## UCSF UC San Francisco Previously Published Works

## Title

Identification of yeast proteins necessary for cell-surface function of a potassium channel

## Permalink

https://escholarship.org/uc/item/5zg7v5h7

## Journal

Proceedings of the National Academy of Sciences of the United States of America, 104(46)

**ISSN** 0027-8424

## **Authors**

Haass, Friederike A Jonikas, Martin Walter, Peter <u>et al.</u>

Publication Date 2007-11-01

Peer reviewed

Biological Sciences Cell Biology

# Identification of yeast proteins necessary for cell surface function of a potassium channel

Friederike A. Haass<sup>1,2</sup>, Martin Jonikas<sup>3,4</sup>, Peter Walter<sup>4</sup>, Jonathan S. Weissman<sup>3</sup>, Yuh-Nung Jan<sup>2,4</sup>, Lily Y. Jan<sup>2,4</sup>, Maya Schuldiner<sup>3</sup>

Author affiliation: <sup>1</sup>Neuroscience graduate program, <sup>2</sup>Howard Hughes Medical Institute and Department of Physiology, <sup>3</sup>HHMI and Department of Cellular and Molecular Pharmacology, <sup>4</sup>HHMI and Department of Biochemistry and Biophysics; University of California San Francisco, San Francisco, CA 94158

Corresponding author: Maya Schuldiner, Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California San Francisco, 1700 4th Street, Byers Hall, San Francisco, CA 94158-2330, USA. Tel.: +1 415 502 8089; Fax: +1 415 514 4140; Email: mschuldiner@cmp.ucsf.edu

Author contributions: FAH designed and performed research, analyzed data, wrote the paper; MJ and PW provided data and analysis on UPR; JSW contributed new reagents and analytic tools; Y-NJ and LYJ designed research, wrote the paper; MS designed research, analyzed data, wrote the paper.

Number of pages: 16 Number of figures: 5 Number of tables: 1 Supplemental information: Supplemental Methods, 3 tables, 1 figure

Word count: 5,489 Character count: 34,927 (with spaces)

Abbreviations: Kir channel - inwardly rectifying K<sup>+</sup> channel, Kir3.2 - the G-protein activated inwardly rectifying K<sup>+</sup> channel GIRK2, Kir\* - Kir3.2S177W, ER - endoplasmic reticulum, GPI-AP – glycosylphosphatidylinositol anchored proteins, UPR - Unfolded Protein Response, YPAGR – rich, galactose media, YPAD – rich, dextrose media

### Abstract

Inwardly rectifying potassium (Kir) channels form gates in the cell membrane that regulate the flow of  $K^+$  ions into and out of the cell, thereby influencing the membrane potential and electrical signaling of many cell types including neurons and cardiomyocytes. Kir channel function depends on other cellular proteins that aid in folding of channel subunits, assembly into tetrameric complexes, trafficking of quality controlled channels to the plasma membrane, and regulation of channel activity at the cell surface. We used the yeast *Saccharomyces cerevisiae* as a model system to identify proteins necessary for the functional expression of a mammalian Kir channel at the cell surface. A screen of 376 yeast strains each lacking one non-essential protein localized to the early secretory pathway identified seven deletion strains in which functional expression of the Kir channel at the plasma membrane was impaired. Six deletions were of genes with known functions in trafficking and lipid biosynthesis (sur4 $\Delta$ , csg2 $\Delta$ ,  $erv14\Delta$ ,  $emp24\Delta$ ,  $erv25\Delta$ ,  $bst1\Delta$ ) and one deletion was of an uncharacterized gene  $(yil039w\Delta)$ . We provide genetic and functional evidence that Yil039wp, a conserved, phosphoesterase domain-containing protein, which we named Trafficking of Emp24p/Erv25p-dependent cargo Disrupted 1 (Ted1p), acts together with Emp24p/Erv25p in cargo exit from the ER. The seven yeast proteins identified in our screen likely impact Kir channel functional expression at the level of vesicle budding from the ER and/or the local lipid environment at the plasma membrane.

#### Introduction

Inwardly rectifying potassium (Kir) channels serve important physiological functions by regulating the membrane potential of many cell types including neurons, cardiomyocytes, kidney cells, and hormone secreting cells. Disruption of Kir channel function has been linked to human diseases such as periodic paralysis and neonatal diabetes (1).

Kir channel activity at the plasma membrane is influenced by the abundance of channels and by their functional properties. The number of channels at the cell surface is regulated at the level of channel transcription, biosynthesis, trafficking, and turnover (2). The functional properties of Kir channels are influenced by the membrane potential, local lipid environment, small molecules, and interacting proteins (3, 4). Structure-function studies have identified amino acid motifs and structural features of Kir channels involved in folding, assembly, and trafficking as well as in gating and selectivity (5-7). However, less is known about the cellular machinery that interacts with these motifs and allows Kir channels to reach the cell surface and function appropriately. We took advantage of the knowledge gained from structure-function studies of Kir channels and the genetic tools available in the yeast *Saccharomyces cerevisiae* to design a yeast screen aimed at identifying cellular proteins that play a role in Kir channel functional expression.

We chose to study Kir3.2, a mammalian G-protein activated inwardly rectifying K<sup>+</sup> channel, that can form homotetrameric channels and mediates inhibitory post-synaptic potentials in midbrain dopamine neurons (8). The mutation S177W (referred to as Kir\*) renders Kir3.2 constitutively open in the absence of G-protein signaling, permeable to Na<sup>+</sup> as well as K<sup>+</sup>, and does not disrupt functional expression of the channel at the cell surface of yeast or *Xenopus* oocytes (9, 10). Expression of mutated K<sup>+</sup> channels that are permeable to Na<sup>+</sup> overwhelms the Na<sup>+</sup> detoxification systems of yeast (11). Functional expression of Kir\* can therefore be assayed based on growth inhibition, reflected by small yeast colony size, on media containing high Na<sup>+</sup> concentrations. We reasoned that growth inhibition conferred by Kir\* could be overcome if channel biogenesis, trafficking, or function were disrupted.

The *Saccharomyces* Genome Deletion Project has generated a library of yeast strains each lacking one non-essential gene (12). Additional transgenes can be introduced

into the deletion strains using methods developed for Synthetic Genetic Array analysis (13, 14). We used these tools to introduce an inducible Kir\* transgene into 376 yeast deletion strains each lacking an early secretory pathway-localized protein (15) and tested the resulting strains for growth inhibition on high Na<sup>+</sup> media conferred by Kir\*. We identified seven yeast deletion strains with reduced growth inhibition on high Na<sup>+</sup> media, indicating that the strains are missing a gene involved in Kir\* functional expression.

#### **Results**

## Kir\* slows yeast growth on high Na<sup>+</sup> media.

Kir3.2S177W tagged with GFP at the C-terminus (referred to as Kir\*) was integrated into the genome of yeast (BY4742 background) under the control of a galactose inducible/ dextrose repressible promoter. Whereas yeast not carrying Kir\* doubled every 3 hours in YPAGR media containing 500 mM Na<sup>+</sup>, expression of Kir\* slowed the doubling time to 7 hours (Fig. 1A). The inhibition of yeast growth by Kir\* was also observed on solid media containing 500 mM Na<sup>+</sup> (Fig. 1A). Integration of the channel into the yeast genome did not affect yeast growth when channel expression was repressed by dextrose (Fig. 1B) or under low sodium conditions (Fig. 1C). Growth on high Na<sup>+</sup> media of yeast expressing Kir\* was rescued in the vicinity of a filter disk containing the Kir channel blocker barium (16) (supplemental Fig. S1), supporting the conclusion that growth inhibition conferred by Kir\* was due to Na<sup>+</sup> influx through the channel.

#### Yeast screen

Using the mating and random spore selection scheme developed for Synthetic Genetic Array (SGA) analysis (13, 14), we introduced the genomically integrated copy of Kir\* into 376 strains from the MATa (BY4741) yeast deletion library (12), each carrying a deletion of an early secretory pathway-localized protein (15) (see online Table S1 for a list of the deletions, Table S2 for the selection scheme). Growth of the deletion strains carrying Kir\* was tested on high Na<sup>+</sup> media containing galactose to induce Kir\* expression and, to account for strain specific growth differences, normalized to growth on high Na<sup>+</sup> media containing dextrose where Kir\* expression was repressed. Most deletion

strains behaved like control (BY4741) yeast and showed growth inhibition on high Na<sup>+</sup> media when Kir<sup>\*</sup> was expressed. However, several strains grew into large colonies even though Kir<sup>\*</sup> expression was induced. Follow-up tests of the Na<sup>+</sup>-tolerant strains in liquid culture identified seven yeast deletion strains (*sur4* $\Delta$ , *csg2* $\Delta$ , *erv14* $\Delta$ , *emp24* $\Delta$ , *erv25* $\Delta$ , *bst1* $\Delta$ , and *yil039w* $\Delta$ ) that grew well under high Na<sup>+</sup>, Kir<sup>\*</sup>-inducing conditions.

## Deletion strains resistant to growth inhibition by Kir\*

The candidates fell into two categories (Table 1). First, enzymes involved in sphingolipid biosynthesis: Sur4p, which catalyzes the formation of very long chain fatty acids (17), and Csg2p, a regulatory subunit of the complex that attaches mannose to inositol phosphorylceramide (18). Second, proteins involved in cargo selection and vesicle budding during ER-Golgi trafficking: Erv14p, a protein required for packaging of specific cargo into COPII vesicles (19, 20); Emp24p and Erv25p, p24 proteins that form a complex involved in COPII vesicle budding and trafficking of GPI-anchored and soluble proteins (21); Bst1p, an enzyme that removes the acyl chain from GPI anchors thereby allowing GPI-anchored proteins to leave the ER (22, 23); Yil039wp, a conserved, metallophosphoesterase domain-containing protein, with previously unknown function.

To ensure correct identification of the deletions and to rule out differences in the genetic background, mutations in the transgene or influences of mating type, the seven candidate deletion strains were remade using PCR-mediated gene disruption in the BY4742 background and the phenotypes confirmed using growth assays in liquid culture and on agar plates. When Kir\* expression was induced by galactose the seven deletion strains grew faster than the control strain in media containing high Na<sup>+</sup> (500 mM YPAGR) (Fig. 1A). The ability of the deletion strains to grow faster in high Na<sup>+</sup> media was not due to general Na<sup>+</sup> tolerance, because when Kir\* expression was repressed by dextrose, the deletion strains grew at a similar rate or, in the case of *sur4* $\Delta$  and *yil039w* $\Delta$ , more slowly than the control strain in media containing high Na<sup>+</sup> (500 mM YPAD) (Fig. 1B). The deletions did not enhance the ability of the yeast to metabolize galactose, as shown by comparable or slower growth in galactose containing media under conditions of low Na<sup>+</sup> (YPAGR, ~30 mM Na<sup>+</sup>) (Fig. 1C). Finally, Na<sup>+</sup> tolerance under Kir\* inducing conditions was not explained by osmotolerance, because the deletion strains grew at

similar rates or more slowly than control yeast in hyperosmotic media containing 1 M sorbitol (data not shown).

Although the deletion strains expressing Kir\* grew faster than the control strain expressing Kir\* in 500 mM Na<sup>+</sup> YPAGR (Fig. 1A), they did not grow as fast as a control strain without genomic insertion of Kir\*, likely because the deletions did not entirely abolish Kir\* function at the plasma membrane. This would be expected for deletions affecting trafficking or quality control, which often employ backup pathways (24, 25). In addition, the Na<sup>+</sup> sensitivity (Fig. 1B) and slow growth in galactose media (Fig. 1C) of some of the strains (*sur4* $\Delta$ , *erv14* $\Delta$ , *bst1* $\Delta$ , *yil039W* $\Delta$ ) may have contributed to the incomplete rescue, because for these strains even complete loss of the Kir\* function would not have resulted in the same growth as control yeast not carrying Kir\*.

Based on the result that reduced growth inhibition of the deletion strains is dependent on Kir\* expression in the presence of high Na<sup>+</sup>, we concluded that Kir\* functional expression at the plasma membrane was disrupted in these strains. However, it was also possible that the membrane potential of the deletion strains was depolarized.

## Hygromycin B sensitivity of deletion strains

Na<sup>+</sup> influx through Kir\* is driven by the hyperpolarized membrane potential of yeast. Therefore, growth inhibition by high Na<sup>+</sup> would be reduced if the deletion strains had more depolarized membrane potentials than control yeast. The small size of yeast precludes electrophysiological measurements of their membrane potential, however, relative membrane potentials can be assayed based on uptake of lipophilic cations or sensitivity to the antibiotic hygromycin B (26-28). We therefore tested whether the seven deletion strains were hygromycin resistant, indicative of depolarization, compared to control yeast. To ensure that our assay would detect depolarization of the membrane potential, we tested the yeast strain *pma1-105*, which carries a mutation in the proton ATPase Pma1p and has previously been shown to be depolarized (28). Growth of the *pma1-105* strain was inhibited less by hygromycin B than growth of the corresponding control BY4742 strain (Fig. 2B), the *sur4*\Delta and *erv14*\Delta strains were slightly less inhibited by hygromycin, indicating that they may be more depolarized.

Hygromycin resistance has been reported for *sur4*-mutant strains in the BWG1-7A genetic background (29). However, the differences in relative growth rates in our experiment were not statistically significant (Dunnett's test comparing BY4742 to each deletion strain, p>0.05). Because hygromycin B sensitivity cannot be calibrated in terms of absolute changes in membrane potential, we cannot rule out that the tendency towards hygromycin resistance in *sur4* $\Delta$  and *erv14* $\Delta$  strains accounted, at least in part, for the reduced growth inhibition by Na<sup>+</sup> influx through Kir\*. The *csg2* $\Delta$  strain showed a tendency (but Dunnett's test p>0.05) towards increased hygromycin sensitivity and the *emp24* $\Delta$ , *erv25* $\Delta$ , *bst1* $\Delta$ , and *yil039w* $\Delta$  strains had comparable hygromycin sensitivity to the control strain, suggesting that depolarization did not account for the ability of these deletion strains to grow under high Na<sup>+</sup> conditions while expressing Kir\*.

## Impaired complementation of $trk1\Delta$ $trk2\Delta$ yeast by Kir3.2V188G

To corroborate that the seven deletions impaired functional expression of Kir\* at the cell surface we employed an independent assay. Yeast lacking the K<sup>+</sup> transporters Trk1p and Trk2p are starved for K<sup>+</sup> and therefore grow slowly on Low Salt media supplemented with low concentrations (0.5 mM) of K<sup>+</sup> (30). Growth is rescued by expression of Kir3.2V188G, a constitutively active, K<sup>+</sup> selective Kir3.2 channel (9). If the deletions identified in our screen disrupted Kir channel trafficking or function, we predicted that rescue of *trk1*\Delta *trk2*\Delta yeast by Kir3.2V188G would be impaired in the deletion background. Indeed, Kir3.2V188G rescued growth on 0.5 mM K<sup>+</sup> media poorly or not at all when *trk1*\Delta *trk2*\Delta yeast strains grew well on Low Salt media supplemented with 100 mM K<sup>+</sup>, where they did not depend on functional expression of Kir3.2V188G. The *erv14*\Delta *trk1*\Delta *trk2*\Delta strain expressing Kir3.2V188G could not be tested in this assay, because the strain grew slowly on Low Salt plates even when supplemented with 100 mM K<sup>+</sup>.

## Kir\* expression levels and localization in the deletion strains

The Na<sup>+</sup> tolerant phenotype, impaired rescue of  $trk1\Delta$   $trk2\Delta$  yeast and the known functions of Sur4p, Csg2p, Erv14p, Emp24p, Erv25p, and Bst1p, suggested that the

deletions might have affected Kir channel maturation or trafficking. We therefore performed Western blot analysis on each of the strains to test whether the deletions altered total protein levels of Kir\*. Similar amounts of Kir\* were present in samples from yeast expressing Kir\* in the control or deletion background (Fig. 4A).

Given comparable expression levels of Kir\* in the deletion strains, we examined whether the deletions altered the subcellular localization of the channel. Yeast were grown in galactose containing media to induce Kir\* expression, fixed and mounted for imaging of the GFP-tagged Kir\*. Optical sections through the middle of yeast cells showed two rings of GFP fluorescence and sections through the periphery of the cells showed tubular distribution of the GFP-tagged channel (Fig. 4B). The pattern of Kir\*-GFP fluorescence was typical of ER-localized proteins (31) even in the control strain. This was consistent with studies showing heavy ER localization of Kir3.2 in mammalian cells (32). Given the predominant ER localization of Kir\* even in the control background, alterations in ER retention in the deletion strains could not be readily detected.

## Deletion of YIL039W slows Gas1p trafficking

Six of the seven mutants identified by our screen had well-characterized functions impacting trafficking and lipid biosynthesis, which could explain their effects on Kir\* channel functional expression (see Discussion). However, it was unclear how the uncharacterized, but conserved Yil039wp influenced Kir\* activity. A previously published quantitative genetic interaction map suggested that Yil039wp acts together with Emp24p and Erv25p in mediating trafficking of cargo out of the ER. In this epistasis mini array profile (E-MAP), colony sizes for all double mutant combinations were used to assess genetic interactions between ~400 strains each carrying a deletion in an early secretory pathway gene. When strains were clustered based on the similarity in their patterns of genetic interactions, the *emp24*\Delta and *erv25*\Delta strains alongside *erp1*\Delta were most similar to each other out of all 400 strains. This similarity was expected, because Emp24p, Erv25p, and Erp1p act together in a physical complex (33, 34). The next most similar, and therefore most functionally related gene was *YIL039W*. Moreover, the double mutants of *yil039w*\Delta and *emp24*\Delta or *erv25*\Delta displayed buffering genetic interactions (Fig. 5A adapted from (15)), i.e. in the absence of Emp24p/Erv25p there was little additional fitness cost to losing Yil039wp. Buffering genetic interactions were also observed using a fluorescent reporter of Unfolded Protein Response-induction. Both  $yil039w\Delta$  and  $erv25\Delta$  yeast ( $emp24\Delta$  was not assayed for technical reasons) showed UPR activation. Deletion of YIL039W and ERV25 together did not exacerbate the phenotype to the extent expected for functionally unrelated genes (e.g. ALG3, OST3, and SPC2, Fig. 5B). These relationships indicate that Yil039wp functions in a concerted manner with Emp24p/Erv25p.

To directly test whether Yil039wp, Emp24p, and Erv25p share a common function, we investigated whether ER exit of the GPI-anchored protein Gas1p, which is delayed in *emp24* $\Delta$  and *erv25* $\Delta$  strains (33, 35), was affected in the yil039w $\Delta$  strain. Western blot analysis of whole cell extracts showed that Gas1p accumulated in its 100 kDa core-glycosylated ER form to a similar extent in yeast lacking EMP24, ERV25, or *YIL039W* (Fig. 5C). We therefore named *YIL039W* Trafficking of Emp24p/Erv25pdependent cargo **D**isrupted 1 (*TED1*).

## **Discussion**

Yeast has been used extensively as a model system to study K<sup>+</sup> channel structurefunction relationships due to its sensitivity to even small currents and easy manipulation, which allows for screening of thousands of mutated channels (11). We chose to study yeast as a model system due to its powerful genetic tools. Since cellular trafficking is a highly conserved process, we reasoned that secretory pathway conditions that influence a mammalian Kir channel in yeast, would inform us of similar requirements in less genetically amenable mammalian systems. Taking advantage of the yeast deletion library (12) and SGA methodology (13, 14), we found that deletion of *SUR4*, *CSG2*, *ERV14*, *EMP24*, *ERV25*, *BST1*, or *YIL039W/TED1* impaired Kir channel functional expression: First, the deletions partially restored yeast growth on high Na<sup>+</sup> media in the presence of the mutated, Na<sup>+</sup> permeable K<sup>+</sup> channel Kir3.2S177W (Kir\*). Second, a K<sup>+</sup> selective Kir channel (Kir3.2V188G) was unable to rescue growth on low K<sup>+</sup> media of *trk1*\Delta *trk2*Δ yeast also carrying one of the deletions. A common theme among five of the proteins identified by our screen (Erv14p, Emp24p, Erv25p, Bst1p, and Yil039wp/Ted1p) is that they affect maturation and trafficking of GPI anchored proteins. This was unexpected because Kir channels are transmembrane proteins not known to be modified by a GPI anchor. It is possible that the machinery required for ER exit of GPI anchored proteins has additional functions in trafficking of transmembrane proteins Axl2p and Sma1p (19, 20). Alternatively, GPI-anchored proteins in gwt1-10 yeast has been shown to disrupt the formation of lipid domains in the ER and thereby to indirectly affect sorting and budding of transmembrane proteins (36). We speculate that the interplay between different classes of proteins during the formation of lipid microdomains (37) may affect trafficking of Kir channels.

Deletion of the other two candidates identified by our screen, *SUR4* or *CSG2*, alters the lipid composition of yeast cells by reducing synthesis of  $C_{24}$  and  $C_{26}$  fatty acids (17, 38) or of sphingolipids with mannose modification of their headgroups (39), respectively. The lipid composition of membranes may influence Kir channel functional expression in two ways. First, lipid rafts rich in sphingolipids or their precursor, ceramide, play a role in trafficking at the level of ER exit (40-42) and at the level of protein sorting at the Golgi (43). Second, the local lipid environment at the plasma membrane may influence channel activity. For example, enrichment of membranes with cholesterol induced an inactive channel conformation in Kir2.1 (44) and a specific interaction between the bacterial K<sup>+</sup> channel KcsA and phosphatidylglycerol is required for channel function (45).  $C_{24}$  and  $C_{26}$  fatty acids are also found in remodeled GPI anchors (46), opening the possibility that deletion of SUR4 affects Kir channel trafficking through indirect effects on GPI-anchored proteins as discussed above.

Our screen identified a phenotype for the previously uncharacterized gene *YIL039W*, which encodes a metallophosphoesterase domain-containing protein conserved in eukaryotes, including humans (MPPE1). Genetic interaction data based on yeast growth (15) and UPR activation, as well as biochemical data showing ER retention of Gas1p in *emp24* $\Delta$ , *erv25* $\Delta$  (33, 35), and *yil039w* $\Delta$  yeast provide evidence that Yil039wp acts together with Emp24p and Erv25p in cargo exit from the ER. We therefore named

*YIL039W* Trafficking of Emp24p/Erv25p-dependent cargo Disrupted 1 (*TED1*). It is interesting to note that the *bst1* $\Delta$  strain, in which Gas1p maturation was also delayed (as previously reported (47)), displayed an aggravating genetic interaction with *ted1* $\Delta$ , but buffering interactions with *emp24* $\Delta$  and *erv25* $\Delta$ . We therefore predict that Bst1p and Ted1p function in parallel pathways to regulate Emp24p/Erv25p function. Since Yil039wp/Ted1p contains a predicted phosphoesterase domain, it will be of interest to identify the targets that are dephosphorylated by Ted1p. One candidate substrate is the amphiphysin homologue Rvs167p, which is phosphorylated by Pho85-Pc11 (48) and was shown in a large-scale pull down study to physically interact with Ted1p (49)\*.

Since Kir3.2 is not native to yeast, our screen was intended to identify global requirements for Kir channel functional expression and probably precluded the identification of specific chaperoning interactions, which would require co-evolution. The seven proteins identified by our screen and their cellular roles are conserved up to mammals, highlighting the appropriate nature of yeast as a model system to uncover basic cellular machinery involved in Kir channel functional expression. The results provide important leads that will allow us to probe deeper into the mechanisms that regulate trafficking and activity of Kir channels in mammalian systems.

Footnote: \* Intriguingly, SUR4 was identified as a suppressor of rvs161 and rvs167 (50).

#### **Materials and Methods**

## Yeast Strains and Media

Yeast strains were picked from the deletion library (12) or constructed by PCRmediated gene disruption in the BY4742 background (51). Online Table S3 lists strains, primers and plasmids. Yeast media recipes were based on (11, 14) or are provided as Supplemental Methods online.

## Yeast Screen

376 yeast strains from the MATa deletion library (online Table S1) (12, 15) were mated to yeast expressing Kir3.2S177W-GFP using SGA methodology (13, 14). The selection scheme is shown online in Table S2. Growth of the double mutant strains was tested on synthetic media containing 750 mM Na<sup>+</sup> and dextrose or galactose. Plates were photographed using a ChemiImager Ready (Alpha Innotech Corp.) and colony sizes, S<sub>gal</sub> and S<sub>dex</sub>, measured using software developed by (52). Initial Na<sup>+</sup>-tolerant candidates had to meet the criterion that four out of six replicates or the average of the six colony size differences  $|S_{gal}*100/S_{dex} - 100|$  were smaller than the average  $|S_{gal}*100/S_{dex} - 100|$  for all strains tested minus one standard deviation.

## Yeast Assays

Doubling times and growth rates were determined at 30°C by diluting over night cultures to  $2 * 10^6$  cells/ml and measuring the optical density (OD<sub>660</sub>) at 0 h and 4 or 8 h later. For growth tests on plates, over night liquid cultures were adjusted to equal ODs and 10-fold serial dilutions plated. Photographs were taken three days after plating. The experiments were repeated at least two times. Yeast protein samples were prepared by the post-alkaline lysis method (53). Western blots were probed with rabbit anti-GIRK2 (Alomone), mouse anti-PGK (Molecular Probes), or rabbit anti-Gas1p (Walter lab) antibodies. Fixed yeast cells were imaged using widefield epifluorescence on a Nikon TE2000 microscope. Images presented are single planes from the middle and top of deconvolved stacks. For the UPR assay, fluorescence signals from 4xUPRE-GFP normalized to TEF2pr-RFP were measured using Flow Cytometry. For detailed procedures see Supplemental Methods.

## Statistics

One-way ANOVA followed by Dunnett's test and unpaired t-test were performed with GraphPad Prism 4.0.

#### **Acknowledgements**

We thank B. Schwappach for the pYES2 plasmid; C. Boone and A. Tong for yeast strains; J. Haber for the *pma1-105* and control strains; S. Collins for the colony measuring software and help with data analysis; R. Shaw for help with image acquisition and use of the microscope; and members of the Jan and Weissman labs for stimulating discussions. This work is supported by the NIMH MERIT Award R37MH065334. MS is supported by a NIH K99/R00 award, MJ by the National Science Foundation. PW, JW, Y-NJ, and LYJ are HHMI investigators.

## Figure Legends

Table 1: Deletions that affect Kir\* functional expression.

## Figure 1

Deletion of seven early secretory pathway-localized proteins reduced Na<sup>+</sup> toxicity conferred by Kir\*. Growth of yeast strains carrying Kir\* alone or in combination with the deletions was assayed by 10 fold serial dilutions on agar plates (top) or by doubling time measurements in liquid culture (bottom). (A) Expression of Kir\* in control yeast slowed growth in 500 mM Na<sup>+</sup> YPAGR. Growth inhibition by Kir\* was partially reversed in yeast strains carrying deletions of seven early secretory pathway-localized proteins. (B) The deletions did not enhance growth in high Na<sup>+</sup> media when Kir\* was repressed (500 mM Na<sup>+</sup> YPAD) or (C) in low Na<sup>+</sup> media when Kir\* was induced (YPAGR). Whiskers - min. and max., box - 25th to 75th percentile and median, open square - mean, n = 5. # - statistically significant difference compared to yeast expressing Kir\* in the control background (p<0.01, Dunnett's test).

## Figure 2

Hygromycin B sensitivity of deletion strains. Growth rates measured in 500 mM Na<sup>+</sup> YPAGR liquid media with 500 mg/L hygromycin B were normalized to growth rates in 500 mM Na<sup>+</sup> YPAGR. (A) The assay detected hygromycin resistance of *pma1-105* yeast compared to control DBY745 yeast (p<0.01, t-test). (B) The seven deletion strains showed no significant difference in hygromycin sensitivity compared to control BY4742 yeast (p>0.05, Dunnett's test), although the  $csg2\Delta$  strain showed a tendency toward increased hygromycin sensitivity and the  $sur4\Delta$  and  $erv14\Delta$  strains towards hygromycin resistance. Error bars are standard errors, n=3.

## Figure 3

The seven deletions impaired rescue of  $trk1\Delta$   $trk2\Delta$  yeast by Kir3.2V188G. Ten fold serial dilutions were spotted onto Low Salt plates containing 0.5 mM KCl or 100 mM KCl. (A)  $trk1\Delta$   $trk2\Delta$  yeast did not grow on 0.5 mM K<sup>+</sup> media. Growth was rescued by expression of Kir3.2V188G. In triple mutant yeast lacking Trk1p, Trk2p, and one of seven early secretory pathway-localized proteins, Kir3.2V188G only partially restored growth on 0.5 mM K<sup>+</sup> media. (B) The triple mutant yeast strains, except *erv14* $\Delta$ , grew well on 100 mM K<sup>+</sup> media, where Kir3.2V188G is dispensable for growth.

## Figure 4

Total protein levels and distribution of Kir\*-GFP. (A) Western blot of yeast expressing Kir\* in the control or deletion background was probed with anti-Kir3.2 antibody. A band of similar intensity was detected in all strains carrying Kir\*. Phosphoglycerate kinase (PGK) served as a loading control. Molecular weight markers are 100 and 75 for anti-Kir3.2, 50 and 37 kDa for anti-PGK. (B) Deconvolved optical z sections through the middle (left) or periphery (right) of yeast expressing Kir\* tagged with eGFP at the C-terminus. In all strains, Kir\* localized to the perinuclear and peripheral ER. Scale bar =  $2.5 \,\mu$ m.

## Figure 5

Ted1p, encoded by *YIL039W*, is involved in trafficking of the GPI-anchored protein Gas1p. (A) *YIL039W*, *EMP24*, and *ERV25* were predicted to act in a concerted manner based on their buffering genetic interactions as determined by (15). (B) UPR induction assayed by expression of GFP from a UPR inducible promoter. Combining deletion of *YIL039W* and *ERV25* did not enhance UPR activation to the extent expected for unrelated genes (e.g. *ALG3*, *OST3*, *SPC2*), suggesting that Yil039w and Erv25p share a common function. (C) Western blot of whole cell extracts probed with an antibody to Gas1p. Deletion of *YIL039W*/*TED1* led to accumulation of Gas1p in its 100 kDa core glycosylated ER form as previously observed for *emp24*\Delta and *erv25*\Delta strains (33, 35).

## **References**

- 1. Neusch, C., Weishaupt, J. H. & Bahr, M. (2003) Cell Tissue Res 311, 131-8.
- 2. Deutsch, C. (2002) Annu Rev Physiol 64, 19-46.
- 3. Ruppersberg, J. P. (2000) Pflugers Arch 441, 1-11.
- 4. Logothetis, D. E., Jin, T., Lupyan, D. & Rosenhouse-Dantsker, A. (2007) Pflugers Arch.
- 5. Tinker, A. & Jan, L. Y. (1999) Current Topics in Membranes 46, 143-158.
- 6. Ma, D. & Jan, L. Y. (2002) Curr Opin Neurobiol 12, 287-92.
- 7. Bichet, D., Haass, F. A. & Jan, L. Y. (2003) Nat Rev Neurosci 4, 957-67.
- 8. Mark, M. D. & Herlitze, S. (2000) Eur J Biochem 267, 5830-6.
- 9. Yi, B. A., Lin, Y. F., Jan, Y. N. & Jan, L. Y. (2001) Neuron 29, 657-67.
- 10. Bichet, D., Lin, Y. F., Ibarra, C. A., Huang, C. S., Yi, B. A., Jan, Y. N. & Jan, L. Y. (2004) Proc Natl Acad Sci U S A 101, 4441-6.
- 11. Nakamura, R. L. & Gaber, R. F. (1998) Methods Enzymol 293, 89-104.
- 12. Giaever, G. & others (2002) Nature 418, 387-91.
- Tong, A. H., Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C. W., Bussey, H., Andrews, B., Tyers, M. & Boone, C. (2001) Science 294, 2364-8.
- 14. Schuldiner, M., Collins, S. R., Weissman, J. S. & Krogan, N. J. (2006) Methods 40, 344-52.
- Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J. F., Weissman, J. S. & Krogan, N. J. (2005) Cell 123, 507-19.
- Kubo, Y., Adelman, J. P., Clapham, D. E., Jan, L. Y., Karschin, A., Kurachi, Y., Lazdunski, M., Nichols, C. G., Seino, S. & Vandenberg, C. A. (2005) Pharmacol Rev 57, 509-26.
- 17. Rossler, H., Rieck, C., Delong, T., Hoja, U. & Schweizer, E. (2003) Mol Genet Genomics 269, 290-8.
- 18. Uemura, S., Kihara, A., Iwaki, S., Inokuchi, J. & Igarashi, Y. (2007) J Biol Chem 282, 8613-21.
- 19. Powers, J. & Barlowe, C. (1998) J Cell Biol 142, 1209-22.
- 20. Nakanishi, H., Suda, Y. & Neiman, A. M. (2007) J Cell Sci 120, 908-16.
- 21. Kaiser, C. (2000) Proc Natl Acad Sci U S A 97, 3783-5.
- 22. Tanaka, S., Maeda, Y., Tashima, Y. & Kinoshita, T. (2004) J Biol Chem 279, 14256-63.
- 23. Fujita, M., Yoko, O. T. & Jigami, Y. (2006) Mol Biol Cell 17, 834-50.
- 24. Springer, S., Chen, E., Duden, R., Marzioch, M., Rowley, A., Hamamoto, S., Merchant, S. & Schekman, R. (2000) Proc Natl Acad Sci U S A 97, 4034-9.
- 25. Olkkonen, V. M. & Ikonen, E. (2006) J Cell Sci 119, 5031-45.
- 26. Rodriguez-Navarro, A. (2000) Biochim Biophys Acta 1469, 1-30.
- 27. Vallejo, C. G. & Serrano, R. (1989) Yeast 5, 307-19.
- 28. Perlin, D. S., Brown, C. L. & Haber, J. E. (1988) J Biol Chem 263, 18118-22.
- 29. Garcia-Arranz, M., Maldonado, A. M., Mazon, M. J. & Portillo, F. (1994) J Biol Chem 269, 18076-82.

- 30. Ko, C. H., Buckley, A. M. & Gaber, R. F. (1990) Genetics 125, 305-12.
- Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K. (2003) Nature 425, 686-91.
- 32. Ma, D., Zerangue, N., Raab-Graham, K., Fried, S. R., Jan, Y. N. & Jan, L. Y. (2002) Neuron 33, 715-29.
- 33. Belden, W. J. & Barlowe, C. (1996) J Biol Chem 271, 26939-46.
- Marzioch, M., Henthorn, D. C., Herrmann, J. M., Wilson, R., Thomas, D. Y., Bergeron, J. J., Solari, R. C. & Rowley, A. (1999) Mol Biol Cell 10, 1923-38.
- 35. Elrod-Erickson, M. J. & Kaiser, C. A. (1996) Mol Biol Cell 7, 1043-58.
- Okamoto, M., Yoko-o, T., Umemura, M., Nakayama, K. & Jigami, Y. (2006) J Biol Chem 281, 4013-23.
- 37. Hancock, J. F. (2006) Nat Rev Mol Cell Biol 7, 456-62.
- Oh, C. S., Toke, D. A., Mandala, S. & Martin, C. E. (1997) J Biol Chem 272, 17376-84.
- 39. Uemura, S., Kihara, A., Inokuchi, J. & Igarashi, Y. (2003) J Biol Chem 278, 45049-55.
- 40. Toulmay, A. & Schneiter, R. (2007) Biochimie 89, 249-54.
- 41. Horvath, A., Sutterlin, C., Manning-Krieg, U., Movva, N. R. & Riezman, H. (1994) Embo J 13, 3687-95.
- 42. Dupre, S. & Haguenauer-Tsapis, R. (2003) Traffic 4, 83-96.
- 43. Simons, K. & Ikonen, E. (1997) Nature 387, 569-72.
- 44. Romanenko, V. G., Fang, Y., Byfield, F., Travis, A. J., Vandenberg, C. A., Rothblat, G. H. & Levitan, I. (2004) Biophys J 87, 3850-61.
- 45. Valiyaveetil, F. I., Zhou, Y. & MacKinnon, R. (2002) Biochemistry 41, 10771-7.
- 46. Pittet, M. & Conzelmann, A. (2007) Biochim Biophys Acta 1771, 405-20.
- 47. Vashist, S., Kim, W., Belden, W. J., Spear, E. D., Barlowe, C. & Ng, D. T. (2001) J Cell Biol 155, 355-68.
- 48. Dephoure, N., Howson, R. W., Blethrow, J. D., Shokat, K. M. & O'Shea, E. K. (2005) Proc Natl Acad Sci U S A 102, 17940-5.
- 49. Krogan, N. J. & others (2006) Nature 440, 637-43.
- 50. Desfarges, L., Durrens, P., Juguelin, H., Cassagne, C., Bonneu, M. & Aigle, M. (1993) Yeast 9, 267-77.
- 51. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D. (1998) Yeast 14, 115-32.
- 52. Collins, S. R., Schuldiner, M., Krogan, N. J. & Weissman, J. S. (2006) Genome Biol 7, R63.
- 53. Kushnirov, V. V. (2000) Yeast 16, 857-60.

| name  | ORF     | localization | function                             | deletion phenotype                                       |
|-------|---------|--------------|--------------------------------------|----------------------------------------------------------|
| SUR4  | YLR372W | ER           | Elongase for very long chain fatty   | Reduced VLCFA levels. Lipid raft association and         |
|       |         |              | acids                                | targeting of $H^{+}$ ATPase disrupted. (17, 29, 38, 40)  |
| CSG2  | YBR036C | ER           | Regulatory subunit of mannosyl-      | Reduced mannosylinositol phosphorylceramide              |
|       |         |              | tranferases Csg1p and Csh1p          | levels. (18, 39)                                         |
| ERV14 | YGL054C | ER           | COPII vesicle packaging chaperone    | ER retention of TM proteins Axl2p and Sma2p.             |
|       |         |              |                                      | Delay in ER exit of GPI-AP. (19, 20)                     |
| EMP24 | YGL200C | COPII        | Cargo receptor in p24 protein family | Delay in ER exit of GPI-AP and soluble cargo.            |
|       |         | vesicles     |                                      | Secretion of ER proteins. Suppression of $sec13\Delta$ . |
| ERV25 | YML012W | COPII        | Cargo receptor in p24 protein family | (21, 24, 33-35)                                          |
|       |         | vesicles     |                                      |                                                          |
| BST1  | YFL025C | ER           | GPI inositol deacylase               | Delay in ER exit of GPI-AP. Secretion of ER              |
|       |         |              |                                      | proteins. Suppression <i>sec13</i> ∆. (22, 23, 47)       |
| TED1  | YIL039W | ER           | Uncharacterized                      | Uncharacterized                                          |

Table 1: Functions of proteins deleted in strains identified by Kir\* screen.



Figure 1



Figure 2







Haass et al. 2007 Figure 5





## Supplemental Figure S1

Filter disks containing either water or 100 mM BaCl were placed on 500 mM NaCl YPAGR plates with lawns of wildtype yeast carrying (A) or not carrying (B) a genomic insertion of Kir\* under a galactose inducible/dextrose repressible promoter. Growth of the Kir\* expressing yeast strain was restored in a halo around the disk with barium, but not the disk with water, indicating that growth inhibition was due to Na+ influx through Kir\*. Yeast not carrying Kir\* grew on the entire plate.

| Table S1: yeast deletion strains used in screen |                |                                                                    |                      |               |                                                                                                            |                        |                     |                                                                                              |
|-------------------------------------------------|----------------|--------------------------------------------------------------------|----------------------|---------------|------------------------------------------------------------------------------------------------------------|------------------------|---------------------|----------------------------------------------------------------------------------------------|
| Iocus<br>YCR011C                                | name<br>ADP1   | function                                                           | VOL013C              | name<br>HRD1  | function<br>ERAD and uibiquitin degradation                                                                | Iocus<br>YMR214W       | name<br>SCJ1        | function<br>Protein maturation, protein maturation                                           |
| YDR100W                                         | TVP15          | ambiguous                                                          | YDL091C              | UBX3          | ERAD and uibiquitin degradation                                                                            | YMR152W                | YIM1                | Protein maturation, protein maturation                                                       |
| YDR084C                                         | TVP23          | ambiguous                                                          | YIL030C              | SSM4          | ERAD and ubiquitin degradation                                                                             | YMR274C                | RCE1                | Protein maturation, protein maturation                                                       |
| YEL005C                                         | VAB2           | ambiguous                                                          | YDR057W              | YOS9          | ERAD and uibiquitin degradation                                                                            | YDR519W                | FPR2                | Protein maturation, protein maturation                                                       |
| YDR411C                                         | DFM1           | ambiguous                                                          | YOR036W              | PEP12         | Golgi-endosome-vacuole traffic                                                                             | YOL110W                | SHR5                | Protein maturation, protein maturation                                                       |
| YER004W<br>YGL020C                              | FMP52<br>MDM39 | ambiguous<br>ambiguous                                             | YJL029C<br>YDR137W   | VPS53<br>RGP1 | Golgi-endosome-vacuole traffic<br>Intra Golgi traffic                                                      | YJL073W<br>YJR117W     | JEM1<br>STE24       | Protein maturation, protein maturation<br>Protein maturation, protein maturation             |
| YEL064C                                         | AVT2           | ambiguous                                                          | YGL005C              | COG7          | Intra Golgi traffic                                                                                        | YKL119C                | VPH2                | Protein maturation, vATPase complex assembly                                                 |
| YDR233C<br>YDR349C                              | YPS7           | ambiguous                                                          | YHL031C<br>YKL212W   | GOS1<br>SAC1  | Intra Golgi traffic                                                                                        | YHR060W<br>YGR105W     | VMA22<br>VMA21      | Protein maturation, vATPase complex assembly<br>Protein maturation, vATPase complex assembly |
| YEL031W                                         | SPF1<br>RMD7   | ambiguous                                                          | YOR216C              | RUD3          | Intra Golgi traffic                                                                                        | YGL012W                | ERG4                | Steroid/sterol biosynthesis                                                                  |
| YDR320C                                         | SWA2           | ambiguous                                                          | YOL018C              | TLG2          | Intra Golgi traffic                                                                                        | YLR056W                | ERG3                | Steroid/sterol biosynthesis                                                                  |
| YIL090W<br>YIL043C                              | ICE2<br>CBR1   | ambiguous<br>ambiguous                                             | YPL051W<br>YBR164C   | ARL3<br>ARL1  | Intra Golgi traffic<br>Intra Golgi traffic                                                                 | YMR015C<br>YML008C     | ERG5<br>ERG6        | Steroid/sterol biosynthesis<br>Steroid/sterol biosynthesis                                   |
| YIL027C                                         | KRE27          | ambiguous                                                          | YBL102W              | SFT2          | Intra Golgi traffic                                                                                        | YMR202W                | ERG2                | Steroid/sterol biosynthesis                                                                  |
| YHR136C                                         | SPL2           | ambiguous                                                          | YDL137W              | ARF2          | Intra Golgi traffic                                                                                        | YNL280C                | ERG24               | Steroid/steroi biosynthesis                                                                  |
| YLR023C<br>X II 178C                            | IZH3<br>ATG27  | ambiguous                                                          | YJR031C<br>YNL051W   | GEA1<br>COG5  | Intra Golgi traffic                                                                                        | YDL019C<br>YNR019W     | OSH2<br>ARE2        | Steroid/sterol biosynthesis<br>Steroid/sterol biosynthesis                                   |
| YKL094W                                         | YJU3           | ambiguous                                                          | YML071C              | COG8          | Intra Golgi traffic                                                                                        | YNR008W                | LR01                | Steroid/sterol biosynthesis                                                                  |
| YJL192C<br>YKL179C                              | SOP4<br>COY1   | ambiguous<br>ambiguous                                             | YLR039C<br>YDL192W   | RIC1<br>ARF1  | Intra Golgi traffic<br>Intra Golgi traffic                                                                 | YML075C<br>YCR048W     | HMG1<br>ARE1        | Steroid/sterol biosynthesis<br>Steroid/sterol biosynthesis                                   |
| YKL065C                                         | YET1           | ambiguous                                                          | YEL022W              | GEA2          | Intra Golgi traffic                                                                                        | YLR450W                | HMG2                | Steroid/sterol biosynthesis                                                                  |
| YMR029C                                         | FAR8           | ambiguous                                                          | YBR183W              | YPC1          | Lipid biosynthesis                                                                                         | YJR066W                | TOR1                | TOR/PKC signalling                                                                           |
| YLR250W<br>YNI 156C                             | SSP120<br>NSG2 | ambiguous                                                          | YDR294C<br>YDR297W   | DPL1<br>SUR2  | Lipid biosynthesis                                                                                         | YIL105C<br>YER019C-A   | SLM1<br>SBH2        | TOR/PKC signalling<br>translocation                                                          |
| YOR092W                                         | ECM3           | ambiguous                                                          | YGR202C              | PCT1          | Lipid biosynthesis                                                                                         | YKL073W                | LHS1                | translocation                                                                                |
| YOR198C<br>YOR165W                              | SEY1           | ambiguous                                                          | YGR170W<br>YGR157W   | CHO2          | Lipid biosynthesis                                                                                         | YER292C<br>YOL031C     | SEC72<br>SIL1       | translocation                                                                                |
| YOR042W                                         | CUE5           | ambiguous                                                          | YHL003C              | LAG1          | Lipid biosynthesis                                                                                         | YBR171W                | SEC66               | translocation                                                                                |
| YPR028W                                         | YOP1           | ambiguous                                                          | YKL140W              | TGL1          | Lipid biosynthesis                                                                                         | YBR283C                | SSH1                | translocation                                                                                |
| YPL246C<br>YPL170W                              | RBD2<br>DAP1   | ambiguous<br>ambiguous                                             | YKL008C<br>YJL134W   | LAC1<br>LCB3  | Lipid biosynthesis<br>Lipid biosynthesis                                                                   | YJR010C-A<br>YER087C-B | SPC1<br>SBH1        | translocation<br>translocation                                                               |
| YOR311C                                         | HSD1           | ambiguous                                                          | YLL043W              | FPS1          | Lipid biosynthesis                                                                                         | YLL052C                | AQY2                | transport                                                                                    |
| YOR307C<br>YOR284W                              | SLY41<br>HUA2  | ambiguous<br>ambiguous                                             | YJL196C<br>YLR372W   | ELO1<br>SUR4  | Lipid biosynthesis<br>Lipid biosynthesis                                                                   | YLL028W<br>YMR054W     | TPO1<br>STV1        | transport<br>transport                                                                       |
| YPR149W                                         | NCE102         | ambiguous                                                          | YOR245C              | DGA1          | Lipid biosynthesis                                                                                         | YCL025C                | AGP1                | transport, amino acid transport<br>transport. Ca transport                                   |
| YFR041C                                         | ERJ5           | ambiguous                                                          | YOR049C              | RSB1          | Lipid biosynthesis                                                                                         | YGL167C                | PMR1                | transport, Ca transport                                                                      |
| YML048W<br>YDL100C                              | GSF2<br>ARR4   | ambiguous<br>ambiguous                                             | YOR171C<br>YMR272C   | LCB4<br>SCS7  | Lipid biosynthesis<br>Lipid biosynthesis                                                                   | YDR270W<br>YOR079C     | CCC2<br>ATX2        | transport, heavy metal transport<br>transport, heavy metal transport                         |
| YDR492W                                         | IZH1           | ambiguous                                                          | YOR377W              | ATF1          | Lipid biosynthesis                                                                                         | YDR205W                | MSC2                | transport, heavy metal transport                                                             |
| YNR039C                                         | ZRG17          | ambiguous                                                          | YPL087W              | YDC1          | Lipid biosynthesis                                                                                         | YLR130C                | ZRT2                | transport, neavy metal transport<br>transport, heavy metal transport                         |
| YCR044C                                         | PER1           | ambiguous                                                          | YDL052C              | SLC1          | Lipid biosynthesis                                                                                         | YBR132C                | AGP2                | transport, not in Maya's paper                                                               |
| YBR290W                                         | BSD2           | ambiguous                                                          | YDR503C              | LPP1          | Lipid biosynthesis                                                                                         | YBR106W                | PHO88               | transport, phosphate transport                                                               |
| YBR264C<br>YNL008C                              | YPT10<br>ASI3  | ambiguous<br>ambiguous                                             | YML059C<br>YGL126W   | NTE1<br>SCS3  | Lipid biosynthesis<br>Lipid biosynthesis                                                                   | YNR013C<br>YJL212C     | PHO91<br>OPT1       | transport, phosphate transport<br>transport, sulfur transport                                |
| YML038C                                         | YMD8           | ambiguous                                                          | YIL124W              | AYR1          | Lipid biosynthesis                                                                                         | YPL274W                | SAM3                | transport, sulfur transport                                                                  |
| YJR118C                                         | ILM1           | ambiguous                                                          | YIR033W              | MGA2          | Lipid biosynthesis                                                                                         | YDR056C                | YDR056C             | unknown                                                                                      |
| YGR038W<br>YJR134C                              | ORM1<br>SGM1   | ambiguous                                                          | YNL130C<br>YKR053C   | CPT1<br>YSR3  | Lipid biosynthesis                                                                                         | YCL056C<br>YCL045C     | YCL056C<br>YCL045C  | unknown                                                                                      |
| YER120W                                         | SCS2           | ambiguous                                                          | YCR034W              | FEN1          | Lipid biosynthesis                                                                                         | YEL001C                | YEL001C             | unknown                                                                                      |
| YBR287W                                         | ZSP1           | ambiguous                                                          | YBR159W<br>YHR123W   | EPT1          | Lipid biosynthesis<br>Lipid biosynthesis                                                                   | YEL043W                | YEL043W             | unknown<br>unknown                                                                           |
| YMR119W<br>YNL125C                              | ASI1<br>ESBP6  | ambiguous                                                          | YOR317W<br>YMR313C   | FAA1<br>TGL3  | Lipid biosynthesis                                                                                         | YGL010W<br>YDR221W     | YGL010W<br>YDR221W  | unknown                                                                                      |
| YJL078C                                         | PRY3           | ambiguous                                                          | YBR036C              | CSG2          | Lipid biosynthesis                                                                                         | YDR222W                | YDR222W             | unknown                                                                                      |
| YDL072C<br>YDR525W                              | YET3<br>API2   | ambiguous<br>ambiguous                                             | YPR135W<br>YJL168C   | CTF4<br>SET2  | miscellaneous, chromatin adhesion<br>miscellaneous, histone methyltransferase                              | YDR357C<br>YDR344C     | YDR357C<br>YDR344C  | unknown<br>unknown                                                                           |
| YOL101C                                         | IZH4           | ambiguous                                                          | YHR135C              | YCK1          | miscellaneous, kinase                                                                                      | YER071C                | YER071C             | unknown                                                                                      |
| YOL137W                                         | BSC6           | ambiguous                                                          | YAL058W              | CNE1          | N-linked glycosylation                                                                                     | YGL231C                | YGL231C             | unknown                                                                                      |
| YMR065W<br>YHR181W                              | KAR5<br>SVP26  | ambiguous                                                          | YGR036C<br>YGL226C-A | CAX4<br>OST5  | N-linked glycosylation<br>N-linked glycosylation                                                           | YLL014W<br>YLR064W     | YLL014W<br>YLR064W  | unknown                                                                                      |
| YMR123W                                         | PKR1           | ambiguous                                                          | YML019W              | OST6          | N-linked glycosylation                                                                                     | YLR042C                | YLR042C             | unknown                                                                                      |
| YNR075W<br>YHR004C                              | NEM1           | ambiguous<br>ambiguous                                             | YOR002W<br>YOR067C   | ALG6<br>ALG8  | N-linked glycosylation<br>N-linked glycosylation                                                           | YJL171C<br>YLL055W     | YJL171C<br>YLL055W  | unknown<br>unknown                                                                           |
| YDL222C<br>X II 079C                            | FMP45<br>PRY1  | ambiguous                                                          | YNL219C              | ALG9          | N-linked glycosylation                                                                                     | YKL063C                | YKL063C             | unknown                                                                                      |
| YKR088C                                         | TVP38          | ambiguous                                                          | YGR227W              | DIE2          | N-linked glycosylation                                                                                     | YMR010W                | YMR010W             | unknown                                                                                      |
| YDL204W<br>YDR032C                              | RTN2<br>PST2   | ambiguous<br>ambiguous                                             | YNR030W<br>YJR131W   | ECM39<br>MNS1 | N-linked glycosylation<br>N-linked glycosylation                                                           | YLR194C<br>YMR163C     | YLR194C<br>YMR163C  | unknown<br>unknown                                                                           |
| YAR044W                                         | OSH1           | ambiguous                                                          | YOR085W              | OST3          | N-linked glycosylation                                                                                     | YMR031C                | YMR031C             | unknown                                                                                      |
| YIL040W                                         | APQ12          | ambiguous                                                          | YCR017C              | CWH43         | O-linked glycosylation<br>O-linked glycosylation, GPI, cell wall biosynthesis                              | YNL194C                | YNL194C             | unknown<br>unknown                                                                           |
| YNL085W                                         | MKT1<br>EPG28  | ambiguous                                                          | YEL004W              | YEA4          | O-linked glycosylation, GPI, cell wall biosynthesis                                                        | YNL190W                | YNL190W             | unknown                                                                                      |
| YEL003W                                         | GIM4           | cytoskeleton assembly                                              | YLR120C              | YPS1          | O-linked glycosylation, GPI, cell wall biosynthesis                                                        | YOR044W                | YOR044W             | unknown                                                                                      |
| YNL153C<br>YMR299C                              | GIM3<br>DYN3   | cytoskeleton assembly<br>cytoskeleton assembly                     | YNL327W<br>YMR307W   | EGT2<br>GAS1  | O-linked glycosylation, GPI, cell wall biosynthesis<br>O-linked glycosylation, GPI, cell wall biosynthesis | YMR253C<br>YPR003C     | YMR253C<br>YPR003C  | unknown                                                                                      |
| YDR424C                                         | DYN2           | cytoskeleton assembly                                              | YOL030W              | GAS5          | O-linked glycosylation, GPI, cell wall biosynthesis                                                        | YOL047C                | YOL047C             | unknown                                                                                      |
| YAL007C                                         | ERP2           | ER/Golgi traffic                                                   | YLR390W-A            | CCW14         | O-linked glycosylation, GPI, cell wall biosynthesis                                                        | YPL206C                | YPL206C             | unknown                                                                                      |
| YAL042W<br>YGL200C                              | ERV46<br>EMP24 | ER/Golgi traffic<br>ER/Golgi traffic                               | YER005W<br>YEL042W   | YND1<br>GDA1  | O-linked glycosylation, GPI, Golgi glycosylation<br>O-linked glycosylation, GPI, Golgi glycosylation       | YOR285W<br>YOR291W     | YOR285W<br>YOR291W  | unknown                                                                                      |
| YGL054C                                         | ERV14          | ER/Golgi traffic                                                   | YDR483W              | KRE2          | O-linked glycosylation, GPI, Golgi glycosylation                                                           | YPR148C                | YPR148C             | unknown                                                                                      |
| YIL076W                                         | SEC28          | ER/Golgi traffic                                                   | YFL025C              | BST1          | O-linked glycosylation, GPI, GPI anchor biosynthesis                                                       | YPR114W                | YPR114W             | unknown                                                                                      |
| YIL044C<br>YLR080W                              | AGE2<br>EMP46  | ER/Golgi traffic<br>ER/Golgi traffic                               | YJL062W<br>YAL023C   | LAS21<br>PMT2 | U-Inked glycosylation, GPI, GPI anchor biosynthesis<br>O-linked glycosylation, GPI, O-linked glycosylation | YPR063C<br>YPR071W     | YPR063C<br>YPR071W  | unknown<br>unknown                                                                           |
| YML012W                                         | ERV25          | ER/Golgi traffic                                                   | YGL027C              | CWH41         | O-linked glycosylation, GPI, O-linked glycosylation                                                        | YDL121C                | YDL121C             | unknown                                                                                      |
| YOR115C                                         | SEC22<br>TRS33 | ER/Golgi traffic                                                   | YHR142W              | CHS7          | O-linked glycosylation, GPI, O-linked glycosylation<br>O-linked glycosylation, GPI, O-linked glycosylation | YDL099W                | YDL099W             | unknown                                                                                      |
| YMR292W<br>YOR016C                              | GOT1<br>ERP4   | ER/Golgi traffic<br>ER/Golgi traffic                               | YOR321W<br>YDI 093W  | PMT3<br>PMT5  | O-linked glycosylation, GPI, O-linked glycosylation<br>O-linked glycosylation, GPI, O-linked glycosylation | YGR263C<br>YGR266W     | YGR263C<br>YGR266W  | unknown<br>unknown                                                                           |
| YCL001W                                         | RER1           | ER/Golgi traffic                                                   | YDL095W              | PMT1          | O-linked glycosylation, GPI, O-linked glycosylation                                                        | YNL146W                | YNL146W             | unknown                                                                                      |
| YDL018C<br>YDR524C                              | ERP3<br>AGE1   | ER/Golgi traffic<br>ER/Golgi traffic                               | YEL017C<br>YEL013W   | PEP1<br>VAC8  | Post-Golgi traffic                                                                                         | YCR043C<br>YNR021W     | YUR043C<br>YNR021W  | unknown                                                                                      |
| YFL048C<br>YNI 044W                             | EMP47<br>YIP3  | ER/Golgi traffic<br>ER/Golgi traffic                               | YMR183C<br>YNI 297C  | SSO2<br>MON2  | Post-Golgi traffic<br>Post-Golgi traffic                                                                   | YCR061W<br>YNI 046W/   | YCR061W<br>YNI 046W | unknown                                                                                      |
| YNL049C                                         | SFB2           | ER/Golgi traffic                                                   | YOR089C              | VPS21         | Post-Golgi traffic                                                                                         | YGR106C                | YGR106C             | unknown                                                                                      |
| YML067C<br>YER122C                              | ERV41<br>GLO3  | ER/Golgi traffic<br>ER/Golgi traffic                               | YPL195W<br>YPR173C   | APL5<br>VPS4  | Post-Golgi traffic<br>Post-Golgi traffic                                                                   | YER113C<br>YJR015W     | YER113C<br>YJR015W  | unknown<br>unknown                                                                           |
| YAR002C-A                                       | ERP1           | ER/Golgi traffic                                                   | YDR484W              | VPS52         | Post-Golgi traffic                                                                                         | YNL095C                | YNL095C             | unknown                                                                                      |
| YGR284C                                         | SED4<br>ERV29  | ER/Golgi traffic                                                   | YJL024C              | APL6<br>APS3  | Post-Golgi traffic                                                                                         | YGR130C                | YGR130C             | unknown                                                                                      |
| YNR051C<br>Y.II 117W                            | BRE5           | ER/Golgi traffic<br>ER/Golgi traffic                               | YJL004C<br>YBR288C   | SYS1<br>APM3  | Post-Golgi traffic<br>Post-Golgi traffic                                                                   | YBR255W<br>YDR476C     | YBR255W<br>YDR476C  | unknown                                                                                      |
| YDL226C                                         | GCS1           | ER/Golgi traffic                                                   | YDL231C              | BRE4          | Post-Golgi traffic                                                                                         | YOL107W                | YOL107W             | unknown                                                                                      |
| YGL223C<br>YBR201W                              | COG1<br>DER1   | ERAD and uibiquitin degradation                                    | YILU05W<br>YHR176W   | EPS1<br>FMO1  | Protein maturation, disulfide bond formation<br>Protein maturation, disulfide bond formation               | YHRU45W<br>YLR050C     | YHR045W<br>YLR050C  | unknown                                                                                      |
| YHR204W                                         | MNL1           | ERAD and uibiquitin degradation                                    | YOR288C              | MPD1          | Protein maturation, disulfide bond formation                                                               | YJL123C                | YJL123C             | unknown                                                                                      |
| YLR207W                                         | HRD3           | ERAD and uibiquitin degradation                                    | YIR038C              | GTT1          | Protein maturation, disulfide bond formation                                                               | YER053C-A              | YER053C-A           | unknown                                                                                      |
| YML013W<br>YMR161W                              | SEL1<br>HLJ1   | ERAD and uibiquitin degradation<br>ERAD and uibiquitin degradation | YOL088C<br>YGL203C   | MPD2<br>KEX1  | Protein maturation, disulfide bond formation<br>Protein maturation, protein maturation                     | YNL300W<br>YIL016W     | rOS6<br>SNL1        | unknown<br>unknown                                                                           |
| YMR264W                                         | CUE1           | ERAD and uibiquitin degradation                                    | YDR304C              | CPR5          | Protein maturation, protein maturation                                                                     | YML128C                | MSC1                | unknown                                                                                      |
|                                                 |                |                                                                    | . 5114 106           | 0.114         |                                                                                                            | 311301111              | OLINE               |                                                                                              |



## Table S2: Yeast screen selection scheme

## $\mathsf{MATalpha:ura3} \Delta:: \mathsf{URA3}/\mathsf{GAL1pr}{-}\mathsf{Kir3.2S177W}{-}\mathsf{GFP}\ \mathsf{can1} \Delta:: \mathsf{STE2pr}{-}\mathsf{spHIS5}\ \mathsf{lyp1} \Delta:: \mathsf{STE3pr}{-}\mathsf{LEU2}\ \mathsf{LYS2+his3} \Delta 1\ \mathsf{leu2} \Delta 0\ \mathsf{cyh2}$

MATa: YYY $\Delta$ ::Kan' CAN1 LYP1 LYS2+ his3 $\Delta$ 1 leu2 $\Delta$ 0 ura3 $\Delta$ 0 met15 $\Delta$ 0

| Step                         | Media                                                                                                   | Time   | Temp. | Gentotype                                                                            |
|------------------------------|---------------------------------------------------------------------------------------------------------|--------|-------|--------------------------------------------------------------------------------------|
| 1.a MATalpha                 | SD(MSG)-URA                                                                                             |        |       |                                                                                      |
| 1.b MATa                     | YPAD+G418                                                                                               | 2 days | 30°C  |                                                                                      |
| 2. Mating                    | YPAD                                                                                                    | 1 day  | RT    |                                                                                      |
| 3. Diploid selection         | SD(MSG)-URA+G418                                                                                        | 2 days | 30°C  |                                                                                      |
| 4. Sporulation               | sporulation media                                                                                       | 5 days | 22°C  |                                                                                      |
| 5. Haploid selection 1       | SD(MSG) –HIS–ARG–LYS +CAN +S-AEC                                                                        | 2 days | 30°C  | can1∆::STE2pr-HIS3, lyp1∆                                                            |
| 6. Haploid selection 2       | SD(MSG) –HIS–ARG–LYS +CAN +S-AEC                                                                        | 1 day  | 30°C  | can1∆::STE2pr-HIS3, lyp1∆                                                            |
| 7. Double mutant selection 1 | SD(MSG) –HIS–ARG–LYS–URA +CAN +S-AEC +G418                                                              | 2 days | 30°C  | can1∆::STE2pr-HIS3, lyp1∆, YYY∆::Kan <sup>r</sup> ,<br>ura3∆::URA3/ GAL1pr-S177W-GFP |
| 8. Double mutant selection 2 | SD(MSG) –HIS–ARG–LYS–URA +CAN +S-AEC +G418                                                              | 2 days | 30°C  | can1∆::STE2pr-HIS3, lyp1∆, YYY∆::Kan <sup>r</sup> ,<br>ura3∆::URA3/ GAL1pr-S177W-GFP |
| 9. Tests                     | 750 Na SD(MSG) –HIS–ARG–LYS–URA +CAN +S-AEC +G418<br>750 Na SGR(MSG) –HIS–ARG–LYS–URA +CAN +S-AEC +G418 | 2 days | 30°C  | can1∆::STE2pr-HIS3, lyp1∆, YYY∆::Kan <sup>r</sup> ,<br>ura3∆::URA3/ GAL1pr-S177W-GFP |

#### Table S3: Yeast strains used in this study and primers used to generate these strains

| name<br>YMS613      | genotype<br>MATalpha can1A::STE2pr-spHIS5 lyp1A::STE3pr-LEU2 LYS2+<br>his3A1 leu2A0 ura3A cyh2 #                                                                                                                                              | plasmid                                                                | forward primer for genome insertion                                                                                                                  | reverse primer for genome insertion                                                                                                              | forward primer for<br>check PCR                                    | reverse primer for<br>check PCR                            |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------|
| YMS614              | YMS613 + sur4∆::Kan'                                                                                                                                                                                                                          | pFA6a KAN MX6                                                          | ATTCGGCTTTTTTCCGTTTGTTTACGAAACATA<br>AACAGTCGGTCGACGGATCCCCCGGGTT                                                                                    | TTTTCTTTTTCATTCGCTGTCAAAAATTCTCGCT<br>TCCTATTCGATGAATTCGAGCTCGTT                                                                                 | TGGTTTTTGACAGCT<br>CTTCACTCG                                       | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS615              | YMS613 + csg2∆::Kan'                                                                                                                                                                                                                          | pFA6a KAN MX6                                                          | GCTGGTGAGTTAGCACGATAACAAACAAAGAT<br>ACAGCGTCGGTCGACGGATCCCCCGGGTT                                                                                    | TGTTACATCATCATCAGTCATATAAAGTATGTT<br>GTCCGTATCGATGAATTCGAGCTCGTT                                                                                 | GAGGCATGGTACTC<br>CTTCTTATTC                                       | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS616              | YMS613 + erv14∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | CAATTAAAGTAAAGTAAAAAAAATTAAGAATAAAA<br>AGAAAAGGTCGACGGATCCCCGGGTT                                                                                    | TGGCCCTTCAGTCTTCTTTGGATTTCAATGTCT<br>TGTTGGATCGATGAATTCGAGCTCGTT                                                                                 | TTAATACGAAGGAG<br>AGACCTGG                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS617              | YMS613 + emp24∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TTAATAGTATCCCTCCGCACAAAAATACACACG<br>CATAAGGGGTCGACGGATCCCCGGGTT                                                                                     | GCAAAAGTAAATAGATATGAACTACATTTTCCT<br>GCTTTACTCGATGAATTCGAGCTCGTT                                                                                 | GACGCGAGGAAAGT<br>CAGAAAAG                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS618              | YMS613 + erv25∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TATAACTCAGTTGATCTCATAAGTGAAAAGCAA<br>AAAAAGGGGTCGACGGATCCCCGGGTT                                                                                     | AGCTGATACACAAATGCATGGTGTGGTCCTCT<br>TCCTTTGCTCGATGAATTCGAGCTCGTT                                                                                 | CGCGTACAAAGAGT<br>TTCTGG                                           | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS619              | YMS613 + bst1∆::Kan′                                                                                                                                                                                                                          | pFA6a KAN MX6                                                          | TATCTTAGGCTTACCATCATACAAAAATCTTCAT<br>TTCGTTGGTCGACGGATCCCCGGGTT                                                                                     | GCAATATATACAGTTAATCTTTTTTACTGGGTT<br>GTAGTTTCGATGAATTCGAGCTCGTT                                                                                  | GGCGCGAATTTTGA<br>AAAAGG                                           | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS620              | YMS613 + YIL039W∆∷Kan′                                                                                                                                                                                                                        | pFA6a KAN MX6                                                          | CTGAAAACAACAGCAGCAGCAGCATTGTACCAAGA<br>ATCCCAAGGGTCGACGGATCCCCGGGTT                                                                                  | ATCTCTATACAGGAGTTTTATCTTCTTTACTCTT<br>TTTTGTTCGATGAATTCGAGCTCGTT                                                                                 | GCTAGATTCCTCCC<br>CTAGTCAC                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS621              | $\label{eq:matrix} \begin{array}{l} \mbox{MATalpha can1} \Delta::STE2pr\mbox{-spHIS5 lyp1} \Delta::STE3pr\mbox{-LEU2 LYS2+} \\ \mbox{his3} \Delta 1 \mbox{leu2} \Delta 0 \mbox{ ura3} \Delta::URA3/GAL1pr\mbox{-no insert } cvh2 \end{array}$ | empty pYES2-<br>2micron origin ###                                     | AGTTTTGACCATCAAAGAAGGTTAATGTGGCTG<br>TGGTTTCgggtaataactgatataatt                                                                                     | AGCTTTTTCTTTCCAATTTTTTTTTTTTCGTCATT<br>ATAGAgcaaattaaagccttcgagc                                                                                 | CGACGTTGAAATTG<br>AGGCTACTGCGCCA                                   | GCGGCCAGCAAAAC<br>TAAAAAACTGTATT                           |
| YMS622              | $\label{eq:main_state} \begin{array}{l} MATalpha\ can1\Delta::STE2pr\text{-spHIS5}\ lyp1\Delta::STE3pr\text{-LEU2}\ LYS2+\\ his3\Delta1\ leu2\Delta0\ ura3\Delta::URA3/GAL1pr\text{-Kir3.2S177W-GFP}\ cyh2 \end{array}$                       | in pYES2-2micron<br>origin ##                                          | AGTTTTGACCATCAAAGAAGGTTAATGTGGCTG<br>TGGTTTCgggtaataactgatataatt                                                                                     | AGCTTTTTCTTTCCAATTTTTTTTTTTTTCGTCATT<br>ATAGAgcaaattaaagccttcgagc                                                                                | CGACGTTGAAATTG<br>AGGCTACTGCGCCA                                   | GCGGCCAGCAAAAC<br>TAAAAAACTGTATT                           |
| YMS623              | YMS622 + sur4∆::Kan'                                                                                                                                                                                                                          | pFA6a KAN MX6                                                          | ATTCGGCTTTTTTCCGTTTGTTTACGAAACATA<br>AACAGTCGGTCGACGGATCCCCGGGTT                                                                                     | TTTTCTTTTCATTCGCTGTCAAAAATTCTCGCT<br>TCCTATTCGATGAATTCGAGCTCGTT                                                                                  | TGGTTTTTGACAGCT<br>CTTCACTCG                                       | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS624              | YMS622 + csg2∆::Kan <sup>r</sup>                                                                                                                                                                                                              | pFA6a KAN MX6                                                          | GCTGGTGAGTTAGCACGATAACAAACAAAGAT<br>ACAGCGTCGGTCGACGGATCCCCCGGGTT                                                                                    | TGTTACATCATCATCAGTCATATAAAGTATGTT<br>GTCCGTATCGATGAATTCGAGCTCGTT                                                                                 | GAGGCATGGTACTC<br>CTTCTTATTC                                       | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS625              | YMS622 + erv14∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | CAATTAAAGTAAAGTAAAAAAATTAAGAATAAAA<br>AGAAAAGGTCGACGGATCCCCGGGTT                                                                                     | TGGCCCTTCAGTCTTCTTTGGATTTCAATGTCT<br>TGTTGGATCGATGAATTCGAGCTCGTT                                                                                 | TTAATACGAAGGAG<br>AGACCTGG                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS626              | YMS622 + emp24∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TTAATAGTATCCCTCCGCACAAAAATACACACG<br>CATAAGGGGTCGACGGATCCCCGGGTT                                                                                     | GCAAAAGTAAATAGATATGAACTACATTTTCCT<br>GCTTTACTCGATGAATTCGAGCTCGTT                                                                                 | GACGCGAGGAAAGT<br>CAGAAAAG                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS627              | YMS622 + erv25∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TATAACTCAGTTGATCTCATAAGTGAAAAGCAA<br>AAAAAGGGGTCGACGGATCCCCGGGTT                                                                                     | AGCTGATACACAAATGCATGGTGTGGTCCTCT<br>TCCTTTGCTCGATGAATTCGAGCTCGTT                                                                                 | CGCGTACAAAGAGT<br>TTCTGG                                           | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS628              | YMS622 + bst1 Δ::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TATCTTAGGCTTACCATCATACAAAAATCTTCAT<br>TTCGTTGGTCGACGGATCCCCCGGGTT                                                                                    | GCAATATATACAGTTAATCTTTTTTACTGGGTT<br>GTAGTTTCGATGAATTCGAGCTCGTT                                                                                  | GGCGCGAATTTTGA<br>AAAAGG                                           | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS629              | YMS622 + YIL039W∆∷Kan'                                                                                                                                                                                                                        | pFA6a KAN MX6                                                          | CTGAAAACAACAGCAGCAGCAGCATTGTACCAAGA<br>ATCCCAAGGGTCGACGGATCCCCGGGTT                                                                                  | ATCTCTATACAGGAGTTTTATCTTCTTTACTCTT<br>TTTTGTTCGATGAATTCGAGCTCGTT                                                                                 | GCTAGATTCCTCCC<br>CTAGTCAC                                         | GTATTCTGGGCCTC<br>CATGTCG<br>IKIA:GCGGCCAGCA               |
| YMS630              | MATalpha trk1.α:URA3/MET25pr-empty trk2.a::Nať<br>can1.Δ::STE2pr-spHIS5 lyp1.Δ::STE3pr-LEU2 LYS2+ his3.Δ1<br>leu2Δ0 ura3.Δ0 cyh2                                                                                                              | empty<br>pYESMET25-<br>2micron origin ###<br>and pFA6a NAT             | trk1\Delta:CATTTTACTTAAAGTTATTACCTTTTTTGA<br>TAACTAACAggtaataactgatataatt<br>trk2A:TGTACTATTCACCGACCAATAAGAGGCTGT<br>AAGAACCACTCGGTCGACGGATCCCCGGGTT | tktl::TTGAGTACGAAAACCTATTTCTAAAGAAT<br>GAGTATATATGgcaaattaaagcettcgagc<br>tkt2::AcGTTGGCTCTTATGTAGGTAAAGAGGG<br>GTAAACTTGATTTCGATGAATTCGAGCTCGTT | trk1∆:CCTTTCGCCCA<br>TTGTTTTTA<br>trk2∆:GTTTCCCGTTT<br>CTCTCTTTCAC | AAACTAAAAAACTGT<br>ATT<br>trk2∆:GTATTCTGGGC<br>CTCCATGTCG  |
| YMS631              | MATalpha trk1A::URA3/MET25pr-Kir3 2V188G-GFP trk2A::Nať<br>can1A::STE2pr-spHIS5 lyp1A::STE3pr-LEU2 LYS2+ his3A1<br>leu2A0 ura3A0 cvh2                                                                                                         | Kir3.2V188G-GFP<br>in pYESMET25-<br>2micron origin ##<br>and pFA6a NAT | trk1_A:CATTTTACTTAAAGTTATTACCTTTTTTGA<br>TAACTAACAgggtaataactgatataatt<br>trk2_A:TGTAACTATTCACCGACCGATAAGAGGCTGT<br>AAGAACCACTCGGTCGACGGATCCCCGGGTT  | trk1∆:TTGAGTACGAAAACCTATTTCTAAAGAAT<br>GAGTATATATGgcaaattaaagcettcgagc<br>trk2⊥ACGTTGGCTCTTATGTAGGTAAAGAGGG<br>GTAAACTTGATTCGATGAATTCGAGCTCGTT   | trk1A:CCTTTCGCCCA<br>TTGTTTTA<br>trk2A:GTTTCCCGTTT<br>CTCTCTTTCAC  | AAACTAAAAAAACTGT<br>ATT<br>trk2A:GTATTCTGGGC<br>CTCCATGTCG |
| YMS632              | YMS631 + sur4∆::Kan'                                                                                                                                                                                                                          | pFA6a KAN MX6                                                          | ATTCGGCTTTTTTCCGTTTGTTTACGAAACATA<br>AACAGTCGGTCGACGGATCCCCGGGTT                                                                                     | TTTTCTTTTCATTCGCTGTCAAAAATTCTCGCT<br>TCCTATTCGATGAATTCGAGCTCGTT                                                                                  | TGGTTTTTGACAGCT<br>CTTCACTCG                                       | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS633              | YMS631 + csg2∆::Kan'                                                                                                                                                                                                                          | pFA6a KAN MX6                                                          | GCTGGTGAGTTAGCACGATAACAAACAAAGAT<br>ACAGCGTCGGTCGACGGATCCCCCGGGTT                                                                                    | TGTTACATCATCATCAGTCATATAAAGTATGTT<br>GTCCGTATCGATGAATTCGAGCTCGTT                                                                                 | GAGGCATGGTACTC<br>CTTCTTATTC                                       | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS634              | YMS631 + erv14∆::Kan′                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | CAATTAAAGTAAAGTAAAAAAATTAAGAATAAAA<br>AGAAAAGGTCGACGGATCCCCGGGTT                                                                                     | TGGCCCTTCAGTCTTCTTTGGATTTCAATGTCT<br>TGTTGGATCGATGAATTCGAGCTCGTT                                                                                 | TTAATACGAAGGAG<br>AGACCTGG                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS635              | YMS631 + emp34∆::Kan'                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TTAATAGTATCCCTCCGCACAAAAATACACACG<br>CATAAGGGGTCGACGGATCCCCGGGTT                                                                                     | GCAAAAGTAAATAGATATGAACTACATTTTCCT<br>GCTTTACTCGATGAATTCGAGCTCGTT                                                                                 | GACGCGAGGAAAGT<br>CAGAAAAG                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS636              | YMS631 + erv25∆::Kan′                                                                                                                                                                                                                         | pFA6a KAN MX6                                                          | TATAACTCAGTTGATCTCATAAGTGAAAAGCAA<br>AAAAAGGGGTCGACGGATCCCCGGGTT                                                                                     | AGCTGATACACAAATGCATGGTGTGGTCCTCT<br>TCCTTTGCTCGATGAATTCGAGCTCGTT                                                                                 | CGCGTACAAAGAGT<br>TTCTGG                                           | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS637              | YMS631 + bst1∆::Kan <sup>r</sup>                                                                                                                                                                                                              | pFA6a KAN MX6                                                          | TATCTTAGGCTTACCATCATACAAAAATCTTCAT<br>TTCGTTGGTCGACGGATCCCCGGGTT                                                                                     | GCAATATATACAGTTAATCTTTTTTACTGGGTT<br>GTAGTTTCGATGAATTCGAGCTCGTT                                                                                  | GGCGCGAATTTTGA<br>AAAAGG                                           | GTATTCTGGGCCTC<br>CATGTCG                                  |
| YMS638              | YMS631 + YIL039W∆::Kan'                                                                                                                                                                                                                       | pFA6a KAN MX6                                                          | CTGAAAACAACAGCAGCAGCATTGTACCAAGA<br>ATCCCAAGGGTCGACGGATCCCCGGGTT                                                                                     | ATCTCTATACAGGAGTTTTATCTTCTTTACTCTT<br>TTTTGTTCGATGAATTCGAGCTCGTT                                                                                 | GCTAGATTCCTCCC<br>CTAGTCAC                                         | GTATTCTGGGCCTC<br>CATGTCG                                  |
| deletion<br>library | MATa: YYY $\Delta$ ::Kan' CAN1 LYP1 LYS2+ his3 $\Delta 1$ leu2 $\Delta 0$ ura3 $\Delta 0$ met15 $\Delta 0$                                                                                                                                    | pFA6a KAN MX6                                                          | see Saccharomyces Genome Deletion Project (http:                                                                                                     | ://www-sequence.stanford.edu/group/yeast deletion                                                                                                | project/deletions3.htm                                             | ))                                                         |
| YMS660              | MATalpha ade1-100 leu2-3 leu2-112 ura3-52 ####                                                                                                                                                                                                |                                                                        |                                                                                                                                                      |                                                                                                                                                  |                                                                    |                                                            |

MATalpha ade1-100 leu2-3 leu2-112 ura3-52 MAL2 YMS661 transformed with pma1-105 ::URA3 fragment ####

# strain BY4742 provided by Charles Boone and Amy Tong, reference: Tong et al. 2001, Science Vol. 294 pp2364-2368

## Mouse Kir3.2S177W and Kir3.2V188G (Yi et al, 2001, Neuron, Vol. 29, pp. 657-667; Bichet et al. 2004, PNAS Vol. 101, No. 13, pp. 4441-4446) were cloned into pYES2 (Invitrogen) and pYESMET25 (Minor et al. 1999, Cell, Vol. 96, pp. 879-891), respectively. The 2µ origin was removed using Ndel and NgoMIV followed by blunt end ligation. Channels were tagged with eGFP (Clontech) at the C-terminus.

### pYES2-2µ origin and pYESMET25-2µ origin without inserts were used as PCR templates.

#### kind gift of James E. Haber, strain YMS660 = A612 in Haber lab collection, YMS661 = SN19, reference: Perlin et al. 1988, JBC Vol. 263, No. 34, pp. 18118-18122

#### Supplemental methods

#### Yeast Strains

Yeast strains were either picked from the yeast deletion library (1) or reconstructed by PCR-mediated gene disruption in a BY4742 (2) derived background (MATalpha *can1* $\Delta$ ::STE2pr-*spHIS5 lyp1* $\Delta$ ::STE3pr-*LEU2 LYS2*<sup>+</sup> *MET*<sup>+</sup> *his3* $\Delta$ 1 *leu2* $\Delta$ 0 *ura3* $\Delta$  *cyh2*, a kind gift from Amy Tong and Charles Boone). Online Table S3 lists strains, primers and plasmids. Mouse Kir3.2S177W and Kir3.2V188G (3, 4) were cloned into pYES2 (Invitrogen) and pYESMET25 (5), respectively. Channels were tagged with eGFP (Clontech) at the C-terminus. For integration into the yeast genome, the 2 $\mu$  origin was removed from pYES2 and pYESMET25 using NdeI and NgoMIV followed by blunt end ligation. Integration of gene disruption cassettes was confirmed by colony PCR.

#### Yeast Media

Synthetic media (SD or SGR) was prepared from 1.7 g yeast nitrogen base without amino acid and without ammonium sulfate (Difco), 2 g amino acid drop out powder containing all amino acids except those used for selection (6) (amino acids from Sigma), 1 g monosodium glutamic acid (Sigma), and either 20 g dextrose (Riedel-de Haen) or 20 g galactose (Sigma) and 20 g raffinose (Acros) in 1 liter water. Rich media (YPAD or YPAGR) was prepared from 10 g yeast extract (Difco), 20 g peptone (Difco), 120 mg adenine (Sigma) and either 20 g dextrose or 20 g galactose and 20 g raffinose in 1 liter water. Yeast plates contained 2% agar (Difco). For high sodium tests, 500 mM NaCl (Fisher) was added to the media. Geneticin (Invitrogen) was used at 200 mg/l, ClonNat (Werner Biotechnology) at 100 mg/l, hygromycin (Invitrogen) at 500 mg/l. Low Salt plates were prepared from 15 g Seakem LE agarose (BMA), 2.1 g free arginine base (Sigma), 1 ml 1 M MgSO<sub>4</sub>, 100  $\mu$ l 1 M CaCl2, 1.5 g dropout powder, 20 g dextrose, 2 ml 500x trace minerals (Q Biogene), 1 ml 1000x vitamins (7) in 1 liter water and adjusted to pH 6.0 with phosphoric acid. KCl was added to 100 mM or 0.5 mM.

#### Yeast Screen

A subset of the yeast deletion library (1) consisting of 376 yeast strains (online Table S1) each carrying a deletion in an early secretory pathway-localized protein (8) was mated to yeast expressing Kir3.2S177W-GFP using a modified version of the method for Synthetic Genetic Array analysis (9). The selection scheme is shown online in Table S2. After sporulation, strains were plated in triplicate. Growth of the double mutant strains was tested on synthetic media containing 750 mM NaCl and dextrose or galactose, to repress or induce channel expression, respectively. Growth tests were performed in duplicate (diagonally pinned) for each of the triplicates. Plates were photographed using a ChemiImager Ready (Alpha Innotech Corp.) and colony sizes, S<sub>gal</sub> and S<sub>dex</sub>, measured using software developed by Collins *et al.* (10). Colony sizes were analyzed by calculating the difference in size of each colony on galactose versus dextrose (S<sub>gal</sub>\*100/S<sub>dex</sub> – 100). Initial Na<sup>+</sup>-tolerant candidates had to meet the criterion that four out of six replicates or the average of the six colony size differences  $|S_{gal}*100/S_{dex} - 100|$  were smaller than the average  $|S_{gal}*100/S_{dex} - 100|$  for all strains tested minus one standard deviation.

## Yeast Media for screen

Yeast media was prepared according to (9). For tests on high Na<sup>+</sup>, the following media was prepared analogously to the procedures for single mutant and double mutant selection plates described in (9):

Na test: 750mM Na SD(MSG) -HIS-ARG-LYS-URA +CAN+S-AEC+G418 +citrate 20 agar [g] 700 water [ml] YNB -aa -(NH4)SO4 [g] 1.7 aa -HIS-ARG-LYS-URA [g] 2 MSG [g] 1 40% dextrose [ml] 50 250water [ml] 100mg/ml canavanine [ml] 0.5 100mg/ml S-AEC [ml] 0.5 50mg/ml geneticin [ml] 4 5.9 Na<sub>3</sub> citrate [g] NaCl [g] 40.3 pH7 with 1M Tris <u>Na test: 750mM Na SGR(MSG) -HIS-ARG-LYS-URA +CAN+S-AEC+G418 +citrate</u> agar [g] 20 700 water [ml] YNB -aa -(NH4)SO4 [g] 1.7 aa -HIS-ARG-LYS-URA [g] 2 MSG [g] 1 20% galactose [ml] 100 20% raffinose [ml] 100 water [ml] 100 100mg/ml canavanine [ml] 0.5 100mg/ml S-AEC [ml] 0.5 50mg/ml geneticin [ml] 4 5.9 Na<sub>3</sub> citrate [g] NaCl [g] 40.3 pH7 with 1M Tris

## **Barium test**

Wildtype yeast with or without a genomic insertion of Kir\* were plated in a lawn on 500 mM NaCl YPAGR media. Filter disks (Whatman, 1cm diameter) soaked in 100  $\mu$ l water or 100  $\mu$ l 100 mM BaCl<sub>2</sub> were placed on the lawns as described in (11). Photographs were taken two or three days after plating.

## **Growth assays**

Doubling times and growth rates were determined at  $30^{\circ}$ C by diluting over night cultures to about 2 \*  $10^{6}$  cells/ml into 2 ml media, allowing the cells to adjust for one hour before measuring the 0 hour (t0) optical density (OD) at 660nm in a spectrophotometer (Ultrospec 21000 Pro, Amersham). The second time point (t1) was measured 4h (for YPAGR) or 8h (for 500mM NaCl YPAGR, 500mM NaCl YPAD, 500 mM NaCl YPAGR with 500 mg/l hygromycin) later. Optical densities were converted to cell numbers (N) based on the polynomial

N [cells/ml] =  $0.0219 + 1.3223 * \text{OD} - 0.601 * \text{OD}^2 + 1.1309 * \text{OD}^3$ fitted to the table published by (12). Doubling times were calculated based on (12):

 $t_{double} = (t1-t0) * \ln 2 / \ln(N_{t1}/N_{t0})$ 

Relative growth rates with versus without hygromycin were calculated as:

relative growth rate with hygromycin/no hygromycin

 $= t_{double}$  without hygromycin /  $t_{double}$  with hygromycin (growth rate  $= \ln 2 / t_{double}$ ).

For dilutions on rich media, over night cultures grown in YPAD or YPAGR were diluted to  $2 * 10^5$ ,  $2 * 10^4$ , and  $2 * 10^3$  cells/ml in water and 2.5 µl drops spotted onto agar plates. For dilutions on Low Salt plates, over night cultures grown in 100 mM KCl SD-MET media were diluted to  $10^6$ ,  $10^5$ , and  $10^4$  cells/ml in 25% glycerol and 10 µl drops spotted onto agar plates. 25% glycerol was used to overcome the high surface tension of water on low salt plates, which caused the cells to clump at the center of the drops as the water evaporated. Photographs were taken three days after plating.

## Western sample preparation

Yeast protein samples were prepared by the post-alkaline lysis method (13). Briefly,  $2 * 10^7$  cells from an over night culture grown in YPAGR were pelleted at 1,000 g for 1 minute and resuspended in 100 µl water. 100 µl 0.2 M NaOH was added and the cells incubated for 4 minutes at RT, followed by pelleting for 1 min at 1,000 g and resuspension in 200 µl sample buffer (60 mM TrisHCl pH6.8, 2% SDS, 10% glycerol, 0.0025% bromophenol blue, 4% β-mercaptoethanol), and heating to 95°C for 3 minutes. Proteins were separated on 10% Bis-tris gels in MOPS running buffer (Invitrogen) with antioxidant (Invitrogen) in the upper chamber or on 10% Tris-glycine gels (BioRad) in Tris-glycine buffer and transferred in Tris-glycine-methanol buffer to PVDF membrane (Millipore). Membranes were blocked with 3% milk and probed with rabbit anti-GIRK2 1:1000 (Alomone), mouse anti-PGK 1:1000 (Molecular Probes), or rabbit anti-Gas1p 1:2500 (Walter lab) antibodies. Binding of HRP conjugated secondary antibodies 1:10,000 (Jackson Immuno) was detected using Pico ECL substrate (Pierce) and captured on film (Denville).

## Imaging

Yeast strains were grown for 12 h in SGR media supplemented with adenine, fixed by addition of 8% methanol-free formaldehyde (Polysciences) in 2x PBS for 1 h at RT, washed once with PBS, and mounted in DAPI containing Prolong Gold antifade (Molecular Probes). Imaging was performed with a widefield epifluorescence Exfo X-Cite 120 source connected to a Nikon TE2000 inverted microscope using a CFI Plan

Apochromat TIRF 100x objective (NA 1.49) and Photometrics CoolSnap HQ2 camera. Optical z stacks (100 nm thickness, 47 planes, 300 ms exposure per plane) were acquired using Nikon Elements AR 2.30 imaging software. Stacks were deconvolved with 3D blind deconvolution algorithms using MediaCybernetics AutoDeblur X1.4.1. Images presented are single planes from the middle and top of deconvolved stacks. A single image of DAPI fluorescence at the center of the cells was acquired (not shown).

## Unfolded protein response assay

The YMS612 strain contains a genomically integrated reporter construct consisting of four repeats of the Unfolded Protein Response Element (UPRE) upstream of GFP immediately followed by mCherry RFP driven from a TEF2 promoter. The mCherry served as a normalization reference to compensate for changes in cell fluorescence due to cell growth rates and abnormal size distributions that were unrelated to UPR induction. Single mutants expressing the reporter were made by mating YMS612 with strains taken from the MATa KAN<sup>r</sup> yeast deletion library (1). Diploids were made using a NAT<sup>r</sup> cassette.

Strains were inoculated in  $25\mu$ l YEPD and allowed to saturate overnight in a 384 well plate at 30°C without shaking. They were observed to reach OD<sub>600</sub>=8-9. Cultures were back-diluted to OD=0.08-0.09, incubated for 4.5-5.5 h until they reached OD=0.3-0.6 and injected into a Becton Dickinson LSRII flow cytometer using a high throughput sampler (14). The normalized GFP/RFP fluorescence ratio for each sample was obtained by taking the median of the GFP to RFP ratios of all events in a sample. The reported values represent means of the GFP/RFP fluorescence ratio of at least two measurements. Error bars represent standard error of the mean.

## References

- 1. Giaever, G. & others (2002) *Nature* 418, 387-91.
- Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D. (1998) *Yeast* 14, 115-32.
- 3. Yi, B. A., Lin, Y. F., Jan, Y. N. & Jan, L. Y. (2001) Neuron 29, 657-67.
- 4. Bichet, D., Lin, Y. F., Ibarra, C. A., Huang, C. S., Yi, B. A., Jan, Y. N. & Jan, L. Y. (2004) *Proc Natl Acad Sci U S A* 101, 4441-6.
- 5. Minor, D. L., Jr., Masseling, S. J., Jan, Y. N. & Jan, L. Y. (1999) Cell 96, 879-91.
- 6. Treco, D. A. & Lundblad, V. (1993) *Current Protocols in Molecular Biolog*, 13.1.1-13.1.7.
- 7. Nakamura, R. L. & Gaber, R. F. (1998) *Methods Enzymol* 293, 89-104.
- Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., Ihmels, J., Andrews, B., Boone, C., Greenblatt, J. F., Weissman, J. S. & Krogan, N. J. (2005) *Cell* 123, 507-19.
- 9. Schuldiner, M., Collins, S. R., Weissman, J. S. & Krogan, N. J. (2006) *Methods* 40, 344-52.
- 10. Collins, S. R., Schuldiner, M., Krogan, N. J. & Weissman, J. S. (2006) *Genome Biol* 7, R63.
- Chatelain, F. C., Alagem, N., Xu, Q., Pancaroglu, R., Reuveny, E. & Minor, D. L., Jr. (2005) *Neuron* 47, 833-43.

- 12. Amberg, D. C., Burke, D. J. & Strathern, J. N. (2005) *Methods in Yeast Genetics* (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA).
- 13. Kushnirov, V. V. (2000) Yeast 16, 857-60.
- 14. Newman, J. R., Ghaemmaghami, S., Ihmels, J., Breslow, D. K., Noble, M., DeRisi, J. L. & Weissman, J. S. (2006) *Nature* 441, 840-6.