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A Unified Framework for Optimizing Linear
Nonregenerative Multicarrier MIMO Relay

Communication Systems
Yue Rong, Member, IEEE, Xiaojun Tang, Student Member, IEEE, and Yingbo Hua, Fellow, IEEE

Abstract—In this paper, we develop a unified framework
for linear nonregenerative multicarrier multiple-input mul-
tiple-output (MIMO) relay communications in the absence of the
direct source–destination link. This unified framework classi-
fies most commonly used design objectives such as the minimal
mean-square error and the maximal mutual information into
two categories: Schur-concave and Schur-convex functions. We
prove that for Schur-concave objective functions, the optimal
source precoding matrix and relay amplifying matrix jointly diag-
onalize the source–relay–destination channel matrix and convert
the multicarrier MIMO relay channel into parallel single-input
single-output (SISO) relay channels. While for Schur-convex ob-
jectives, such joint diagonalization occurs after a specific rotation
of the source precoding matrix. After the optimal structure of the
source and relay matrices is determined, the linear nonregenera-
tive relay design problem boils down to the issue of power loading
among the resulting SISO relay channels. We show that this
power loading problem can be efficiently solved by an alternating
technique. Numerical examples demonstrate the effectiveness of
the proposed framework.

Index Terms—Majorization, MIMO relay, multicarrier system,
nonregenerative relay.

I. INTRODUCTION

R ESEARCH on cooperative communications employing
relay nodes dates back to 1970s [1], [2]. Recently, coop-

erative communications have seen a renewed interest [3]–[6].
Both regenerative and nonregenerative cooperative strategies
have been considered [3]–[6]. When multiple antennas are
deployed at one or more nodes of the relay system, we also call
such relay system a multiple-input multiple-output (MIMO)
relay channel. The achievable rate and capacity upper bound
of a MIMO relay channel have been studied in [7]. The diver-
sity-multiplexing tradeoff of multiantenna cooperative systems
has been studied in [8].
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For the nonregenerative strategy, the relay node only ampli-
fies and retransmits its received signal. The complexity of the
nonregenerative strategy is much lower than that of the regen-
erative strategy. This advantage is particularly important when
all nodes are equipped with multiple antennas, since decoding
multiple data streams involves much more computational efforts
than decoding a single data stream.

Linear nonregenerative approaches have been proposed for
single carrier MIMO relay systems [9]–[13]. In [9], the op-
timal relay amplifying matrix which maximizes the mutual in-
formation (MI) between source and destination was derived as-
suming that the source covariance matrix is an identity matrix.
This approach is suitable when the source-relay channel state
information (CSI) is unknown to the scheduler. Independent
from [9], the authors of [10] also studied a similar problem
and arrived at the same optimal relay amplifying matrix. In
[11], both the source covariance matrix and the relay ampli-
fying matrix are jointly designed to maximize the source-des-
tination MI. This approach requires the scheduler to know all
CSI of the relay system, which we also assume in this paper.
Minimal arithmetic mean-square error (MA-MSE)-based ap-
proaches for MIMO relay systems were developed in [12], [13].
A method based on maximum signal-to-noise ratio (SNR) was
proposed by the authors of [13]. In [14], the authors compared
the performance-complexity tradeoffs of nonregenerative and
other MIMO relay techniques. Examples of recent work on mul-
ticarrier MIMO relay systems are in [15] and [16]. The design
criterion in [15] is to maximize the source-destination MI. The
work in [16] aims to minimize the arithmetic sum of the MSE
of the signal waveform estimation at all data streams. While the
above works [9]–[16] assume complete CSI, another line of re-
search on nonregenerative MIMO relaying assumes partial CSI
[17], [18]. In the sequel, for simplicity, we refer to the source
precoding matrix and relay amplifying matrix as source matrix
and relay matrix, respectively.

A key component in linear nonregenerative MIMO relay
design is to optimize the source and relay matrices to maximize
(minimize) an objective function. In this paper, we consider
the design of a linear nonregenerative multicarrier MIMO relay
system under a unified framework that is more general than those
used in [9]–[16]. We focus on the case where the direct link
between the source and destination nodes is sufficiently weak to
be ignored as in [11]–[13] and [15]. This scenario occurs when
the direct link is blocked by an obstacle such as a mountain. Our
unified framework classifies most common design objectives
such as the maximal MI, minimal MSE, and minimax MSE, etc.,
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into two broad categories: Schur-convex and Schur-concave
functions of the main diagonal elements of the MSE matrix.
By using the theory of majorization [19], [20], we prove that
for Schur-concave objective functions, the optimal source and
relay matrices jointly diagonalize the source-relay-destination
channel, and convert the multicarrier MIMO relay channel
into parallel single-input single-output (SISO) relay channels.
While for Schur-convex objectives, such a joint channel diago-
nalization occurs after a specific rotation of the source matrix.
Note that for one-hop MIMO systems (either single-user or
multiuser systems), the optimality of channel diagonalization
has been proven in [21]–[23]. For linear MIMO relay systems,
the channel diagonalization optimality has been shown under the
maximal MI objective [9]–[11] and the MA-MSE criterion [12],
[13]. However, the channel diagonalization optimality results
obtained in this paper are more general, since they include all
Schur-concave and Schur-convex objective functions.

After the optimal structure of the source and relay matrices
is determined, the linear nonregenerative multicarrier MIMO
relay design problems boil down to the issues of power loading
among the resulting SISO relay channels based on the given cri-
terion. We demonstrate that the power loading problem can be
efficiently solved by iteratively updating the power allocation
vectors at the source and relay nodes [11], [15], [16]. Inter-
estingly, the updating of each power allocation vector follows
the well-known water-filling principle for Schur-concave objec-
tives. While for Schur-convex functions, the power allocation
result can be viewed as a multilevel water-filling solution. Nu-
merical examples in Section IV illustrate the effectiveness of the
proposed framework.

The main contributions of this paper are summarized as fol-
lows: First, we rigorously prove the optimality of channel diago-
nalization in nonregenerative multicarrier MIMO relay systems.
As the second contribution, we propose a novel MIMO relaying
algorithm based on Schur-convex objective function. Note that
there is no existing work in nonregenerative MIMO relay com-
munication area which addresses Schur-convex objective func-
tions. It will be seen that the new algorithm has a much better
performance in terms of raw bit-error-rate (BER) and clipping
probability than all competing algorithms. For the third contri-
bution, we investigate the performance-complexity tradeoff of
subcarrier-independent and subcarrier-cooperative nonregener-
ative MIMO relay systems. We show that a subcarrier-indepen-
dent system trades only a slight performance loss for a much re-
duced computational complexity and thus is very attractive for
practical applications.

We would like to mention that majorization theory has been
applied for optimizing the source matrix in a point-to-point mul-
ticarrier MIMO system [21]. In fact, a point-to-point MIMO
system can be viewed as a special case of a linear MIMO relay
system, where either the source-relay link or the relay-desti-
nation link has a very high (infinite) channel gain. Thus, our
work is a generalization of the results in [21]. In [24], the au-
thors applied majorization theory to optimize the relay matrices
in the asymptotic regime of a multilevel nonregenerative relay
channel.

Compared with the point-to-point MIMO system [21], the
objective function of MIMO relay systems depends on both the

source and relay matrices. Moreover, the additional constraint
on the transmission power at the relay node is a function of both
the source and relay matrices. Therefore, although both [21] and
our work apply the majorization theory to prove the optimality
of channel diagonalization, it will be seen that the introduction
of the relay node greatly complicates the proof. A rigorous proof
of the main theorem in this paper is technically challenging. In
fact, the only part in [21] that is used in the current work is the
link between some practical objective functions and the main
diagonal elements of the minimal MSE matrix.

The rest of this paper is organized as follows. In Section II we
introduce the system model for a three-node linear nonregen-
erative multicarrier MIMO relay communication system. The
proposed framework is developed in Section III. In Section IV,
we show some numerical examples. Conclusions are drawn in
Section V.

II. SYSTEM MODEL

We consider a three-node multicarrier MIMO communication
system where the source node transmits information to the desti-
nation node with the aid of one relay node. The source, relay, and
destination nodes are equipped with , , and antennas,
respectively. To account for the practical half-duplex constraint
that a node cannot transmit and receive at the same time within
the same spectrum band, we assume that the source-relay and
relay-destination channels are orthogonal. To efficiently exploit
the system hardware, the relay node uses the same antennas to
transmit and receive signals. Due to its merit of simplicity, a
linear nonregenerative strategy is applied at the relay node to
process and forward the received signal.

We use the (either physical or virtual) multicarrier technique
to turn a broadband frequency-selective channel into multiple
frequency-flat subcarrier channels. Based on whether the sub-
carriers cooperate with each other in processing the signals at
the source and relay nodes, we can have either subcarrier-inde-
pendent or subcarrier-cooperative systems.

A. Subcarrier-Independent System

The communication process between the source and destina-
tion nodes is completed in two time slots. In the first slot, the
modulated signal sequence at the source node is divided into

blocks. We denote , , as the number of
symbols in the subblock. Hereafter, the superscript de-
notes the corresponding variables for the subcarrier. The

symbol vector is linearly precoded as

where is an , source precoding
matrix for the subblock of the source symbol sequence.
The precoded vector is transmitted to the relay node via
the subcarrier. The received signal at the relay node can be
written as

where is an MIMO channel matrix between
the source and relay nodes, and are the received
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signal and the additive Gaussian noise vectors at the relay node,
respectively.

In the second slot, the source node is silent and the relay node
multiplies (linearly precodes) the received signal vector at the

subcarrier by an relay amplifying matrix and
transmits the precoded signal vector

to the destination node. The received signal vector at the
subcarrier of the destination node can be written as

(1)

where is an MIMO channel matrix between
the relay and destination nodes, and
are the received signal and the additive Gaussian noise vectors
at the destination node, respectively. We assume that
and , , are all quasi-static and known by
the scheduler and the destination node. The source and relay
matrices are calculates by the scheduler, which can be any
node in the system. The optimal is forwarded from the
scheduler to the source and destination nodes, while
is sent to the relay and destination nodes. We assume that
without wasting the transmission power at the source and
relay nodes, and

, where stands for
the rank of a matrix.

Note that if the noise vectors are spatially correlated
such that and/or

, pre-whitening of the
received signals can be performed at the relay and destination
nodes such that

(2)

where denotes an identity matrix, stands for the
statistical expectation, denotes the matrix (vector) Hermi-
tian transpose, and

From (2) we see that all noises are independent and identically
distributed (i.i.d.). Thus, in the following, without loss of gener-
ality, we assume i.i.d. complex circularly symmetric Gaussian

noise with zero mean and unit variance, and use (1) as the system
input-output model for subcarrier-independent systems.

It is worth noting that the subcarrier-independent system
model can also be used for two-hop MIMO relay systems
with multiple MIMO relay nodes when the relay nodes do
not cooperate with each other and the signals at different
source-relay-destination links are transmitted at orthogonal
time/frequency slots.

B. Subcarrier-Cooperative System

The input-output model for a subcarrier-cooperative MIMO
relay communication system is

(3)

where

(4)

(5)

Here denotes the matrix (vector) transpose, stands
for a block-diagonal matrix, is an block-
diagonal matrix of the “super” channel of the source-relay link,

is an block-diagonal “super” channel matrix
between the relay and destination nodes, , ,
and are obtained by stacking the corresponding vectors
at all subcarriers. From (3), we see that the cooperation among
different subcarriers is performed by a “super” source
matrix where , and a “super” relay matrix
with a dimension of .

A subcarrier-cooperative MIMO relay system is a general-
ization of a subcarrier-independent system, since if we impose
a block-diagonal structure on both and such that

then (3) becomes (1). Hence, we anticipate that a subcarrier-
cooperative system has a better performance than a subcarrier-
independent system. Interestingly, from a mathematical point
of view, the subcarrier-independent system model (1) is more
general, since (3) can be obtained from (1) by simply setting

. Thus, in the following, we use (1) to develop the unified
framework. After the establishment of the unified framework,
we revisit (3) to derive the optimal structure of and for
subcarrier-cooperative systems.
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III. PROPOSED UNIFIED FRAMEWORK

In this section, we develop a unified framework for most
common linear nonregenerative multicarrier MIMO relay de-
sign problems.

First we establish the link between the main diagonal ele-
ments of the minimal MSE matrix and various common design
objectives. Using a linear receiver, the estimated signal wave-
form at the destination node is given by

where is an weight matrix at the subcarrier.
The MSE matrix at the subcarrier of the destination node is
given by

(6)

where we assume that , is
the effective MIMO channel matrix of the source-relay-desti-
nation link, and is the equivalent noise covariance matrix.
They are written respectively as

The weight matrix of the optimal linear receiver which mini-
mizes is the Wiener filter given by [25]

(7)

where denotes the matrix inversion. Here for ma-
trix variables, is minimal indicates that

is a positive semi-definite ma-
trix for any . Substituting (7) back into (6), we
find that the minimal MSE matrix is a function of and
and can be written as

(8)

The link between most practical objective functions and the
main diagonal elements of the minimal MSE matrix has been es-
tablished in [21] for point-to-point multicarrier MIMO commu-
nications. Now we show that such link can be extended to linear
nonregenerative multicarrier MIMO relay communications. We
take as examples three common functions: the arithmetic sum of
the MSE (AMSE) of the signal waveform estimation at all data

streams, the MI between source and destination, and the geo-
metric product of the signal-to-interference-noise ratio (SINR)
of all data streams. First, AMSE can be written as

(9)

where for a matrix , ,
denotes the -th element of , and stands for

the trace of . Here is the MSE of the

signal waveform estimation of the data stream at the
subcarrier, given by

where is the column vector of , and
is the interference-plus-noise co-

variance matrix for the data stream at the subcarrier.
Second, the MI between source and destination is

(10)

where denotes the matrix determinant. Since (10) is in-
variant to any unitary rotation of , we choose such that

, is diagonal. Thus, we
have

(11)

Finally, the geometric product of the SINR of all data streams
is given by

(12)

From (9), (11), and (12) we see that all three func-
tions are strongly linked to the main diagonal ele-
ments of , . Let us use

as a unified notation for the objective
function at the subcarrier, where is a column vector
containing all main diagonal elements of . Then at the
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subcarrier, the linear nonregenerative multicarrier MIMO relay
design problem can be written as

(13)

(14)

(15)

where (14) and (15) are constraints for the transmission power
at the source and relay nodes, respectively. Here and

are the corresponding power used at the subcarrier
satisfying and . We denote
and as the total power constraints across all subcarriers at the
source and relay nodes, respectively.

Before stating the key theorem on the solution of problem
(13)–(15), we introduce two important definitions from [19].

Definition 1 [19, 1.A.1, 1.A.2]: Consider any two real-valued
vectors and , let ,

denote the elements of and sorted in
decreasing order, respectively. Then we say that is majorized
by , or , if , for ,
and . Vector is weakly submajorized
by vector , or , if , for

.
Definition 2 [19, 3.A.1]: A real-valued function is Schur-

convex if for , there is . Similarly, is
Schur-concave if , for .

Let us denote

(16)

(17)

as the singular value decomposition (SVD) of and ,
where the dimensions of , , are , ,

, respectively, and the dimensions of , ,
are given as , , , respectively. We
assume that the main diagonal elements of and are ar-
ranged in increasing order, respectively. The following theorem
is the main contribution of this paper. It establishes the structure
of the optimal for Schur-concave and Schur-convex
objective functions, respectively.

Theorem 1: For the linear nonregenerative multicarrier
MIMO relay optimization problem (13)–(15) with an
matrix , we assume that i) The objective function in (13) is
an increasing function of ; ii)

. If
the objective function in (13) is a Schur-concave function of

, then the optimal source and relay matrices
have the following structure:

(18)

(19)

where and are diagonal matrices, ,

, and contain the rightmost columns from ,

, and , respectively.

On the other hand, if (13) is a Schur-convex function of
, is given by (18), while has the

structure as

(20)

where is an unitary (rotation) matrix such that
has identical elements.

Proof: See the Appendix.
Condition i) is a natural choice for any practical purpose.

While condition ii) sets the upper-bound for the maximal
number of independent data streams in each subcarrier such
that no transmission power is wasted. From Theorem 1, we
see that for Schur-concave objective functions, the optimal
relay and source matrices (18) and (19) jointly diagonalize the
source-relay-destination channel. The equivalent minimal MSE
matrix is diagonal and given by

where diagonal matrices and contain the largest

singular values of and , respectively. For
Schur-convex objective functions, the relay and source ma-
trices (18) and (20) diagonalize the channel up to a specific
rotation of the source matrix.

Most practical linear nonregenerative multicarrier MIMO
relay design problems can be solved by using the unified
framework established by Theorem 1. For each objective func-
tion, we need to determine its Schur-convexity with respect
to . The Schur-convexity results for most
common objectives including MSE-based, SINR-based, and
BER-based criteria are summarized in [21] for point-to-point
MIMO systems. It is easy to find that these results can also be
applied to the objective functions of linear nonregenerative mul-
ticarrier MIMO relay design. In the following two subsections,
we demonstrate four examples of applying Theorem 1 and the
Schur-convexity results in [21] to solve linear nonregenerative
multicarrier MIMO relay design problems.

An interesting link between the transmitter optimization for
point-to-point multicarrier MIMO communication systems [21]
and our work can be drawn by rewriting the minimal MSE ma-
trix (8). In fact, by using the matrix inversion lemma

, and
the identity
we have

(21)
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where

(22)

(23)

Obviously, is the minimum MSE matrix for a
point-to-point (one-hop) MIMO system. Thus, (21) indicates
that the minimum MSE matrix for a two-hop linear non-
regenerative MIMO relay system is a superposition of the
minimum MSE matrix (22) for a point-to-point MIMO system
and the increment of MSE (23) introduced by the relay-des-
tination link. If the relay-destination link has a very high
(infinite) channel gain, then ,

and . Theorem 1 shows that for
Schur-concave objective functions, the source matrix diagonal-
izes (22) as in [21]. When is finite, we know from (18) and
(19) that the source and relay matrices jointly diagonalize (23).
Therefore, our work is a generalization of the results in [21].

A. Relay Design With Schur-Concave Objective Functions

We consider the following three common design criteria with
Schur-concave objective functions. The minimal arithmetic
MSE (MA-MSE) relay [12], [13], [16] has the objective to
minimize AMSE of the signal waveform estimation at all
data streams (9). The maximal MI (MMI) relay [9]–[11], [15]
aims to maximize the MI between source and destination in
(11). While the maximal SINR (MSINR) relay has the goal
to maximize the geometric product of the SINR of all data
streams (12).

It can be shown similar to [21] that (9), (11), and (12) are all
Schur-concave functions of vector . Thus,
at each subcarrier, the optimal relay and source matrices have
the structure specified by (18) and (19), respectively. We only
needs to determine and , which can be obtained
by the following optimization problems. The objective function
of the MA-MSE relay problem is given by

(24)

where , , are the main di-

agonal elements of , , , , respectively, and for

a scalar , . The objective of the

MMI relay can be written as

(25)

While for the MSINR relay design, the objective function is

(26)

All these three problems have the same transmission power con-
straints, given by

(27)

(28)

(29)

Closed-form solutions to problem (24), (27)–(29), problem
(25), (27)–(29), and problem (26), (27)–(29) are intractable. In
fact, since these problems are nonconvex, the global-optimal
solution is hard to obtain. In [26], a grid search-based algo-
rithm is designed to find the global-optimal solution for a mul-
ticarrier SISO relay system with the MMI criterion. In partic-
ular, at each subcarrier, the power loading parameters are ob-
tained by solving a cubic equation with two fixed Lagrangian
multipliers. A two-dimensional grid search is employed to find
the optimal Lagrangian multipliers. Obviously, this algorithm
can be extended to linear nonregenerative multicarrier MIMO
relay systems, for example, to provide a global-optimal solution
to problem (25), (27)–(29). However, the computational com-
plexity of the algorithm in [26] is extremely high, since in order
to obtain a reasonably good solution, search over a high-dense
grid must be employed. The global-optimal power allocation pa-
rameters can also be obtained by using the dual decomposition
technique [27]. However, similar to [26], a grid search must be
performed to obtain the optimal dual variables. Therefore, the
complexity of the dual decomposition technique is also very
high.

In the following, we provide a numerical method to obtain a
local-optimal and which has a much lower com-
putational complexity than that of [26] and [27]. This method
employs an alternating technique as shown in [11], [15], and
[16]. To simplify notations, let us define

(30)

Then the objective functions in (24)–(26) can be equivalently
rewritten as (31)–(33), shown at the bottom of the next page.
The transmission power constraints (27)–(29) are equivalently
converted to

(34)
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(35)

(36)

From (31)–(36) we see that all three problems are symmetric in
and . Moreover, from (34)–(36) we find that the

constraints on and are decomposed. Thus, we can
efficiently update and in an alternating way [11],

[15], [16]. As an example, for the MMI relay, with fixed ,
we can update in (25) by solving

(37)

(38)

(39)

Problem (37)–(39) has the well-known water-filling solution,
given by

where for a real-valued number , . The water
level is the solution to the following nonlinear equation:

which can be efficiently solved by the bisection method [28].
Similarly, for the MA-MSE and MSINR relay design, we update

, respectively, as

where , and are the solutions to the
following equations, respectively:

In a similar fashion, we can update with given
for all three problems. Note that the conditional updates of

and may either decrease or maintain but cannot
increase the objective functions in (24)–(26). Monotonic
convergence of and follows directly from this
observation. After the convergence of the alternating algorithm,

and can be obtained from (30) as

(40)

Compared with [26] and [27], the alternating algorithm trades
the local optimality for a greatly reduced computational com-
plexity. Note that in [26] and [27], if the grid density is not suf-
ficiently high, the global-optimal solution is not guaranteed. In
Section IV, we study the performance comparison of [26] with
our alternating algorithm through numerical simulations.

B. Relay Design With Schur-Convex Objective Functions

In multicarrier MIMO relay communication systems, the
overall system performance, for example, the average raw BER,
is dominated by the maximal MSE among all space-frequency
data streams. The relay scheme which minimizes the maximal
MSE (MM-MSE) has the following objective function:

(41)

(31)

(32)

(33)
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It can be shown similar to [21] that (41) is a Schur-convex
function of . Based on Theorem 1, the
optimal structure of and are given by (18)
and (20), respectively. Thus, we only need to optimize

, and . From Theorem 1 and Lemma 5 in
the Appendix, we know that at each subcarrier, the elements
of should be identical for Schur-convex
functions. Therefore, the objective function (41) can be written
as

(42)

Function (42) can be equivalently converted to

(43)

(44)

Using simplified notations defined in (30), we can rewrite (43)
and (44) as (45)–(46), shown at the bottom of the page. Finally,
the MM-MSE relay design problem is given by (45), (46), and
(34)–(36). This problem can be solved by using the alternating
technique we developed in Section III-A. In particular, for fixed

, the solution of updating is given by

(47)

Equation (47) can be seen as a multilevel water-filling solu-
tion [21], where the water level at the subcarrier is deter-
mined by . Obviously, should satisfy the constraint (46)
at the subcarrier, while is determined by the transmission
power constraint (34) across all subcarriers. In practice,
can be found by an algorithm with two bisection loops as listed
in Table I.

Since and are symmetric in (45) and (46),
can be updated in a similar fashion as . A mono-

tonic convergence of and is achieved because the
conditional updates of and may either decrease
or maintain but cannot increase the objective function (42). Fi-
nally, and are obtained by (40).

TABLE I
ALGORITHM 1: TWO BISECTION LOOPS IN COMPUTING �

After and are obtained, the final step is to compute

the rotation matrix such that the main diagonal elements
of

are identical. Such can be any rotation matrix that satisfies
, . When the dimensions are ap-

propriate such as a power of two, the discrete Fourier transform
matrix can be chosen for . While for general case, can
be computed using the method developed in [29].

C. Subcarrier-Cooperative MIMO Relay System

In this subsection, we derive the optimal structure of and
for a subcarrier-cooperative MIMO relay system. Based on the
block-diagonal structure of (4) and (5) we can write the SVD of

and as

(48)

(49)

where

(45)

(46)
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Note that although the main diagonal elements of and ,
, are ordered, the main diagonal elements of

and remain unsorted. Let us introduce permutation matrices
, and with commensurate dimensions such

that main diagonal elements of and
are sorted in an increasing order, respectively. We

can rewrite (48) and (49) as

where , , , and
.

According to Theorem 1, for Schur-concave objective func-
tions, the optimal and jointly diagonalize the “super”
source-relay-destination channel. Therefore, their optimal
structure is given respectively by

(50)

where and are diagonal matrices, , , and
contain the rightmost columns from , , and ,

respectively. For Schur-convex objective, the optimal structure
can be written as

(51)

where is an unitary rotation matrix.
From (50) and (51) we find that the cooperation among sub-

carriers is essentially carried out by the permutation matrices
, , and . In fact, the subcarriers are reshuf-

fled at the relay and source nodes such that the strong space-
frequency subchannels at the source-relay link are paired with
the strong subchannels at the relay-destination link, while the
weak subchannels are coupled with weak ones. The optimality
of such pairing has been shown in [15] and [26] for the spe-
cial case where the design objective is to maximize the MI be-
tween source and destination. Here we generalize this result to
any problem with Schur-concave and/or Schur-convex objective
functions.

After the optimal structure of and is determined, we are
left with the optimization of and , which can be efficiently
solved by the alternating power loading algorithms developed in
Sections III-A and III-B for Schur-concave and Schur-convex
objective functions, respectively.

From the computational complexity point of view, per-
forming SVD and calculating the power loading parameters are
the two most computationally intensive parts of the proposed
algorithm. By exploiting the block-diagonal feature of and ,
the complexity of SVD for the subcarrier-cooperative system is
equivalent to that of the subcarrier-independent system. How-
ever, since for a subcarrier-independent system, optimization
of power loading parameters are decomposed into subprob-
lems, thus it has a lower computational complexity than the
subcarrier-cooperative system. On the other hand, as mentioned
in Section II-B, the subcarrier-cooperative relay system has a
better performance than the subcarrier independent one. Such
a performance-complexity tradeoff is very useful for practical
systems and is further studied in Section IV.

TABLE II
CHARACTERISTICS OF THE ETSI “VEHICULAR A” CHANNEL ENVIRONMENT

Fig. 1. Example 1: BER versus ��� . � � � � � � �, � � �,
��� � 20 dB.

IV. SIMULATIONS

In this section, we study the performance of the linear non-
regenerative multicarrier MIMO relay techniques developed
using the proposed framework through numerical simulations.
For all examples, the channel between each transmit-receive
antenna pair is modelled as the ETSI “Vehicular A” multipath
channel environment which has been defined for the evaluation
of UMTS radio interface proposals [30]. The multipath time
delays and the variances of the multipath gains of the “Vehic-
ular A” channel are shown in Table II, where is the sampling
interval.

An OFDM communication system with subcarriers
and QPSK constellations is assumed. The channel matrices have
zero-mean entries with variances and for
and , respectively. We define

as the SNR of the source-relay and relay-destination links, re-
spectively. All simulation results are averaged over 2000 inde-
pendent channel realizations.

First we compare the performance of the subcarrier-cooper-
ative and subcarrier-independent systems, in order to study the
performance-complexity tradeoffs of the former system. Fig. 1
shows the performance of both systems in terms of BER versus

. Here we set ,
, and 20 dB. Both systems are designed by

using the proposed framework under the MA-MSE criterion.
In particular, the subcarrier-independent system is optimized
based on Section III-A, while the subcarrier-cooperative system
is developed following the steps in Section III-C. From Fig. 1,
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Fig. 2. Example 2: MI versus ��� .� � � � � � � � �,��� �

20 dB.

we find that the subcarrier-cooperative system provides only a
marginal performance improvement over the subcarrier-inde-
pendent system. The reason can be explained as follows. The
performance gain of the subcarrier-cooperative system is essen-
tially obtained by pairing all space-frequency subchannels in a
proper order. We call such gain space-frequency pairing gain.
While in subcarrier-independent systems, only the spatial sub-
channels within one subcarrier is properly paired. It appears that
such space-only pairing gain is only slightly smaller than the
space-frequency pairing gain. Since the subcarrier-independent
systems trade only a slight performance loss for a much reduced
computational complexity, it is very attractive for practical ap-
plications. Therefore, in the following simulations, we focus on
subcarrier-independent systems.

In the second example, we compare the proposed alternating
power loading algorithm for Schur-concave objective functions
developed in Section III-A with the optimal power loading al-
gorithm proposed in [26]. Since [26] is designed for the MMI
criteria, in Fig. 2, we show the performance of both algorithms
in terms of MI versus . Here we set
(i.e., a SISO relay system as in [26]) and 20 dB. To
find the optimal solution, a two-dimensional grid search is per-
formed as proposed in [26]. In particular, we try and

, respectively, where denotes the number of uni-
formly-spaced intervals in each search dimension. From Fig. 2
we find that, as expected, the performance of [26] greatly de-
pends on the density of the two-dimensional grid. When the
grid is sparse, the global optimality is not guaranteed. In fact,
at , it has a worse performance than our alternating al-
gorithm throughout the whole region. On the other hand,
with a dense grid , its performance is better than the
proposed alternating algorithm in the low and medium
range. However, its performance is still inferior to that of our
alternating algorithm at high . This indicates that a grid
search with very high density (for example, ) is re-
quired at high . Obviously, the computational complexity
for searching over a dense grid is extremely high. Therefore, for
practical systems, the alternating power loading algorithm is a
better choice.

In the following two examples, we compare the performance
of different algorithms in terms of BER. We consider the

Fig. 3. Example 3: BER versus ��� . � � � � � � �, � � �,
��� � 20 dB.

MA-MSE, MMI, MSINR, and MM-MSE relay algorithms
developed using the proposed framework, and the following
two suboptimal schemes.

• Naive amplify-and-forward (NAF) algorithm: In this
scheme, one chooses the following source matrix:

(52)

where stands for a matrix with all zeros entries.
The relay matrix is taken as

where

• Pseudo match-and-forward (PMF) algorithm [31]: In this
scheme, is given by (52), and is

In our third example, we choose , and
. Fig. 3 shows BERs of all algorithms

versus for 20 dB. While Fig. 4 demonstrates
BERs of all algorithms versus for fixed at 20 dB.
It can be seen from Figs. 3 and 4 that the algorithms developed
using the proposed framework perform consistently better than
the NAF and PMF algorithms over the whole and
range.

In the fourth example, we simulate a relay system with dif-
ferent number of antennas at each node. In particular, we set

, , , and . The
BERs of all algorithms except the PMF scheme versus
are displayed in Fig. 5 for a fixed at 20 dB. Fig. 6 shows
BERs of the competing algorithms with respect to for
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Fig. 4. Example 3: BER versus ��� . � � � � � � �, � � �,
��� � 20 dB.

Fig. 5. Example 4: BER versus ��� . � � �� � � �� � � 	, � �

�, ��� � 20 dB.

Fig. 6. Example 4: BER versus ��� . � � �� � � �� � � 	, � �

�, ��� � 20 dB.

20 dB. Note that in contrast to other schemes, the PMF
algorithm requires . We observe that the algorithms
using our unified framework have a tremendously improved per-
formance compared with the NAF algorithm.

From Figs. 3–6 we find that among the four algorithms de-
veloped using the proposed framework, the MM-MSE relay
scheme has the best performance. Note that the MMI (as con-
sidered in [9]–[11] and [15]) is a good criterion only for coded
systems in which the number of symbols for each coding block

Fig. 7. Example 5: Power range versus ��� . � � � � � � �,� �

�, ��� � 20 dB.

is large. However, in the numerical comparison, we consider un-
coded systems with a small number of symbols (QPSK,

) for each block and compare the different schemes in term
of raw BER. It is not surprising that the MMI-based algorithm
does not yield a better performance than algorithms based on
other criteria (such as MSE-based ones including MA-MSE and
MM-MSE) in this setting.

In the last example, we investigate two practical issues of
our algorithms: the dynamic range of the transmission power
at each antenna, and the clipping probability at the source and
relay nodes. The clipping probability is an important parameter
for multicarrier systems and is defined as the probability that
the instantaneous signal amplitude exceeds a clipping value. We
choose MA-MSE and MM-MSE as the example of Schur-con-
cave and Schur-convex objective functions, respectively. For
both Schur-convex and Schur-concave objective functions, the
transmission power and of the antenna at the
source and relay nodes are computed respectively as

We set , and .
Fig. 7 shows the maximal and minimal transmission power of
the first antenna at the source node versus at

20 dB. Fig. 8 demonstrates the transmission power
range of the first antenna at the relay node versus for

20 dB. From Figs. 7 and 8 we find that for a given
or , the required dynamic range of the power ampli-

fier is around 5 dB, which can be easily implemented in practice.
Interestingly, it can be seen from Figs. 7 and 8 that the MM-MSE
algorithm yields a slightly larger dynamic power range than that
of the MA-MSE algorithm.

The clipping probability at each antenna of the source and
relay nodes is calculated respectively as
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Fig. 8. Example 5: Power range versus ��� .� � � � � � �,� �

�, ��� � 20 dB.

Fig. 9. Example 5: Clipping probability versus �. � � � � � � �,
� � �, ��� � ��� � 20 dB.

where stands for probability, and are the
amplitude of the transmitted signal at the source and relay nodes,
respectively, and is a scalar controlling the clipping value.
Fig. 9 shows the clipping probability versus for

, , and
20 dB. It can be seen from Fig. 9 that thanks to the rotation
matrices , , the clipping probability of the
MM-MSE algorithm at the source node is much lower than that
of the MA-MSE algorithm. We would like to mention that both
the dynamic power range and the clipping probability can be
controlled by incorporating additional constraints into the opti-
mization problem [21]. From Figs. 3–6 and 9 we find that the
MM-MSE algorithm has a better performance in terms of both
BER and clipping probability than all competing techniques.
Thus, it is very attractive for practical multicarrier MIMO relay
systems.

V. CONCLUSION

We developed a unified framework which systematically
solves most commonly formulated optimization problems
for the source and relay matrices in a linear nonregenerative
multicarrier MIMO relay communication system. We have
shown that the optimal source and relay matrices jointly diag-
onalize the multicarrier MIMO relay channel if the objective
function is Schur-concave. While for Schur-convex objective

functions, the source-relay-destination channel is diagonalized
after a specific rotation of the source matrix. With this optimal
structure, the relay design problem is simplified to the issue of
power loading among parallel SISO relay channels, and can
be efficiently solved by using an alternating technique. Using
the unified framework, we developed an MM-MSE relaying
algorithm using a Schur-convex objective function. This new
algorithm has a much better performance in terms of BER and
clipping probability than all competing techniques.

APPENDIX

PROOF OF THEOREM 1

To prove Theorem 1, we need the following lemmas from
[19].

Lemma 1 [19, 9.B.1]: For a Hermitian matrix with the
vector of main diagonal elements and the vector of eigen-
values , there is .

Lemma 2 [19, Proof of 9.H.2]: For two com-
plex matrices and , let , then

, where , and denote vec-
tors containing the singular values of , and arranged
in the same order, respectively, and denotes the Schur (ele-
ment-wise) product of two vectors.

Lemma 3 [19, 3.A.8]: A real-valued function satisfies
if and only if is increasing and

Schur-convex.
Lemma 4 [19, 9.H.1.h]: For two positive semidefi-

nite Hermitian matrices and with eigenvalues and ,
, arranged in the same order, respectively, there is

.
Lemma 5 [19, p.7]: For an vector , let us define

an vector with identical elements of ,
there is .

Lemma 6 [19, 9.B.2]: For any real-valued vector
, there exists a real symmetric (and thus Hermitian) matrix

with equal main diagonal elements and eigenvalues given
by . Equivalently, there is a unitary matrix such that

, where denotes a diagonal matrix taking as
the main diagonal.

We start to prove the first half of Theorem 1. Let us define

(53)

(54)

where is an diagonal matrix containing nonzero
eigenvalues of , is an matrix of the associ-
ated eigenvectors, is the SVD of with the
dimensions of , , being , ,

, respectively. The diagonal elements of and
are sorted in increasing order, respectively. Here, we use condi-
tion ii) in Theorem 1. From (53) and (54) we have

(55)

(56)
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where is an arbitrary unitary matrix. Substi-
tuting (55) and (56) into (8), we have

(57)

where the matrix inversion lemma is applied to obtain the first
equation from (8), and

It will be seen later that the power constraints (14) and (15) are
invariant to and .

Applying Lemmas 1 and 2 to in (57), we have

(58)

which indicates that is majorized if

(59)

Here denotes an arbitrary diagonal matrix with unit-
norm main diagonal elements, i.e.,

. Since is Schur-concave
and increasing with respect to , is

Schur-concave and decreasing with respect to . Obvi-
ously, is Schur-convex and increasing

with respect to . Based on (58) and Lemma 3, we have

, hence

, where
the equality holds at (59). Without affecting the objective func-

tion (13) and the power constraints (14) and (15), we choose
, hence .

Now we consider the power constraints (14) and (15). Sub-
stituting the SVD of in (16) into (55), we have

(60)

where , is a diagonal matrix containing

all nonzero singular values of , and .

Let us denote , where and

contain the vectors in associated with the zero and nonzero
singular values of , respectively.

We find that depending on , and , (60) can be classi-
fied to the following three cases. Firstly, if , (60)
holds if and only if

(61)

Secondly, if , then (60) is valid if and only if

(62)

Finally, if and , (60) holds if and only if
and (62) holds. For the latter

two cases, the complete solution for is

(63)

where is an arbitrary matrix. Obviously, to
minimize the transmission power at the source node, should
be chosen as . To determine in (61) and (63),
let us consider the transmission power at the subcarrier of
the source node given by

(64)

Note that (64) is invariant to and . It can be seen from
Lemma 4 that (64) is minimized if . Without
affecting the objective function and the constraints, we take

, and together with , we prove the op-

timal structure of in (19) with .
Now we consider the power constraint (15). Similar to steps

(60)–(63), by solving (56) for we have
if and

(65)
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(66)

where , , is a di-

agonal matrix containing all nonzero singular values of ,
and contain the vectors in associated with the

zero and nonzero singular values of , respectively. To de-
termine in (65) and (66), we consider the power consumed
by the relay node written as

(67)

Obviously, (67) is invariant to and . From Lemma 4,
we know that (67) is minimized if . Without
affecting the objective function and the constraints, we choose

, and using , we prove the op-

timal structure of in (18) with

. This concludes the proof for the first part of The-
orem 1.

For Schur-convex objective functions, based on Definition
2 and Lemma 5, we know that the minimum of the objective
function is obtained if has equal main di-
agonal elements. Let us introduce the eigendecomposition of

. Hence, we have

. Based on

Lemma 6, for any and , we can improve the perfor-
mance by using without affecting the
power constraints (14) and (15). Here is a unitary matrix
such that
has identical main diagonal elements, i.e.,

(68)

From (68), we see that and should be chosen to
minimize . Such optimal and are
given by (18) and (19), respectively, since

is a Schur-concave function of .
In a nutshell, there are two steps in the optimal relay de-

sign with Schur-convex objectives. First, we calculate the
optimal and according to (18), (19) and using

as the objective function. After the first

step, we obtain a diagonal with minimal
. In the second step, is rotated by

based on (68). Therefore, for Schur-convex objective

functions, is given by (18), while is represented as
(20).
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