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ABSTRACT OF THE DISSERTATION

Mobile Malware Propagation and Defense

by

Gjergji Zyba

Doctor of Philosophy in Computer Science

University of California, San Diego, 2013

Professor Geoffrey M. Voelker, Chair

Over recent years, mobile devices, such as smartphones and tablets, have be-

come feature-rich computing devices with networking opportunities that often surpass

those of traditional PCs. Moreover, the smartphone market alone is now bigger than the

PC market and, consequently, we see an exponential growth in the amount of mobile

malware developed. Compared to traditional malware, mobile malware exhibits unique

properties which require extensive studies to effectively protect the user. This disserta-

tion identifies propagation vectors of mobile malware and examines characteristics of

its propagation along with the effectiveness of various defense strategies.

I focus on the propagation of mobile malware when spread through direct pair-

wise communication mechanisms (e.g., Bluetooth). I evaluate, both theoretically and by

xiv



simulation, the effect of user mobility on propagation, and find that malware can infect

the entire susceptible population in days for a campus size area.

Proximity malware propagation is “invisible” to the network operator and de-

fending against it is particularly challenging. I explore three defense strategies that span

the spectrum from simple local detection to a globally coordinated defense. I find that

local proximity-based dissemination of signatures can limit malware propagation, while

the globally coordinated strategies that rely upon infrastructure within the mobile oper-

ator network can be even more effective.

Furthermore, I study the effect of user social behavior on malware propagation.

In a particular area I identify frequent and transient visitors and compare propagation

using either set or all devices. My analysis indicates that transient visitors, previously

considered unimportant, play an important role in propagation.

Because direct pair-wise device encounters significantly impact proximity mal-

ware propagation, I study the strengths and limitations of deploying static scanners

for inferring such encounters that are difficult to observe. By comparing direct and

“virtual”-scanner-inferred encounters, I indicate significant statistical differences be-

tween the two categories, and find that malware propagation appears slower using in-

ferred compared to actual encounters.

The results from our analyses give us a better understanding of the effect of

different parameters in mobile malware propagation and defense against it. Our results

also pinpoint limitations of using encounters inferred from static scanners for malware

and, generally, any data dissemination.

xv



Chapter 1

Introduction

During recent years, smartphone and tablet devices have become extremely pop-

ular due to the availability of feature-rich, custom applications. For the first time ever,

smartphone sales outpaced PC sales for the year of 2011, marking a history-making

trend [Can12]. At the same time, figures show that smartphone devices account for

about half of the total number of mobile phones in the US [Nie12]. Not only do such

devices provide a personal and portable computing environment, but they also come

with always-on connectivity. As a result, these type of portable devices are increasingly

becoming the target of malicious software, with over 17,000 variants of malware discov-

ered by early 2012, marking a 22-fold increase compared to the previous year [Res12].

In this dissertation, I term this type of malware as mobile malware.

Many of the incentives behind traditional PC malware apply also for mobile

malware. For example, mobile malware has been used for user information theft and

credential exfiltration, novelty and amusement, search engine optimization and ran-

som [FFC+11]. Moreover, the effects of user information and identity theft can be

more severe on mobile devices due to their very personal character. Users store a vari-

ety of sensitive data (e.g., address book, calendar, SMS and email messages, personal

photos and videos) in their mobile phones while they also carry the device with them

most of the time. High-profile individuals have been the early targets of attackers trying

to gain access to their sensitive data. In fact, an attacker that gets unauthorized access to

the user’s phone could not only retrieve such data but also locate (through GPS coordi-

nates) and spy on the user (Internet activity, electronic transactions, eavesdropping). On

1
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the other hand, compared to traditional PC malware, mobile malware is frequently used

for making money through premium calls and Short Message Service (SMS) messages,

resulting in excessive fees for customersbringing back memories from the era of PSTN

modems for PCs. Furthermore, the SMS creates a new vector for disseminating spam

messages, irritating customers and mobile network operators. Mobile operators are also

concerned as mobile malware poses a serious threat to their limited network resources.

Operators want to preserve QoS and retain customer confidence, but relative to the In-

ternet denial-of-service attacks require fewer resources to mount effectively [ETMP05].

The motivation for this work is that understanding how mobile malware propa-

gates is crucial in finding methods to contain it. Smartphones, compared to PCs, have

unique networking features that affect malware propagation. For example, a smart-

phone device is almost always carried by its user and it is in an always-on operating

mode. Furthermore, at any time it may be active on a number of different networking

interfaces (WiFi, Bluetooth, 3G/4G), providing multiple communication channels for

data dissemination. Mobile malware has used Bluetooth to propagate [Labg, FS] and,

more recently, the mobile operator network. In this thesis I focus on proximity malware

propagation which fundamentally depends upon encounter patterns. By exploring these

patterns I measure the dynamics of proximity malware propagation and evaluate defense

mechanisms against it.

1.1 Contributions

This thesis addresses the question of what the dynamics of mobile malware prop-

agation are, and how they differ when compared to the propagation of traditional PC

malware. I aim to identify the different scenarios of mobile malware propagation, and

further quantify them under different theoretical and realistic parameters. Furthermore, I

present methods for containing mobile malware propagation and quantify their efficacy.

First, I studied the propagation of mobile malware that spreads through direct

pair-wise communication mechanisms, such as Bluetooth or WiFi, between devices in

geographic proximity. Our study evaluated the effect of user mobility on proximity mal-

ware propagation. For this study, we used both theoretical analysis and simulation along
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with different realistic mobility parameters. I showed that, even under conservative mo-

bility parameter sets, malware can infect the entire susceptible population in a matter of

a few days in a campus size area.

Second, I explored three strategies for detecting and mitigating proximity mal-

ware: local detection, in which devices detect when they become infected and disable

further propagation, proximity signature dissemination, in which devices create content-

based signatures of malware and disseminate them via proximity communication as

well, and broadcast signature dissemination, in which a centralized server aggregates

observations from individual devices, detects propagating malware, and broadcasts sig-

natures to mobile devices. These strategies span the spectrum from simple local detec-

tion to a globally coordinated defense. I found that proximity signature dissemination

can limit malware propagation to a fraction of the susceptible population, and do so

without relying upon operator network infrastructure. The fraction of population that

becomes infected (8% to 35% in our study) is highly dependent on the local detection

thresholds. On the other hand, with the assistance of the mobile operator, broadcast

dissemination is most effective, both because the rest of the susceptible population is

immediately informed of the threat and the ability of the server to provide patches to the

infected devices.

Third, I further studied the effect of user social behavior on proximity malware

propagation. Social behavior dictates user mobility (e.g., areas someone visits the most,

frequency and duration of visits), which in turn defines the encounters between par-

ticular individuals, which subsequently impact proximity malware propagation. In my

study, I separated the population of a given area into two distinct groups based on their

social status: “Vagabonds” and “Socials”. Vagabonds are devices that appear infre-

quently, whereas Socials are devices that appear in a repetitive/predictable manner. Most

studies have considered Socials only for propagation and ignored Vagabonds because

Vagabonds are considered unimportant (as they engage in fewer contacts) and encounter

activity of such devices is limited in mobile device traces. However, I studied realistic

traces of areas with different compositions of the two separate groups and I found that

in typical scenarios Vagabonds consist of the majority of the devices. I further showed

that, in addition to the social status, the number of devices in each group can play an im-
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portant role. I showed both experimentally and analytically the “tipping” point beyond

which the population size becomes more significant than the social status, predicting

successfully when stealthy mobile malware spreads faster when using Vagabonds.

Fourth, I studied the strengths and limitations of deploying static scanners for in-

ferring device-device encounters, which in turn directly affect proximity malware propa-

gation. According to this method, devices which are detected simultaneously by a given

scanner are considered to be spatially co-located (corresponding to observed “encoun-

ters” within the scanner’s radio range). I derived analytic results on errors introduced

in scanner-based measurements for a simplified case where all scanners and devices are

static. I examined the differences between device copresence as inferred by the scanners

and actual copresence between the devices, and classified the discrepancies. Based on

this classification, I then derived the probabilities with which each type of discrepancy

will occur. Using simulation I validated our analytical finding that approximately 41%

of copresence encounters inferred by scanners do not correspond to actual device co-

presence. Also using simulation, I demonstrated the extent and impact of errors when

device mobility is included. I found that the set of encounters inferred from scanners dif-

fers from the actual encounters simulated in the model in terms of duration distribution

and probability of encountering previously unmet devices. In all our simulation cases

proximity malware showed slower propagation using scanned encounters compared to

actual encounters for devices with the same mobility characteristics.

Taken together, this dissertation fills many gaps in our current knowledge of

propagation dynamics of mobile malware. We now know to a better extent how fast

malware can spread using pair-wise contacts, and to what degree the effectiveness of

different (from local to global) defense mechanisms is. We also have a better under-

standing of the limitations of using contacts generated from static scanners for the pur-

pose of malware and, consequently, any data dissemination. I believe these limitations

should be considered by future research.

1.2 Organization

The remainder of this dissertation is organized as follows:
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Chapter 2 covers background material useful for understanding the remainder of

the dissertation and discusses related work.

Chapter 3 studies self-propagating mobile malware that spreads through direct

pair-wise communication mechanisms. I show how long it takes for proximity mal-

ware to spread over the susceptible population in a university campus area. I do so by

using synthetic generated contacts with properties similar to real contacts in captured

traces, and I validate my results with an epidemiological analytical model. Further-

more, I present three distinct defense strategies against such malware and analyze their

efficiency using our simulation framework.

Chapter 4 extends the work on proximity malware propagation with a thorough

analysis of the role of human social behavior, in terms of mobility, on malware propaga-

tion. I show how a population in an area can be separated between regular/frequent and

transitional visitors. By utilizing their encounters I show that, in addition to social status,

the number of each group plays a significant role in virulent content dissemination.

Chapter 5 explores the benefits and limitations of using statically-located scan-

ners to infer encounters between observed devices, a popular technique used by the

research community when studying pair-wise communication, including the application

of proximity malware propagation.

Finally, chapter 6.1 summarizes the work presented in this thesis and discusses

future research directions in the field of mobile malware propagation and defense.



Chapter 2

Background

More than 30 years ago, Elk Cloner, the first personal computer virus that spread

on the Apple II platform through floppy disks made its appearance. Since then, malware

has evolved significantly and we have seen a lot of changes as personal computers be-

came more popular, customizable and powerful. Seven years later the Morris worm was

the first malware that would spread automatically, without user intervention, over the In-

ternet. During the 1990s we saw a surge of macro viruses spreading through documents

(e.g., Microsoft Word files) via email messages. The first virus that had the potential to

damage hardware also appeared during that time [Labf]. The early 2000s saw the ap-

pearance of a number of viruses and worms that propagated extremely fast (ILOVEYOU,

Code Red, Nimbda, Blaster, SQL Slammer) using networking software exploits and/or

social engineering, and infected a large number of machines [MPS+03]. Also through

exploits, a significant number of Web sites, including popular sites such as MySpace and

Tom’s Hardware, would be compromised, while some of them would forward malware

to the users’ computers who visited them.

Later in the first decade of the millennium computer malware increasingly be-

came a tool for for-profit illegal activities. Infected machines from viruses and worms

like Sobig, MyDoom and Bagle would be used to disseminate billions of spam mes-

sages [Reg]. Compromised machines would form botnets centrally controlled by a third

party operator. Trojans, spyware and keyloggers would be used for stealing credit card

numbers and user credentials, while rootkits would be employed to make malware non-

detectable.

6
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The history of malware for personal computers repeats on mobile phones, but in

a much shorter time span. As smartphones become more and more powerful and pop-

ular, they also increasingly become a target for malware. The first instances of mobile

malware date back to 2004. That year Cabir, a worm that propagated through Bluetooth

between Symbian devices, made its first appearance [Labg] . Although Cabir was just a

harmless proof-of-concept worm, later malware would use Cabir’s propagating mecha-

nism to spread. Around the same time, Skuller was the first malware that would use a

system flaw and override system files on Symbian devices [Tro]. Its name comes from

the fact that it was replacing OS icons with a skull and crossbones and disabling the

device once it was restarted. Also during the same year, Mosquit, the first malware for

financial gain, appeared [Labe]. It was a Trojan horse that would send SMS messages

without user permission to premium numbers. Shortly after, Commwarrior, a worm

that propagated using either Bluetooth or MMS messages, made its first appearance.

By September 2005, Commwarrior was detected to have spread in more than 20 coun-

tries around the globe [Labb]. However, due to the limited target population (it infected

certain Symbian devices) no major outbreak has been recorded.

Until 2009, the mobile malware scene remained mostly unchanged. Malware

writers used Bluetooth as the main propagation vector of the malicious payload, while

Symbian remained the main targeted smartphone platform, followed by Microsoft Win-

dows Mobile. The smartphone market was increasing rapidly but still a very small frac-

tion of the mobile phone market. In the meantime, cellular operators employed effective

measurements against MMS propagating malware through content filtering [Labc]. The

malicious users made most of their profit through Trojan horses which sent SMS mes-

sages to premium numbers without user permission. This malware was installed mainly

through social engineering (e.g., luring WAP pages common for feature phones with

Java 2 Platform, Micro Edition (J2ME) or Bluetooth content-sharing invitations) [Labd].

The introduction of the iPhone in 2008 and later the Android OS changed the

mobile malware scene considerably. Currently, iOS and Android are the dominant

smartphone platforms. Smartphones are easier to use, and provide a full-featured Web

browsing experience. Furthermore, custom feature-rich applications are available for

download through “app markets” managed by Apple and Google. Not surprisingly, mo-
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bile malware followed the trend.

Ike was the first worm for the iPhone. However, for it to propagate the device

had to be jailbroken and the ssh password to be unchanged — two significant parameters

that limited its propagation [Labd]. In fact, iOS devices can be effectively infected only

through exploits, since the application market is very well controlled by Apple and

users cannot install applications from unknown parties [McA]. This situation is the

main reason why we have not seen a major malware outbreak for iPhones, even though

they consist of a considerable fraction of the smartphone market.

However, this situation is not true for the Android platform which currently is

the exclusive target for malware. Soon after the first Android phones were released,

FakePlayer, an SMS Trojan horse, became one of the first malware apps targeting this

platform [Labd]. FakePlayer’s propagation was fairly simple: As soon as the user visited

an adult content Web site and accepted the media player app to be installed, the device

would become infected and immediately start sending premium rated SMS messages in

the background. For FakePlayer to be installed, the user had to allow software instal-

lation from unknown sources and willingly download and install the app. The Trojan

horse targeted Russian devices and did not become popular. Nevertheless, it was the

first recorded malware for the Android platform.

The past two years have seen a tremendous increase in malware counts while

malware complexity has also significantly increased. We have seen the appearance

of botnet agents and backdoors for smartphones, spyware that steals user’s data (from

contacts, messages, phone calls and eavesdropping), Trojan horses that steal money

(either through premium SMS messages, banking transactions, or credit card creden-

tials) [Mob]. At the time of this dissertation, most of such malware employs social

engineering along with the operator’s IP network infrastructure to propagate (mostly

through the Web). During this time, we also saw the first malware appearing on the

Android application market itself (which lacks effective threat analysis [McA]) and as

of January 2013, 99% of new malware targets the Android platform [Laba]. Pandora’s

box of malware seems to have finally opened!

The rest of this chapter outlines the current research literature on mobile malware

propagation and defense through proximity mechanisms such as Bluetooth. Further re-
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lated work on the impact of social behavior of users, in terms of mobility, on malware

propagation is also presented, as well as previous research on inferring device encoun-

ters from real world traces.

2.1 Proximity malware propagation

Proximity malware propagation fundamentally depends upon user mobility dy-

namics. Data representing user mobility can be either collected from the real world or

synthetically generated. Alternatively, analytic techniques can be used to model human

interactions. Using either approach, a number of studies have demonstrated the threat

of malware propagation on mobile phones through proximity vectors such as Bluetooth.

Specifically, Su et al. gathered Bluetooth scanner traces and used simulation to

demonstrate that malware propagation via Bluetooth is viable, and explore its propaga-

tion dynamics [SCM+06]. Kostakos et al. also simulated the propagation of proximity

malware on extensive scanner traces of a downtown city center [Kos07]. The main

drawback of using real world captured traces of user mobility for measuring malware

propagation is that they represent a limited subset of devices and device-to-device en-

counters in an area. Additionally, different encounter assumptions can introduce errors

which can confound certain statistical characteristics of human encounters.

Previous work on analytic models and malware propagation simulation using

synthetic traces strived to accurately describe malware propagation over Bluetooth or

other forms of proximity connections [YE07, MN05, RN08, ZLG06]. Yan et al. de-

veloped a detailed Bluetooth worm simulation [YE06] and analytic model [YE07], and

showed that mobility can have a significant effect on propagation dynamics by simulat-

ing with different mobility models [YFC+07]. The main issue with analytic models is

that they do not capture spatial locality well; they can only roughly approximate mobil-

ity dynamics and are heavily dependent on the mobility assumptions [YFC+07].

In this dissertation, I drew upon all three approaches (simulation with either real

captured traces or synthetic traces, and analytic models) to inform our study. The Blue-

tooth scanner traces I gathered, for example, are similar to previous efforts [SCM+06,

Kos07]. I used simple epidemic models to verify the operation of our simulator and
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as a means for validating our simulation results. Going beyond simple random walk

models [YE06], I used the Levy walk model for generating synthetic mobility traces;

this model can describe the mobility patterns of a human being relatively well for con-

centrated areas [RSH+08]. Recently, González et al. tracked mobile devices at large

geographic scales (up to 1,000 km), showing that the Levy walk model is not as repre-

sentative at those scales [GHB08]. However, I focused at much smaller scales, where

spatial locality makes proximity malware most virulent.

2.2 Defending against proximity malware

Defending against proximity malware is challenging, mainly due to the fact that

the propagation of such malware may not be visible through centralized networks (such

as the mobile operator’s network). As such, traditional network telescopes will fail to

observe the propagation. Therefore, the only option is to start the defense at the device

itself. Little work has previously focused on defense against proximity malware. Bose

et al. and Kim et al. proposed two techniques for using behavioral signatures [BHSP08]

and power signatures [KSS08] for locally detecting malware on mobile devices. Re-

cently, antivirus applications have been available for the major mobile OS platforms.

However, these applications need to be supplied with a set of signatures to be effective

and may fail to detect a virulent dissemination of previously unseen malware instances

such as zero-day exploits.

In this dissertation I investigated how such local detection impacts the overall

propagation of malware in a population, particularly if devices actively coordinate to

mitigate it. Therefore, our work is complimentary to the aforementioned local detec-

tion approaches in that they represent methods for deciding when a device has become

infected (although malware may continue to propagate in the meantime). Thus, our pri-

mary goal is to understand the effectiveness of defenses, not to develop new mobility

and modeling techniques.
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2.3 User social behavior and proximity malware propa-

gation

Proximity malware propagation is dependent on human encounters, which in

turn depend on where, when, and how often people meet each other: their social be-

havior. For example, two coworkers will highly likely be in the same location for hours

every day. Similarly, a teacher will meet her pupils on a daily basis. On the other hand,

visitors to a university campus to give talks may have few local contacts before going

back to the place they spend most of the time. In either of the above cases, the contacts

between individuals are governed to a certain degree by their social habits and behavior.

Various studies have looked at the impact of social behavior on oportunistic mo-

bile ad-hoc networks. Proximity malware propagation is effectively an application of

message dissemination over temporary spacial ad-hoc connections.Routing protocols

such as SimBet [HSL10] [DH07], Bubble Rap [HCY08] and PeopleRank [MMDA10]

use social-based metrics derived from contacts between devices (such as betweenness

centrality and neighborhood similarity) to make opportunistic forwarding decisions with

low overhead. Protocols using explicit knowledge of friendship relationships have also

been proposed and shown to improve efficiency over existing socially agnostic proto-

cols [BRB+08, MCL+08]. All of the above protocols route over “strong ties” among

mobile users, inferred either from contact behavior or declared friendships. In this dis-

sertation, we extended these previous efforts by exploring the role and potential of de-

vices carried by users that appear infrequently in an area (such as academic visitors

above) for communication and data dissemination. Previous routing protocols ignored

such devices (that I name Vagabonds) and, to the best of our knowledge, our work is the

first to study their effect on virulent data dissemination.

Beyond routing, social networking concepts have been used in mobile oppor-

tunistic applications such as publish/subscribe systems [CMMP08, YHCC07], news

feed [ICM09] and query propagation [MGC+07, MSN05], and multicasting [GLZC09,

POL+09]. These systems make use of social networking concepts like node central-

ity [YHCC07], friendship relationships between nodes [MGC+07, POL+09, YHCC07],

hotspots [MSN05], contact usefulness [CMMP08] and edge expansion [ICM09]. Our
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analysis focused mostly on epidemic message dissemination; nevertheless, our under-

standing of the effect of Vagabonds motivates further study of their effect on the behavior

of applications like the ones described above.

2.4 Inferring device encounters for proximity malware

propagation

Although several studies have considered propagation dynamics of, and de-

fense strategies against, malware using proximity-based propagation [MN05, YHC07,

SCM+06, YE07, BHSP08], access to empirical data on which to base such studies is

currently limited. What is required is either direct data on malware propagation, which

is not generally available, or information about device encounters with which one can

model propagation of malware.

In the absence of direct encounter data, human mobility data can also be used

to infer encounters by considering spatial proximity between individuals. While human

mobility data can be captured at a fine resolution under certain conditions, e.g., by using

GPS traces, requiring users to record their movements is typically considered intrusive

and onerous. As a result, studies that gathered such data had typically involved dozens

or, at most, hundreds of users in a limited geographical area [KKK06, RSH+08].

At the other end of the spectrum in terms of number of users and data granularity,

recent work has utilized mobility data from mobile network operators (based on mobile

phone and base station associations) [GHB08, SQBB10, ZB07]. This approach provides

coarse mobility data for large numbers of users in a potentially large geographic area,

but does not make it possible to determine when individual devices encounter each other

and, for instance, are able to connect via Bluetooth.

Another option, when interested in Bluetooth connectivity, is to directly collect

data by deploying an application on participants’ Bluetooth devices which periodically

scan for discoverable Bluetooth devices in range. However, as in the case of gathering

GPS data, this approach is challenging in terms of both user effort and privacy. The

Reality Mining project collected Bluetooth traces from approximately 100 users over

a period of nine months [EP06] using an application installed on cellphones; however,
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the devices scanned only once every five minutes, which is likely to have led to shorter

copresence encounters going undetected. In [CHC+05], portable Bluetooth scanners

were carried by up to twelve users for a period of five days, with scans being conducted

every two minutes.

Some of the earliest papers on Bluetooth malware included empirical tests where

Bluetooth devices were carried around to collect data on other discoverable Bluetooth

devices encountered [SCM+06, CMZ07]. In both of these studies, however, the volume

of data gathered directly from devices was not sufficient to be used as a veridical source

of encounter data for modeling a malware outbreak. Instead, Su et al. [SCM+06] used

the Reality Mining encounter data [EP06], while Carettoni et al. [CMZ07] used char-

acteristics derived from their empirical data to parameterize a mobility trace generator

based on social network theory [MM06].

Given the difficulty in gathering sufficient data directly from devices, other work

has used fixed Bluetooth scanners to collect data on mobile Bluetooth devices passing

by, including inference of what I call “copresence encounters” from the simultaneous

presence of devices within the scanner’s range [OKK+06, KOP+10]. The Bluetooth

scanning approach enables the collection of data for large numbers of devices over long

periods of time, but has its own limitations in studying proximity-based malware propa-

gation. These issues have not been systematically examined in the literature and in this

dissertation we explored the benefits as well as the limitations of this approach.



Chapter 3

Defense Against Proximity Malware

As we previously mentioned, mobile phones are increasingly becoming the tar-

get of malware. The potential effects of virulent malware propagation on consumers and

mobile network operators are severe, including identity and information theft, perma-

nently disabling devices (“bricking”), and excessive fees to customers or loss of revenue

for mobile network operators.

As on the Internet, malware can use the mobile phone network to propagate.

However, malware quickly encounters resource bottlenecks due to how mobile phone

networks are provisioned. More importantly, with the ability to both centrally monitor

and block propagating malware, mobile phone networks can quickly detect malware and

employ defenses to contain it before it infects much of the susceptible device popula-

tion [FLJ+07].

Mobile malware, however, has another opportunity for propagation. It can prop-

agate through direct pair-wise communication mechanisms, such as Bluetooth or WiFi,

between devices in geographic proximity [Labg, FS]. Although slower than propagating

over the network, proximity malware has the compelling advantage of being unobserved

by the mobile network operator — making detecting proximity malware substantially

more challenging.

In this chapter, we consider the dynamics of mobile phone malware that propa-

gates by proximity contact, and we evaluate potential defenses against it. The dynamics

of proximity propagation inherently depend upon the mobility dynamics of a user pop-

ulation in a given geographic region. Unfortunately, there is no ideal methodology for

14
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modeling user mobility. Traces of mobile user contacts reflect actual behavior, but they

are difficult to generalize and only capture a subset of all contacts due to a lack of ge-

ographic coverage. Analytic epidemiological models are efficient to compute and scale

well, but simplify many details. Synthetic models are flexible and provide the necessary

geographic coverage, but lack the full authenticity of user mobility traces.

Lacking a single ideal method, we used all three approaches to study proximity

malware propagation at the scale of a university campus. For evaluating detection and

defense, we used the Levy walk synthetic mobility model because it provides complete

geographic coverage of user contact dynamics, and previous work has shown it to be

much more realistic than other synthetic models [RSH+08]. We alsod use traces from

Bluetooth scanners collected over seven months on the UCSD campus to corroborate

the propagation results from the synthetic model. Finally, we used an analytic model as

yet another method to cross-validate the baseline results of our simulator. Using mul-

tiple methods provides confidence in the implementation of our simulator and mobility

modeling.

Defending against proximity malware is particularly challenging since it is dif-

ficult to piece together global dynamics from just pair-wise device interactions. Tradi-

tional network defenses depend upon observing aggregated network activity to detect

correlated or anomalous behavior. With proximity malware, however, observations are

inherently local since they do not involve network infrastructure. Proximity malware

detection, therefore, must begin at the device.

We explored three strategies for detecting and mitigating proximity malware:

local detection, in which devices detect when they become infected and disable further

propagation; proximity signature dissemination, in which devices create content-based

signatures of malware and disseminate them via proximity communication as well; and

broadcast signature dissemination, in which a centralized server aggregates observa-

tions from individual devices, detects propagating malware, and broadcasts signatures

to mobile devices. These strategies span the spectrum from simple local detection to

a globally coordinated defense. We found that proximity signature dissemination can

limit malware propagation to a fraction of the susceptible population, and does so with-

out relying upon mobile network infrastructure. However, with the assistance of the
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mobile network operator, broadcast dissemination is most effective.

The rest of this chapter is organized as follows. Section 3.1 describes the infec-

tion models we considered, our simulation and analytic methods, and traces we used

as input. Section 3.2 describes three defense strategies to proximity malware, and Sec-

tion 3.3 evaluates their effectiveness on containing propagation. Finally, we summarize

the findings of this work in Section 3.4.

3.1 Methodology

In this section we describe our methodology for studying proximity malware

propagation. Fundamental to propagation is modeling how devices encounter each other

as a basis for infection. We explore the use of three methods — traces of real user

encounters, a synthetic model of user mobility, and an analytic model — and discuss

how the methods can complement and corroborate each other, while also highlighting

limitations in the process.

3.1.1 Simulating malware propagation

We simulated relatively simple, aggressive proximity malware. Such malware

may exploit vulnerabilities in the communication stack [SCM+06], or it may depend

upon user interaction for successful infection [Labg]. Although relying upon user inter-

action may seem naive, such social networking “exploits” can be surprisingly effective.

For example, the Cabir [Labg] worm periodically searches for discoverable devices via

Bluetooth. If it finds a device, it asks to send a file using the OBEX protocol and waits

for the remote user to accept. Cabir locks itself on that device until the victim accepts

or goes out of range. In either case, it will search again for other devices. Commwar-

rior [FS] uses both MMS and Bluetooth to propagate. With Bluetooth, it searches for

nearby discoverable devices as Cabir does. Instead of locking itself on one device,

though, it asks multiple devices for a file transfer and sends to each device that accepts

the file transfer a copy of the infectious file (as long as they remain within range).

We implemented a software simulator to model malware propagation and eval-

uate defense strategies. Our simulator accepts as input device encounters, i.e., events
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corresponding to when two devices start or stop being able to communicate with each

other. We generated such events either from real traces or synthetic models. When two

devices come within range of each other, the simulator adds them to a proximity list

for each device. When devices move too far away to communicate, the simulator re-

moves them from the lists. At any point in time, the simulator tracks whether devices

are infected, communicating, disabled, etc.

The simulator models aggressive malware propagation. If an infected device

is not busy (not currently communicating with another device), it will randomly pick

up an idle device (not currently communicating) from its proximity list that it has not

communicated with before. If it is unable to find a new idle device, it will remain idle

until another device contacts it or is added to its proximity list. An infection takes some

amount of time corresponding to delays due to Bluetooth association, file transfer, user

interaction, malware execution time, etc. After this parameterized infection latency, the

simulator changes the state of a vulnerable target to infected, and both devices are free to

continue the propagation. The simulator also models a fraction s of the mobile devices

as susceptible targets of infection. Parameterizing susceptibility in a device population

models such variabilities as hardware platform, software versioning, or user response,

all of which may prevent malware from infecting a particular device. The simulator

outputs the state of devices over time and the interactions that cause an infection. We

use this output to compare different propagation scenarios and methodologies.

3.1.2 Real Traces

The primary advantage of trace data is that it reflects actual user behavior. Com-

plementing other efforts [SCM+06, Kos07], we collected trace data of user contacts

using Bluetooth scanners installed at six active locations (the food court, main library

entrance, etc.) on the UCSD campus. The scanners continuously scan for the presence

of discoverable Bluetooth devices, sampling on average every 10 seconds, and store the

scan results to a central database. Each record stores the unique ID for the device and

the time that the device enters or leaves the proximity of a scanner; we assume that a

device has left if it does not appear in a scanner scan list after 60 seconds. Over the span

of seven months, these scanners recorded more than 1.6 million events for over 8,000
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devices.

We transformed raw scan data into device contact events in two steps. First, we

calculated the time intervals for which a device is within range of a scanner. Then, for

each scanner, we determined all devices whose intervals overlap in time, and defined

such devices to be in proximity contact with each other. As with previous studies, we

made the assumption that two devices can communicate with each other if they are

detected by the same scanner. Note that this assumption may include devices that may

not actually be able to directly communicate since the actual locations of the devices

is not known relative to the scanner position; for malware propagation, this assumption

tends to be conservative since it may provide more opportunities for propagation than in

actuality.

Since malware will take time to propagate between two devices, we keep track

of the durations for which two devices are in contact. The simulator tracks malware

propagation time to model whether the contact duration of two devices is long enough

for malware to successfully propagate between them.

3.1.3 Synthetic Traces

One limitation with using real traces is that it is difficult to cover an entire ge-

ographic area with scanners. As a result, real traces will not capture device contacts

outside of scanner range, potentially influencing propagation results. An alternative is

to use a synthetic mobility model to produce device contacts for an entire geographic

area, albeit an area simplified from any particular real location.

We used the Levy walk mobility model to generate synthetic device contact

events. Previous work has shown that the Levy walk model can describe the mobility

patterns of a human being relatively well for a campus-sized area [RSH+08] (although

perhaps not at larger scales [GHB08]). A Levy walk is a collection of flights, angles, and

wait times. A flight is a straight line of movement of a given distance. An angle denotes

the turning angle at the end of the flight. A wait time is the waiting time between two

subsequent flights. Flight length and wait time are calculated from the Levy distribution

with some scale factor c (10 for flight length and 1 for wait time) and two parameters a

and b.
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Figure 3.1: CDF of encounter durations using the Levy walk mobility model.

Parameters a and b affect the flight length (and speed, consequently) and wait

time distributions, respectively. Rhee et al. derive different parameters for various user

traces collected across a wide range of settings, from university campuses to amuse-

ment parks [RSH+08]. The parameter values typically range between 0.5–1.5 and re-

flect the geographic characteristics of the place; some places tend to have more “lo-

calized” movements than others. Note that smaller values reflect longer flight lengths

and wait times. From their experiments, for example, the “San Francisco” (SF) traces

(a = 0.75,b = 1.68) give the highest contact rate, “KAIST” traces (a = 0.97,b = 0.45)

the lowest, and the “NCSU” traces (a = 0.86,b = 0.99) strike a balance between the

two. A contact between two devices happens when the devices come within 10 meter

range of each other (a reasonable distance for Bluetooth).

Recall that the simulator takes into account the infection latency, or the time it

takes one device to infect another. For a successful infection, the devices must be in

range long enough for a transfer to take place. Figure 3.1 shows the distribution of

contact durations for the “SF”, “NCSU”, and “KAIST” parameterizations of the Levy

walk model. Unless otherwise specified, in our experiments we used an infection latency

of 10 seconds. Although this value might seem high at first, Bluetooth handshakes take

at least five seconds, and transferring malware files the size of Cabir and Commwarrior

double that time. As a result, infection latency substantially reduces the number of
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(b) Virtual scanners with Levy walk device mobility

Figure 3.2: Distributions of unique device contacts: y devices encountered x other

unique devices.

infection opportunities in practice. For the “NCSU” Levy parameters, for example, only

25.4% of all encounters have sufficient duration to permit an infection.

3.1.4 Analytic Epidemic Models

To verify the operation of our simulator and to provide an additional means of

comparison, we also employed a simple analytical SI epidemic model [DG99]. This

model and enhancements have been usefully applied to malware propagation on the

Internet, and we applied it to the problem of proximity malware as well. The model has
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the form:

ds(t)
dt

= −β s(t)i(t) (3.1)

di(t)
dt

= β s(t)i(t) (3.2)

where, at time t, s(t) is the number of susceptible individuals, i(t) is the number of

infected individuals, and the total population is constant, so that ∀t,s(t)+ i(t) = N. β is

the infection parameter (describing disease infectiousness).

This epidemic model, using differential equations, is an approximation of the

average behavior for large populations of what is in actuality a stochastic process. The

model assumes homogeneous mixing and is based on the law of mass action formulation.

Homogeneous mixing means, roughly, that at any given time any two individuals have

an equal probability to have a contact. The law of mass action, in a population context,

implies that the rate of contacts between populations is proportional to the product of

the sizes of the populations.

To calculate the infection parameter β , we considered the device encounters used

to drive our simulations and compute the mean encounter rate r over all devices. If all

contacts are infectious, β is the pairwise contact rate, i.e., β = rxy for devices x and y.

In practice, because a minimum contact time is required for Bluetooth to transmit the

infection, we let

β = p1 · rxy = p1 ·
r(N
2

)
where p1 denotes the fraction of contacts long enough for a single (infectious)

transmission.

Given the mean encounter rate r, the device population N, and the fraction p1 as

inputs, it is straightforward to numerically calculate the number of infections over time.

3.1.5 Corroboration and validation

Finally, we explored ways in which we can use these three methods of generating

device encounters to complement and corroborate each other. For studying proximity
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Figure 3.3: Malware propagation over time based upon contacts from real scanner

traces (UCSD) and simulated virtual scanners (Levy walk).

malware detection and defense in Section 3.3, we primarily used synthetic contacts gen-

erated by the Levy walk model. The traces and analytic model are helpful, however, for

corroborating results when using a synthetic mobility model and validating the imple-

mentation of our simulator.

Bridging real traces and synthetic models

Consider the UCSD Bluetooth traces. They represent a finite number of scanners

placed at specific locations in a larger geographic region. We can perform a similar ex-

periment with the Levy walk model, randomly placing “virtual” scanners in a region and
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recording the contacts only observed at those virtual scanners. We can then compare the

real trace and synthetic model from similar perspectives. We performed this experiment

for the Levy walk model for 1,000 devices in a 9 km2 campus-sized geographic region

with six scanners. We used the “NCSU” parameters [RSH+08] for generating Levy

walks, which strike a balance between the “SF” and “KAIST” extremes. For each simu-

lation run, we generated a Levy trace and randomly choose 1% of the devices to initiate

the malware propagation. We repeated this experiment 100 times, choosing different

initial devices on each run.

First, we compared the contact distributions from the UCSD trace and the virtual

scanner traces from the Levy walk model. The contact distribution is an important

metric reflecting the mobility characteristics of users in an area, particularly as it applies

to propagating malware. Figure 3.2 shows the contact distributions for the UCSD and

Levy traces. Each graph shows the number of devices y that encountered x other unique

devices; e.g., in the UCSD trace 170 devices had 10 encounters with unique devices.

As with previous studies of contact, we saw that a few devices are very popular while

many have far fewer contacts. Although we do not expect the absolute parameters of the

distributions to be the same for the two approaches, it is encouraging that this popularity

property holds for both synthetic and real traces.

Next, we also simulated the propagation of malware using both contact traces.

We simulated a very simple scenario where all devices are vulnerable and infecting a

device on contact is instantaneous. We use the same percentage of initial infected de-

vices as above. For this experiment, Figure 3.3 shows the percentage of infected devices

as a function of time for the UCSD and Levy traces, respectively. In both figures, each

point shows the median percentage across all of the different cases of initial devices. We

do not expect these infection results to be good predictors of an actual infection due to

their limited geographic coverage, which results in unrealistically long infection times

(months!). However, in terms of evaluating the characteristic behavior of the under-

lying processes, we again found it encouraging that the curves exhibit roughly similar

behavior — albeit with some variation, particularly at the ends of the distribution.

We considered these experiments a form of sanity check. Keeping that per-

spective in mind, though, we found it encouraging that the synthetic model, when used
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under similar constraints as real-world traces, produces roughly similar behavior in con-

tact distributions and malware propagation as the scanner data. Note, however, that the

results in Figure 3.3b reflect the use of “virtual” scanners, which only sample a spa-

cial subset of an entire region, and will therefore differ from results that model all of

the device contacts for an entire region (which we used when evaluating defenses in

Section 3.3). Using contacts based solely on real scanner traces can predict malware

propagation orders of magnitude slower than contacts based on an entire region, a limi-

tation that needs to be kept in mind when using scanner traces as the basis for proximity

malware propagation.
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Figure 3.4: Malware propagation according to the epidemic model, homogeneous mix-

ing contacts, and the Levy walk model.

Bridging the analytic and synthetic models

We also used the analytic model in validating the implementation of the simula-

tor. The simple SI model assumes homogeneous mixing. We generated a synthetic trace

of homogeneous random contacts at a constant rate, and compared malware propagation

based on the SI model and simulation using the homogeneous trace.

Figure 3.4 shows the results of a numerical solution of the epidemic model

(“Epi”) and results from two kinds of simulations, one using the “homogeneous mix-

ing” of devices in an area (“Hom”) and the other using the Levy walk model (“Levy”).
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The graph shows the percentage of vulnerable devices infected as a function of time.

For each method, we show curves for two contact rates, the “San Francisco” (SF) and

“KAIST” parameter sets described in Section 3.1.3; these two sets represent the ex-

tremes in contact rates among the traces evaluated in [RSH+08]. For both the homo-

geneous mixing and Levy walk scenarios, we simulated a simple infection where all

devices are vulnerable, and infection latency is 10 seconds.

Comparing the results of the epidemic model and simulation using homogeneous

mixing contacts, we found that they are in close agreement, validating that the simulator

operates as expected. Of course, homogeneous mixing contacts are not a good approx-

imation for encounters of mobile devices. Previous work [MN05, YFC+07] has shown

that simulations of proximity malware propagation using random walks or random way-

point mobility generally do not appear to match results from the simple epidemic model,

as the contact structure tends to differ from homogeneous mixing. However, as these

mobility models are not considered particularly realistic, it was not clear what the impli-

cations are for comparing the epidemic model with more realistic mobility models such

as Levy walks.

Comparing the results of the epidemic model and simulation using the Levy

walk model provides insight on this question. For the SF scenario, with higher mobility,

there is a small discrepancy between the simulations and the epidemic model, such that

Levy walk contacts result in somewhat slower spread of the malware. Intuitively this

slower propagation is not surprising, as one would expect spatial locality in the contacts

resulting from Levy walks that is not present in a homogeneous mixing model. The

spatial locality implies that initially only contacts occurring in a subregion around the

initial infection location can transmit the infection. Hence, this behavior slows down the

spread of the malware. For the “KAIST” scenario, with shorter flight lengths and longer

pause times resulting in less “mixing”, this discrepancy is more pronounced.

3.2 Proximity Malware Defense

We evaluated a set of defenses under the following general scenario. We as-

sume that devices have a trusted defense software component that can examine messages
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and files transferred between devices, securely record persistent information about these

transfers, and control device hardware when necessary (e.g., disable radio communi-

cation). These assumptions may be strong, but not unreasonable given the increasing

prevalence of trusted computing modules. However, if malware has the ability to dis-

able defense software, we can predict what the result will be: unchecked propagation

through a population, as in Figure 3.3 and previous work.

We modeled malware detection at the device using one or multiple contacts with

other infected devices as evidence. This approach idealizes the use of a particular detec-

tion technique. For example, a device may be able to detect that it has become infected

on first contact with another infected device using a behavioral technique like system

call anomaly detection. Or the device may have received a signature, from another de-

vice or the network, that enables it to use content analysis to detect on first transmission

that a message or file is malware.

Alternately, a device can be suspicious about being contacted by multiple other

devices to transfer the same file, eventually concluding that the other devices are likely

infected and the file they are sharing is malware. Having multiple independent devices

try to communicate the same file is reasonably suspicious behavior, and certainly char-

acteristic of propagating malware. A paranoid setting might label a file as malware after

only two such contacts; a more lenient, perhaps more risky, setting might wait for three

or more contacts. Such a technique requires storing hashes of file content managed as a

cache, and is vulnerable to polymorphic attacks.

Note that, for any technique that requires more than one contact, after the first

contact we assume the device is infected and can infect other devices. Also, any of these

techniques may lead to false positives. Without good workload studies on communicat-

ing Bluetooth applications, however, it is difficult to evaluate what the false positive rate

of any particular technique may be. This issue remains an open question.

Based upon this general scenario, we explored the following three defense strate-

gies. We abstracted any specific technique by parameterizing the number of contacts

with infected devices required for a device to decide whether it has become infected.
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3.2.1 Local detection

The first strategy simply uses local evidence to detect malware and prevent fur-

ther dissemination by the device, such as by disabling the Bluetooth or WiFi radio. Pre-

venting further propagation by disabling communication may inconvenience the user,

but voice and messaging with the mobile network remain possible. Disabling the mal-

ware prevents further propagation but makes no attempt to notify other devices or the

network about the presence of malware. It serves as a useful baseline for comparison.

We parameterized local detection with a threshold number of contacts n with other de-

vices: after n unique contacts, the device decides that it is infected and stops propagating

the malware.

3.2.2 Proximity signature dissemination

The second strategy extends local detection with an active mitigation component.

In this strategy, each device maintains a table S of signatures of malware files, such as

an MD5 hash over the file content. After a device X infers that it is infected, it disables1

the malware and warns subsequent devices about it. Device X computes a content-based

signature s over the file(s) that triggered the infection recognition (e.g., the hash it has

used to track file transfers in the first place). When X comes into proximity contact with

another device Y , X disseminates the signature s to Y . If Y is infected, it immediately

disables the malware. Y then adds s to its signature table S. Whenever another device

shares a file with Y , Y will check the file against the signatures in S. The device can then

either delete the file, or warn the user about the file.

Note that this strategy makes a number of assumptions. It is, in effect, a “white

worm” [WE06]. Such worm defenses have not been effective in the Internet environ-

ment, but it remains an open question for proximity malware. It also assumes that a

device can trust signatures received from other devices. Using signed signature trans-

fers between the defense software components on both devices would be one mechanism

for establishing this trust.

1 For example, the trusted component may start filtering outgoing infection attempts.
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3.2.3 Broadcast signature dissemination

The third strategy relies upon the mobile network operator to disseminate signa-

tures using a broadcast mechanism. In addition to standard unicast messaging, mobile

network operators are also able to send data packets over broadcast at low cost [3GP].

In this strategy, whenever a device decides that it is infected, it sends the malware

content to an anti-virus server in the mobile network (e.g., using MMS). The server,

since it presumably contains far greater processing power than the mobile devices, can

compute a better quality signature. Also, due to access to anti-virus experts, the server

may also be able to compute a patch that contains information on how devices may

“cure” themselves, i.e., remove the infection from the device. Manual involvement in

generating patches is also a possibility.

Then, when the mobile network operator’s anti-virus server receives at least m

alerts from unique devices for a particular malware instance, it broadcasts a generated

signature to the entire mobile network. This signature immediately cures all infected

devices and renders uninfected devices invulnerable.

3.3 Experimental results

In this section we evaluate the three mitigation strategies described above. We

implemented them in our simulation framework and used the Levy walk mobility model

as the basis for generating device contacts. Unless otherwise specified, we simulated

100 devices in a 1km2 region with one initially infected device, and used ten random

Levy walk traces with 100 random initial device selections each. Since it is tractable

to extend the epidemic model to capture the effects of the local detection strategy, we

present results for that method as well for comparison.

3.3.1 Local Detection

Local detection removes infected devices from the population by disabling them,

but otherwise does not actively try to prevent malware propagation. Figure 3.5 shows

that local detection does little to prevent proximity malware propagation. For a variety
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of experiments, the graph shows the percentage of devices that are infected over time.

We assume that all of the devices are susceptible; Section 3.3.4 relaxes this assumption.

The “Levy” curves show results from simulations with the Levy walk model.

The “No mitigation” curve shows the unrestrained propagation of malware. Malware

propagation infects over 80% of devices in just over 2 hours. The “T=n” curves simulate

local detection with a threshold of n contacts (e.g., a device decides that it has been

infected if it has been contacted by n other unique devices transferring the same file to

it, and it sees itself also transmitting that file). An aggressive threshold of two delays

propagation by another 3 hours. Increasing the threshold to three substantially reduces

the effectiveness, only delaying propagation by about 30 minutes. Higher thresholds

have little impact whatsoever. The curves for a threshold of four (not shown) nearly

overlap the “No mitigation” curve; we simulated for higher threshold values with the

same effect.

These results use the “NCSU” Levy walk parameterization. We also simulated

the effects using the other parameterizations. For this and other results below, the ef-

fects are similar to those shown in Figure 3.4: parameters corresponding to higher con-

tact rates (“SF”) propagate malware more aggressively (shift the curves left), and those

with lower rates (“KAIST”) do the opposite. Because the results do not fundamentally

change with different Levy parameters, we continue to show results for the “NCSU”

parameters.

As a point of comparison, we also present results using the analytic epidemic

model (Section 3.1.4). We extended it to model device local detection and shutdown as

follows. Once a device disables itself it enters the removed state R, and transitions to the

removed state occur as the number of received infection messages reaches the contact

threshold. Typically, we expect this transition to happen in an encounter between two

already infected devices.

During experimentation with this model, however, we found an unexpected ef-

fect to be significant: depending on the behavior of the malware, it is possible that an

infected device gets removed in the course of an encounter with an uninfected device. If

the encounter lasts long enough, and the malware aggressively tries to propagate itself

(with high frequency and without keeping track of which devices it has come from) the
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Figure 3.5: Effects of local detection on malware propagation, evaluated both with

Levy walk simulations and the epidemic model.

newly infected device may contact the already infected device. Thus, in a quick “re-

flected infection” exchange, the previously infected device receives an infection mes-

sage. Thus, for a small threshold value like two, a single encounter with an uninfected

device could lead to shut-off. We let p2 be the probability of an encounter between

an infected and a susceptible device resulting in such a “reflected infection” exchange.

Hence, for a threshold value of 2:

ds(t)
dt

= −β s(t)i(t) (3.3)

di(t)
dt

= β i(t) [(1− p2)s(t)− i(t)] (3.4)

dr(t)
dt

= β i(t) [p2s(t)+ i(t)] (3.5)

where r(t) is the number of removed devices at time t.

The model can also be extended to higher threshold values in a similar fashion. For a

given infection latency, we determine p2 according to the fraction of encounters whose

duration meets the infection latency threshold (Figure 3.1).

The “Epi” curves in Figure 3.5 showed the results of the epidemic model when

modeling local detection. As seen earlier (Section 3.1.5), the epidemic model tends to

predict somewhat faster infection propagation than the results based on the Levy walk
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simulation, but are otherwise in agreement with those results. In particular, it is in

agreement with the simulation in terms of the general trend: that some effect can be

achieved using a threshold value of 2, but this diminishes quickly as the threshold is

increased.

The curves denoted by “A” show the fraction of devices actively propagating the

infection, i.e., infected and not disabled. Even though the dynamics of the two models

differ somewhat, they predict approximately the same peak fraction of simultaneously

active infected devices.

3.3.2 Proximity Signature Dissemination
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Figure 3.6: Infection over time using proximity-based signature dissemination.

With proximity signature dissemination, infected devices generate malware sig-

natures and disseminate them via proximity contacts as well. Figure 3.6 shows the

simulation results of this strategy for various thresholds using the Levy walk model to

generate contacts. The results show that proximity signature dissemination does limit

propagation: the strategy contains the infection to just a subset of the population. As ex-

pected, aggressive (lower) thresholds have a more significant impact than conservative

(higher) thresholds.

An advantage of this strategy is that it is done entirely with the individual devices

themselves; no anti-virus service for signature creation and dissemination takes place.
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Given that no infrastructure by the mobile network operator is needed, we consider this

mitigation strategy to be very effective. With relatively few Bluetooth flooding appli-

cations being used, for example, we argue that an aggressive threshold of two or three

would be reasonable in the short term — in the current environment, being contacted

to transfer the same file from multiple independent devices is suspicious. However, as

Bluetooth applications evolve, the threshold question would likely have to be revisited.

3.3.3 Broadcast Signature Dissemination
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Figure 3.7: Infection over time using broadcast-based signature dissemination.

With broadcast signature dissemination, when devices decide that they have be-

come infected they send the malware files to a central server, nominally controlled by

the network operator. Once a sufficient number of devices m contact the server about

the same malware instance, the server — either automatically or with manual help from

experts — generates a patch that can disable the malware, and broadcasts it to devices.

Figure 3.7 shows the simulation results of this strategy for various contact thresholds,

again using the Levy walk model to generate contacts. We modeled a central server

that triggers a broadcast after m = 20 devices contact it. Note that, since devices can

be patched during the propagation, the percentage of infected devices can decrease over

time.
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The results show that, under these assumptions, broadcast dissemination is highly

effective at not just limiting, but also removing malware from the network. While this

strategy does require the mobile network operator to invest resources and take action

(e.g., maintenance of anti-virus server, possibly manual generation of recover-enabled

signatures by anti-virus experts), an increase in malware incidents could motivate the

cost. An alternative model is that operators could label it a premium service and charge

customers, perhaps along similar business models as current anti-virus vendors.

3.3.4 Susceptibility
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Figure 3.8: Malware propagation with varying degrees of susceptible populations.

Percentage of infected devices is over the susceptible population.

Our previous experiments have assumed that all devices in the population are

susceptible. In our final experiment, we relaxed this assumption by varying the percent-

age s of susceptible devices in the population. As discussed in Section 3.1.1, param-

eterizing s can represent hardware, software, or user features that determine malware

susceptibility. For instance, malware that exploits a vulnerability in Symbian, indepen-

dent of device, would have a value of s corresponding to the prevalence of Symbian

phones in a population. Alternately, for malware that requires user interaction to propa-

gate (e.g., accept a file transfer), s can reflect the fraction of users willing to accept such

transfers.
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Figure 3.8 shows the effects of varying s between 20–100% of the population.

Note that we calculated the percentage of infected devices relative to the susceptible

population. The results show that malware still effectively infects the entire susceptible

population, but that reducing s increases the time it takes for complete propagation. The

effects become more pronounced for smaller values of s. At 40% and 20%, malware

takes increasingly longer to propagate through the population as the density of suscep-

tible devices decreases substantially.

3.4 Summary

Proximity malware spreads through ad-hoc communication wireless technolo-

gies such as Bluetooth. We used the Levy walk mobility model to investigate the prop-

agation of a hypothetical worm using the proximity vector. We validated the results

with both a basic epidemic analytic model and real traces that we collected at the UCSD

campus. As we saw, under realistic assumptions, this kind of malware can propagate

quickly in small and populated areas.

The challenging threat of proximity malware is that it can propagate among mo-

bile devices without being observed by the network operator. This behavior makes the

propagation of proximity malware difficult to detect and mitigate. In this chapter we

evaluated three strategies to address this problem. These strategies use multiple con-

tacts with other infected devices as evidence to determine locally that malware is prop-

agating. A baseline strategy that performs local detection and containment has only

marginal impact on propagation. A more active strategy that combines local detection

with proximity dissemination of signatures has a much more dramatic effect, limiting

malware propagation to only a fraction of the susceptible population. Finally, a global

strategy relies upon the network operator to coordinate local observations and generate

patches to not only contain the malware, but also to patch devices through broadcast

communication.

Chapter 3, in part, is a reprint of the material as it appears in the “Proceedings

of the IEEE Infocom Conference 2009” with the title “Defending Mobile Phones from

Proximity Malware” by Gjergji Zyba, Geoffrey M. Voelker, Michael Liljenstam, András
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Méhes and Per Johansson. The dissertation author was the primary investigator and

author of this paper.



Chapter 4

The Effect of User Social Behavior on

Proximity Malware Propagation

As we saw in the previous chapter proximity malware can use opportunistic en-

counters between devices that happen to be co-located. Proximity malware propagation

is essentially a “data dissemination application” in an opportunistic ad-hoc network.

Independently of what technology they rely on, opportunistic mobile ad-hoc networks

allow communication in a natural and effective way, taking advantage of locality and

mobility to increase information exchange opportunities. However, in general, commu-

nication in such opportunistic mobile ad-hoc networks is challenging due to the volatility

of contacts, communication technologies, and resource limitations (e.g., batteries, com-

munication opportunities, wireless data transmission technologies). Communication is

also strongly impacted by human mobility, which is driven by user social behavior.

Despite substantial work in the area, both theoretical and experimental, our un-

derstanding of these networks is limited. Progress in understanding opportunistic mo-

bile ad-hoc networks is mainly limited by the difficulty to collect complete traces, and to

model large systems with realistic assumptions (which is linked to the absence of large

experimental data sets). The main difficulty in the experimental approach is to collect

traces that (i) contain enough information about each device (in particular its mobility,

social profile of its owner, exhaustive list of contact opportunities, duration of contacts

and communication technology impact) and (ii) are not biased by constraints due to

experimental conditions.

36
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In particular, there is a need to collect and consider data that encompasses the

behavior of all devices in a population—not just experimental devices—to have a com-

plete view of the experimental environment. Indeed, most data sets collect informa-

tion in a predefined experimental population, such as participants carrying GPS re-

ceivers [RSLC07], Bluetooth scanners [CHC+06] and smartphones [EP06], and WiFi

PDAs [MV05]. These data sets have at best a partial view of the environment, and of

the role non-experimental devices could play in malware dissemination. This situation

is best illustrated by the Hong Kong trace explored in [HCY08] where the experimental

devices have strictly no direct contact with each other, yet they contact thousands of ex-

ternal devices that could play an important role in malware dissemination but for whom

it is not possible to collect data.

In this chapter, we use publicly available traces to improve the understanding of

virulent message dissemination in opportunistic mobile ad-hoc networks. We overcome

the limitations identified above by choosing traces that collect information about all de-

vices in an area (and not only a limited set of experimental devices). We further process

these traces by subdividing each trace based on a specific social or professional geo-

graphical area of interest. We observe that a significant amount of devices appear rarely

within a given area, and, because of their large population, we explore their impact on

virulent message dissemination. In each sub-trace, we define two classes of populations

with different presence characteristics, namely Socials and Vagabonds. Socials are indi-

viduals who return periodically to a specific area (analogous to the experimental devices

in the discussion above, or to community members). Vagabonds instead are seen more

rarely and randomly (i.e., the external devices that are in general not measured, or re-

moved from traces because of partial information). A device can be a Vagabond in one

area, and Social in another as well as change its role over time, thus exhibiting both

spacial and temporal characteristics.

The first contribution of our work is to study, for the first time, malware dis-

semination spanning a large range of Social and Vagabond compositions. Previously,

most studies consider Socials only and ignore Vagabonds entirely, or have just a partial

knowledge of them because of experimental conditions.

Second, we observe that the efficiency of content propagation is not only a con-
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sequence of the devices’ social status, but also a consequence of the number and density

of devices. We see that in many cases, due to their large population, Vagabonds are more

effective in spreading a message, even though they are considered unimportant. They

therefore play a key role in malware dissemination and they should not be ignored. This

result contrasts previous works that focused only on the effect of social properties on

dissemination [HCY08, MMDA10, HSL10].

Third, we study both experimentally and analytically the “tipping” point beyond

which the population size becomes more significant than the social status. We do so

by observing this behavior on our traces but also by developing an analytic model that

formally characterizes the relationship between population size and the social behavior

of users. Our analysis confirms our experimental results and identifies a simple formula

for determining when malware dissemination through Vagabonds outperforms dissemi-

nation through Socials.

Section 4.1 describes the data sets we use in this study. Section 4.2 introduces

three possible definitions of the Social and Vagabond groups, and analyzes their prop-

erties in each area. Using the most promising definition, we study the mobility char-

acteristics of Socials and Vagabonds in Section 4.3. Then we analyze the impact and

role of each group on content propagation using trace-driven simulations in Section 4.4.

Finally, we formulate an analytical model that captures Social and Vagabond mobility

properties to explain and extend our results in Section 4.5, and conclude in Section 4.6.

4.1 Data Sets

We use traces from three data sets.1 We specifically chose these traces because

they represent distinct and considerably different mobile environments. We avoid using

traces of experimental devices only (e.g., participants in a conference) unless all existing

devices (even the ones not seen by the experimental devices) are monitored. We refer to

these data sets as Dartmouth, San Francisco (SF) and Second Life (SL), according to the

location where they were collected. We further subdivide Dartmouth and SF into smaller

geographical areas which have different social behavior characteristics. Table 4.1 sum-

1Two available through CRAWDAD at http://crawdad.cs.dartmouth.edu

http://crawdad.cs.dartmouth.edu
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marizes the basic characteristics of the three data sets we consider. We discuss below

the features of each data set and our motivation for using them.

Table 4.1: Basic characteristics of the data sets: population size, trace length, type

of area, population type and logging frequency. The population size is the number of

devices that have at least one contact with another device.

Data Set Pop. Length Area Pop. type Log Freq.

San Francisco 483 24 days City Cabs 1–3 mins

Dartmouth 4248 60 days Campus Devices Instant

Second Life 2713 10 days Small Avatars 1–3 mins

Dartmouth The Dartmouth data set comprises logs of association and disassociation

events between wireless devices and access points at Dartmouth College [HKA08]. The

logs span 60 days and include events from 4920 devices. Of these, 4248 have at least

one contact with another device, and we focus our study on these devices. As with

many previous studies using WiFi traces (e.g., [CHC+06, MV05]), we assume that two

devices are “in contact” when associated with the same access point.

We identify three areas within the Dartmouth campus likely visited by differ-

ent social communities, shown in Figure 4.1: Engineering (300m×200m), and Med-

ical (300m×300m) are specific schools while Dining (150m×150m) corresponds to

the main food court of the Dartmouth College campus where we expect all students to

mix. The main features of this data set are that (1) it logs all WiFi devices on campus,

as opposed to only preselected experimental devices in prior work [HSL10, HCY08,

MMDA10], and (2) each region represents different social behavior in a university en-

vironment. However, the assumption that contacts take place between any two devices

associated to the same access point may introduce a bias compared to real contact op-

portunities (as shown in Chapter 5).

San Francisco The San Francisco data set consists of GPS coordinates of 483 cabs

operating in the San Francisco area [PSDG09], collected over a period of three consec-

utive weeks. We assume that any two cabs can communicate whenever their distance is
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Medical

Engineering Dining

Figure 4.1: Dartmouth College map. We further subdivide our trace by focusing on

three sub-areas surrounding the buildings housing (a) the School of Engineering, (b) the

Medical School and (c) the main campus Dining food court.

less than 100 meters, a realistic range for WiFi transmissions.2 We select three regions

of San Francisco in which we expect cabs to exhibit different behavior. We refer to these

areas as Sunset (2km×6km), Airport (0.7km×1km), and Downtown (2km×2km).

Our cab population is not exhaustive but represents all vehicles in a cab com-

pany comprising a large proportion of the San Francisco cabs, which number around

1500 [SFM09]. The interest of this trace is that it represents the behavior of taxi drivers

in different parts of a city where some of them live, park their cab, or simply decide

to wait for customers because of their friends or social habits. Their social behavior is

clearly impacted (and possibly dominated) by customer requests and the lack of infor-

mation about customers is clearly a limitation of this trace. Nonetheless, the SF trace

is very interesting as it is representative of a community behavior across the different

areas we study, and it is the only environment where the ratio of Social and Vagabond

varies significantly. Last, it is worth noting that mobility in this trace is mostly defined

by traffic conditions and speed limits.

2We tried other values and observed no significant difference for ranges of 100–300 meters in our
results.
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Second Life The last data set captures avatar mobility in the Second Life (SL) virtual

world [Sec, VPDB08]. The data set consists of the virtual coordinates of all 3126 avatars

that visit a virtual region during 10 days. We assume that two avatars are able to contact

each other and exchange data when they are within a vicinity of 10 meters, a reasonable

range for close-proximity communication such as Bluetooth [PD09]. The number of

avatars which engage in contacts is 2713, and as with the Dartmouth trace we study

only these avatars. It has recently been shown that the social network defined by such

contacts between SL avatars resembles real-life social networks [VV10].

We do not define sub-areas in this data set as the virtual region is too small

(300m×300m). This limitation is balanced by the exhaustive user population captured,

where Socials are people returning on regular basis and Vagabonds are occasional visi-

tors that come only once in most cases.

4.2 Socials and Vagabonds

We first classify users according to their social mobility behavior. To do so, we

divide the user population in each trace into two distinct groups: Socials and Vagabonds.

Intuitively, Socials are the devices that appear regularly—and, therefore, predictably—

in a given area. In contrast, Vagabonds are devices that visit an area rarely and unpre-

dictably.

Based on the above intuitive definition, we propose three different methods for

classifying users into Vagabonds and Socials, and we apply these methods to the selected

areas of the three data sets we presented in the previous section. By definition, the

classification of a user as a Social or a Vagabond will depend on the area one considers.

For example, it is possible that a user is a Social in the Engineering area of Dartmouth,

and a Vagabond in the Medical area.

4.2.1 Identifying Vagabonds and Socials

The first method classifies users based on how long they stay in a given area.

The other two methods classify users based on the regularity of their appearance in an

area.
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The results shown in this section focus on a five-day consecutive weekday pe-

riod, as we expect Vagabonds and Socials to exhibit different behavior between week-

days and weekends. We have verified, however, that our definitions and behavioral

properties hold on all other five-day weekday periods in all traces.
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Figure 4.2: Total time the population appears in each area. The black dots represent the

knees of the CDF curves as found by the linear regression method.

We define total appearance as the total time spent by each device within an area

during the five-day period. Figure 4.2 shows the CDF of the total appearance time of the

population for the first week of each area. In almost all areas (excluding Engineering)

more than 75% of the population appears less than 20% of the time, with even lower

appearance time being the common case. Thus, few devices stay within an area for

longer periods and, intuitively, such devices would be the Socials of this particular area.

We define the least total appearance (LTA) threshold as the first inflection point

(“knee”) of the CDF of the total appearance for an area. This threshold separates

Vagabonds from Socials, and is specific to each area.

To objectively identify such inflection points in the CDF curves of Figure 4.2, we

employ a technique for detecting significant changes in curvature [Ley09]. Each curve

is iteratively approximated by a straight line using linear regression in the range [0, t],

where t > 0. The iteration stops when there is a significant error in the approximation.
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We assume that there is a significant error in approximation when the correlation coef-

ficient r is such that r2 < 0.9. This point identifies the knee in the CDF, and thus also

signifies the threshold that we should use in the LTA method.

Figure 4.2 also shows the inflection points for the different sub-areas as dots on

their respective CDF curves. Although Sunset has a single clear “knee”, Downtown and

Engineering do not. Downtown has two possible inflection points, and LTA selects the

lowermost. Engineering has no distinctly apparent knee. Its curvature varies slowly

across the full distribution, and LTA eventually selects a point as the CDF levels off.

Figure 4.3: An example of a social device detected using the Fourier method.

Fourier

Our second classification method, Fourier, detects periodicity. It relies upon the

Fourier transformation and the autocorrelation of the appearance of a user in an area,

approaches used in signal processing to detect periodicity.

We employ a technique by Vlachos et al. [VYC05], and Figure 4.3 shows an

example of applying this technique to a device in Dartmouth Medical. The top graph

shows the appearance of the device throughout a five-day period. The next graph shows

the Fourier transform of this signal into the frequency domain.

The Vlachos technique determines a threshold on the frequency coefficients in

the Fourier transform. If the transform has coefficients above the threshold, the de-

vice appearance is periodic and corresponds to a social user. Otherwise, the device is
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a Vagabond. The bottom graph shows the threshold for the example device with a hor-

izontal dashed line. Several Fourier coefficients exceed this threshold, and hence the

device is Social.

For social devices, the technique identifies the inverse of the highest frequency

coefficient as a potential period of the device appearance. The technique subsequently

uses autocorrelation to improve the accuracy of the period estimate.

The Fourier method is problematic for nodes that appear very infrequently (e.g.,

once or twice). The spectrum of such nodes would be roughly uniform (e.g., white

noise), making the selection of an appropriate threshold difficult. Consequently, almost

half of devices that appear once or twice in certain areas were labeled as Socials by this

method, which is clearly a mischaracterization. As a result, we investigate an additional

method that focuses on periodicity.

Bin

Our third method, termed Bin, is motivated by the observation that people’s mo-

bility patterns exhibit a diurnal behavior [GHB08]. Our traces also confirm this behav-

ior, as the most frequent period detected by the Fourier method was 24 hours. Based

on this observation, Bin detects if a user appears every day in an area, and consistently

during the same time period.

For each trace we divide our measurement period into bins of equal size b, cor-

responding to the length of the “time period” during which a user frequents the area. We

then represent the appearance of each device over time as a binary string, where each

bit corresponds to a time bin. For each device, we flag a time bin with “1” if the device

appears in the area during the period corresponding to this bin, and “0” otherwise.

We then consider a device to be periodic if it appears every day, at a specific

period of the day. For a given bin size b, a device whose corresponding string has a “1”

every 24
b bits is periodic. For flexibility, we identify a device as periodic even when an

exact bin is not flagged but a neighboring (either previous or next) bin is. If a device is

“periodic” by this definition we consider it Social, otherwise it is a Vagabond.

In experiments using the Bin method in this chapter, we use bin sizes of 3 hours.

We believe that this size is representative of the time variance of the diurnal behavior
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of users from one day to the next. We obtained very similar results when repeating the

experiments with a bin size of 4 hours, suggesting that around this time granularity the

results are not very sensitive to the bin size.

4.2.2 Classifying Vagabonds and Socials

Table 4.2 shows the percentage of Vagabonds in each area according to each clas-

sification method. We observe that, under all methods, in most of the areas Vagabonds

represent the majority of the population. The Downtown area in SF is an obvious ex-

ception: as expected, most cabs visit the downtown area frequently enough to be char-

acterized as Socials by all three methods.

Table 4.2: Percentage of Vagabond devices in the areas.

Area Total LTA Bin Fourier

Airport 451 92.7% 44.1% 70.3%

Downtown 455 7.3% 9.9% 39.3%

Sunset 436 96.1% 89.0% 81.7%

Second Life 1563 60.7% 96.7% 62.0%

Dining 404 61.6% 75.5% 58.4%

Engineering 940 95.3% 51.3% 27.4%

Medical 207 72.0% 79.2% 40.1%

We observe that LTA classifies a much higher number of Vagabonds than the

other two methods in the Engineering area. Since the total appearance curve for this area

is not amenable to partitioning the population into Vagabonds and Socials (Figure 4.2),

the threshold selection method for LTA does not work well for this area.

We also conduct a pairwise comparison of the results of the three methods to

determine to what extent they agree on device classifications. We use the fraction of

users for which the methods make the same decision as the metric of similarity.

Table 4.3 compares the three methods. We observe that the overlaps are similar

for LTA and Bin yet surprisingly different for Fourier, even though Bin and Fourier are

both based on periodicity detection.
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Table 4.3: Percentage of devices for which the classification methods agree.

Area LTA & Fourier LTA & Bin Bin & Fourier

Airport 71.8% 51.4% 53.4%

Downtown 60.0% 90.9% 60.4%

Sunset 81.4% 91.5% 78.4%

Second Life 84.3% 63.0% 63.1%

Dining 64.6% 82.7% 59.7%

Engineering 23.2% 56.0% 55.5%

Medical 49.8% 85.0% 52.2%

For the remainder of the chapter, we use the Bin method to classify Socials and

Vagabonds. Bin strikes a balance between the simplicity of LTA and the rigidity of

Fourier. Although LTA is simple, the single dimensionality of appearance time is not

flexible enough to capture essential differences in social behavior across the full range

of areas. Fourier, however, requires Socials to appear according to a strict period and

regimented schedule. Bin goes beyond LTA by incorporating appearance frequency and

periodicity, but with a flexibility that better matches human behavior.

4.3 Contact properties

We know from previous work [CHC+06, MMDA10] that contact characteris-

tics are key in the effectiveness of opportunistic ad-hoc communication. We examine

three different contact metrics: the contact rate, the inter-contact time, and the con-

tact duration. We study these metrics for four different contact scenarios: Social-

meets-Socials (SS), Vagabond-meets-Socials (VS), Social-meets-Vagabonds (SV) and

Vagabond-meets-Vagabonds (VV). For example, the contact rate for VS is the rate at

which a given vagabond device meets any social devices.

Our main observation is that Socials have significantly higher contact rates than

Vagabonds, indicating that they have more opportunities for malware dissemination,

while inter-contact times are heavier tailed for Vagabonds. This observation is in ac-
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cordance with our expectations based on our definition of Vagabonds and Socials and

provides a validation point for the classification method that we chose. However, we

have also seen in Section 4.2 that Vagabonds considerably outnumber Socials in most

regions. We later study how these two factors interact to affect malware dissemination

in Section 4.4.

4.3.1 Contact rate

For each device, we compute the number of contacts per hour with other de-

vices in the Social or Vagabond group. We normalize this metric to remove the bias

introduced by the size of the target population. Figure 4.4 shows the CCDF of the nor-

malized contact rates for representative areas of the three traces. We also chose these

areas because they span the spectrum of Social and Vagabond combinations: Socials

dominate Downtown SF, Vagabonds dominate Second Life, and they are balanced in

Dartmouth Engineering. The results for the other areas are similar to these, and we omit

the corresponding graphs for space considerations.

We observe in all areas that the SS contact rate is an order of magnitude higher

than the VV contact rate, with the VS and SV contact rates somewhere in between. The

distribution shape appears to be driven by the region characteristics and by the nature

of the source device. The tail of the distribution is longer when the source device is a

Vagabond (VS and VV contact rates), while SS and SV contact rate distributions decay

faster and have short tails. This indicates that there are few Vagabonds that have higher

contact rates than the rest of the vagabond population. This is possibly due to our method

for selecting Socials and Vagabonds. Social devices exhibit quite homogeneous contact

rates on the other hand.

4.3.2 Inter-contact time

The inter-contact time of a device is the time interval that starts with the end of

a contact and ends with the beginning of the next contact, whatever the device encoun-

tered is. This quantity is very interesting as it characterizes the periods during which a

device cannot forward any content to other devices. The inter-contact distribution has
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Figure 4.4: Contact rate distributions in three areas.

been shown to be heavily tailed [CHC+06], which makes it impossible to estimate the

delivery performance in such a network.

Figure 4.5 shows the CDF of the inter-contact time by social group of devices for

the representative areas in each data set. We observe two different parts in each curve:

the main body (roughly below 12 hours) and the tail of the distribution (above 12 hours).

In the main body of the distribution, inter-contact is similar for Socials (respectively

Vagabonds), independently of what type of device they encounter. This part of the

distribution characterizes the mobility patterns that are specific to each area. The tails

of the distribution though are always much longer when the device met is a Vagabond,

independently of the nature of the source, which characterizes the vagabond devices and

not the mobility in the area. This heavy-tailed inter-contact with Vagabonds will help

us explain later why Vagabonds are not individually as effective at malicious content

dissemination.
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Figure 4.5: Inter-contact time distributions.

4.3.3 Contact duration

The amount of data that can be transmitted between two devices depends both

on contact durations and on the communication technology (e.g., WiFi or Bluetooth).

Therefore, contact duration is difficult to interpret and does not characterize the perfor-

mance of communication in opportunistic ad-hoc networks. Contact duration is mostly

a characteristic of the mobility in the area. As a consequence, we find that Socials

and Vagabonds experience comparable contact characteristics and their distributions are

very similar; as a result, we do not plot their distributions. In the Dartmouth data set,

contacts last longer due to the stationary nature of the devices. Contacts are uniformly

distributed between a couple of minutes and 3 hours. In San Francisco, the contact

duration is defined by the road traffic condition in each area (with most of the cabs

experiencing contacts between one second and one minute). In Second Life, avatar mo-
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bility is defined by social events or points of interest, which leads to the majority of

contacts lasting between one minute and one hour.

4.4 Malware Dissemination

We now analyze the impact of each social group of devices on malware dissem-

ination using trace driven simulations. We replay each trace multiple times using only

Socials, only Vagabonds, or any device to propagate messages, while all devices can

receive messages.

Our main observation is that, in areas in which Vagabonds outnumber Socials

significantly, dissemination using Vagabonds outperforms dissemination using Socials,

despite the lower contact rate experienced by Vagabonds. Further, we observe in most

traces that there is a simple law by which we can predict which population is going to

be more effective at propagating information.

4.4.1 Methodology

We simulate malicious message dissemination using flooding. Since the out-

come depends on the start time of the simulation, we repeat the simulation by uniformly

sampling many start times between the beginning of the selected week (Sunday mid-

night) and the middle of that week (Wednesday noon). At the start of each simulation

only one device carries the message, and for each randomly chosen start time we sim-

ulate dissemination starting from each of the devices in the trace. Simulations last 2.5

days to ensure they all complete within the week-long trace. The number of simulations

is determined by the standard deviation of the results of the completed simulations. For

each point in time we calculate the average value and standard deviation of the number

of devices receiving the message for all the completed simulations. We perform as many

simulation runs as necessary so that each sampled point is within a 95% confidence of

its expected value.

We also assume that message transfers are instantaneous. This simplification

overestimates transmission opportunities, but it does not introduce a bias between So-

cials and Vagabonds as they exhibit similar contact durations characteristics.
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We study two metrics that characterize malicious message dissemination in an

area. The first characterizes the epidemic behavior of a population, while the second

reports the optimal transmission delay in the network. Contamination is the number

of devices that receive a given message as a function of time. Contamination reflects

how effective a given population is at disseminating information in an area. In contrast,

shortest path is the minimum time that is needed to reach a selected device. This metric

characterizes the delay performance of propagation for each social group.

4.4.2 Contamination Evaluation

To understand the role that Socials and Vagabonds play in transmitting a message

to the population of an area we first examine the number of devices that the message can

reach relying only on Vagabonds or Socials. Note that we only account for message

transmissions that take place through contacts that occur within the boundaries of the

area. If devices make contact outside the area, we do not consider it to be a transmission

opportunity since that situation does not reflect the contamination properties of a specific

group of devices (the nature of a device being potentially different in each area).

Figure 4.6 shows the contamination result for the three different representative

areas that we used previously. The curves represent the median across all simulations of

the percentage of all devices reached.

The general observation is that Socials outperform Vagabonds in areas where

they are the majority (SF Downtown) or of comparable population size (Dartmouth

Engineering). However, in areas where Vagabonds largely dominate, they exhibit better

contamination characteristics than Socials (Second Life). We also observed the same

effect in all the other areas where Vagabonds form a clear majority (Dartmouth Dining

and Medical, SF Sunset).

Individually, Socials contaminate more effectively than Vagabonds because they

have a higher contact rate and more frequent contacts. In contrast, Vagabonds experi-

ence long periods of time without an opportunity to forward a message. However, we

observe that large populations of Vagabonds can achieve the same contamination perfor-

mance as Socials. Each Vagabond has a lower contact rate, but with many Vagabonds

the total number of contacts is as high as what Socials would achieve with a smaller
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Figure 4.6: Contamination within an area when using Vagabonds (V), Socials (S), or

any device (A) to propagate messages.

number of devices.

To explore the relationship between the number of devices and social behav-

ior further, we simulate malicious message dissemination while varying the population

sizes of each group by taking random subsets. We decrease the number of Socials

when the Social group performs better in an area, or similarly decrease the number of

Vagabonds when they perform better, until we observe a similar contamination ratio for

dissemination using each group. Table 4.4 reports these results. To have comparable

contamination ratios, Vagabonds need to number two to six times more than Socials,

depending on the area. Of course, these results are just one point in the parameter space

balancing population sizes and social class—but they hint at the possibility of a deeper

relationship. In the next Section, we formally present a model that develops a general

“law” for this relationship.
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Table 4.4: Vagabond and Social population sizes when contamination is comparable

using either of the two groups.

Area Better Socials Vagabonds V / S

Airport S 99 199 2.01

Downtown S 22 45 2.04

Sunset V 48 220 4.58

Dining V 99 205 2.07

Engineering S 229 482 2.10

Medical V 43 140 3.26

Second Life V 37 215 5.81

We learn here two major properties of communication in opportunistic ad-hoc

networks. First, the effectiveness of contamination is more a matter of contact “density”

in an area than an issue of social behavior. Second, Vagabonds have an important role

in dissemination of information and should not be ignored or removed when studying

propagation in opportunistic networks.

4.4.3 Shortest Path Evaluation

Lastly, we study a shortest path metric that measures the minimum time needed

for a message to reach a specific device. We are interested in understanding if, because

social devices visit an area frequently, messages to Socials will be delivered faster. We

also want to understand if Vagabonds can act as “shortcuts” in message transmission.

Therefore, we only study shortest path between any device and a Social.

For each device sending a message, we calculate the shortest path to any Social

using only Socials, only Vagabonds, or any device. We calculate the median delay

(i.e., the delay for 50% of the destinations) per message and we plot the distributions in

Figure 4.7.

As with contamination, we observe than when Vagabonds significantly dominate

in number (Second Life), they achieve best delays. In areas where Socials dominate or

are comparable in number to Vagabonds, the shortest paths achieved by Socials are
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Figure 4.7: Shortest paths within an area when using Vagabonds (V), Socials (S), or

any device (A) to propagate messages.

very close to those obtained using all devices and Vagabonds do not seem to contribute

significantly to reducing the delays.

As a result, in areas visited by many infrequent visitors, it is worthwhile sending

a message to such visitors so that the message will arrive faster to someone that social-

izes within that area. In such a scenario, Vagabonds act as shortcuts in communication.

Otherwise, it is better to prefer forwarding the message only to people that “socialize”

within that area. The gain is two fold in this case. First, the delay in message delivery

will be similar to using any device. Second, forwarding to fewer (but social) devices

effectively reduces communication resource utilization.
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4.5 Analysis

Section 4.4 indicates that the performance of malware dissemination depends

both on the density of devices as well as their contact rate. As a result, even though

Vagabonds have on average an order of magnitude fewer contact opportunities than

Socials, they can achieve similar dissemination performance in areas with 3–4 times

more Vagabonds than Socials.

The goal of this section is to formally characterize the relationship between the

population size and the social behavior of users under which such phenomena occur. Our

approach relies on a so-called “mean field” limit applied to epidemic dissemination.

4.5.1 Model Description

Vagabonds and Socials

We consider N mobile users visiting an area A, partitioned into the two classes

of Vagabonds and Socials. Let Nv and Ns be the number of Vagabonds and Socials,

respectively. Users in each class enter and exit the area A as follows. Time is slotted,

and at each time slot a Vagabond enters A with probability ρv, independently of previous

slots and of other users. Similarly, a Social enters A with a probability ρs. We call ρv

and ρs the occupancy rate of Vagabonds and Socials, respectively, and we assume that

ρv� ρs, i.e., Vagabonds spend less time in the area than Socials.

Note that the occupancy rate of each class captures the “social” behavior of the

class, as it indicates whether its users frequent this area or not. The expected number of

Vagabonds and Socials present in the area—i.e., the density of each class—is given by

ρvNv and ρsNs, respectively.

Contacts between users and malware dissemination

At each time slot, we select two users uniformly at random among all (un-

ordered) pairs of the N users in the system. If both of these users are within the area

A then a contact takes place between them. If at least one of them is outside A, then

no contact takes place within this time slot. Note that, with ρv � ρs, the contact rate

(average number of contacts per time slot) of a Social is higher than the contact rate of
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Table 4.5: Summary of notation.

A Visited area

N Total user population visiting A

Nv,Ns Number of vagabond/social users

rv,rs Fraction of vagabond/social users

ρv,ρs Occupancy rate of vagabond/social users

λvv,λvs,λsv,λss Transmission success probabilities

Iv, Is Number of infected vagabond/social users

Sv,Ss Number of susceptible vagabond/social users

iv, is Fraction of infected vagabond/social users

sv,ss Fraction of infected vagabond/social users

a Vagabond, as the latter is far less likely to be inside A at a given time slot. This is

consistent with our empirical observations in Section 4.4.

Malware dissemination starts with an initial number of users (Vagabonds or So-

cials) carrying a message. Each time a user carrying the message contacts a user that

does not, a message transfer occurs with a probability that depends on whether the two

users are Vagabonds or Socials. As with the simulations in Section 4.4, we focus on

the two cases where either Vagabonds or Socials (but not both) are message forwarders,

while all devices can receive a message. In particular, denote by λvv, λvs, λsv, and λss

the probabilities that transmissions succeed across and within classes; for example, λsv

is the probability that the message transfer succeeds when a Social contacts a Vagabond.

We focus on the following two cases: (a) only vagabond users forward the message, i.e.,

λvv = λvs = 1, and λsv = λss = 0, (4.1)

and (b) only social users forward the message, i.e.,

λvv = λvs = 0, and λsv = λss = 1. (4.2)

Main Result

Our analysis yields the following theorem, which quantifies when the “power of

the crowd” dominates social behavior.



57

Theorem 1. For large enough N, the epidemic dissemination using Vagabonds eventu-

ally dominates dissemination using Socials if and only if

Nv

Ns
>

(
ρs

ρv

)2

. (4.3)

Recall that Vagabonds occupy the area less frequently than Socials and are thus

at a disadvantage w.r.t. epidemic dissemination. Theorem 1 implies that, when rela-

tive population sizes result in Nv� Ns, propagation using Vagabonds may outperform

propagation using Socials. The necessary and sufficient condition is that the ratio of the

two populations exceeds the square of the ratio of their occupancy rates. For instance,

if Socials appear 10% of the time in the area, while Vagabonds appear only 5% of the

time, Vagabonds will outperform Socials if their population is 4 times the population of

Socials.

4.5.2 Proof of Theorem 1

A fluid limit

Let rv = Nv/N, rs = Ns/N, be the corresponding fractions of the total population

belonging to each class. We refer to users that carry the message as infected and users

that do not as susceptible. We denote by Iv, Is the number of infected Vagabond and So-

cials, respectively, and by iv = Iv/N, is = Is/N the corresponding fractions over all users.

We also denote by Sv, Ss the number of susceptible Vagabond and Socials, respectively,

and by sv = Sv/N, ss = Ss/N the corresponding fractions.

Under the assumptions of Section 4.5.1, the evolution of the vector~i(t), t ∈ N,

representing the number of infected users in each class, is a stochastic process. Nonethe-

less, as N tends to infinity, we can approximate the evolution of the system through a

deterministic process, also known as a “fluid” or “mean field” limit. In particular, for

large enough N,~i(t) can be approximated with arbitrary accuracy through the solution

of the following ordinary differential equation (ODE):

div/dt=ρ
2
v iv(rv−iv)λvv+ρvρsis(rv−iv)λsv (4.4a)

dis/dt= ρsρviv(rs−is)λvs+ρ
2
s is(rs−is)λss (4.4b)
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where the initial conditions iv(0) and is(0) are set equal to the initial fractions of in-

fected vagabond and social users. Note that the above ODE is essentially the classical

susceptible-infected model (see, e.g., [NW07]) applied, in this case, to two infectious

classes.

Formally, consider the following extension of the discrete time stochastic pro-

cess~i : N→ [0,1]2 to a continuous time process~i : R+→ [0,1]2. Define τk =
k
N , and, for

all k ∈ N,

~i(τk) =~i(k), and

~i(τk + s) =~i(k)+ s
~i(k+1)−~i(k)

τk+1− τk
, for 0 < s <

1
N
.

Observe that~i essentially evolves as~i, only it does so at a much faster timescale: for any

integer t we have that~i(t) =~i(t/N), so 1 time unit in~i corresponds to N time slots in~i.

Moreover, to define~i over all real numbers,~i has been linearly interpolated: for t ∈ N,

and τ belonging to the real interval of the form [ t
N ,

t
N + 1

N ], the function~i(τ) is a linear

interpolation between the values~i(t +1) and~i(t).

Our main lemma states that the continuous version~i(τ) of the fraction of in-

fected users can be approximated with arbitrary accuracy through the solution of the

ODE (4.4).

Lemma 1. Let ~ξ (τ), τ ∈ [0,∞), be the solution of the ODE (4.4) with initial condition
~ξ (0) =~i(0). Then, for every T ≥ 0, there exists ε(N) = O( 1

N ) such that

P
(

sup
0≤τ≤T

‖ξ (τ)−~i(τ)‖ ≥ ε(N)
)
≤ ε(N).

In other words,

lim
N→∞

sup
0≤τ≤T

‖ξ (τ)−~i(τ)‖= 0, in probability.

Intuitively, the above lemma implies that the trajectory of~i(t), for 0≤ t ≤ T ·N
(i.e., in an ever increasing interval), can be arbitrarily well approximated by the trajec-

tory of the solution ξ (τ) of (4.4) in the interval [0,T ]. For N large enough, the probabil-

ity that the stochastic process~i(t) strays too far from the deterministic trajectory ~ξ (τ) is

arbitrarily small.
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of Lemma 1. Under the contact assumptions presented in Section 4.5.1, we have that the

probability that Iv, the number of infected Vagabonds, increases by one at time t + 1 is

given by

fv(~i(t)) = ρ
2
v iv(t)sv(t)λvv +ρsρvis(t)sv(t)λsv

To see this equation, observe that the probability that a contact of an infected vagabond

user inside area A is selected is ρiv(t), while the probability that an uninfected vagabond

user inside area A is selected is ρsv(t), yielding the product in the first term of the

above sum; the second term can also be derived using the same intuition. Similarly, the

probability that the number of infected Socials increases by one can also be shown to be

fs(~i(t)) = ρvρsiv(t)ss(t)λvs +ρ
2
s is(t)sv(t)λvs.

From the above, we get that:

E[iv(t +1)− iv(t) | iv(t), is(t)] =
1
N

fv(~i(t))

E[is(t +1)− is(t) | iv(t), is(t)] =
1
N

fs(~i(t))

where fv, fs are continuously differentiable. Moreover, observe that the change of either

IV or IS in each time slot is at most one. As a result, the assumptions H1–H5 of Theo-

rem 1 in Benaïm and Le Boudec [BB08] are satisfied; the lemma follows directly from

the above theorem.

Solution of the ODE (4.4)

The following lemma determines the evolution of~i(t), as given by (4.4), under a

single infectious class. population when only one class is infectious.

Lemma 2. The ODE

dx/dt = α(A− x)x (4.5a)

dy/dt = β (B− y)x (4.5b)

with initial conditions x0, y0, has the solution

x(t) = A− (A− x0)A/
(

x0eαAt +(A− x0)
)

(4.6a)

y(t) = B− (B− y0)
[
A/
(

x0eαAt +(A− x0)
)]β

(4.6b)
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Proof. From (4.5a), we have that dx
(A−x)x = αdt. Integrating both parts and considering

the initial condition x(0) = x0 yields (4.6a). Note also that, from (4.5a) x = ẋ/(A−X)

so ∫
xdt =− log(A− x)+ c (4.7)

where c a constant. On the other hand, from (4.5b), we have that dy
(B−y) = βxdt. Integrat-

ing both parts of this equation and using (4.7) yields − log(B− y) =−β log(A− x)+ c′

which, in turn, along with (4.6a) and the initial condition y(0) = y0 yields (4.6b).

Lemma 2 can be used to describe the evolution of the infected population when

only one of the two classes is infectious. If, for example, only Vagabonds are infectious

then conditions (4.1) will hold; Lemma 2 then applies with α = ρ2
v , β = ρvρs, A = rv,

and B = rs. We thus obtain that~ivo(t) is given by:

ivo
v (t)=rv−(rv−ivo

v (0))
rv

ivo
v (0)eρ2

v rvt+rv− ivo
v (0)

(4.8a)

ivo
s (t)=rs−(rs−ivo

s (0))
[ rv

ivo
v (0)eρ2

v rvt+rv−iv(0)vo

]ρvρs (4.8b)

Similarly, if only social users are infectious, then conditions (4.2) will hold; by taking

α = ρ2
s , β = ρvρs, A = rv, B = rs, we obtain that~iso(t) is given by:

iso
s (t)=rs−(rs−iso

s (0))
rs

iso
s (0)eρ2

s rst+rs−iso
s (0)

(4.9a)

iso
v (t)=rv−(rv−iso

v (0))
[ rs

iso
s (0)eρ2

s rst+rs−iso
s (0)

]ρvρs (4.9b)

Using the above, we establish that the condition of Theorem 1 implies the domination

of propagation through Vagabonds.

Lemma 3. Let ivo and iso be the fractions of infected users under ODE (4.4) when either

(4.1) or (4.2) hold, respectively. If ρ2
v rv > ρ2

s rs, then limt→∞ (1− ivo(t))/(1− iso(t))= 0.

Proof. By (4.8), if only the Vagabonds are infectious then 1− ivo(t) = Θ(e−ρ3
v ρsrvt).

Similarly by (4.9), if only the social users are infectious then 1− iso(t) = Θ(e−ρ3
s ρvrst).

Hence, for large t, the dissemination if Vagabonds are used will dominate if and only if

ρ2
v ρsrv > ρ3

s ρvrs.
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Theorem 1 therefore follows directly from Lemmas 3 and 1. To summarize, it

implies that, if ρ2
v rv > ρ2

s rs, the propagation using Vagabonds eventually dominates the

propagation using social users, in spite of the fact that Vagabonds show up in the area

much less frequently than Socials.

4.5.3 Numerical Validation

Figure 4.8(a) illustrates the performance of epidemic propagation under our

model, evaluated through the ODE (4.4). We consider population ratios Nv/Ns ranging

between 0.1–10 and occupancy rates ρs, ρv ranging between 1–10%. Circles correspond

to cases for which propagation using Socials infects 97% of the population faster, and

crosses are cases when propagation using Vagabonds is faster. The dashed line corre-

sponds to a balance in propagation speeds between Vagabonds and Socials, as predicted

by the inequality in Theorem 1.

Note that Theorem 1 is asymptotic: it states that when Nvρ2
v > Nsρ

2
s , Vagabonds

will eventually dominate Socials. Figure 4.8(a) shows that correctly predicts which class

reaches the 97% contamination threshold in most cases. The cases for which the theorem

does not correctly predict the outcome are due to insufficient time for the asymptotic

behavior to manifest; indeed, we repeated these evaluations with higher thresholds and

observed a decrease in misclassified points.

Recalling the simulations in Section 4.4, none reached more than 95% of the

total population, so it is difficult to compare the analytic results in Figure 4.8(a) with our

simulation results. Instead, Figure 4.8(b) shows the relative propagation performance

of Vagabonds and Socials after 60 hours of message propagation. Circles correspond to

cases where, after 60 hours, the simulated propagation using Socials infected more users

than the propagation using Vagabonds, while crosses correspond to the converse. To

exclude simulations not in the asymptotic regime, we show only the cases where either

simulation reached more than 60% of the total population. Although many of these

points are far from the asymptotic propagation behavior, Theorem 1 correctly predicts

the outcome in most cases.

In summary, we proposed a model incorporating the population sizes of Social

and Vagabond devices, as well as their social behavior. We have identified a law de-
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Figure 4.8: Validation of Theorem 1: (a) relative performance of epidemic propagation

using Vagabonds and Socials under our model; (b) relative propagation performance

using Vagabonds and Socials from the Dartmouth, SF, and SL traces. rs = Ns/N while

ρv and ρs are the occupancy rates. The dashed lines indicate the threshold above which,

according to Theorem 1, Vagabonds outperform Socials.

termined by these two parameters that governs the asymptotic efficiency of epidemic

dissemination. Though our focus was on asymptotic efficiency, our ODE approach in

general applies to more complicated interactions between users, including, e.g., trans-

missions that fail with class-dependent probabilities or re-infections introduced after a

received message expires.

4.6 Summary

In this chapter we improved our understanding of malware dissemination in op-

portunistic mobile ad-hoc networks. By separating users into two behavioral classes, we

find that, although Socials form an active population subset, most areas are dominated

by Vagabonds in terms of population size. Vagabonds, often excluded as unimportant,

can often play a central role in opportunistic networks. As a result, tracing efforts should

strive to capture the presence of Vagabonds, and analyses of protocols and applications

should not discount them.

This work is just a first step in studying the impact of social behavior of users on

malware dissemination. A number of interesting directions naturally follow, including
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studying the characteristics of inter-area message propagation, the dynamics of user

social behavior (e.g., Vagabonds becoming Socials in other areas), and the interactions

between Vagabonds and Socials in supporting malware dissemination.

Chapter 4, in part, is a reprint of the material as it appears in the “Proceedings of

the IEEE Infocom Conference 2011” with the title “Dissemination in Opportunistic Mo-

bile Ad-hoc Networks: the Power of the Crowd” by Gjergji Zyba, Geoffrey M. Voelker,

Stratis Ioannidis, Christophe Diot. The dissertation author was the primary investigator

and author of this paper.



Chapter 5

Inferring Human Contacts Using

Scanners

Proximity malware propagates over short-range radio connections (e.g., Blue-

tooth [SCM+06]), as we saw on Chapter 3. Understanding the dynamics of propaga-

tion and assessing the effectiveness of countermeasures in outbreaks of self-replicating

computer malware relies on understanding two factors: the mechanism by which the

malware infects a susceptible host, and the patterns of contacts between hosts. For

network-borne malware these contacts are practically instantaneous and enabled by net-

work topology rather than spatial relationships. For proximity-borne malware (which

applies only to mobile devices) the patterns of contact between people carrying the de-

vices are critical in developing an understanding of the propagation dynamics. Chapter 4

explored how human social behavior impacts these contacts. However, many studies,

including our study on Chapter 4, infer real world contacts from observations of devices

which are either mobile or static (e.g., WiFi Access Points, Bluetooth scanners). In this

chapter we explore the benefits and limitations of this methodology.

When attempting to understand and model proximity-based propagation the avail-

ability of relevant and generalizable empirical data is limited. In this chapter, we con-

sider the approach of deploying scanners which use the same radio technology as devices

carried by users. These scanners connect to users’ devices when they pass within range

and store information about the detected devices. Devices which are detected simul-

taneously by a given scanner are considered to be spatially co-located (corresponding

64
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to observed “encounters” within the scanner’s radio range). The main benefit of such

an approach is that once the scanners are deployed, large amounts of data can be gath-

ered easily and at low cost, allowing longitudinal comparisons of encounter patterns.

However, there are also some drawbacks when such scanner data is used as a basis for

inferring proximity-based malware propagation dynamics: (i) Scanner deployments in

the real world tend to be of relatively low density, typically covering a small fraction

of an area under consideration, such as a campus or a part of a city. Hence, within this

already limited area, the majority of encounters between devices will take place out of

range of the scanners. (ii) Moreover, as we limit the area of consideration, we would

expect the frequency with which particular devices appear at any scanner to decrease,

artificially lengthening device inter-contact times.

Despite these obvious limitations, if scanned data is used carefully (i.e., account-

ing for the effects of missed encounters) it would still appear to be a good source of

empirically-derived data on human encounters. Superficially, the encounters which are

captured should consist of a subset of the actual device encounters taking place in the

area under study at a particular time. In fact, we found that the process of inferring cop-

resence encounters between pairs of devices based on empirical evidence of simultane-

ous sightings by third-party scanners leads to the introduction of errors. We investigated

the extent to which errors are introduced, and made the following contributions.

• We derived analytical results on errors introduced in scanner-based measurements

for a simplified case where all scanners and devices are static, and where radio

propagation details are omitted. We examined the differences between device

copresence as inferred by the scanners and actual copresence between the devices,

and classified the discrepancies.

• Based on this classification, we then derived the probabilities with which each

type of discrepancy will occur. Using simulation we validated our analytical find-

ing that approximately 41% of copresence encounters inferred by scanners do not

correspond to actual device copresence.

• Also using simulation, we demonstrated the extent and impact of errors when

device mobility is included. As a concrete application, we studied the effect on
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proximity-based malware propagation, an example of flooding-based data dissem-

ination which depends heavily on the patterns of device encounters. We found

that, in addition to the expected cases of missed and spuriously inferred encoun-

ters, the set of encounters inferred from scanners differs from the actual encoun-

ters simulated in the model in terms of duration distribution and probability of

encountering previously unmet devices. While the magnitude of these errors in-

creases when simulated mobility is more diffusive, in all the cases we considered

malware propagation models showed slower propagation using scanned encoun-

ters compared to actual encounters for devices with the same mobility character-

istics.

5.1 From device contacts to inferred encounters

The data captured by scanners is not necessarily an accurate representation of

the real contacts taking place between mobile devices—even if we consider only the

subset of real contacts taking place within the scanner’s range. Scanners infer copres-

ence encounters when a device pair is simultaneously sighted at the same scanner. We

assume throughout that the scanner has the same radio range as the devices. Simple ge-

ometry indicates that a scanner, if capable of the same radio range as the devices moving

around it, will be able to make contact with pairs of devices which are simultaneously

within range of the scanner, but not within range of each other. This effect, which we

term “bridging”, leads to the incorrect inference of encounters between devices which

did not actually meet (see Figure 5.2).

5.1.1 Static Analysis

To begin to understand the relationship between scanned encounters and actual

contacts between mobile devices, we first consider a simplified case: a single time in-

stance in which all devices and scanners are static. We derive simple expressions for the

expected number of different encounter types as seen by an array of fixed scanners.

We consider n devices, each equipped with a short-range radio. We assume that

this radio behaves ideally, producing a disc of constant signal strength with radius r. The
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devices are uniformly distributed over a rectangular area of size a×b, and are observed

by m scanners using the same radio technology and placed in the same area. We assume

that the coverage areas of scanners do not overlap.

Let Xi (i = 1, . . . ,n) denote the position of each device. We assume that these

2-dimensional random vectors Xi are independent and identically uniformly distributed

(iid) over the rectangle [0,a]× [0,b]. Using a simplified “perfect disc” radio propagation

assumption, we say that two devices i and j are in contact if they are within radio range,

that is ‖Xi−X j‖ ≤ r. With a slight abuse of notation, we write r(Xi,X j) as a shorthand

for this relation, and r(Xi,X j) as a shorthand for its negation (i.e., ‖Xi−X j‖> r).

Similarly let yk (k = 1, . . . ,m) denote the scanner positions. Then, using our

shorthand notation, the event that device i is in range of the kth scanner can be expressed

as r(Xi,yk).

In our model, a scanner k registers an inferred contact between two devices, i

and j, if both devices are simultaneously within the scanner’s range; or, more formally:

r(Xi,yk)∧ r(X j,yk).

Note that an inferred contact need not correspond to an actual device contact, since

two devices may both be in range of the same scanner without being in range of one

another (the “bridging effect”). On the other hand, not all actual device contacts will be

inferred by a scanner, since either one or both of the devices involved in a contact with

each other may be outside scanner range. The following analysis classifies all possible

relationships between device contacts and the contacts inferred by scanners.

Types of Contacts Considered

Not all device contacts can be inferred by scanners, and not all contacts which

the scanners do observe correspond to actual contacts between devices. We set out to

derive expressions for the expected number of:

• real contacts between devices,

• contacts inferred by scanners (consisting of):

– correctly inferred contacts (“inferred real”),
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– incorrectly inferred contacts (“inferred fake”),

• real device contacts missed by scanners, because

– one device is outside coverage (“missed one”),

– both devices are outside coverage (“missed two”).

Figure 5.1 shows a diagram relating these contact types. We assume a sufficiently sparse

scanner arrangement to preclude missed contacts where both devices are in scanner

range, but the two devices are in the range of two different scanners.

missed

missed

one

real

inferred

fake

inferredtwo

Figure 5.1: Contact types: real (thick ellipse) and inferred (thin ellipse) contacts

Real Contacts

Intuitively, the expected number of device contacts (without regard to which of

these are inferred or missed by the scanners) for n iid devices should equal the number of

possible device pairs,
(n

2

)
, times the probability of contact between any two devices. In

the following derivations P denotes probabilities. Let us denote the ratio of a coverage

area to the total observation area by

p .
=

r2π

ab
. (5.1)

Now, one can write the expected number of real contacts as

creal =

(
n
2

)
p(1−δ ) (5.2)

where δ is an error term accounting for border effects. In the model, the border effects

can be removed, e.g., by having edge wrap-around (effectively forming a torus), in

which case the error term can be omitted.
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Observed Contacts

For a single scanner at position y ∈ [r,a− r]× [r,b− r], we have

P [r(Xi,y)] = p, ∀i.

Thus, the expected number of inferred contacts for this scanner equals
(n

2

)
p2; i.e., the

number of device pairs times the probability that both devices “independently” fall in-

side the scanner’s coverage area. For m scanners, whose coverage areas do not overlap

and lie completely inside the measurement area, the above probability for a single scan-

ner is simply multiplied by m to yield the expected number of inferred contacts.

cinferred = m
(

n
2

)
p2 ≈ mp creal (5.3)

The result may appear intuitively satisfying, as it suggests that the scanners cap-

ture the fraction of real contacts corresponding to their combined coverage area. Unfor-

tunately, this intuition is somewhat misleading, since a sizable portion of these inferred

contacts are in fact “fake” and result from bridging, as we show next.
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Figure 5.2: Bridging probability. The position and coverage area of the scanner are

shown by a + and the solid circle, while those of the first device by an × and a dashed

circle. If the position of the second device falls inside the dark-shaded area to the right,

the scanner will infer a contact while none actually occurs.

The bridging probability β is the conditional probability that two devices both

inside the same scanner’s coverage area are not within range of one another. Pictorially

speaking, this situation corresponds to the average fraction of the darker half-moon-

shaped area to the right in Figure 5.2. While we omit the full derivation for brevity, we
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have

β
.
= P [r(X1,X2) |r(X1,y1),r(X2,y1)] =

3
√

3
4π

(5.4)

In other words, over 41% of inferred contacts are fake, introduced by bridging;

and, consequently, only about 59% of inferred contacts correspond to real device con-

tacts. The resulting formulas for the expected number of real and fake inferred contacts

can be written as follows.

cinferred,real = m
(

n
2

)
p2(1−β ) ≈ 0.5865 cinferred (5.5)

cinferred,fake = m
(

n
2

)
p2

β ≈ 0.4135 cinferred (5.6)

Missed Contacts

As noted earlier, due to our assumptions on scanner placement, we consider only

two types of missed contacts. In the first, one of the devices is inside scanner range while

the other one is outside; and in the second type, both devices are outside scanner range.

Another careful look at Figure 5.2 reveals that the conditional probability of a

device outside a given scanner’s range being in range of another device inside the same

scanner’s range also equals the bridging probability β (as this case corresponds to the

unshaded half-moon-shaped area on the right in the figure). Given that, viewed as an

ordered pair, either of the two devices in this type of missed contact could be inside or

outside scanner range, the following formula obtains:

cmissed,one = 2m
(

n
2

)
p2

β = 2 cinferred,fake ≈ 0.827 cinferred (5.7)

where one factor of p corresponds to r(X1,y1) (i.e., the probability that the “first” device

is in scanner range) and the other to r(X1,X2) (i.e., that the two devices are within range

of one another).

When both devices are outside scanner range, the analysis naturally splits into

two sub-cases: one that accounts for border effects around the edges of the observation

area, and another that accounts for similar effects near each scanner, when the scanner’s

and the devices’ coverage areas intersect, as illustrated in Figure 5.3.

The geometry of the dark shaded area in Figure 5.3 is essentially the same as

the geometry of the dark shaded area in Figure 5.2, with the notable exception that
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Figure 5.3: Border effect near a scanner. If the first device is within distance 2r of a

scanner (dotted circle), the position of the second device must fall inside the dark-shaded

area to the left in order to guarantee that both devices end up outside scanner range.

the distance between the scanner’s and the device’s position varies between r and 2r

(compared to 0 and r for the bridging probability). Consequently, λk, the corresponding

conditional probability for scanner yk, can be obtained in the same fashion, giving:

λk
.
= P [r(X2,yk) |r(X1,X2),2r(X1,yk),r(X1,yk)]

= 1−
√

3
4π

= 1− β

3
(5.8)

Using equation (5.8) and subject to the constraints that:

a) the distance between any two scanners is at least 4r, which avoids simultaneous

interactions with multiple scanners, and

b) the distance between any scanner and the edge of the observation area is at least

3r, excluding interactions between scanners and edge effects,

the expected number of missed contacts due to both devices being outside scanner cov-
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erage can be derived as follows.

cmissed,two =

(
n
2

)
P

[
r(X1,X2),

∧
l

r(X2,yl),
∧

l

r(X1,yl)

]

=

(
n
2

)P

[
r(X1,X2)

∣∣∣∣∣∧
l

2r(X1,yl)

]
(1−δ −4mp)

+ ∑
k

λk p(4p− p)


=

(
n
2

)(
p(1−δ −4mp)+m(4p− p)p(1− β

3
)

)
=

(
n
2

)
p(1−δ −mp(1+β )) (5.9)

=creal− (cinferred,real + cmissed,one) (5.10)

5.1.2 Validation

To validate our analysis, we performed a simple simulation. Using the same

constraints as above on scanner arrangement, we randomly placed 5,000 devices and

144 scanners, both with a range r = 10m, within a simulated area of size 500m×500m.

We then compared the encounters recorded directly by the devices with the encounters

inferred by the scanners over 100 simulation runs.

In our simulation an average of 41.347% (SD=1.29%) of encounters inferred by

the scanners were “fake”, that is, they did not correspond to pairs of devices which were

in range of each other. We further found that the scanners was 82.91% (SD=4.40%). the

mean number of pairwise encounters missed by scanners because only one device was in

range, divided by the total number of encounters which were inferred by scanners, was

0.829 (SD=0.044). These values compare to the expectations of 41.35% (Equation 5.6)

and 0.827 (Equation 5.7) which were derived in our previous analysis.

5.2 Scanner errors in mobile data

In Figure 5.1 we defined the four possible classifications of contact types in

a static scenario: inferred-real, inferred-fake, missed-one, missed-two. These contact
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Figure 5.4: Relating device contacts to scanned encounters

types describe all the ways in which a scanner might (or might not) register an encounter

between two devices at a particular moment in time.

When mobility and time are introduced, the way in which a scanner infers (or

misses) an encounter can be thought of as a sequence of successive static contacts over

a period of time. The relationship between the device encounter and what is inferred

(or not) by the scanner falls into four possible classifications, each characterized by

which of the four contact types makes up the sequence. We showed the relationship

between device encounters and scanned encounters, and their corresponding contact

types, in Figure 5.4. The top time-series shows the ground truth of the encounters of

two devices, and the bottom time-series shows the different ways a scanner may infer (or

miss) device encounters. The shading on each scanned encounter relates to the contact

types from which it is composed over time. While we separately considered the distinct

probabilities of missed-one and missed-two in our static analysis, the distinction is not

useful from here on; in both cases a device encounter goes undetected by all scanners.

• Exact matches. Encounters between two devices that take place entirely within

scanner range. Devices are only within range of a scanner for the period of time

that they are within range of each other. These encounters are composed entirely

of inferred-real contacts, as in the encounter in Figure 5.4 beginning at time tn+1.

• Missed encounters. Encounters between two devices that take place beyond the

range of scanners are composed of missed-one or missed-two contacts. In Fig-

ure 5.4 this situation is shown by an unbordered solid area at time tn+4.

• Spurious matches. Encounters between two devices when the devices are each

within range of a scanner, yet are never actually in range of each other. These
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encounters are composed entirely of successive inferred-fake contacts, as in the

encounter in Figure 5.4 at time tn+8.

• Partial matches. Encounters between pairs of devices which are composed of

more than one of the four types of contact (other than a mixture of missed-one

and missed-two). Compared to the actual encounter the scanner may infer one or

more longer or shorter encounters which partially overlap in time with the actual

encounter. In Figure 5.4 two such encounters are shown beginning at times tn+10

and tn+16.

The extent to which the encounters inferred (or missed) by scanners fall into

each of these categories is critical when considering the degree of error which is likely

to appear in malware propagation models based on them.

Consider an ideal scanner, which was somehow able to accurately infer all device

encounters which passed within its range. For this scanner, all of its inferred encounters

would fall into one of the first two categories above. As such, they would be composed

entirely of inferred real and missed one or missed two contacts. By definition, the en-

counters inferred by this scanner would be a subset of the total set of device encounters

which took place in the area under study. While those encounters which never passed in

range of the scanner would be missed, if we assume that devices are dispersed uniformly

around the area then we would expect the selection of encounters which the scanner did

infer to be unbiased. As such, a deployment of a number of these ideal scanners would

together collect a subset of total device encounters (once de-duplicated to account for

encounters which pass through multiple scanners). We would expect the relative num-

bers of encounters inferred to reflect the ratio of scanner coverage area to the total area

under study. If we compared the property distributions (e.g., encounter duration) of the

scanner and device encounters, we would expect to see no difference. As a consequence,

once we adjusted for the lower encounter rates in the scanner data, we would expect to

see identical dynamics of propagation between the two sources of encounter data.

In practice, we can easily identify ways in which scanners deviate from ideal

behavior. In our previous analysis, we have shown that bridging leads scanners to in-

correctly infer copresence in around 41% of device pair sightings. These incorrect in-

ferences will give rise to partial matches and spurious matches appearing in the scanner
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data, which differ from, or do not actually appear in, the device encounters. In addition,

when we consider moving devices over time, even in the absence of bridging, scanners

can report encounters which differ from actual device encounters. For example, a pair

of devices may remain in range of each other while moving on equal vectors. They

may pass in and out of the ranges of a number of scanners, which will report numerous

shorter encounters between the pair, instead of one continuous meeting. In this partic-

ular example, the scanner data will contain a number of partial match encounters. If

we again consider the distribution of encounter duration in the scanner encounters, a

disparity will clearly be introduced compared to the device encounters.

Having shown the circumstances in which the use of scanners to infer copresence

can introduce errors, the remainder of the chapter investigates how often these errors

occur, and the extent to which they lead to inaccurate estimates of proximity borne

malware propagation as one concrete application.

5.2.1 Methodology

Compared to our analytical solution for the static case, a similar analytic model

for the dynamic case of devices that are mobile over time is substantially more complex.

On the other hand, obtaining empirical data with which to compare the incidence of

errors in scanned encounters is also difficult. To understand the extent of errors intro-

duced by the use of scanners in the case of mobile devices, we require data on both the

real encounters (as detected by devices themselves) and the encounters inferred from

scanners for the same set of devices at the same time. Most datasets consist of either

high volume scanned data or relatively low volume GPS trace data, but not both.

Lacking empirical data, we instead used a mobility simulator to produce com-

plete traces of mobile devices moving within a simulated two-dimensional space. To

obtain a baseline for the actual encounters between devices, we processed the mobility

traces generated by the simulator to identify the encounters between pairs of devices

over time. Using the same definition as in the static case above, we say that a pair of

devices i and j with positions given by two-dimensional vectors Xi and X j are within

radio range while ‖Xi−X j‖ ≤ r. As the devices move over time, we say that they are in

a pairwise encounter for any contiguous time period during which they remain in radio
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range, i.e., for an encounter between times tm and tn (where m < n):

‖Xi(ts)−X j(ts)‖ ≤ r ∀s : m≤ s≤ n

We then simulated the deployment of “virtual scanners” in the simulated area to generate

encounters inferred from scanner observations. From the perspective of a scanner, two

devices have an encounter when both devices are simultaneously within range of the

scanner for a specified time period.

With these two data sets, we can then compare the baseline “actual” encounters

with the inferred “scanner” encounters to understand the nature and frequency of en-

counter errors introduced by the use of scanners. The use of simulation also allows us to

investigate the effects of scanner density on the accuracy and completeness of scanned

data by deploying up to thousands of scanners per square kilometer.

Mobility simulator

We employed a mobility simulator which implements the Lévy walk mobility

model described in [RSH+08]. We note that a considerable variety of synthetic mobility

models have been proposed over time, including models proposed after the Lévy walk

model (e.g., SLAW [LHK+09], SWIM [KMS10], and individual-mobility [SKWB10]).

We sidestep debates about the “best” mobility model, and instead observe that the Lévy

model has the merits of validation with large realistic traces [RSH+08] and is relatively

popular and increasingly well understood (e.g., [LKC+11]). Other models might result

in different absolute values for malware propagation times and encounter distributions,

but, given the inherent approach of using scanners to infer device encounters, we believe

that the effects we observe are illustrative of the problem and not the mobility model.

We consider a number of agents, each carrying a device with a radio range of

10m (a typical range for proximity communication using Bluetooth), and we consider

a pair of devices to be copresent if both are within the other’s radio range. As before,

we make the simplifying assumption that radios produce a sharply-demarcated disc of

constant signal strength. The agents move in steps, with each step being comprised of

a flight — motion in a single direction θ (randomly chosen from a uniform distribution

such that 0◦ ≤ θ ≤ 360◦) — followed by a pause, during which the agent is station-

ary. For each step, the flight length and pause time are chosen randomly from two Lévy
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distributions respectively having scale factors α (flight length) and β (pause time). Ad-

ditionally, for flight length and pause time values, we apply unit scale factors c and d,

and maximum values t f and tp.

As in [RSH+08] flight time (and hence velocity) is related to flight length to

reflect the greater probability that longer flights use a mode of transportation other than

walking. Flight length is given by t f = kl1−p, where k and p are constants and 0≤ p≤ 1.

For flights of less than 500m, we use values of k = 18.72 and p= 0.79. For longer flights

over 500m, we use values of k = 1.37, p= 0.46. We set unit scale factors for flight length

c of 10m, and pause time d of 1 second in all simulations.

To reduce the effects of reflection on device mobility patterns, we define a large

square area within which devices move (3000m× 3000m). If devices reach the edge

of this area, their flights reflect off the outer boundary and continue their current flight

step. We also define a smaller central inner area (1000m×1000m) as the area of device

interaction, and consider encounters between devices only within this area.

Inside the central inner area we deploy “virtual scanners” at fixed locations.

These static scanners, like the mobile devices, have a 10m radio range and are placed at

least 20m apart to avoid overlapping coverage areas. For simplicity of implementation,

the scanners were placed on a square lattice, resulting in scanner coverage of 79% of the

total area.

To investigate whether differing mobility parameters affected the extent and na-

ture of errors in the scanned data, we use three sets of parameters for the scale factors of

flight length (α) and pause time (β ) distributions in the Lévy walk model. Each of these

three pairs of α and β values represent simulation parameters found to fit well with em-

pirical GPS datasets gathered from sets of walkers in three separate locations [RSH+08]:

San Francisco (α = 0.75, β = 1.68), NCSU (α = 0.86, β = 0.99) and KAIST (α = 0.97,

β = 0.45). For each of the three mobility parameter sets we performed 25 simulation

runs lasting one week of simulated time, each for 900 devices. We assume all devices

are susceptible, corresponding to malware propagation among mobile users who share

devices with the same platform (and are a subset of all mobile users — as in Chapter 3).

In each case, we deployed 2,500 scanners within the inner area (1000m×1000m) of the

simulation.
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5.2.2 Simulation results

Our simulations produced datasets containing, for each mobility trace, a set of

device encounters sensed by the mobile devices themselves, and a set of scanned en-

counters inferred by the “virtual scanners”. In comparing the two sets of encounters,

our aim was to highlight the errors introduced by incorrect inferences leading to par-

tial match and spurious match scanner encounters and their impact on simulations of

malware propagation models using the encounter data.

Comparing malware propagation dynamics

As an initial test of our assertion that the use of scanned encounter data may

lead to inaccurate estimates of malware propagation, we performed a simple malware

propagation simulation using the encounter data from our simulator. At a high level,

proximity-based malware propagation is a form of data dissemination in opportunistic

ad-hoc networks. As such, since such malware propagation strongly depends upon the

distributions of device contacts and contact durations, it is particularly useful for evalu-

ating the sensitivity of such data dissemination applications to errors in device encounter

data. As discussed above, our aim is to investigate the errors which arise in encounter

data as a result of the scanners’ deviation from ideal behavior. A deployment of ideal

scanners would infer a subset of device encounters, selected without bias, whose size is

related to the proportion of area under scanner coverage.

Since scanner coverage in our simulation was incomplete, we would not expect

propagation between the scanned and device encounters to match, even in the unlikely

event that our virtual scanners behaved ideally. To control for the effects of incomplete

scanner coverage, we created a normalized set of device encounters for use in our propa-

gation model. This dataset consists of a subset sampled at random from the set of device

encounters such that, for each mobility trace, the subset contains the same number of

encounters as the corresponding set of scanned encounters. While we make no attempt

to match the particular encounters taking place at scanner sites in this subset, we would

expect the aggregate characteristics of the encounters to match those which our scanners

would have inferred had they behaved ideally.

Figure 5.5 shows mean propagation over time over 100 runs on each mobil-
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ity trace. Each simulation run assumed one initially infected device in a standard

susceptible-infected (SI) model, with all devices susceptible and a latency for propa-

gation of 30 seconds. For all three of the mobility parameter sets we see, as expected,

that propagation proceeds more slowly in the “normalized” subset of device encounters.

It is also apparent that when the scanned encounter sets are used in the model,

despite having the same number of encounters as the normalized subsets of device en-

counters, propagation is slower still in all three mobility traces. The difference between

propagation using the normalized device encounters and the scanner encounters is large.

After two days of simulation time, the respective mean proportions of infected devices

are: SF 40.2% vs. 26.4%, NCSU 61.6% vs. 46.4%, and KAIST 67.9% vs. 60.8%.

This experiment showed that the use of scanned encounters, when compared to

subsets of device encounters, leads to an underestimation of propagation rates in proxim-

ity malware models. The deviation suggests that our scanners are not behaving ideally,

and are introducing wrongly inferred partial match and spurious match encounters. The

extent of these errors of inference is sufficient to alter the characteristics of the whole

set of device encounters.

Encounter overlaps

Our malware propagation simulation shows that the sets of scanned encounters

differ from those detected directly by the mobile devices, and that this difference is

attributable to incorrect inferences by the scanners which lead to the reporting of erro-

neous encounters. To better understand the nature of these erroneous encounters, we

directly compared the scanner and encounter data from each individual mobility trace.

By considering the encounters between each device pair which met (or was inferred to

have met) at least once during the simulation, we show the proportion of encounter types

present in the scanned encounter data (including missed encounters).

For each encounter between devices, we determined whether an encounter be-

tween the same two devices (in the set of scanned encounters) existed with the same start

and end time (an exact match), or whether one or more partial matches existed which

overlapped it in time. Device encounters where no match or overlap was found cor-

respond to missed encounters (combining missed-one and missed-two static contacts).
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Figure 5.5: Malware propagation, comparing device encounters, normalized device

encounters and scanned encounters.

Repeating the process from the perspective of the scanned encounters revealed the spu-

rious matches which did not overlap any device encounters.

We first compared all encounters in the device and scanned encounter sets for

each mobility parameter set (i.e., a minimum encounter duration of zero). We see that

approximately two-thirds of device encounters have a corresponding exact match or

partial match in the scanned encounters. There is little difference in this proportion

between the three mobility sets. The incidence of exact matches is low, representing

6.5%, 5.5% and 4.4% of total device encounters in the San Francisco, NCSU and KAIST

mobility parameters, meaning that almost all of the encounters actually inferred by the
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Figure 5.6: Relationships between device and scanner encounters by encounter type.

scanners are either partial matches or spurious matches.

Given the sensitivity of proximity-based malware propagation to encounter du-

ration (since infection latency may be 30 seconds or more), we repeated the experiment

using subsets of the device and scanner encounters with successively higher minimum

durations. For all of the mobility traces, we first see that, once a minimum threshold

of 15 seconds is imposed, the proportion of exact matches becomes vanishingly small.

Where exact matches do occur, they are typically between encounters of short duration.

This result is not unexpected, and suggests that very short encounters may simply offer

less opportunity for erroneous inferences to take place.

We also see that the proportion of missed encounters and spurious encounters

rises for all three mobility traces as the minimum encounter duration threshold increases.

A calculation of correlation between the proportion of missed encounters to total device

encounters and minimum latency threshold suggests that a strong relationship exists in

all cases (SF r2 = 0.96, NCSU r2 = 0.96, KAIST r2 = 0.92). A similar calculation

of correlation between the proportion of spurious encounters and minimum encounter

duration showed a less strong relationship which appeared to strengthen in the less dif-

fusive mobility parameter sets (SF r2 = 0.71, NCSU r2 = 0.82, KAIST r2 = 0.89).

The relationship between encounter length and proportion of missed encounters
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appears counter-intuitive. While practically all encounters over 15 seconds for all mo-

bility traces do not match exactly between the scanner and device encounters, we had

expected that longer encounters would experience a higher level of partial overlaps, if

only by chance. Our experiments showing the opposite to be true suggest that there

are differences between the distribution of encounter durations in the scanner and en-

counter datasets, with the scanner datasets simply including fewer long encounters to

match against the device encounters.

Encounter duration

The correlation between increasing encounter duration and incidence of missed

and spuriously matched encounters in the scanner data led us to investigate the distribu-

tion of encounter duration between the device and scanner encounter sets. The duration

of encounters is important when modeling the propagation of proximity-borne malware,

where propagation between devices might occur only during uninterrupted connections

of 30 seconds or more.

For each of the three mobility parameter sets, all simulation runs were combined

to produce large sets of device encounters and scanner encounters. We calculated the

proportion of encounters within each encounter set which were longer than a set of la-

tency thresholds for proximity malware transmission. As Table 5.1 shows, in all cases

a smaller proportion of the scanned encounters exceeds the latency thresholds. In other

words, the scanned encounters underestimate the duration of the device encounters con-

siderably. For longer but still realistic latency values of one minute, the proportion of

scanned encounters lasting long enough to allow malware propagation to occur is lower

than the device encounters by between 12% and 42% across the three sets of mobility

parameters.

Encounter “uniqueness”

We have shown that the scanned encounters generated by our simulator differ

from the device encounters by having characteristics which lead to underestimation of

malware propagation when these scanned encounters are used as source data. To further

investigate the extent to which the scanned encounters differ from the device encounters,
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Table 5.1: Encounters exceeding example malware propagation latencies (in seconds)

Device encs. (m) Scanned encs. (m) P(D)
P(S)

n(D)
n(S)

SF

All 3.20 (100.0%) 2.84 (100.0%) 0.0% -11.1%

>15 0.38 (11.9%) 0.28 (10.0%) -15.9% -25.2%

>30 0.14 (4.3%) 0.09 (3.2%) -25.6% -33.8%

>45 0.57 (1.8%) 0.03 (1.2%) -34.7% -41.9%

>60 0.02 (0.7%) 0.01 (0.4%) -42.6% -49.0%

NCSU

All 2.53 (100.0%) 2.24 (100.0%) 0.0% -11.4%

>15 0.42 (16.5%) 0.32 (14.2%) -13.8% -23.6%

>30 0.17 (6.8%) 0.12 (5.3%) -22.1% -31.0%

>45 0.80 (3.2%) 0.05 (2.3%) -28.4% -36.6%

>60 0.04 (1.5%) 0.02 (1.0%) -33.2% -40.9%

KAIST

All 1.40 (100.0%) 1.19 (100.0%) 0.0% -15.3%

>15 0.37 (26.1%) 0.29 (24.0%) -8.0% -22.0%

>30 0.19 (13.9%) 0.15 (12.4%) -10.6% -24.3%

>45 0.12 (8.6%) 0.09 (7.6%) -11.8% -25.3%

>60 0.08 (5.7%) 0.06 (5.0%) -12.4% -25.8%

we compared the distribution of contact degrees of each set of encounter data. The

distribution of contact degrees is a key driver of malware propagation: the dynamics

of epidemic spread in networks with heavy-tailed distributions of encounter degrees

differ significantly from “fully-mixed” models in which all agents are equally likely to

meet [New02].

However, contact degree is related to encounter rates, and the incomplete cov-

erage of the area provided by scanners will likely result in lower encounter rates. As

a result the contact degrees of device and scanned encounters cannot be directly com-

pared. To address this issue, we calculated a normalized metric, encounter uniqueness,

which is the proportion of unique devices within the total devices encountered in a given

period. In the case where a device meets each other device only once, all its encoun-

ters can be described as unique, giving a value of 1.0. As the proportion of encounters
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with previously-seen devices increases the ratio of unique encounters falls. For encoun-

ters with similar distributions of encounter duration, we would expect higher encounter

uniqueness to correspond to increased rates of malware propagation.

To ensure comparability across our simulation data, we calculated the unique-

ness values for encounters from the simulation start until each device in the simulation

had met a given number of unique devices. We repeated this process for each of the mo-

bility traces across all three mobility parameter sets. Figure 5.7 shows the distribution

of the uniqueness ratio for the device and scanned encounters.
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Figure 5.7: “Uniqueness” of device vs. scanner encounters

As expected, the more diffusive mobility parameter sets (NCSU, SF) show a

higher encounter uniqueness. Longer flight lengths mean that devices are less likely to

repeatedly encounter devices they have previously met. However, the two more diffusive

mobility parameter sets are also most affected by underestimation of encounter unique-

ness in the scanned encounters, while the least diffusive mobility parameter set (KAIST)

shows very little difference in encounter uniqueness between the device encounters and

the scanned encounters.
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5.3 Summary

Our detailed examination of errors induced by inferring device encounters from

third party scanners suggests caution in the use of such data sets, for instance, for the

study of flooding-based data dissemination applications like proximity malware propa-

gation. However, it is also suggestive of a potential way forward.

We have demonstrated the circumstances in which “bridging” errors between

pairs of out-of-range devices occur. Further, we have shown, under assumptions of equal

and homogeneous communication ranges, that over 41% of device encounters inferred

from simultaneous scanner sightings were incorrect. In the case of mobile devices,

these incorrect inferences have a complex effect on the accuracy of scanned encounters

as they accumulate over time. As well as encounters which are missed or spuriously

inferred by considering sightings at scanners, unreliable inference results in inferred

encounters which have shorter durations than the actual encounters between devices,

and underestimates the extent to which the devices encounter new, unmet devices.

The magnitude of these differences is sensitive to the underlying mobility char-

acteristics of the devices being scanned, with more diffusive mobility correlating with

increased errors. In all three sets of mobility parameters we tested (each closely match-

ing GPS trails gathered from human movement), the extent of errors introduced through

inferring copresence by simultaneous presence at scanners led to a significant underes-

timation of the rate at which proximity-based malware would spread amongst devices.

On the other hand, our use of a mobility simulator to compare actual encounters

observed from mobility trails with encounters inferred from sightings at scanners sug-

gests a method for mitigating erroneous inferences of copresence in data gathered by

scanners deployed in the field. In cases of highly diffusive mobility, where the errors

introduced by bridging appear to be most pronounced, the quality of scanned encounter

data might be materially improved, leading to more accurate simulations of malware

spread and countermeasures.

Estimated or observed characteristics of mobility patterns around the scanners,

such as the distribution of velocities, flight lengths and pause times would be used to set

initial parameters for a mobility simulator. This simulator would then be populated with

virtual scanners similar to those used in the field, and used to infer simulated encounters.



86

The mobility parameters used in the simulation could then be improved iteratively until

the simulated encounters closely matched the statistical properties of those gathered

from the field scanners.

The malware propagation model could then be based on the direct encounters

between devices in the simulator. Since the same fundamental geometry leads to errors

in simulated scanners and the real deployed scanners we would expect the incidence of

bridging errors in both cases to be similar, provided the simulator’s mobility parameters

closely match the observed characteristics of mobility around the deployed scanners.

This being the case, the direct encounters between devices in the simulator should cap-

ture the observed properties of human mobility at the scanner sites, while reducing er-

rors from incorrect inferences — and in doing so be closer to the real human encounters

which took place around the scanners.

Chapter 5 is based on the material as it partly appears in the “Proceedings of

the 4th International Conference on Communication Systems and Networks 2012” with

the title “Limitations of scanned human copresence encounters for modelling proximity-

borne malware” by James Mitchell, Eamonn O’Neill, Gjergji Zyba, Geoffrey M. Voelker,

Michael Liljenstam, András Méhes, Per Johansson.



Chapter 6

Conclusion

The alarming growth in mobile malware developed during recent years moti-

vates extensive studies to better understand its unique properties and to effectively pro-

tect users. In this dissertation I examined the unique characteristics of mobile malware

propagation along with the effectiveness of various defense strategies. Below I summa-

rize the contributions of our research and indicate the impact as well as future directions.

6.1 Contributions

I studied the propagation of mobile malware that spreads through direct pair-

wise communication mechanisms, such as Bluetooth or WiFi, between devices in geo-

graphic proximity. Compared to previous studies, I incorporated both theoretical analy-

sis and simulation using synthetic and real world traces to validate our results. I showed

that proximity malware can infect all the susceptible devices of a campus-size area in

a matter of a few days. Furthermore, I applied realistic parameter sets regarding hu-

man mobility to generate encounters between devices. Malware propagation with these

encounters showed that the more diffusive mobility is, the faster malware propagates

within an area.

While proximity malware spreads through direct encounters between devices, it

remains completely unobserved by the operator, making defense against it challenging.

Thus, defense must start with local detection and then can continue with collaboration

between the devices themselves or the mobile operator. I evaluated, for the first time,

87



88

the propagation of proximity malware looking at three defense strategies: local detec-

tion alone, local detection with collaboration among the devices themselves, and local

detection in collaboration with the mobile operator. When such defense mechanisms are

applied, I found that local dissemination of signatures can be effective in containing the

propagation, while global coordinated strategies (where the mobile operator is involved)

contain it even faster.

I also studied the impact of user social behavior on proximity malware prop-

agation. From real world traces I identified areas where people congregate, split the

population into two groups based on social behavior, and labeled them as frequent or

transient visitors. Even though transient visitors are considered unimportant, as they

appear very little compared to frequent users, they compose the majority of the pop-

ulation in many real world scenarios. Our results of malware propagation simulation

using either set or the entire population showed that transient visitors can be surpris-

ingly effective at spreading the malware. Our analysis can be applied also for any data

dissemination application and, to our knowledge, this is the first study that considers

transient visitors for data propagation.

Proximity malware propagation is significantly impacted by the direct pair-wise

encounters between devices. Such encounters are difficult to collect, however without

being intrusive to the user. A popular method is to infer them through scanners. We ex-

tensively studied the strengths and limitations of deploying static scanners for inferring

direct pair-wise encounters, and found that scanner-inferred encounters exhibit signifi-

cant statistical differences compared to the actual encounters. Particularly, the set of en-

counters inferred from scanners differs from the actual encounters in terms of duration

distribution and probability of encountering previously unmet devices. I believe these

discrepancies should be considered by future research. In terms of proximity malware

propagation, I showed that scanned encounters yield a slower propagation compared to

actual encounters for devices with the same mobility characteristics.
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6.2 Impact and Future Directions

In our studies I focused on proximity malware propagation in areas of limited

size (e.g., university campus) and found that malware can infect the population of such

areas in a few days. However, the scope of these analyses should be expanded to look at

larger areas. Of particular concern is proximity malware that strategically uses the net-

work operator to combine long-distance infections with local propagation. Rather than

flooding the network with traffic, thereby raising alarms, such hybrid malware could use

infrequent communication to minimize chances of detection.

Our study showed that proximity-based signature dissemination effectively lim-

its worm propagation. Due to the stronger signature assumptions, though, the broadcast-

based signature dissemination strategy gives the best results. An antivirus server, by

having more information and more processing power, is able to generate better quality

signatures and instruct the devices on how to remove the malicious code. The central-

ized nature of this strategy has also two significant advantages. First, it can better handle

polymorphic worms by having copy of the malicious code from different devices. Sec-

ond, it is a very attractive solution for antivirus/operator companies, as they can provide

this feature as an additional chargeable service, or generally provide better security to

their customers. We should note, though, that all the above techniques are susceptible

to false positives.

I looked at how the social behavior of users impacts malware propagation when

malware spreads only by using a subset of the devices (Vagabonds versus Socials) in

a single area. A number of interesting research directions follow, including studying

the characteristics of inter-area malware propagation, the dynamics of user social be-

havior (e.g., Vagabonds becoming Socials in other areas), and the interactions between

Vagabonds and Socials in supporting malware dissemination.

Our detailed analysis of errors which are generated by inferring device encoun-

ters through static scanners suggests caution in the use of such data sets directly. How-

ever, the scanner-captured data could be used indirectly to further improve the accuracy

of simulations of malware spread and countermeasures. First, estimated or observed

characteristics of mobility patterns around the scanners, such as the distribution of ve-

locities, flight lengths, and pause times could be used to set initial parameters for a
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mobility simulator, which in turn generates encounters between simulated devices and

inferred encounters using virtual scanners. Then, iterative improvement would be possi-

ble by matching inferred encounter properties from the real world data set and encounter

properties from virtual scanners. After this process, direct encounters from simulated

devices could be used for the desired analysis.

In my work I have shown the potential threats of proximity malware propagation,

as well as the impact of various defense strategies on containing its propagation. Yet,

mobile malware is still in its infancy. Given the pervasive adoption of mobile devices

throughout the world, the threat of mobile malware will continue to increase and my

work provides guidance to future efforts tackling such threats.
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