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Tetris-inspired detector with neural network
for radiation mapping

Ryotaro Okabe 1,2,8 , Shangjie Xue1,3,4,8, Jayson R. Vavrek5,8, Jiankai Yu 3,
Ryan Pavlovsky5, Victor Negut5, Brian J. Quiter5, Joshua W. Cates5,
Tongtong Liu1,6, Benoit Forget3, Stefanie Jegelka 4, Gordon Kohse7,
Lin-wen Hu 7 & Mingda Li 1,3

Radiationmapping has attractedwidespread research attention and increased
public concerns on environmental monitoring. Regarding materials and their
configurations, radiation detectors have been developed to identify the posi-
tion and strength of the radioactive sources. However, due to the complex
mechanisms of radiation-matter interaction and data limitation, high-
performance and low-cost radiation mapping is still challenging. Here, we
present a radiation mapping framework using Tetris-inspired detector pixels.
Applying inter-pixel padding for enhancing contrast betweenpixels andneural
networks trained with Monte Carlo (MC) simulation data, a detector with as
few as four pixels can achieve high-resolution directional prediction. Amoving
detector withMaximuma Posteriori (MAP) further achieved radiation position
localization. Field testing with a simple detector has verified the capability of
the MAP method for source localization. Our framework offers an avenue for
high-quality radiation mapping with simple detector configurations and is
anticipated to be deployed for real-world radiation detection.

Since the Fukushima nuclear accident in 2011 till the recent risk at
Zaporizhzhia nuclear power plant, there is an increasing global need
calling for improved radiation detection technology, aiming to achieve
high-performance radiation detection mapping with minimum impact
on detectors and reduced cost. Due to the simultaneous presence of
multiple radiation-interaction mechanisms, radiation detection for
ionizing radiation is considerably harder than visible light. The large
penetration depth of radiation, such as hard X-ray, γ-ray, and neutron,
reduces the angular sensitivity of detectors and limits the majority of
radiation detection efforts to focus on counting or spectra acquisition
rather than their directional information. The challenge of acquiring
directional radiation information further triggers additional difficulties
in performing source localization, that to determine the position

distributions of radiation sources1,2. In recent years, radiation locali-
zation has attracted increased interest with applications such as
autonomous nuclear site inspection. Several prototypes of system
configurations have been proposed including unmanned ground2–4,
aerial3,5–7 and underwater vehicles8,9. Despite the remarkable progress,
the information extraction process of the radioactive environment is
still seeking active developments.

In past decades, several approaches have been proposed for
directional radiation detection. One approach is the High-Efficiency
Multimode Imager (HEMI), which can be used to detect and locate γ-
ray and X-ray radioactive sources10–13. A typical HEMI consists of two
layers of CdZnTe (CZT) detectors; the first layer has a randomly
arranged aperture for coded aperture imaging, and the second layer is
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the conventional co-planar detector grid. This system requires the
incident beam to only come from a limited solid angle range to make
sure the beampasses through the aperture of the first layer to interact
with the second layer. The traditional reconstruction algorithm
requires all the incident beams to come within the field of view. The
accuracy will be affected if the radiation is incident from another
direction (especially for near-field radiation). Besides, this system can
only conditionally detect multiple sources, usually when the sources
come from different isotopes and can be distinguished by energy. In
this scenario, the detection with multiple sources can be reduced to
single-source detection by only considering the count of events within
an energy range. However, in real-world applications, different sources
are not necessarily distinguishable in the energy spectrum. Besides
HEMI, another approach for directional radiation detection is realized
by using single pad detectors separated by paddingmaterial14 i.e., self-
shielded method. Radiation sources from different directions and
distances can result in different intensity distribution patterns over
detector arrays. Because of the inaccuracy of the model caused by
misalignment and manufacturing errors of detector and shielding
material, it is challenging to extract information fromdetector data via
a traditional method such as non-linear fitting. Also, the traditional
method is oftenmost efficient in single source with reduced efficiency
inmultiple sources. As for radiation localization andmapping, inspired
by the widespread interest in Simultaneous Localization and Mapping
(SLAM)15 techniques, several works using non-directional detectors6,7

or HEMI13 for radiation source localization and mapping have been
presented. Recently, active masked designs have been developed,
contrasting with traditional coded masks. In these designs, multiple
detector segments shield each other, creating an anisotropically sen-
sitive and omnidirectional field of view. For example, recent projects
developed the neutron-gamma localization and mapping platform
(NG-LAMP) system with a 2 × 2 array of CLLBC (Cs2LiLa(Br,Cl)6:Ce)
detectors16; theMiniPRISM system17,18, which uses a partially-populated
6 × 6 × 4 array of CZT detectors; and an advanced neutron- and
gamma-sensitive imager using a partially-populated 6 × 6 × 4 array of
CLLBC detectors19. There have been similar kinds of high-angular-
contrast designs with additional high-density passive elements20,21, or
more traditional Compton cameras for in-field use22–24.

In this work, we propose a radiation detection framework using a
minimal number of detectors, combining Tetris-shaped detector with
inter-pixel paddings, alongwith a deep-neural-network-based detector
reading analysis. Figure 1 shows the overview of our framework. We
demonstrate that detectors comprised of as few as four pixels, aug-
mented by the inter-pixel padding material to intentionally increase
contrast, could extract directional information with high accuracy.
Moreover, we show that the shapes of the detectors do not have to be
limited to a square grid. Inspired by the famous video game of Tetris,
we demonstrate that other shapes from the Tetrominoes family, in
which the geometric shapes are composed of four squares, can have
potentially higher resolution (Fig. 1a). For each shape of the detector,
we generate the data of the detector’s input from radiation sources
using Monte Carlo (MC) simulation (Fig. 1b). Figure 1c shows the
machine learning model we trained to predict the direction of radia-
tion sources. Using the filter layer and the deep U-net convolutional
neural networks, we establish the model to predict the radiation
source direction from the detected signal. As Fig. 1d illustrates, we
compare the ground-truth label of the radiation source direction
(blue) with the predicted direction (brown). By using Wasserstein
distance as the loss function (see “Methods” for details), themodel can
achieve high accuracy of direction estimation. As an application of the
directional detector, additional Maximum a Posteriori (MAP) has been
implemented to amoving detector so that we can further estimate the
spatial position of the radiation sources in both simulations and real-
world experiments. Throughout this work, we limit the discussion to
2D since it is sufficient in many realistic scenario and leave the 3D

discussion for future studies. It’s important to note that the radiation
source extends beyond just gamma radiation. Each type of radiation
necessitates the development of specialized detectors, as the prop-
erties of penetration, scattering, and detection mechanisms vary sig-
nificantly among different radiation sources. For neutron localization
tasks, significant advancements in neutron localization have been
made with the high-efficiency, fast, and high-resolution thermal neu-
tron imaging detectors19,25–27. Our work focuses on mapping γ radia-
tion. Localization of other radiation source types is expected to share
similar principles, but is dedicated to future works.

Results
Directional prediction with static detectors
First, we train the machine learning model so that the static detectors
can detect the direction fromwhich the radiation comes from. We use
OpenMC28 package for MC simulation of the radiation detector
receiving the signal from an external radiation source (more details in
“Methods” Section). We assume that the detector pixels are composed
of CZT detectors with pixel size 1 cm× 1 cm, slightly larger than the
current crystals but still much smaller than the 5 meters of source-
detector distance. The inter-pixel padding material is chosen to be
1mm-thick lead empirically, which is thick enough to create contrast
andwith quite a low photon absorption in the γ-ray range. Throughout
this study, we assume that the incident beam energy is γ-ray of
0.5MeV, which is the realistic energy from pair production and com-
parable to many energy γ-decay energy levels. Given the energy reso-
lution from CZT detector, radiations with other energies are also
expected to be resolvable, even though here we only focus on the
directional mapping where only countingmatters. More details on the
data preparation, normalization, neural network architectures and
training procedures are shown in Methods Section. We evaluate the
prediction accuracy of detectors which comprise with four detector
configurations: 2 × 2 square grid, Tetrominos of S-, J-, T-shapes. The
I-shaped Tetris detector array is not presented since it does not show
performance good enough for directional mapping. The main results
of the predicted radiation direction for the four Tetris-inspired
detectors are illustrated in Fig. 2 and summarized in Table 1. While
the S-shape detector worked with the smallest prediction followed by
2 × 2 square, J- and T-shapes, all of the four types of detector could
work enough to know the direction of the radiation source with about
1-deg(°) accuracy.

Figure 2 shows detector readouts and typical angular distribu-
tions predicted by neural networks in polar plots. The blue and brown
colors represent the ground truth from MC and the neural network
prediction, respectively. Figure 2a, b are the 2 × 2 square-grid detector,
showing a predictive power of the radiation with the largest and
smallest prediction errors. The performance of other Tetris-inspired
detector shapes, including S-, L- and T-shapes, are shown in Fig. 2c–h.
By comparing different Tetris shapes, we can see that there is a generic
trend that S-shaped Tetris can show the best performance while
T-shapedTetris is the least accurate. This canbe intuitively understood
from a symmetry analysis. For instance, for incident radiation from the
“north” with θ = 0°, the left and right pixels and padding materials in
the T-shape receive identical signals from radiation sources, which
reduces the number of effective pixels and padding materials. On the
other hand, the S-shaped detector possesses pixels each of which
receive non-equivalent signals from radiation sources of any direction,
presenting lower prediction accuracy than the square detector.
Although the square Tetris in Fig. 2a, b has higher symmetry than
others, it also contains four pieces of inter-pixel padding materials, in
contrast to other cases with three pieces. Such analysis may also apply
to the I-shaped detector array, given its high symmetry and less
effective pixels. Figure S4 provides the detailed analysis of the pre-
diction accuracy with respect to the radiation source directions. In
Supplementary Note 3, we present further analysis of directional
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prediction with the Tetris-inspired detectors. Figure S5 shows the
effect of the radiation source energy, arguing the importance of
optimizing the radiation source energy for generating training dataset
for practical application of the detector. Also, we proposed our pro-
posed model architecture with two filter layers is effective in diverse
scenarios by comparing it with the benchmark model of a single filter
layer. Figure S6 and Table S3 show that the single-filter layermodel has
the capability to predict the directions of two radiation sources
simultaneously. However, the two-filter layer model offers could
accommodate diverse scenarios, as explained in Table S4. Further-
more,we surveyed the robustness of our directional predictionagainst
the background noise effect. Figure S7 presented that the S-shaped
detector performs the best if there is no noisy background, while the
2 × 2 detector had the highest robustness against the added Gaus-
sian noise.

Positional prediction with moving detectors and maximum a
posteriori (MAP) estimation
In real-world applications of radiation mapping, it would be highly
desirable to go beyond the directional information and also determine

the position of the radiation source. Here, a method based on Max-
imum A Posteriori (MAP) estimation is proposed in order to generate
the guessed distribution of radiations through the motion of detec-
tors. Theworkflow is as follows: first, the detector readout is simulated
by MC given the detector’s initial position and orientation, just as the
case for the static detector. Second, the detector begins to move in a
circular motion. The schematics are shown in Fig. 3a. It is worthwhile
mentioning that the particular detector face that aligns with the
detector’s moving direction does not matter much since the detector
facing any direction is already a valid directional detector that is sen-
sitive to radiations coming from all directions. In other words, even if
the detector is rotated intentionally or accidentally during the circular
motion, the final results are still robust (Figs. S15–S20 and Supple-
mentary Movies 7–10 in Supplementary Note 6). Third, at each
instantaneous timestamp during the detector motion, the predicted
source direction is calculated based on the deep U-net model, just like
the static detector case. Finally, the radiation source location is esti-
mated viaMAPbasedon the series of neural-network-inferreddetector
direction data at different detector positions. In an ideal case for one
single isotropic radiation source, as few as two detector spatial

a

b

c

Large

Small

Simulation setting

Simulation
Prediction

d

Detector

θ

θ^Source

U-Net
Filter LayerData

Filter Layer

Tetris-inspired detector

θ

Detector Bank

10 x 10

5 x 5
2 x 2

Fig. 1 | Overview of Tetris-inspired radiation mapping with neural networks.
a The geometrical setting of the radiation detectors. Instead of using a detector
with a large squaregrid, hereweuse small 2 × 2 square andotherTetromino shapes.
Padding material is added between each pixel to increase contrast. b–d The
workflow for learning the radiation directional information with Tetris-shaped
detector andmachine learning. bMonte Carlo simulation is performed to generate

the detector readings for various source directions. c The detector’s readouts are
embedded to a matrix of filter layers for better distinguishing far-field and near-
field scenarios. The embedded data then goes through a deep U-net. d The pre-
dicted directionof radiation sources from theU-net (brown)with predicted angular
θ̂ is compared to the ground-truthMonteCarlo simulations (blue) with true angular
data θ. The prediction loss is calculated by comparing the pairs (θ, θ̂).
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a b

c d

e f

g h

Fig. 2 | Directional radiation detection with prediction with static Tetris
detectors. Selected outcomes from source direction predictions with detectors of
simple configurations are displayed. Eachfigure includes the signal input employed
for the input from the detector and the polar coordinates showing the directional
predictions. The blue and brown curves represent the ground truth and prediction,
respectively. We show results using the detector configurations of (a, b) a

2 × 2 square, (c, d) S-shape, (e, f) J-shape, and (g,h) T-shape. For each detector type,
we display (a, c, e, g) the scenarios demonstrating the largest loss for each detector
shape in test data, highlighting challenging prediction situations. b, d, f, h The
scenarios with the smallest loss in test data, showcasing relatively successful
prediction cases.
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positions are just enough to locate the source position (as the inter-
section of the two rays along the directions in the two detector posi-
tions) and the circular motion and MAP are implemented for more
complicated radiation profile mapping. To improve the performance,
we set a threshold for visualizing the radiation map. Our radiation
maps are normalized by the highest probability of the presence of the
radiation sources in the area of interest. We set the threshold as 0.3
and made every value on the area of interest that is lower than this
threshold zero. This procedure enables us to visualize the mapping
result clearly.

Figure 3b–j shows the dynamical process of radiation mapping
and position determination using the S-shaped detector. The detector
geometry is the same as before, and the radius of motion is chosen
randomly distributed from 0.5m to 5m. Figure 3b–d shows the
inferred radiation mappings at three different timestamps
t = 10, 30, 60 s at the beginning, half-circle, and close to the end of the
circular motion. The ground-truth location of the radiation source is
shownas the black cross in all threefigures. At the early t = 10 s, there is
not sufficient information for MAP to estimate the radiation position,
and the estimation (red lines in Fig. 3b) has a ray shape that acts more
like directional mapping. After 30 s, the MAP estimation is improved,
though the estimated radiation is located at a broader spatial area
rather than the ground truth. Finally, the detector could complete the
mapping process with sufficient accuracy to point out the position of
the radiation source (Fig. 3d). The detector’s readouts and the pre-
dicted directions at each timestamp (t = 10, 20, 30, 40, 50, and 60 s)
are illustrated as Fig. 3e–j. The detailed results with other Tetris-
inspired detectors are shown in Supplementary Note 4. Figures S9–S11
present the moving detector and radiation mapping using the detec-
tors of 2 × 2 square, J-shape and T-shape, respectively. Supplementary
Movies 2–4 visualize thesemapping processes at each timestamp. The
actual and predicted relative angle are plotted throughout the
observed time in Fig. S12.

When performing a realistic radiation mapping, the area of
interest may contain multiple radiation sources, which increases the
level of difficulties of radiation mapping. To tackle this challenge, we
further study the radiation distribution map, which includes multiple
radiation sources (Fig. 4). We can see good agreement can be achieved
for two radiation sources. However, we would like to point out that
more detector pixels such as 10 × 10 (Fig. 4a) or 5 × 5 (Fig. 4b) grids are
used since the 2 × 2 square-grid detector does not show adequate
performance unless the restriction of fixed distances between the
detector and the radiation sources, as shown in Fig. S6. Figures
S13 and S14 in SupplementaryNote 5 present the intermediate process
of radiation mapping with the square detectors of 10 × 10 and 5 × 5
configurations, respectively.

Experimental validation of radiation mapping with a 4-pixel
detector
In the preceding sections, we demonstrated the efficacy of our
machine-learning approach in accurately locating radiation sour-
ces in 2D space using MC simulation data. To validate the practical
utility of our method in the field of radiation measurement, it is

essential to assess its performance in real-world experimental
scenarios.

We conducted a comprehensive experiment tomap the location of
a radiation source within a real-world environment. As Fig. 5a shows the
experimental schematics, the measurement involved positioning a Cs-
137 radiation source at coordinates (5.0, 0.0, 0.0), while the experi-
mental team kept the source position secret until radiation mapping
algorithms predicted it. We deployed a radiation detector configured in
a 2 × 2 square layout and moved the detector around the area near the
radiation source. The detector outputs the radiation absorption by each
crystal (pixel) at regular intervals of 0.5 s. We employed a signal
smoothing technique to reduce measurement fluctuations. “Methods”
and Supplementary Note 7 explain further details regarding the
experimental setup and data analysis, including a conventional non-
neural-network approach for radiation source mapping.

As an existing analysis method, we demonstrated the non-ML
gridded point source likelihood (GPSL) reconstruction method7 for
comparison. Figure 5b shows a top-downviewof themeasurement and
GPSL reconstruction for the measurement. The gray points are the
LiDAR point cloud of the scanned area, and the red, green, and blue
lines show the detector’s x, y, and z axes at each 0.5 s timestamp. The
path between the axes is colorized by gross counts (qualitatively) from
low (cyan) to high (magenta). The color bar denotes the likelihood
contours of z-scores up to 5σ that the given 10 cm pixel contains a
point source. The most likely point source position is highlighted by
the black dashed crosshair, while the red dashed crosshair shows the
actual source position. With the limited approach to the source
afforded by the circular detector trajectory, there is a slight 0.75m
error in the reconstructed position, but the activity estimate closely
matches the actual value of 170.8μCi.

In Fig. 5c–f, we present the results of our MAP analysis applied to
radiation mapping with the 4-pixel detector. The maps depict prob-
abilities of holding a radiation source. The area denoted by intense red
shading represents the higher probability, which precisely converges
around the ground-truth position of the radiation source marked by
“×.” This convergence underscores that our neural network, equipped
for directional prediction and MAP analysis, effectively approximated
the actual location of the radiation source with equivalent quality to
the GPSL approach. We provide additional images offering both top-
down (z-axis direction) and aerial perspectives in Figs. S21 and S22 of
Supplementary Note 7 for a comprehensive view of the mapping
process at various time intervals. In Supplementary Movie 11, we pre-
sent the measured signal at each timestamp and the process by which
the moving detector maps the radiation in the experimental scenario.

Discussion
The conventional detector configuration has a grid structure vertically
facing the source of detection, where each detector pixel receives the
radiation signal with a slightly different solid angle. In this work, we
propose an alternative detector configuration with a few features. First,
the detector grid is placed horizontally within the plane instead of ver-
tically facing the source. Second, additional thin padding layers are
padded between detector pixels, i.e., the contrast between pixels is not
only createdby incident angles but also enhancedbypadding layers that
are good absorption layers of radiation. Third, machine learning algo-
rithms are implemented to analyze the detector reading, demonstrating
great promise to reduce the need for detector pixel numbers and
thereby reduce the cost of fabrication and deployment. Fourth, non-
conventional Tetris-shaped detector geometry is proposed beyond the
square grid, which can lead tomore efficient use of pixels with improved
resolution, particularly for the S-shaped Tetris detector. Finally, we
demonstrate thepossibility of locating the positions of radiation sources
in a moving detector scheme through MAP. Experimental validation
could further prove the capability of our machine learning approach for
locating radiation sources in the real-world scenario.

Table 1 | Ablation on neural network backboneswith different
scenarios 2 × 2 square grid and three types of Tetrominos,
evaluated by the Wasserstein distance of angular
distributions

2 × 2 S-shape J-shape T-shape

Largest error 4.886 8.312 16.206 15.620

Smallest error 0.228 0.014 0.060 0.081

Average error 1.114 0.949 1.563 1.775

The table shows the largest, smallest, andaverageprediction losses, respectively. Thebest value
in each row is noted in bold.
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 t = 1 sec

t = 30 sec

 t = 60 sec

t = 30 sec

 t = 10 sec
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Detector

Source

a

b

c

d

g

e
h

f

i

j

Fig. 3 | Radiation mapping and position determination with an S-shape Tetris-
inspired detector. a By acquiring detector readings at each spatial position during
the circular motion, the position of the radiation can be gradually optimized
throughMAP. b–d The process tomap the radiation source at a few representative
times at t = 10, 30, and 60 s, respectively. The “×” symbol on the maps shows the
ground-truth location of the radiation source. The areas colored with intense red

indicate a high probability of where the radiation source is located. The purple
arrows indicate the front side of the radiation detector. e–j The detector’s input
signals and the predicted directions of the radiation sources at time t = 10, 20, 30,
40, 50, and 60 s. Both the input signal and the curves of the polar coordinates are
visualized in the detector frame. The top side of the detector represents the front
side. Check the radiation mapping process in Supplementary Movie 1.
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Despite these initial successes, we believe the configuration pro-
posed in this work is still in its infancy. Several refined works are
foreseeable. Particularly, although the 2D configuration can represent
several realistic scenarios, such as radiation sources are far away from
the detector but still close to ground level, it would still be an inter-
esting problem to study 3D configuration, possibly with 3D detectors
like Rubic-shaped detector cubes. Moreover, several improvements,
such as moving radiation sources and energy spectra of radiation, may
be feasible with a more advanced approach like reinforcement learn-
ing. Our work represents one step that leverages the detector pixels
and shapes with machine learning toward radiation detection with
reduced complexity and cost.

Methods
Monte Carlo simulation of static detector and data
representation
The training data, in other words, the intensity measured by each
detectors is simulated by MC Simulation based on the principle of
radiation-matter interaction. We used an existing MC simulation
package calledOpenMC28. OpenMC incorporates effects like Compton
scattering and pair production, enabling simulations to accurately
model radiation interactions in realistic scenarios. Some representa-
tive results of the detector arrays is shown in Fig. 2. For the sake of
simplicity, we temporarily assume the radiation source and the
detector arrays are in the same plane. In the MC simulation, first we
define the geometry of the detector. Schematic figures of detectors
arrays are shown in Fig. 1. The adjacent detectors (yellow) are sepa-
rated by attenuation materials (black), which forms the detectors’
configuration like lattices. We set the distance d (cm) between the
center of the detector and the radiation source. The direction of the
radiation source is defined as an angle θ, which is defined in clockwise
direction from the front side of the detector. When we generate
training data,we selected d and θ at random(d∈ [20, 500], θ∈ [0, 2π))
so that the neural network could get feature from radiation sources of
various distances and directions. The distribution of the radiation
source positions is shown in Fig. S1. After MC simulation was

completed, the detector’s readouts are represented as the matrix of
(h ×w), where h andw are detectors’ dimensions of heights and width
respectively. For the square detector comprised of four detector
panels, the data of 2 × 2 matrix was normalized so that the mean and
the standard deviation are 0 and 1, respectively. For the detectors of
Tetromino-shapes, the detectors’ readouts are represented as 2 × 3
matrices. Since two sites of the matrices’ 6 elements are vacant, we
filled them with zero and did normalization in the same way as the
square detectors. We followed the same MC simulation method as
above to generate the 64 filter layers, which we explain in more detail
in this section. All other parameters used inMC simulations are shown
in Table S1.

The dataset D is in the form of fxðiÞ,yðiÞgi2½1,N1 �, where N1 is the size
of the dataset. xðiÞ 2 Rh×w is the normalized readouts of the detector
arrays h, w denotes the number of rows and columns of the detector
arrays, respectively. For example, h =w = 2 for 2 × 2 square detector,
h = 2, w = 3 for Tetromino-shape detector. yðiÞ 2 RNa is the angular
distribution of the incident radiation,Na is the number of sectors that
are used to separate [0, 2π). Each element in y(i) represents the ratio
of incident radiation intensity received from the direction of this
sector to the total incident radiation intensity. For the point sources,
the angular distribution of the radiation source is represented by
the following method. For an angular distribution y contributed by
multiple point sources, let yj represent the angular distribution
contributed by the jth point source. The kth element of yj is
defined by:

yjk =
0, if ∣θj � 2π

N ðk � 1Þ∣≥ 2π
N

∣θj�2π
N ðk�1Þ∣
2π
N

, else

8<
: ð1Þ

We also have:

y=
X
j

Ij
I0

yj ð2Þ

a b
10x10 square 5x5 square

Fig. 4 | Radiation mapping of two radiation sources with a moving detector.
Two radiation sources are placed in the space (shown as the two black crosses of
“×''). The detector is moving in a circular motion around the sources (blue circles).

We use the detector of 10 × 10 grid (in a) and 5 × 5 grid (in b). Check the radiation
mapping process in Supplementary Movies 5 and 6.
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where θj denotes the incident angle of the jth radiation source, Ij
denotes the total incident intensity revived from the jth radiation
source, I0 = ΣjIj s the total incident intensity revived from all radiation
sources. By using this representation, we are able to accurately
represent the incident direction of a point source with an arbitrary
angle, with a discretized angle interval. In the experiments, [0, 2π) is

separated in to Na = 64 sectors. Figure 2 illustrates this representation
by a pie chart.

Deep neural network architecture
In order to extract the global patterns of the input data, a set of global
filters is designed. We obtain several filters based on very high-quality

c dt = 0.00 s t = 14.00 s

e ft = 28.00 s t = 42.00 s

a b
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simulations in some representative cases, including far-field incident
(the radiation source is located at a far distance compared to the size
of the detector arrays) and near-filed (the radiation source is located at
a close distance) incident at different directions. As an example, near-
field filters of the S-shape detector are shown in Fig. S2. Each filter has
the size of (h ×w), which is set same as that of the training data. The
weight of each unit is given by the readout of each single pad detector
in the simulation. The output of this layer is given by:

Zmk =
X
i

X
j

xijwmFmkij +bmk ð3Þ

where Zmk is the kth element of the output array at channelm∈ {1, 2}.
Channel 1 and 2 correspond to the far-field and near-field filters
respectively. xij denotes the input array at pixel i, j, Fmkij denotes the
(i, j) element of the global filter obtained in the case that incident
radiation from the kth sector, in far-field (m = 1) or near-field (m = 2)
scenario. wm denotes a channel-wise normalization weight, and bmk

denotes the bias for this global filter. During training, the weights of
the global filter are initialized with the far-field and near-field filters
that we obtained from the high-quality simulations. The weights are
slightly fine-tuned with a learning rate lower than the learning rate of
the other layer of the network, while the bias for each filter is trained
with the same learning rate as the other layers. The filter layer is
followed by an Exponential Linear Unit (ELU) activation function29.
The output of the global filtering layer embeds the directional
information corresponding to the direction of the filter channel. It is
then fed into the U-shape network to extract the directional
information.

In the neural network, the input data is normalized (h ×w)
detectors readout. However, it is essentially different from images
captured by cameras. For the processing of images which is mea-
sured from visible light, convolution neural networks (CNNs) are
widely used30. A convolution layer is used for extracting features that
are presented as localized patterns. However, due to the penetration
properties of several kinds of radiation, such features are presented
as global patterns, which is different from the imaging of visible light.
Therefore, an updated architecture is designed for this purpose; the
input data is followed by a global filtering layer with the shape (2, 64,
h, w) in order to extract the global pattern. The output of this layer
conveys the directional information with a size of (2, 64), which
corresponds to the final output, i.e., the estimated angular distribu-
tion, with a size of (1, 64). In order to perform a pixel-to-pixel pre-
diction of the angular distribution, a U-shape fully convolutional
architecture which is similar to U-Net31 is then utilized as Fig. 1b–d
shows. Noticed that the U-Net architecture was originally developed
for image segmentation31. However, here the output is a 1D array, and
the input is viewed as a 1D array with two channels. Thus, we
accordingly set the dimension of the U-Net, as is shown in Fig. S3.
Finally, the output of the final layer feeds into a softmax layer for
normalization.

In order to represent the distributional similarity between the
predicted and target distribution, Wasserstein distance is proposed to
be used as the loss function. It is a distance function on a given metric
space between two probability distributions. As this metric is an

analogy of the minimum cost required to move a pile of earth into the
other, it is also known as the earth mover’s distance32–34. The Wasser-
stein loss function is given by:

W = min
πði,jÞ

Xn
i

Xn
j

πði,jÞCði,jÞ ð4Þ

subject to πði,jÞ≥0, 8i,j 2 ½1,N�P
j
πði,jÞ≤ yi, 8i 2 ½1,N�

P
i
πði,jÞ≤ ŷj , 8j 2 ½1,N�

P
i

P
j
πði,jÞ= 1

ð5Þ

where π(i, j) is the transport policy which represents the mass to
be transferred from state i to state j, yi is the ground truth of the
normalized angular distribution, ŷi is the estimated angular dis-
tribution. C(i, j) is the cost matrix representing the cost of moving
unit mass from state i to j. Our work is in a cyclic case and uses
the following form:

Cði,jÞ=minðji� jj,j j +n� ij,ji+n� jjÞl ð6Þ

An algorithm is developed to calculate the cyclic Wasserstein
distance, as is shown in Algorithm 1. Particularly, the cyclic case is
unrolled into an ordered case. The ring is split into a line at n different
units and obtain n different distributions. The cost matrix in the cyclic
and ordered cases. The Wasserstein distance could be computed in
closed form33,35:

W ðp,tÞ= 1
n

� �1
l

k CDFðpÞ � CDFðtÞ kl ð7Þ

Where CDF(⋅) calculates the cumulative distribution of its input. Fol-
lowing this formula, a decycling algorithm is developed to calculate
the Wasserstein distance with a cyclic cost. The algorithm is
shown below:

Algorithm 1. Cyclic Wasserstein Distance

It could be numerically verified that this algorithm enables exact
calculation of 1st (l = 1) Wasserstein distance for the cyclicWasserstein
distance, given arbitrary distribution. This algorithm is differentiable
and enables us to optimize the objective throughback-propagation. As

Fig. 5 | Experimental setup and radiation mapping with experimental mea-
surement data (top view). a Annotated photograph of the measurement setup.
The red and green arrows show the approximate x- and y-axes of the detector
coordinate, and the 171 μCi Cs-137 source is shown on the corner of the concrete
ledge about 80 cm above the sidewalk level. Note that the radiation source was
deliberately positioned at coordinates (5.0, 0.0, 0.0), and the data analysis
remained intentionally blinded to the true source location until they made a pre-
diction. b Top-down viewof the GPSL reconstruction z-scores of themeasurement.
The thin bands of black LiDAR points appearing around (0.0, 0.0, 0.0) are artifacts

from the system’s initial static dwell. c–f The progression of radiation source
mapping at representative time intervals of t =0, 14, 28, 42 s, respectively. The gray
point clouds in the diagrams represent the surrounding environment of our
experiment. The symbol “×” designates the ground-truth location of the radiation
source. The black dot on the maps indicates the position of the radiation detector.
We visualize the left (y) and front (x) axes of thedetectorwith green and red arrows,
respectively. The black solid line indicates the trajectory of the detector. Check the
radiation mapping process in Supplementary Movie 11.
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for evaluation in the experiments, we use 1st Wasserstein distance
which can directly represent the angle difference of the estimated and
real directions. In the training process, we use the above 2nd (l = 2)
Wasserstein distance as a loss function since it usually converges faster
with gradient descent-based optimization methods, compared to the
1st Wasserstein distance33,36.

In the proposed model, the network is trained using Adam37

with a learning rate of 0.001 for all parameters in the neural network
except for the weights of the global filtering layer, whose learning
rate is set to 3 × 10−5. The training batch for each step is randomly
selected from the training set which is based on several pristine
simulation result set Dtrain on one radiation source. All models ran-
domly split the data into 90% training (2700 data) and 10% testing
(300 data) sets. Furthermore, we trained our models with a 5-fold
cross-validation scheme. We summarize the parameters for train-
ing the neural network for predicting the directions of one or two
radiation sources in Table S2.

Radiation source mapping with maximum a posteriori (MAP)
estimation
We set up a radiation mapping problem by considering the case that
there is one point source in the environment. This task could be
extended to a Simultaneous Localization and Mapping (SLAM)
problem15. The directional radiationdetector could be viewed as a kind
of sensor that could only obtain directional information, and a radia-
tion sourcecouldbe viewed as aparticular landmark that couldonly be
measured by this kind of detector. We show that by treating the
directional radiation detector as a sensor with only directional reso-
lution, it could be easily integrated into the MAP optimization frame-
work and it enables source localization. Details of how to integrate the
directional radiation detector into the MAP framework are presented
in Fig. S8.

Here, amethod based onMaximum a Posteriori (MAP) Estimation
is proposed in order to generate the radiation distribution map. In
addition, here, we assume that the carrier for the detector has already
localized itself and isonly required tobuild the radiationmap. Themap
is discretized into a mesh with Nm square pixels. Let c 2 RNm denote
the radiation concentration at each pixel. It could be assumed that the
radiation is uniformly generated from the pixel. The measurements
result zt = I0yt denotes the incident radiation intensity coming from
different directions at time t. It could be assumed that the measure-
ment probability p(zt∣c) is linear in its arguments, with added Gaussian
noise:

zt =Mtc+δ ð8Þ

where δ ∼N 0,Σδ

� �
describes the measurement noise, Mt 2 RN ×Nm

denotes the observation matrix at time t. Note that in our study, we
treat gammameasurements as continuous real numbers withGaussian
noise, which is appropriate for scenarios where the sample size is
sufficiently large, and the mean count rate is not significantly low. The
central limit theorem ensures that for a significant sample size, the
Poisson distribution, which describes the discrete nature of event
counts, tends to approximate a Gaussian distribution. As such, our
choice of Gaussian distribution provides a reasonable approximation
for the behavior of directional radiation detectors under the condi-
tions of our experiments, where the counts are reasonably large,
allowing us to accurately model the measurement uncertainties.
Considering the contribution of one pixel to one direction sector of
the detector, only the overlapped area can contribute to the sector, as
is shown in Fig. S8, and the intensity is proportional to the overlapped
area. Besides, the intensity is inversely proportional to the square of
the distance between the detector and the source. Therefore, the
element of Mt, or in other words the intensity contribution of the ith
pixel to the jth directional sector of the detector at time t can be

written as:

Mtij =
Atij

rti2
ð9Þ

whereAtijdenotes the areaof theoverlapped regionof the ith pixel and
the jth sector at time t (blue area in Fig. S8), rti denotes the distance
between the detector and the center of the pixel. According to Bayes’
rule, we have:

pðcjz1,z2, . . . ,ztÞ =
pðz1,z2, . . . ,zt jcÞpðcÞ

pðz1,z2, . . . ,ztÞ
/ pðz1,z2, . . . ,zt jcÞpðcÞ

= pðcÞ
Yt
i = 1

pðzijcÞ

ð10Þ

Here, we assume that measurements at different times are con-
ditionally independent given c. As we are trying to find c that max-
imizes p(c∣z1, z2,…, zt), the p(z1, z2,…, zt) term could be ignored as it is
independent of c. It could be assumed that the prior term p(c) =
N(0, εI) is a Gaussian distribution. Then following the Maximum a
Posteriori (MAP) estimation, we have:

argmax
c

pðcjz1,z2, . . . ,ztÞ = argmax
c

X
t

lnpðzt jcÞ+ lnpðcÞ

= argmin
c

X
t

k Mtc� ztk2Σδ
+

1
ε2

k c k22
ð11Þ

Therefore, the radiation concentration distribution could be
obtained by solving the optimization problem:

min
c

X
t

k jM tc � zt jj2Σδ
+

1
ε2

jjcjj22 subject to ci ≥0, 8i 2 ½0,Nm�

ð12Þ

where 1
ε2 k ck22 term could be viewed as a regularization term. If we do

not have much information regarding the prior distribution, εwill be a
large number. This term will penalize large concentration if the mea-
suring data is inadequate to determine the concentration (i.e., the area
is not fully explored and caused very smallMtij). In practice, ε could be
tuned by utilizing differentiable convex optimization layers38, in which
the optimization problem could be viewed as a layer within the neural
network, and error back-propagation is enabled through implicit
differentiation, given predicted and ground truth data. In our
demonstration case, we simply set 1

ε2 = 0:1 such that the regularization
term is relatively small.

Experimental setup of real-world radiation mapping and post-
process for MAP analysis
The system comprises a 2 × 2 array of 1 × 1 × 2” CLLBC
(Cs2LiLa(Br,Cl)6:Ce) gamma/neutron detectors separated by a poly-
ethylene cross. The detector is equipped with a Localization and
Mapping Platform (LAMP) sensor suite used to map the 3D environ-
ment and determine the detector pose (position and orientation)
within that environment, and the demonstration measurements were
made with Lawrence Berkeley National Laboratory’s Neutron Gamma
LAMP (NG-LAMP) radiation mapping system39. A 171 μCi Cs-137 check
sourcewasplacedon a concrete ledge in anoutdoor environment, and
the detector system was used to make free-moving measurements of
the source. The detector was hand-carried in a circular pattern of
about 2m radius around a point 5m away from the source location for
up to 45 s, completing almost 2.5 loops. Throughout themeasurement,
the detector orientation was kept almost fixed with respect to the
environment. The CLLBC crystals were kept at a height close to that of
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the radiation source during the entire measurement duration. The
listmode radiation data in an energy region of interest (ROI) of [550,
800] keV and the detector pose determined by NG-LAMP’s contextual
sensor suite were then interpolated to a 0.5-s time binning. We note
that these real-world radiation measurements placed the source out-
side the circular detector trajectory to model a realistic source-search
scenario closely.

To enhance the quality of measurement data for analysis, we
applied a series of post-processing steps to the measured data. First,
the location of the 661.7 keV Cs-137 photopeak in each crystal had
drifted to 690–700 keV, necessitating a manual, multiplicative gain
correction for each crystal. To avoid any possible energy aliasing from
this gain correction, the corrected energy values were blurred by a
Gaussian kernel of standard deviation 1 keV, much smaller than the
width of the photopeak (10 keV). Furthermore, other post-processing
steps were applied to the contextual data to streamline the analysis.
The light detection and ranging (LiDAR) point clouds and global
coordinate frames were more precisely aligned to a single coordinate
frame using the Iterative Closest Point (ICP) algorithm in Open3D40,41.
Moreover, the initial and final parts of the measurements where the
system was walked to/from its intended measurement position(s) and
used to perform a dedicated LiDAR scan of the area were cut from the
radiationmapping analysis. The trajectory and radiation data were cut
here, but the contextual LiDAR point clouds were not.

As an existing analysis method for comparative analysis, We
demonstrated the non-machine-learning gridded point source like-
lihood (GPSL) reconstruction method7. Using quantitative response
functions, GPSL computes the best-fit source activity for every
potential source point in the imaging space and selects the source
pointwith themaximum likelihood16. As in the neural network analysis,
reconstructions were computed for the 2D plane level with the actual
source height, using an energy region of interest (ROI) of
661.7 ± 80 keV.

We conducted radiation mapping to validate that our neural
networks and MAP are applicable to the radiation measurement in a
real-world scenario. As detailed below, we first pre-processed experi-
mental data as the inputs of our analysis. At each position of the 91
timestamps through 45-s measurements, the 2 × 2 square detector
acquired measurement data as a matrix of dimensions (4, 84). These
measurements corresponded to the count of photons absorbed by the
four pixels on the crystal panels. The photon counts were recorded for
84 energy bins ranging from 550 to 800 keV. To process this raw
measurement dataset into the input dataset of our neural network
model, we summed the photon counts absorbed by each pixel across
this entire energy region of interest.

The initial detector signals exhibited significant statistical fluc-
tuations, making it challenging to predict the radiation source direc-
tion accurately. When the detector remained stationary at the starting
pose, the radiation source direction predicted by our algorithm
changed abruptly in the early timestamps. To mitigate this issue, we
implemented a signal-smoothing technique using a moving average
filter written in Eq. (13). This process smoothed the detector’s signals
by averaging the signals of the neighboring 2M + 1 timestamps. We
used M, equal to 3, resulting in a window size of 7 timestamps. This
smoothing technique reduced the total number of timestamps from91
to 85. The smoothed signal data served as the input for our machine-
learning model:

x0
t =

1
2M + 1

XM
i =�M

xt +M + i ð13Þ

We employed a U-Net architecture trained using MC simulation
data to predict the direction of the radiation source given the signals
from the detector of 2 × 2 configuration. The trained model was then

applied to predict the radiation direction based on the smoothed
measurement data. With directional information predicted by our
model at each timestamp, we applied the MAPmethod to reconstruct
the radiation map. We restricted the MAP analysis to a 15 × 15 square
area within the entire space to reduce computational complexity.

Data availability
The Supplementary Movies showing the radiation mapping processes
are available. The training data generated with the OpenMC28 package
have been deposited in the GitHub repository (https://github.com/
RyotaroOKabe/radiation_mapping/tree/main/save/openmc_data/
saved_files).

Code availability
The source code is available at https://github.com/RyotaroOKabe/
radiation_mapping.git42. The GitHub repository and Supplementary
Note 8 present the instructions for reproducing the results of our
simulations and machine learning.
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