3 attain better performance than HIM
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(see Table 2.3).

We also compare our model with the recent method of [Gou12] which incorporates powerful

non-local patch similarity. We have used the same boosting-based data term as [Gou12], as im-

plemented in the Darwin software library1. As shown in Table 2.3, our Model 3 attains similar

performance to [Gou12], although we do not use non-local cues at the patch level.

2.3.3.3 Image labeling: Stanford background dataset

In this experiment, we use the data term provided by the Darwin software library. The results for

the Stanford Background dataset are shown in Fig. 2.8. We achieve comparable results with other

state-of-the-art models. Specifically, our segmentation template-based Model 3 performs better

than the more complicated model of [GFK09], which builds on a dynamic superpixel representa-

tion and incorporates both semantic and geometric constraints in a slow iterative inference proce-

dure. We also perform better than the hierarchical semantic region labeling method of [MBH10].

Our models perform somewhat worse than the long-range model of [Gou12] (unlike the MSRC

case), and the segmentation tree model of [LVZ11], which however employs different image fea-

tures.

2.3.3.4 Scaling the segmentation templates

Here, we show that our learned dictionary can generate different sizes of segmentation templates,

while attaining good performance on the Stanford Background dataset. Specifically, we explore the

effect of varying the size of generated segmentation templates as the dictionary of shape epitomes

is fixed. First, we explore the effect by encoding the ground truth. The size varies from m =

{13, 17, 21, 25}. The stride variable is also changed to generate different number of segmentation

templates from the dictionary. As shown in Fig. 2.6, the error is consistently decreased when m or

stride is smaller. Second, we extract spatially equally 9 segmentation templates from the dictionary

for different m (all resulting in 181 templates), and apply our Model 1 based on these templates to

label the test images, as shown in Table 2.2. These results show that our proposed representation:

1http://drwn.anu.edu.au, version 1.2
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Figure 2.5: Error (%) of encoding ground truth of Stanford Background dataset, when using a

dictionary of KE shape epitomes or a dictionary of KT segmentation templates.

Figure 2.6: Error (%) of encoding ground truth of Stanford Background dataset. The dictionary of

shape epitomes is fixed. The size of generated templates is different, and so is the stride.

shape epitomes is also able to handle scale effects without relearning the dictionary.

2.4 Conclusion

In this chapter, we introduced shape epitomes and showed that they could efficiently encode the

edge structures in the MSRC and Stanford Background datasets. This efficient encoding is due

to their ability to represent local shifts and rotations explicitly. The dictionary of shape epitomes

were learnt from BSDS500 dataset. Next we explored the use of shape epitomes for CRF models

of image labeling. The proposed SeCRF model can attain comparable results with other state-of-

the-art models.

In Chapter 6, we revisit the semantic segmentation task by combining a more powerful unary

term (i.e., deep convolutional neural network) and a fully connected Conditional Random Field
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Template size 13 × 13 17 × 17 21 × 21

Global 76.9 76.7 76.3

Table 2.2: Reuse the dictionary of shape epitomes with different size of generated templates on

Stanford Background dataset.
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Exp1 Pxl-Cls 59.4 95.8 85.2 73.8 74.4 91.6 80.3 66.3 82.9 63.3 84.5 59.3 49.7 40.4 82.4 65.3 73.8 61.3 37.8 65.5 17.6 67.2 75.9

use same data Model 1 62.7 96.2 87.9 78.7 78.6 92.6 83.7 66.8 85.5 69.2 87.1 63.9 53.6 45.3 85.7 71.8 75.4 66.5 41.9 68.4 17.5 70.4 78.1

term as HIM Model 2 66.2 97.7 88.9 88.0 85.7 91.9 82.8 72.6 85.7 80.1 89.8 66.6 64.0 54.1 90.4 74.1 78.9 60.3 53.8 71.3 15.3 74.2 81.4

Model 3 69.1 97.7 88.5 86.5 84.0 91.6 82.7 70.7 85.6 80.4 90.3 68.5 62.5 67.6 90.7 73.0 79.0 73.3 50.9 69.8 13.1 75.0 81.7

HIM [ZCL12] 66.5 96.2 87.9 82.3 83.3 91.4 80.7 65.7 89.0 79.0 91.9 78.5 69.9 44.5 92.6 80.3 78.2 77.6 41.2 71.9 13.1 74.1 81.2

Exp2 Pxl-Cls 55.9 95.9 82.0 77.1 71.1 90.3 72.4 69.1 79.7 54.3 78.7 62.2 42.5 38.8 64.3 58.0 84.4 59.4 39.8 64.4 27.8 65.2 74.5

use data term Model 1 63.9 96.9 86.6 81.9 75.2 91.9 76.1 72.8 81.3 59.9 84.4 65.8 45.5 41.7 66.1 61.9 87.7 64.0 43.4 67.5 29.4 68.7 77.6

from Darwin Model 2 71.6 98.3 91.9 90.1 76.1 94.5 68.3 78.3 82.2 57.3 84.7 74.0 44.7 35.8 73.6 55.4 88.7 67.0 44.9 61.8 23.6 69.7 80.4

software library Model 3 73.0 98.1 92.3 91.4 78.4 94.4 70.6 77.2 82.5 60.2 86.2 73.4 48.4 35.3 76.8 60.3 89.0 68.0 44.6 63.1 22.2 70.7 81.1

[Gou12] - - - - - - - - - - - - - - - - - - - - - 71.1 81.0

some [LRK09] 80 96 86 74 87 99 74 87 86 87 82 97 95 30 86 31 95 51 69 66 9 75 86

state-of-the-art [MBH10] 63 93 88 84 65 89 69 78 74 81 84 80 51 55 84 80 69 47 59 71 24 71 78

models [GBW10] 60 78 77 91 68 88 87 76 73 77 93 97 73 57 95 81 76 81 46 56 46 75 77

DPG [LLB11] 65 87 87 84 75 93 94 78 83 72 93 86 70 50 93 80 86 78 28 58 27 76 80

[KK11] - - - - - - - - - - - - - - - - - - - - - 78.3 86.0

Table 2.3: MSRC labeling results. Pixel-wise classification rates are provided for each category.

Global accuracy refers to the pixel-wise classification rate averaged over the whole dataset, and

Average accuracy refers to the mean of all object class classification rates. The Pxl-Cls model is

the pixel-wise classifier, whose output is integrated in our models.

for refining segmentation results along object boundaries with long range connection. We show

state-of-art results by exploiting those two modules.
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Figure 2.7: Qualitative results for the MSRC dataset. (a) Original image. (b) Ground truth. (c)

Model 1. (d) Model 2. (e) Model 3. (f) HIM (excerpted from [ZCL12]). Note that our models

capture object shapes more accurately than the HIM.

Method Global

Pxl-Cls 73.9

Model 1 76.7

Model 2 77.2

Model 3 77.4

[GFK09] 76.4

[MBH10] 76.9

[Gou12] 79.6

[LVZ11] 81.9

(a) (top) Original image. (middle) Ground truth. (bottom) Model 3. Note

that our model is able to capture object shapes, especially the cow shape

in the fourth column.

(b) Global accuracy is the pixel-

wise classification rate averaged

over dataset.

Figure 2.8: Qualitative and quantitative results on the Stanford Background dataset.
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CHAPTER 3

Modeling Image Patches with a Generic Dictionary of

Mini-Epitomes

Our goal in this work is to investigate to which extent generative image models can also be com-

petitive for visual recognition tasks. We use the raw image patch intensity as the fundamental

representation in our model. Appearance patches have been successfully applied so far mostly

in image generation tasks such as texture synthesis, image denoising, and image super-resolution

[FPC00, EF01, AEB06, YSM12, ZW11].

Using raw appearance patches maximally preserves information in the original image. The

main challenge with this modeling approach in image classification tasks is that the associated

image description can be too sensitive to nuisance parameters such as illumination conditions or

object position. Therefore, most computer vision systems for image categorization and recognition

rely on features built on top of discriminative patch descriptors like SIFT [Low04]. SIFT has been

explicitly designed for invariance to these nuisance parameters, which allows it to work reliably in

conjunction with simple classification rules in a bag of visual words framework [ZML07, LSP06].

However, the SIFT and other similar descriptors are not suitable for image generation tasks and

are very difficult to visualize [WJP11].

Instead of designing an image descriptor to be maximally invariant from the ground up, we

attempt to explicitly model photometric and position nuisance parameters as attributes of a gen-

erative patch-based representation. Specifically, we develop a probabilistic epitomic model which

can faithfully reconstruct the raw appearance of image patches using a compact dictionary of mini-

epitomes learned from a large set of images. Our first main contribution is to show that explicitly

matching the image patches to their best position in the mini-epitomes greatly improves reconstruc-
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tion accuracy compared to a non-epitomic baseline which does not cater for position alignment.

This allows us to accurately capture the appearance of image patches by a generic, rather than

image specific, dictionary.

We design image descriptors for image classification tasks based on the proposed mini-epitomic

dictionary. Our second main contribution is to show that bag-of-words type classifiers built on top

of our epitomic representation not only improve over ones built on non-epitomic patch dictionaries,

but also yield classification results competitive to those based on the SIFT representation. Beyond

histogram-type encodings, we also investigate an “epitomic footprint” encoding which captures

how the appearance of a specific image deviates from the appearance of the generic dictionary.

This epitomic footprint descriptor can be visualized or stored as a small image and at the same

time be used directly as feature vector in a linear SVM image classifier.

Employing the proposed model requires finding the best match in the epitomic dictionary for

each patch in an image. We have experimented both with an exact search algorithm implemented

in CUDA as well as with approximate nearest neighbor techniques. Both allow efficient epitomic

patch matching and image encoding in about 1 sec for 400×500 images and typical settings for

the model parameter values, making the model scalable to large datasets. In this chapter, we report

image classification results on the challenging PASCAL VOC-07 image classification benchmark

[EVW10] and compare the performance of our model both with the non-epitomic baseline and the

modern SIFT-based classification techniques reviewed by [CLV11].

Key element of the proposed method is the explicit modeling of patch position using mini-

epitomes. The epitomic image representation and the related idea of transformation invariant clus-

tering were developed in [JFK03, FJ03] and also used in [ZGW05] for texture modeling, but have

never been applied before for learning generic visual dictionaries on large datasets and in the con-

text of visual recognition tasks.

The idea to use a patch-based representation for image classification first appeared in [PP97]

and was further developed by [VZ05], who applied it to homogeneous texture classification and

compared it to the filterbank-based representation of [LM01]. Recently, [CLN11] demonstrated

competitive image classification results on the CIFAR-10 dataset of small images with patch dic-
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Figure 3.1: Unlike a conventional patch dictionary, the epitomic representation allows each image

patch to move so as to find its best match within a mini-epitome.

tionaries trained by K-means. Neither of these works explicitly handles patch position or demon-

strates performance comparable to modern SIFT encodings [CLV11] on challenging large-scale

classification tasks.

More generally, unsupervised learning of image features has received considerable attention

recently. Most related to our work is [ZKT10], which also attempts to explicitly model the position

of visual pattern in a deconvolutional model. However, their model requires iteratively solving

a large-scale sparse coding problem both during train and test time. The image classification

performance they report significantly lags modern SIFT-based models such as those described

in [CLV11], despite the fact that they learn a multi-layered feature representation. The power

of learned patch-level features has also been demonstrated recently in [BRF11, DHH12, RR13].

Using mini-epitomes instead of image patches could also prove beneficial in their setting.

Sparsity and ICA provide a compelling framework for learning image patch dictionaries [OF96,

BS97]. Sparsity coupled with epitomes has been explored in [AE08, BMB11] but these works

focus on learning dictionaries on a single or a few images. While each image patch is represented

as a linear combination of a few dictionary elements in sparse models, it is approximated by just

one dictionary element in our model. One can thus think of the proposed model as an extremely

sparse representation, or alternatively as an epitomic form of vector quantization [GG92].
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3.1 Image Modeling with Mini-Epitomes

3.1.1 Model description

With reference to Fig. 3.1, let {xi}Ni=1 be a set of possibly overlapping patches of size h×w pixels

cropped from a large collection of images. Our dictionary comprises K mini-epitomes {µk}Kk=1 of

size H×W , with H ≥ h and W ≥ w. The length of the vectorized patches and epitomes is then

d = h · w and D = H ·W , respectively. We approximate each image patch xi with its best match

in the dictionary by searching over the Np = hp×wp (with hp = H − h + 1, wp = W − w + 1)

distinct sub-patches of size h×w fully contained in each mini-epitome. Typical sizes we employ

are 8×8 for patches and 16×16 for mini-epitomes, implying that each mini-epitome can generate

Np = 9 · 9 = 81 patches of size 8×8. Our focus is on representing every image with a common

vocabulary of visual words, so we use a single universal epitomic dictionary for analyzing image

patches from any image. We have been working with datasets consisting of overlapping patches

extracted from thousands of images and with dictionaries containing from K = 32 up to 2048

mini-epitomes.

We model the appearance of image patches using a Gaussian mixture model (GMM). We em-

ploy a generative model in which we activate one of the image epitomes µk with probability

P (li = k) = πk, then crop an h×w sub-patch from it by selecting the position pi = (xi, yi)

of its top-left corner uniformly at random from any of the Np valid positions. We assume that an

image patch xi is then conditionally generated from a multivariate Gaussian distribution

P (xi|zi,θ) = N (xi;αiTpiµli + βi1, c
2
iΣ0) . (3.1)

The label/position latent variable vector zi = (li, xi, yi) controls the Gaussian mean via νzi =

Tpiµli . Here Tpi is a d×D projection matrix of zeros and ones which crops the sub-patch at

position pi = (xi, yi) of a mini-epitome. The scalars αi and βi determine an affine mapping on the

appearance vector and account for some photometric variability and 1 is the all-ones d×1 vector.

Here x̄ denotes the patch mean value and λ is a small regularization constant (we use λ = d for

image values between 0 and 255). In the experiments reported in this chapter we choose πk = 1/K

and fix the d×d covariance matrix Σ−1
0 = DTD + εI, where D is the gradient operator computing
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the x− and y− derivatives of the h×w patch and ε is a small constant. Importantly, we assume

that Σ0 is modulated by the patch gradient contrast c2
i , ‖D(xi − x̄i1)‖2

2 + λ but is shared across

all dictionary elements and thus does not depend on the latent variable vector. This choice implies

that we compute distances between patches by a Mahalanobis metric and corresponds to whitening

the vectorized image patches by left-multiplying them with D. We present algorithms for learning

the epitomic means {µk}Kk=1 in Sec. 3.1.4.

3.1.2 Epitomic patch matching

To match a patch xi to the dictionary, we seek the mini-epitome label and position zi = (li, xi, yi),

as well as the photometric correction parameters (αi, βi) that maximize the probability in Eq. (3.1),

or equivalently minimize the squared reconstruction error (note that D1 = 0)

R2(xi; k, p) =
1

c2
i

(
‖D (xi − αiTpµk)‖2 + λ(|αi| − 1)2

)
, (3.2)

where the last regularization term discourages matches between patches and mini-epitomes whose

contrast widely differs. We can compute in closed form for each candidate match νzi = Tpiµli in

the dictionary the optimal β̂i = x̄i− α̂iν̄zi and α̂i =
x̃Ti ν̃zi±λ
ν̃Tzi ν̃zi+λ

, where x̃i = Dxi and ν̃zi = Dνzi are

the whitened patches. The sign in the nominator is positive if x̃Ti ν̃zi ≥ 0 and negative otherwise.

Having computed the best photometric correction parameters, we can substitute back in Eq. (3.2)

and evaluate the reconstruction error R2(xi; k, p).

Epitomic matching versus max-pooling Searching for the best match in the epitome resembles

the max-pooling process in convolutional neural networks [JKR09]. However in these two models

the roles of dictionary elements and image patches are reversed: In epitomic matching, each image

patch is assigned to one dictionary element. On the other hand, in max-pooling each dictionary

element (filter in the terminology of [JKR09]) looks for its best matching patch within a search

window. Max-pooling thus typically assigns some image patches to multiple filters while other

patches remain orphan. This subtle but crucial difference makes it difficult for max-pooling to be

used as a basis for building whole image probabilistic models, as the probability of orphan image

areas is not well defined. Contrary to that, mini-epitomes naturally lend themselves as building
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blocks for probabilistic image models able to explain and generate the whole image area.

3.1.3 Efficient epitomic search algorithms

We search over all mini-epitomes and positions in them to select the mini-epitome label and po-

sition pair (k, p) which achieves the least reconstruction error. The most expensive part of this

matching process is computing the inner product of every patch in an image with all h×w sub-

patches in every mini-epitome in the dictionary.

Exact search The complexity of the straightforward algorithm for matching N image patches

to a dictionary with K mini-epitomes is O(N · K · hp · wp · h · w). For the patch and epitome

sizes we explore in our experiments, it takes more than 10 sec to exactly match each PASCAL

VOC image with an optimized Matlab CPU implementation. Our optimized GPU software has

drastically reduced computation time to 0.7 sec on a laptop’s Nvidia GTX 650M graphics unit for

16×16/8×8 epitomic dictionaries with K=256 elements. The starting point of our implementation

was Krizhevsky’s fast CUDA convolution library but we were able to further optimize the code

by exploiting the fact that patches within a mini-epitome share filter values, which allowed us to

make better use of the GPU’s fast shared memory. Finally, we have also implemented the fast exact

algorithm of [I 12], but it has proven less efficient than the GPU code for the range of epitome and

patch sizes we have experimented with.

Approximate search We have also investigated the use of approximate nearest neighbor (ANN)

methods for approximate epitomic patch matching. Contrary to exact search methods, ANN search

time typically grows sub-linearly with the dictionary size, and is thus better scalable to extremely

large dictionary sizes. The approach we have followed is to extract all patches from each mini-

epitome along with their negated pairs, whiten, and then normalize them to be unit-norm vectors,

resulting in an inflated epitomic dictionary with Np · K · 2 elements. After similarly whitening

and normalizing the input image patches, we search for their best match with standard off-the-

shelf kd-tree and hierarchical kmeans algorithms as implemented in the FLANN library [ML09].

When using kd-trees, we have found it crucial to apply a rotation transformation based on the fast
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(a) Our epitomic patch dictionary (K = 256) (b) Non-epitomic dictionary (K = 1024)

Figure 3.2: Patch dictionaries learned on the full VOC-07 training set, ordered column-wise from

top-left by their relative frequency.

2-D discrete cosine transform (DCT), instead of searching directly for the best match in the image

gradient domain. We also found that the performance loss due to ANN is negligible, for moderate

search times comparable to those of SIFT-based VQ encoding algorithms.

3.1.4 Epitomic dictionary learning

Parameter refinement by Expectation-Maximization Given a large training set of unlabeled

image patches {xi}Ni=1, our goal is to learn the maximum likelihood model parameters θ =

({πk,µk}Kk=1) for the epitomic GMM model in Eq. (3.1). As is standard with Gaussian mix-

ture model learning, we employ the EM algorithm [DLR77] and maximize the expected complete

log-likelihood

L(θ) =
N∑
i=1

K∑
k=1

∑
p∈P

γi(k, p) · log
(
πkN (xi;αiTpµk + βi1, c

2
iΣ0)

)
, (3.3)

where P is the set of valid positions in the epitome. In the E-step, we compute the assignment of

each patch to the dictionary, given the current model parameter values. We use the hard assignment

version of EM and set γi(k, p) = 1 if the i-th patch best matches in the p-th position in the k-th
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mini-epitome and 0 otherwise. In the M-step, we update each of the K mini-epitomes µk by(∑
i,p

γi(k, p)
α2
i

c2
i

TT
p Σ−1

0 Tp

)
µk =

∑
i,p

γi(k, p)
αi
c2
i

TT
p Σ−1

0 (xi − x̄i1) . (3.4)

In practice, it has been sufficient for all our experiments to run EM for 10 iterations.

Diverse dictionary initialization with epitomic K-means++ Careful parameter initialization

can help EM converge faster and reach a good local optimum solution. For this purpose, we have

adapted the K-means++ [AV07] algorithm to initialize our epitomic dictionary.

K-means++ selects the initial dictionary elements among the training set data instances. It

randomly picks the first element and then incrementally grows the dictionary by selecting subse-

quent elements with probability proportional to their squared distance to the elements already in

the dictionary. We adapt the standard K-means++ algorithm to our epitomic setup and select a

H×W training image patch as a new mini-epitome with probability proportional to the sum of

R2(xi; k, p) in a neighborhood of size hp×wp around the i-th patch. This corresponds to spatially

smoothing the squared reconstruction error R2(xi; k, p) by a hp×wp box filter.

Learned epitomic dictionary We show in Fig. 3.2 the epitomic dictionary with K = 256 mini-

epitomes we learned with the proposed algorithm on the full VOC-07 training set. We juxtapose

it with the corresponding non-epitomic dictionary with K = 1024 members we learned with the

same algorithm, simply setting H = W = h = w = 8. We have chosen the non-epitomic

dictionary to have 4 times as many members so as both dictionaries occupy the same area (note

that 162/82 = 4) and thus be commensurate in the sense that they have equal number of parameters.

As expected, the non-epitomic dictionary looks very similar to the K-means patch dictionaries

reported in [CLN11]. Our epitomic dictionary looks qualitatively different: It is more diverse

and contains a rich set of visual patterns, including sharp edges, lines, corners, junctions, and

sinewaves. It has less spatial redundancy than its non-epitomic counterpart, which needs to encode

shifted versions of the same pattern as distinct codewords.
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3.1.5 Reconstructing patches and images

Beyond qualitative comparisons, we have tried to systematically evaluate the generative expressive

power of our epitomic dictionary compared to the non-epitomic baseline.

For this purpose, having trained the two dictionaries on the PASCAL VOC-07 train set, we

have quantified how accurately they perform in reconstructing the images in the full VOC-07 test

set. From each test image, we extract its 8×8 overlapping patches (with stride 2 pixels in each

direction) that form the set of ground truth patches {xi}Ni=1. For each patch xi we compute its

closest match x̂i = (αiTpµk + βi1) in each of the two dictionaries by finding the parameters

(αi, βi) and (k, p) that minimize the squared reconstruction R2(xi; k, p) in Eq. (3.2) – note that

p = (0, 0) in the non-epitomic case.

We quantify how close xi and x̂i are in terms of normalized cross-correlation in both the raw in-

tensity and gradient domains, NCC(i) = (xi−x̄i)T (x̂i−x̄i)+λ
‖xi−x̄i‖λ‖x̂i−x̄i‖λ

and NCCD(i) = (xi−x̄i)TDTD(x̂i−x̄i)+λ
‖D(xi−x̄i)‖λ‖D(x̂i−x̄i)‖λ

respectively, where ‖x‖λ , (xTx + λ)1/2. Note that NCC takes values between 0 (poor match)

and 1 (perfect match).

We can also reconstruct the original full-sized images by simply placing the reconstructed

patches x̂i in their corresponding image positions and averaging at each pixel the values of all

overlapping patches that contain it. We quantify the full image reconstruction quality in terms of

PSNR. We show an example of an image reconstructed by this process in Fig. 3.3(a,b). Note that

reconstructing an image from its SIFT descriptor [WJP11] is far less accurate and less straightfor-

ward than using a generative image model such as the proposed one.

To evaluate the reconstruction ability of each dictionary, we plot in Fig. 3.4 the empirical

complementary cumulative distribution function (CCDF=1-CDF, where CDF is the cumulative

distribution function) for the selected metrics. The plots summarize VOC-07 test set statistics of:

(a/b) the NCC/ NCCD for all N ≈ 5×107 patches and (c) the PSNR for all 4952 images. If

p = CCDF(v), then p×100% of the samples in the dataset have values at least equal to v (higher

CCDF curves are better).

There are several observations we can make by inspecting Fig. 3.4. First, for either dictionary

type, whenever we double the dictionary sizeK, the CCDF curves shift to the right/up by a rouphly
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(a) Original image (b) Reconstructed (PSNR=29.2dB)
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Figure 3.3: (a,b) Image reconstruction example with the K = 512 epitomic dictionary. (c) Image

reconstruction on VOC-07 test set: K = 512 epitomic vs. K = 2048 non-epitomic dictionaries.
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(a) Raw image patches (b) Whitened image patches (c) Whole images

Figure 3.4: Image reconstruction evaluation on the full VOC-07 test set with our epitomic patch

dictionary vs. a non-epitomic dictionary for various dictionary sizes K (powers of 2). (a,b): Nor-

malized cross-correlation of raw (NCC) and whitened (NCCD) image patches. (c): PSNR of

reconstructed whole images. Plots depict 1-CDF (higher is better).
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constant step. For example, we can read from Fig. 3.4(a) that the K = 32 epitomic dictionary

already suffices to explain 58% of the image patches with NCC ≥ 0.8. Each time we double K

we explain 3% more image patches at this level, with the K = 512 epitomic dictionary being

able to reconstruct 70% of the image patches at NCC ≥ 0.8. In comparison, the K = 2048 non-

epitomic baseline can only reconstruct 62% of the image patches at the same accuracy level. This

demonstrates how difficult it is to capture with very high precision the space of all image patches

[LN11].

Second, comparing the performance of the two dictionary types, we observe that our epitomic

model significantly improves over the non-epitomic baseline in terms of reconstruction accuracy.

For example, we can see that the K = 64 epitomic dictionary is roughly as accurate as the K =

2048 non-epitomic dictionary which has 32 times more elements (the same holds for the K =

32/1024 dictionaries). Accounting for the fact that each 16×16 mini-epitome occupies 4 times

larger area than each cluster center of the 8×8 non-epitomic dictionary, implies that the epitomic

dictionary is 32/4 = 8 times more compact (in terms of number of model parameters) than the

non-epitomic baseline. We further show in Fig. 3.3(c) that the epitomic dictionary consistently

performs better (except for 1 out of the 4952 test images) in terms of image reconstruction PSNR

(1.34 dB on average).

3.2 Image Description and Classification with Mini-Epitome Dictionaries

3.2.1 Image classification tasks

Here we explore how the proposed dictionary of mini-epitomes can be used for describing the

appearance of image patches in image classification tasks. We focus our evaluation on the chal-

lenging PASCAL VOC datasets [EVW10]. We consider the standard PASCAL VOC-07 image

classification benchmark.

We extract histogram-type features from both epitomic and non-epitomic patch representations

which we feed to 1-vs-all SVM classifiers. We use χ2 kernels approximated by explicit feature

maps [VZ12] and also employ spatial pyramid matching [LSP06]. Our implementation closely
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follows the publicly available setup of [CLV11], which presents a systematic evaluation and tuned

implementation of SIFT features coupled with state-of-the-art encoding techniques.

3.2.2 Image description with mini-epitomes

Here we focus on extracting histogram type descriptors treating our epitomic dictionary as a bag of

visual words. From each image, we densely extract h×w overlapping patches {xi}Ni=1 (with stride

2 pixels in each direction). Matching each patch xi to the epitomic dictionary yields its closest

h×w patch in the epitomic dictionary, encoded by the epitomic label li ∈ 1 : K and the position

pi = (xi, yi), with xi = 0 : wp − 1 and yi = 0 : hp − 1. We use hard assignments (VQ) in all

reported results.

In this setting, the most straightforward way to summarize the content of an image is to build

a histogram with K bins, each counting how many times the specific epitome has been activated.

This “Epitome-Pos-1x1” descriptor is very compact but completely discards the exact position of

the match within the epitome.

Our epitomic dictionary allows us to also encode the position information pi into the descriptor.

While some of the H×W mini-epitomes in our learned dictionary (see Fig. 3.2) are homogeneous,

others contain h×w patches with visually diverse appearance. These patches cannot be discrimi-

nated based on their epitomic label alone. We can encode the exact position pi of the match in the

epitome by a product histogram withNp ·K bins, whereNp = hp×wp. However this yields a rather

large descriptor (note that Np = 81 in our setting) which is very sensitive to the exact position.

We opt instead to summarize the position pi using a coarse spatial grid. Specifically, for the ex-

periments reported here we summarize the match positions in a t×t spatial grid of bins yielding a

“Epitome-Pos-txt” descriptor with total length t · t ·K. For example, in the Epitome-16/8-Pos-4x4

descriptor the epitomic position bins have size 3×3 pixels and stride 2 pixels in each direction.

The (bx, by) bin (bx, by = 0 : 3) gets a vote for each matched patch whose position pi = (xi, yi)

satisfies 2bx ≤ xi < 2bx + 3 and 2by ≤ yi < 2by + 3.

In all reported experiments we also encode the sign of the match, putting matches with positive

and negative αi’s in different bins, which we have found to considerably improve performance at
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the cost of doubling the descriptor size.

3.2.3 Classification results

For all the results involving the epitomic as well as the non-epitomic patch models, we have learned

dictionaries of various sizes on the full VOC-07 train set. We summarize our results in Table 3.1

and illustrate them with plots in Fig. 3.5.

We first explore in Fig. 3.5(a) how epitome and patch sizes as well as dictionary sizes affect

performance. We find that the exact setting for the epitome/patch size does not matter much.

Similarly to the findings of [CLN11], we observe that the performance of all descriptors increases

when we use dictionaries with more elements.

In Fig. 3.5(b) we show that position encoding considerably improves recognition performance

with the coarse 2×2 scheme exhibiting an excellent trade-off between performance and descriptor

size.

In all our experiments the proposed epitomic dictionaries significantly outperform the non-

epitomic baseline, both for fixed dictionary size K, Fig. 3.5(a,b) and for fixed descriptor length

Fig. 3.5(c).

Comparing with the performance of VQ descriptors based on SIFT, see Table 3.2, the most

impressive finding is that epitomic descriptors built on as few as K = 256 or 512 dictionaries

yield performance around 55% mAP, which takes SIFT dictionaries of size 10K to achieve. Our

best result at 56.5% mAP with 1024 mini-epitomes even slightly outperforms the best SIFT VQ

result reported in [CLV11], attained with a dictionary of 25K visual words. This result is also

comparable to KCB and LLC-based methods for encoding SIFT but still lags behind the Fisher

Vector descriptor which holds the state-of-the-art in this task at about 61% mAP [SPM13, CLV11].

It will be interesting to adapt such powerful encoding methods in the epitomic setting.

Epitomic footprint encoding We have also explored an epitomic footprint encoding, which is

related to the mean-vector Fisher Vector encoding in [SPM13]. The main idea is to encode the

difference between the appearance content of a specific image compared to the generic epitome,
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Figure 3.5: (a) Performance of the epitomic dictionary model vs. the non-epitomic baseline for

different epitome/patch sizes. (b) Effect of encoding the epitome position at different detail levels.

(c) Comparison of the epitomic model (with or without position encoding) and the non-epitomic

model at the same total histogram length.

(a) Image (b) Epitomic footprint

Figure 3.6: Epitomic footprint descriptors of images.
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Epitome Position Dictionary Size K

/Patch Encod. 32 64 128 256 512 1024 2048

16/8 1x1 40.66 45.22 48.07 49.00 51.98 53.54 54.37

2x2 47.11 49.89 51.59 52.89 54.50 56.12 56.16

4x4 49.59 51.98 53.10 54.75 55.62 56.45 56.18

9x9 52.03 53.53 54.03 54.07 - - -

12/8 1x1 41.01 44.94 47.24 49.56 51.76 53.48 55.33

2x2 46.20 47.89 50.19 51.91 53.64 55.17 56.47

10/8 1x1 41.12 44.07 46.85 49.33 51.28 53.01 54.87

2x2 44.10 46.32 48.71 50.98 52.85 54.52 55.71

12/6 1x1 40.69 43.83 46.55 49.73 51.05 52.37 54.24

2x2 46.80 48.72 50.96 52.70 53.91 54.80 55.40

3x3 48.43 50.40 52.17 53.45 55.16 55.11 55.47

8/8 1x1 38.02 40.92 44.54 46.75 48.84 51.13 52.73

6/6 1x1 38.17 41.89 45.01 47.35 48.88 51.15 52.85

Table 3.1: Image classification results (mAP) of our epitomic dictionary on the Pascal VOC 2007

dataset.

which captures how much the epitome needs to adapt to best approximate a novel image. An

appealling property of the epitomic footprint descriptor is that it can be visualized or stored as a

small image and at the same time be used directly as feature vector in a linear SVM image classifier,

yielding performance around 52% mAP in our experiments. Please see Fig.3.6 for a visualization.

3.3 Conclusion

We have shown that explicitly accounting for illumination and position variability can significantly

improve both reconstruction and classification performance of a patch-based image dictionary.

Moreover, we have demonstrated that the proposed epitomic dictionary model can perform sim-

ilarly to SIFT in image classification tasks, implying that generative patch image models can be

competitive with discriminative descriptors when properly accounting for nuisance factors.
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Method mAP Method mAP Method mAP

VQ-4K 53.42 KCB-4K 54.60 LLC-4K 53.79

VQ-10K 54.98 KCB-25K 56.26 LLC-10K 56.01

VQ-25K 56.07 FV-256 61.69 LLC-25K 57.60

Table 3.2: Image classification results (mAP) of top-performing SIFT-based methods on the Pascal

VOC 2007 dataset [CLV11].

We can think of the proposed model as a “shallow network” in the terminology of deep learning.

Recently, Papandreou et al. [PKS14] have extended this model to be deep and have demonstrated

excellent performance on the challenging ImageNet [DDS09] image classification benchmark.
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CHAPTER 4

Automatic Image Labeling from Weak 3D Supervision

Over the past few years, we have witnessed immense progress in solving visual recognition tasks.

This is due to the availability of new sources of labeled data as well as the development of richer,

holistic representations that combine multiple tasks [FMY13, KXS13, YFU12]. Most recent

datasets provide annotations for multiple recognition tasks. For example, PASCAL VOC [EVW10]

provides classification, detection and semantic segmentation labels for a handful of objects. Ima-

geNet [DDS09] provides large-scale image classification and object localization annotations. Ac-

quiring ground-truth data for each of these recognition tasks is very expensive even when employ-

ing crowd-sourcing systems such as MTurk. Thus, recently a number of approaches have tackled

semantic segmentation in scenarios where weak annotations such as image tags, 2D bounding

boxes, or strokes, are available.

In this chapter, our aim is to leverage the already labeled tasks in order to automate labeling

of the more time consuming ones. In particular, we show how to exploit annotated 3D bounding

boxes (available e.g., in KITTI [GLU12]) to perform accurate object segmentation without any

user in the loop. This is in contrast to interactive segmentation techniques, where the user can

iteratively correct mistakes by giving additional strokes/seeds. Towards this goal, we develop an

approach that exploits 3D information in the form of stereo, noisy point clouds, 3D CAD models,

as well as appearance models and topological constraints (Fig. 4.1).

We demonstrate the effectiveness of our approach in the context of the challenging KITTI

autonomous driving dataset [GLU12], which has been annotated with 3D bounding boxes, but not

segmentation. This dataset is particularly rich as it contains image pairs collected with a stereo

rig as well as point clouds captured with a LIDAR. It is also very challenging, as both the objects

present in the scene as well as the ego-car (where the sensors are mounted) are moving. This poses
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Figure 4.1: Our goal is to automatically generate segmentation ground-truth (bottom) using weak

labels (top image).

many difficulties, some of which are illustrated in Fig. 4.2. First, the ground-truth 3D bounding

boxes can be fairly noisy, as annotation in the presence of occlusion is very difficult. Non-reflective

materials such as car windows and certain types of paint make the LIDAR point clouds very sparse.

The point clouds also contain outliers, particularly near occlusion boundaries due to errors in

registration. Furthermore, the objects in the scene move (fast) and the LIDAR does not perform

instantaneous capture. The 3D information is also particularly ambiguous for the far-away objects

as the density of the point clouds decreases with the distance to the sensor. Similarly, errors in the

stereo estimation process also increase dramatically with the distance to the camera. Occlusion,

low-resolution and saturated areas are other sources of ambiguities.

Our approach successfully deals with these difficulties and is able to perform as well as hu-

man annotators (i.e., MTurk) while being fully automatic. We conducted our experiments on a

subset of KITTI [GLU12], which contains 950 cars with different scales, lighting/shading con-

ditions, and occlusion levels. We reach a remarkable accuracy of 86% IOU in this challeng-

ing setting, outperforming GrabCut [RKB04] by 23%. Importantly, we require as little as 10

to 20 labeled objects to train the system. Furthermore, our approach can also be used to de-

noise MTurk annotations, improving by additional 3%. Our code and annotations are available at:

https://bitbucket.org/liang chieh chen/segkitti.

Our work is similar to other techniques that tackle a variety of topics that we now briefly review.
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(a) 0 degree (b) 45 degree (c) 90 degree (d) 135 degree (e) 180 degree (f) 225 degree (g) 270 degree (h) 315 degree

Figure 4.2: Challenges of LIDAR: (Top box) Points falling inside the ground-truth 3D boxes are

white, and black outside. Gray pixels indicate there is no LIDAR observation. Points are sparse

for small cars as well as large ones due to non-reflective materials (see first two examples). The

projected points do not align well with image boundaries (see trunk and pole in the third and fourth

examples). The GT 3D boxes are noisy, clipping car points or including background ones, e.g.,

floor (see last two images). (Bottom box) Point clouds are averaged over the dataset for 8 different

viewpoints. Red: car points that fall outside the foreground GT mask (false positives). Green:

background points that fall within the GT mask (false negatives).

Interactive segmentation: In [BJ01], scribbles were used as seeds to model the appearance

of foreground and background, and segmentation was performed via graph-cuts by combining

appearance cues with a smoothness term [BK04]. GrabCut [RKB04] utilizes annotations in the

form of 2D bounding boxes, and computes the foreground/background models using EM. [GF09]

extended this idea to 3D by employing point clouds. 3D information as well as video has been used

to ease the labeling task. Optical flow and structure from motion constraints are used in [XOT13]

to propagate image labels in RGB-D videos. Our work bears similarity with [KGF12, XSU14]

as we also exploit existing annotations for segmentation. However, while they utilize 2D boxes

provided in ImageNet or tags in SIFT flow, we leverage 3D boxes and define a rich set of 2D and

3D potentials.
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Point clouds: Point clouds have been exploited for semantic segmentation [BSF08]. [XQ09]

enforced multiview consistency by feature tracking. In [XH10], neighboring points in a point

cloud were grouped to form planar patches to which labels (walls, floors, ceilings, clutter) were

assigned. [KAJ11] over-segmented the point clouds and modeled object co-occurrences and geo-

metric arrangement. In [ZZY13], the physical stability of objects is employed when segmenting

point clouds. [KXS13, LFU13, ZZY13] proposed to explore the compatibility between multiple

segmentation hypotheses and 3D maps in order to perform 3D object detection. In contrast, we

seek to exploit labeling compatibility between 2D image pixels and 3D point clouds. Besides, we

focus on object segmentation, rather than object localization.

Shape priors and CAD models: Many approaches have incorporated shape priors into MRFs.

[HPM04] combined MRFs and deformable models, [FZ05] utilize a template with a level-set for-

mulation, and [YFU12] incorporate shape priors computed from deformable part-based models in

holistic scene understanding. [VKR08] use DijkstraGC to impose object connectivity priors into

segmentation. Objcut [KTZ10] employed learned object poses, while PoseCut [KRB08] exploits a

human pose-specific shape prior. [LKR09] encodes tightness of the segmentation to the bounding

boxes provided by users. The star shape prior of [Vek08] enforces connectivity along rays launched

from a user-specified center. This was improved in [GRC10] by using multiple stars and Geodesic

paths. The prevalent use of CAD models has been to augment the training data with synthetically

generated views or to learn a geometric model from them [LS10, LPT13, ZSS13], for the task of

object detection. In [SLH12], whole synthetic scenes are matched to real ones in order to transfer

segmentation labels. Similarly, we fit CAD models to our examples and use the mask of the best

fit as a potential.

4.1 Segmentation from Weakly Labeled Data

In this chapter, we are interested in performing automatic segmentation given annotated 3D bound-

ing boxes, a collection of CAD models, LIDAR point clouds and/or stereo image pairs. We frame

the problem as the one of figure/ground segmentation in a Markov Random Field (MRF), which
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exploits appearance, smoothness, shape priors from CAD models and 3D information. To exploit

3D, we use two alternative depth sources: LIDAR, which provides us with sparse point clouds,

and depth from stereo. We first describe how we compute depth in both settings. We then detail

the energy of our MRF and discuss learning and inference.

4.1.1 Obtaining Dense Depth Maps

We employ PCBP [YMU13] to compute stereo depth maps, as it is the current state-of-the-art in

KITTI. PCBP is a slanted plane MRF model with explicit reasoning about the type of boundary

(coplanar, hinge, occlusion) between neighboring superpixels. This allows us to encode physical

validity at junctions, resulting in better plane estimates.

As shown in Fig. 4.2, the LIDAR point clouds can be very sparse, even for nearby objects. To

overcome this issue, we reconstruct a dense depth map from the sparse set of points. Let di be a

continuous random variable encoding the depth of the i-th pixel, and let d̂i, with i ∈ VD, be the

observed depth at pixel i, with VD the sparse subset. We formulate the dense reconstruction as the

one of inference in a continuous MRF. Specifically, the MRF encourages the reconstructed depth

to be close to the observed depth measurements as well as the depth of neighboring pixels to be

smooth. We define the energy as follows:

E(d|I, d̂) =
∑
i∈VD

‖di − d̂i‖pp +
∑

(i,j)∈E

wij‖di − dj‖pp

with d = (d1, · · · , dN) the set of variables encoding depth for all pixels, d̂ the set of observed depth

values, I the color image and E the set of 4-connected neighbors. We use wij = λ ·exp(−‖Ii−Ij‖
2
2

β
),

with λ the relative weight between the first and the second term, and β a scalar. Note that this

energy generalizes [DT06] to p-norms: When p = 2 we obtain a Gaussian MRF, and when p = 1

a Laplacian MRF. Exact inference can be performed in both cases [SCN07].

4.1.2 Semantic Segmentation using 3D Data

Our setting is the following: we assume we are given an example annotated with a 3D bounding

box. Our goal is to produce a figure-ground segmentation of the depicted object. Note that the
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image within the projected box can in fact contain two objects due to occlusion. Our evaluation

measures instance-level overlap, and thus our goal is to only label the correct object corresponding

to the given 3D box.

Let yi ∈ {0, 1} be a random variable encoding whether the i-th pixel is background or fore-

ground, respectively. We now describe the potentials in our segmentation MRF.

Appearance Model: Following [RKB04], we utilize two Gaussian Mixture Models (GMMs)

to model the appearance of foreground/background. However, instead of using a human in the

loop to define the seeds, we employ the available 3D information. We define the foreground seeds

F to be the set of pixels inside the 2D bounding box which, when projected to 3D (using depth

from either LIDAR or stereo), lie inside the 3D box (white pixels in Fig. 4.2). To compute the

background seeds B, we take the remaining pixels in the 2D box (black pixels in Fig. 4.2) as well

as a 2-pixel band around the box. To make this process more robust, we compute a 2D convex hull

around F . We then remove all background seeds that fall inside this hull and have larger depth

values than the mean depth value of the foreground seeds. These outliers are usually caused by the

laser rays passing through the car windows. This simple procedure led to a slight improvement in

performance. Then

φappi (yi) =

 − logPr(Ii|θIF ) if yi = 1

− logPr(Ii|θIB) if yi = 0

where Ii is the color of pixel i, and θIF and θIB are the color appearance models for the foreground

and background.

Smoothness: We employed an Ising prior

φisingij (yi, yj) = 1(yi 6=yj)

as well as a contrast sensitive Potts model

φcsij (yi, yj) = exp{−‖Ii − Ij‖
2
2

β
} · 1(yi 6=yj)

where β = E(2 · ‖Ii − Ij‖2
2) and E(·) denotes the expectation over an image sample [BJ01].
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Topological Information: We modify the generic shape prior of [GRC10, Vek08], which en-

forces the connectivity of segmentation pixels along the rays originating from a point (i.e., the

star), to be asymmetric as follows

φtopoij (yi, yj) = 1(yi = 1, yj = 0)

for pixels on the ray going from j to i. Unlike [GRC10, Vek08], we automatically obtain the

stars via K-means on the set of foreground seeds F . Furthermore, we learn the importance of this

potential instead of assigning it an infinite weight.

Leveraging CAD models: We use a collection of 180 car CAD models collected in [FDU12].

The idea is to find, for each 3D KITTI object, a CAD model that best fits this example and use

the resulting CAD’s shape as a prior for segmentation. Towards this goal, we first solve for the

best 3D transformation that aligns each CAD model with each input 3D bounding box in terms

of vertex error in 3D. This can be done in closed form via Procrustes analysis. The next step

is to select the model which best represents each example. We chose the model that minimizes

an error function consisting of 3 terms: 3D and 2D vertex error and real-world dimensions error.

To compute the 2D error we project the CAD’s 3D box to the image, fit a 2D box around it and

compute the L2 distance between its vertices and the vertices of the input 2D box. To compute the

last error term, we use the real-world dimensions of each CAD model. This captures, for example,

that a VW Golf is smaller than a Toyota Tundra. This cannot be obtained from the CAD models,

as they have arbitrary scale. Instead, we obtain this information from the car manufacturers and

other online resources, as each CAD model’s meta-data contains information about the car brand

and model [FDU12]. Real-world dimension error is then the sum of L1-distances between the

real-world dims (length, height, width) of a CAD and the dims of the input 3D box. We weigh

each error term differently and learn the weights by cross-validation on the training set. The best

CAD model is then projected to the image plane and its contour is extracted. We perform the

signed distance transform [FH12] on the contour (the sign is negative within the car contour), and

normalize it to be between −1 and 1 for every example in order to not bias large cars. Thus

φCADi (yi) = sdt(i|CAD) · 1(yi = 1)

46



(a) CAD shape (b) contour (c) dist. trans. (d) signed d.t.

Figure 4.3: (a) CAD model projected to image plane, (b) contour, (c,d) distance and signed distance

transform.

where sdt(i|CAD) is the value of pixel i after signed distance transform. This is illustrated in

Fig. 4.3.

Depth seeds: We penalize labelings that misclassify foreground and background seed points as

follows

φdepth,fi (yi) = 1(yi = 0, i ∈ F)

φdepth,bi (yi) = 1(yi = 1, i ∈ B)

with F ,B the set of foreground and background seeds.

Dense depth: We learn two GMMs to represent the histogram of depth for the background and

foreground. Thus

φdepthi (yi) =

 − logPr(di|θSF ) if yi = 1

− logPr(di|θSB) if yi = 0

with di is the dense reconstructed depth (either from stereo or the MRF defined in section 4.1.1),

and θSF and θSB are the depth appearance models for foreground and background.

4.1.3 Learning and Inference

We use a log-linear model

E(y|I,d) = wT ·Ψ(y|I,d)
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where Ψ(y|I,d) is the concatenation of all potentials summed across cliques (as we share the

weights between them). This results in w ∈ R8, with one weight for appearance, two for smooth-

ness, two for discrete depth, one for continuous depth, one for the topology and one for CAD.

Inference in our model can be done exactly via graph-cuts, as we have a binary MRF with

sub-modular potentials. We use the graph-cut implementation of [BK04]. We employ structural

SVMs [TGK04, TJH05] to learn the parameters of the model, and use the parallel cutting plane

algorithm of [SFP13]. As loss we use Hamming distance, which counts the percentage of pixels

that are wrongly labeled. This loss decomposes into unary potentials, and thus the loss-augmented

inference can be solved exactly via graph-cuts.

4.2 Experimental Evaluation

We selected a random subset of images from the KITTI raw data [GLU12], having a total of

950 cars. We asked 9 in-house annotators to provide very high-quality segmentations. It took on

average 60 seconds to label each car, and 16h to label the full dataset, where each image is labeled

by a single annotator. As shown in Fig. 4.4 (left), our dataset contains cars at very different resolu-

tions. The projection of the 3D bounding boxes into the image ranges from 20× 24 to 279× 372

pixels. In order to maintain the same distribution of scales, we build a 30 bin histogram of object

sizes and select randomly within each bin 40%, 10%, and 50% of cars as training, validation, and

test set, resulting in 382 examples for training, 100 for validation, and 468 for testing. Following

PASCAL VOC we utilize intersection-over-union (IOU) as our evaluation metric.

The 3D LIDAR point clouds are very sparse. As shown in Fig. 4.4 (center), small cars contain

only 38.2 points on average, which is 3.7% of the 2D bounding box. This makes segmenting small

cars very difficult. As expected, the number of points increases with scale. However, for the largest

scale (the last bin), we find that there is one car with very few points due to its metallic paint. This

biases the statistics as there are not that many examples of this size.

KITTI was collected with sensors (i.e., cameras and LIDAR) mounted on top of a driving car.

As a consequence, most of the cars in the images are oriented with 0, 45 and 180 degrees (driving

towards or away from the ego-car). Fig. 4.4 (right) shows the distribution of car orientations (at
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Figure 4.4: Dataset statistics: (Left) Histogram of car scales in terms of bounding box size,

defined as the square root of the bounding box area. (Center) Average number of LIDAR points

for different scales. (Right) Histogram of car orientations.
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Figure 4.5: Time: (Left) IOU as a function of training time, (Right) average inference time as a

function of scale.

0◦ the car is facing south, and west at 90◦). To further analyze the point clouds, we overlay their

projection with our ground-truth segmentations and average them for 8 different azimuth angles,

after resizing to a common scale to compensate for the size difference among examples. As shown

in the bottom row of Fig. 4.2, most of the mistakes (green and red) are along the car boundaries

due to registration errors and the fact that objects and the ego-car are moving. Besides, the noise

introduced when labeling 3D bounding boxes causes mistakes on the car and near the ground plane.

To benchmark and compare crowd-sourcing annotations, we collected segmentations via MTurk

in three batches. For the first two batches our quality requirements were lower, requiring MTurkers

to have at least 75% approval rate. We paid 1 cent per car. For the third batch we required 95%

approval rate and 500 approved tasks, and paid them 5 cents per car. We asked the MTurkers to

draw the outer boundary of the car within the marked box as accurately as possible. For images
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Figure 4.6: (Left) IOU as a function of bounding box size when using LIDAR. (Center) IOU

difference when employing our full model with LIDAR vs Stereo as a function of size. (Right)

IOU as a function of number of training examples. With only 10-20 train-val images, our model

can reach performance similar to MTurk. Results are averaged across 5 partitions.

with low contrast we asked them to make an educated guess. If a car was occluded (by e.g., a tree),

they were asked to draw a boundary also around each occluding region. If the car was occluded

by another car, they were asked to mark the other car as an occluder. We showed three examples

of good annotations, a fully visible car, a low contrast example, and a partially occluded car.

Comparison to state-of-the-art: Table 4.1 compares our approach to a set of GrabCuts based

baselines, which, like our approach, do not use a user in the loop. The first baseline (A) projects

the 3D bounding box onto the image, and uses the pixels inside as the foreground seeds and a band

outside as background seeds. The second baseline (B) utilizes only pixels inside 1/4 of the box

around the center as seeds. The last baseline (C), which is an instance of our model, employs the

projected LIDAR points as seeds for foreground or background, depending on whether they are

inside or outside the 3D bounding box. Our approach outperforms the baselines by more than 20%

in terms of IOU when employing LIDAR and/or stereo. Moreover, utilizing the point clouds as

seeds outperforms the other heuristics.

Size matters: As shown in Fig. 4.6 (left) segmenting big cars is easier than smaller ones.
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Baselines Our Model

Method [RKB04] A [RKB04] B [RKB04] C Stereo LIDAR Hybrid

IOU (%) 52.9 59.1 62.1 84.4 85.6 85.9

Table 4.1: Comparison to GrabCuts: Baseline A uses all pixels inside the 2D bounding box as

foreground seeds, Baseline B uses pixels inside 1/4 of the 2D box as foreground seeds and baseline

C uses projected LIDAR points as seeds. By hybrid we mean an approach that uses dense depth

from stereo and depth seeds from LIDAR.

Importance of the features: As shown in Table 4.2, each potential increases performance. The

CAD model is the potential that contributes the most.

Stereo vs LIDAR: As shown in Tables 4.1 and 4.2, we can reach almost the same performance

with stereo or LIDAR. This is great news for autonomous driving as cameras are much cheaper

sensors. The highest accuracy can be obtained when we use a hybrid approach, which takes ad-

vantage of both stereo and LIDAR. Fig. 4.6 (center) shows that LIDAR is particularly beneficial

wrt. stereo for small cars.

Time: Fig. 4.5 shows the training and average inference time as a function of size. Learning

converges within 2 minutes. The parallel cutting plane algorithm of [SFP13] makes the training

time 3.3 times faster than the original algorithm (when using four threads). The average inference

time is proportional to the car scale. Inference for the full test set takes 44 seconds using a single

core.

Automatic vs MTurk: As shown in Table 4.3, our approach performs as well as MTurker, while

being fully automatic. We can also de-noise MTurk annotations by using their segmentations

as an additional potential in the model. The potential that we use is similar to the one for the

CAD models, where instead of the CAD mask we use the MTurk segmentation. This pushes

the performance even higher. Such a setting can for example be used to reduce the number of

annotators per image. “Oracle” here means a scenario in which we can choose the best annotation
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Model Appearance Smooth Depth seeds Dense depth Topo CAD Stereo IOU (%) LIDAR IOU (%)

Basic (no ising) X X 60.1 61.1

Basic X X 61.6 62.1

Topology X X X 64.4 64.2

Dense depth X X X 68.4 71.3

Discrete depth X X X – 74.2

All depth X X X X – 76.2

CAD X X X 82.9 83.5

Full Model w/o CAD X X X X X 70.2 77.6

Full Model w/o Dense depth X X X X X 83.4 84.1

Full Model w/o Depth Seeds X X X X X – 85.4

Full Model w/o Topology X X X X X 84.2 85.5

Full Model X X X X X X 84.4 85.6

Table 4.2: Importance of Features: Every feature helps, and the CAD model potential helps the

most. Notably, performance with stereo is similar to LIDAR. Note that when using stereo, we do

not use Depth seeds.

within the three batches. Note that, even in this setting, we can de-noise the results using our

model.

Training Set Size: We next investigate performance of our full model as a function of the number

of training images. As shown in Fig. 4.6 (right), results similar to MTurk can be obtained when

training with as little as 10-20 images.

Gaussian vs Laplacian MRF: Fig. 4.7 (left) shows performance of the basic model (appearance

+ smoothness) when enriching it with continuous depth as a function of the smoothness term in

the dense reconstruction. Note that p = 1 (i.e., Laplacian MRF) is more robust to outliers, and a

wide range of weights result in good performance.

Number of Stars: As shown in Fig. 4.7 (right) using a single star yields the best performance

for a model containing appearance, smoothness and topology. This is expected as cars are a single

connected component, with the exception of occlusion (e.g., car behind a pole).

52



MTurk accuracy Ours with MTurk pot.

Batch 1 85.3 87.1

Batch 2 85.9 88.3

Batch 3 86.7 87.6

Batch 1,2,3 – 88.9

Oracle 90.2 90.6

Table 4.3: Denoising MTurk: At 85.9% our model’s accuracy is comparable to MTurkers’. Our

model is also able to de-noise MTurk annotations, further boosting performance.

Average shape: An alternative shape prior to CAD models is to cluster the data by orientation,

and average the training segmentations for each bin (see Fig. 4.2). Adding this to the base model

with appearance and smoothness results in 67.6% IOU, while using it in the full model results in

80.3%, i.e., 5% worse than when using CAD.

Depth as a segmentation algorithm: We also look into whether the dense reconstructions alone

can be used to perform segmentation. Towards this goal, we classify a point as car if it is inside

the 3D bounding box, and background otherwise. Laplacian MRF performs best, with 76.2% IOU.

The performance of the Gaussian MRF is 4% lower since it is less robust. The performance when

using stereo is 69.8%, which is 15% worse than our full model. This shows that depth alone is not

sufficient and that we greatly benefit from using multiple diverse cues.

Qualitative results: Fig. 4.8 depicts segmentation results when using our full model with stereo

and LIDAR (4th and 6th columns respectively). Our model is robust to low-resolution imagery,

saturation, noise, sparse point clouds, depth estimation errors and can successfully segment out

occluders. The last three rows show failure modes. Our approach has difficulty with very small

cars that are heavily occluded, and point clouds with a large number of outliers.
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Figure 4.7: Importance of parameters: (Left) smoothness weight for the continuous MRF, and

(Right) the number of stars for the topology potential. Result are on validation set.

4.3 Conclusions

We have presented an approach that can generate segmentations of the same quality as human

labelers (i.e., MTurkers) using only weak supervision in the form of 3D bounding boxes. Towards

this goal, we have exploited appearance models, stereo and/or noisy point clouds, a repository of

3D CAD models as well as topological constraints.

Recently, Zhang et al. [ZSF15] have extended this work. They applied our model to generate

thousands of car segmentations, and train a deep convolutional neural network with the generated

annotations. They have shown outstanding performance on the task of car instance segmentation

and depth ordering.
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(image) (LIDAR) (stereo) (stereo–full) (LIDAR) (LIDAR–full)

Figure 4.8: Segmentation results: Each row shows the image, LIDAR points (White: car, Black:

bckgr.), stereo depth, results of our full model with stereo (White: True Positive, Black: True

Negative, Red: False Positive, Green: False Negative), depth images reconstructed by Laplacian

MRF, and results of our full model with LIDAR. Last three rows show our failure modes.
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CHAPTER 5

Learning Deep Structured Models

Deep learning algorithms attempt to model high-level abstractions of the data using architec-

tures composed of multiple non-linear transformations. A multiplicity of variants have been pro-

posed [HSA84, LBB98, HS06, BLP07, SH12, ZF14] and shown to be extremely successful in

a wide variety of applications including computer vision, speech recognition as well as natural

language processing [LGR09, SHB12, JSD14, KSH13, ERF14]. Recently, state-of-the-art results

have been achieved in many computer vision tasks, outperforming competitive methods by a large

margin [KSH13, GDD14].

Deep neural networks can, however, be even more powerful when combined with graphical

models in order to capture the statistical dependencies between the variables of interest. For ex-

ample, [DDJ14] exploit mutual exclusion, overlapping and subsumption properties of class labels

in order to better predict in large scale classification tasks. In pose estimation, more accurate pre-

dictions can be obtained when encoding the spatial relationships between joint locations [TJL14].

It is, however, an open problem how to develop scalable deep learning algorithms that can

learn higher-order knowledge taking into account the output variables’ dependencies. Existing

approaches often rely on a two-step process [NRB11, XSU14] where a non-linear classifier that

employs deep features is trained first, and its output is used to generate potentials for the structured

predictor. This piece-wise training is, however, suboptimal as the deep features are learned while

ignoring the dependencies between the variables of interest. For example, in object recognition,

independently learned segmentation and detection features [HAG14b] might be focusing on pre-

dicting the same examples correctly, but when learned jointly, they can improve their predictive

power by exploiting complementary information to fix additional mistakes.

In this chapter we extend deep learning algorithms to learn complex representations taking into
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account the dependencies between the output random variables. Towards this goal, we propose a

learning algorithm that is able to learn structured models with arbitrary graphs jointly with deep

features that form potentials in a Markov random field (MRF). Our approach is efficient as it blends

learning and inference, resulting in a single loop algorithm which makes use of GPU acceleration.

We demonstrate the effectiveness of our method in the tasks of predicting words from noisy im-

ages, and tagging of Flickr photographs. We show that joint learning of deep features and MRF

parameters results in big performance gains.

5.1 Learning Deep Structured Models

In this section we investigate how to learn deep features taking into account the dependencies

between the output variables. Let y ∈ Y be the set of random variables y = (y1, . . . , yN) that we

are interested in predicting. We assume the space of valid configurations to be a product space, i.e.,

Y =
∏N

i=1 Yi, and the domain of each individual variable yi to be discrete, i.e., Yi = {1, . . . , |Yi|}.

Given input data x ∈ X and parameters w ∈ RA of the function F (x, y;w) : X × Y × RA → R,

inference amounts to finding the highest scoring configuration

y∗ = arg max
y
F (x, y;w).

Note that if F is a deep network, i.e., a composite function, and there are no connections be-

tween the output variables to be predicted, inference corresponds to a forward pass to evaluate the

function, followed by independently finding the largest response for each variable. This can be

interpreted as inference in a graphical model with only unary potentials. However, for arbitrary

graphical models it is NP-hard to find the maximizing configuration y∗ since the inference program

generally requires a search over a space of size
∏N

i=1 |Yi|. Note also that log-linear models are a

special case of this program, with F (x, y;w) = w>φ(x, y) and φ(x, y) denoting a feature vector,

computed using the input-output pair (x, y).

In this work, we consider the general setting where F (x, y;w) is an arbitrary scalar-valued

function of w and (x, y). In our experiments F is a function composition of non-linear base map-

pings such as convolutions, rectifications and pooling. We let the probability of an arbitrary con-
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figuration ŷ be given by the annealed soft-max

p(x,y)(ŷ|w, ε) =
1

Zε(x,w)
exp(F (x, ŷ;w))1/ε.

Hereby Zε(x,w) refers to the partition function, normalizing the distribution p(x,y) to lie within the

probability simplex ∆ via Z(x,w) =
∑

ŷ∈Y exp(F (x, ŷ;w))1/ε. The annealing parameter ε ≥ 0 is

used to adjust the uniformity of the distribution. We consider general graphical models where the

computation of Zε(x,w) is #P-hard.

5.1.1 Learning via gradient descent

During learning, given a training setD of input-output pairs (x, y) ∈ D, we are interested in finding

the parameters w of the model. We do so by maximizing the data likelihood, i.e., minimizing the

negative log-likelihood − ln
∏

(x,y)∈D p(x,y)(y|w, ε) which yields

min
w

∑
(x,y)∈D

(ε lnZε(x,w)− F (x, y;w)) . (5.1)

Note that this is equivalent to maximizing the cross-entropy between a target distribution p(x,y),tg(ŷ) =

δ(ŷ = y) placing all its mass on the groundtruth label, and the model distribution p(x,y)(ŷ|w, ε).

Hence Eq. (5.1) is equivalently obtained by maxw
∑

(x,y),ŷ∈Y p(x,y),tg(ŷ) ln p(x,y)(ŷ|w, ε). It is

easily possible to incorporate more general target distributions into Eq. (5.1). Note also that

regularization can be included and ε → 0 recovers the general structured hinge loss objective

minw
∑

(x,y)∈D (maxŷ F (x, ŷ;w)− F (x, y;w)), since a margin term is easily incorporated.

Minimizing Eq. (5.1) w.r.t.w requires computation of the gradient ∂
∂w

∑
(x,y)− ln p(x,y)(y|w, ε),

which is given by a transformed difference between the distributions of the model p(x,y)(ŷ|w, ε) and

the target p(x,y),tg(ŷ): ∑
(x,y)∈D

∑
ŷ∈Y

∂

∂w
F (x, ŷ;w)

(
p(x,y)(ŷ|w, ε)− p(x,y),tg(ŷ)

)
. (5.2)

A gradient descent algorithm for minimizing Eq. (5.1) will iterate between the following steps: (i)

For a given w evaluate the function F , (ii) compute the model distribution p(x,y)(ŷ|w, ε), (iii) prop-

agate the difference between the model and target distribution using a backward pass (resembling

the chain rule for composite functions) and (iv) update the parameters w. This is summarized in

Fig. 5.1.
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Algorithm: Deep Structured Learning

Repeat until stopping criteria

1. Forward pass to compute F (x, ŷ;w)

2. Obtain p(x,y)(ŷ|w, ε) via a soft-max

3. Backward pass via chain rule to obtain gradient

4. Update parameters w

Figure 5.1: Gradient descent for learning deep structured models.

min
w

∑
(x,y)∈D

(
max

b(x,y)∈C(x,y)

{∑
r,ŷr

b(x,y),r(ŷr)fr(x, ŷr;w) +
∑
r

εcrH(b(x,y),r)

}
− F (x, y;w)

)

Figure 5.2: The approximated non-linear structured prediction task.

5.1.2 Approximate Learning

Note that for general graphical models the exact computation of p(x,y)(ŷ|w, ε) is not possible since

the state-space size |Y| =
∏N

i=1 |Yi| is exponential in the number of variables. As a consequence

it is intractable to compute the exact gradient of the cost-function given in Eq. (5.2) and one has to

resort to approximate solutions.

Inspired by approximations used for log-linear models, we make use of the following iden-

tity [WJ08, KF09]:

ε lnZε(x,w) = max
p(x,y)(ŷ)∈∆

E[F (x, ŷ;w)] + εH(p(x,y)), (5.3)

where E denotes an expectation over the distribution p(x,y)(ŷ) and H refers to its entropy.

For most applications, F (x, y;w) decomposes into a sum of functions, each depending on a

local subset of variables yr, i.e.,

F (x, y;w) =
∑
r∈R

fr(x, yr;w).
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Hereby r is a restriction of the variable tuple y = (y1, . . . , yN) to the subset r ⊆ {1, . . . , N}, i.e.,

yr = (yi)i∈r. All subsets r required to compute the model function F are summarized in the set

R. Importantly we note that each local composite function fr(x, yr;w) can depend non-linearly

on the parameters w.

Plugging this decomposition into Eq. (5.3), we equivalently get the log-partition function

ε lnZε(x,w) via

max
p(x,y)(ŷ)∈∆

∑
r,ŷr

p(x,y),r(ŷr)fr(x, ŷr;w) + εH(p(x,y)),

where we use marginals p(x,y),r(ŷr) =
∑

y\yr p(x,y)(y).

Despite the assumed locality of the scoring function, the learning task remains computation-

ally challenging since the entropy H(p(x,y)) can only be computed exactly for a very small set

of models, e.g., models for which the dependencies of the joint distribution p(x,y)(y) are equiv-

alently characterized by a low tree-width graph. In addition, the marginalization constraints are

exponential in size.

To deal with both issues a common solution in log-linear models is to approximate the true

marginals p(x,y),r with local beliefs b(x,y),r that are not required to fulfill marginalization constraints

globally, but only locally [WJ08]. That is marginals b(x,y),r are not required to arise from a common

joint distribution p(x,y). In addition, we approximate the entropy via the fractional entropy [WH03],

i.e., H(p(x,y)) ≈
∑

r crH(b(x,y),r). Counting numbers cr are employed to weight the marginal

entropies. Putting all this together, we obtain the following approximation for ε lnZε(x,w):

max
b(x,y)∈C(x,y)

∑
r,ŷr

b(x,y),r(ŷr)fr(x, ŷr;w) +
∑
r

εcrH(b(x,y),r). (5.4)

where the beliefs are constrained to the local polytope

C(x,y) =


∀r b(x,y),r ∈ ∆

∀r, ŷr, p ∈ P (r)
∑
ŷp\ŷr

b(x,y),p(ŷp) = b(x,y),r(ŷr),

with P (r) the set of parents of region r, i.e., P (r) ⊆ {p ∈ R : r ⊂ p}, which subsumes those

regions for which we want the marginalization constraint to hold. Conversely, we define the set of

children as C(r) = {c ∈ R : r ∈ P (c)}.
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Algorithm: Efficient Deep Structured Learning

Repeat until stopping criteria

1. Forward pass to compute fr(x, ŷr;w) ∀(x, y), r, yr

2. Compute approximate beliefs b(x,y),r ∝ exp f̂r(x,ŷr;w,λ)
εcr

by iterating for a fixed number of times over r:

∀(x, y), p ∈ P (r), ŷr

µ(x,y),p→r(ŷr) = εcp ln
∑
ŷp\ŷr

exp
fp(x, ŷp;w)−

∑
p′∈P (p) λ(x,y),p→p′(ŷp) +

∑
r′∈C(p)\r λ(x,y),r′→p(ŷr′)

εcp

λ(x,y),r→p(ŷr) ∝
cp

cr +
∑

p∈P (r)

cp

fr(x, ŷr;w) +
∑
c∈C(r)

λ(x,y),c→r(ŷc) +
∑
p∈P (r)

µ(x,y),p→r(ŷr)

− µ(x,y),p→r(ŷr)

3. Backward pass via chain-rule to obtain gradient g =
∑

(x,y),r,ŷr
b(x,y),r(ŷr)∇wfr(x, ŷr;w)−∇wF (w)

4. Update parameters w using stepsize η via w ← w − ηg

Figure 5.3: Efficient learning algorithm that blends learning and inference.

We can thus rewrite the learning problem by plugging the approximations derived in Eq. (5.4)

into Eq. (5.1). This gives rise to the new approximated learning program depicted in Fig. 5.2.

To iteratively update the parameters for the non-smooth approximated cost function given in

Fig. 5.2 we require a sub-gradient w.r.t. w, which in turn requires to solve the maximization w.r.t.

the beliefs b exactly. This is a non-trivial task in itself as inference in general graphical models

is NP-hard. Iterative message passing algorithms [Pea88, YFW05, WJW05, WYM07, SMG08,

MGW09] are typically employed for approximate inference. Importantly, note that combining the

procedure outlined in Fig. 5.1 with iterative message passing to approximate p(x,y)(ŷ|w, ε) results

in a double-loop algorithm which would be slow for many graphical models of interest.

5.1.3 Efficient Approximate Learning by Blending Learning and Inference

In this section we propose a more efficient algorithm that is based on the principle of blending

learning (i.e., parameter updates) and inference. Thus we are interested in only performing a
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single message passing iteration before updating the parameters w. Note that simply reducing the

number of iterations is generally not an option as the obtained beliefs b(x,y),r are by no means

accurate. However, assuming all counting numbers cr to be positive, we can derive an algorithm

that is able to interleave minimization w.r.t. w and maximization of the beliefs b. Such a procedure

is more efficient as we are able to update the parameters w much more frequently.

To interleave both programs we first convert maximization of the beliefs into a minimization by

employing the dual program as detailed for general scoring functions in the following claim, which

was discussed for log-linear models in seminal work by [TCK05]. This conversion is possible since

the maximization problem is concave in b(x,y) if ∀r, εcr ≥ 0.

Claim 1. Assume εcr ≥ 0 ∀r, and let F (w) =
∑

(x,y)∈D F (x, y;w) denote the sum of empirical

function observations. Let λ(x,y),r→p(ŷr) be the Lagrange multipliers for each marginalization con-

straint
∑

ŷp\ŷr b(x,y),p(ŷp) = b(x,y),r(ŷr) within the polytope C(x,y). Then the approximated general

structured prediction task shown in Fig. 5.2 is equivalent to

min
w,λ

∑
(x,y),r

εcr ln
∑
ŷr

exp
f̂r(x, ŷr;w, λ)

εcr
− F (w), (5.5)

where we employed the re-parameterization score f̂r(x, ŷr;w, λ) = fr(x, ŷr;w)+
∑

c∈C(r)

λ(x,y),c→r(ŷc)−∑
p∈P (r)

λ(x,y),r→p(ŷr).

Proof: To obtain the dual of the maximization w.r.t. b(x,y) we utilize its Lagrangian

L(x,y)=
∑
r,ŷr

b(x,y),r(ŷr)f̂r(x, ŷr;w, λ) +
∑
r

εcrH(b(x,y),r).

Maximization of the Lagrangian w.r.t. the primal variables b is possible by employing the rela-

tionship stated in Eq. (5.3) locally ∀r. We then obtain the dual function being the first term in

Eq. (5.5). For strict convexity, i.e., εcr > 0, we reconstruct the beliefs to be proportional to the

exponentiated, loss-augmented re-parameterization score, i.e., formally b(x,y),r ∝ exp f̂r(x,ŷr;w,λ)
εcr

.

For εcr = 0 the beliefs correspond to a uniform distribution over the set of maximizers of the

loss-augmented re-parameterization score f̂r(x, ŷr;w, λ). �

It is important to note that by applying duality we managed to convert the min-max task in

Fig. 5.2 into a single minimization as shown in Eq. (5.5). Performing block coordinate descent
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Figure 5.4: Samples from the Word50 dataset. Note the high degree of rotation, scaling and

translation.

updates to minimize Eq. (5.5), we are therefore able to interleave both, updating the weights (i.e.,

learning) and the messages (i.e., inference). This results in a more efficient algorithm, as inference

does not have to be run until convergence, even a single update of the messages suffices. We note

that this is possible only if εcr ≥ 0 ∀r. Strictly speaking, we require concavity only within the set

of feasible beliefs C(x,y). However, for simplicity of the derivations and descriptions we neglected

such an extension.

Fig. 5.3 summarizes our efficient deep structured prediction algorithm which iterates between

the following steps. Given parametersw we perform a standard forward pass to compute fr(x, ŷr;w)

for all regions r. Depending on the model, computation of fr can sometimes be carried out more

efficiently via a single convolutional neural network which combines all the data. We then iter-

ate through all regions r and use block-coordinate descent to find the globally optimal value of

Eq. (5.5) w.r.t. λ(x,y),r→p(ŷr) ∀(x, y), ŷr, p ∈ P (r). This can be done in closed form and therefore

is computed very efficiently [GJ07, SMG08, HS10, Sch13]. We then compute the gradient using a

standard backward pass before we jointly update all the parameters w by performing a step of size

η along the negative gradient.

5.1.4 Implementation Details

We implemented the general algorithm presented in Fig. 5.3 in C++ as a library for Linux, Win-

dows and Mac platforms. It supports usage of the GPU for the forward and backward pass using

both, standard linear algebra packages and manually tuned GPU-kernels. In addition to standard
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Graph MLP Method H1 = 128 H1 = 256 H1 = 512 H1 = 768 H1 = 1024

1st order Markov One Layer

Unary only 8.60 / 61.32 10.80 / 64.41 12.50 / 65.69 12.95 / 66.66 13.40 / 67.02

JointTrain 16.80 / 65.28 25.20 / 70.75 31.80 / 74.90 33.05 / 76.42 34.30 / 77.02

PwTrain 12.70 / 64.35 18.00 / 68.27 22.80 / 71.29 23.25 / 72.62 26.30 / 73.96

PreTrainJoint 20.65 / 67.42 25.70 / 71.65 31.70 / 75.56 34.50 / 77.14 35.85 / 78.05

2nd order Markov One Layer

JointTrain 25.50 / 67.13 34.60 / 73.19 45.55 / 79.60 51.55 / 82.37 54.05 / 83.57

PwTrain 10.05 / 58.90 14.10 / 63.44 18.10 / 67.31 20.40 / 70.14 22.20 / 71.25

PreTrainJoint 28.15 / 69.07 36.85 / 75.21 45.75 / 80.09 50.10 / 82.30 52.25 / 83.39

H1 = 512 H2 = 32 H2 = 64 H2 = 128 H2 = 256 H2 = 512

1st order Markov Two Layer

Unary only 15.25 / 69.04 18.15 / 70.66 19.00 / 71.43 19.20 / 72.06 20.40 / 72.51

JointTrain 35.95 / 76.92 43.80 / 81.64 44.75 / 82.22 46.00 / 82.96 47.70 / 83.64

PwTrain 34.85 / 79.11 38.95 / 80.93 42.75 / 82.38 45.10 / 83.67 45.75 / 83.88

PreTrainJoint 42.25 / 81.10 44.85 / 82.96 46.85 / 83.50 47.95 / 84.21 47.05 / 84.08

2nd order Markov Two Layer

JointTrain 54.65 / 83.98 61.80 / 87.30 66.15 / 89.09 64.85 / 88.93 68.00 / 89.96

PwTrain 39.95 / 81.14 48.25 / 84.45 52.65 / 86.24 57.10 / 87.61 62.90 / 89.49

PreTrainJoint 62.60 / 88.03 65.80 / 89.32 68.75 / 90.47 68.60 / 90.42 69.35 / 90.75

Table 5.1: Word / Character accuracy. Performance improves as (1) joint-training is employed, (2)

the model is more structured, and (3) deeper unary classifiers are utilized. The number of hidden

units for the first and second layer are denoted as H1 and H2 respectively.

gradient descent, we allow specification of both mini-batches, moments and different regulariz-

ers like 2-norm and ∞-norm. Between iterations the step-size can be reduced based on either

the negative log-likelihood or validation set performance. Our function F is specified using a di-

rected a-cyclic graph. Hence we support an arbitrarily nested function structure composed of data,

parameters and function prototypes (convolution, affine function aka fully connected, dropout,

local response normalization, pooling, rectified linear, sigmoid and softmax units). The aforemen-

tioned library is accompanied by a program performing learning, inference and gradient checks.

To accommodate for large datasets it reads data from HDF5 storage while a second thread si-

multaneously performs the computation. This is useful since we can prepare the data for the

next pass while conducting the computation. Google protocol buffers are employed to effectively

specify the function F without the need to modify any source code. The library is released on

http://alexander-schwing.de.
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Figure 5.5: (left) Subset of the learned unary weights. Pairwise weights (middle two panels), the

darker, the larger the weight. (right) Negative log-likelihood for different learning approaches.

5.2 Experimental Evaluation

We demonstrate the performance of our model on two tasks: word recognition and image classifi-

cation. We investigate four strategies to learn the model parameters. ‘Unary only’ denotes training

only unary classifiers while ignoring the structure of the graphical model, i.e., pairwise weights are

equal to 0. ‘JointTrain’ initializes all weights at random and trains them jointly. ‘PwTrain’ uses

piecewise training by first training the unary potentials and then keeping them fixed when learn-

ing the pairwise potentials. ‘PreTrainJoint’ pre-trains the unaries but jointly optimizes pairwise

weights as well as unary weights in a second step.

5.2.1 Word Recognition: Word50

Our first task consists of word recognition from noisy images. Towards this goal, we created a

challenging dataset by randomly selecting 50 words, each consisting of five characters. We then

generated writing variations of each word as follows: we took the lower case characters from

the Chars74K dataset [CBV09], and inserted them in random background image patches (similar

to [LEC07]) by alpha matting, i.e., characters have transparency. To increase the difficulty, we

perturbed each character image of size 28 × 28 by scaling, rotation and translation. As shown

in Fig. 5.4 the task is very challenging, some characters are fairly difficult to recognize even for

humans. We denote the resulting dataset ‘Word50.’ The training, validation and test sets have

10, 000, 2, 000 and 2, 000 variations of words respectively.
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Figure 5.6: Learning non-linear pairwise functions: Word recognition as a function of the number

of hidden units for the unary potential. Colors represent different number of hidden units for the

pairwise potentials. The y-axis shows the word accuracy of using Linear function, or 16 (PairH16),

32 (PairH32), and 64 (PairH64) hidden units for the pairwise function.

We experimented with graphical models composed of unary and pairwise regions defined over

five random variables, one per character. We encode unary potentials fr(x, yi;wu) using multi-

layer perceptrons (MLPs) with rectified linear units (ReLU). Unless otherwise stated, we define all

pairwise interactions via

fr(x, yi, yj;wp) =
∑
mn

Wmn · δ(yi = m, yj = n), (5.6)

where r = {i, j}, wp = {W}, Wmn is the element of matrix W , and δ refers to the indicator

function.

For all experiments, we share all unary weights across the nodes of the graphical model as

well as all pairwise weights for all edges. Note that due to the use of ReLU units, the negative

log-likelihood is non-smooth, non-linear and non-convex w.r.t. w. Because of the non-smoothness

of F , we utilize momentum based sub-gradient descent methods to estimate the weights. In par-

ticular, we use a mini-batch size of 100, a step size of 0.01 and a momentum of 0.95. If the unary

potential is pre-trained, the initial step size is reduced to 0.001. All the unary classifiers are trained

with 100, 000 iterations over mini-batches. For all experiments, the validation set is only used to

decrease the step size, i.e., if the accuracy on the validation set decreases, we reduce the step size
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Figure 5.7: Flickr test set images and a subset of the assigned tags as well as our predictions

(bottom row).

by 0.5. We use ε = 1, set cr = 1 for all regions r, and perform 10 message passing iterations to

compute the marginal beliefs b(x,y),r at step 2 in Fig. 5.3 when dealing with loopy models.

We experiment with two graphical models, Markov models of first (i.e., there are links only

between yi and yi+1) and second order (i.e., there are links between yi and yi+1, yi+2) as well as

two types of unary potentials with varying degree of structure. We report two metrics, the average

character and word accuracy, which correspond to Hamming loss and zero-one loss respectively.

Tab. 5.1 depicts the results for the different models, learning strategies and number of hidden units.

We observe the following trends.

Joint training helps: Joint training with pre-trained unary classifiers (PreTrainJoint) outper-

forms all the other approaches in almost all cases. Piecewise training (PwTrain), unable to adapt

the non-linearities while learning pairwise weights, is worst than joint training.

Structure helps: Adding structure to the model is key to capture complex dependencies. As

shown in Tab. 5.1, more structured models (i.e., second order Markov model) consistently im-

proves performance.

Deep helps: We tested our models using one layer and two-layer perceptrons with both short-

range and long-range connections in the MRF. For the two-layer MLP, the number of hidden units

in the first layer is fixed to H1 = 512, and we varied the number of hidden units H2 in the sec-
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ond layer. As shown in Tab. 5.1, the deeper and the more structured the model is, the better the

performance we achieve. As expected, performance also increases with the number of hidden

units.

Efficiency: Using GPUs, it takes on average 0.064s per iteration for the 1st order Markov model

and 0.104s for the 2nd order Markov model. The time employed for training one layer vs. the

multi-layer models is approximately the same. Note that our approach is very efficient, as this is

the time per iteration to train 831,166 weights.

Learned parameters: As shown in the left column of Fig. 5.5, the learned unary weights re-

semble character strokes. The middle two panels show the learned pairwise weights for distance-1

edges (i.e., edges with only neighboring connections) and distance-2 edges (i.e., edges connecting

every other variable). For example, it shows that ‘q’ is likely to be followed by ‘u,’ and ‘e’ is likely

to be distance-2 away from ‘q’ in this dataset. On the right-most panel, we also show the negative

log-likelihood as a function of the number of joint training iterations. PreTrainJoint can achieve

the lowest cost value, while PwTrain has the highest value.

Non-linear pairwise functions: To further demonstrate the generality of our approach, we re-

placed the linear pairwise function in Eq. (5.6) by a one-layer MLP, while keeping the other set-

tings identical. For this experiment we utilize a 1st order Markov model. As shown in Fig. 5.6,

our model attains best performance when using a non-linear pairwise function. We found 16 to 64

hidden units for the non-linear pairwise function to be sufficient for modeling the bi-gram com-

binations in this dataset. In this case the largest model has 974,846 weights and training takes on

average 0.068s per iteration.

5.2.2 Image Tagging: Flickr

We next evaluate the importance of blending learning and inference. Towards this goal, we make

use of the Flickr dataset, which consists of 10, 000 training and 10, 000 test images from Flickr.

The task is to predict which of 38 possible tags should be assigned to each image. Fig. 5.7 shows
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Method Mean error

Unary only 9.36

PwTrain 7.70

PreTrainJoint 7.25

Table 5.2: Flickr Hamming loss: Joint training of deep features and the MRF improves perfor-

mance.
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Figure 5.8: Correlation matrix (i.e., pairwise potentials) learned on the Flickr dataset.

some examples. The graphical model has 38 binary random variables, each denoting the pres-

ence/absence of a particular tag. We define the non-linear unaries fr(x, yi;wu) using the 8-layer

deep-net architecture from [KSH13], followed by a 76-dimensional top layer. Hence the function

is composed out of two subsequent stacks of convolution, rectified linear (ReLU), pooling and lo-

cal response normalization units. Those are followed by three convolution–ReLU function pairs.

Afterwards pooling is applied before two fully-connected–ReLU–dropout combinations are em-

ployed to yield the input into a fully connected layer which finally computes the unary potentials.

We employ pairwise potentials similar to Eq. (5.6) which now fully model the correlations between
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any pair of output variables. This amounts to a total of 57, 182, 408 parameters arising from the

convolutional units, fully connected units and corresponding biases as well as the pairwise weights.

We use a momentum based sub-gradient method for training with a mini-batch size of 300, a

step size of 0.0001, a momentum of 0.95 and set ε = 1 and cr = 1 ∀r. We initialized the deep-net

parameters using a model pre-trained on ImageNet [DDS09]. Our error metric is the classification

error, i.e., Hamming loss.

Joint training helps: Results on the test set are summarized in Tab. 5.2. Similar to the Word50

dataset we observe that joint training is beneficial. We provide examples for perfect (two left-most

images), roughly accurate and failing predictions (right image) in Fig. 5.7.

Learned pairwise weights: In Fig. 5.8 we illustrate the learned correlations for a subset of the 38

classes. We observe that the class ‘people’ correlates highly with ‘female,’ ‘male,’ and ‘portrait.’

The ‘indoor’ tag does not co-occur with ‘sky,’ ‘structures,’ ‘plant life’ and ‘tree.’ ‘Sea’ appears

typically with ‘water,’ ‘clouds,’ ‘lake’ and ‘sky.’

Efficiency of Blending: To illustrate that blending is indeed beneficial we compare the negative

log-likelihood and the training error as a function of run-time in Fig. 5.9. The standard approach

is limited to 20 iterations of message passing to avoid time-consuming, repeated computation of a

stopping criterion involving both the approximated log-partition function and its dual. As show in

Fig. 5.9 blending learning and inference speeds up parameter estimation significantly. For larger

graphical models, we expect the differences to be even more significant.

5.3 Discussion

Joint training of neural networks and graphical models: Neural Networks have been incor-

porated as unary potentials in graphical models. One of the earliest works by [Bri90] jointly

optimizes a system consisting of multilayer perceptrons and hidden Markov models for speech

recognition. For document processing systems, [BBL97] propose Graph Transformer Networks to
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jointly optimize sub-tasks, such as word segmentation and character recognition. Several works

[CWB11, PBX09, MPW12, DA10, PF10, MF08] have extended the linear unary potential in MRFs

to incorporate non-linearities. However, they assume that exact inference can be performed either

via a forward-backward pass within the graphical model or dynamic programming. In contrast, in

this chapter we present learning algorithms for general graphical models, where inference is NP-

hard. Moreover, all the previous works (except [DA10]) do not consider max-margin loss during

training which is incorporated into our framework by choosing ε = 0. More recently, [LZ14] use

a hinge loss to learn the unary term defined as a neural net, but keep the pairwise potentials fixed

(i.e., no joint training). [Dom13] considers non-linear structured prediction and decomposes the

learning problem into a subset of logistic regressors, which require the parameter updates to be

run till convergence before updating the messages. [TJL14] also jointly train convolutional neural

networks and a graphical model for pose estimation. However, the MRF inference procedure is ap-

proximated by their Spatial-Model which ignores the partition function. [JNS12, JNR13] showed

the benefits of a combination of structured models with classification trees. Since the submission

of our work, [SU15, ZJR15] proposed the use of joint training using a double loop algorithm when

efficient mean field updates are possible. State-of-the-art was achieved when using the semantic

segmentation graphical model of [CPK15].

Blending learning and inference: In this chapter we defined learning to be a min-max

task. The blending strategy, which was previously employed for learning log-linear models by

[MSJ10, HU10], amounts to converting the maximization task into a minimization problem using

its dual. Subsequently we make use of block-coordinate descent strategies to obtain a more effi-

cient algorithm. Importantly any order of block-updates is possible. It remains an open problem to

find the optimal tradeoff.

5.4 Conclusion

We have proposed an efficient algorithm to learn deep models enriched to capture the dependencies

between the output variables. Our experiments on word prediction from noisy images and image

tagging showed that the deeper and the more structured the model, the better the performance we
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Figure 5.9: Blending learning and inference speeds-up training significantly.

achieve. Furthermore, joint learning of all weights outperforms all other strategies.

Joint training of deep convolutional neural networks and conditional random field has been

employred by recent works [ZJR15, LSR15, LLL15]. They have demonstrated outstanding perfor-

mance on the task of semantic image segmentation.
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CHAPTER 6

Semantic Image Segmentation with Deep Convolutional Nets

and Fully Connected CRFs

Deep Convolutional Neural Networks (DCNNs) had been the method of choice for document

recognition since [LBB98], but have only recently become the mainstream of high-level vision

research. Over the past two years DCNNs have pushed the performance of computer vision sys-

tems to soaring heights on a broad array of high-level problems, including image classification

[KSH13, SEZ13, SZ14, SLJ14, PKS14], object detection [GDD14], fine-grained categorization

[ZDG14], among others. A common theme in these works is that DCNNs trained in an end-to-end

manner deliver strikingly better results than systems relying on carefully engineered representa-

tions, such as SIFT or HOG features. This success can be partially attributed to the built-in invari-

ance of DCNNs to local image transformations, which underpins their ability to learn hierarchical

abstractions of data [ZF14]. While this invariance is clearly desirable for high-level vision tasks, it

can hamper low-level tasks, such as pose estimation [CY14, TJL14] and semantic segmentation -

where we want precise localization, rather than abstraction of spatial details.

There are two technical hurdles in the application of DCNNs to image labeling tasks: sig-

nal downsampling, and spatial ‘insensitivity’ (invariance). The first problem relates to the reduc-

tion of signal resolution incurred by the repeated combination of max-pooling and downsampling

(‘striding’) performed at every layer of standard DCNNs [KSH13, SZ14, SLJ14]. Instead, as in

[PKS14], we employ the ‘atrous’ (with holes) algorithm originally developed for efficiently com-

puting the undecimated discrete wavelet transform [Mal99]. This allows efficient dense computa-

tion of DCNN responses in a scheme substantially simpler than earlier solutions to this problem

[GCM13, SEZ13].
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The second problem relates to the fact that obtaining object-centric decisions from a classi-

fier requires invariance to spatial transformations, inherently limiting the spatial accuracy of the

DCNN model. We boost our model’s ability to capture fine details by employing a fully-connected

Conditional Random Field (CRF). Conditional Random Fields have been broadly used in seman-

tic segmentation to combine class scores computed by multi-way classifiers with the low-level

information captured by the local interactions of pixels and edges [RKB04, SWR09] or superpix-

els [LLB11]. Even though works of increased sophistication have been proposed to model the

hierarchical dependency [HZC04, LRK09, LVZ11] and/or high-order dependencies of segments

[DOI12, GBW10, KLT09, CPY13, WSL15], we use the fully connected pairwise CRF proposed

by [KK11] for its efficient computation, and ability to capture fine edge details while also catering

for long range dependencies. That model was shown in [KK11] to largely improve the perfor-

mance of a boosting-based pixel-level classifier, and in our work we demonstrate that it leads to

state-of-the-art results when coupled with a DCNN-based pixel-level classifier.

The three main advantages of our “DeepLab” system are (i) speed: by virtue of the ‘atrous’

algorithm, our dense DCNN operates at 8 fps, while Mean Field Inference for the fully-connected

CRF requires 0.5 second, (ii) accuracy: we obtain state-of-the-art results on the PASCAL semantic

segmentation challenge, outperforming the second-best approach of [MYS14] by a margin of 7.2%

and (iii) simplicity: our system is composed of a cascade of two fairly well-established modules,

DCNNs and CRFs.

6.1 Convolutional Neural Networks for Dense Image Labeling

Herein we describe how we have re-purposed and finetuned the publicly available Imagenet-

pretrained state-of-art 16-layer classification network of [SZ14] (VGG-16) into an efficient and

effective dense feature extractor for our dense semantic image segmentation system.
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Input stride

Output stride

Figure 6.1: Illustration of the hole algorithm in 1-D, when kernel size = 3, input stride = 2, and

output stride = 1.

6.1.1 Efficient Dense Sliding Window Feature Extraction with the Hole Algorithm

Dense spatial score evaluation is instrumental in the success of our dense CNN feature extractor. As

a first step to implement this, we convert the fully-connected layers of VGG-16 into convolutional

ones and run the network in a convolutional fashion on the image at its original resolution. However

this is not enough as it yields very sparsely computed detection scores (with a stride of 32 pixels).

To compute scores more densely at our target stride of 8 pixels, we develop a variation of the

method previously employed by [GCM13, SEZ13]. We skip subsampling after the last two max-

pooling layers in the network of [SZ14] and modify the convolutional filters in the layers that

follow them by introducing zeros to increase their length (2× in the last three convolutional layers

and 4× in the first fully connected layer). We can implement this more efficiently by keeping the

filters intact and instead sparsely sample the feature maps on which they are applied on using an

input stride of 2 or 4 pixels, respectively. This approach, illustrated in Fig. 6.1 is known as the ‘hole

algorithm’ (‘atrous algorithm’) and has been developed before for efficient computation of the

undecimated wavelet transform [Mal99]. We have implemented this within the Caffe framework

[JSD14] by adding to the im2col function (it converts multi-channel feature maps to vectorized

patches) the option to sparsely sample the underlying feature map. This approach is generally

applicable and allows us to efficiently compute dense CNN feature maps at any target subsampling

rate without introducing any approximations.

We finetune the model weights of the Imagenet-pretrained VGG-16 network to adapt it to
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the image classification task in a straightforward fashion, following the procedure of [LSD14].

We replace the 1000-way Imagenet classifier in the last layer of VGG-16 with a 21-way one.

Our loss function is the sum of cross-entropy terms for each spatial position in the CNN output

map (subsampled by 8 compared to the original image). All positions and labels are equally

weighted in the overall loss function. Our targets are the ground truth labels (subsampled by 8).

We optimize the objective function with respect to the weights at all network layers by the standard

SGD procedure of [KSH13].

During testing, we need class score maps at the original image resolution. As illustrated in

Figure 6.2 and further elaborated in Section 6.2.1, the class score maps (corresponding to log-

probabilities) are quite smooth, which allows us to use simple bilinear interpolation to increase

their resolution by a factor of 8 at a negligible computational cost. Note that the method of [LSD14]

does not use the hole algorithm and produces very coarse scores (subsampled by a factor of 32)

at the CNN output. This forced them to use learned upsampling layers, significantly increasing

the complexity and training time of their system: Fine-tuning our network on PASCAL VOC 2012

takes about 10 hours, while they report a training time of several days (both timings on a modern

GPU).

6.1.2 Controlling the Receptive Field Size and Accelerating Dense Computation with Con-

volutional Nets

Another key ingredient in re-purposing our network for dense score computation is explicitly con-

trolling the network’s receptive field size. Most recent DCNN-based image recognition methods

rely on networks pre-trained on the Imagenet large-scale classification task. These networks typi-

cally have large receptive field size: in the case of the VGG-16 net we consider, its receptive field

is 224×224 (with zero-padding) and 404×404 pixels if the net is applied convolutionally. After

converting the network to a fully convolutional one, the first fully connected layer has 4,096 fil-

ters of large 7×7 spatial size and becomes the computational bottleneck in our dense score map

computation.

We have addressed this practical problem by spatially subsampling (by simple decimation) the
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first FC layer to 4×4 (or 3×3) spatial size. This has reduced the receptive field of the network down

to 128×128 (with zero-padding) or 308×308 (in convolutional mode) and has reduced computation

time for the first FC layer by 2−3 times. Using our Caffe-based implementation and a Titan GPU,

the resulting VGG-derived network is very efficient: Given a 306×306 input image, it produces 39×

39 dense raw feature scores at the top of the network at a rate of about 8 frames/sec during testing.

The speed during training is 3 frames/sec. We have also successfully experimented with reducing

the number of channels at the fully connected layers from 4,096 down to 1,024, considerably

further decreasing computation time and memory footprint without sacrificing performance, as

detailed in Section 7.2. Using smaller networks such as [KSH13] could allow video-rate test-time

dense feature computation even on light-weight GPUs.

6.2 Detailed Boundary Recovery: Fully-Connected Conditional Random

Fields and Multi-scale Prediction

6.2.1 Deep Convolutional Networks and the Localization Challenge

As illustrated in Figure 6.2, DCNN score maps can reliably predict the presence and rough position

of objects in an image but are less well suited for pin-pointing their exact outline. There is a natural

trade-off between classification accuracy and localization accuracy with convolutional networks:

Deeper models with multiple max-pooling layers have proven most successful in classification

tasks, however their increased invariance and large receptive fields make the problem of inferring

position from the scores at their top output levels more challenging.

Recent work has pursued two directions to address this localization challenge. The first ap-

proach is to harness information from multiple layers in the convolutional network in order to better

estimate the object boundaries [LSD14, EF14]. The second approach is to employ a super-pixel

representation, essentially delegating the localization task to a low-level segmentation method.

This route is followed by the very successful recent method of [MYS14].

In Section 6.2.2, we pursue a novel alternative direction based on coupling the recognition ca-

pacity of DCNNs and the fine-grained localization accuracy of fully connected CRFs and show that
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it is remarkably successful in addressing the localization challenge, producing accurate semantic

segmentation results and recovering object boundaries at a level of detail that is well beyond the

reach of existing methods.

6.2.2 Fully-Connected Conditional Random Fields for Accurate Localization

Image/G.T. DCNN output CRF Iteration 1 CRF Iteration 2 CRF Iteration 10

Figure 6.2: Score map (input before softmax function) and belief map (output of softmax function)

for Aeroplane. We show the score (1st row) and belief (2nd row) maps after each mean field

iteration. The output of last DCNN layer is used as input to the mean field inference. Best viewed

in color.

Traditionally, conditional random fields (CRFs) have been employed to smooth noisy segmen-

tation maps [RKB04, KLT09]. Typically these models contain energy terms that couple neighbor-

ing nodes, favoring same-label assignments to spatially proximal pixels. Qualitatively, the primary

function of these short-range CRFs has been to clean up the spurious predictions of weak classifiers

built on top of local hand-engineered features.

Compared to these weaker classifiers, modern DCNN architectures such as the one we use in

this work produce score maps and semantic label predictions which are qualitatively different. As

illustrated in Figure 6.2, the score maps are typically quite smooth and produce homogeneous clas-

sification results. In this regime, using short-range CRFs can be detrimental, as our goal should be

to recover detailed local structure rather than further smooth it. Using contrast-sensitive potentials

[RKB04] in conjunction to local-range CRFs can potentially improve localization but still miss

thin-structures and typically requires solving an expensive discrete optimization problem.
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To overcome these limitations of short-range CRFs, we integrate into our system the fully

connected CRF model of [KK11]. The model employs the energy function

E(x) =
∑
i

θi(xi) +
∑
ij

θij(xi, xj) (6.1)

where x is the label assignment for pixels. We use as unary potential θi(xi) = − logP (xi),

where P (xi) is the label assignment probability at pixel i as computed by DCNN. The pairwise

potential is θij(xi, xj) = µ(xi, xj)
∑K

m=1wm · km(f i,f j), where µ(xi, xj) = 1 if xi 6= xj , and

zero otherwise (i.e., Potts Model). There is one pairwise term for each pair of pixels i and j in the

image no matter how far from each other they lie, i.e. the model’s factor graph is fully connected.

Each km is the Gaussian kernel depends on features (denoted as f ) extracted for pixel i and j and

is weighted by parameter wm. We adopt bilateral position and color terms, specifically, the kernels

are

w1 exp
(
− ||pi − pj||

2

2σ2
α

− ||Ii − Ij||
2

2σ2
β

)
+ w2 exp

(
− ||pi − pj||

2

2σ2
γ

)
(6.2)

where the first kernel depends on both pixel positions (denoted as p) and pixel color intensities

(denoted as I), and the second kernel only depends on pixel positions. The hyper parameters σα,

σβ and σγ control the “scale” of the Gaussian kernels.

Crucially, this model is amenable to efficient approximate probabilistic inference [KK11]. The

message passing updates under a fully decomposable mean field approximation b(x) =
∏

i bi(xi)

can be expressed as convolutions with a Gaussian kernel in feature space. High-dimensional fil-

tering algorithms [ABD10] significantly speed-up this computation resulting in an algorithm that

is very fast in practice, less that 0.5 sec on average for Pascal VOC images using the publicly

available implementation of [KK11].

6.2.3 Multi-Scale Prediction

Following the promising recent results of [HAG14a, LSD14] we have also explored a multi-scale

prediction method to increase the boundary localization accuracy. Specifically, we attach to the

input image and the output of each of the first four max pooling layers a two-layer MLP (first

layer: 128 3x3 convolutional filters, second layer: 128 1x1 convolutional filters) whose feature
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Neural 
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Input Aeroplane
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Bi-linear InterpolationFully Connected CRFFinal Output

Figure 6.3: Model Illustration. The coarse score map from Deep Convolutional Neural Network

(with fully convolutional layers) is upsampled by bi-linear interpolation. A fully connected CRF

is applied to refine the segmentation result. Best viewed in color.

map is concatenated to the main network’s last layer feature map. The aggregate feature map fed

into the softmax layer is thus enhanced by 5 * 128 = 640 channels. We only adjust the newly added

weights, keeping the other network parameters to the values learned by the method of Section 6.1.

As discussed in the experimental section, introducing these extra direct connections from fine-

resolution layers improves localization performance, yet the effect is not as dramatic as the one

obtained with the fully-connected CRF.

6.3 Experimental Evaluation

Dataset We test our DeepLab model on the PASCAL VOC 2012 segmentation benchmark [EEG14],

consisting of 20 foreground object classes and one background class. The original dataset contains

1, 464, 1, 449, and 1, 456 images for training, validation, and testing, respectively. The dataset is

augmented by the extra annotations provided by [HAB11], resulting in 10, 582 training images.

The performance is measured in terms of pixel intersection-over-union (IOU) averaged across the

21 classes.

Training We adopt the simplest form of piecewise training, decoupling the DCNN and CRF

training stages, assuming the unary terms provided by the DCNN are fixed during CRF training.
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Method mean IOU (%)

DeepLab 59.80

DeepLab-CRF 63.74

DeepLab-MSc 61.30

DeepLab-MSc-CRF 65.21

DeepLab-7x7 64.38

DeepLab-CRF-7x7 67.64

DeepLab-LargeFOV 62.25

DeepLab-CRF-LargeFOV 67.64

DeepLab-MSc-LargeFOV 64.21

DeepLab-MSc-CRF-LargeFOV 68.70

Method mean IOU (%)

MSRA-CFM 61.8

FCN-8s 62.2

TTI-Zoomout-16 64.4

DeepLab-CRF 66.4

DeepLab-MSc-CRF 67.1

DeepLab-CRF-7x7 70.3

DeepLab-CRF-LargeFOV 70.3

DeepLab-MSc-CRF-LargeFOV 71.6

(a) (b)

Table 6.1: (a) Performance of our proposed models on the PASCAL VOC 2012 ‘val’ set (with

training in the augmented ‘train’ set). The best performance is achieved by exploiting both multi-

scale features and large field-of-view. (b) Performance of our proposed models (with training in

the augmented ‘trainval’ set) compared to other state-of-art methods on the PASCAL VOC 2012

‘test’ set.

For DCNN training we employ the VGG-16 network which has been pre-trained on ImageNet.

We fine-tuned the VGG-16 network on the VOC 21-way pixel-classification task by stochastic

gradient descent on the cross-entropy loss function, as described in Section 6.1.1. We use a mini-

batch of 20 images and initial learning rate of 0.001 (0.01 for the final classifier layer), multiplying

the learning rate by 0.1 at every 2000 iterations. We use momentum of 0.9 and a weight decay of

0.0005.

After the DCNN has been fine-tuned, we cross-validate the parameters of the fully connected

CRF model in Eq. (6.2) along the lines of [KK11]. We use the default values of w2 = 3 and σγ = 3

and we search for the best values of w1, σα, and σβ by cross-validation on a small subset of the

validation set (we use 100 images). We employ coarse-to-fine search scheme. Specifically, the

initial search range of the parameters are w1 ∈ [5, 10], σα ∈ [50 : 10 : 100] and σβ ∈ [3 : 1 : 10]

(MATLAB notation), and then we refine the search step sizes around the first round’s best values.

We fix the number of mean field iterations to 10 for all reported experiments.
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Evaluation on Validation set We conduct the majority of our evaluations on the PASCAL ‘val’

set, training our model on the augmented PASCAL ‘train’ set. As shown in Tab. 6.1 (a), incor-

porating the fully connected CRF to our model (denoted by DeepLab-CRF) yields a substantial

performance boost, about 4% improvement over DeepLab. We note that the work of [KK11] im-

proved the 27.6% result of TextonBoost [SWR09] to 29.1%, which makes the improvement we

report here (from 59.8% to 63.7%) all the more impressive.

Turning to qualitative results, we provide visual comparisons between DeepLab and DeepLab-

CRF in Fig. 7.6. Employing a fully connected CRF significantly improves the results, allowing the

model to accurately capture intricate object boundaries.

Multi-Scale features We also exploit the features from the intermediate layers, similar to [HAG14a,

LSD14]. As shown in Tab. 6.1 (a), adding the multi-scale features to our DeepLab model (de-

noted as DeepLab-MSc) improves about 1.5% performance, and further incorporating the fully

connected CRF (denoted as DeepLab-MSc-CRF) yields about 4% improvement. The qualitative

comparisons between DeepLab and DeepLab-MSc are shown in Fig. 6.4. Leveraging the multi-

scale features can slightly refine the object boundaries.

Field of View The ‘atrous algorithm’ we employed allows us to arbitrarily control the Field-of-

View (FOV) of the models by adjusting the input stride, as illustrated in Fig. 6.1. In Tab. 6.2, we

experiment with several kernel sizes and input strides at the first fully connected layer. The method,

DeepLab-CRF-7x7, is the direct modification from VGG-16 net, where the kernel size = 7×7 and

input stride = 4. This model yields performance of 67.64% on the ‘val’ set, but it is relatively slow

(1.44 images per second during training). We have improved model speed to 2.9 images per second

by reducing the kernel size to 4×4. We have experimented with two such network variants with

different FOV sizes, DeepLab-CRF and DeepLab-CRF-4x4; the latter has large FOV (i.e., large

input stride) and attains better performance. Finally, we employ kernel size 3×3 and input stride =

12, and further change the filter sizes from 4096 to 1024 for the last two layers. Interestingly, the

resulting model, DeepLab-CRF-LargeFOV, matches the performance of the expensive DeepLab-

CRF-7x7. At the same time, it is 3.36 times faster to run and has significantly fewer parameters
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Method kernel size input stride receptive field # parameters mean IOU (%) Training speed (img/sec)

DeepLab-CRF-7x7 7×7 4 224 134.3M 67.64 1.44

DeepLab-CRF 4×4 4 128 65.1M 63.74 2.90

DeepLab-CRF-4x4 4×4 8 224 65.1M 67.14 2.90

DeepLab-CRF-LargeFOV 3×3 12 224 20.5M 67.64 4.84

Table 6.2: Effect of Field-Of-View. We show the performance (after CRF) and training speed on

the PASCAL VOC 2012 ‘val’ set as the function of (1) the kernel size of first fully connected layer,

(2) the input stride value employed in the atrous algorithm.

(20.5M instead of 134.3M).

The performance of several model variants is summarized in Tab. 6.1, showing the benefit of

exploiting multi-scale features and large FOV.

Figure 6.4: Incorporating multi-scale features improves the boundary segmentation. We show the

results obtained by DeepLab and DeepLab-MSc in the first and second row, respectively. Best

viewed in color.

Mean Pixel IOU along Object Boundaries To quantify the accuracy of the proposed model near

object boundaries, we evaluate the segmentation accuracy with an experiment similar to [KLT09,

KK11]. Specifically, we use the ‘void’ label annotated in val set, which usually occurs around

object boundaries. We compute the mean IOU for those pixels that are located within a narrow

band (called trimap) of ‘void’ labels. As shown in Fig. 6.5, exploiting the multi-scale features from

the intermediate layers and refining the segmentation results by a fully connected CRF significantly

improve the results around object boundaries.
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Figure 6.5: (a) Some trimap examples (top-left: image. top-right: ground-truth. bottom-left:

trimap of 2 pixels. bottom-right: trimap of 10 pixels). Quality of segmentation result within a

band around the object boundaries for the proposed methods. (b) Pixelwise accuracy. (c) Pixel

mean IOU.

Comparison with State-of-art In Fig. 6.6, we qualitatively compare our proposed model, DeepLab-

CRF, with two state-of-art models: FCN-8s [LSD14] and TTI-Zoomout-16 [MYS14] on the ‘val’

set (the results are extracted from their papers). Our model is able to capture the intricate object

boundaries.

Reproducibility We have implemented the proposed methods by extending the excellent Caffe

framework [JSD14]. We share our source code, configuration files, and trained models that allow

reproducing the results in this chapter at a companion web site https://bitbucket.org/

deeplab/deeplab-public.

Test set results Having set our model choices on the validation set, we evaluate our model vari-

ants on the PASCAL VOC 2012 official ‘test’ set. As shown in Tab. 6.3, our DeepLab-CRF

and DeepLab-MSc-CRF models achieve performance of 66.4% and 67.1% mean IOU1, respec-

tively. Our models outperform all the other state-of-the-art models (specifically, TTI-Zoomout-16

[MYS14], FCN-8s [LSD14], and MSRA-CFM [DHS14]). When we increase the FOV of the

models, DeepLab-CRF-LargeFOV yields performance of 70.3%, the same as DeepLab-CRF-7x7,

1http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=
11&compid=6
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(a) FCN-8s vs. DeepLab-CRF (b) TTI-Zoomout-16 vs. DeepLab-CRF

Figure 6.6: Comparisons with state-of-the-art models on the val set. First row: images. Second

row: ground truths. Third row: other recent models (Left: FCN-8s, Right: TTI-Zoomout-16).

Fourth row: our DeepLab-CRF. Best viewed in color.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

MSRA-CFM - 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

FCN-8s - 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

TTI-Zoomout-16 89.8 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3 64.4

DeepLab-CRF 92.1 78.4 33.1 78.2 55.6 65.3 81.3 75.5 78.6 25.3 69.2 52.7 75.2 69.0 79.1 77.6 54.7 78.3 45.1 73.3 56.2 66.4

DeepLab-MSc-CRF 92.6 80.4 36.8 77.4 55.2 66.4 81.5 77.5 78.9 27.1 68.2 52.7 74.3 69.6 79.4 79.0 56.9 78.8 45.2 72.7 59.3 67.1

DeepLab-CRF-7x7 92.8 83.9 36.6 77.5 58.4 68.0 84.6 79.7 83.1 29.5 74.6 59.3 78.9 76.0 82.1 80.6 60.3 81.7 49.2 78.0 60.7 70.3

DeepLab-CRF-LargeFOV 92.6 83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9 60.4 78.5 75.5 82.1 79.7 58.2 82.0 48.8 73.7 63.3 70.3

DeepLab-MSc-CRF-LargeFOV 93.1 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

Table 6.3: Labeling IOU (%) on the PASCAL VOC 2012 test set, using the trainval set for training.

while its training speed is faster. Furthermore, our best model, DeepLab-MSc-CRF-LargeFOV,

attains the best performance of 71.6% by employing both multi-scale features and large FOV.
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Figure 6.7: Visualization results on VOC 2012-val. For each row, we show the input image, the

segmentation result delivered by the DCNN (DeepLab), and the refined segmentation result of the

Fully Connected CRF (DeepLab-CRF). We show our failure modes in the last three rows. Best

viewed in color.
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6.4 Discussion

Our system works directly on the pixel representation, similarly to [LSD14]. This is in contrast to

the two-stage approaches that are now most common in semantic segmentation with DCNNs: such

techniques typically use a cascade of bottom-up image segmentation and DCNN-based region clas-

sification, which makes the system commit to potential errors of the front-end segmentation sys-

tem. For instance, the bounding box proposals and masked regions delivered by [APB14, USG13]

are used in [GDD14] and [HAG14b] as inputs to a DCNN to introduce shape information into the

classification process. Similarly, the authors of [MYS14] rely on a superpixel representation. A

celebrated non-DCNN precursor to these works is the second order pooling method of [CCB12]

which also assigns labels to the regions proposals delivered by [CS12]. Understanding the perils

of committing to a single segmentation, the authors of [CLP14] build on [YBS13] to explore a

diverse set of CRF-based segmentation proposals, computed also by [CS12]. These segmentation

proposals are then re-ranked according to a DCNN trained in particular for this reranking task.

Even though this approach explicitly tries to handle the temperamental nature of a front-end seg-

mentation algorithm, there is still no explicit exploitation of the DCNN scores in the CRF-based

segmentation algorithm: the DCNN is only applied post-hoc, while it would make sense to directly

try to use its results during segmentation.

Moving towards works that lie closer to our approach, several other researchers have consid-

ered the use of convolutionally computed DCNN features for dense image labeling. Among the

first have been [FCN13] who apply DCNNs at multiple image resolutions and then employ a seg-

mentation tree to smooth the prediction results; more recently, [HAG14a] propose to concatenate

the computed inter-mediate feature maps within the DCNNs for pixel classification, and [DHS14]

propose to pool the inter-mediate feature maps by region proposals. Even though these works

still employ segmentation algorithms that are decoupled from the DCNN classifier’s results, we

believe it is advantageous that segmentation is only used at a later stage, avoiding the commitment

to premature decisions.

More recently, the segmentation-free techniques of [LSD14, EF14] directly apply DCNNs to

the whole image in a sliding window fashion, replacing the last fully connected layers of a DCNN
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by convolutional layers. In order to deal with the spatial localization issues outlined in the begin-

ning of the introduction, [LSD14] upsample and concatenate the scores from inter-mediate feature

maps, while [EF14] refine the prediction result from coarse to fine by propagating the coarse results

to another DCNN.

The main difference between our model and other state-of-the-art models is the combination of

pixel-level CRFs and DCNN-based ‘unary terms’. Focusing on the closest works in this direction,

[CLP14] use CRFs as a proposal mechanism for a DCNN-based reranking system, while [FCN13]

treat superpixels as nodes for a local pairwise CRF and use graph-cuts for discrete inference; as

such their results can be limited by errors in superpixel computations, while ignoring long-range

superpixel dependencies. Our approach instead treats every pixel as a CRF node, exploits long-

range dependencies, and uses CRF inference to directly optimize a DCNN-driven cost function.

We note that mean field had been extensively studied for traditional image segmentation/edge

detection tasks, e.g., [GG91, GY91, KDF08], but recently [KK11] showed that the inference can

be very efficient for fully connected CRF and particularly effective in the context of semantic

segmentation.

After the first version of our manuscript was made publicly available, it came to our attention

that two other groups have independently and concurrently pursued a very similar direction, com-

bining DCNNs and densely connected CRFs [BUS14, ZJR15]. There are several differences in

technical aspects of the respective models. In terms of applications, [BUS14] focus on the prob-

lem of material classification. Similarly to us, [ZJR15] evaluate their system on the problem of

semantic image segmentation but their results on the PASCAL VOC 2012 benchmark are some-

what inferior to ours. We refer the interested reader to these papers for different perspectives on

the interplay of DCNNs and CRFs.

6.5 Conclusion

Our work combines ideas from deep convolutional neural networks and fully-connected condi-

tional random fields, yielding a novel method able to produce semantically accurate predictions

and detailed segmentation maps, while being computationally efficient. Our experimental results
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show that the proposed method significantly advances the state-of-art in the challenging PASCAL

VOC 2012 semantic image segmentation task.
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CHAPTER 7

Weakly- and Semi-Supervised Learning of a Deep

Convolutional Network for Semantic Image Segmentation

Semantic image segmentation refers to the problem of assigning a semantic label (such as “person”,

“car” or “dog”) to every pixel in the image. Various approaches have been tried over the years, but

according to the results on the challenging Pascal VOC 2012 segmentation benchmark, the best

performing methods all use some kind of Deep Convolutional Neural Network (DCNN) [BUS14,

CPK15, DHS14, FCN13, LSD14, MYS14, ZJR15].

In this chapter, we work with the DeepLab-CRF approach of [CPK15, ZJR15]. This combines

a DCNN with a fully connected Conditional Random Field (CRF) [KK11], in order to get high

resolution segmentations. This model achieves state-of-art results on the challenging PASCAL

VOC segmentation benchmark [EEG14], delivering a mean intersection-over-union (IOU) score

exceeding 70%.

A key bottleneck in building this class of DCNN-based segmentation models is that they typ-

ically require pixel-level annotated images during training. Acquiring such data is an expensive,

time-consuming annotation effort. Weak annotations, in the form of bounding boxes (i.e., coarse

object locations) or image-level labels (i.e., information about which object classes are present)

are far easier to collect than detailed pixel-level annotations. We develop new methods for training

DCNN image segmentation models from weak annotations, either alone or in combination with a

small number of strong annotations. Extensive experiments, in which we achieve performance up

to 69.0%, demonstrate the effectiveness of the proposed techniques.

According to [LMB14], collecting bounding boxes around each class instance in the image is

about 15 times faster/cheaper than labeling images at the pixel level. We demonstrate that it is
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possible to learn a DeepLab-CRF model delivering 62.2% IOU on the PASCAL VOC 2012 test set

by training it on a simple foreground/background segmentation of the bounding box annotations.

An even cheaper form of data to collect is image-level labels, which specify the presence or

absence of semantic classes, but not the object locations. Most existing approaches for training

semantic segmentation models from this kind of very weak labels use multiple instance learning

(MIL) techniques. However, even recent weakly-supervised methods such as [LSD14] deliver sig-

nificantly inferior results compared to their fully-supervised counterparts, only achieving 25.7%.

Including additional trainable objectness [CZL14] or segmentation [APB14] modules that largely

increase the system complexity, [PC15] has improved performance to 40.6%, which still signifi-

cantly lags performance of fully-supervised systems.

We develop novel online Expectation-Maximization (EM) methods for training DCNN seman-

tic segmentation models from weakly annotated data. The proposed algorithms alternate between

estimating the latent pixel labels (subject to the weak annotation constraints), and optimizing the

DCNN parameters using stochastic gradient descent (SGD). When we only have access to image-

level annotated training data, we achieve 39.6%, close to [PC15] but without relying on any ex-

ternal objectness or segmentation module. More importantly, our EM approach also excels in

the semi-supervised scenario which is very important in practice. Having access to a small num-

ber of strongly (pixel-level) annotated images and a large number of weakly (bounding box or

image-level) annotated images, the proposed algorithm can almost match the performance of the

fully-supervised system. For example, having access to 2.9k pixel-level images and 9k image-level

annotated images yields 68.5%, only 2% inferior the performance of the system trained with all

12k images strongly annotated at the pixel level. Finally, we show that using additional weak or

strong annotations from the MS-COCO dataset can further improve results, yielding 73.9% on the

PASCAL VOC 2012 benchmark.

Contributions In summary, our main contributions are:

1. We present EM algorithms for training with image-level or bounding box annotation, appli-

cable to both the weakly-supervised and semi-supervised settings.
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2. We show that our approach achieves excellent performance when combining a small number

of pixel-level annotated images with a large number of image-level or bounding box anno-

tated images, nearly matching the results achieved when all training images have pixel-level

annotations.

3. We show that combining weak or strong annotations across datasets yields further improve-

ments. In particular, we reach 73.9% IOU performance on PASCAL VOC 2012 by combin-

ing annotations from the PASCAL and MS-COCO datasets.

7.1 Proposed Methods

We build on the DeepLab model for semantic image segmentation proposed in [CPK15]. This

uses a DCNN to predict the label distribution per pixel, followed by a fully-connected (dense)

CRF [KK11] to smooth the predictions while preserving image edges. In this chapter, we focus for

simplicity on methods for training the DCNN parameters from weak labels, only using the CRF

at test time. Additional gains can be obtained by integrated end-to-end training of the DCNN and

CRF parameters [ZJR15].

Notation We denote by x the image values and y the segmentation map. In particular, ym ∈

{0, . . . , L} is the pixel label at position m ∈ {1, . . . ,M}, assuming that we have the background

as well as L possible foreground labels and M is the number of pixels. Note that these pixel-level

labels may not be visible in the training set. We encode the set of image-level labels by z, with

zl = 1, if the l-th label is present anywhere in the image, i.e., if
∑

m[ym = l] > 0.

7.1.1 Pixel-level annotations

In the fully supervised case illustrated in Fig. 7.1, the objective function is

J(θ) = logP (y|x;θ) =
M∑
m=1

logP (ym|x;θ) , (7.1)
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Figure 7.1: DeepLab model training from fully annotated images.

where θ is the vector of DCNN parameters. The per-pixel label distributions are computed by

P (ym|x;θ) ∝ exp(fm(ym|x;θ)) , (7.2)

where fm(ym|x;θ) is the output of the DCNN at pixel m. We optimize J(θ) by mini-batch SGD.

7.1.2 Image-level annotations

When only image-level annotation is available, we can observe the image values x and the image-

level labels z, but the pixel-level segmentations y are latent variables. We have the following

probabilistic graphical model:

P (x,y, z;θ) = P (x)

(
M∏
m=1

P (ym|x;θ)

)
P (z|y) . (7.3)

We pursue an EM-approach in order to learn the model parameters θ from training data. If we

ignore terms that do not depend on θ, the expected complete-data log-likelihood given the previous

parameter estimate θ′ is

Q(θ;θ′) =
∑
y

P (y|x, z;θ′) logP (y|x;θ) ≈ logP (ŷ|x;θ) , (7.4)

where we adopt a hard-EM approximation, estimating in the E-step of the algorithm the latent

segmentation by

ŷ = argmax
y

P (y|x;θ′)P (z|y) (7.5)

= argmax
y

logP (y|x;θ′) + logP (z|y) (7.6)

= argmax
y

(
M∑
m=1

fm(ym|x;θ′) + logP (z|y)

)
. (7.7)
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Algorithm 1 Weakly-Supervised EM (fixed bias version)
Input: Initial CNN parameters θ′, potential parameters bl, l ∈ {0, . . . , L}, image x, image-level

label set z.

E-Step: For each image position m

1: f̂m(l) = fm(l|x;θ′) + bl, if zl = 1

2: f̂m(l) = fm(l|x;θ′), if zl = 0

3: ŷm = argmaxl f̂m(l)

M-Step:

4: Q(θ;θ′) = logP (ŷ|x,θ) =
∑M

m=1 logP (ŷm|x,θ)

5: Compute∇θQ(θ;θ′) and use SGD to update θ′.

In the M-step of the algorithm, we optimizeQ(θ;θ′) ≈ logP (ŷ|x;θ) by mini-batch SGD similarly

to (7.1), treating ŷ as ground truth segmentation.

To completely identify the E-step (7.7), we need to specify the observation model P (z|y). We

have experimented with two variants, EM-Fixed and EM-Adapt.

EM-Fixed In this variant, we assume that logP (z|y) factorizes over pixel positions as

logP (z|y) =
M∑
m=1

φ(ym, z) + (const) , (7.8)

allowing us to estimate the E-step segmentation at each pixel separately

ŷm = argmax
ym

f̂m(ym)
.
= fm(ym|x;θ′) + φ(ym, z) . (7.9)

We assume that

φ(ym = l, z) =

 bl if zl = 1

0 if zl = 0
(7.10)

We set the parameters bl = bfg, if l > 0 and b0 = bbg, with bfg > bbg > 0. Intuitively, this potential

encourages a pixel to be assigned to one of the image-level labels z. We choose bfg > bbg, boosting

present foreground classes more than the background, to encourage full object coverage and avoid

a degenerate solution of all pixels being assigned to background. The procedure is summarized in

Algorithm 1 and illustrated in Fig. 7.2.
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Figure 7.2: DeepLab model training using image-level labels.

EM-Adapt In this method, we assume that logP (z|y) = φ(y, z) + (const), where φ(y, z) takes

the form of a cardinality potential [LZ14, PK12, TSZ12]. In particular, we encourage at least a ρl

portion of the image area to be assigned to class l, if zl = 1, and enforce that no pixel is assigned

to class l, if zl = 0. We set the parameters ρl = ρfg, if l > 0 and ρ0 = ρbg. Similar area or label

constraints appear in [DOI12, KF05].

In practice, we employ a variant of Algorithm 1. We adaptively set the image- and class-

dependent biases bl so as the prescribed proportion of the image area is assigned to the back-

ground or foreground object classes. This acts as a powerful constraint that explicitly prevents the

background score from prevailing in the whole image, also promoting higher foreground object

coverage.

EM-Adapt: E-Step with Cardinality Constraints: Details of our EM-Adapt Algorithm Herein

we provide more background and a detailed description of our EM-Adapt algorithm for weakly-

supervised training with image-level annotations.

As a reminder, y is the latent segmentation map, with ym ∈ {0, . . . , L} denoting the label at

position m ∈ {1, . . . ,M}. The image-level annotation is encoded in z, with zl = 1, if the l-th

label is present anywhere in the image.

We assume that logP (z|y) = φ(y, z) + (const). We employ a cardinality potential φ(y, z)
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which encourages at least a ρl portion of the image area to be assigned to class l, if zl = 1, and

enforce that no pixel is assigned to class l, if zl = 0. We set the parameters ρl = ρfg, if l > 0 and

ρ0 = ρbg.

While dedicated algorithms exist for optimizing energy functions under such cardinality po-

tentials [TSZ12, PK12, LZ14], we opt for a simpler alternative that approximately enforces these

area constraints and works well in practice. We use a variant of the EM-Fixed algorithm described

before, updating the segmentations in the E-Step by ŷm = argmaxl f̂m(l)
.
= fm(l|x;θ′) + bl. The

key difference in the EM-Adapt variant is that the biases bl are adaptively set so as the prescribed

proportion of the image area is assigned to the background or foreground object classes that are

present in the image.

When only one label l is present (i.e. zl = 1,
∑L

l′=0 zl′ = 1), one can easily enforce the

constraint that at least ρl of the image area is assigned to label l as follows: (1) Set bl′ = 0, l′ 6= l.

(2) Compute the maximum score at each position, fmax
m = maxLl′=0 fm(l′|x;θ′). (3) Set bl equal to

the ρl-th percentile of the score difference dm = fmax
m − fm(l|x;θ′). The cost of this algorithm is

O(M) (linear w.r.t. the number of pixels).

When more than one labels are present in the image (i.e.
∑L

l′=0 zl′ > 1), we employ the pro-

cedure above sequentially for each label that zl > 1 (we first visit the background label, then in

random order each of the foreground labels which are present in the image). We set bl = −∞, if

zl = 0, to suppress the labels that are not present in the image.

EM vs. MIL It is instructive to compare our EM-based approach with two recent Multiple In-

stance Learning (MIL) methods for learning semantic image segmentation models [PSL14, PC15].

The method in [PSL14] defines an MIL classification objective based on the per-class spatial max-

imum of the local label distributions of (7.2), P̂ (l|x;θ)
.
= maxm P (ym = l|x;θ), and [PC15]

adopts a softmax function. While this approach has worked well for image classification tasks

[OBL14, PKS14], it is less suited for segmentation as it does not promote full object coverage:

The DCNN becomes tuned to focus on the most distinctive object parts (e.g., human face) instead

of capturing the whole object (e.g., human body).
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Figure 7.3: DeepLab model training from bounding boxes.

7.1.3 Bounding Box Annotations

We explore three alternative methods for training our segmentation model from labeled bounding

boxes.

The first Bbox-Rect method amounts to simply considering each pixel within the bounding box

as positive example for the respective object class. Ambiguities are resolved by assigning pixels

that belong to multiple bounding boxes to the one that has the smallest area.

The bounding boxes fully surround objects but also contain background pixels that contam-

inate the training set with false positive examples for the respective object classes. To filter out

these background pixels, we have also explored a second Bbox-Seg method in which we perform

automatic foreground/background segmentation. To perform this segmentation, we use the same

CRF as in DeepLab. More specifically, we constrain the center area of the bounding box (α% of

pixels within the box) to be foreground, while we constrain pixels outside the bounding box to be

background. We implement this by appropriately setting the unary terms of the CRF. We then infer

the labels for pixels in between. We cross-validate the CRF parameters to maximize segmentation

accuracy in a small held-out set of fully-annotated images. This approach is similar to the grabcut

method of [RKB04]. Examples of estimated segmentations with the two methods are shown in

Fig. 7.4.
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Figure 7.4: Estimated segmentation from bounding box annotation.

The two methods above, illustrated in Fig. 7.3, estimate segmentation maps from the bounding

box annotation as a pre-processing step, then employ the training procedure of Sec. 7.1.1, treating

these estimated labels as ground-truth.

Our third Bbox-EM-Fixed method is an EM algorithm that allows us to refine the estimated

segmentation maps throughout training. The method is a variant of the EM-Fixed algorithm in

Sec. 7.1.2, in which we boost the present foreground object scores only within the bounding box

area.

7.1.4 Mixed strong and weak annotations

In practice, we often have access to a large number of weakly image-level annotated images and

can only afford to procure detailed pixel-level annotations for a small fraction of these images. We

handle this hybrid training scenario by combining the methods presented in the previous sections,

as illustrated in Figure 7.5. In SGD training of our deep CNN models, we bundle to each mini-

batch a fixed proportion of strongly/weakly annotated images, and employ our EM algorithm in

estimating at each iteration the latent semantic segmentations for the weakly annotated images.
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Figure 7.5: DeepLab model training on a union of full (strong labels) and image-level (weak labels)

annotations.

7.2 Experimental Evaluation

7.2.1 Experimental Protocol

Datasets The proposed training methods are evaluated on the PASCAL VOC 2012 segmentation

benchmark [EEG14], consisting of 20 foreground object classes and one background class. The

segmentation part of the original PASCAL VOC 2012 dataset contains 1464 (train), 1449 (val ), and

1456 (test) images for training, validation, and test, respectively. We also use the extra annotations

provided by [HAB11], resulting in augmented sets of 10, 582 (train aug) and 12, 031 (trainval aug)

images. We have also experimented with the large MS-COCO 2014 dataset [LMB14], which

contains 123, 287 images in its trainval set. The MS-COCO 2014 dataset has 80 foreground object

classes and one background class and is also annotated at the pixel level.

The performance is measured in terms of pixel intersection-over-union (IOU) averaged across

the 21 classes. We first evaluate our proposed methods on the PASCAL VOC 2012 val set. We
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then report our results on the official PASCAL VOC 2012 benchmark test set (whose annotations

are not released). We also compare our test set results with other competing methods.

Reproducibility We have implemented the proposed methods by extending the excellent Caffe

framework [JSD14]. We share our source code, configuration files, and trained models that allow

reproducing the results in this chapter at a companion web site https://bitbucket.org/

deeplab/deeplab-public.

Weak annotations In order to simulate the situations where only weak annotations are available

and to have fair comparisons (e.g., use the same images for all settings), we generate the weak

annotations from the pixel-level annotations. The image-level labels are easily generated by sum-

marizing the pixel-level annotations, while the bounding box annotations are produced by drawing

rectangles tightly containing each object instance (PASCAL VOC 2012 also provides instance-

level annotations) in the dataset.

Network architectures We have experimented with the two DCNN architectures of [CPK15],

with parameters initialized from the VGG-16 ImageNet pretrained model of [SZ14]. They differ

in the receptive field of view (FOV) size. We have found that large FOV (224×224) performs best

when at least some training images are annotated at the pixel level, whereas small FOV (128×128)

performs better when only image-level annotations are available.

Training We employ our proposed training methods to learn the DCNN component of the DeepLab-

CRF model of [CPK15]. In SGD training, we use a mini-batch of 20-30 images and initial learning

rate of 0.001 (0.01 for the final classifier layer), multiplying the learning rate by 0.1 after a fixed

number of iterations. We use momentum of 0.9 and a weight decay of 0.0005. Fine-tuning our

network on PASCAL VOC 2012 takes about 12 hours on a NVIDIA Tesla K40 GPU.

Similarly to [CPK15], we decouple the DCNN and Dense CRF training stages and learn the

CRF parameters by cross validation to maximize IOU segmentation accuracy in a held-out set of

100 Pascal val fully-annotated images. We use 10 mean-field iterations for Dense CRF inference
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Method #Strong #Weak val IOU

EM-Fixed (Weak) - 10,582 20.8

EM-Adapt (Weak) - 10,582 38.2

EM-Fixed (Semi)

200 10,382 47.6

500 10,082 56.9

750 9,832 59.8

1,000 9,582 62.0

1,464 5,000 63.2

1,464 9,118 64.6

Strong
1,464 - 62.5

10,582 - 67.6

Table 7.1: VOC 2012 val performance for varying number of pixel-level (strong) and image-level

(weak) annotations (Sec. 7.2.3).

[KK11]. Note that the IOU scores are typically 3-5% worse if we don’t use the CRF for post-

processing of the results.

7.2.2 Pixel-level annotations

We have first reproduced the results of [CPK15]. Training the DeepLab-CRF model with strong

pixel-level annotations on PASCAL VOC 2012, we achieve a mean IOU score of 67.6% on val

and 70.3% on test ; see method DeepLab-CRF-LargeFOV in [CPK15, Table 1].

7.2.3 Image-level annotations

Validation results We evaluate our proposed methods in training the DeepLab-CRF model using

image-level weak annotations from the 10,582 PASCAL VOC 2012 train aug set, generated as

described in Sec. 7.2.1 above. We report the val performance of our two weakly-supervised EM

variants described in Sec. 7.1.2. In the EM-Fixed variant we use bfg = 5 and bbg = 3 as fixed

foreground and background biases. We found the results to be quite sensitive to the difference

bfg − bbg but not very sensitive to their absolute values. In the adaptive EM-Adapt variant we

constrain at least ρbg = 40% of the image area to be assigned to background and at least ρfg = 20%

of the image area to be assigned to foreground (as specified by the weak label set).
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Method #Strong #Weak test IOU

MIL-FCN [PSL14] - 10k 25.7

MIL-sppxl [PC15] - 760k 35.8

MIL-obj [PC15] BING 760k 37.0

MIL-seg [PC15] MCG 760k 40.6

EM-Adapt (Weak) - 12k 39.6

EM-Fixed (Semi)
1.4k 10k 66.2

2.9k 9k 68.5

Strong [CPK15] 12k - 70.3

Table 7.2: VOC 2012 test performance for varying number of pixel-level (strong) and image-level

(weak) annotations (Sec. 7.2.3).

We also examine using weak image-level annotations in addition to a varying number of pixel-

level annotations, within the semi-supervised learning scheme of Sec. 7.1.4. In this Semi setting

we employ strong annotations of a subset of PASCAL VOC 2012 train set and use the weak image-

level labels from another non-overlapping subset of the train aug set. We perform segmentation

inference for the images that only have image-level labels by means of EM-Fixed, which we have

found to perform better than EM-Adapt in the semi-supervised training setting.

The results are summarized in Table 7.1. We see that the EM-Adapt algorithm works much bet-

ter than the EM-Fixed algorithm when we only have access to image level annotations, 20.8% vs.

38.2% validation IOU. Using 1,464 pixel-level and 9,118 image-level annotations in the EM-Fixed

semi-supervised setting significantly improves performance, yielding 64.6%. Note that image-

level annotations are helpful, as training only with the 1,464 pixel-level annotations only yields

62.5%.

Test results In Table 7.2 we report our test results. We compare the proposed methods with the

recent MIL-based approaches of [PSL14, PC15], which also report results obtained with image-

level annotations on the VOC benchmark. Our EM-Adapt method yields 39.6%, which improves

over MIL-FCN [PSL14] by a large 13.9% margin. As [PC15] shows, MIL can become more

competitive if additional segmentation information is introduced: Using low-level superpixels,

MIL-sppxl [PC15] yields 35.8% and is still inferior to our EM algorithm. Only if augmented
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with BING [CZL14] or MCG [APB14] can MIL obtain results comparable to ours (MIL-obj:

37.0%, MIL-seg: 40.6%) [PC15]. Note, however, that both BING and MCG have been trained

with bounding box or pixel-annotated data on the PASCAL train set, and thus both MIL-obj and

MIL-seg indirectly rely on bounding box or pixel-level PASCAL annotations.

The more interesting finding of this experiment is that including very few strongly annotated

images in the semi-supervised setting significantly improves the performance compared to the pure

weakly-supervised baseline. For example, using 2.9k pixel-level annotations along with 9k image-

level annotations in the semi-supervised setting yields 68.5%. We would like to highlight that this

result surpasses all techniques which are not based on the DCNN+CRF pipeline of [CPK15] (see

Tab. 7.6), even if trained with all available pixel-level annotations.

7.2.4 Bounding box annotations

Validation results In this experiment, we train the DeepLab-CRF model using bounding box

annotations from the train aug set. We estimate the training set segmentations in a pre-processing

step using the Bbox-Rect and Bbox-Seg methods described in Sec. 7.1.3. We assume that we also

have access to 100 fully-annotated PASCAL VOC 2012 val images which we have used to cross-

validate the value of the single Bbox-Seg parameter α (percentage of the center bounding box area

constrained to be foreground). We varied α from 20% to 80%, finding that α = 20% maximizes

accuracy in terms of IOU in recovering the ground truth foreground from the bounding box. We

also examine the effect of combining these weak bounding box annotations with strong pixel-level

annotations, using the semi-supervised learning methods of Sec. 7.1.4.

The results are summarized in Table 7.3. When using only bounding box annotations, we

see that Bbox-Seg improves over Bbox-Rect by 8.1%, and gets within 7.0% of the strong pixel-

level annotation result. We observe that combining 1,464 strong pixel-level annotations with weak

bounding box annotations yields 65.1%, only 2.5% worse than the strong pixel-level annotation

result. In the semi-supervised learning settings and 1,464 strong annotations, Semi-Bbox-EM-

Fixed and Semi-Bbox-Seg perform similarly.
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Method #Strong #Box val IOU

Bbox-Rect (Weak) - 10,582 52.5

Bbox-EM-Fixed (Weak) - 10,582 54.1

Bbox-Seg (Weak) - 10,582 60.6

Bbox-Rect (Semi) 1,464 9,118 62.1

Bbox-EM-Fixed (Semi) 1,464 9,118 64.8

Bbox-Seg (Semi) 1,464 9,118 65.1

Strong
1,464 - 62.5

10,582 - 67.6

Table 7.3: VOC 2012 val performance for varying number of pixel-level (strong) and bounding

box (weak) annotations (Sec. 7.2.4).

Method #Strong #Box test IOU

BoxSup [DHS15] MCG 10k 64.6

BoxSup [DHS15] 1.4k (+MCG) 9k 66.2

Bbox-Rect (Weak) - 12k 54.2

Bbox-Seg (Weak) - 12k 62.2

Bbox-Seg (Semi) 1.4k 10k 66.6

Bbox-EM-Fixed (Semi) 1.4k 10k 66.6

Bbox-Seg (Semi) 2.9k 9k 68.0

Bbox-EM-Fixed (Semi) 2.9k 9k 69.0

Strong [CPK15] 12k - 70.3

Table 7.4: VOC 2012 test performance for varying number of pixel-level (strong) and bounding

box (weak) annotations (Sec. 7.2.4).

Test results In Table 7.4 we report our test results. We compare the proposed methods with

the very recent BoxSup approach of [DHS15], which also uses bounding box annotations on the

VOC 2012 segmentation benchmark. Comparing our alternative Bbox-Rect (54.2%) and Bbox-Seg

(62.2%) methods, we see that simple foreground-background segmentation provides much better

segmentation masks for DCNN training than using the raw bounding boxes. BoxSup does 2.4%

better, however it employs the MCG segmentation proposal mechanism [APB14], which has been

trained with pixel-annotated data on the PASCAL train set; it thus indirectly relies on pixel-level

annotations.

When we also have access to pixel-level annotated images, our performance improves to 66.6%
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(1.4k strong annotations) or 69.0% (2.9k strong annotations). In this semi-supervised setting we

outperform BoxSup (66.6% vs. 66.2% with 1.4k strong annotations), although we do not use MCG.

Interestingly, Bbox-EM-Fixed improves over Bbox-Seg as we add more strong annotations, and

it performs 1.0% better (69.0% vs. 68.0%) with 2.9k strong annotations. This shows that the E-

step of our EM algorithm can estimate the object masks better than the foreground-background

segmentation pre-processing step when enough pixel-level annotated images are available.

Comparing with Sec. 7.2.3, note that 2.9k strong + 9k image-level annotations yield 68.5%

(Tab. 7.2), while 2.9k strong + 9k bounding box annotations yield 69.0% (Tab. 7.3). This find-

ing suggests that bounding box annotations add little value over image-level annotations when a

sufficient number of pixel-level annotations is also available.

7.2.5 Exploiting Annotations Across Datasets

Validation results We present experiments leveraging the 81-label MS-COCO dataset as an ad-

ditional source of data in learning the DeepLab model for the 21-label PASCAL VOC 2012 seg-

mentation task. We consider three scenarios:

• Cross-Pretrain (Strong) : Pre-train DeepLab on MS-COCO, then replace the top-level net-

work weights and fine-tune on Pascal VOC 2012, using pixel-level annotation in both datasets.

• Cross-Joint (Strong) : Jointly train DeepLab on Pascal VOC 2012 and MS-COCO, sharing

the top-level network weights for the common classes, using pixel-level annotation in both

datasets.

• Cross-Joint (Semi) : Jointly train DeepLab on Pascal VOC 2012 and MS-COCO, sharing

the top-level network weights for the common classes, using the pixel-level labels from

PASCAL and varying the number of pixel- and image-level labels from MS-COCO.

In all cases we use strong pixel-level annotations for all 10,582 train aug PASCAL images.

We report our results on the PASCAL VOC 2012 val in Tab. 7.5, also including for comparison

our best PASCAL-only 67.6% result exploiting all 10,582 strong annotations as a baseline. When

we employ the weak MS-COCO annotations (EM-Fixed (Semi) ) we obtain 67.7% IOU, which
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Method #Strong COCO #Weak COCO val IOU

PASCAL-only - - 67.6

EM-Fixed (Semi) - 123,287 67.7

Cross-Joint (Semi) 5,000 118,287 70.0

Cross-Joint (Strong) 5,000 - 68.7

Cross-Pretrain (Strong) 123,287 - 71.0

Cross-Joint (Strong) 123,287 - 71.7

Table 7.5: VOC 2012 val performance using strong annotations for all 10,582 train aug PASCAL

images and a varying number of strong and weak MS-COCO annotations (Sec. 7.2.5).

Method test IOU

MSRA-CFM [DHS14] 61.8

FCN-8s [LSD14] 62.2

Hypercolumn [HAG14a] 62.6

TTI-Zoomout-16 [MYS14] 64.4

DeepLab-CRF-LargeFOV [CPK15] 70.3

BoxSup (Semi, with weak COCO) [DHS15] 71.0

DeepLab-CRF-LargeFOV (Multi-scale net) [CPK15] 71.6

Oxford TVG CRF RNN VOC [ZJR15] 72.0

Oxford TVG CRF RNN COCO [ZJR15] 74.7

Cross-Pretrain (Strong) 72.7

Cross-Joint (Strong) 73.0

Cross-Pretrain (Strong, Multi-scale net) 73.6

Cross-Joint (Strong, Multi-scale net) 73.9

Table 7.6: VOC 2012 test performance using PASCAL and MS-COCO annotations (Sec. 7.2.5).

does not improve over the PASCAL-only baseline. However, using strong labels from 5,000 MS-

COCO images (4.0% of the MS-COCO dataset) and weak labels from the remaining MS-COCO

images in the Cross-Joint (Semi) semi-supervised scenario yields 70.0%, a significant 2.4% boost

over the baseline. This Cross-Joint (Semi) result is also 1.3% better than the 68.7% performance

obtained using only the 5,000 strong and no weak annotations from MS-COCO. As expected, our

best results are obtained by using all 123,287 strong MS-COCO annotations, 71.0% for Cross-

Pretrain (Strong) and 71.7% for Cross-Joint (Strong). We observe that cross-dataset augmentation

improves by 4.1% over the best PASCAL-only result. Using only a small portion of pixel-level

annotations and a large portion of image-level annotations in the semi-supervised setting reaps
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about half of this benefit.

Test results We report our PASCAL VOC 2012 test results in Tab. 7.6. We include results of

other leading models from the PASCAL leaderboard. All our models have been trained with pixel-

level annotated images on the PASCAL trainval aug and the MS-COCO 2014 trainval datasets.

Methods based on the DCNN+CRF pipeline of DeepLab-CRF [CPK15] are the most compet-

itive, with performance surpassing 70%, even when only trained on PASCAL data. Leveraging

the MS-COCO annotations brings about 2% improvement. Our top model yields 73.9%, using the

multi-scale network architecture of [CPK15]. This is the second best result reported on the PAS-

CAL VOC 2012 segmentation task, only surpassed by [ZJR15], which also use joint training on

PASCAL and MS-COCO data, but get improved performance (74.7%) due to end-to-end learning

of the DCNN and CRF parameters.

7.2.6 Qualitative Segmentation Results

In Fig. 7.6 we provide visual comparisons of the results obtained by the DeepLab-CRF model

learned with some of the proposed training methods.

7.2.7 Effect of Field-Of-View

In this section, we explore the effect of Field-Of-View (FOV) when training the DeepLab-CRF

model with the proposed methods. Similar to [CPK15], we also employ the ‘atrous’ algorithm

[Mal99] in the DeepLab model. The ‘atrous’ algorithm enables us to arbitrary control the model’s

FOV by adjusting the input stride (which is equivalent to injecting zeros between filter weights)

at the first fully connected layer of VGG-16 net [SZ14]. Applying a large value of input stride

increases the effective kernel size, and thus enlarges the model’s FOV (see [CPK15] for details).

Experimental protocol We employ the same experimental protocol as mentioned before. Mod-

els trained with the proposed training methods and different values of FOV are evaluated on the

PASCAL VOC 2012 val set.
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EM-Adapt Assuming only image-level labels are available, we first experiment with the EM-

Adapt (Weak) method when the value of FOV varies. Specifically, we explore the setting where

the kernel size is 3×3 with various FOV values. The selection of kernel size 3×3 is based on the

discovery by [CPK15]: employing a kernel size of 3×3 at the first fully connected layer can attain

the same performance as using the kernel size of 7×7, while being 3.4 times faster during training.

As shown in Tab. 7.7, we find that our proposed model can yield the performance of 39.2% with

FOV 96×96, but the performance degrades by 9% when large FOV 224×224 is employed. The

original DeepLab model employed by [CPK15] has a kernel size of 4×4 and input stride of 4. Its

performance, shown in the first row of Tab. 7.7, is similar to the performance obtained by using a

kernel size of 3×3 and input stride of 6. Both cases have the same FOV value of 128×128.

Network architectures In the following experiments, we compare two network architectures

trained with the proposed methods. The first network is the same as the one originally employed

by [CPK15] (kernel size 4×4 and input stride 4, resulting in a FOV size 128×128). The second

network we employ has FOV 224×224 (with kernel size of 3×3 and an input stride of 12). We refer

to the first network as ‘DeepLab-CRF with small FOV’, and the second network as ‘DeepLab-CRF

with large FOV’.

Image-level annotations In Tab. 7.8, we experiment with the cases where weak image-level

annotations as well as a varying number of pixel-level annotations are available. Similar to the

results in Tab. 7.7, the DeepLab-CRF with small FOV performs better than that with large FOV

when a small amount of supervision is leveraged. Interestingly, when there are more than 750

pixel-level annotations are available in the semi-supervised setting, employing large FOV yields

better performance than using small FOV.

Bounding box annotations In Tab. 7.9, we report the results when weak bounding box anno-

tations in addition to a varying number of pixel-level annotations are exploited. we found that

DeepLab-CRF with small FOV attains better performance when trained with the three methods:

Bbox-Rect (Weak), Bbox-EM-Fixed (Weak), and Bbox-Rect (Semi- 1464 strong), whereas the
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kernel size input stride receptive field val IOU (%)

4×4 4 128×128 38.2

3×3 2 64×64 37.3

3×3 4 96×96 39.2

3×3 6 128×128 38.3

3×3 8 160×160 38.1

3×3 10 192×192 32.6

3×3 12 224×224 30.2

Table 7.7: Effect of Field-Of-View. The validation performance obtained by DeepLab-CRF trained

with the method EM-Adapt (Weak) as the value of FOV varies.

model DeepLab-CRF with large FOV is better in all the other cases.

Annotations across datasets In Tab. 7.10, we show the results when training the models with the

strong pixel-level annotations from PASCAL VOC 2012 train aug set in conjunction with the extra

annotations from MS-COCO [LMB14] dataset (in the form of either weak image-level annotations

or strong pixel-level annotations). Interestingly, employing large FOV consistently improves over

using small FOV in all cases by at least 3%.

Reported results Note that we report the results of the best architecture for each setup, in

Sec. 7.2.3, Sec. 7.2.4, and Sec. 7.2.5.

7.2.8 Detailed test results

In Tab. 7.11, Tab. 7.12, and Tab. 7.13, we show more detailed results on PASCAL VOC 2012 test

set for all the reported methods in this chapter.

7.3 Discussion

Training segmentation models with only image-level labels has been a challenging problem in

the literature [DBF02, VT07, VFB12, XSU14]. Our work is most related to other recent DCNN

models such as [PSL14, PC15], who also study the weakly supervised setting. They both de-
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Method #Strong #Weak w Small FOV w Large FOV

EM-Fixed (Weak) - 10,582 20.8 19.9

EM-Adapt (Weak) - 10,582 38.2 30.2

EM-Fixed (Semi)

200 10,382 47.6 38.9

500 10,082 56.9 54.2

750 9,832 58.8 59.8

1,000 9,582 60.5 62.0

1,464 5,000 60.5 63.2

1,464 9,118 61.9 64.6

Strong
1,464 - 57.6 62.5

10,582 - 63.9 67.6

Table 7.8: Effect of Field-Of-View. VOC 2012 val performance for varying number of pixel-level

(strong) and image-level (weak) annotations.

Method #Strong #Box w Small FOV w Large FOV

Bbox-Rect (Weak) - 10,582 52.5 50.7

Bbox-EM-Fixed (Weak) - 10,582 54.1 50.2

Bbox-Seg (Weak) - 10,582 58.5 60.6

Bbox-Rect (Semi) 1,464 9.118 62.1 61.1

Bbox-EM-Fixed (Semi) 1,464 9,118 59.6 64.8

Bbox-Seg (Semi) 1,464 9,118 61.8 65.1

Strong 1,464 - 57.6 62.5

Strong 10,582 - 63.9 67.6

Table 7.9: Effect of Field-Of-View. VOC 2012 val performance for varying number of pixel-level

(strong) and bounding box (weak) annotations.

Method #Strong #Weak w Small FOV w Large FOV

PASCAL-only - - 63.9 67.6

EM-Fixed (Semi) - 123,287 64.4 67.7

Cross-Joint (Semi) 5,000 118,287 66.5 70.0

Cross-Joint (Strong) 5,000 - 64.9 68.7

Cross-Pretrain (Strong) 123,287 - 68.0 71.0

Cross-Joint (Strong) 123,287 - 68.0 71.7

Table 7.10: Effect of Field-Of-View. VOC 2012 val performance using strong annotations for all

10,582 train aug PASCAL images and a varying number of strong and weak MS-COCO annota-

tions.

110



Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

MIL-FCN [PSL14] - - - - - - - - - - - - - - - - - - - - - 25.7

MIL-sppxl [PC15] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8

MIL-obj [PC15] 76.2 42.8 20.9 29.6 25.9 38.5 40.6 51.7 49.0 9.1 43.5 16.2 50.1 46.0 35.8 38.0 22.1 44.5 22.4 30.8 43.0 37.0

MIL-seg [PC15] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

EM-Adapt (Weak) 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

EM-Fixed (Semi-1464 strong) 91.3 78.9 37.3 81.4 57.1 57.7 83.5 77.5 77.6 22.5 70.3 56.1 72.2 74.3 80.7 72.4 42.0 81.3 43.1 72.5 60.7 66.2

EM-Fixed (Semi-2913 strong) 92.0 81.6 42.9 80.5 59.2 60.8 85.5 78.7 77.3 26.9 75.2 57.6 74.0 74.2 82.1 73.1 52.4 84.3 43.8 75.1 61.9 68.5

Table 7.11: VOC 2012 test performance for varying number of pixel-level (strong) and image-level

(weak) annotations. Links to the PASCAL evaluation server are included in the PDF.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

BoxSup-box [DHS15] - 80.3 31.3 82.1 47.4 62.6 75.4 75.0 74.5 24.5 68.3 56.4 73.7 69.4 75.2 75.1 47.4 70.8 45.7 71.1 58.8 64.6

BoxSup-semi [DHS15] - 82.0 33.6 74.0 55.8 57.5 81.0 74.6 80.7 27.6 70.9 50.4 71.6 70.8 78.2 76.9 53.5 72.6 50.1 72.3 64.4 66.2

Bbox-Rect (Weak) 82.9 43.6 22.5 50.5 45.0 62.5 76.0 66.5 61.2 25.3 55.8 52.1 56.6 48.1 60.1 58.2 49.5 58.3 40.7 62.3 61.1 54.2

Bbox-Seg (Weak) 89.2 64.4 27.3 67.6 55.1 64.0 81.6 70.5 76.0 24.1 63.8 58.2 72.1 59.8 73.5 71.4 47.4 76.0 44.2 68.9 50.9 62.2

Bbox-Seg (Semi-1464 strong) 91.3 75.3 29.9 74.4 59.8 64.6 84.3 76.2 79.0 27.9 69.1 56.5 73.8 66.7 78.8 76.0 51.8 80.8 47.5 73.6 60.5 66.6

Bbox-EM-Fixed (Semi-1464 strong) 91.9 78.3 36.5 86.2 53.8 62.5 81.2 80.0 83.2 22.8 68.9 46.7 78.1 72.0 82.2 78.5 44.5 81.1 36.4 74.6 60.2 66.6

Bbox-Seg (Semi-2913 strong) 92.0 76.4 34.1 79.2 61.0 65.6 85.0 76.9 81.5 28.5 69.3 58.0 75.5 69.8 79.3 76.9 54.0 81.4 46.9 73.6 62.9 68.0

Bbox-EM-Fixed (Semi-2913 strong) 92.5 80.4 41.6 84.6 59.0 64.7 84.6 79.6 83.5 26.3 71.2 52.9 78.3 72.3 83.3 79.1 51.7 82.1 42.5 75.0 63.4 69.0

Table 7.12: VOC 2012 test performance for varying number of pixel-level (strong) and bounding

box (weak) annotations. Links to the PASCAL evaluation server are included in the PDF.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

MSRA-CFM [DHS14] - 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5 61.8

FCN-8s [LSD14] - 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

Hypercolumn [HAG14a] - 68.7 33.5 69.8 51.3 70.2 81.1 71.9 74.9 23.9 60.6 46.9 72.1 68.3 74.5 72.9 52.6 64.4 45.4 64.9 57.4 62.6

TTI-Zoomout-16 [MYS14] 89.8 81.9 35.1 78.2 57.4 56.5 80.5 74.0 79.8 22.4 69.6 53.7 74.0 76.0 76.6 68.8 44.3 70.2 40.2 68.9 55.3 64.4

CRF RNN [ZJR15] - 80.9 34.0 72.9 52.6 62.5 79.8 76.3 79.9 23.6 67.7 51.8 74.8 69.9 76.9 76.9 49.0 74.7 42.7 72.1 59.6 65.2

DeepLab-CRF-LargeFOV [CPK15] 92.6 83.5 36.6 82.5 62.3 66.5 85.4 78.5 83.7 30.4 72.9 60.4 78.5 75.5 82.1 79.7 58.2 82.0 48.8 73.7 63.3 70.3

Oxford TVG CRF RNN [ZJR15] - 85.5 36.7 77.2 62.9 66.7 85.9 78.1 82.5 30.1 74.8 59.2 77.3 75.0 82.8 79.7 59.8 78.3 50.0 76.9 65.7 70.4

BoxSup-semi-coco [DHS15] - 86.4 35.5 79.7 65.2 65.2 84.3 78.5 83.7 30.5 76.2 62.6 79.3 76.1 82.1 81.3 57.0 78.2 55.0 72.5 68.1 71.0

DeepLab-MSc-CRF-LargeFOV [CPK15] 93.1 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

Oxford TVG CRF RNN COCO [ZJR15] - 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

Cross-Pretrain (Strong) 93.4 89.1 38.3 88.1 63.3 69.7 87.1 83.1 85.0 29.3 76.5 56.5 79.8 77.9 85.8 82.4 57.4 84.3 54.9 80.5 64.1 72.7

Cross-Joint (Strong) 93.3 88.5 35.9 88.5 62.3 68.0 87.0 81.0 86.8 32.2 80.8 60.4 81.1 81.1 83.5 81.7 55.1 84.6 57.2 75.7 67.2 73.0

Cross-Pretrain (Strong, Multi-scale net) 93.8 88.7 53.1 87.7 64.4 69.5 85.9 81.6 85.3 31.0 76.4 62.0 79.8 77.3 84.6 83.2 59.1 85.5 55.9 76.5 64.3 73.6

Cross-Joint (Strong, Multi-scale net) 93.7 89.2 46.7 88.5 63.5 68.4 87.0 81.2 86.3 32.6 80.7 62.4 81.0 81.3 84.3 82.1 56.2 84.6 58.3 76.2 67.2 73.9

Table 7.13: VOC 2012 test performance using strong PASCAL and strong MS-COCO annotations.

Links to the PASCAL evaluation server are included in the PDF.

velop MIL-based algorithms for the problem. In contrast, our model employs an EM algorithm,

which similarly to [LTL13] takes into account the weak labels when inferring the latent image

segmentations. Moreover, [PC15] proposed to smooth the prediction results by region proposal
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algorithms (e.g., MCG [APB14]), learned on pixel-segmented images. Neither [PSL14, PC15]

cover the semi-supervised setting.

Bounding box annotations have been utilized for semantic segmentation by [XDD13, ZMY14],

while [GKF14] describes a scheme exploiting both image-level labels and bounding box annota-

tions in ImageNet [DDS09]. [CFY14] attained human-level accuracy for car segmentation by

using 3D bounding boxes. Bounding box annotations are also commonly used in interactive seg-

mentation [LKR09, RKB04]; we show that such foreground/background segmentation methods

can effectively estimate object segments accurate enough for training a DCNN semantic segmen-

tation system. Working in a setting very similar to ours, [DHS15] employed MCG [APB14] (which

requires training from pixel-level annotations) to infer object masks from bounding box labels dur-

ing DCNN training.

7.4 Conclusion

This chapter has explored the use of weak or partial annotation in training a state of art seman-

tic image segmentation model. Extensive experiments on the challenging PASCAL VOC 2012

dataset have shown that: (1) Using weak annotation solely at the image-level seems insufficient to

train a high-quality segmentation model. (2) Using weak bounding-box annotation in conjunction

with careful segmentation inference for images in the training set suffices to train a competitive

model. (3) Excellent performance is obtained when combining a small number of pixel-level an-

notated images with a large number of weakly annotated images in a semi-supervised setting,

nearly matching the results achieved when all training images have pixel-level annotations. (4)

Exploiting extra weak or strong annotations from other datasets can lead to large improvements.
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Image EM-Adapt (Weak) Bbox-Seg (Weak) EM-Fixed (Semi) Bbox-EM-Fixed (Semi) Cross-Joint (Strong)

Figure 7.6: Qualitative DeepLab-CRF segmentation results on the PASCAL VOC 2012 val set.

The last two rows show failure modes.
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CHAPTER 8

Future Directions

Scene understanding remains an unsolved problem in computer vision. One of the key issues

is how to learn good image representations. Hand-crafted features, such as HOG and SIFT, are

frequently used before, while recently deep convolutional neural networks are employed to jointly

learn features and learn classifiers for the tasks of interest. In order to find better representation for

scene understanding, in this thesis, we have explored along three directions: (1) we propose to learn

a dictionary of shape epitomes or appearance epitomes, as a compact generative representation

for modeling object co-relation within edge patches and for explicitly encoding photometric and

position variability of image patches, respectively, (2) we apply CRF to encode structured output

correlation (i.e., neighboring pixels should have high probability to be assigned the same labels)

for semantic segmentation, and (3) we combine the powerful prediction ability of DCNN and the

structured representation of CRF and obtain state-of-art performance on semantic segmentation

benchmarks. However, there are still many challenging problems in scene understanding, and we

conclude with a brief overview of possible directions for future research in this chapter.

Epitomes Currently, our proposed dictionary of epitomes mainly encode positional variability.

However, objects may appear in the images with different scales. For example, there could be both

cars very close to the camera (thus, they seem to be very large), and cars very far away from the

camera. Besides, rotation-invariant could be another important factor to consider, in order to learn

a more compact dictionary, since a vertical edge is only a rotated horizontal edge. To enrich the

representational power of our dictionary of epitomes, we could consider scale and rotation during

the unsupervised learning. Furthermore, it is also very interesting to combine the idea of epitomes

and deep learning, as [PKS14], which propose an epitomic convolutional layer in the replacement
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of one convolutional layer and one max-pooling layer. They have shown exciting results, such as

faster convergence and better performance for image classification task.

Joint training of CRF and DCNN In our works, we combine both DCNN and fully connected

CRF for semantic segmentation. We mainly employ a piecewise training strategy: the fully con-

nected CRF is used as a post processing step for the DCNN output. The piecewise training strategy

is not optimal, as it fails to consider the interaction between DCNN and CRF. The joint model

should focus on the training samples that cannot be corrected by both CRF and DCNN, and jointly

fine-tune whole model for better performance. On the other hand, [ZJR15] have shown that we

can express every operation in the mean-field theory (used by fully connected CRF) as a layer in

the neural network context, which enables joint training of both components (i.e., fully connected

CRF and DCNN). They mainly focus on the specific format of CRF, whose pairwise term em-

ploys Gaussian kernels. Gaussian kernels are used because faster bilateral filtering [ABD10] tricks

can be applied for fast message passing. However, there is no reason to constrain ourselves for

Gaussian kernels as pairwise term. It is interesting to explore other types of pairwise terms, such

as general spatial pairwise term [LLL15]. For example, another DCNN may be used to learn the

pairwise term [LSR15].

Instance Segmentation Our proposed model for semantic segmentation treats instances of the

same semantic label similarly. That is, we do not try to distinguish there are several persons

in the image, and only where are they presented. This result is not descriptive for better scene

understanding for several practical applications. For example, for autonomous cars, we need to

know how many cars or pedestrians are near the car and how can we drive to avoid any possible

accident. This kind of problem is referred to as instance segmentation in the literature, and it has

begun to catch intense attention recently. One possible direction for this problem is to combine

detection and segmentation. Detection module will provide the coarse position of each instance,

while segmentation module will provide the detailed boundary of the object. Current methods

[HAG14b] employ a two-step processes, where segmentation is performed on top of the detection

results. However, this is not optimal, since the final performance heavily depends on the accuracy
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of the first detection module, since the errors cannot be recovered back easily in this two-step

processes. It is better to consider detection and segmentation jointly, similar to [ZUS15].

RGB-D images RGB-D images provide richer information for scene understanding. From one of

our works, we have shown that we can reach human-level car segmentation given 3D CAD model

and depth information. [GGA14] have shown that better feature representations with DCNN can be

learned with geometric embedding (an encoding for depth images for height above the ground and

angle with gravity for each pixel in addition to the horizontal disparity). They have demonstrated

their work on indoor instance segmentation. However, their proposed model is not trained end-to-

end. That is, a Support Vector Machine is trained on top of the features extracted by DCNN. It will

be very interesting if we could train the whole thing end-to-end within on deep neural network.

Multi-tasks It has been known that several scene understanding tasks are beneficial to each other.

For example, detection is could be helpful for segmentation as a top-down information [LSA10],

and image classification provides the global contextual information for segmentation [GBW10].

One way to handle multi-tasks is perform sequential processing, in which the following modules

depend on the previous ones. However, in the context of deep learning, it is interesting to simply

use one model for several correlated tasks, since it has been shown that the correlated tasks can

share feature representations in the lower layers [CWB11]. Developing a shared neural network

for several correlated scene understanding tasks is both interesting and challenging. For example,

combining detection and segmentation as a multi-task problem could be one step toward solving

instance segmentation.
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