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Abstract

Purpose: To identify functionally related genes associated with diabetic retinopathy (DR) risk 

using gene set enrichment analyses (GSEA) applied to genome-wide association study (GWAS) 

meta-analyses.

Methods: We analyzed DR GWAS meta-analyses performed on 3,246 Europeans and 2,611 

African Americans with type 2 diabetes. Gene sets relevant to five key DR pathophysiology 

processes were investigated: tissue injury, vascular events, metabolic events and glial 

dysregulation, neuronal dysfunction, and inflammation. Keywords relevant to these processes 

were queried in four pathway and ontology databases. Two GSEA methods, Meta-Analysis Gene 

set Enrichment of variaNT Associations (MAGENTA) and Multi-marker Analysis of GenoMic 

Annotation (MAGMA) were used. Gene sets were defined to be enriched for gene associations 

with DR if the P value corrected for multiple testing (Pcorr) was <.05.

Results: Five gene sets were significantly enriched for multiple modest genetic associations with 

DR in one method (MAGENTA or MAGMA) and also at least nominally significant (uncorrected 

P <.05) in the other method. These pathways were regulation of the lipid catabolic process 
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(2-fold enrichment, Pcorr=.014); nitric oxide biosynthesis (1.92-fold enrichment, Pcorr=.022); 

lipid digestion, mobilization and transport (1.6-fold enrichment, P=.032); apoptosis (1.53-fold 

enrichment, P=.041); and retinal ganglion cell degeneration (2-fold enrichment, Pcorr=.049). The 

interferon gamma (IFNG) gene, previously implicated in DR by protein-protein interactions in our 

GWAS, was among the top ranked genes in the nitric oxide pathway (best variant P=.0001).

Conclusions: These GSEA indicate that variants in genes involved in oxidative stress, lipid 

transport and catabolism and cell degeneration are enriched for genes associated with DR risk.

INTRODUCTION

Diabetic retinopathy (DR) is a leading cause of blindness.[1] Established risk factors 

include longer duration of diabetes (DoD) and poor glycemic control.[2] Some populations, 

including African Americans, have been found to have a higher risk of developing 

DR compared with populations of European ancestry even after adjusting for these 

established risk factors.[3–7] Genetic factors are also implicated, with heritability of 52% 

for proliferative diabetic retinopathy (PDR).[8, 9] However, traditional individual candidate 

gene association studies have not been successful in identifying the underlying genetic 

architecture for DR. Furthermore, genome-wide association studies (GWAS) of DR to date 

have not had sufficient power to detect reproducible single DNA variants associations with 

the disease (tens to hundreds of thousands of individuals needed).[10–17]

Gene set enrichment analysis (GSEA) applied to GWAS variant data is a method that 

tests whether sets of functionally related genes are enriched for genetic associations with 

a polygenic disease or trait.[18] Previous studies have shown that GSEA of GWAS has 

the potential to detect associations likely missed by single-marker analysis.[19, 20] GSEA 

has been used successfully for various multifactorial diseases, such as type 2 diabetes and 

bipolar disorder, to determine if there is enrichment of genes in pathways implicated in 

disease pathogenesis among the top ranked genetic associations in GWAS.[19, 21–26]

We have previously collaborated to execute the largest DR GWAS to date.[17] The purpose 

of this study is to identify functionally related genes that affect risk of DR using GSEA 

on this GWAS dataset. We hypothesize that common variants associated with DR risk will 

affect genes that cluster in specific pathogenic pathways or biological processes and that 

both statistical and explanatory power can be gained by testing for enrichment of multiple 

modest genetic associations at the gene-set level, using GSEA, compared to testing genetic 

variants individually. This may be particularly beneficial for studies such as our latest DR 

GWAS studies, where only few variants passed genome-wide significance.

METHODS

All studies conformed to the Declaration of Helsinki tenets and were Health Insurance 

Portability and Accountability Act (HIPAA) compliant. Written informed consent was 

obtained from all participants. Institutional Review Board (IRB) approval was obtained 

prospectively by each individual study for collection of DNA and genotyping. The 

Massachusetts Eye and Ear Infirmary IRB approved the analysis of de-identified datasets 

from all the cohorts centrally at the Massachusetts Eye and Ear Infirmary.
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GWAS META-ANALYSES ANALYZED

The study participants were the patients included in the discovery phase of a previously 

published DR GWAS.[17] These patients were from a consortium of 11 DR genetic studies 

which included 3,246 European and 2,611 African American patients. [11–13, 17, 27–30] 

All patients had type 2 diabetes which was defined as a fasting plasma glucose (FPG) 

≥ 126 mg/dL or a hemoglobin A1C (HbA1C) ≥ 6.5% [31] with onset of the diabetes 

after age 30 years. Table 1 summarizes the DR phenotyping protocols and covariates by 

cohort. Phenotyping protocols have been previously described.[3, 9, 17, 32–40] All of these 

participants had genome-wide genotyping and were part of the GWAS. The GWAS analyses 

were performed with liability threshold (LT) modeling of DoD and glycemic control using 

LTSCORE,[41] and executed separately for the African American and European cohorts. 

Only variants on the autosomes were analyzed in these DR GWAS, hence genes on the sex 

chromosomes were not included in the GSEA analysis. We examined for any differences 

in the distribution of DR severity between men and women in the European and African 

American GWAS using a two-sided Wilcoxon rank sum test in each population.

The GSEA analyses for the present study used the GWAS meta-analyses summary statistics 

from the previous publication.[17] For this GSEA, we examined two DR case-control 

definitions with different Early Treatment Diabetic Retinopathy Study (ETDRS) score 

thresholds for cases and controls.[42] The first compared patients with PDR to those without 

PDR (Early treatment diabetic retinopathy study (ETDRS) ≥ 60 vs. ETDRS < 60, henceforth 

the PDR analysis). The second compared those with PDR to those without DR (ETDRS 

≥ 60 vs. ETDRS < 14, henceforth the extremes of DR analysis). We chose to examine 

these two case-control definitions out of the total of four case-control definitions originally 

included the GWAS paper, because the individual variants with the most significant findings 

came from these two case-control definitions that have PDR as their case definition. This is 

consistent with the fact that PDR has a higher heritability than overall DR.[9] Table 1 shows 

the available samples by cohort and ETDRS score thresholds. Therefore, in total there were 

four GWAS meta-analyses datasets on which GSEA were run:

1. African Americans, PDR analysis

2. Europeans, PDR analysis

3. African Americans, Extremes of DR analysis

4. Europeans, Extremes of DR analysis

GENE SET ENRICHMENT ANALYSES

Extraction of gene sets—The gene sets that were examined in the GSEA were 

chosen based on their relevance to the pathophysiology of DR as summarized in Table 

2 of a seminal paper on this subject.[43] The five pathophysiologic pathways from 

this table were tissue injury, vascular events, metabolic events and glial dysregulation, 

neuronal dysfunction, and inflammation. These pathways were broken down into keywords 

that were used to search in four gene set databases: Reactome Pathway Database 

(https://reactome.org), the Kyoto Encyclopedia of Genes and Genomes (KEGG, https://

www.genome.jp/kegg), Gene Ontology (GO; https://geneontology.org), and Mouse Genome 
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Informatics (MGI; https://www.informatics,jax.org). Supplementary Table 1 lists all the 

pathophysiologic pathways and the resulting keywords that were queried and the respective 

gene sets that were identified from those searches. Each keyword was searched individually. 

Because some of the search terms were very general, the resultant gene sets were pruned 

by a clinician scientist with expertise in DR (LS) to include only those gene sets that truly 

reflect the pathophysiologic pathways in DR from the seminal paper.[43] We tested a total of 

207 gene sets (143 GO, 13 KEGG, 41 MGI, and ten REACTOME gene sets).

GSEA of GWAS analysis—To increase the robustness of the results, the identified 

gene sets and the four DR GWAS datasets defined above were analyzed using two 

different GSEA methods: Meta-Analysis Gene set Enrichment of variaNT Associations 

(MAGENTA; http://www.broadinstitute.org/mpg/magenta) and Multi-marker Analysis of 

GenoMic Annotation (MAGMA; http://ctg.cncr.nl/software/magma). Both methods can be 

applied to GWAS summary statistics, leveraging the statistical power of large GWAS meta-

analyses. MAGENTA is a rank and multivariate regression-based method that tests whether 

sets of functionally related genes (e.g., biological pathways) are enriched for highly ranked 

gene associations with a polygenic disease or trait more than would be expected by chance, 

correcting for confounding factors, including gene size and local linkage disequilibrium 

(LD)[19]. MAGMA is a gene set analysis tool that uses multiple linear regression models to 

assess whether genes in a given gene set are more strongly associated with a given polygenic 

trait compared to all other genes in the genome, correcting for confounding factors, such 

as LD between variants and gene size.[20] Both methods were applied to all genotyped and 

imputed variants in the four DR GWAS meta-analyses defined above.

For mapping of variant association P values to genes, we tested two gene boundary 

definitions: (1) –5 kilobases (kb) upstream and +5 kb downstream from the transcript start 

and end sites, respectively, to capture coding variants in the genes themselves and flanking 

regulatory regions, and (2) −110 kb upstream and +0 kb downstream from the transcript 

start and end sites, respectively, to capture additional potential regulatory causal variants in 

addition to coding variants. In both methods, all genes in the genome were scored based on 

the most significant association p-value of all variants within each gene’s window using the 

two boundary definitions.

In the MAGENTA analysis, stepwise multivariate linear regression analysis is used to 

correct for confounding effects on assigning the most significant variant association P value 

per gene, including gene size, local variant density, and local LD. The LD covariate was 

computed as the number of LD-independent variants (r2>0.5) per gene region, using the 

African American and European subpopulations in 1000 Genomes Project Phase 3 for the 

corresponding ancestral backgrounds in the DR GWAS. The adjusted gene association 

P values were subsequently used to rank genes in the genome with respect to their 

likelihood of association with DR, and permutation analysis was used to compute a gene set 

enrichment P value for each gene set of interest. The gene set enrichment P value calculated 

by MAGENTA assesses the overrepresentation of highly ranked gene association P values 

above a given enrichment cutoff, compared to multiple randomly sampled gene sets from the 

genome with equal gene set size. Physical proximity along the chromosome between two or 

more genes in a given gene set was corrected for by collapsing all genes that share the same 
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most significant variant to one effective gene, retaining the gene with the most significant 

adjusted gene association P value. The human leukocyte antigen (HLA) region was removed 

due to high LD and gene density in the region, making it difficult to disentangle the putative 

causal gene if an association signal exists in the region. The 75th and 95th percentiles of all 

adjusted gene P values were used as the enrichment cutoffs.

In the MAGMA analysis, multiple linear principal components regression analysis is used 

to correct for LD between variants in scoring genes based on the most significant variant 

P values. The estimates of LD between variants in gene regions were also computed using 

Phase 3 of the 1000 Genomes Project and the African American and European subsets for 

the corresponding DR GWAS. The gene P value results from the analyses were converted to 

Z-values that were inputted into the GSEA. A generalized linear regression model of gene 

Z-values was used to assess whether genes in a given gene set are more strongly associated 

with a given polygenic trait than all other genes in the genome, correcting for gene size, 

gene density and differences in underlying GWAS sample size in the meta-analysis by 

adding these variables as covariates in the gene or gene set level models.[20] For this study, 

we chose the competitive gene set analysis option in MAGMA, similar what is done in 

MAGENTA.

For both MAGENTA and MAGMA, only gene sets with ten to 2000 genes were included 

in the analysis because very small or large gene sets are subject to unstable results from 

violation of some of the assumptions of these GSEA methods. To address the issue of 

multiple hypothesis testing, Benjamini-Hochberg (BH) correction of the gene set enrichment 

P value was carried out for both methods.[44] To compute the BH-adjusted P values, all gene 

sets were ranked for a given GWAS-ancestry-window-database group based on the gene 

sets’ uncorrected GSEA P value in ascending order. Then the uncorrected GSEA P value 

was multiplied by the total number of gene sets tested for the given database and divided by 

the rank of each specific gene set. The BH correction is more appropriate than a Bonferroni 

correction given the overlap between gene sets tests. A BH-corrected P value < .05 was 

considered statistically significant. We prioritized gene sets with BH-corrected P value < .05 

with at least one method and uncorrected P value < .05 with the other method.

Clustering of significant gene sets based on gene membership similarity.—To 

assess the number of functional modules represented by the gene sets with significant 

enrichment for DR associations, we clustered the 15 significant gene sets reported in Table 

2 based on fraction of genes that overlap between all pairwise gene set comparisons, using 

hierarchical clustering and Euclidean distance. We performed the clustering considering 

either all genes in the gene sets (Supplementary Figure 6) or just the leading edge genes in 

each gene set (top ranked DR-associated genes above the 75th percentile enrichment cutoff 

based on MAGENTA gene P values) in each gene set (Figure 2).

Testing for sex-biased expression among leading edge genes in significant 
gene sets—Differentially expressed genes between females and males were taken from 

a study that inspected the effect of sex on gene expression in 44 GTEx tissues (Release 

v8), including DR-relevant tissues: tibial artery and 11 brain regions.[45] Sex-biased genes 

were computed with a multivariate adaptive shrinkage (MASH) method and were considered 
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significant at a local false sign rate (LFSR) ≤ 0.05, correcting for multiple hypothesis 

testing.[46] We assessed the enrichment of sex-biased gene expression among leading edge 

genes in the significant gene sets compared to non-leading edge genes using a two-sided 

Fisher’s exact test, and the enrichment of sex-biased genes among the leading edge genes 

compared to the observed number of sex-biased genes amongst all genes expressed in the 

given tissue and given the gene set size, using the hypergeometric cumulative distribution 

function.

RESULTS

The GWAS meta-analyses for the GSEA included 1,097 African American and 398 

European PDR cases (ETDRS ≥ 60). For the PDR analysis, they were compared to 1,514 

African and 2,848 European controls without PDR (ETDRS < 60), respectively. For the 

Extremes of DR analysis, they were compared to 941 African American and 1,970 European 

controls without DR (ETDRS < 14), respectively. There was no difference in the distribution 

of ETDRS severity between men and women in the African American (P=.47) and European 

populations (P=0.99) in this GWAS (Supplementary Figure 1).

Out of 207 gene sets tested, 15 gene sets were found to be significant in either MAGENTA 

or MAGMA analyses after BH correction (Table 2; full results in Supplementary Table 2). 

No gene set was significant in both MAGENTA and MAGMA after multiple hypothesis 

correction. The gene sets most significant with MAGENTA were based on the African 

American GWAS, while the gene sets most significant with MAGMA were based on the 

European GWAS. The distribution of gene association P values based on the European DR 

GWAS showed slightly higher excess of low gene P values compared to the African DR 

GWAS with both MAGENTA and MAGMA (Supplementary Figures 2 and 3), and the 

overall correlation of all gene P values between the two methods within the same ancestral 

GWAS was high (Spearman’s rho=0.87–0.91, P<10−70; Supplementary Figure 4), but not 

between ancestries (Spearman’s rho=0.008–0.13; Supplementary Figure 5).

There were five gene sets that were significant by BH correction in one method and had an 

uncorrected P value < .05 in the other method. Figure 1 shows the gene P value distributions 

for these five gene sets. Enrichment of genes with low P values was most pronounced for the 

regulation of nitric oxide biosynthetic process, and regulation of lipid catabolic process gene 

sets (Figure 1A and 1C). The Pearson and Spearman’s correlation coefficients comparing the 

gene P values from MAGENTA and MAGMA showed high correlation for all five gene sets 

(Spearman’s rho=0.86–0.93, P<10−6, Table 3). Supplementary Table 3 lists the individual 

genes within these five gene sets ranked based on their gene-level DR association P values 

from MAGENTA and MAGMA, as well as the P value of the most associated variant within 

or around each gene in the given GWAS.

The regulation of nitric oxide biosynthetic process gene set in GO (African American PDR 

analysis) was significant after BH correction in MAGENTA and had an uncorrected P 

value of = .0026 in MAGMA. Among the 46 genes examined in MAGENTA in the nitric 

oxide biosynthetic process gene set, 23 genes were above the enrichment cut-off (listed in 

Table 3), where only 12 where expected by chance, yielding a 1.92-fold enrichment for this 
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gene set, which is among the highest in this analysis (Table 2). This analysis suggests that 

eleven genes among the top 23 genes ranked based on their DR gene P values (leading 

edge genes) are likely to be true DR associations, even though none of the top variants for 

each of these genes passed genome-wide significance in the current GWAS. Larger GWAS 

meta-analyses will be needed to replicate these associations. In Supplementary Table 3, the 

23 leading edge genes (the genes above the enrichment cutoff) are listed. Among the top 

genes in this pathway is interferon gamma (IFNG), which was also found to be enriched for 

protein-protein interactions in our previous DR GWAS analyses.[17]

Two other gene sets were significant after BH correction in MAGENTA, and significant 

before correction in MAGMA: regulation of lipid catabolic process in GO (African 

Americans, PDR analysis) and apoptosis in KEGG (African Americans, extremes of DR 

analysis). These gene sets had a fold-enrichment of 2 and 1.53, respectively, in MAGENTA. 

CAPN2, a gene for a calcium-activated neutral protease, is one of the genes in the KEGG 

apoptosis pathway and it also has an expression quantitative trait locus (eQTL) that was 

implicated by the top finding from our original GWAS in the extremes of DR analysis, 

variant rs4121487 in the nuclear VCP-like (NVL) gene.[17]

The two gene sets that were significant in MAGMA after BH correction and had a P value 

< .05 in MAGENTA were lipid digestion mobilization and transport in Reactome (European, 

PDR analysis) and retinal ganglion cell degeneration in MGI (European, PDR analysis). 

These gene sets had a fold-enrichment of 1.6 and 2.0, respectively, in MAGENTA.

There were also two gene sets related to vascular endothelial growth factor (VEGF) which 

were significant in either MAGMA or MAGENTA (Table 2). The KEGG VEGF signaling 

pathway was significant in the MAGENTA analysis (African Americans, extremes of DR 

analysis) and the VEGF receptor signaling pathway was significant in the MAGMA analysis 

(European, PDR analysis)

Clustering of the 15 significant gene sets in Table 2 based on their leading edge genes 

computed with MAGENTA, suggests 8 key biological processes that might affect DR risk 

(Figure 2). These include (in order of clustering): (1) lipid transport, (2) retinal degeneration 

and tight junction interactions, (3) platelet derived growth factor receptor signaling, 

(4) apoptosis and VEGF signaling (KEGG), (5) nitric oxide biosynthesis and tissue 

development, (6) lipid and lipoprotein metabolism and regulation, (7) post-translational 

protein modification, and (8) VEGF receptor signaling (GO). Since the leading edge genes 

are determined by the GWAS variant P values, the gene sets clustered first by population of 

the GWAS and then by gene set type, compared to clustering of gene sets considering all 

genes (Supplementary Figure 6).

Lastly, given the suggested effect of sex on DR susceptibility, we examined whether the 

leading edge genes (enriched for DR-associated genes) in the five significant gene sets were 

enriched for differential gene expression between females and males in DR-relevant tissues 

(blood vessel and brain tissue).[47–49] We found that 6–24% of the leading edge genes 

across the five gene sets showed sex-biased expression in tibial artery and 13–35% in eleven 

different brain regions in GTEx (Supplementary Table 4).[45] However, these fractions were 
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not significantly higher compared to the non-leading edge genes in each gene set (Fisher’s 

exact test P>0.28; Supplementary Table 5), not were the leading edge genes significantly 

enriched for sex-biased genes compared to what would be expected by chance given the 

gene set size and number of sex-biased genes among all genes expressed in each tissue 

(Hypergeometric P>0.127; Supplementary Table 6).

DISCUSSION

This GSEA applied to summary statistics data from a GWAS for DR provides evidence 

that biological processes in five pathways with prior evidence for involvement in DR are 

enriched for multiple modest genetic associations with DR. These pathways are nitric 

oxide biosynthesis; regulation of the lipid catabolic process; lipid digestion, mobilization 

and transport; apoptosis; and retinal ganglion cell degeneration. This supports a causal 

contribution to DR risk for genes in these pathways.

There is extensive evidence linking nitric oxide overexpression and DR.[50] One interesting 

finding among the genes in the nitric oxide biosynthesis gene set is the highly ranked IFNG 
gene. In a previous analysis examining significantly enriched protein networks among loci 

with the highest statistical significance for association with DR, we identified a significant 

protein network that also included IFNG, and this was also within the PDR Analysis in 

African Americans.[17] Interferon-gamma is highly expressed in ocular tissues from PDR 

patients and polymorphisms within this gene have been previously associated with PDR.[51] 

In this previous study, rs2430561 was the variant associated with PDR, and that variant 

is in modest LD [r2=0.256, D’=0.99 based on European subset in GTEx release v8[52]and 

r2=0.026, D’=1 based on African American subset in GTEx release v8)] with the top variant 

from this analysis, rs2069733, which is 2.29 kb upstream of rs2430561.

Two lipid pathways were also significant in this analysis: lipid catabolism and lipid 

transport. Both were identified in the PDR analysis, one in Europeans and the other in 

African Americans. Dyslipidemia has also been extensively associated with DR.[53] Among 

the genes in the leading edge of the lipid digestion, mobilization and transport gene set 

is APOA1; plasma levels of Apo A1 have been inversely correlated with DR severity.[53] 

APOA2 is the one gene that is part of the leading edge for both of these lipid-related gene 

sets.

With regards to apoptosis and retinal ganglion cell degeneration, pericyte apoptosis is one 

of the earliest events in the development of DR,[54] and growing evidence indicates that 

degeneration of retinal ganglion cells also occurs before clinical signs of DR.[55] We note 

that CAPN2, the gene targeted by an eQTL of the top genome-wide significant findings 

from our GWAS in European ancestry individuals, was one of the genes within the KEGG 

apoptosis gene set. Although it was not a leading edge gene, possibly because the DR-

associated eQTL lies outside the gene boundaries used in the GSEA (532 kb downstream of 

CAPN2 transcription start site), it was close to the enrichment cut-off in the gene set, and the 

finding adds some support for a role for this gene in DR genetic risk.
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The strengths of this study include the use of two different gene set analysis methods, 

MAGENTA and MAGMA, to evaluate the contribution of gene sets to DR risk. The 

two methods differ in their approaches, but despite these differences, there was common 

support from both methods for a role of lipid metabolism or transport, cell death, and 

VEGF signaling, and excellent concordance in the gene association scores between the 

methods, as evidenced by the Pearson and Spearman’s correlations being very strong. The 

correlations were slightly less strong, but still clearly significant, for the retinal ganglion cell 

degeneration gene set, in part because the size of this gene set was significantly smaller than 

the others.

The observation that MAGENTA primarily found significant genes sets in the African 

American DR GWAS and MAGMA in the European DR GWAS is likely due to differences 

in the gene set enrichment statistical tests, as the adjusted gene level association P 

values computed by each of the methods highly correlate (Supplementary Figure 4). The 

rank-based approach in MAGENTA using the 75th percentile enrichment cut-off identifies 

enrichment of multiple weak effects in a given gene set,[19] while the regression-based 

approach of MAGMA identifies gene sets with an overall stronger average association with 

disease risk compared to all other genes in the genome. This is in concordance with the 

European DR GWAS displaying a slightly higher excess of low gene P values (stronger 

effects) than the African American DR GWAS (Supplementary Figure 3).

Currently none of the enriched gene sets found are significant after multiple hypothesis 

correction in both ancestral populations. This is consistent with the top-ranked associated 

genes being different between the European and African American GWAS (Supplementary 

Figure 5), which may be due to the limited power of the GWAS, especially for the European 

GWAS which had fewer PDR cases. It is also possible that there are environmental elements 

that may differentially influence the expression of genes in the two populations and account 

for differences in which genes are associated with DR in the two populations. The VEGF 

signaling pathway though represented by gene sets from two different databases was found 

to be significant in both ancestries.

There are some limitations to this study. First, our GWAS for DR is of modest size which 

may have limited our power to detect gene sets that were significant after correction with 

both methods, MAGENTA and MAGMA.[18] Based on simulations in MAGENTA to assess 

the power of its GSEA algorithm to detect enrichment of genes with modest effect sizes that 

would be missed with individual SNP analyses, we have >95% power to detect significant 

enrichment if >4% or >20% of genes are modestly associated with DR in gene sets with 

25 or 100 genes, respectively,[19] which is in concordance with our results (Supplementary 

Table 2). We note that we did not correct for the additional multiple testing related to 

testing two gene boundaries and two different case-control definitions as there is significant 

overlap between these conditions and these are not independent tests; this approach is 

common in the field.[56–58] The two different populations, however, are independent. If 

we additionally would have corrected for these two populations in the BH correction, the 

strongest associations in MAGMA and MAGENTA still remain, and the weaker ones would 

become insignificant. Second, the gene boundary definitions we examined (+/− 5 kb and 

−110 kb upstream/+ 40kb downstream from the transcript start and end sites, respectively) 
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might miss causal variants if they are in regulatory regions outside of these boundaries, 

as regulatory variants may be hundreds of kilobases away from the target gene (e.g., 95% 

of eQTLs lie within 643 kb of the target gene’s transcription start site).[52] We did not 

extend these boundaries further as we risked capturing and confusing neighboring gene 

signals with a larger boundary size. Still, our boundary sizes captured a significant amount 

of genetic variation. Finally, the genes in each gene set are not all equally relevant to 

different tissues. Some genes in a gene set may not be highly expressed in a particular 

tissue such as retina or retinal vasculature, and therefore may be less relevant for the DR 

phenotype. As tissue-specific gene sets are developed, it will be possible to refine the GSEA. 

Other limitations include the lack of longitudinal data that would allow examination of the 

influence of these gene sets on DR progression and the lack of data on therapies for diabetes 

and DR that would allow examination of the influence of these covariates on genetic risk for 

DR.

To our best knowledge, this is the first GSEA applied to genetic associations with DR. 

Within known pathophysiologically-relevant gene sets, the results of these analyses help us 

to rank which genes in these pathways are more likely implicated in genetic risk for DR 

and prioritize which genes and variants should be further investigated in additional studies 

(Supplementary Table 3). We find modest evidence for enrichment of variants involved in 

oxidative stress, lipid transport and catabolism and cell degeneration. Much larger GWAS 

datasets and datasets that include other populations that have higher prevalence of DR, such 

as the South Indian population, are needed to confirm and expand on our findings here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of DR gene association P-values for top 5 pathways.
The noncumulative distribution of confounder-adjusted gene association P values computed 

either with MAGENTA (solid line) or MAGMA (dashed line) is shown for five gene sets 

that passed multiple hypothesis correction (Benjamini-Hochberg) with one GSEA method 

and was nominally significant with the other method. The vertical lines in the two tracks 

mark the locations of the individual gene P-values based on MAGENTA (top track) or 

MAGMA (bottom track).
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Figure 2. Heatmap of 15 significant gene sets clustered based on leading edge genes.
Gene sets were clustered based on overlap of their leading edge genes. The leading edge 

genes were determined based on the GWAS and gene boundaries provided in the gene set 

labels shown in the heatmap, using MAGENTA. The colorbar represents the fraction of 

leading edge genes in a given gene set in the row that overlap with the leading edge genes in 

the gene set in the column. The fractions are listed in the corresponding cell in the heatmap. 

AA = African American, EU = European, PDR = Proliferative Diabetic Retinopathy, DR = 

Diabetic Retinopathy.
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Table 1.

Studies included in the gene set enrichment analysis

Study Population

# of Eyes/# 
of Fields/Size 

of Fields 
Photographed

Glycemic 
Control 
Measure

Cases 
(ETDRS ≥ 

14)

Ctrls 
(ETDRS < 

14)

Cases 
(ETDRS ≥ 

60)

Ctrls 
(ETDRS < 

60)

Cases 
(ETDRS ≥ 

30)

AAPDR AA 2/7/30 deg. HbA1C 274 56 255 75 261

AGES* EUR 2/2/45 deg. HbA1C 85 222 3 304 8

ARIC AA 1/1/45 deg. HbA1C 96 265 3 358 73

EUR 1/1/45 deg. HbA1C 126 632 6 752 80

AUST EUR NA‡ HbA1C 522 435 187 770 346

BMES EUR 2/5/30 deg. FPG 124 208 1 331 37

CHS AA 1/1/45 deg. FPG 19 35 4 50 14

EUR 1/1/45 deg. FPG 26 119 4 141 16

FIND-
Eye* AA 2/2/45 deg.† HbA1C 330 167 264 233 303

EUR 2/2/45 deg.† HbA1C 158 154 115 197 145

JHS AA 2/7/30 deg. HbA1C 91 160 12 239 57

MESA AA 2/2/45 deg. HbA1C 101 258 11 348 60

EUR 2/2/45 deg. HbA1C 38 200 2 236 12

RISE/
RIDE EUR 2/7/30 deg. HbA1C -- -- 80 117 --

WFU AA NA‡ HbA1C -- -- 548 211 --

TOTAL AA -- Varies 911 941 1097 1514 768

TOTAL EUR -- Varies 1079 1970 398 2848 644

Ctrls= Controls, AAPDR = African American Proliferative Diabetic Retinopathy Study, AGES = Age, Gene/Environment Susceptibility Study, 
ARIC = Atherosclerosis Risk In Communities Study, AUST= Australian Genetics of Diabetic Retinopathy Study, BMES = Blue Mountains Eye 
Study, CHS=Cardiovascular Health Study, FIND-Eye = Family Study of Nephropathy and Diabetes-Eye, JHS = Jackson Heart Study, MESA = 
Multiethnic Study of Atherosclerosis, RIDE/RISE= Ranibizumab Injection in Subjects with Clinically Significant Macular Edema with Center 
Involvement Secondary to Diabetes, WFU=Wake Forest University, AA=African American, EUR = European, Illum=Illumina, Affy=Affymetrix, 
NA=not available, HbA1C=hemoglobin A1C, FPG=fasting plasma glucose, deg.= degrees, SNPs= single nucleotide polymorphisms, QC=quality 

control

†
Not all FIND-Eye subjects had photographs but all participants had harmonization of exam and clinical data to an ETDRS score.

‡
The AUST study used examination by an ophthalmologist to ascertain diabetic retinopathy.

The WFU study used a questionnaire to ascertain diabetic retinopathy.
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Table 3.

Correlation between gene association P-values computed by MAGENTA and MAGMA for top five gene sets.

Population, 
GWAS, Gene 

Window Upstream/
Downstream

Gene set database: Gene 
set Name

Gene 
set size

Pearson 
Correlation 
Coefficient

Pearson p-
value

Spearman’ s 
Rank 

Correlation 
Coefficient

Spearman p-
value

AA, PDR Analysis, 
5kb/5kb

GO: REGULATION 
OF NITRIC 
OXIDE BIOSYNTHETIC 
PROCESS

53 0.90 8.99 X 10−18 0.93 7.49 X 10−21

AA, PDR Analysis, 
5kb/5kb

GO: REGULATION OF 
LIPID CATABOLIC 
PROCESS

52 0.86 4.78 X 10−16 0.86 3.03 X 10−16

AA, Extremes of DR 
Analysis, 110kb/40kb KEGG: APOPTOSIS 88 0.95 4.25 X 10−42 0.96 5.01 X 10−44

EU, PDR Analysis, 
110kb/40kb

REACTOME: 
LIPID DIGESTION 
MOBILIZATION AND 
TRANSPORT

46 0.86 6.28 X 10−14 0.86 6.23 X 10−14

EU, PDR Analysis, 
5kb/5kb

MGI: MP0008067 
RETINAL GANGLION 
CELL DEGENERATION

16 0.93 7.35 X 10−7 0.92 7.99 X 10−7

AA = African American, EU = European, PDR = Proliferative Diabetic Retinopathy, DR = Diabetic Retinopathy
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