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A metamorphic linkage has the property that the effective number of links and joints can
change during the movement of the device. This means the kinematic structural representation
of a metamorphic linkage has different forms in which vertices and edges combine depending
on the configuration of the device. In this paper, we use the constraint graph of computational
geometry rather than the traditional topological graph to characterize a metamorphic linkage
in order to simplify the representation of its configuration changes. A constraint graph has
geometric elements as vertices and their relationships as edges. We find that the adjacency sub
matrix of the constraint graph provides a convenient description of changes in the topology of
links and joints in the operation of the metamorphic linkage. Operations on the adjacency
submatrix capture topological changes in a metamorphic linkage. We illustrate our results with
several examples.

© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper, we introduce a constraint graph representation of the topological structure of a linkage. A constraint graph
defines the relationships between geometric objects and is used in computer aided design systems. For our purposes, we consider
the links of a mechanism to be lines and the revolute joints to be points in structural schematic, and use the constraint graph to
represent incidence, distance and angle constraints. This approach provides amathematical representation for the combinations of
the links and joints that occur in metamorphic linkages.

The traditional topological graph of a linkage identifies the links as vertices and the joints as edges. Our constraint graph of the
linkage represents both the links and joints as vertices and the geometric relationships between the links and joints define the
edges of the graph. We find that the constraint graph for a mechanism yields a matrix with a simplified structure that we call the
“adjacency sub-matrix”.

Operations on the adjacency submatrix obtained from the constraint graph of ametamorphic mechanisms define combinations
of links and joints. The result is a graph representation for linkages that includes the special characteristics of metamorphic
mechanisms. In what follows, we illustrate this theoretical examples of metamorphic mechanisms and the associated
transformations of their constraint graphs.

2. Literature review

Dai and Rees Jones (1999)[1] examine a class of mechanisms that are erectable, which means they can move from a folded to a
deployed configuration. They note that a primary feature of these devices is that the number of effective links changes as the
device moves from one configuration to another, for this reason they call these devices metamorphic mechanisms.
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Mechanisms can be viewed as assemblies of rigid links connected by joints represented by the notation (n,m), where n is the
number of links andm is the number of joints, see Tsai (2000)[2]. This allows us to group crank-rocker, slider-crank, drag-link and
other four-bar linkages into the (4,4) type of linkage. Using this notation, the metamorphic linkages have the ability to change
type, that is an (n1,m1) linkage canmove to a configuration in which links and joints combine such that it becomes of type (n2,m2).

Freudenstein and Maki (1979)[3] introduced a linkage graph to describe the topological structure of a linkage and to facilitate
invention, see also Vucina and Freudenstein (1991)[4]. The linkage graph represents links as vertices and joints as edges. The
topological structure of this graph is defined by its vertex adjacency matrix. Dai and Rees Jones (2005) [5] used changes to the
adjacencymatrix of a topological graph to characterize a metamorphic mechanism.While the combination of both joints and links
can occur in metamorphic mechanisms, only changes to links are represented in the adjacency matrix of a linkage graph.

Constraint graphs and geometric constraint solvers evolved from the variational geometry techniques of Light and Gossard
(1982) [6]. Bouma et al. (1995) [7] present the principles of geometric constraint solvers based on constraint graphs, see also
Hoffman et al. (2004) [8]. Constraint graphs map geometric objects to vertices and geometric relationships to edges and provide a
versatile tool for characterizing mechanical assemblies. The adjacency sub-matrix derived from the constraint graph reflect the
relationships between both links and joints and can be used to describe the changes that occur in metamorphic mechanisms.

Recent research has expanded the use of linkage graphs to the design of compliantmechanisms [9], parallelmechanisms [10], and
linkage synthesis [11,12,13]. Ourwork contributes to this growingbodyof research in the systematicdesignof linkage systems [14,15].

In what follows, we consider only the special cases of points, lines and planes as the geometric elements and the relationships
of incidence, distance and angle that we need for the metamorphic linkages that we consider. However, the methodology seems
general enough to be used for more complex linkage types.

3. Constraint graph of a mechanism

Computer-aided mechanism design seeks to match linkage topologies to design tasks, then formulate and solve the synthesis
equations. Graph theory has been a successful tool to search and evaluate linkage topologies, see Vucina and Freudenstein 1991
[4]. However, the structural features that allow a metamorphic mechanism to fold and lock, thus changing its topology, are not
captured in this linkage graph and so do not fit into this design process.

In this section, we introduce the constraint graph of a mechanism. We consider the mechanism to be represented in schematic
form, which means that revolute pivots are points and links are formed from lines connecting these points. The constraint graph
includes vertices that represent the lines that form the links and vertices that form the geometric elements in the mechanism
schematic and each edge of the graph is a relationship between two geometric elements. While the geometric elements and
relationships can be general, we will focus primarily on geometric elements that are points, lines and planes, and the relationships
of incidence, such as a point is incident with a line, and distances between two points and angles between two lines or planes.

Consider the binary link shown in Fig. 1. For our constraint graph let the joints O and A be defined by points PO and PA, and let L1
be the centerline of link connecting these two points. The two points and the line define three vertices in a constraint graph. The
incidence of the line L1 on the points PO and PA is represented by edges joining the vertex L1 to the vertices PO and PA. The constraint
that the points PO and PA lie at a fixed distance a along L1 is represented by an edge that joins these two vertices.

It is useful to notice that given coordinates for any two of the three vertices PO, L1 and PA, the constraints allow computation of
the coordinates of the third vertex. When this occurs, the set of vertices is said to define a cluster, Bouma et al. (1995) [7].
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Fig. 1. A binary link and its constraint graph.
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Fig. 2. A parallelogram linkage and its constraint graph.
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The constraint graph for a mechanism is obtained by continuing this process for every link in its schematic. Fig. 2 shows the
constraint graph for a four-bar parallelogram linkage. Notice that the vertices of the constraint graph form four clusters connected
by the points PO, PA, PB and PC at the centers of the four joints.

Fig. 3 shows the constraint graph for the schematic of a six-bar linkage. Fig. 4 presents another version of the six-bar constraint
graph in which the clusters have been shaded, the distance constraints presented as dark lines, and the ternary links 1 and 3
organized as hexagonal clusters. Notice that in this form the graph has a similar form as the linkage schematic. Once the clusters
have been identified, they can be identified as “supervertices” that are incident with geometric elements shared with other
clusters. This yields the reduced constraint graph shown in Fig. 4. The reduced constraint graph is a bipartite graph that has each
cluster separated by the geometric object that it shares. If we focus only on the clusters and consider their intersection graph,
illustrated with the dashed lines, then we obtain Freudenstein's topological graph of a linkage.

Graph theoretic algorithms have been developed to determine decompose constraint graphs to identify clusters, so that the
system can be solved to determine the position of each geometric element. From the point of view of geometric constraint solvers,
our constraint graphs are underconstrained with a deficit of 1. This means one more constraint is needed to so the graph can be
solved. This extra constraint is the input crank angle.

This section shows that the topological graph of a linkage, and its constraint graph provides geometric and dimensional
content. In what follows, we use the constraint graph to introduce geometric information to the topological graphs of meta-
morphic linkages.

4. Graph representations of metamorphic mechanisms

An example of a metamorphic linkage is the folding fan shown in Fig. 5 which consists of a sequence of three dimensional
folding elements that fold and lock to form a single member. For our purposes, wemodel the fold as a planar pair of hinged bars. In
this case, the four-bar linkage formed by one folding element must have the dimensions of a kite linkage, that its two pairs of
adjacent sides have the same lengths, see Fig. 6. Furthermore, in order to connect these elements together the joints must connect
more than two links.

1

2

O

A

B

C

D

E

F

3 5

4

6
2

O

LOC LCD

LAF LBF

LAB

A B

C

D

E

F
5

4

6

LOD

Fig. 3. The schematic of a six-bar linkage and its constraint graph.
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Fig. 4. The clusters of the constraint graph become supervertices in the reduced constraint graph. The intersection graph of the clusters illustrated by dashed lines
is topological graph of the mechanism.
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4.1. Kite linkage

The constraint graph of the kite linkage in Fig. 6models the revolute joints as points and the links as lines connecting two joints.
Thus, the graph has eight vertices, four points and four lines. The incidence of a point on a line or line on a point defines edges that
link these vertices, see Fig. 6.

The topology of the kite mechanism is captured by the vertices and edges of the graph which represent the incidence of the
points and lines that form joints and links. Additional information is included as constraints between the geometric objects that
form these vertices. In the case of the kite linkage, the conditions a=|OA|=|OC| , b=|AB|=|BC|, α2=α4 and α3=2α2+α1 are
shown in the graph as distance and angle constraints between the various points and the various edges. For our purposes, we
denote a distance constraint by a heavy line and the angle constraint by a pair of thin lines.

4.2. Multi-joint assembly

An important feature of a metamorphic linkage that allows it to change topology is the ability for joints to coincide such that
links combine and operate as a single link. The constraint graph provides a way to characterize this change in topology.

(a) Original folding fan (b) Final folding fan

(c) Original structural graph (d) Final structural graph

Fig. 5. Folding fan and the corresponding metamorphic mechanism with multiple joints.
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Fig. 6. The four-bar folding element of the folding fan and its constraint graph.
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The structural schematic of a mechanism generally consists of joints that connect only two links, which we term a binary joint
and Ding et al. (2010) [12] call a “simple joint.” If the joint connects more than two links, we call it amulti-joint assembly and Ding
et al. (2010) [12] call this a “multiple joint.” A multi-joint assembly that connects k links is counted as k−1 binary joints when
determining the mobility of the system.

Fig. 7 shows a sequence in which the joints of a seven-bar linkage are sequentially combined into multi-joint assemblies. In the
first case, joints 7° and 8° on the ternary 7 are combined. Notice that this changes the constraint graph. In the second case, the three
joints 6°, 7° and 8° are combinedwhich eliminates the ternary link 7, and we see the associated reduction of the topological graph.
This shows the ability of the constraint graph to couple dimensional information to the topological graph of the linkage, in this case
dimensions that become zero.

4.3. Folding box

The constraint graph formalism can be applied tomechanisms such as the folding box shown in Fig. 8, wherewe use the faces of
the box and their lines of intersection as the geometric elements. Li et al. (2002) [16] constructed an equivalent linkage for this box
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Fig. 7. (a) A general seven-bar linkage schematic and its constraint graph, (b) a seven-bar linkage with a multi-joint assembly obtained by combining joints 7° and
8° and its constraint graph, (c) the six-bar linkage obtained by combining joints 6°, 7° and 8° and its constraint graph.
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Fig. 8. (a) A folding box defined by planes as links and lines as joints, (b) its constraint graph, and (c) the constraint graph with the cluster as a supervertex.
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and used the topological graph of this mechanism to define the graph representation. The four planes E1A, E1B, E1C, and E1D form the
cluster C1. When the box closes the planes E4, E5 and E6 are identified with the planes E1A, E1B, E1C respectively, and therefore
become part of the cluster C1. See Fig. 9. The result is that this operation transforms an open chain (a) into the rigid assembly (b).

5. Incidence and adjacency matrices

Before considering metamorphic linkages, we examine the relationship between topological graph G(n,m) of a general (n,m)
linkage, and its constraint graph C(n,m). In the general case, we see that the constraint graph can be viewed as a topological graph in
which the joint edges are transformed into vertices, and in reverse the topological graph is the subgraph of the constraint graph
obtained by transforming the joint vertices into edges. This relationship identifies the constraint graph of the general (n,m) linkage
as a bipartite graph, for which every edge connects a cluster vertex to a joint vertex, see Bondy and Murty (1976) [17].

To be more precise, we define a graph G(V,E) by a set of vertices V and a set of edges E, together with an incidence function ϕ :
E→V that defines the vertices incident to an edge, see Bondy and Murty (1976) [17]. The incidence function is defined by a v×e
incidencematrix D(G)=[di, j], where v is the number of vertices and e is the number of edges. For our purposes, the entry di, j is 1 if
vertex i is incident with edge j and 0, otherwise.

As an example, consider the constraint graph of the seven-bar linkage shown in Fig. 7. The subgraph formed by the clusters Ci is
the topological graph G(7, 8) of the (7, 8) linkage [2]. The incidence matrix D(G(7, 8)) is given by

D G 7;8ð Þ

! "
=

C1
C2
C3
C4
C5
C6
C7

P1 P2 P3 P4 P5 P6 P7 P8
1 0 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0
0 0 0 0 0 1 1 1

2

666666664

3

777777775

; ð1Þ

where Pj denotes the edge defined by the associated joint.
Another matrix associated with a graph is its adjacency matrix A(G)=[ai, j], which is a v×v matrix with ai, j=1 if vertex i and

vertex j are on the same edge and 0 otherwise. Because the constraint graph C(n,m) of the general (n,m) linkage is bipartite, we find
that its adjacency matrix is the (n+m)×(n+m) matrix A(C(n,m)),

A C n;mð Þ

! "
=

0n×n D G n;mð Þ

! "

D G n;mð Þ

! "T
0m×m

2

4

3

5 ð2Þ

where D(G(n,m)) is the incidence matrix of the topological graph of the general (n,m) linkage. Thus, the adjacency matrix of the
constraint graph for the general (7,8) seven-bar linkage shown in Fig. 7 is given by

A C 7;8ð Þ

! "
=

07×7 D G 7;8ð Þ

! "

D G 7;8ð Þ

! "T
08×8

2

4

3

5; ð3Þ

where D(G(7, 8)) is given by Eq. (1) which is also a part of the adjacencymatrix of the constraint graph. In the following we called it
as AS(C) as the adjacency sub-matrix of the constraint graph.

In what follows, we introduce operations on the adjacency matrices of the constraint graph that represent the changes in type
associated with metamorphic linkages.
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Fig. 9. When the folding box is closed, (a) planes E4, E5 and E6 become part of the cluster C1, and (b) its constraint graph becomes that of a rigid assembly.
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6. Matrix operations for metamorphic mechanisms

In this section, we present operators that transform the adjacency matrices of the constraint graph for a general (n,m) linkage,
into adjacency matrices of constraint graphs of linkages in which joints and/or links have combined to change its type.

We now introduce the combination and eliminationmatrices [Ui, j] and [Ej] which are similar to those described by Dai and Rees
Jones (2005) [5]. Because our constraint graphs are bipartite, we can specialize operations on the incidence matrix D(G) to those
on the adjacency sub-matrix AS(C).

Let the column combination matrix [UCi, j] be the m×m matrix that operates on the right of an n×m matrix AS(C) such that it
replaces column i by the sum of columns i and j, that is

UCi; j

h i
= Im½ $ + Kj;i

h i
; ð4Þ

where [Im] the m×m identity matrix and the matrix [Kj, i] has 1 in the (j, i) entry and zeros elsewhere–assume [Kj, i] has the
dimensions necessary to complete the required matrix operations. Similarly, let the row combination matrix [URi, j] be the n×n
matrix that operates on the left of an n×m matrix AS(C) such that it replaces row i by the sum of row i and j, that is

URi; j

h i
= In½ $ + Kj;i

h i
; ð5Þ

Let the elimination matrix [ECj] be the m×m−1 matrix that operates on the right to remove column j from an n×m matrix AS(C),
that is

ECj =
Im−j;m−j 0m−j; j−1
01;m−j 01; j−1
0j−1;m−j Ij−1; j−1

2

4

3

5; ð6Þ

where 0i, j denotes a matrix of zeros.
The elimination matrix [ERj] will be the n−1×n matrix that operates on the left to remove row j from an n×m matrix AS(C).
As an example of these combination and elimination matrix operations consider the constraint graph C(7, 6, 1) of the seven-bar

linkage in Fig. 7(b), which has 7 clusters, 6 binary joints and 1 ternary joint. Notice that C(7, 6, 1) is a bipartite graph, so we
have

A C 7;6;1ð Þ

! "
=

07×7 D G 7;6;1ð Þ

! "
7ð Þ

D G 7;6;1ð Þ

! "T
07×7

2

4

3

5; ð7Þ

where

D G 7;6;1ð Þ

! "
= AS C 7;6;1ð Þ

! "
=

C1
C2
C3
C4
C5
C6
C7

P1 P2 P3 P4 P5 P6 P7
1 0 1 1 0 0 0
1 1 0 0 0 0 0
0 1 0 0 0 1 0
0 0 0 1 1 0 0
0 0 0 0 1 0 1
0 0 1 0 0 0 1
0 0 0 0 0 1 1

2

666666664

3

777777775

: ð8Þ

The transformation from A(C(7, 8)) to A(C(7, 6, 1)) is achieved by the combination of joints P7 and P8 into a ternarymulti-joint, and
can be represented by computing P7=P7+P8 such that 0+0=0, 0+1=1 and 1+1=1, described by Li (2009) [18], followed by
the elimination of the column associated with P8. This is achieved by the following operations on the adjacency sub-matrix AS
(C(7, 8)),

AS C 7;6;1ð Þ

! "
= AS C 7;8ð Þ

! "
UC7;8

h i
½EC8$: ð9Þ

Now, consider the constraint graph C(6, 5, 1) in Fig. 7(c), which has 6 clusters, 5 binary joints, and 1 ternary joint. This constraint
graph is again a bipartite graph that has the adjacency matrix

A C 6;5;1ð Þ

! "
=

06×6 D G 6;5;1ð Þ

! "

D G 6;5;1ð Þ

! "T
06×6

2

4

3

5; ð10Þ
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where

D G 6;5;1ð Þ

! "
= AS C 6;5;1ð Þ

! "
=

C1
C2
C3
C4
C5
C6

P1 P2 P3 P4 P5 P6
1 0 1 1 0 0
1 1 0 0 0 0
0 1 0 0 0 1
0 0 0 1 1 0
0 0 0 0 1 1
0 0 1 0 0 1

2

6666664

3

7777775

: ð11Þ

The transformation of the incidence matrix AS(C(7, 6, 1)) to AS(C(6, 5, 1)) is obtained by operations that remove link C7 and joint
P7.

AS C 6;5;1ð Þ

! "
= ER7½ $AS C 7;6;1ð Þ

! "
UC6;7

h i
EC7½ $: ð12Þ

7. Example: transformation of the folding box

In this example, we show how the constraint graph and the adjacency matrix capture the transformation of the linkage type of
a metamorphic mechanism. We choose the example presented in Li et al. (2002) [16], which is a box that is open in the initial
configuration and closed in the final configuration.

A six-bar metamorphic mechanism corresponding to a cardboard box is shown in Fig. 8 together with its original constraint
graph. The process of closing the cardboard box corresponds the following steps: (i) the open chain formed by link 1, 2, 3 and 4 is
closed by combining Link 4 with Link 1, the corresponding constraint graph is shown in Fig. 10; (ii) Link 5 is combined with Link 1
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Fig. 11. Constraint graph after link 5 is combined with link 1(4).
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Fig. 10. Constraint graph after link 4 is combined with link 1.
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(4), resulting in constraint graph shown in Fig. 11; and (iii) finally, Link 6 is combined with link 1(4,5) to obtain the constraint
graph shown in Fig. 9.

The transformation of the constraint graphs associated with the metamorphic process of closing the box are calculated using
adjacency matrices. As before we focus on the adjacency sub-matrix because our graphs are bi-partite.

7.1. Construct the initial adjacency sub-matrix

According to the constraint graph shown in Fig. 8, black vertices are regarded as themark of rows andwhite vertices (kinematic
pairs) of the constraint graph as the mark of columns. The corresponding adjacency sub-matrix AS(C)0 is as follows.

AS C0ð Þ =

C1
C2
C3
C4
E5
E6

L12 L23 L34 L45 L46
1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 1
0 0 0 1 0
0 0 0 0 1

2

6666664

3

7777775

: ð13Þ

7.2. Row operations to combine Link 4 and Link 1

Add the elements in the fourth row corresponding to link 4 to the elements in the first row corresponding to link 1, then
eliminate the elements in the fourth row. Here modulo-2 arithmetic of matrix operation are used, sometimes known as exclusive-
or arithmetic, namely 0+0=0, 1+0=1, 0+1=1, 1+1=1. The result is the matrix AS(C1) as follows.

AS C1ð Þ =

C1 4ð Þ
C2
C3
E5
E6

L12 L23 L34 L45 L46
1 0 1 1 1
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

2

66664

3

77775

= ER4½ $ UR1;4

h i
AS C0ð Þ½ $:

; ð14Þ

Notice that no columnwas removed in this computation. Eq. (14) is the adjacency sub-matrix after link 4 is combinedwith link 1.

7.3. Row and column operations to combine Link 5 and Link 1

In Eq. (14) we eliminate the elements in the fourth row corresponding to Link 5 directly because connectivity relationship does
not transform. The matrix is obtained as follows,

C1 4;5ð Þ
C2
C3
E6

L12 L23 L23 L45 L46
1 0 1 1 1
1 1 0 0 0
0 1 1 0 0
0 0 0 0 1

2

664

3

775
; ð15Þ

In this calculation, we find that the fourth column only has a single entry of 1 whichmeans joint L46 is not being used, therefore
it should be removed. Thus, the adjacency sub-matrix AS(C2) is obtained as

AS C2ð Þ =

C1 4;5ð Þ
C2
C3
E6

L12 L23 L34 L46
1 0 1 1
1 1 0 0
0 1 1 0
0 0 0 1

2

664

3

775

= ER5½ $ AS C1ð Þ½ $ EC4½ $

; ð16Þ
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7.4. Row and column operations to combine Link 6 and Link 1

Similarly, in Eq. (16) we eliminate the elements in the fourth row corresponding to Link 5 directly because connectivity
relationship does not transform. The matrix is obtained as follows,

C1 4;5;6ð Þ
C2
C3

L12 L23 L34 L46
1 0 1 1
1 1 0 0
0 1 1 0

2

4

3

5 : ð17Þ

Again because the fourth only has an element 1, it is removed. The final adjacency sub-matrix AS(Cf) is obtained,

AS Cf

! "
=

C1 4;5;6ð Þ
C2
C3

L12 L23 L34
1 0 1
1 1 0
0 1 1

2

4

3

5 : ð18Þ

The final adjacency sub-matrix AS(Cf) can be computed directly by combining these results,

AS Cf

! "
= ER6½ $ ER5½ $ ER4½ $ UR1;4

h i
AS C0ð Þ½ $ EC4½ $ EC5½ $: ð19Þ

The adjacency matrix obtained in this calculation is identical with the results in Li et al. (2000) [15]. Thus, we find that the
adjacency sub-matrix of a constraint graph and its transformation operator provide an effective representation of transformations
that occur in metamorphic mechanisms.

8. Conclusions

This paper uses the constraint graph of a linkage schematic to characterize the topology and dimensional properties of a
mechanism. We show that the constraint graph includes dimensional information that is critical to the function of a metamorphic
mechanism, while maintaining the graph theoretic operations that are useful for design.

We find that the constraint graphs of linkages are bipartite, which means that each link vertex is between two joint vertices,
and the graph adjacency matrix is characterized by its adjacency sub-matrix. Matrix operations on the adjacency sub-matrix are
presented that define the structural changes associated with a metamorphic mechanisms. These operations combine joints into
multi-joint assemblies in the same way that existing operations combine links. Examples illustrate the effectiveness of this
approach in characterizing metamorphic mechanisms.

This constraint graph representation of metamorphic mechanisms provides a foundation for the analysis and synthesis of
complex metamorphic mechanisms.
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