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Abstract A drawback of structured prediction methods is that parameter estimation re-
quires repeated inference, which is intractable for general structures. In this paper, we
present an approximate training algorithm called piecewise training (PW) that divides the
factors into tractable subgraphs, which we call pieces, that are trained independently. Piece-
wise training can be interpreted as approximating the exact likelihood using belief prop-
agation, and different ways of making this interpretation yield different insights into the
method. We also present an extension to piecewise training, called piecewise pseudolike-
lihood (PWPL), designed for when variables have large cardinality. On several real-world
natural language processing tasks, piecewise training performs superior to Besag’s pseudo-
likelihood and sometimes comparably to exact maximum likelihood. In addition, PWPL
performs similarly to PW and superior to standard pseudolikelihood, but is five to ten times
more computationally efficient than batch maximum likelihood training.

Keywords Graphical models · Conditional random fields · Local training · Belief
propagation

1 Introduction

Fundamental to many applications is the ability to predict multiple variables that depend on
each other. Such applications are as diverse as classifying regions of an image (Li 2001),
estimating the score in a game of Go (Stern et al. 2005), segmenting genes in a strand of
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DNA (Bernal et al. 2007), extracting syntax from natural-language text (Taskar et al. 2004b),
and determining whether noun phrases in an article are coreferent (McCallum and Wellner
2005). In such applications, we wish to predict a vector y = {y0, y1, . . . , yT } of random vari-
ables given an observed feature vector x. A relatively simple example from natural-language
processing is part-of-speech tagging, in which each variable ys is the part-of-speech tag of
the word at position s, and the input x is divided into feature vectors {x0,x1, . . . ,xT }. Each
xs contains various information about the word at position s, such as its identity, ortho-
graphic features such as prefixes and suffixes, membership in domain-specific lexicons, and
information in semantic databases such as WordNet.

An attractive approach to such problems is provided by structured prediction methods.
Structured prediction methods are essentially a combination of classification and graphi-
cal modeling, combining the ability to compactly model multivariate data with the ability
to perform prediction using large sets of input features. The idea is, for an input x, to de-
fine a discriminant function φ(y,x), and predict y∗ = arg maxy φ(y,x). Just as in graphical
modeling, this discriminant function factorizes according to a set of local factors, each of
which depend on only a small number of variables. But as in classification, each local factor
is modeled as a linear function of x, although perhaps in some induced high-dimensional
space. Examples of structured prediction methods include conditional random fields (CRFs)
(Lafferty et al. 2001; Sutton and McCallum 2007a), max-margin Markov networks (Taskar
et al. 2004a), MIRA (Crammer and Singer 2003), and search-based methods (Daumé and
Marcu 2005).

A main drawback to structured prediction methods is that parameter estimation requires
repeated inference. This is because parameters are typically chosen by M-estimation, that is,
by maximizing the sum of some objective function, such as the log-likelihood or the mar-
gin, evaluated at each training instance. Numerical optimization of this objective typically
requires performing inference over each data point at many different values in parameter
space. For models with tractable structure, such as chains and parse trees, this is often fea-
sible, but for general structures inference is intractable. Therefore, the need for repeated
inference during training is a significant challenge to applying structured prediction meth-
ods to large-scale data, especially when the model has complex structure. For this reason,
approximate training methods for structured models are of great interest.

An attractive family of approximate training methods is local training methods, which
are training methods that depend on sums of local functions of only a few factors rather
than on global functions of the entire graph such as the likelihood. In other words, the
objective function can be written as �(θ;x,y) = ∑

R �R(xR,yR; θ), where R indexes a
set of local functions {�R}, each of which can be computed efficiently from only a few
of the factors of the full structured model. The best-known example of a local training
method is Besag’s pseudolikelihood (Besag 1975), which is a product of the conditional
probability of each node given its Markov blanket. The chief attraction of this method
is that it achieves consistency without requiring inference in the training procedure. Al-
though in some situations pseudolikelihood can be very effective (Parise and Welling 2005;
Toutanova et al. 2003), in other applications, its accuracy can be poor.

In this paper, we present a novel local training method called piecewise training, in which
the model’s factors are divided into possibly overlapping sets of pieces, which are each
trained separately. Piecewise training is based on the intuition that if all of the local factors
fit the data well, then the resulting global distribution is likely to be reasonable. At test time,
the resulting weights are used just as if they had been trained using maximum likelihood,
that is, on the unseen data they are used to predict the labels using a standard approximate in-
ference algorithm, such as max-product belief propagation. This method has been employed
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occasionally throughout the literature, but to our knowledge its properties have never been
systematically examined. When using piecewise training, the modeler must decide how to
split the model into pieces before training. In this paper, we focus on the factor-as-piece
approximation, in which each factor of the model is placed in a separate piece.

We motivate this procedure as an approximation to the likelihood of a conditional ran-
dom field. In particular, this training procedure can be viewed in several ways. First, separate
training of each piece can be accomplished by numerically maximizing an approximation
to the likelihood. This approximate likelihood can be seen as the true likelihood on a trans-
formation of the original graph, which we call the node-split graph, in which each of the
pieces is an isolated component. Second, another view is based on belief propagation (BP);
namely, the objective function of piecewise training is the same as the BP approximate
likelihood with uniform messages, as if BP has been stopped after zero iterations. Finally,
the third view is based on a set of estimating equations that generalize the pseudo-moment
matching estimator of Wainwright et al. (2003b). These three viewpoints are useful both for
understanding these algorithms, and for designing extensions of these methods.

Additionally, we consider an extension to piecewise training, tailored for the case in
which the variables have large cardinality. When variables have large cardinality, training
can be computationally demanding even when the model structure is tractable. For exam-
ple, consider a series of processing steps of a natural-language sentence (Sutton et al. 2004;
Finkel et al. 2006), which might begin with part-of-speech tagging, continue with more de-
tailed syntactic processing, and finish with some kind of semantic analysis, such as relation
extraction or semantic entailment. This series of steps might be modeled as a simple linear
chain, but each variable has an enormous number of outcomes, such as the number of parses
of a sentence. In such cases, even training using forward-backward is infeasible, because
it is quadratic in the variable cardinality. Thus, we also desire approximate training algo-
rithms not only that are subexponential in the model’s treewidth, but also that scale well
in the variable cardinality. The Besag pseudolikelihood (PL) is attractive here, because its
running time is linear in the variable cardinality. However, piecewise training performs sig-
nificantly better than pseudolikelihood on the real-world data considered here, but unlike
pseudolikelihood it does not scale well in the variable cardinality.

To address this problem, we introduce and analyze a hybrid method, called piecewise
pseudolikelihood (PWPL), that combines the advantages of both approaches. Essentially,
while pseudolikelihood conditions each variable on all of its neighbors, PWPL conditions
only on those neighbors within the same piece of the model, for example, that share the same
factor. This is illustrated in Fig. 2. Thus, PWPL can be viewed as double approximation:
Rather than performing maximum likelihood on the node-split graph, as regular PW does,
PWPL performs pseudolikelihood on the node-split graph. Remarkably, this double approxi-
mation performs better than the pseudolikelihood approximation alone on several real-world
natural-language processing (NLP) data sets. In other words, PWPL behaves more like PW
than like pseudolikelihood, in terms of the prediction accuracy of the estimated model. The
training speed-up of PWPL can be significant even in linear-chain models, because forward-
backward training is quadratic in the variable cardinality.

In the remainder of this paper, we define piecewise training (Sect. 3.1), explaining it from
the perspectives of the node-split graph (Sect. 3.2) and of belief propagation (Sects. 3.3
and 3.4). Also, we show that in some cases, the piecewise likelihood is a simple lower
bound on the true likelihood (Sect. 3.5). Then we present PWPL (Sect. 4.1), describing
it in terms of the node-split graph. This viewpoint allows us to show that under certain
conditions, PWPL converges to the piecewise solution in the asymptotic limit of infinite
data (Sect. 4.2). In addition, it provides some insight into when PWPL may be expected to
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do well and to do poorly, an insight that we verify on synthetic data (Sect. 5.2.1). Finally,
we apply both PW and PWPL to several natural-language data sets. First, piecewise training
has better accuracy than pseudolikelihood and is sometimes comparable to exact maximum
likelihood (Sect. 5.1). Second, PWPL performs often comparably to piecewise training and
to maximum likelihood, and has higher accuracy than pseudolikelihood on all of our data
sets (Sect. 5.2.2). Furthermore, PWPL can be as much as ten times faster than batch CRF
training.

2 Background

This section presents background on structured prediction and pseudolikelihood. In this pa-
per, we are interested in estimating the conditional distribution p(y|x) of a discrete output
vector y given an input vector x. We model p by a factor graph G with variables s ∈ Y and
factors {�a}, where a is a member of some index set F . Each factor has a domain of some
subset of variables Ya ⊂ Y from the output and Xa from the input. We write the value of �a

on some assignment (y,x) as �a(ya,xa). With an abuse of notation, we will also use s ∈ a

as a shorthand for s ∈ Ya .
We model the conditional distribution as

p(y|x) = 1

Z(θ;x)

∏

a∈F

�a(ya,xa), (1)

where Z(θ;x) is a normalization constant, which is also called the partition function. A con-
ditional distribution which factorizes in this way is called a conditional random field (CRF)
(Lafferty et al. 2001; Sutton and McCallum 2007a). Typically, each factor is modeled in an
exponential form

�a(ya,xa) = exp{θ�
a fa(ya,xa)}, (2)

where θa is real-valued parameter vector, and fa returns a vector of features or sufficient
statistics over the variables in the set a. The parameters of the model are the set θ = {θa}a∈F ,
and we will be interested in estimating them given a sample of fully observed input-output
pairs D = {(x(i),y(i))}N

i=1. Throughout, we will also talk about the empirical distributions

p̃(x) = N−1
N∑

i=1

1{x=x(i)},

p̃(y|x) = N−1[p̃(x)]−1
N∑

i=1

1{y=y(i),x=x(i)}.

A commonly used estimator of θ is maximum likelihood. The log-likelihood is �(θ) =∑N

i=1 �(θ;x(i),y(i)), where

�(θ;x,y) =
∑

a∈F

θ�
a fa(ya,xa) − A(θ;x), (3)

A(θ;x) = log
∑

y

exp

{∑

a∈F

θ�
a fa(ya,xa)

}

. (4)

Maximum likelihood estimation is intractable for general graphs, so for such graphs parame-
ter estimation is performed approximately. One approach is to approximate the log partition
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function A(θ;x) directly, such as by Monte Carlo or variational methods. In this paper, we
take a different approach, which is to maximize an approximation of the likelihood that is
more computationally tractable.

An example of a computationally convenient objective for estimation is the pseudolikeli-
hood of Besag (1975). Pseudolikelihood simultaneously classifies each node given its neigh-
bors in the graph. For a variable s, let N(s) be the set of all of its neighbors, not including s

itself. Then the log-pseudolikelihood is defined as

�PL(θ;x,y) =
∑

s∈Y

logp(ys |yN(s),x),

where the conditional distributions are

p(ys |yN(s),x) =
∏

a�s �a(ys,yN(s),xa)
∑

y′
s

∏
a�s �a(y ′

s ,yN(s),xa)
, (5)

where a � s means that the product is to range over of set of all indices a of factors that
depend on the variable s. In other words, this is a sum of conditional log likelihoods, where
for each variable we condition on the true values of its neighbors in the training data.

It is a well known result that if the model family includes the true distribution, then
pseudolikelihood converges to the true parameter setting in the limit of infinite data (Gi-
das 1988; Hyvarinen 2006). Intuitively, one way to understand this is that pseudolikelihood
attempts to match all of the model conditional distributions to those of the empirical dis-
tribution. If it succeeds in matching them all exactly, then in the limit of infinite data, the
empirical conditional distributions will equal the true conditional distributions, so the Gibbs
sampler of the model will be the same as the Gibbs sampler of the true distribution.

3 Piecewise training

In this section, we present piecewise training. The motivation is that in some applications,
the local information in each factor alone, without performing inference, is enough to do
fairly well at predicting the outputs, but some amount of global information can still help.
Therefore, to reduce training time, it makes sense to perform less inference at training time
than at test time, because at training time we loop through the examples repeatedly, whereas
at test time we only need to make each prediction once. For example, suppose we want to
train a loopy pairwise Markov random field (MRF). In piecewise estimation, we train the
parameters of each edge independently, as if each edge were a separate two-node MRF of
its own. Finally, on test data, the parameters resulting from this local training become the
parameters used to perform global inference, using some standard approximate inference
algorithm.

In the rest of this section, we first define piecewise training more formally (Sect. 3.1).
Then we describe piecewise training from four different viewpoints. Different viewpoints
provide different insights into when piecewise training can be expected to perform well, and
suggest different ways to generalize the method. Piecewise training can be viewed

1. as maximizing the likelihood on a transformation of the original graph (Sect. 3.2),
2. as performing a type of pseudo-moment matching, generalizing a previous estimator due

to Wainwright et al. (2003b) (Sect. 3.3),
3. as maximizing an approximation to the likelihood resulting from a dual version of the

Bethe free energy (Sect. 3.4),
4. as maximizing a lower bound on the true likelihood (Sect. 3.5).
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3.1 Definition

Now we define the piecewise estimator more generally. Assume that the model’s factors are
divided into a set P = {R0,R1, . . .} of pieces; each piece R ∈ P is a set of factor indices
R ⊂ F . The pieces need not be disjoint. For example, in a grid-shaped MRF with unary
and pairwise factors, we might isolate each factor in its own piece, or alternatively we might
choose one piece for each row and each column of the MRF, in which case each unary factor
would be shared between its row piece and its column piece.

To train the pieces separately, each piece R has a local log-likelihood

�R(θ) =
∑

a∈R

θ�
a fa(ya,xa) − AR(θ;x), (6)

where AR(θ;x) is the local log partition function for the piece, that is,

AR(θ;x) = log
∑

yR

exp

{∑

a∈R

θ�
a fa(ya,xa)

}

, (7)

where yR is the vector of variables used anywhere in piece R. This is the log-likelihood
for the piece R if it were a completely separate graphical model. If the pieces are disjoint,
and no parameters are shared between distinct factors, then we could train each piece by
separately computing parameters θR

PW = maxθR
�R(θR). But in order to handle parameter

tying and overlapping pieces, we instead perform a single optimization, maximizing the
sum of all of the single-piece log-likelihoods. So for a set P of pieces, the piecewise log-
likelihood becomes

�PW(θ;x,y) =
∑

R∈P

∑

a∈R

θ�
a fa(ya,xa) −

∑

R∈P

AR(θ;x). (8)

For example, consider the special case of per-edge pieces in a pairwise MRF with no tied
parameters. Then, for an edge (s, t), we have Ast (θ) = log

∑
ys ,yt

�(ys, yt ), so that piece-
wise training corresponds exactly to training independent probabilistic classifiers on each
edge.

Now let us compare the piecewise likelihood to the exact likelihood (3). Notice that
the only difference between the piecewise log-likelihood �PW and the exact log-likelihood
� is in the second summation of (8). So APW(θ;x) := ∑

R AR(θ;x) can be viewed as an
approximation of the log partition function A(θ;x). By using piecewise training, we need to
compute only local normalization over small cliques, which for loopy graphs is potentially
much more efficient.

A choice of pieces to which we devote particular attention is the factor-as-piece ap-
proximation, in which each factor in the model is assigned to its own piece, that is,
P = {{a} | a ∈ F }. Unless specified otherwise, for the rest of this paper we will assume
the factor-as-piece approximation.

There is a potential ambiguity in this choice. To see this, write out the summation con-
tained within the dot product of (2)

�a(ya,xa) = exp

{∑

k

θakfak(ya,xa)

}

,
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so that each factor has multiple parameters and sufficient statistics. But we could just as well
place each sufficient statistic in a factor all to itself, that is,

�ak(ya) = exp{θakfak(ya)}, (9)

and define the pieces at that level of granularity. Such a fine-grained choice of pieces could
be useful. For example, in a linear-chain model, we might choose to view the model as a
weighted finite-state machine, and partition the state-transition diagram into pieces. In this
paper, however, when we use the factor-as-piece approximation, we will not use the fine-
grained factorization of (9), that is, we will assume that the graph has been constructed so
that no two factors share exactly the same support.

3.2 The node-split graph

The piecewise log-likelihood (8) can be viewed as the exact log-likelihood in a transfor-
mation of the original graph. In the transformed graph, we split the variables, adding one
copy of each variable for each factor that it participates in, as pictured in Fig. 1. We call the
transformed graph the node-split graph.

Formally, the splitting transformation is as follows. Given a factor graph G, create a
new graph G′ with variables {Vas}, where a ∈ F and s ∈ a. For any factor �a , let πa map
variables in G to their copy in G′, that is, πa(s) = Vas for any variable s in G. Finally, for
each factor �a(ya, θ) in G, add a factor � ′

a to G′ as

� ′
a(πa(ya), θ) = �a(ya, θ). (10)

If we wish to use pieces that are larger than a single factor, then the definition of the node-
split graph can be modified accordingly.

Clearly, piecewise training in the original graph is equivalent to exact maximum likeli-
hood training in the node-split graph. This view of piecewise training will prove useful for
understanding PWPL in Sect. 4.

This viewpoint also makes clear the bias in the piecewise estimate. Suppose that the
model family contains the true distribution, and let p∗(y|x) = p(y|x; θ∗) be the true distrib-
ution of the data. Also, let p(ya|x; θ∗) be the marginal distribution of the variables in factor
a according to the true distribution.

The piecewise likelihood cannot distinguish p∗ from the distribution pNS over the original
space that is defined by the product of marginals

pNS(y|x) ∝
∏

a∈G′
p(ya|x; θ∗). (11)

Fig. 1 Example of node
splitting. Left is the original
model, right is the version trained
by piecewise. In this example,
there are no unary factors
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By that we mean that if the empirical distribution p̃ were exactly p∗, as in the limit of infinite
data, then the piecewise likelihood �PW(θ) for any θ would be exactly the same as if p̃ = pNS.

Then we can express the bias in the piecewise estimate as follows. Suppose there ex-
ists a parameter setting θNS of the model such that pNS(y|x) = p(y|x; θNS) for all y,x. Then
the piecewise estimate converges to θNS (rather than θ∗) in the infinite data limit. For ex-
ample, suppose that, unknown to the modeler, all the variables in the graph are actually
independent. Then pNS(y|x) = ∏

s∈Y p(ys |x)d(s), where d(s) is the degree of variable s, and
the piecewise estimate will converge to this distribution in the limit of infinite data rather
than the true distribution. Essentially, PW overcounts the effect of the variables that share
multiple factors.

3.3 Pseudo-moment matching viewpoint

Piecewise training is based on the intuition that if all of the local factors fit the data well, then
the resulting global distribution is likely to be reasonable. An interesting way of formalizing
this idea is by way of the pseudo-moment matching estimator of Wainwright et al. (2003b).
In this section, we show that there is a sense in which piecewise training can be viewed as
an extension of the pseudo-moment matching estimator.

First, consider the case in which a discrete distribution p(y) factorizes according to a
graph with fully-parameterized tables, that is,

�a(ya) = exp

{∑

y′
a

θ(y′
a)1{ya=y′

a}
}

. (12)

Here we are not (yet) conditioning on any input variables. Let p̃(y) be the empirical distri-
bution, that is, p̃(y) ∝ ∑

i 1{y=y(i)}.
The pseudo-moment matching estimator chooses parameters that maximize the BP like-

lihood, remarkably, without actually computing any of the message updates. This estimator
is

θ̂a(ya) = log
p̃(ya)

∏
s∈a p̃(ys)

,

θ̂s(ys) = log p̃(ys).

(13)

For these parameters, there exists a set of messages that (a) are a fixed point of BP, and (b)
the resulting beliefs qa and qs equal the empirical marginals.

This can be shown using a different viewpoint on BP, namely the reparameterization
perspective due to Wainwright et al. (2003a). In this view, the BP updates are expressed
solely in terms of the beliefs bn at each iteration n of the algorithm. The beliefs are initialized
as b0

a ∝ �a for all factors, and b0
s ∝ 1 for all variables. The updates at iteration n are

bn
s (ys) =

∑

yN(s)

Bn−1
s (ys,yN(s)),

bn
a(ya) =

∑

yN(a)

Bn−1
a (ya,yN(a))

(14)
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where the distributions Bn−1
a and Bn−1

s are defined as

Bn−1
s (ys,yN(s)) ∝ bn−1(ys)

∏

a�s

bn−1
a (ya)

bn−1
s (ys)

,

Bn−1
a (ya,yN(a)) ∝ bn−1

a (ya)
∏

s∈a

∏

c�s\a

bn−1
c (yc)

bn−1
s (ys)

.

(15)

(This notation is adapted from Rosen-Zvi et al. (2005).) Here N(a) = ⋃
s∈a N(s) − Ya . It

can be shown that the beliefs from the message-based recursions (that is, the standard form
of BP) are equal to those from the reparameterization-based recursions (14). To see this,
substitute the definition of the beliefs, bn

s = ∏
a�s mn

as and bn
a = �a

∏
s∈a msa into (14), and

cancel factors.
One consequence of this perspective on BP is that it is possible to see immediately that

the pseudo-moment matching equations (13) are correct. This is because under that parame-
ter setting, once we set b0

a ∝ �a , those beliefs are already at a fixed point, and also are equal
to the empirical marginals.

This discussion of pseudo-moment matching, however, focused solely on a joint model
p(y), in which we had no input x. For conditional random fields, on the other hand, we are
interested in estimating the parameters of conditional distributions p(y|x). Furthermore, in
virtually all practical applications the parameters of different factors are tied, analogous to
the way that the same transition distribution is often used for each time step in an HMM. So
as originally presented, the pseudo-moment matching estimator is not a practical learning
algorithm for CRFs (or, in most cases for generative MRFs, which often employ parameter
tying).

A simple generalization is to require for all inputs x in the training set that

�a(ya,x) = p̃(ya|x)
∏

s∈a p̃(ys |x)
,

�s(ys,x) = p̃(ys |x).

(16)

However, this does not handle the fact that parameters are tied across different factors in
p(y|x) for a fixed input x, or that the same parameters are used for p(y|x) across different
inputs. In other words, the factor values of �a(·,x) do not have an independent degree of
freedom for each input value x.

A natural approach to further generalize the pseudo-moment matching idea (which is, as
far as we know, novel) is to treat (16) as a nonlinear set of equations to be solved. To do this,
we optimize the objective function

min
θ

∑

a∈F

D

(

�a‖p̃a

∏

s∈a

p̃−1
s

)

+
∑

s∈Y

D(�s‖p̃s), (17)

where D(·‖·) is a divergence measure. By a divergence measure D(p‖q), we simply mean a
nonnegative function that is 0 if and only if p = q . Then if a parameter setting θ exists such
that the divergence is zero, then the equations have been solved exactly, and the parameters
θ optimize the BP approximation to the likelihood.

Furthermore, in the setting of structured prediction, it is usually the case that each distinct
input in the training data occurs only once. For example, this is the case in all the natural-
language data sets considered in Sect. 5: Since there are exponentially many possible English
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sentences, it is highly unlikely to see the same sentence more than once. In this case, for
every pair (x(i),y(i)) in the training data, the empirical distribution p̃(y(i)|x(i)) = 1, which
implies that p̃a

∏
s∈a p̃−1

s = p̃a . Then the objective (17) is equal to

min
θ

∑

a∈F

D(�a‖p̃a) +
∑

s∈Y

D(�s‖p̃s). (18)

This provides another view of piecewise training. Suppose we select as the divergence

D(�a‖p̃a) =
∑

x

p̃(x)

[∑

ya

p̃(ya|x) log
p̃(ya|x)

�a(ya,xa)
+ log

∑

ya

�a(ya,xa)

]

. (19)

This is the Kullback-Leibler divergence between p̃a and �a , when �a is normalized as if
it were a probability distribution over ya . For this choice of D, minimizing the divergence
in (18) yields an equivalent optimization problem to the piecewise log-likelihood (8). Fur-
thermore, if the optimal value of the divergence is 0, then the corresponding parameters are a
solution to (16), and so the factors satisfy the pseudo-moment matching condition separately
for each x in the training data. This provides a justification of the intuition that fitting locally
can lead to a reasonable global solution: it is not the case that fitting factors locally causes
the true marginals to be matched to the empirical distribution, but it does cause the BP ap-
proximation to the marginals to be matched to the empirical distribution, over the inputs that
were observed in the training data.

If the assumption in the previous paragraph does not hold—namely, if some inputs ap-
pear multiple times in the training data with different outputs—then it is no longer the case
that p̃a

∏
s∈a p̃−1

s = p̃a , so the pseudo-moment equations (17) are no longer equivalent to
the piecewise likelihood, but are closely analogous. Furthermore, in this case the value and
gradient of (17) can be still be computed locally, without the need for computing any mar-
ginal distributions, so it can optimized using gradient-based methods in exactly the same
way as the piecewise likelihood. It is possible that (17) may be preferable to the piecewise
likelihood in this situation, but this situation seems sufficiently uncommon that we do not
consider it further.

3.4 Viewpoint from the dual Bethe energy

Another way of understanding piecewise training arises from belief propagation. The main
idea is that the piecewise likelihood can be derived from the true likelihood by approximat-
ing the true partition function by the value of the Bethe free energy after zero iterations of
BP, that is, when all of the messages are uniform. In the rest of this section, we first ex-
plain the Bethe dual energy, and then explain how it can be used to derive the piecewise
likelihood.

A variational inference method is one that converts an inference problem into an opti-
mization problem. Although loopy BP was originally described algorithmically, in a way
that does not appear to be optimizing any objective function, in fact BP can be viewed as a
variational inference method. This is because any BP fixed point is also stationary points of
a function called the Bethe free energy (Yedidia et al. 2005). For our purposes, a free energy
can be thought of simply as an objective function over tractable probability distributions q ,
that measures how well they approximate an intractable distribution p. Other free energies,
distinct from the Bethe energy, can also have the property of matching the fixed points of
BP. One such free energy, which we will call the dual Bethe energy (Minka 2001a, 2005), is
particularly useful for understanding piecewise training.
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This dual energy arises from the expectation propagation view of BP. Suppose that we
approximate each factor �a by a product of functions mas that each depend on only one
variable s. Call this approximate factor �̃a , so that

�a(ya) ≈ �̃a(ya) =
∏

s∈a

mas(ys). (20)

Approximating each factor yields an approximation to the full distribution p, namely,
p(y) ≈ q(y) := ∏

a �̃a(ya). Observe that q is possibly unnormalized. (In this section, we
suppress the dependence of p and �a on the input x, in order to simplify the notation.)

Belief propagation can be viewed as incrementally refining this factorized approxima-
tion. In this viewpoint, each of the factors mas that make up q is viewed as the BP message
from �a to s. In other words, we view the outgoing messages from each factor as approxi-
mating it. Then each message-passing update of loopy BP can viewed as refining one of the
terms �̃a so that q is closer to p in terms of KL divergence.

This viewpoint can be used to derive a free energy for BP. Since q was chosen to ap-
proximate p, it makes sense to use the normalizing constant of q to approximate the nor-
malizing constant of p. More precisely, let p′ be the unnormalized version of p, that is,
p′(y) = ∏

a �a(ya). Then define rescaled versions of �̃a and q as

�̄a(ya) = za�̃a(ya), (21)

q̄(y) =
∏

a

�̄a(ya), (22)

where za is a real-valued scaling factor that will be chosen as part of the approximation. The
idea is to choose these scaling factors so that the normalizing constant of q̄ , that is,

∑
y q̄(y),

matches as closely as possible the normalizing constant of p′, that is,
∑

y p′(y). This can
be done by optimizing local divergences in an analogous manner to expectation propagation
(EP). Define q̄\a as the distribution q̄ but with the factor �̃a removed, that is

q̄\a =
∏

b∈F \a
�̄b(yb). (23)

Then one criterion for choosing optimal scaling factors za is

min
za

KL(�a(ya)q̄
\a(ya)‖za�̃a(ya)q̄

\a(ya)). (24)

Observe that because q̄\a depends on all of the scale factors zb for all factors b, the local
objective function depends on all of the other scale factors as well. The optimal za is given
by

za =
∑

y
�a(ya)

�̃(ya)
q(y)

∑
y q(y)

. (25)

Thus the optimal za actually does not depend on the other scale values. Now taking the
integral

∑
y q̄(y) yields the following approximation to the partition function

ABETHEDUAL = log
∏

s∈Y

(∑

ys

qs(ys)

)1−d(s) ∏

a∈F

(∑

ya

�a(ya)

�̃(ya)
q(ya)

)

. (26)



176 Mach Learn (2009) 77: 165–194

It can be shown (Minka 2001b) that this is also a free energy for BP, that is, that fixed points
of BP are stationary points of this objective.

Now that we have explained the dual Bethe energy, we show how it can be used to derive
the piecewise likelihood. Consider the uniform message setting, that is, mas = 1 for all a ∈ F
and s ∈ Y . This is a common initialization for BP. For this message setting the unnormalized
beliefs are q(y) = 1 for all y, and the approximate partition function is

ABP(θ) =
∏

a∈F

(

Ca

∑

ya

�a(ya, θ)

)∏

s∈Y

C1−d(s)
s , (27)

where Ca and Cs are constants that do not depend on θ . This approximate partition function
is the same as that used by piecewise training (under the factor-as-piece approximation),
up to a multiplicative constant that does not change the optima. So another view is that
piecewise training approximates the likelihood using belief propagation, except that we cut
off BP after 0 iterations.

Sutton and Minka (2006) refer to this as a pseudomarginal viewpoint on a local training
algorithm. This terminology refers to a training method that approximates A(θ;x) by some
function Ã, and chooses parameters to maximize the resulting approximate likelihood. To
understand the term “pseudomarginal”, consider the derivatives ∂A/∂θa of the true partition
function. If the model contains unary factors of the form �s(ys) = exp{∑y′

s
θs,y′

s
1{ys=y′

s}}
(for scalar θs,y′

s
), then the corresponding partial derivatives of the true partition function yield

marginal distributions. Once the partition function is approximated by some Ã, maximizing
the approximate likelihood has the effect of matching the pseudomarginals to the empirical
marginals.

An alternative to the pseudomarginal viewpoint is a belief viewpoint on an approximate
training algorithm. Here the idea is to directly approximate the likelihood gradient. The
partial derivatives of the log-likelihood are

∂�

∂θa

=
N∑

i=1

fa(y(i),x(i)) −
N∑

i=1

∑

ya

p(ya|x(i))fa(y(i),x(i)). (28)

(To simplify notation, here we assume that θa and fa are scalar-valued.) Now any approx-
imate inference algorithm can be used to estimate θ , by substituting the approximate mar-
ginals returned by the algorithm in place of the exact marginals p(ya|x(i)) in (28).

The pseudomarginal and belief viewpoints are distinct: Although every approximate like-
lihood yields approximate gradients through the pseudomarginals, not all approximate gra-
dients can themselves be obtained as the exact gradient of an approximate objective func-
tion. Recently, training methods that have objective function have received much attention,
but it is not clear that they should necessarily be preferred. Even for the Bethe energy, the
pseudomarginals are distinct from the beliefs. Unlike the beliefs, the pseudomarginals in-
corporate the derivatives of the messages with respect to the model parameters because of
the chain rule. (Another potentially confusing point is that for the primal Bethe energy, the
pseudomarginals always equal the beliefs, but this is not true of the dual energy.)

Since the piecewise likelihood arises from the dual Bethe energy at 0 BP iterations, it
is natural to ask whether using more iterations would work better. This idea is pursued by
Sutton and Minka (2006). In this case, the distinction between beliefs and pseudomarginals
becomes important.
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3.5 Approximation to the likelihood

A final rationale for the piecewise estimator is that it bounds the likelihood.

Proposition 1 If the set of pieces P is a partition of F , then the piecewise partition function
is an upper bound on the true partition function:

A(θ;x) ≤
∑

R∈P

AR(θ;x). (29)

Proof The bound is immediate upon expansion of A(θ;x).

A(θ;x) = log
∑

y

∏

R∈P

exp

{∑

a∈R

θ�
a fa(ya,xa)

}

(30)

≤ log
∏

R∈P

∑

yR

exp

{∑

a∈R

θ�
a fa(ya,xa)

}

(31)

=
∑

R∈P

AR(θ;x). (32)

The first step (30) follows from the definition of A and the fact that the pieces are disjoint.
The bound from (30) to (31) is justified by considering the expansion of the product in (31).
The expansion contains every term of the summation in (30), and all terms are nonnega-
tive. �

Therefore, the piecewise likelihood is a lower bound on the true likelihood. If the graph
is connected, however, then the bound is not tight, and in practice it is extremely loose.

This bound is actually a special case of the tree-reweighted bounds of Wainwright et al.
(2002), a connection which suggests generalizations of the simple piecewise training pro-
cedure. In that work, an upper bound on A(θ;x) was obtained using Jensen’s inequality by
writing the original parameters θ as a mixture of parameter vectors θ = ∑

b μbθb , where
each of the θb is chosen to correspond to a tractable subgraph in which inference can be
performed efficiently, such as a spanning tree.

For the purpose of extending piecewise training, we consider here the case in which each
tractable subgraph consists of a single piece and its associated variables. Let μ be a strictly
positive probability distribution over pieces. To use Jensen’s inequality, rewrite θ as

θ =
∑

R∈P

μR

θ |R
μR

, (33)

where θ |R is the restriction of θ to R; that is, θ |R has the same entries and dimensional-
ity as θ , but with zeros in all entries that are not included in the piece R. Therefore, we
immediately have the bound

A(θ) ≤
∑

R∈P

μRA

(
θ |R
μR

)

. (34)

This reweighted piecewise bound is clearly related to the basic piecewise bound in (29),
because A(θ |R) differs from AR(θ) only by an additive constant which is independent of θ .
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Note that the reweighted bound still holds if the pieces are not disjoint, unlike the bound in
Proposition 1.

This connection suggests a generalization of the basic piecewise method, in which the
reweighted piecewise bound in (34) can itself be minimized as an approximation to A(θ)

(see Sect. 5.1.4). Concretely, suppose that we are using the factor-as-piece approximation.
Then we would have a real-valued weight μa for each a ∈ F , and the reweighted approxi-
mation is

A(θ;x) ≤
∑

a∈F

μa log
∑

ya

exp

{(
θa

μa

)�
.fa(ya,xa)

}

. (35)

Notice that not only do we take a weighted average of the AR for each piece, but the weights
of each piece are scaled as well. One implication of this is that even uniform μa results in a
qualitatively different approximation than unweighted piecewise training.

4 Piecewise pseudolikelhood

Although piecewise training breaks apart intractable structures, it can still be computation-
ally expensive when the variables have large cardinality. This is because computing the local
normalization functions AR in (8) requires summing over all assignments to a piece. For ex-
ample, if all factors are binary, then this summation requires quadratic time in the variable
cardinality. Although this is feasible for many models, if the cardinality is large, this cost
can be unacceptable.

Pseudolikelihood (Sect. 2), on the other hand, scales linearly in the variable cardinal-
ity, because each term in the pseudolikelihood conditions all but one variable in the model.
However, on the data that we consider here, PL has considerably worse accuracy than piece-
wise training. This suggests a hybrid method, in which we apply pseudolikelihoodization to
the node-split graph (Sect. 3.2) rather than the original graphical model. We call this training
method piecewise pseudolikelihood (PWPL). Surprisingly, we find that two approximations
work better than one: on the data considered here, PWPL—which applies the node-split
approximation before pseudolikelihood—works better than the pseudolikelihood approxi-
mation alone.

This section proceeds as follows. In Sect. 4.1, we describe PWPL in terms of the node-
split graph, which was presented previously in Sect. 3.2. This viewpoint allows us to show
that under certain conditions, PWPL converges to the piecewise solution in the asymptotic
limit of infinite data (Sect. 4.2). In addition, it provides some insight into when PWPL may
be expected to do well and to do poorly, an insight that we verify on synthetic and real-world
data in Sect. 5.2.

4.1 Definition

In this section, we define piecewise pseudolikelihood. The main motivation of piecewise
training is computational efficiency, but in fact PW does not always provide a large gain in
training time over other approximate methods. In particular, the time required to evaluate the
piecewise likelihood at one parameter setting is the same as is required to run one iteration
of belief propagation (BP). More precisely, piecewise training uses O(mK) time, where m is
the maximum number of assignments to a single variable ys and K is the size of the largest
factor. Belief propagation also uses O(mK) time per iteration; thus, the only computational
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savings over BP is a factor of the number of BP iterations required. In tree-structured graphs,
piecewise training is no more efficient than forward-backward.

To address this problem, we propose piecewise pseudolikelihood. Piecewise pseudolike-
lihood (PWPL) is defined as:

�PWPL(�;x,y) =
∑

a∈F

∑

s∈a

logpLCL(ys |ya\s ,x, θa), (36)

where pLCL is a locally-normalized score similar to a conditional probability and defined
below.

So the piecewise pseudolikelihood is a sum of local conditional log-probabilities. Each
variable s participates as the domain of a conditional once for each factor that it neighbors.
As in piecewise training, the local conditional probabilities pLCL are not the true probabilities
according to the model, but are a quantity computed locally from a single piece (in this case,
a single factor). The local probabilities pLCL are defined as

pLCL(ys |ya\s ,x, θa) = �a(ys,ya\s ,xa)
∑

y′
s
�a(y ′

s ,ya\s ,xa)
. (37)

Then given a data set D = {(x(i),y(i))}, we select the parameter setting that maximizes

OPWPL(θ;D) =
∑

i

�PWPL(θ;x(i),y(i)) −
∑

a

‖θa‖2

2σ 2
, (38)

where the second term is a Gaussian prior on the parameters to reduce overfitting. The
piecewise pseudolikelihood is convex as a function of θ , and so its maximum can be found
using numerical optimization.

For simplicity, we have presented PWPL for the case in which each piece contains exactly
one factor. If larger pieces are desired, then simply take the summation over a in (36) to be
over pieces rather than over factors, and generalize the definition of pLCL appropriately.

Compared to standard PW, the main advantage of PWPL is that training requires only
O(m) time rather than O(mK). Compared to pseudolikelihood, the difference is that
whereas in pseudolikelihood each local term conditions on the entire Markov blanket, in
PWPL each local term conditions only on a variable’s neighbors within a single factor. For
this reason, the local terms in PWPL are not true conditional distributions according to the
model. The difference between PWPL and pseudolikelihood is illustrated in Fig. 2. In the
next section, we discuss why in some situations this can cause PWPL to have better accuracy
than pseudolikelihood.

Fig. 2 Illustration of the difference between piecewise pseudolikelihood (PWPL) and standard pseudolike-
lihood. In standard PL, at left, the local term for a variable ys is conditioned on its entire Markov blanket. In
PWPL, at right, each local term conditions only on the neighbors within a single factor
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4.2 Analysis

PWPL can be readily understood from the node-split viewpoint. In particular, the piecewise
pseudolikelihood is simply the standard pseudolikelihood applied to the node-split graph. In
this section, we use the asymptotic consistency of standard pseudolikelihood to gain insight
into the performance of PWPL.

Suppose that we are given an infinite data set drawn from the distribution pNS, as defined
in Sect. 3.2. (In that section, we argued that this yields an equivalent piecewise estimate to
the true distribution p∗.) Now, the standard consistency result for pseudolikelihood is that
if the model class contains the generating distribution, then the pseudolikelihood estimate
converges asymptotically to the true distribution (for more information, see Hyvarinen 2006,
Gidas 1988). In this setting, that implies the following statement. If the model family defined
by the node-split graph G′ contains pNS, then piecewise pseudolikelihood converges in the
limit to the same parameter setting as PW. (On the other hand, if there is model mismatch,
that is, if the mode class does not contain the generating distribution, then PL does not
necessarily converge to a ML solution.)

This asymptotic statement provides no guarantee about how PWPL will perform on finite
data. Even so, it has several interesting consequences that provide insight into the method.
First, it may impact what sort of model is conducive to PWPL. For example, consider a
Potts model with unary factors �(ys) = [1 eθs ]� for each variable s, and pairwise fac-
tors

�(ys, yt ) =
(

eθst 1
1 1

)

, (39)

for each edge (s, t), so that the model parameters are {θs} ∪ {θst }. Then the above condition
for PWPL to converge in the infinite data limit will never be satisfied, because the pair-
wise piece cannot represent the marginal distribution of its variables. In this case, PWPL
may be a bad choice, or it may be useful to consider pieces that contain more than one
factor.

Second, this analysis provides intuition about the differences between piecewise pseudo-
likelihood and standard pseudolikelihood. For each variable s with neighborhood N(s),
standard pseudolikelihood approximates the model marginal p(yN(s)) over the neighbor-
hood by the empirical marginal p̃(yN(s)). We expect this approximation to work well when
the model is a good fit, and the data is ample. In PWPL, we perform the node-splitting
transformation on the graph prior to maximizing the pseudolikelihood. The effect of this is
to reduce each variable’s neighborhood size, that is, the cardinality of N(s).

This has two potential advantages. First, because the neighborhood size is small, the
maximum PWPL estimate may converge to maximum PW estimate faster than pseudolike-
lihood converges to maximum likelihood. One may reasonably expect maximum likelihood
to be better than PW, so whether to prefer standard PL or PWPL depends on precisely how
much faster the convergence is. Second, the node-split model may be able to exactly model
the marginal of its neighborhood in cases where the original graph may not be able to model
its larger neighborhood. Because the neighborhood is smaller, the pseudolikelihood conver-
gence condition may hold in the node-split model when it does not in the original model. In
other words, standard pseudolikelihood requires that the original model is a good fit to the
full distribution. In contrast, we expect piecewise pseudolikelihood to be a good approxi-
mation to PW when each individual piece fits the empirical distribution well. This explains
how the double approximation of PWPL could result in a better estimate than PL alone: even
though given infinite data we expect PL to be a better estimate than PWPL, PWPL might
require less data to reach its limit.
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Finally, this analysis suggests that we might expect piecewise pseudolikelihood to per-
form poorly in two regimes: First, if so much data is available that pseudolikelihood has
asymptotically converged, then it makes sense to use pseudolikelihood rather than piece-
wise pseudolikelihood. Second, if features of the local factors cannot fit the training data
well, then we expect the node-split model to fit the data poorly even if the original model
was good. In this case, neither piecewise training nor piecewise pseudolikelihood can be
expected to do well.

5 Results

In this section, we evaluate piecewise training and its generalizations on several bench-
mark data sets from natural-language processing. We consider four real-world NLP tasks:
part-of-speech tagging, named-entity recognition, noun-phrase chunking, and information
extraction.

For part-of-speech tagging (POS), we report results on the WSJ Penn Treebank data set.
Results are averaged over five different random subsets of 1911 sentences, sampled from
Sections 0–18 of the Treebank. Results are reported from the standard development set of
Sections 19–21 of the Treebank. We use a first-order linear chain CRF. There are 45 part-
of-speech labels.

In named-entity recognition, the task is to find proper nouns in text. We use the CoNLL
2003 data set, consisting of 14,987 newswire sentences annotated with names of people,
organizations, locations, and miscellaneous entities. We test on the standard development set
of 3,466 sentences. Evaluation is done using precision and recall on the extracted chunks,
and we report F1 = 2PR/(P +R). We use a linear-chain CRF, whose features are described
in Table 1.

For the task of noun-phrase chunking (chunking), we use a loopy model, the factorial
CRF introduced in Sutton et al. (2007). As in that work, we consider the task of jointly
predicting part-of-speech tags and segmenting noun phrases on the CoNLL 2000 data set.
The structure of this model is a pair of coupled chains. If w = (w1,w2, . . . ,wT ) denotes the
part-of-speech (POS) labels and y = (y1, y2, . . . , yT ) denotes the noun-phrase (NP) labels,

Table 1 Input features qk(x, t)

for the CoNLL named-entity
data. In the above wt is the word
at position t . All features are
binary valued

wt = v for all words v in vocabulary

wt matches [A-Z][a-z]+

wt matches [A-Z][A-Z]+

wt matches [A-Z]

wt matches [A-Z]+

wt contains a dash

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

The character sequence c0 . . . cn is a prefix of wt (where n ∈ [0,4])
The character sequence c0 . . . cn is a suffix of wt (where n ∈ [0,4])
The character sequence c0 . . . cn occurs in wt (where n ∈ [0,4])
wt appears in list of first names,

last names, countries, locations, honorifics, etc.

qk(x, t + δ) for all k and δ ∈ [−2,2]
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Table 2 Input features qk(x, t) for the noun-phrase segmentation data. In the above wt is the word at posi-
tion t . All features are binary valued

wt = v for all words v in vocabulary

wt matches [A-Z][a-z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt matches .*[0-9].*

wt appears in list of first names, last names, company names, days, months, or geographic entities

wt is contained in a lexicon of words with POS T (from Brill tagger)

Tt = T for all parts of speech T

qk(x, t + δ) for all features qk listed above and δ ∈ [−3,3]

then the model is

p(y,w|x) =
T∏

t=1

�0(yt , yt−1,x)�1(wt ,wt−1,x)�2(wt , yt ,x), (40)

where each type of factor �0,�1,�2 is expressed in the log-linear form of (2). The features
used are described in Table 2. There are 45 different POS labels, and the three NP labels.
We report F1 on noun-phrase chunks. In previous work, this model was optimized by ap-
proximating the partition function using belief propagation, but this was quite expensive.
Training on the full data set of 8936 sentences required about 12 days of CPU time.

Finally, for the task of information extraction, we consider a model with many irregu-
lar loops, which is the skip chain model introduced in Sutton and McCallum (2004). This
model incorporates certain long-distance dependencies between word labels into a linear-
chain model for information extraction. The idea is that when the same word appears multi-
ple times in the same message, it tends to have the same label. We represent this by adding
edges between output nodes (yi, yj ) when the words at positions i and j are identical and
capitalized.

For a sentence x, let I = {(u, v)} be the set of all pairs of sequence positions for which
there are skip edges. For example, in the experiments reported here, I is the set of indices
of all pairs of identical capitalized words. Then the conditional probability is modeled as

pθ(y|x) = 1

Z(x)

T∏

t=1

�t(yt , yt−1,x)
∏

(u,v)∈I

�uv(yu, yv,x), (41)

where �t are the factors for linear-chain edges, and �uv are the factors over skip edges.
Each of these factors takes the exponential form in (2).

We use a standard data set of seminar announcements (Freitag 1998). Consistently with
the previous work on this data set, we use 10-fold cross validation with a 50/50 training/test
split. We report per-token F1 on the speaker and location fields, the most difficult of the four
fields. The features used are described in Table 3. Most documents contain many crossing
skip-edges, so that exact maximum-likelihood training using junction tree is completely
infeasible, so instead we compare to approximate training using loopy belief propagation.
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Table 3 Input features qk(x, t)

for the seminars data. In the
above wt is the word at
position t . The “appears to be”
features are based on
hand-designed regular
expressions that can span several
tokens. All features are binary
valued

wt = v for all words v in vocabulary

wt matches [A-Z][a-z]+

wt matches [A-Z][A-Z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt appears in list of first names, last names, honorifics, etc.

wt appears to be part of a time followed by a dash

wt appears to be part of a time preceded by a dash

wt appears to be part of a date

qk(x, t + δ) for all features qk listed above and δ ∈ [−4,4]

For all the data sets, we compare to pseudolikelihood and conditional maximum likeli-
hood with belief propagation. All of these objective functions are maximized using limited-
memory BFGS. We use a Gaussian prior with variance σ 2 = 10. In previous work, the prior
parameter had been tuned on each data set for belief propagation, and for the local mod-
els we used the same prior parameter without change. At test time, prediction is always
performed using max-product belief propagation.

5.1 Piecewise training

In this section, we compare piecewise training to both maximum likelihood and pseudo-
likelihood. To be as fair as possible to pseudolikelihood, we compare to two variations of
pseudolikelihood, one based on nodes and a structured version based on edges. As normally
applied, pseudolikelihood is a product of per-node conditional probabilities, as in (5). But
this per-variable pseudolikelihood function does not work well for sequence labeling, be-
cause of the strong interactions between neighboring sequence positions. In order to have a
stronger baseline, we also compare to a pairwise version of pseudolikelihood:

�EPL(θ;x,y) = log
∏

st

p(ys, yt |yN(s,t)), (42)

where the variables s, t range over all variables that share a factor. That is, instead of us-
ing local conditional distributions over single variables, we use distributions over pairs of
variables, hoping to take more of the sequential interactions into account.

5.1.1 Named-entity recognition (linear-chain CRF)

First, we evaluate the accuracy of piecewise training on a tractable model, so that we can
compare the accuracy to exact maximum-likelihood training. We use a linear-chain CRF
for the named-entity recognition task. The results are shown in Table 4. Piecewise training
performs better than either of the pseudolikelihood methods. Furthermore, even though it is
a completely local training method, piecewise training performs comparably to exact CRF
training.

Now, in a linear-chain model, piecewise training has the same computational complex-
ity as exact CRF training, so we do not mean to advocate the piecewise approximation
for linear-chain graphs. Rather, that the piecewise approximation loses no accuracy on the
linear-chain model is encouraging when we turn to loopy models.
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Table 4 Comparison of piecewise training to exact and pseudolikehood training on a linear-chain CRF for
named-entity recognition. On this tractable model, piecewise methods are more accurate than pseudolikeli-
hood, and just as accurate as exact training

Method Overall F1

PW 91.2

Pseudolikelihood 84.7

Per-edge PL 89.7

Exact 90.6

Table 5 Comparison of piecewise training to other methods on a two-level factorial CRF for joint part-
of-speech tagging and noun-phrase segmentation. Shown are the means and standard deviations over five
random subsets of the training data

Method Noun-phrase F1

Piecewise 88.1 ±0.48

Pseudolikelihood 84.9 ±0.39

Per-edge PL 86.5 ±0.64

BP 86.0 ±0.39

Table 6 Comparison of
piecewise training to other
methods on a skip-chain CRF for
seminar announcements. Shown
are the means and standard
deviations over 10-fold
cross-validation

Method Token F1 Speaker

location

Piecewise 87.7 ±1.2 75.4 ±2.5

Pseudolikelihood 67.1 ±4.8 25.5 ±4.2

Per-edge PL 76.9 ±4.1 69.3 ±3.0

BP 86.6 ±1.5 78.2 ±1.8

5.1.2 Noun-phrase chunking (factorial CRF)

In this section, we compare piecewise training to pseudolikelihood and maximum likelihood
on the factorial CRF for the noun-phrase chunking task. We report results here on subsets
of 223 training sentences, and the standard test set of 2012 sentences. Results are averaged
over 5 different random subsets. Results on this loopy data set are presented in Table 5.
Again, the piecewise estimator performs better both than either version of pseudolikelihood
and than maximum-likelihood estimation using belief propagation. On this small subset,
approximate maximum likelihood training with BP requires 1.8 h, but piecewise training is
still twice as fast, using 0.83 h.

5.1.3 Information extraction (skip-chain CRF)

Results on this model are given in Table 6. Pseudolikelihood performs particularly poorly on
this model. Piecewise estimation performs much better, but worse than approximate training
using BP.

Piecewise training is faster than loopy BP: in our implementation piecewise training
used on average 3.5 hr, while loopy BP used 6.8 hr. To get these loopy BP results, how-
ever, we must carefully initialize the training procedure from the linear-chain parameters, as
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Table 7 Comparison of basic
piecewise training to reweighted
piecewise bound with uniform μ

Model Basic Reweighted

Linear-chain 91.2 90.4

FCRF 88.1 86.4

Skip-chain (location) 87.7 75.5

Skip-chain (speaker) 75.4 69.2

discussed in Sutton (2008). For example, if instead we initialize the model to the uniform
distribution, not only does loopy BP training take much longer, over 10 hours, but testing
performance is much worse, because the convex optimization procedure has difficulty with
noisier gradients. With uniform initialization, loopy BP does not converge for all training
instances, especially at early iterations of training. Carefully initializing the model parame-
ters seems to alleviate these issues, but this model-specific tweaking was unnecessary for
piecewise training.

5.1.4 Reweighted piecewise training

In this section, we evaluate a simple version of reweighted piecewise training (Sect. 3.5;
(35)). in which the pieces are weighted by a convex combination. The performance of
reweighted piecewise training with uniform μa is presented in Table 7. In all cases, the
reweighted piecewise method performs worse than the basic piecewise method.

What seems be happening is that in each of these models, there are several hundred
edges, so that the weight μa for each region is rather small, e.g., about 0.01. Because the
reweighting happens in the log domain (see (35)), the small weights have a strong annealing
effect, so that the summation over ya in (35) is dominated by the assignment that has the
maximum value of θ�

a fa(ya,xa).
To be clear, these results are for a single, fixed value of the per-piece weights {μa}. Opti-

mizing the bound with respect to all the {μa} would presumably perform better, although at
a larger computational cost. It is also possible that more general reweighting schemes, that
do not require the weights to sum to one, may perform better. For some results in this vein,
see Shotton et al. (2006).

5.2 Piecewise pseudolikelihood

In this section, we compare PWPL to both regular piecewise and pseudolikelihood on both
synthetic and real-world data. On synthetic data (Sect. 5.2.1), we find that PWPL works
better than PL for small amounts of training data, but PL works better when the training set
is larger, confirming the intuition resulting from the asymptotic arguments of Section 4.2.
Second, on real-world NLP data sets (Sect. 5.2.2), we find that PWPL performs often com-
parably to piecewise training and to maximum likelihood, and always better than pseudo-
likelihood. Furthermore, PWPL can be as much as ten times faster than batch CRF training.

5.2.1 Synthetic data

In Sect. 4.2, we argued intuitively that PWPL may perform better on small data sets, and
pseudolikelihood on larger ones. In this section we verify this intuition in experiments on
synthetic data. The general setup is replicated from Lafferty et al. (2001). We generate data
from a second-order HMM with transition probabilities

pα(yt |yt−1, yt−2) = αp2(yt |yt−1, yt−2) + (1 − α)p1(yt |yt−1) (43)
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Fig. 3 Comparison of piecewise
to pseudolikelihood on synthetic
data. Pseudolikelihood has
slightly better accuracy on
training instances than piecewise
(PW and PWPL perform exactly
the same; this is not shown)

and emission probabilities

pα(xt |yt , xt−1) = αp2(xt |yt , xt−1) + (1 − α)p1(xt |yt ). (44)

Thus, for α = 0, the generating distribution pα is a first-order HMM, and for α = 1, it is an
autoregressive second-order HMM. We compare different approximate methods for training
a first-order CRF. Therefore higher values of α make the learning problem more difficult,
because the model family does not contain second-order dependencies. We use five states
and 26 possible observation values. For each setting of α, we sample 25 different generating
distributions. From each generating distribution we sample 1,000 training instances of length
25, and 1,000 testing instances. We use α ∈ {0,0.1,0.25,0.5,0.75,1.0}, for 150 synthetic
generating models in all.

First, we find that piecewise pseudolikelihood performs almost identically to PW. Aver-
aged over the 150 data sets, the mean difference in testing error between piecewise pseudo-
likelihood and piecewise is 0.002, and the correlation is 0.999.

Second, we compare PWPL to traditional pseudolikelihood. On this data, pseudolikeli-
hood performs slightly better overall, but the difference is not statistically significant (paired
t-test; p > 0.1). However, when we examine the accuracy as a function of training set size
(Fig. 4), we notice an interesting two-regime behavior. Both PWPL and pseudolikelihood
seem to be converging to a limit, and the eventual pseudolikelihood limit is higher than
PWPL, but PWPL converges to its limit faster. This is exactly the behavior intuitively pre-
dicted by the argument in Sect. 4.2: that PWPL can converge to the piecewise solution in
less training data than pseudolikelihood to its (potentially better) solution.

Of course, the training set sizes considered in Fig. 4 are fairly small, but this is exactly
the case we are interested in, because on natural language tasks, even when hundreds of
thousands of words of labeled data are available, this is still a small amount of data compared
to the number of useful features.
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Fig. 4 Learning curves for
PWPL and pseudolikelihood. For
smaller amounts of training data
PWPL performs better than
pseudolikelihood, but for larger
data sets, the situation is reversed

5.2.2 Real-world data

Now we compare piecewise training and piecewise pseudolikelihood on the NLP tasks de-
scribed earlier: POS tagging, NER, chunking, and information extraction. For the POS tag-
ging task, we use five randomly-chosen subsets of 1911 sentences for training. For the NER
task, we use the standard training and test split in the CoNLL 2003 data set; we report results
on the development set. For the chunking task, we use five randomly-chosen subsets of 447
sentences for training, and the standard test set. Finally, for the information extraction task,
we use 10-fold cross validation with a 50/50 training-test split.

On the first three tasks—part-of-speech tagging, chunking, and NER—piecewise pseudo-
likelihood and standard piecewise training have equivalent accuracy both to each other and
to maximum likelihood (Table 8). Despite this, piecewise pseudolikelihood is much more
efficient than PW (Table 8). On the named-entity data, which has the fewest labels, PWPL
uses 75% of the time of PW, a modest improvement. On the data sets with more labels, the
difference is more dramatic: on the POS data, PWPL uses 16% of the time of piecewise and
on the chunking data, PWPL needs only 13%. Similarly, PWPL is also between is 5 to 10
times faster than maximum likelihood.

The training times of the baseline methods may appear relatively modest. If so, this is
because for both the chunking and POS data sets, we use relatively small subsets of the full
training data, to make running this comparison more convenient. This makes the absolute
difference in training time even more meaningful than it may appear at first. Also, it may
appear from Table 8 that PWPL is faster than standard pseudolikelihood, but the apparent
difference is due to low-level inefficiencies in our implementation. In fact the two algorithms
have similar complexity.

On the skip chain data (Table 9), PW performs worse than exact training using BP, and
piecewise pseudolikelihood performs worse than PW. Both piecewise methods, however,
perform better than pseudolikelihood.

As predicted in Sect. 4.2, pseudolikelihood is indeed a better approximation on the node-
split graph. In Table 8, PL performs much worse than maximum likelihood (ML), but PWPL
performs only slightly worse than PW. In Table 9, the difference between PWPL and PW is
larger, but still less than the difference between PL and ML.
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Table 8 Comparison of piecewise pseudolikelihood to PW and to pseudolikelihood on real-world NLP tasks.
Piecewise pseudolikelihood is in all cases comparable to piecewise, and on two of the data sets superior to
pseudolikelihood

ML PL PW PWPL

POS

Accuracy 94.4 ±0.07 94.4 ±0.05 94.3 ±0.08 94.4 ±0.07

Time (s) 33846 ±6800 6705 ±740 23537 ±8700 3911 ±1500

Chunking

Accuracy 91.4 ±0.21 90.3 ±0.19 91.7 ±0.14 91.4 ±0.12

Time (s) 24769 ±6183 1534 ±165 5708 ±701 766 ±83

Named-entity

Chunk F1 90.5 85.1 90.5 90.3

Time (s) 52396 8651 6311 4780

Table 9 F1 performance of PWPL, piecewise, and pseudolikelihood on information extraction from seminar
announcements. Both the mean and standard deviation over the 10 folds are shown. Both PW and piecewise
pseudolikelihood outperform pseudolikelihood

BP PL PW PWPL

START-TIME 96.5 ±2.3 82.2 ±6.1 97.1 ±0.42 94.1 ±0.78

END-TIME 95.9 ±2.4 73.4 ±3.8 96.5 ±0.49 90.4 ±2.7

LOCATION 85.8 ±5.2 73.0 ±2.1 88.1 ±1.2 85.3 ±1.6

SPEAKER 74.5 ±5.7 27.9 ±3.1 72.7 ±3.1 65.0 ±5.2

6 Related work

Because the piecewise estimator is such an intuitively appealing method, it has been used
in several scattered places in the literature, for tasks such as information extraction (Wellner
et al. 2004), collective classification (Greiner et al. 2005), and computer vision (Freeman
et al. 2000). In these papers, the piecewise method is reported as a successful heuristic for
training large models, but its performance is not compared against other training methods.
We are unaware of previous work systematically studying this procedure in its own right.

Local training methods have recently been the subject of much interest (Abbeel et al.
2005; Toutanova et al. 2003; Punyakanok et al. 2005). The local training method most
closely connected to the current work is pseudolikelihood (Besag 1975, 1977). The differ-
ence in the current work is that regular piecewise training does not condition on neighboring
nodes, but ignores them altogether during training. This is depicted schematically by the
factor graphs in Fig. 5. In pseudolikelihood, each locally-normalized term for a variable or
edge in pseudolikelihood includes contributions from a number of factors that connect to
the neighbors whose observed values are taken from labeled training data. All these factors
are circled in the top section of Fig. 5. In piecewise training, each factor becomes an in-
dependently, locally-normalized term in the objective function. PWPL, on the other hand,
conditions on some of the variables in the Markov blanket, but not on all of them, like
standard pseudolikelihood. We are unaware of previous variants of pseudolikelihood that
condition on less than the full Markov blanket.
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Fig. 5 Schematic factor-graph
depiction of the difference
between pseudolikelihood (top)
and piecewise training (bottom).
Each term in pseudolikelihood
normalizes the product of many
factors (as circled), while
piecewise training normalizes
over one factor at a time

Huang and Ogata (1999) consider the asymptotic properties of generalized pseudolike-
lihood estimators whose local conditional terms predict subgraphs of the model rather than
single nodes. A special case of this is the pairwise pseudolikelihood that we compare against
in Sect. 5.1.

Also, in statistics there has been work on general families of surrogate likelihoods, called
composite likelihoods, which are sums of marginal or conditional log likelihoods (Lindsay
1988; Cox and Reid 2004). Such composite likelihoods are consistent and asymptotically
normal under relatively general assumptions. An example of using a composite likelihood on
structured models for natural-language data is given by Kakade et al. (2002). But these are
designed for a different situation than ours, namely when the joint likelihoods are difficult
to compute but marginal likelihoods are easier to work with. An example of this situation is
the multivariate Gaussian. In our context, marginal likelihoods are difficult to compute, so
composite likelihoods are not as useful. The piecewise likelihood is not a type of composite
likelihood, because in the likelihood of each piece, the contribution of the rest of the model
is ignored, not marginalized out.

Independently, Choi et al. (2007) present a node-splitting technique for upper bounds
during inference, which is closely related to the piecewise upper bound that we use here for
learning.

An interesting connection exists between piecewise pseudolikelihood and maximum en-
tropy Markov models (MEMMs) (Ratnaparkhi 1996; McCallum et al. 2000). In a linear
chain with variables y1 . . . yT , we can write the piecewise pseudolikelihood as

�PWPL(θ;x,y) =
T∑

t=1

logpLCL(yt |yt−1,x)pLCL(yt−1|yt ,x). (45)

The first part of (45) is exactly the likelihood for an MEMM, and the second part is the
likelihood of a backward MEMM. Although this viewpoint is interesting, it does not really
explain the performance of PWPL, for two reasons. First, on NLP tasks, backward MEMMs
tend to perform worse than forward MEMMs, so it is not immediately clear why combining
the likelihoods of a forward and a backward MEMM would work better than either one
individually. The connection to pseudolikelihood and piecewise training seems to be more
illuminating in this regard. Second, the local normalization in MEMMs is part of the model,
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not part of the training procedure. To explain what we mean by this, consider a forward-only
MEMM, that is,

p(y|x) =
T∏

t=1

pLCL(yt |yt−1,x) =
T∏

t=1

�t(yt , yt−1,x)
∑

y′
t
�t (y

′
t , yt−1,x)

. (46)

Each factor pLCL(yt |yt−1,x) contains a local normalizer, which sums only on yt (these are the
denominators in (46)). These local normalization factors are considered part of the model;
concretely, this means that when we receive a new input x′ from the test data, the maximum-
probability assignment is

y∗ = arg max
y

T∏

t=1

�t(yt , yt−1,x)
∑

y′
t
�t (y

′
t , yt−1,x)

. (47)

In contrast, in PWPL, the local normalization factors are not considered part of the model.
For example, to make an analog to (45), in a linear-chain CRF trained by PWPL, the
maximum-probability assignment for a test input x is still computed as

y∗ = arg max
y

T∏

t=1

�t(yt , yt−1,x). (48)

That is, the local normalization factors are removed at test time. MEMMs crucially depend
on including the local normalization factors at test time: In an MEMM, if the local nor-
malization factors are dropped at test time, then the predictions are very poor. Without the
connections to piecewise training and to pseudolikelihood, it is not clear why normalization
at test time is required when training a forward MEMM but not when training using (45).

Piecewise pseudolikelihood also has an interesting connection to search-based learning
methods (Daumé and Marcu 2005). Such methods learn a model to predict the next state of
a local search procedure from a current state. Typically, training is viewed as classification,
where the correct next states are positive examples, and alternative next states are negative
examples. One view of the current work is that it incorporates backward training examples,
that attempt to predict the previous search state given the current state.

Finally, stochastic gradient methods, which make gradient steps based on subsets of the
data, have recently been shown to converge significantly faster for CRF training than batch
methods, which evaluate the gradient of the entire data set before updating the parame-
ters (Vishwanathan et al. 2006). Stochastic gradient methods are currently the method of
choice for training linear-chain CRFs, especially when the data set is large and redundant.
However, stochastic gradient methods can also be used to optimize both standard piecewise
likelihood and piecewise pseudolikelihood. Thus, although the training time of our baselines
could likely be improved considerably, the same is true of our new approaches, so that our
comparison is fair.

Also, in some cases, such as in relational learning problems, the data are not iid, and the
model includes explicit dependencies between the training instances. For such a model, it is
unclear how to apply stochastic gradient, but piecewise pseudolikelihood may still be useful.
Finally, stochastic gradient methods do not address cases in which the variables have large
cardinality, or when the graphical structure of a single training instance is intractable.

One challenge in the piecewise method is that it is not immediately clear how to extend it
to the case of latent variables, because if the same latent variable occurs in different pieces, it
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may have different semantics. Recently, Liang et al. (2006, 2008) have presented a method in
a similar spirit to piecewise training, but that handles latent variables. They add an additional
term to the objective function that encourages pieces that share a latent variable to agree on
its distribution. They present two different EM-style algorithms for optimizing this objective
function efficiently.

Both likelihood-based methods and max-margin methods require performing inference
during training, so it is natural to wonder whether the methods presented in this paper can be
adapted to loopy max-margin models. A suggestive step in this direction is factorized MIRA
(McDonald et al. 2005), in which the margin constraints are required to hold only over single
edges, rather than the entire prediction. On a dependency parsing task, this method had
good accuracy, but it did not improve training time because the model had special structure
that made it amenable to exact inference. It may be interesting to see whether analogs of
piecewise methods work well for max-margin training on loopy models.

Earlier versions of the current work have appeared in two conference papers (Sutton and
McCallum 2005, 2007b).

Finally, an important future direction is approximate training methods that are mostly
local, but that incorporate a limited amount of influence from the rest of the model. An in-
teresting first step in this direction is Ganapathi et al. (2008), which derives a two-loop local
training algorithm by considering the maximum-entropy dual of the maximum-likelihood
problem. Their method generalizes piecewise training in two ways: first, extra features are
added to the model in order to force singe-variable marginals to be consistent with factor
marginals; and second, a scalar correction is added to the logarithm of each factor to partially
correct for overcounting in the basic piecewise procedure.

7 Conclusion

This paper has presented piecewise training, an intuitively appealing procedure that sepa-
rately trains factor subsets, called pieces, of a loopy graph. We show that this procedure can
be justified as maximizing a loose bound on the log likelihood. On three real-world lan-
guage tasks with different model structures, piecewise training outperforms several versions
of pseudolikelihood, a traditional local training method. On two of the data sets, in fact,
piecewise training is more accurate than global training using belief propagation.

Second, we have introduced an extension called piecewise pseudolikelihood, that is es-
pecially attractive when the variables in the model have large cardinality. Because PWPL
conditions on fewer variables, it can have better accuracy than standard pseudolikelihood,
and is dramatically more efficient than the standard piecewise likelihood, requiring as little
as 13% of the training time.

Many properties of piecewise training remain to be explored. Our results indicate that
in some situations piecewise training should replace pseudolikelihood as the local training
method of choice. In particular, the experiments here all used discriminative training, which
make local training easier because of the large amount of information in the conditioning
variables. In the data sets here, the local features, such as the word identity, provide a large
amount of information about the labels in their own right. In generative training, there may
be less local information, making piecewise training much less effective. On the other hand,
from the exponential family perspective, piecewise training does still match expected sta-
tistics of a subgraph to the empirical distribution, which still seems intuitively appealing.
For this reason, it is hard to give a definitive characterization of when piecewise training is
expected to work well or poorly.
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A possible explanation for the performance of piecewise training is that it acts as a form
of additional regularization, in that the objective function disfavors parameter settings that
obtain good joint likelihood by using long-distance effects of weights. For this reason, con-
nections to generalization bounds for feature selection, some of which take into account the
amount of computation, may be interesting.

Finally, a natural question is how readily the methods here extend to the case where
pieces are treated as regions that are larger than a single factor. The main challenges here
seem to lie in first, how to handle the overlaps among larger pieces, and second, how to
choose the pieces. The connection to the Bethe energy may be illuminating here.
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