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2015



Abstract of the Dissertation

An Energy-Based Approach to

Power System Analysis

by

Sina Yamaç Çalışkan

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2015

Professor Paulo Tabuada, Chair

Power systems are part of the nation’s critical infrastructure and they support several

indispensable services of our civilization such as hospitals, transportation systems,

and telecommunications. Among the many requirements that power systems need to

satisfy, power systems need to ensure that voltages and currents in the power grid are

sinusoidal with a synchronous frequency of 50 or 60 Hz. Failure to do so would cause

damage in appliances as well as in electrical industrial machinery that were developed

under the assumption of sinusoidal voltages and currents with constant frequency.

Furthermore, according to the North American Electric Reliability Corporation,

frequency divergence of one or more of the generators that supply power to the grid,

i.e., loss of synchronization, can lead to vibrations causing serious damage to the

generators. As documented in the United States Department of Energy report on

the August 14, 2003 blackout in Canada and the Northeast of the United States,

frequency swings are the main reason for blackouts to spread across power systems.

This makes the preservation of synchronization of generator frequencies one of the

most important problems in power systems. This problem is also known as the

transient stability problem in the power systems literature.

The classical models used to study the transient stability problem implicitly

assume that all the generators are rotating at angular velocities close to the syn-

chronous frequency. This assumption is known not to hold in real power systems.
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A well documented example by the Department of Energy is the final stage of the

August 14, 2003 blackout. This makes us question the validity of the existing tools

and methods, based on classical assumptions and models, to predict and prevent

the spread of blackouts.

In this work, we abandon the classical models and replace them with energy-

based models derived from first principles that are not subject to hard-to-justify

classical assumptions. In addition to eliminate assumptions that are known not

to be satisfied, we derive intuitive conditions ensuring the transient stability of

power systems. Providing such conditions in the classical framework with lossy

transmission lines is a problem that has remained unsolved for more than sixty

years and partial solutions under very restrictive assumptions have only recently

been found. This is to be contrasted with the conditions described in this thesis that

naturally handle lossy transmission lines. With the help of the insights we gained in

the analysis performed in Section 4.3, we design easy-to-implement controllers that

solve the transient stability problem in power systems. We also provide a novel way

of performing circuit reduction, aiming to reduce the complexity of transmission

grid models. Kron reduction, which is performed under steady state assumptions, is

the standard circuit reduction technique used in the power systems literature. The

novel circuit reduction method described in Section 3.1 shows how to perform Kron

reduction for a class of electrical networks without these steady state assumptions.
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CHAPTER 1

Introduction

1.1 Power Systems

One of the major achievements in the history of our civilization is the invention

of fire. The discovery of fire was also the inception of our ongoing search for the

generation of energy to meet our basic needs. Power systems arise from this ongoing

search. A power system is responsible for generating, transmitting, and distributing

electrical energy to the customers connected to it. We can think of a power system

as an interconnection of several building blocks, each of which is designed to achieve

a different objective.

The first building block consists of generators which produce electrical energy.

This production is achieved by means of converting some form of energy into electri-

cal energy. The only form of energy that was required by our primal ancestors was

heat energy, which was used for warming shelters or cooking food. In the contem-

porary society, we know how to build devices that use electrical energy to achieve a

wide spectrum of tasks. This is one of the reasons behind converting different forms

of energy into electrical energy in the generator units of a power system.

The electrical energy is “the common currency” of power systems because it

is easier to transmit electrical energy to a wide area in an efficient manner. This

efficiency in the transfer of electrical energy allows us to separate generation from

consumption. In contrast to our ancestors, who kindled a fire to generate energy

and use this generated energy on the spot, the customers of contemporary power

systems are free from the laborious task of generating electrical energy by themselves.

The second building block, the transmission grid, is responsible for transmitting the

1



energy produced by the generators to the distribution substations. The final building

block consists of distribution grids. Each distribution grid is connected to one of the

distributing substations. The energy received from the substation is routed to the

customers connected to the distribution grid. When we connect our computer to an

electrical plug, we form a connection between our device and the distribution grid.

Due to historical reasons, alternating currents in a power system are perfect si-

nusoidal waveforms with a fixed utility frequency of 60 Hz (in the United States,

Canada, Mexico, etc.) or 50 Hz (in the European Union, Africa, Russia, China,

etc). The whole system is designed based on the assumption that the electrical

waveforms will be “close” to these ideal sinusoidal waveforms. Due to disturbances

such as equipment failure and short-circuits caused by a tree contact, or the mis-

match between the generated electrical energy and the consumed electrical energy,

the electrical waveforms deviate from these ideal waveforms. One of the most im-

portant engineering objectives is to make sure that these deviations do not have

significant effects on the power system operation. Another important objective is

to make sure that the currents flowing on the transmission lines do not violate the

predefined operational limits. Failure to achieve this objective results in high cur-

rents, and consequently, overheating of the transmission lines due to resistive losses.

We want to avoid such excess heating since it has the potential to cause significant

damage to the transmission line.

We can ensure that these two engineering objectives are satisfied by making sure

that the frequencies of the generated electrical waveforms at the generator units

are equal to the utility frequency, and the differences between the phase angles

of the waveforms at the generator terminals are at the desired values. Transient

stability, one of the most important problems in the power systems literature, can

be informally defined as the problem of maintaining the frequencies and the phase

angle differences of the generated electrical waveforms at the desired values.
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1.2 The Future of the Power Systems

Our successful journey from the invention of fire to contemporary power systems

is an impressive achievement. However, we are not at the end of this journey; and

the evolution of power systems is an ongoing process. Researchers and engineers

around the world give us glimpses of the next destinations that we will reach on this

journey. It is important to see the path forward, because if we are blind to the vision

of future power systems, in the words of Robert Shapard and Scott Prochazka in

the US Department of Energy’s “The Future of the Grid” report [68], “the changes

will happen to us, rather than our industry leading the way to our future and that

of the electric grid (system)”. In the same report, the future directions of the power

systems are investigated.

It is expected that the power grid, i.e., the combination of the transmission grid

and the distribution grids of a power system, will be the most important part of

the future power system. The interaction of customers with the future grid will also

evolve into a more active relationship. In contemporary power systems, energy flows

from the generation sources to the customers. The only role of the customer is to

pay for the price of generation, transmission and distribution of this energy; and

use this purchased energy passively. This paradigm of unidirectional flow of energy

will evolve into a bidirectional flow, where a household or a factory can both be a

customer and a producer. Current highly regulated structures will be replaced by a

mixture of regulated and competitive markets. There will be a retail market where

the prices of generation, transmission and distribution are determined. We will

observe a power shift from traditional actors of the energy sector to the customers.

This active involvement of the customers to the energy market will cause the power

system to become more complex.

The contribution of the distributed energy sources to the power system will

increase significantly. Although the conventional energy sources such as nuclear re-

actors will still be the key component of generation, there will be a shift from such

sources to renewable energy sources such as solar panels, and power generators using
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wind energy or natural gas. Maintaining the balance between the produced energy

and the demand will still be the key objective in the future. Due to the increas-

ing contribution of renewable sources, bidirectional energy flows and the increasing

complexity of the grid, it will be harder to achieve this task. Together with the

increasing societal need for robust and reliable power, the future power systems,

although more flexible and adaptable, will be more complex and harder to control.

We expect that these changes will result in a paradigm shift in power systems

that will render one of the fundamental assumptions that is widely used in the power

systems literature false. This assumption can be summarized as follows: the models

derived for steady-state are good approximations to study problems of dynamical

nature, such as transient stability. In the past, this was a reasonable assumption due

to the centralized and highly regularized structure of power systems. However, as

illustrated by the future projections in this section, this picture is bound to change.

This change motivates us to question the traditional models used to derive the theory

behind the operation of power systems in the past century. Moreover, the current

theory is also not sufficient to explain important phenomena such as the spread of a

blackout, because the underlying assumptions are known to be violated during these

events, as exemplified by the United States Department of Energy report [66] on the

August 14, 2003 blackout in Canada and the Northeast of the United States. In

this work, we show that it is possible to develop a theory of power systems without

relying on these assumptions that have a debatable future.

The remainder of the dissertation is organized as follows. In Chapter 2, we

introduce notation and concepts that are used in the rest of the dissertation. In

Chapter 3, we explain how to perform circuit reduction dynamically, that is, without

relying on the usage of phasors that are only well defined at the steady-state; and

we illustrate how these results can be applied to obtain reduced transmission grid

models. Finally, in Chapter 4, we review the traditional way of analyzing transient

stability of power systems. In the same chapter, we show that it is possible to

perform this analysis without posing the restrictive assumptions required by the

traditional analysis.
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CHAPTER 2

Preliminaries

In this chapter, we present several standard definitions and results that will be used

in the subsequent chapters. We refer to [36, 45] for linear algebra, [35, 73] for graph

theory, [19, 22, 41, 73] for electrical circuits, and [70, 71] for control theory and

port-Hamiltonian systems. We use S, N, R, R+ and C to denote the unit circle,

the natural numbers, the real numbers, the positive real numbers, and the complex

numbers, respectively. The cardinality of a set S is denoted by |S|. Given a complex

number c = x + jy ∈ C, the complex conjugate of c is c∗ = x− jy, where j2 = −1.

We denote the set of smooth maps with domain A and codomain B by C(A,B).

We denote the (i, j)th component of a matrix M and ith component of a vector v

by Mi,j and v(i). The Hermitian MH and the transpose MT of a matrix M ∈ Cn×m

are defined as MH
i,j = M∗

j,i and MT
i,j = Mj,i for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

respectively. The diagonal matrix with diagonal elements {d1, . . . , dn} is denoted by

diag{d1, . . . , dn}. If M ∈ Rn×n, then we have MH = MT . If M = MH (M = MT ),

the matrix M is called Hermitian (symmetric). The identity matrix 1n×n ∈ Rn×n is

a matrix where all diagonal elements are one and all off-diagonal elements are zero.

A matrix M is invertible if there exists a matrix called the inverse of M , denoted by

M−1, that satisfies MM−1 = M−1M = 1n×n. If λ ∈ C satisfies Mv = λv for some

matrix M ∈ Cn×n and a nonzero vector v ∈ Cn, then λ is called an eigenvalue of M

and v is called the eigenvector of M associated with the eigenvalue λ. Let M be a

Hermitian matrix and λ be an eigenvalue of M . We have Mv = λv, which in turn

implies MHv = λ∗v. Therefore, λ = λ∗, and this implies that every eigenvalue λ of

an Hermitian matrix M is real.

For a subset S ⊆ V , where (V,+, ·) is a vector space over a field F, if (S,+, ·) is
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a vector space over the same field, we say (S,+, ·) is a subspace of (V,+, ·). Abusing

the notation, we use V to denote the vector space (V,+, ·). The zero vector, denoted

by 0n ∈ Rn, is a vector with all entries equal to zero. The span of a set vectors

S = {v1, . . . , vn} is denoted by span S. Let B be a basis for a vector space V . The

dimension of the vector space V , denoted by dim V , is defined as dim V = |B|. If

dim V ∈ N (dim V = ±∞), then V is finite (infinite) dimensional.

The kernel and the image of the linear map defined by a matrix M ∈ Rn×m are

the vector spaces defined by the sets:

ker M = {x ∈ Rm | Mx = 0n},

im M = {z ∈ Rn | z = Mx for some x ∈ Rm}

Let 〈x, y〉 be the Euclidean product of vectors

x =


x1

...

xn

 , y =


y1

...

yn

 ∈ Rn

defined as 〈x, y〉 =
∑n

i=1 xiyi. The orthogonal complement S⊥ of a subspace S ⊆ V

is defined as

S⊥ = {v ∈ V | 〈x, v〉 = 0 for all x ∈ S}.

A matrix M ∈ Rn×n is called positive-definite (positive-semidefinite), denoted by

M > 0 (M ≥ 0), if xTMx > 0 (xTMx ≥ 0) for all x ∈ Rn. If −M is positive-definite

(positive-semidefinite), then M is negative-definite (negative-semidefinite).

Theorem 2.0.1 The spaces ker MT and im M are subspaces of Rm that are or-

thogonal complements, i.e.,
(
ker MT

)⊥
= im M .

Theorem 2.0.2 Let M ∈ Rn×n be a symmetric matrix. The following statements

are equivalent:

• M is positive-semidefinite (positive-definite).

• If λ is an eigenvalue of M , then λ ≥ 0 (λ > 0).

6



If the matrices Mi for i ∈ {1, . . . , n} are positive-semidefinite, we have

xT

(
n∑
i=1

Mi

)
x =

n∑
i=1

xTMix ≥ 0,

and the sum of matrices
∑n

i=1Mi is also positive-semidefinite.

2.1 Graphs

In this section, we introduce graphs. A graph is a mathematical abstraction that

represents how the elements of a given set of objects are connected to each other.

We begin with a presentation of the formal definition of a graph. In Section 2.1.2, we

present some of the results from graph theory, which will be used in the subsequent

chapters of this work.

2.1.1 Graph Theory Related Definitions

We suppose that we are given a set of objects V and we ask the following question:

“Given two objects from the set V , are these objects connected?”. The answer to

this question can be encoded as a set E ⊆ V ×V , where any element e = (v1, v2) ∈ E

represents a connection from the object v1 ∈ V to the object v2 ∈ V . The resulting

data structure is called a graph where the objects, and the connections between

these objects are represented by the vertices V , and the edges E of this graph,

respectively. The edges have a sense of direction: for every edge (v1, v2) ∈ E , the

direction is from the vertex v1 to the vertex v2. If for every edge (v1, v2) ∈ E , we

also have (v2, v1) ∈ E , then the direction information becomes redundant. A graph

that satisfies this property is called an undirected graph.

Definition 2.1.1 A graph G = (V , E) is a tuple, where V is the set of vertices and

E ⊆ V × V is the set of edges. A graph is undirected if

(v1, v2) ∈ E =⇒ (v2, v1) ∈ E ,

for every (v1, v2) ∈ V.

7



The following examples illustrate objects that can be represented as a graph:

Example 2.1.2 (Connectivity of the buildings at the UCLA South Campus) It is

possible to go from some of the buildings located at the UCLA South Campus to

another building in the same area without leaving any of these two buildings. If we

consider the Engineering 4 (E4), Engineering 5 (E5), Boelter Hall (BH), Math

Sciences (MS) and California Nanoscience Institute buildings, the following graph

in Figure 2.1 describes which of these buildings are connected.

E4 BH

MSE5

CNSI

Figure 2.1: Connectivity of the buildings at the UCLA South Campus

The graph is undirected because if we can go from building A to building B without

leaving any of these building, we can also go from building B to building A, i.e.,

(A,B) ∈ E implies (B,A) ∈ E. In the graph, an edge connecting two vertices A and

B represents these two edges. In this example we have

V = {E4, E5, BH,MS,CNSI},

and

E = {(E4, E5), (E5, E4), (E4, BH), (BH,E4), (BH,MS), (MS,BH)} ⊆ V × V .

Since (E4, E5) ∈ E, we can go from Engineering 4 to Engineering 5 without leaving

any of these buildings. However, since (E4, CNSI) /∈ E, we have to leave Engineer-

ing 4 to reach CNSI.

Example 2.1.3 (Followers in a social network) Let Alice (A), Bob (B), Carol (C)

and Dave (D) be the users of a social network where people can follow other people’s

posts. We can use a directed graph to represent who is following who for this subset

8



A

B

C D

Figure 2.2: Followers in a social network

of users represented by

V = {A,B,C,D}.

The scenario in which Alice and Bob follow Carol and Carol follows Dave is captured

by the graph in Figure 2.2. The set of edges for this graph is

E = {(A,C), (B,C), (C,D)}.

One can define a map Γ : E → W . Given any edge e, this map assigns a weight

w = Γ(e) ∈ W to this edge. A graph with weighted edges is called a weighted graph.

Definition 2.1.4 A weighted graph G = (V , E ,Γ,W) is a quadruple, where V is the

set of vertices, E ⊆ V × V is the set of edges, W is the set of edge weights and

Γ : E → W ,

is the weight function.

Example 2.1.5 (Connectivity of the buildings at the UCLA South Campus - con-

tinued) The graph in Figure 2.1 shows the connectivity of the UCLA South Campus

buildings. Some of these buildings are connected via suspension bridges. We can

incorporate this information into the graph in Figure 2.1 by converting this graph

into a weighted graph. We defineW = N∪{0}, and a map Γ : E → W which assigns

each edge that connects two building the number of suspension bridges that form this

connection. The resulting weighted graph G = (V , E ,Γ,W) is given in Figure 2.3.

We have

Γ ((E4, E5)) = 1, Γ ((E4, BH)) = 4, Γ ((BH,MS)) = 0.

9



E4 BH

MSE5

CNSI

1

4

0

Figure 2.3: Number of suspension bridges connecting UCLA South Campus build-

ings

Any directed or undirected graph can be uniquely represented by a matrix

B ∈ {−1, 0, 1}|V|×|E|,

which is called the incidence matrix of the graph.

Definition 2.1.6 The incidence matrix B ∈ {−1, 0, 1}|V|×|E| of a directed graph

G = (V , E) is a matrix defined by

Bi,j =


−1 if ∃x ∈ V such that ei = (j, x) ∈ E

1 if ∃x ∈ V such that ei = (x, j) ∈ E

0 otherwise

.

For any undirected graph, for every edge (i, j) ∈ E , we know that the symmetric

edge (j, i) ∈ E is also an edge of the graph. We can always obtain a directed graph

by randomly eliminating one of the edges from the pair of edges (i, j), (j, i) ∈ E .

Let B be the incidence matrix of the obtained graph. The incidence matrix of the

undirected graph can be obtained by replacing every occurrence of −1 in B by 1.

Example 2.1.7 The incidence matrix of the directed graph given in Figure 2.2 is

Bdirected =


−1 −1 0 0

0 0 0 0

1 0 −1 0

0 0 1 0


10



In order to obtain the incidence matrix of the undirected graph given in Figure 2.1,

we first eliminate the edges (E5, E4), (BH,E4), (MS,BH) from the set of edges of

the undirected graph to obtain a directed graph G ′ with

V ′ = {E4, E5, BH,MS,CNSI},

and

E ′ = {(E4, E5), (E4, BH), (BH,MS)}

The incidence matrix of the undirected graph is obtained by replacing every occur-

rence of −1 in the incidence matrix of the resulting directed graph G ′ by 1:

Bundirected =



1 1 0

1 0 0

0 1 1

0 0 1

0 0 0


.

The obtained incidence matrix Bundirected is independent of the choices of the elimi-

nated edges from the pairs of symmetric edges.

We conclude this section by defining connected graphs, paths and cycles.

Definition 2.1.8 A path on graph G = (V , E) from vertex v0 ∈ V to vertex v` ∈ V

is the subset of vertices {v0, . . . , vi, . . . , v`} ⊆ V that satisfies

(vi−1, vi) ∈ {(x, y) ∈ V × V | (x, y) ∈ E or (y, x) ∈ E},

for all i ∈ {1, . . . , `}. If v0 = v`, then the path is called a cycle.

Definition 2.1.9 A graph G = (V , E) is connected if for every vi, vj ∈ V with

vi 6= vj, there exists a path from vi to vj.

Example 2.1.10 The graph in Figure 2.1 is not connected because for every

v ∈ {E4, E5, BH,MS},

there exists no path from CNSI to v. The graph in Figure 2.2 is connected.
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2.1.2 Some Useful Results from Graph Theory

In this section, we present several graph-theoretical results that will later be used in

Chapter 3. We begin by defining the graph Laplacian of a weighted directed graph.

Definition 2.1.11 Let G = (V , E ,Γ,R) be a weighted directed graph with the set of

edges E = {e1, . . . , e|E|} and the incidence matrix B. The weight matrix W defined

by the weight map Γ is given by

W = diag
{

Γ(e1), . . . ,Γ(e|E|)
}
,

and the graph Laplacian of the weighted directed graph G is defined as BWBT .

Let {Vb,Vi} be a partition of the set of vertices V of a graph G. We have

V = Vb ∪ Vi with Vb ∩ Vi = ∅. This decomposition induces a decomposition of the

incidence matrix

B =

Bb

Bi

 ,
where Bb and Bi are the matrices that are composed of the rows of the incidence

matrix that correspond to the elements of Vb, and Vi, respectively. For the rest of

the discussion, we will call the elements of Vb, and Vi boundary vertices, and internal

vertices, respectively. The following theorems illustrate important properties of the

graph Laplacian of a weighted connected directed graph.

Theorem 2.1.12 ([73, Theorem 3.1]) Let G = (V , E ,Γ,R+) be a weighted con-

nected directed graph with the set of vertices V = Vb ∪Vi, the weight matrix W , and

the incidence matrix B. Then, the matrix M = BWBT is a symmetric, positive-

semidefinite matrix with positive diagonal elements and non-positive off-diagonal

elements. Moreover, the column sums and row sums of M are zero.

Theorem 2.1.13 ([73, Theorem 3.1]) Let M ∈ Rn×n be a symmetric, positive-

semidefinite matrix with zero row and column sums, positive diagonal elements and

non-positive off diagonal elements. There exists a weighted connected directed graph

12



G = (V , E ,Γ,R+) with incidence matrix B and weight matrix W that satisfy M =

BWBT .

Theorem 2.1.14 ([73, Theorem 3.1] and [11, Lemma 1]) Let G = (V , E ,Γ,R+) be

a weighted connected directed graph with the set of vertices V = Vb ∪ Vi, the weight

matrix W , and the incidence matrix B. We assume that Vb 6= ∅ and Vi 6= ∅. There

exists a weighted connected directed graph Ĝ = (Vb, Ê , Γ̂,R+) with the weight matrix

Ŵ and the incidence matrix B̂ that satisfy

B̂Ŵ B̂T = BbWBT
b −BbWBT

i

(
BiWBT

i

)−1
BiWBT

b . (2.1)

The following example shows that, in general, we cannot apply Theorem 2.1.14

to a graph with complex weights.

Example 2.1.15 We consider the weighted directed graph G = (V , E ,Γ,C) given in

Figure 2.4 with V = {1, 2, 3} and E = {(1, 3), (3, 2)}. The weight map is defined as

1 3 2

−j j

Figure 2.4: A weighted directed graph with complex weights

Γ(e) =


−j if e = (1,3)

j if e = (3,2)

.

The corresponding weight matrix and the incidence matrix are

W =

−j 0

0 j

 , B =


−1 0

0 1

1 −1

 .
We choose Vb = {1, 2} and Vi = {3}, which results in the partition

B =

Bb

Bi

 with Bb =

−1 0

0 1

 , Bi =
[
1 −1

]
.

Since BiWBT
i = 0, the term (BTWBT

i )−1 in (2.2) does not exist, therefore Theo-

rem 2.1.14 is not applicable.
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This problem can be solved by enforcing the following assumption on edge weights:

Assumption 2.1.16 The complex weights of the weighted directed graph G = (V , E ,Γ,C)

satisfy ∑
(i,j)∈E

Γ((i, j)) +
∑

(j,i)∈E

Γ((j, i)) 6= 0,

for every i ∈ V.

By posing Assumption 2.1.16, we can generalize Theorem 2.1.14 to graphs with

complex weights.

Theorem 2.1.17 Let G = (V , E ,Γ,C) be a weighted connected directed graph with

the set of vertices V = Vb ∪ Vi, the set of edges E with weights satisfying Assump-

tion 2.1.16, the weight matrix W , and the incidence matrix B. We assume that

Vb 6= ∅ and Vi 6= ∅. There exists a weighted connected directed graph Ĝ = (Vb, Ê , Γ̂,C)

with the weight matrix Ŵ and the incidence matrix B̂ that satisfy

B̂Ŵ B̂T = BbWBT
b −BbWBT

i

(
BiWBT

i

)−1
BiWBT

b . (2.2)

2.2 Electrical Circuits

In this section, we focus on electrical circuits which are composed of two-terminal

elements. In the remainder of this section, we assume that all the elements in the

circuit are lumped. In Section 2.2.1, we present Kirchhoff’s Voltage and Current

Laws, which relate quantities defined on the terminals of the circuit elements to

the quantities defined on the branches of the elements. In Section 2.2.1, we explain

common two-terminal circuit elements in detail. Finally, in Section 2.2.2, we discuss

how to analyze electrical circuits at steady state using phasors.

2.2.1 Kirchhoff’s Laws and Circuit Elements

This section begins with the explanation on how to represent lumped electrical

circuits as directed graphs. After we acquaint the reader with the graph theoretical
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representation of electrical circuits, we present Kirchhoff’s Laws using the language

of graph theory.

2.2.1.1 Electrical Circuits as Graphs

A lumped electrical circuit is constructed by combining two-terminal lumped ele-

ments. This combination can be achieved by performing series and parallel connec-

tions of two-terminal elements. Given a new element to be connected to the rest of

the circuit, in a series connection, we connect one of the terminals of the new element

to one of the terminals to the rest of the circuit, whereas in a parallel connection we

connect both of the terminals of the new element to the rest of the circuit.

Example 2.2.1 We are given three two-terminal elements. The end points of the

ith elements are represented by pi and p′i. We connect elements 1 and 2 in series

by connecting p′1 to p2, and we connect element 3 in parallel to the circuit which is

composed of elements 1 and 2 by connecting p3 to p1 and p′3 to p′2. The final circuit

is given in Figure 2.5

p1

p3

p′1

p2 p′2

p′3

3

1 2

Figure 2.5: A lumped electrical circuit with three elements

We can think of the lumped circuit as a directed graph G = (V , E), where we assign

arbitrary reference directions to the edges. In Example 2.5, the set of vertices is

V = {v1, v2, v3} and the set of edges E = {(v1, v2), (v2, v3), (v1, v3)}, where we identify

the terminals p1 and p3 with the vertex v1, the terminals p′1 and p2 with the vertex v2

and the terminals p′2 and p′3 with the vertex v3. The edges of the graph represent the

branches of the elements. This discussion generalizes to arbitrary lumped electrical

circuits: we can represent any circuit as a directed graph G = (V , E), where the set
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of vertices V and edges E coincide with the terminals (nodes) and the branches of

the lumped circuit elements.

2.2.1.2 Kirchhoff’s Laws on Graphs

Let G = (V , E) be a directed graph with the incidence matrix B that represents an

electrical circuit. We define the smooth maps I, V ∈ C
(
I,R|E|

)
and η, ψ ∈ C

(
I,R|V|

)
for some I ⊂ R, where I(e)(t) and V (e)(t) are the current flowing through and

voltage across the branch that is represented by edge e in the directed graph at time

t. Similarly, η(v)(t) and ψ(v)(t) are the net current entering into and the potential at

the terminal that is represented by vertex v at time t. For the rest of the discussion,

we can use branch and edge, similarly terminal (node) and vertex, interchangeably.

From the definition of the incidence matrix B, we can verify that the ith row Bi

of the incidence matrix can be defined as

Bi(j) =


−1 if the branch j is leaving from the terminal i

1 if the branch j is entering into the terminal i

0 otherwise

.

If the branch b is leaving from the terminal n, this means that the edge is from the

vertex v that represents the terminal n to another vertex v′. Similarly, if the the

branch b is entering into the terminal n, then the edge that represents b is from a

vertex v′ to the vertex v that represents the terminal n. With this observation on

the rows of the incidence matrix, one can verify that (Bi)T I(t) represents the net

current entering into the terminal at time t, i.e. the difference between the sums

of currents at time t entering into and leaving from the terminal i. Repeating this

process for every terminal node, we conclude that BI(t) is the vector of currents

injected on the terminals at time t. Kirchhoff’s Current Law states that the net

injection into the terminal nodes is zero, which is summarized as

0 = BI(t), (2.3)

for all t. We note that this circuit is closed to outside current injections. We can
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partition the set of nodes V into Vb, the set of boundary nodes that one can interact

with by injecting currents to the node or setting the potential of the node, and Vi,

the set of internal nodes that cannot be accessed from the outside. As explained in

Section 2.1.2, this induces a decomposition of the incidence matrix B into Bb and

Bi. Using the vector of net current injection η, Kirchhoff’s Current Law can be

expressed as

η(t) =

ηb(t)
0|Vi|

 = BI(t) =

BbI(t)

BiI(t)

 , (2.4)

for all t, where we assumed without loss of generality that the nodes are enumerated

in a way that the first |Vb| nodes represent boundary nodes and the remaining nodes

represent internal nodes. The last |Vi| elements of η are zero for all t, because these

entries represent internal nodes, therefore we cannot inject currents into these nodes.

Kirchhoff’s Voltage Law states that the sum of branch voltages around any loop

in the electrical circuit is zero. Formally, V is orthogonal to any element of the cycle

space of the graph, which is defined by ker B, i.e., V ∈ (ker B)⊥. By Theorem 2.0.1,

this implies that V ∈ im BT . Therefore, Kirchhoff Voltage Law can be stated as

V (t) = BTψ(t) =
[
BT
b BT

i

]
ψ(t) = BT

b ψb(t) +BT
i ψi(t), (2.5)

for all t ∈ I for some ψ ∈ C
(
I,R|V|

)
. The vector

ψ =

ψb
ψi


in (2.5) is precisely the vector of potentials at the terminals that we have defined

earlied in this section where ψb ∈ C
(
I,R|Vb|

)
and ψi ∈ C

(
I,R|Vi|

)
are restrictions of

ψ into Vb and Vi, respectively.

Kirchhoff’s Laws relate quantities defined on terminals to the quantities defined

on branches. The next step is to understand how boundary variables, the voltage

across the branches V and the currents flowing through the branches I are related.

We cover three types of circuit elements: resistors, inductors and capacitors. If the

circuit element represented by branch b ∈ E is a linear time invariant resistance,
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an inductor or a capacitor, the voltage across the branch b and the current flowing

through branch b satisfy

p0(b)I(b)(t) + p1(b)İ(b)(t) = q0(b)V (b)(t) + q1(b)V̇ (b)(t), (2.6)

for all t. If the element is a resistor, we have p1 = 0, q1 = 0 and r = p0
q0
> 0 is called

the resistance of the element. In the case of an inductor, the zero coefficients are

p0 and q1, and the constant ` = p1
q0

is called the inductance of the element. Finally,

p1 = 0 and q0 = 0 if the element is a capacitor; and c = q1
p0

is called the capacitance

of the element.

2.2.2 Phasors and Steady-State Behavior

One can simplify (2.6), if the circuit is asymptotically stable, that is, if the effect of

initial capacitor voltages and inductor currents at time t = 0 disappear as time goes

to infinity. It is common in circuit analysis to implicitly assume that the circuit is

asymptotically stable, and study the behavior of the circuit as time goes to infinity,

also known as the steady state behavior of the circuit, by setting all initial conditions

to zero and assuming that all terminal and branch waveforms are sinusoidals with a

constant frequency ω. This implies that for branch b, we have

V (b) =
√

2Vrms, b sin(ωs + φ(b)), (2.7)

and

I(b) =
√

2Irms, b sin(ωs + ρ(b)). (2.8)

Since we know that the frequency is fixed and it is equal to ωs, the only information

we need to construct (2.7) is the amplitude Vrms and phase φ(b). Therefore the

smooth waveform (2.7) can be represented by a complex number defined by V̄ (b) =

Vrms, be
jφ(b). This complex representation is called a phasor. Similarly, (2.8) can

be replaced with the phasor representation Ī(b) = Irms, be
jρ(b). Similarly, the time

derivatives

V̇ (b) = ωs
√

2Vrms, b cos(ωs + φ(b)) = ωs
√

2Vrms, b sin
(
ωs + φ(b) +

π

2

)
, (2.9)
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and

İ(b) = ωs
√

2Irms, b cos(ωs + ρ(b)) = ωs
√

2Irms, b sin
(
ωs + ρ(b) +

π

2

)
(2.10)

can be replaced with phasor representations

ωsVrms, be
jφ(b)+π

2 = ωsV̄ (b)e
π
2 = jωsV̄ (b),

and

ωsIrms, be
jρ(b)+π

2 = ωsĪ(b)e
π
2 = jωsĪ(b),

respectively. We note that V̄ (b), Ī(b) ∈ C do not depend on time. Replacing the

smooth waveforms in (2.6) with phasor representations, we obtain

p0(b)Ī(b) + jp1(b)ωsĪ(b) = q0(b)V̄ (b) + jq1(b)ωsV̄ (b). (2.11)

By juxtaposing (2.11) for every b ∈ E , we obtain

Ī = diag

(
q0(e1) + jωsq1(e1)

p0(e1) + jωsp1(e1)
, . . . ,

q0(e|E|) + jωsq1(e|E|)

p0(e|E|) + jωsp1(e|E|)

)
V̄ = ΓV̄ , (2.12)

where

Ī =


Ī(e1)

...

Ī(e|E|)

 , V̄ =


V̄ (e1)

...

V̄ (e|E|)

 ∈ C|E|,

and Γ ∈ C|E|×|E|. Since η and ψ are vectors of sinusoidal waveforms in C(I,R|V|), we

can also construct phasor representations of these vectors: η̄, ψ̄ ∈ C|V|. Using the

phasor representations, Kirchhoff’s Laws (2.4) and (2.5) can be expressed as

η̄ =

 η̄b

0|Vi|

 = BĪ =

BbĪ

BiĪ

 , (2.13)

and

V̄ = BT ψ̄ = BT
b ψ̄b +BT

i ψ̄i. (2.14)

Combining (2.13), (2.12) and (2.14), we obtain

η̄ = BĪ = BΓV̄ = BΓBT ψ̄, (2.15)
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or equivalently,  η̄b

0|Vi|

 =

BbΓB
T
b BbΓB

T
i

BiΓB
T
b BiΓB

T
i

ψ̄b
ψ̄i

 . (2.16)

By applying Theorem 2.2, we can eliminate the potentials of the internal nodes

ψ̄i(2.16), and we express (2.16) as

η̄ = BbWBT
b −BbWBT

i

(
BiWBT

i

)−1
BiWBT

b ψ̄b = B̂Ŵ B̂T ψ̄b. (2.17)

This elimination process is also known as Kron reduction [27]. In order to perform

this reduction on (2.16), we need to pose Assumption 2.1.16. Moreover, (2.16) is

well defined only at the steady state. In Chapter 3, we will explain how to perform

this reduction process without posing the Assumption 2.1.16 and assuming that the

waveforms in the electrical circuit are sinusoidals.

2.3 Port-Hamiltonian Systems

We consider the affine control system

ẋ = f(x) + g(x)u (2.18)

where x ∈M, u ∈ U ,M is a manifold and U ⊆ Rm is a compact set. The affine con-

trol system (2.18) admits a port-Hamiltonian representation if there exists a smooth

function H : Rn → R, which is called Hamiltonian, together with smooth functions

g : Rn → Rn×m, J : Rn → Rn×n andR : Rn → Rn×n satisfying J T (x) = −J (x) and

R(x) = RT (x) ≥ 0 for all x ∈ Rn such that (2.18) can be written in the form

ẋ = (J (x)−R(x))
∂H

∂x
+ g(x)u, (2.19)

where ∂H
∂x

is the gradient of the Hamiltonian with respect to the vector

x =


x1

...

xn

 ,
which is given by

∂H

∂x
=
[
∂H
∂x1

. . . ∂H
∂xn

]T
.
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We note that the gradient is assumed to be a column vector. The output of the

port-Hamiltonian representation is defined as

y = gT (x)
∂H

∂x
.

In the port-Hamiltonian representation, we can think of the Hamiltonian H as the

total energy of the system. Taking the time derivative of the Hamiltonian H yields

dH

dt
=
∂H

∂x

T

ẋ = −∂H
∂x

T

R∂H
∂x

+ uTy ≤ uTy. (2.20)

Here, the term uTy in the property (2.20) represents the power supplied to the

system through the ports. Hence, this property states that the rate of increase of

the Hamiltonian is less than the power supplied to the system.
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CHAPTER 3

Circuit Reduction of Transmission Grids

In Section 2.2.2, we presented a circuit reduction technique, called Kron reduction,

that relies on the usage of phasors. In this chapter, we show how to perform this

reduction technique without using phasors for a class of circuits called generalized

electrical networks. After introducing the theory, we use this reduction method on

transmission grids to reduce the number of states that are needed to describe the

grid. The results presented in this chapter are published in [11].

3.1 Circuit Reduction of Generalized Electrical Networks

As in Section 2.2.1, we assume that we have a network of electrical components

which is represented by a directed graph G = (V , E) and each electrical component

has two terminals. The constitutive relation of the electrical component is a relation

between the current flowing through the electrical component and the voltage across

its terminals. We consider electrical components with constitutive relations given

by
ν∑
i=0

pki
di

dti
I1,k =

ν∑
i=0

qki
di

dti
V 1
k . (3.1)

where pki, qki ∈ R+, ν ∈ N is the highest degree of differentiation, I1,k is the current

flowing through the electrical component k ∈ ē with ē = {1, . . . , |E|} and V 1
k is the

voltage across the terminals of the electrical component k. The coefficient vectors

of (3.1) are defined as pk = (pk0, . . . , pkν) ∈ Rν+1
+ , qk = (qk0, . . . , qkν) ∈ Rν+1

+ . The

coefficient matrices are defined as

P =
[
p1 . . . pe

]
,
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and

Q =
[
q1 . . . qe

]
.

We note that (2.6) is a special case of (3.1). The constitutive relation for a

linear ideal resistor is given by rI1,k = V 1
k and can be described by (3.1) if we take

ν = 0 and pk0
qk0

= r. Similarly, the constitutive relations for inductors and capacitors,

`İ1,k = V 1
k and I1,k = cV̇ 1

k , are described by (3.1) when we set ν = 1, pk0 = 0,

pk1 = `, qk0 = 0, qk1 = 1, and ν = 1, pk0 = 0, pk1 = 1, qk0 = 0, qk1 = c, respectively.

The constant upper bound ν in (3.1) is the same for every electrical component.

In other words, the highest degree of differentiation in (3.1), which is a measure of the

complexity of the electrical component, is independent of the electrical component.

We can think of an electrical network as a directed graph in which each edge in the

graph represents an electrical component. In this framework, electrical components

relate the space of trajectories of currents flowing through the edges Λ1 and its dual

space, the space of trajectories of voltages across the edges Λ1. In other words, for

the directed graph G, (I1, V
1) ∈ Λ1×Λ1 satisfies the constitutive relations (3.1) if for

every edge ek ∈ E , the relationship between I1,k and V 1
k is given by (3.1), where I1,k

is the kth element of I1 and V 1
k is the kth element of V 1. For every edge ek ∈ E , the

coefficient vectors of (3.1) are pk and qk. For the rest of the paper, we will assume

that pk 6= 0ν+1 (i.e. no short-circuit edges) and qk 6= 0ν+1 (i.e. no open-circuit

edges).

Definition 3.1.1 A generalized electrical network is a five-tuple N = (G,Vb, ν, P,Q).

It consists of an open directed graph G = (V , E) with boundary vertices Vb ⊂ V on

which KCL (2.4), KVL (2.5), and constitutive relations (3.1) are satisfied on G; ν

is the constant in (3.1), and P,Q ∈ R(ν+1)×e are the coefficient matrices.

We adapt the notion of terminal behavior, which was introduced in [76, 81], to

our framework.

Definition 3.1.2 The terminal behavior BN ⊂ Λ0
b × Λ0b of a generalized electrical

network N = (G,Vb, ν, P,Q) is the relation defined by: (ψ0b, I0b) ∈ BN iff there exists
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a ψ0i ∈ Λ0i such that ψ0 = (ψ0b, ψ0i) ∈ Λ0 and I0 = (I0b,0|Ve|) ∈ Λ0b × Λ0i satisfy

KCL (2.4), KVL (2.5) and constitutive relations (3.1) on G.

The problem addressed in this note is:

Problem 3.1.3 (Kron Reduction [26]) Given a generalized electrical network

N = (G,Vb, ν, P,Q),

when can we construct another generalized electrical network

N̂ = (Ĝ,Vb, ν, P̂ , Q̂),

with Ĝ = (Vb, Ê) and BN = BN̂?

Note that every node in the graph Ĝ is a boundary vertex. Moreover, the highest

degree of differentiation in the constitutive relations, ν, is the same for N and N̂ .

Therefore, Problem 3.1.3 is equivalent to eliminating all the internal vertices of the

generalized electrical network N without changing the terminal behavior and the

complexity of the constitutive relations, as measured by ν. Problem 3.1.3 admits

the following solution.

Theorem 3.1.4 Problem 3.1.3 is solvable for the generalized electrical network

N = (G,Vb, ν, P,Q)

if we have

dim span {p1, . . . , pe} = dim span {q1, . . . , qe} = 1, (3.2)

where pi, qi are the coefficient vectors of (3.1) for edge ei ∈ E, where i ∈ {1, . . . , e}.

Proof. Assume that N = (G,Vb, ν, P,Q) is a generalized electrical network sat-

isfying (3.2). Condition (3.2) states that the vector space span {p1, . . . , pe} has

dimension one. This implies that the basis for this vector space consists of a sin-

gle vector p̃ = (p̃1, . . . , p̃e) 6= 0(ν+1)e. Thus for every k ∈ ē, there exists a constant

λk such that pk = λkp̃. Since every element of pk is nonnegative for all k ∈ ē,
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we can assume without loss of generality that every element of p̃ is nonnegative.

Hence, we can assume λk ≥ 0 for all k ∈ ē. Similarly, the basis for the vector space

span {q1, . . . , qe} consists of a single vector q̃ = (q̃1, . . . , q̃e) 6= 0(ν+1)e. From the same

reasoning, we can assume γk ≥ 0. Replacing pk and qk in (3.1) with pk = λkp̃ and

qk = γkq̃, we obtain

λk

ν∑
i=0

p̃i
di

dti
I1,k = γk

ν∑
i=0

q̃i
di

dti
V 1
k , (3.3)

for every edge ek ∈ E . By assumption, we have pk 6= 0ν+1 and qk 6= 0ν+1. This

implies that λk 6= 0 and γk 6= 0. Dividing (3.3) by λk for each k ∈ E and writing

equation (3.3) for every edge ek ∈ E in vector form, we obtain

ν∑
i=0

p̃i
di

dti
I1 = Γ

ν∑
i=0

q̃i
di

dti
V 1, (3.4)

where I1 = (I1,1, . . . , I1,e), V
1 = (V 1

1 , . . . , V
1
e ) and Γ is a diagonal matrix with strictly

positive diagonal elements. The matrix Γ is defined as Γkk = γk
λk

for all k ∈ ē. From

KVL (2.5), we have V 1 = BTψ0 for ψ0 ∈ Λ0. Replacing V 1 in (3.4), we obtain

ν∑
i=0

p̃i
di

dti
I1 = Γ

ν∑
i=0

q̃i
di

dti
BTψ0 = ΓBT

ν∑
i=0

q̃i
di

dti
ψ0. (3.5)

Multiplying both sides of (3.5) by B results in

B
ν∑
i=0

p̃i
di

dti
I1 = BΓBT

ν∑
i=0

q̃i
di

dti
ψ0 ⇐⇒

ν∑
i=0

p̃i
di

dti
BI1 = BΓBT

ν∑
i=0

q̃i
di

dti
ψ0. (3.6)

Using the previously defined partitioning of B into Bi and Bb, we obtain the following

set of equations from (3.6)

ν∑
i=0

p̃i
di

dti
BbI1 = BbΓB

T
i

ν∑
i=0

q̃i
di

dti
ψ0i +BbΓB

T
b

ν∑
i=0

q̃i
di

dti
ψ0b, (3.7)

ν∑
i=0

p̃i
di

dti
BiI1 = BiΓB

T
i

ν∑
i=0

q̃i
di

dti
ψ0i +BiΓB

T
b

ν∑
i=0

q̃i
di

dti
ψ0b. (3.8)

From KCL (2.4), we have BbI1 = I0b and BiI1 = 0|Vi|. Replacing BbI1 = I0b in (3.7)

and BiI1 = 0|Vi| in (3.8), we have

ν∑
i=0

p̃i
di

dti
I0b = BbΓB

T
i

ν∑
i=0

q̃i
di

dti
ψ0i +BbΓB

T
b

ν∑
i=0

q̃i
di

dti
ψ0b, (3.9)

0|Vi| = BiΓB
T
i

ν∑
i=0

q̃i
di

dti
ψ0i +BiΓB

T
b

ν∑
i=0

q̃i
di

dti
ψ0b.

25



The matrix BiΓB
T
i is invertible by Theorem 2.1.12. Therefore, we obtain from the

previous equality:

ν∑
i=0

q̃i
di

dti
ψ0i = −(BiΓB

T
i )−1BiΓB

T
b

ν∑
i=0

q̃i
di

dti
ψ0b. (3.10)

Substituting
∑ν

i=0 q̃i
di

dti
ψ0i into (3.9), we obtain

ν∑
i=0

p̃i
di

dti
I0b =

(
BbΓB

T
b −BbΓB

T
i (BiΓB

T
i )−1BiΓB

T
b

) ν∑
i=0

q̃i
di

dti
ψ0b. (3.11)

Smoothness of ψ0b implies that the left hand side of (3.11) and the left hand side

of (3.10) are continuous functions. Since p̃ 6= 0ν+1 for any ψ0b ∈ Λ0
b , there ex-

ists a unique I0b ∈ Λ0b that satisfies (3.11) and a unique ψ0i that satisfies (3.10).

Therefore, if I0b and ψ0b satisfy (3.11), then there exists a unique ψ0i ∈ Λ0i such

that ψ0 = (ψ0b, ψ0i) ∈ Λ0 and I0 = (I0b,0|Ve|) ∈ Λ0 satisfy KCL (2.4), KVL (2.5)

and constitutive relations (3.1). Thus (ψb, Ib) ∈ BN iff I0b and ψ0b satisfy (3.11).

We now want to construct a generalized electrical network N̂ = (Ĝ,Vb, ν, P̂ , Q̂) with

Ĝ = (Vb, Ê) and BN = BN̂ . From Theorem 2.1.14, there exists a graph Ĝ = (Vb, Ê)

with incidence matrix B̂ and a diagonal matrix Γ̂ with strictly positive diagonal

elements such that

B̂Γ̂B̂T = BbΓB
T
b −BbΓB

T
i (BiΓB

T
i )−1BiΓB

T
b . (3.12)

We construct a generalized electrical network N̂ from the directed graph Ĝ by defin-

ing the constitutive relations on Ĝ as

ν∑
i=0

p̃i
di

dti
Î1 = Γ̂

ν∑
i=0

q̃i
di

dti
V̂ 1. (3.13)

Multiplying both sides of (3.13) by B̂ and using (2.4), (2.5), (3.12); we obtain (3.11)

from (3.13). Therefore we can construct a generalized electrical circuit N̂ that has

the same terminal behavior as N . �

We emphasize that the reduction process detailed in the proof of Theorem 3.1.4

is performed in the time domain and requires no steady state assumptions. We

start with the generalized electrical network N that describes the relation between

voltages and currents in the time domain and we constructed the Kron reduced
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generalized electrical network N̂ that has the same terminal behavior also described

in the time domain by the constitutive relations (3.13). In the proof, we are assuming

that the sum of the currents entering to the internal nodes are zero. However, the

proof is extendable to the case in which we have current injections at internal nodes.

The following example illustrates that Condition (3.2) in Theorem 3.1.4 is not

necessary.

Example 3.1.5 Consider the generalized electrical network N = (G,Vb, ν, P,Q) with

G given below:

ψ0
1 ψ0

3 ψ0
2

I1,1 I1,2

V 1
1 V 1

21 3 2

The constitutive relations for the edges e1 = (1, 3) and e2 = (3, 2) are I1,1 = V 1
1 and

d
dt
I1,2 = V 1

2 , respectively. Note that ν = 1. From KCL (2.4), we have I0b,1 = I1,1,

I1,1 = I1,2 and I1,2 = −I0b,2. From KVL (2.5), we have V 1
1 = ψ0

3 − ψ0
1 and V 1

2 =

ψ0
2 − ψ0

3. Replacing I1,1, I1,2, V 1
1 and V 1

2 in the constitutive relations, we obtain

I0b,1 = −I0b,2 = ψ0
3 − ψ0

1,

d

dt
I0b,1 = − d

dt
I0b,2 = ψ0

2 − ψ0
3.

Combining these equations, we obtain

I0b,1 +
d

dt
I0b,1 = −I0b,2 −

d

dt
I0b,2 = ψ0

2 − ψ0
1. (3.14)

There exists a ψ0
3 such that (ψ0

1, ψ
0
2, ψ

0
3) and (I0b,1, I0b,2) satisfy KCL (2.4), KVL (2.5)

and the constitutive relations if and only if (ψ0
1, ψ

0
2) and (I0b,1, I0b,2) satisfy (3.14).

Therefore (ψ0
1, ψ

0
2, I0b,1, I0b,2) ∈ BN if and only if (ψ0

1, ψ
0
2, I0b,1, I0b,2) satisfy (3.14).

We now construct a generalized electrical network N̂ = (Ĝ,Vb, 1, P,Q) such that

BN̂ = BN . The directed graph Ĝ is given below:

ψ0
1 ψ0

2

Î1,1

V̂ 1
11 2
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We pick the constitutive relation of the single edge in N̂ as

Î1,1 +
d

dt
Î1,1 = V̂ 1

1 .

From KCL (2.4), we have I0b,1 = −I0b,2 = Î1,1. From KVL (2.5), we have V̂ 1
1 =

ψ0
2 − ψ0

1. Replacing Î1,1 and V̂ 1
1 in the constitutive relations, we recover (3.14).

Therefore (ψ0
1, ψ

0
2, I0b,1, I0b,2) ∈ BN̂ if and only if (ψ0

1, ψ
0
2, I0b,1, I0b,2) satisfy (3.14).

This implies that BN = BN̂ . Hence Problem 3.1.3 is solvable. However p1 = (1, 0)

and p2 = (0, 1). Therefore dim span{p1, p2} = 2 and Condition (3.2) does not hold.

If we pick the constitutive relations for the edges of N as I1,1 = V 1
1 and I1,2 =

d
dt
V 1

2 , we can also verify that Problem 3.1.3 is solvable. In this case, dim span{q1, q2} = 2

and Condition (3.2) does not hold. �

Example 3.1.6 Consider the generalized electrical network in the previous example.

If we pick the constitutive relations for the edges of N as d
dt
I1,1 = V 1

1 and I1,2 = d
dt
V 1

2 ,

Condition (3.2) does not hold. Nevertheless, we can compute the constitutive relation

for the Kron reduced network as

d

dt
(V 1

1 + V 1
2 ) =

d

dt
(ψ0

2 − ψ0
1) =

d2

dt2
I1,1 + I1,2. (3.15)

Observe that ν = 1. However, the constitutive relation for the single edge in the

reduced graph has a second order derivative. Problem 3.1.3 is not solvable.

3.2 Applications

3.2.1 Application to RLC Circuits and Power Networks

Every RLC circuit can be modeled as a generalized electrical network by taking the

electric components to be combinations of resistors, inductors, or capacitors. When

all the circuit elements are resistors we speak of a purely resistive circuit. Purely

inductive and purely capacitive circuits can be defined similarly. It is shown in [73]

that Problem 3.1.3 is solvable for purely resistive, inductive, or capacitive circuits.

The same result can be obtained by the following corollary of Theorem 3.1.4.
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Corollary 3.2.1 Problem 3.1.3 is solvable for the generalized electrical network G

if G is a purely resistive, purely inductive or purely capacitive circuit.

Proof. We will prove the corollary for purely resistive circuits. The proofs for

purely inductive and purely capacitive circuits are very similar. In a purely resistive

circuit, pi = (ri, 0), and qi = (1, 0), where ri ∈ Re
+ is the resistance of the branch i.

Hence, Condition (3.2) holds. The result follows from Theorem 3.1.4. �

One particular example of generalized electrical networks is homogeneous RL

circuits [10]. Every branch of an homogeneous RL circuit is a series connection of

a resistor and an inductor. The term homogeneous comes from the fact that for

every two edges ei, ej ∈ E with resistance values ri, rj and inductor values `i, `j,

we have ri
rj

= `i
`j

. In order to represent RL circuits, it is enough to set ν = 1 and

(pi1, pi2, qi1, qi2) = (ri, `i, 1, 0) in (3.1) for all i ∈ ē, where ri is the resistance value of

the resistive component of branch i and `i is the inductance value of the inductive

component of branch i. Note that homogeneity implies that there exists a constant

c ∈ R, c > 0 such that pi = cpj for every i, j ∈ ē. Therefore Condition (3.2) holds

and we can recover Theorem 4.4 in [10] as a corollary of Theorem 3.1.4. The concept

of homogeneity can be generalized to RLC circuits. A homogeneous RLC circuit is

an electrical circuit such that every branch is a series combination of a resistor, an

inductor and a capacitor with the following condition: for every two edges ei, ej ∈ E

with resistance values ri, rj, inductor values `i, `j, and capacitor values ci, cj; we

have ri
rj

= `i
`j

= ci
cj

. Homogeneous RC circuits and homogeneous LC circuits can

be defined in a similar fashion. The previous discussion is summarized in the next

result.

Corollary 3.2.2 Problem 3.1.3 is solvable for homogeneous RLC, RL, RC or LC

circuits.

There are various transmission line models available in the literature [21], [59],

[5]. If the transmission line is relatively short (less than 60 kilometers [21], or 50

miles [5]), the short line approximation can be used. In the short line approximation
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the line is modeled as a series connection of a resistor and an inductor [5]. Hence

every network of short transmission lines can be modeled as a generalized electrical

network with ν = 1, pi = (ri, `i) and qi = (1, 0) in (3.1), where ri is the resistance

value of the resistive component of branch i and `i is the inductance value of the

inductive component of branch i. Moreover, if the network is a homogeneous RL

circuit, it follows from Corollary 3.2.2 that we can perform Kron reduction. In such

models, we would describe loads as possibly nonlinear current sources connected

to the internal nodes. This ensures that homogeneity assumption only depends

on the characteristics of the line. Our main theorem can be easily generalized to

the case in which we have current injections at initial nodes. Therefore we can

perform Kron reduction on the power network and the aggregated effect of loads

is modeled as current sources connected to the boundary nodes. One can argue

that the assumption that allows us to use the short line approximation (sinusoidal

voltages and currents) to study electromechanical transients also allows us to use

phasors. However, in our framework we do not need to assume sinusoidal waveforms

per se. As long as the short line approximation can accurately describe the transients

in consideration, we can use the reduced model for transient analysis.
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CHAPTER 4

Transient Stability Analysis of Power Systems

In this chapter, we introduce generator models, a first principles model and the tra-

ditional swing equation model used in the power systems literature. After comparing

these two models and showing that the traditional model is a special case of the first

principles model, we first review how to perform transient stability analysis using the

traditional model. We conclude this section by showing that the transient stability

analysis can be performed using the first principles model where the assumptions

required in the derivation of the traditional model is lifted.

4.1 Generator Models

In this section, we present a comparison of a first principles model of a synchronous

generator and the traditional swing equation model. The results in this section are

published in [12, 13, 14]

4.1.1 A First Principles Model

In this section, we derive the equations of motion for a two-pole synchronous gener-

ator from first principles. The first step in this derivation is to identify the Hamil-

tonian, the sum of the kinetic and the potential energy, of a single generator. We

then derive a stability condition, using the Hamiltonian as a Lyapunov function,

for the synchronous generator when the terminal voltages are known. Although we

only consider two-pole synchronous machines, the results in this section can easily

be generalized to machines with more than two poles.
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4.1.1.1 Mechanical Model

Every synchronous generator consists of two parts: rotor and stator. Several torques

act on the rotor shaft and cause the rotor to rotate around its axis. Explicitly, we

can write the torque balance equation for the torques acting on the rotor shaft as

follows:

Mθ̈ +Dθ̇ = τm − τe, (4.1)

where θ is the rotor angle, M is the moment of inertia of the rotor shaft, D is

the damping coefficient, τm is the applied mechanical torque and τe is the electrical

torque. The angular velocity of the rotor shaft is ω = θ̇. The total kinetic energy of

the rotor can be expressed as

Hkinetic =
1

2
Mω2.

Using the definition of the angular velocity ω, we can write (4.1) in the form

θ̇ = ω, (4.2)

Mω̇ = −Dω + τm − τe. (4.3)

Remark 4.1.1 In the classical power systems literature, the torque balance equation

(4.1) is scaled by ω. Defining Pm = ωτm, Pe = ωτe, M
′ = Mω, D′ = Dω and

dividing both sides of (4.1) by a constant value called rated power, the following set

of mechanical equations is obtained:

θ̇ = ω, (4.4)

M ′ω̇ = −D′ω + Pm − Pe. (4.5)

In these equations, the parameters M ′ and D′ are assumed to be constant, which

implies that ω is either constant or slowly changing. Equations (4.2) and (4.3) do

not require such assumptions on ω.

4.1.1.2 Electrical Model

There are three identical circuits connected to the stator. These circuits are called

stator windings and they are labeled with letters a, b and c. There are also windings
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connected to the rotor. These winding are called field windings. In this work,

we consider a synchronous generator with a single field winding. In a cylindrical

rotor synchronous generator, which are predominantly used in nuclear and thermal

generation units, the aggregated effect of the field windings can be modeled by

a single circuit [32]. Hence, the single field winding assumption is reasonable for

such generators. We label the single field winding with the letter f . The electrical

diagram for the phase-a stator winding is given in Figure 4.2. In this diagram, λa

+
−λ̇a(t)

ra

−

+

Va(t)

Ia(t)

Figure 4.1: Phase-a stator winding

is the flux generated at the phase-a winding, ra is the winding resistance, Va is the

voltage at the terminals of the winding and Ia is the current entering through the

positive pole of the winding terminal. The notation we choose for the current is

called the motor notation. One can obtain the generator notation by replacing Ia

with −Ia. The diagram for the other phases (b and c) and the field winding can be

obtained by replacing the subscript a in the diagram with the corresponding letters.

From Kirchoff’s Voltage Law, we have

λ̇a = −raIa + Va

for the phase a winding. The equations for the phases b and c can be obtained by

replacing subscript a with b and c, respectively. Since the stator winding circuits

are identical, we have r = ra = rb = rc. We can write these equations in the vector

form

λ̇abc = −RIabc + Vabc, (4.6)

where λabc = (λa, λb, λc, λf ), Iabc = (Ia, Ib, Ic, If ), Vabc = (Va, Vb, Vc, Vf ) and R =

diag(r, r, r, rf ). In a synchronous generator with a single field winding, we can
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relate fluxes and currents using the equation

λabc = LabcIabc, (4.7)

where

Labc =


Ls + Ls0 −Ls0 −Ls0 Lsf cos (θ)

−Ls0 Ls + Ls0 −Ls0 Lsf cos
(
θ − 2π

3

)
−Ls0 −Ls0 Ls + Ls0 Lsf cos

(
θ + 2π

3

)
Lsf cos (θ) Lsf cos

(
θ − 2π

3

)
Lsf cos

(
θ + 2π

3

)
Lf

 .

The inductance matrix Labc is obtained from the inductance matrix in [32, page 273]

by neglecting the saliency terms. We can define the total magnetic energy stored in

the windings as

Hmagnetic =
1

2
λTabcL−1

abcλabc

and express the electrical equation (4.6) using Hmagnetic as

λ̇abc = −R∂Hmagnetic

∂λabc
+ Vabc. (4.8)

4.1.2 Port-Hamiltonian Model of a Single Generator

Using the total magnetic energy Hmagnetic defined in Section 4.1.1.2, we can explicitly

compute the electrical torque τe in (4.3) as

τe =
∂Hmagnetic

∂θ
.

The Hamiltonian for the single generator is the sum of the kinetic and magnetic

energies, i.e.,

H = Hkinetic +Hmagnetic.

Note that Hkinetic does not depend on θ and λabc and Hmagnetic does not depend on

Mω. Replacing the electrical torque expression in (4.3), the equations (4.2),(4.3)

and (4.6) can be written in the form

θ̇ = ω, (4.9)

Mω̇ = −D ∂H

∂(Mω)
+ τm −

∂H

∂θ
, (4.10)

λ̇abc = −R ∂H

∂λabc
+ Vabc. (4.11)
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If we define the energy variables χ = (θ,Mω, λabc) we obtain the port-Hamiltonian

representation of equations (4.9)-(4.11) with state χ, input (τm, Vabc) and:

J −R =


0 1 01×4

−1 −D 01×4

04×1 04×1 −R

 , gabc =


0 01×4

1 01×4

04×1 14

 .

4.1.2.1 Transformation from abc Domain to xyz Domain and a Simplify-

ing Assumption

Steady state currents and voltages for the abc phases of the single generator are

sinusoidal waveforms. In order to focus on the simpler problem of stability of equi-

librium points, we perform a change of coordinates Tθ : R4 → R4 defined by the

point-wise linear map

Tθ =

√
2

3


cos(θ) cos(θ − 2π

3
) cos(θ + 2π

3
) 0

sin(θ) sin(θ − 2π
3

) sin(θ + 2π
3

) 0
√

2
2

√
2

2

√
2

2
0

0 0 0
√

3
2

 . (4.12)

with the inverse T−1
θ = T Tθ .

Remark 4.1.2 In the power systems literature, it is assumed that the generator

rotor angles rotate with a speed that is very close to synchronous speed ωs, i.e.,

θ̇ ≈ ωs. If we integrate this approximation and assume zero initial conditions, we

obtain θ = ωst. When we replace θ = ωst in (4.12), the upper 3-by-3 matrix of

(4.12) becomes a transformation that maps balanced waveforms with frequency ωs to

constant values, also known as Park’s transformation [59].

Using (4.12), we can map abc-domain currents Iabc = (Ia, Ib, Ic, If ) to xyz-domain

currents Ixyz = (Ix, Iy, Iz, If ) = TθIabc. Note that the field winding current If

is not affected by the change of coordinates. We define xyz-winding voltages as

Vxyz = (Vx, Vy, Vz, Vf ) = TθVabc and xyz-winding fluxes as λxyz = (λx, λy, λz, λf ) = Tθλabc
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in a similar fashion. We obtain the Hamiltonian H in the new coordinates as

H =
1

2
λTabcL−1

abcλabc +
1

2
Mω2 =

1

2
λTxyzL−1

xyzλxyz +
1

2
Mω2,

where Lxyz =
(
TθL−1

abcT
−1
θ

)−1
is given by

Lxyz =


Ls + 2Ls0 0 0

√
3
2
Lsf

0 Ls + 2Ls0 0 0

0 0 Ls − Ls0 0√
3
2
Lsf 0 0 Lf

 . (4.13)

Equations (4.9)-(4.11) can be written in the xyz-domain as

θ̇ = ω, (4.14)

ξ̇ = (J (ξ)−R)
∂H

∂ξ
+ g

 τm
Vxyz

 , (4.15)

where ξ = (Mω, λxyz) and

J (ξ) =



0 λy −λx 0 0

−λy 0 0 0 0

λx 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, g = 15.

At the desired steady state operation, the fluxes λxyz are constant and ω is the

synchronous velocity ωs. Therefore, we can safely disregard (4.14) and focus on the

stability of the equilibria of (4.15). From the last row of (4.15), we have

λ̇f = −rfIf + Vf (4.16)

which can be expressed in terms of currents as:

Lf İf = −
√

3

2
Lsf İx − rfIf + Vf

by using the equality λf =
√

3
2
LsfIx +LfIf that follows from λxyz = LxyzIxyz. Note

that we can always design a control law acting on the field winding terminals by
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choosing the voltage Vf according to

Vf =

√
3

2
Lsf İx + rfIf + α

(
If − I∗f

)
for some α < 0 and a constant reference value I∗f . This controller keeps the field

current constant and justifies the following assumption:

Assumption 4.1.3 The field winding current If is constant.

If we use (4.7), and consider the field winding current If to be constant, we can

express (4.15) in terms of currents:

Mω̇ = −Dω − LmIfIy + τm, (4.17)

Lssİx = −rIx − ωLssIy + Vx, (4.18)

Lssİy = −rIy + ωLssIx + ωLmIf + Vy, (4.19)

(Lss − 3Ls0)İz = −rIz + Vz, (4.20)

where Lss = Ls + 2Ls0 and Lm =
√

3
2
Lsf .

4.1.2.2 Equilibria of a Single Generator

In this section, we study the equilibria of a single generator. Recall that sinusoidal

waveforms in the abc coordinates are mapped to constant values on the xyz co-

ordinates. Therefore, equilibria of (4.17)-(4.69) are points rather than sinusoidal

trajectories. We can find the equilibrium currents I∗x, I∗y , and I∗z that satisfy (4.18)-

(4.69) when the voltages across the generator terminals, Vx, Vy, and Vz, are constant

and equal to V ∗x , V ∗y , and V ∗z , respectively, by solving the algebraic equations

0 = −rI∗x − ωLssI∗y + V ∗x , (4.21)

0 = −rI∗y + ωLssI
∗
x + ωLmIf + V ∗y , (4.22)

0 = −rI∗z + V ∗z , (4.23)
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to obtain I∗z = V ∗
z

r
and

I∗x =
−ω2LmLssIf − ωLssV ∗y + rV ∗x

r2 + ω2L2
ss

(4.24)

I∗y =
ωLssV

∗
x + ωrLmIf + rV ∗y
r2 + ω2L2

ss

. (4.25)

The values of ω are obtained by replacing (4.71) into the algebraic equation obtained

by setting ω̇ = 0 in (4.17). This results in a third order polynomial equation in ω.

For any given ωs ∈ R, if we choose

τ ∗m = LmIf

(
ωsLssV

∗
x + ωsrLmIf + rV ∗y
r2 + (ωs)2L2

ss

)
+Dωs, (4.26)

it is easy to show that one of the solutions of ω̇ = 0 is ω = ωs. Therefore, we

can always choose a torque value τm such that for any given steady state inputs

(V ∗x , V
∗
y , V

∗
z ) and desired synchronous velocity ωs, one of the solutions of the equa-

tions (4.17)–(4.69) is

(Mω,LssIx, LssIy, LssIz) = (Mωs, LssI
∗
x, LssI

∗
y , LssI

∗
z ), (4.27)

with I∗x and I∗y given by (4.70) and (4.71), respectively and I∗z = V ∗
z

r
. Note that, in

addition to ωs, the equation ω̇ = 0 has two other solutions. For each solution we

potentially have an equilibrium point. Hence, in general we have three equilibrium

points. By analyzing the coefficients of the polynomial equation ω̇ = 0 it is not

difficult to show that the only real solution of ω̇ = 0 is ωs iff

−4D2r2 − 4DIfLmr (IfLm + LssI
∗
x) +

(
IfLmLssI

∗
y

)2
< 0, (4.28)

where I∗x and I∗y are obtained by replacing ω with ωs in (4.70) and (4.71), respec-

tively. Inequality (4.28) is a necessary condition for global asymptotic stability of

the equilibrium ξ∗. In the next section, we obtain sufficient conditions by identifying

constraints on the generator parameters that lead to a global Lyapunov function for

the equilibrium ξ∗.

38



4.1.3 Models Derived from the First Principles Model

The simplest model for a synchronous generator, also known as the swing equation

model, is described by

M ′θ̈ +D′(θ̇ − ωs) = ωsτm − ωsτe = Pm − Pe, (4.29)

where M ′ = ωsM
Srated

, D′ = ωsD
Srated

, and Srated is the rated power. The constants M ,

D, θ, τm, τe, and ωs are defined as in Section 4.1.1; Pm is the supplied mechanical

power, and Pe is the electrical power [59]. In the literature, abusing notation, the

constants M ′ and D′ are also referred to as the moment of inertia and the damping

coefficient, respectively. We assume, without loss of generality, that Srated = 1 VA.

When the supplied mechanical power is equal to the electrical power drawn by the

circuit, i.e., the demand is matched by the supply, (4.29) becomes a first order

differential equation on the unknown ω = θ̇ with a single globally asymptotically

stable equilibrium point at ω = ωs. It is common in the literature to use the relative

angle δ = θ − ωst instead of the rotor shaft angle θ. At steady state, the relative

angular velocity δ̇ = θ̇ − ωs is zero.

We can obtain an explicit expression for the electrical power by posing the so-

called constant voltage behind transient reactance assumption [59]. This assumption

essentially states that the phase-a winding of a generator can be thought of as an

independent voltage source Ea(t) =
√

2
3
E sin (θ(t)) in series connection with the

winding circuit represented in Figure 4.2. The diagrams for phases-b and c can be

obtained by substituting the subscript a with the letters b and c, respectively. Since

the winding circuits for all phases are identical, we have r := ra = rb = rc and

` = `a = `b = `c. The phase-b and the phase-c voltages are obtained by introducing

the phase differences of −2π
3

and 2π
3

, respectively.

Finally, the electrical power Pe is assumed to be equal to real power. For later

use, we denote this assumption by A1. In time domain, the real power is defined as

Pe =
1

T

∫ t

t−T
(Va(t)Ia(t) + Vb(t)Ib(t) + Vc(t)Ic(t)) dt, (4.30)

where T := 2π
ωs

. Typically, the resistor r and the inductor ` are incorporated into
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+
−Ea(t)

ra `a

−

+

Va(t)

Ia(t)

Figure 4.2: Phase-a stator winding

the power grid model and the electrical power is defined as the energy transfer at

the port where the voltage behind the transient reactance Ea(t) is connected to this

aggregated circuit. In this case, Vi, i ∈ {a, b, c} in (4.30) can be replaced with Ei.

4.1.3.1 Recovering the Swing Equation Model from the First Principles

Model

In order to recover the swing equation model from the first principles model, we

first assume that the generator has a cylindrical rotor structure (A2) and saliency

effects are neglected (A3). Synchronous generators with cylindrical rotor structure

are typically used in nuclear power plants [32] and the validity of Assumption A3 is

considered to be well established in the literature [20]. Under Assumptions A2 and

A3, there is a single field winding and the inductance matrix is given by

L(θ) =


Ls + Ls0 −Ls0 −Ls0 Lsf cos (θ)

−Ls0 Ls + Ls0 −Ls0 Lsf cos
(
θ − 2π

3

)
−Ls0 −Ls0 Ls + Ls0 Lsf cos

(
θ + 2π

3

)
Lsf cos (θ) Lsf cos

(
θ − 2π

3

)
Lsf cos

(
θ + 2π

3

)
Lf

 . (4.31)

This matrix is the same inductance matrix in [32, page 273] where we neglect the

saliency terms due to Assumption A3. We also assume that the field winding current

is kept constant by means of a control signal applied to the field winding terminals

(A4) and the angular velocity is equal to the synchronous velocity (A5). Assump-

tions A4 and A5 are used in the power systems in the derivation of traditional

generator models [59]. Assumption A5 implies that on the right hand side of (4.9)-

(4.11), we set ω to ωs.
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We define E = ωs

√
3
2
LsfIf ; and the voltages Ei, i ∈ {a, b, c} are defined as

in Section 4.1.3. Under Assumptions A4 and A5, the electrical power in the first

principles model can be written as

Pe =
ωs
2
ITabc

∂L(θ)

∂θ
Iabc

= −ωsLsfIfIa sin (θ)− ωsLsfIfIb sin

(
θ − 2π

3

)
− ωsLsfIfIc sin

(
θ +

2π

3

)
= − (EaIa + EbIb + EcIc) . (4.32)

Since the currents are in motor direction, we substitute Ii, i ∈ {a, b, c} by −Ii to

obtain

Pe = (EaIa + EbIb + EcIc) = Preal + Preactive,

where Preal is the real power given in (4.30) and Preactive is the reactive power. Here,

we note that Pe is the total power exchanged between the generator and the circuit

through the stator winding terminals. We obtain the swing equation model by

neglecting Preactive due to Assumption A1 and replacing Pe = Preal, as given in

(4.30), into (4.29).

4.1.3.2 Single-machine Infinite-Bus Power System

By setting the stator winding terminal voltages for phases-a, b and c of a synchronous

generator, described by the swing equation model introduced in Section 4.1.3, to

Va = V∞ sin(ωst), (4.33)

Vb = V∞ sin

(
ωst−

2π

3

)
, (4.34)

Vc = V∞ sin

(
ωst+

2π

3

)
, (4.35)

respectively, we obtain the renowned Single-Machine Infinite-Bus (SMIB) power

system. The ideal three-phase voltage source described by (4.33)-(4.35) is called an

infinite bus, and it represents a power system that is so large, when compared to
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a single generator, that its voltage is unaffected by the single generator [59]. By

applying Kirchoff’s voltage law to the phase-a winding, we obtain

Ea =

√
2

3
E sin(θ) = raIa + `aİa + V∞ sin(ωst). (4.36)

We assume ` 6= 0 and r = 0, and choose V∞ =
√

2
3
E, E =

√
ωs`Pmax

3
, where Pmax

is the maximum electrical power that can be injected by the generator. By solving

(4.36) for Ia, we obtain

Ia =

√
2Pmax

ωs`
sin

(
δ

2

)
cos

(
δ

2
+ ωst

)
,

and

VaIa =
Pmax

3
(sin δ + sin(δ + 2ωst) + sin(2ωst)) .

Repeating the same arguments, we obtain for phases b and c

VbIb =
Pmax

3

(
sin δ + sin

(
δ + 2ωst−

4π

3

)
+ sin

(
2ωst−

4π

3

))
,

VcIc =
Pmax

3

(
sin δ + sin

(
δ + 2ωst+

4π

3

)
+ sin

(
2ωst+

4π

3

))
.

One can also choose r 6= 0; and by properly modifying the constants V∞ and E, the

same expressions can be obtained. Replacing ViIi for i ∈ {a, b, c} into (4.30) yields

Pe = Pmax sin δ. By substituting the obtained electrical power expression in (4.29),

we obtain the SMIB equation

M ′δ̈ +D′δ̇ = Pm − Pmax sin δ. (4.37)

4.1.4 Traditional Multi-machine Power System Model

We consider a multi-machine power system with N generators, where the ith gener-

ator is modeled by

M iθ̈ +Di(θ̇i − ωs) = Pm,i − Pe,i. (4.38)

It is assumed that for every generator i, we have

Ea,i(t) =

√
2

3
Ei sin(θi) =

√
2

3
Ei sin(ωst+ δi), (4.39)
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for some constant Ei. In a single-input single-output linear circuit, if the input is a

sinusoidal waveform, the output is also a sinusoidal with the same frequency. This

output sinusoidal is an amplified and phase-shifted version of the input signal [22].

Using this information, if we short-circuit all the ports except port j by setting

Ea,i = 0 for all i 6= j, we can compute the current entering to the circuit through

port i as

Ia,ij(t) =

√
2

3
YijEj sin(ωst+ δj + φij)

=

√
2

3

(
EjYij cos(φij) sin(ωst+ δj) + EjYij sin(φij) cos(ωst+ δj)

)
.

Defining Gij = Yij cos(φij) and Bij = Yij sin(φij), we get

Ia,ij(t) =

√
2

3
EjGij sin(ωst+ δj) +

√
2

3
EjBij cos(ωst+ δj). (4.40)

We can repeat this procedure for every generator. Since the circuit is linear, we can

superpose the solutions (4.40) to obtain the solution for Ia,i. This is the current

entering to the circuit through port i when all the generators are active. From this

superposition of solutions, we get

Ia,i(t) =
N∑
j=1

Ia,ij(t) =

√
2

3

N∑
j=1

EjGij sin(ωst+ δj) + EjBij cos(ωst+ δj). (4.41)

We can obtain the current and voltage waveforms for phase b and phase c by adding

−2π
3

and 2π
3

for the phase, respectively. Hence,

Eb,i(t) =

√
2

3
Ei sin

(
θi −

2π

3

)
=

√
2

3
Ei sin

(
ωst−

2π

3
+ δi

)
, (4.42)

Ec,i(t) =

√
2

3
Ei sin

(
θi +

2π

3

)
=

√
2

3
Ei sin

(
ωst+

2π

3
+ δi

)
, (4.43)

and

Ib,i(t) =

√
2

3

N∑
j=1

EjGij sin

(
ωst−

2π

3
+ δj

)
+ EjBij cos

(
ωst−

2π

3
+ δi

)
, (4.44)

Ic,i(t) =

√
2

3

N∑
j=1

EjGij sin

(
ωst+

2π

3
+ δj

)
+ EjBij cos

(
ωst+

2π

3
+ δi

)
. (4.45)
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There is a transformation, called Park transformation [5, 59], that is commonly used

in the power systems literature. This transformation takes the waveforms fa(t) in

phase a, fb(t) in phase b and fc(t) in phase c and maps them to the so called d-axis

(direct axis or positive-sequence), q-axis (quadrature axis or negative-sequence) and

0-axis (zero sequence) variables using the equation
fd(t)

fq(t)

f0(t)

 = T


fa(t)

fb(t)

fc(t)

 =

√
2

3


sin(ωst) sin(ωst− 2π

3
) sin(ωst+ 2π

3
)

cos(ωst) cos(ωst− 2π
3

) cos(ωst+ 2π
3

)
√

2
2

√
2

2

√
2

2



fa(t)

fb(t)

fc(t)

 .
(4.46)

The matrix T in (4.46) is invertible, hence we can uniquely construct the phase a,

phase b and phase c waveforms from the d-axis, q-axis and 0-axis waveforms. Using

the Park transformation (4.46), we compute the d-axis, q-axis and 0-axis voltages

and currents as
Ed,i(t)

Eq,i(t)

E0,i(t)

 = T


Ea,i(t)

Eb,i(t)

Ec,i(t)



Id,i(t)

Iq,i(t)

I0,i(t)

 = T


Ia,i(t)

Ib,i(t)

Ic,i(t)

 . (4.47)

Explicitly, we have

Ed,i = Ei cos(δi), Eq,i = Ei sin(δi), E0,i = 0,

and

Id,i(t) =
N∑
j=1

EjGij cos(δj)− EjBij sin(δj), (4.48)

Iq,i(t) =
N∑
j=1

EjGij sin(δj) + EjBij cos(δj), (4.49)

I0,i(t) = 0. (4.50)

We can see that the 0-axis parameters can be neglected, since they are equal to zero.

Hence we can represent the voltage and the current variables using the complex

numbers defined as

Ei = Ed + jEq = Ei(cos(δi) + j sin(δi)) = Ei δi (4.51)

Ii = Id + jIq (4.52)
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The bold variables Ei and Ii in (4.51) and (4.52) are renowned phasor variables

that are currently being used in almost every work in the power systems literature.

Moreover, if we define Yij = Gij + jBij, it is a simple computation to check that

Ii = YijEj

This is the ith equation of the current-balance form network equations [59, Chapter

7], where Yij is the (i, j)th element of the bus admittance matrix. At this point, we

have recovered the standard equations, and it is clear that we need the assumption

(A1) for these equations to be well-defined. So far, we have not scaled the equations

by rated currents and voltages. However, without loss of generality, we can assume

that all the variables are scaled by rated values. Now, we can write the electrical

power expression. It is assumed that the electrical power is equal to the real power

(A5). This is expressed as

Pe,i = Re{E∗i Ii} = Ed,iId,i + Eq,iIq,i,

where E∗i is the complex conjugate of the complex number Ei and Re{.} is an

operator returning the real part of a complex number. An equivalent statement for

this assumption is the following: the electrical power is equal to the total average

power in three phases. This average is computed by integrating the instantaneous

power over a time interval of length 2π/ωs and dividing the result by the length of

this time interval. Note that this definition also assumes that we have sinusoidal

waveforms in all phases. By direct computation, we obtain

Pe,i =
N∑
j=1

EiEjGij cos(θi − θj) + EiEjBij sin(θi − θj). (4.53)

Replacing (4.53) in (4.38) and setting θi = ωst+ δi, we obtain

δ̇i = ωi − ωs, (4.54)

M ′
i δ̈i +D′iδ̇i = Pm,i −D′iωs −

N∑
j=1

EiEjGij cos(δi − δj) + EiEjBij sin(δi − δj).

(4.55)
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Define ω̂i = ω − ωs. Incorporating the term D′iωs into the mechanical torque by

setting P ′m,i = Pm,i +D′iωs and seperating the term in the sum that corresponds to

j = i, we have

δ̇i = ω̂i, (4.56)

M ′
i
˙̂ωi +D′iω̂i = P ′m,i − E2

iiGii −
N∑

j=1,j 6=i

EiEjGij cos(δi − δj) + EiEjBij sin(δi − δj).

(4.57)

The equation (4.57) is called the swing equation for multi-machine power systems.

The equations (4.56) and (4.57), which assumes (A1), are used in the transient

stability analysis in the power systems literature.

4.1.5 Comparison between the Derived Models and the First Principles

Model

4.1.5.1 Comparing Equilibria of Generator Models

In this section, we study the mismatch in the equilibria of generator models. The

existence of such a mismatch provides clear evidence of behavior in the first principles

model that cannot be reproduced by the swing equation model. We start with a

change of coordinates that simplifies the analysis. We set the terminal voltages

Vi, i ∈ {a, b, c} to balanced sinusoidal waveforms, the field winding voltage Vf to

a control signal that renders the field winding current constant (Assumption A4),

and we omit the dynamical equation for the field winding in the rest of this section.

The equations for the first principles model under these conditions are

θ̇ = ω (4.58)

Mω̇ +D(ω − ωs) = τm −
1

2
ITabc

∂L(θ)

∂θ
Iabc, (4.59)

λ̇abc = −RIabc + Vabc. (4.60)

We can rewrite the equations (4.58)-(4.60) in a form that is simpler to analyze

if we perform a change of coordinates by defining Vxyz = TθVabc, and similarly,
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Ixyz = TθIabc, and λxyz = Tθλxyz, where

Tθ =

√
2

3


cos(θ) cos(θ − 2π

3
) cos(θ + 2π

3
) 0

sin(θ) sin(θ − 2π
3

) sin(θ + 2π
3

) 0
√

2
2

√
2

2

√
2

2
0

0 0 0
√

3
2

 ,

Vxyz = (Vx, Vy, Vz, Vf ), Vxyz = (Vx, Vy, Vz, Vf ), and Vxyz = (Vx, Vy, Vz, Vf ). The

transformation Tθ maps a vector of balanced sinusoidals to a point if the angular

speed of the rotor angle is constant, i.e., θ̇ = ωs. In the xyz coordinates, (4.58)-(4.60)

become

Mω̇ = −D(ω − ωs) + τm − `mIfIy, (4.61)

`İx = −rIx − ω`Iy + Vx, (4.62)

`İy = −rIy + ω`Ix + ω`mIf + Vy, (4.63)

`z İz = −rIz + Vz, (4.64)

where 0 < `z < `, `m =
√

3
2
Lsf . Equations (4.61)-(4.64) do not depend on θ.

Therefore we can neglect the dynamics of the phase angle θ in xyz coordinates.

Our aim is to compare the equilibria of the SMIB described by

δ̇ = ω − ωs (4.65)

M ′ω̇2 +D′(ω − ωs) = Pm − Pe,max sin δ, (4.66)

with the equilibria of the first principles model in the xyz coordinates (4.61)-(4.63).

This comparison easily generalizes to multi-machine power systems. We can think

of a multi-machine power system in steady state as a collection of isolated single-

machine systems with fixed terminal voltages. These fixed terminal voltage values

can be computed from the equilibrium point of the multi-machine power system,

and they satisfy all the operational constraints. Finally, the equilibria of the multi-

machine power system can be obtained by repeating the steps for the SMIB for each

of these individual machines.
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4.1.5.2 Equilibria of the First Principles Model

Since in the SMIB model, terminal voltages are set to (4.33)-(4.35), we have to

assume that the terminal voltages in the first principles model are also described

by (4.33)-(4.35) so that we can compare the equilibria of these two models under

the same terminal voltages. This assumption implies that the terminal voltages are

constant in the xyz-domain, i.e., Vx = V ∗x , Vy = V ∗y and Vz = V ∗z where V ∗x , V ∗y , and

V ∗z are constants. By solving

0 = −rIω∗

x − ω∗`Iω
∗

y + Vx, (4.67)

0 = −rIω∗

y + ω∗`Iω
∗

x + ω∗`mIf + Vy, (4.68)

0 = −rIω∗

z + Vz, (4.69)

we obtain the equilibrium currents as a function of the angular velocity ω∗

Iω
∗

x =
−(ω∗)2`m`If − ω∗`V ∗y + rV ∗x

r2 + (ω∗`)2
, (4.70)

Iω
∗

y =
ω∗`V ∗x + ω∗r`mIf + rV ∗y

r2 + (ω∗`)2
, (4.71)

and Iω
∗

z = V ∗
z

r
. In order to characterize all the values that the angular velocity can

assume, we substitute Iy = Iω
∗

y in (4.61). At equilibrium, the angular velocity ω∗

satisfies

0 = −D(ω∗ − ωs) + τm − `mIfI∗,ω
∗

y . (4.72)

The right-hand side of the equation (4.72) defines a third order polynomial on ω∗,

and (4.72) has three solutions: ω∗,i for i ∈ {1, 2, 3}. We have two distinct cases:

• For a given constant field winding current If , we choose the mechanical torque

τm to be

τm = `mIf

(
ωs`V

∗
x + ωsr`mIf + rV ∗y
r2 + (ωs`)2

)
+Dωs. (4.73)

• For a given constant mechanical torque τm, we solve the algebraic constraint

on the field winding current If defined by (4.73). Since in any practical sce-

nario, the supplied mechanical torque τm will be greater than the mechanical
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dissipation Dωs, it is reasonable to assume that τm > Dωs. Under this as-

sumption, we have two real solutions for If and at least one of these solutions

is positive. We choose this solution as the constant field winding current.

In both of the preceding two cases, one of the solutions of (4.72) is ω∗,1 = ωs.

Depending on the generator parameters, the other solutions ω∗,2 and ω∗,3 are either

both real or they form a complex conjugate pair. A necessary and sufficient condition

for having a unique real solution ω∗,1 = ωs of (4.72) is given in [13]. In general, we

have three equilibrium points: ξ∗,i := (ω∗,i, Iω
∗,i

), where

Iω
∗,i

= (Iω
∗,i

x , Iω
∗,i

y , Iω
∗,i

z ),

for i ∈ {1, 2, 3}. However, if there is a unique real solution of (4.72), the points

ξ∗,2, ξ∗,3 do not lie in R4 and therefore, they are not physically meaningful. In this

case, we have a unique equilibrium ξ∗,1 = (ωs, I
ωs). In [13], a sufficient condition for

the global asymptotic stability of this unique equilibrium is also presented.

4.1.5.3 Equilibria of the SMIB

The SMIB model (4.65)-(4.66) has two equilibrium points if Pm < Pmax: (ωs, δ
∗
2) and

(ωs, π−δ∗2), where δ∗2 = arcsin
(

Pm
Pmax

)
and −π

2
< δ∗2 ≤ π

2
. There exists no equilibrium

if Pm > Pmax. If we recall the derivation of the SMIB equations, we can give a

physical interpretation to these equilibrium points. The first equilibrium corresponds

to the scenario where for the phase-a winding, we have E∗,1a =
√

2
3
E sin(ωst + δ∗2)

and V ∗a = V∞ sin(ωst). For the second equilibrium, the terminal voltage V ∗a does not

change, but the voltage behind the transient is different:

E∗,2a =

√
2

3
E sin(ωst+ π − δ∗2) 6= E∗,1a .

The currents leaving the winding can be found by solving the differential equation

`İ∗,ia = −rI∗,ia + E∗,ia − V ∗a .

for i ∈ {1, 2}.
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4.1.5.4 Comparison of Equilibria

In this concluding subsection, we compare the equilibria of the SMIB with the equi-

libria of the first principles model under constant terminal voltages. In the SMIB,

the equilibria are computed based on the assumption that the phase-abc terminal

voltages are balanced sinusoidals. These balanced sinusoidals can be mapped to

phase-xyz via the transformation Vxyz = TθVabc. Here, we emphasize that the trans-

formation Tθ depends on θ. Therefore, we have to apply it twice: once for the

equilibrium (ωs, δ
∗
2) and once for the equilibrium (ωs, π − δ∗2). At the first equilib-

rium point, the phase angle is θ∗,1 = ωst+ δ∗2 + θ0, where θ0 is an initial angle value

that can assumed to be zero without loss of generality. We have

V ∗,1xyz = (V ∗,1x , V ∗,1y , V ∗,1y , Vf ) = Tθ∗,1Vabc,

where Vabc = (Va, Vb, Vc, Vf ) and Vi for i ∈ {a, b, c} are defined as in (4.33)-(4.35).

Explicitly,

V ∗,1x =

√
3

2
V∞ sin(δ∗2), V ∗,1y = −

√
3

2
V∞ cos(δ∗2),

and V ∗,1z = 0. By setting the terminal voltage of the first principles model to

V ∗,1xyz = (V ∗,1x , V ∗,1y , V ∗,1z ),

we obtain three equilibrium points following the discussion in Section 4.1.5.2. One

of these equilibrium points, (ωs, I
ωs), represents the equilibrium point (ωs, δ

∗
2) in the

SMIB model. The other two points correspond to operating points where the angular

velocity is different from ωs. These points are not visible in the SMIB equations due

to the restrictive assumption that is required in the derivation of this model: ω = ωs

(Assumption A4).

For the second equilibrium point, the phase angle is θ∗,2 = ωst+ π − δ∗2. Follow-

ing a similar argument, we obtain

V ∗,2x =

√
3

2
V∞ sin(π − δ∗2) =

√
3

2
V∞ sin(δ∗2) = V ∗,1x ,

V ∗,2y = −
√

3

2
V∞ cos(π − δ∗2) =

√
3

2
V∞ cos(δ∗2) = −V ∗,1y ,
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and V ∗,2z = 0 = V ∗,1z . Setting the terminal voltage to V ∗,2xyz = (V ∗,1x ,−V ∗,1y , V ∗,1z ) will

yield three new equilibrium points. This time, one of these points represents the

equilibrium point (ωs, π−δ∗2) in the first principles model. In summary, if we set the

phase-abc winding terminal voltages to a balanced set of sinusoidals, the SMIB has

two equilibrium points and the first principles model has six equilibrium points, two

of which corresponds to the equilibrium points of the SMIB model. Therefore, the

SMIB model cannot reproduce all the behaviors of the first principles model due to

these additional equilibrium points. One of the goals of the next section is to assess

the significance of these missing behaviors.

4.1.5.5 Mismatch in the Behavior of Generator Models

Our aim in this section is to understand: 1) if we can use the swing equation for

performing stability analysis of power systems under small oscillations, and 2) if the

missing behaviors in the SMIB model due to the mismatch in the equilibria of the

generator models are significant. In order to answer the first question, we compare

the theoretical conclusions predicted by the SMIB model with the behavior observed

in the first principles model. The second question is addressed by observing how the

SMIB model behaves if the initial state is a point which is an equilibrium point of

the first principles model, but not an equilibrium point of the SMIB model.

In [59, Example 9.2], the stability of the equilibrium point of the SMIB described

by

0.2δ̈ = 1− 2 sin δ − 0.02δ̇ (4.74)

is analyzed. The SMIB has two equilibrium points: the stable equilibrium point at

(δ∗, ω∗ − ωs) = (π/6, 0) and the unstable equilibrium point at (π − δ∗, ω∗ − ωs) =

(5π/6, 0). It has been shown in [59, Example 9.2] that the region of attraction SROA

of the stable equilibrium point is given by

SROA = {(δ, ω) ∈ ]−π, 5π/6[× R | V (δ, ω) < V (π − δ∗, 0)},

where

V (δ, ω) = 0.1(ω − ωs)2 − (δ − δ∗)− 2 (cos(δ)− cos(δ∗)) .

51



We showed that the swing equation model is a special case of the first principles

model. The parameters for the generator are not provided in [59, Example 9.2]. We

use the parameters given in [1, Example 4.1]. The synchronous angular velocity is

ωs = 2π60 rad/s. The parameter ` can be found by taking the average of the param-

eters Ld and Lq in [1, Example 4.1]. The stator winding resistances are neglected,

a standard assumption due to the fact that r � ωs`. We use the value given in

[1, Example 4.1] for the inertia constant M . The field winding current is given as

If = 926A and `m in our example is equal to the parameter kMF in [1, Example

4.1]. The damping coefficient is not provided. In order to be consistent with the

SMIB equation (4.74), we choose D = 0.1M and we set τm = 5M . With this choice

of parameters, (4.61)-(4.63) become

0.2ω̇ = −0.02(ω − ωs) + 1− 4.31Iy, (4.75)

İx = −ωIy + 160.52Vx, (4.76)

İy = ωIx + 1.08ω + 160.52Vy. (4.77)

The terminal voltages of the SMIB in abc coordinates are in the form (4.33)-(4.35). If

we redefine our reference angle as δ∗ and compute the xyz voltages that correspond

to the stable equilibrium point using V ∗xyz = Tδ∗+ωstVabc, we obtain V ∗x = V∞ and

V ∗y = 0. The xyz voltages that correspond to the unstable equilibrium point are

obtained from Vabc = Tπ−δ∗+ωstVabc as V ∗x = V∞ and V ∗y = 0. The exact value of V ∗x

can be computed by solving

0 = −0.02(ωs − ωs) + 1− 4.31I∗y ,

0 = −ωsI∗y + 160.52V ∗x .

We have I∗y = 0.232 and V ∗x = 0.545. From

0 = ωI∗x + 1.08ωs,

we find I∗x = −1.08. From this discussion, we can see that one of the equilib-

rium points of (4.61)-(4.63) is (ωs, 0.232,−1.08) given the fixed terminal voltages

V ∗x = 0.545 and V ∗y = 0. For the same terminal voltages, the other equilibrium point
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is (0.133ωs, 1.74933,−1.08). Finally, we note that in the SMIB model, the terminal

voltages are sinusoidal in abc coordinates, and this does not imply that they stay

constant in xyz coordinates, since this would require the equality: θ̇ = ωs. If the

angle error is ∆δ = δ − δ∗, using the formula

Vxyz = TθVabc = Tδ+ωstVabc = Tδ+ωstT
−1
δ∗+ωst

V ∗xyz,

we can show that the x axis and y axis voltages can be expressed as

Vx = V ∗x cos(∆δ)− V ∗y sin(∆δ) = V ∗x cos(∆δ), (4.78)

and

Vy = V ∗x sin(∆δ) + V ∗y cos(∆δ) = V ∗x sin(∆δ). (4.79)

At the stable and unstable equilibrium points of the SMIB, it is easy to verify that

we have Vx = V ∗x and Vy = V ∗y = 0. Replacing (4.78) and (4.79) into (4.76) and

(4.77), respectively, the first principles equations together with the angle dynamics

become

δ̇ = ω − ωs (4.80)

0.2ω̇ = −0.02(ω − ωs) + 1− 4.31Iy, (4.81)

İx = −ωIy + 87.4689 cos(δ − δ∗), (4.82)

İy = ωIx + 1.08ω + 87.4689 sin(δ − δ∗). (4.83)

4.1.5.6 Example 1

We now provide a counter-example to the theoretical conclusion obtained from the

swing equation model that suggests the stability of the equilibrium point (δ∗, ω∗ −

ωs) of the SMIB model. We choose (δ0, ω0) = (π
4
, ωs) as the initial condition of

the SMIB model and (δ0, ω0, Ix,0, Iy,0) = (π
4
, ωs, I

∗
x, I

∗
y ) as the initial condition of

the first principles model. It is easy to check that (δ0, ω0) ∈ SROA. Therefore,

we expect the trajectory in the SMIB simulation to converge to the stable SMIB

equilibrium (π/6, ωs). We also note that the initial angular velocity is ωs, which

is the synchronous velocity. The evolution of the angular velocity according to
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the SMIB dynamics and the first principles model dynamics is given in Figure 4.3

and Figure 4.4, respectively. The angular velocity in Figure 4.3 is in the range

[59.85, 60.15] Hz. Since the SMIB model is considered to be a valid model to study

local oscillations in the range [59, 61] Hz [59, page 215], the conclusions obtained

from the simulation of the SMIB model and the first principles model should match.

These plots suggest that the SMIB model concludes stability in scenarios where

the corresponding first-principles model exhibits a significantly different behavior.

Although the initial angular velocity is the synchronous velocity (60 Hz), the angular

velocity of the first principles model steers away from this angular velocity and the

generator starts operating at a dangerous regime where the angular velocity is 68

Hz. It is known that the angular velocities above 65 Hz upper limit can cause

serious equipment damage, and they may even result in loss of generation [66].

Therefore, this example strongly suggests the usage of first principles models for

stability analysis of power systems even under small oscillations.

4.1.5.7 Example 2

It is also possible to construct scenarios in which the SMIB model is unstable whereas

the first principles model is stable. We consider the scenario in which the initial

conditions of the SMIB model and the first principles model are (δ0, ω0) = (11π
12
, ωs)

and (δ0, ω0, Ix,0, Iy,0) = (11π
12
, ωs, I

∗
x, I

∗
y ). We can obtain the damped equations

δ̇ = ω − ωs

0.2ω̇ = −0.02(ω − ωs) + 1− 4.31Iy,

İx = −100(Ix − I∗x)− ωIy + 87.4689 cos(δ − δ∗),

İy = −100(Iy − I∗y ) + ωIx + 1.08ω + 87.4689 sin(δ − δ∗),

by introducing a stator resistance r = 100` and readjusting the steady state terminal

voltages. Although, it is very unlikely to encounter a practical situation in which

the stator winding resistances are a hundred times greater than the stator winding

inductances, for the sake of showing the possibility of false-negative scenarios in

which the SMIB model concludes instability whereas the first principles model is
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Figure 4.3: Evolution of the SMIB model angular velocity (Example 1).

stable, we neglect this practical issue. The evolution of the angular velocity with

respect to SMIB dynamics and first principles dynamics is given in Figure 4.5 and

Figure 4.6, respectively. In Figure 4.5, we can observe that the angular velocity does

not converge to 68 Hz, but oscillates.

55



0 5 10 15 20 25 30 35 40 45 50
59

60

61

62

63

64

65

66

67

68

Time (second)

F
re

q
u

e
n

c
y
 (

H
z
)

Figure 4.4: Evolution of the first principles model angular velocity (Example 1).

0 10 20 30 40 50 60 70 80
59

60

61

62

63

64

65

66

67

68

Time (second)

F
re

q
u

e
n

c
y

 (
H

z
)

79.4 79.5 79.6 79.7 79.8 79.9 80
67.92

67.93

67.94

67.95

67.96

67.97

67.98

67.99

Time (second)

F
re

q
u

e
n

c
y

 (
H

z
)

Figure 4.5: Evolution of the SMIB model angular velocity for the time intervals

[0, 80] seconds (left), and [79.4,80] seconds (right) (Example 2).
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Figure 4.6: Evolution of the first principles model angular velocity (Example 2).

4.1.5.8 Example 3

Finally, we investigate the scenario in which the initial condition of the first principles

model is (ω0, Ix,0, Iy,0) = (0.133ωs, 1.74933,−1.08). This is one of the equilibrium

points of the first principles model. Therefore ω(t) = 0.133ωs for all t > 0. The

terminal voltages in this scenario are constant in xyz coordinates, i.e., V ∗x = 0.545,

V ∗y = 0 and V ∗z = 0. Let (0.133ωs, δ
∗) be the initial condition of the SMIB model.

For any given δ∗, we expect the angular velocity of the SMIB model to stay constant

at 0.133ωs. We choose δ∗ = π
6
. Although ω cannot remain constant in the SMIB

model, as (0.133ωs, δ
∗) is not an equilibrium point, we ask by how much will the

SMIB model differ from the first principle model. The answer is given in Figure 4.7.
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Figure 4.7: Evolution of the SMIB model angular velocity (Example 3).

4.2 Review of Classical Transient Stability Analysis

When power systems are working in normal operating conditions, i.e., in steady-

state, the generators satisfy two main conditions: 1) their rotors rotate with the

same velocity, which is also known as synchronous velocity, and 2) the generated

voltages are sinusoidal waveforms with the same frequency. Keeping the velocity of

the generators at the synchronous velocity and the terminal voltages at the desired

levels are called frequency stability and voltage stability, respectively [40]. When

all the generators are rotating with the same velocity, they are synchronized and
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the relative differences between the rotor angles remain constant. The ability of a

power system to recover and maintain this synchronism is called rotor angle stability.

Transient stability, as defined in [40], is the maintenance of rotor angle stability

when the power system is subject to large disturbances. These large disturbances

are caused by faults on the power system such as the tripping of a transmission line.

In industry, the most common way of checking transient stability of a power

system is to run extensive time-domain simulations for important fault scenarios

[54]. This way of developing action plans for the maintenance of transient stability

is easy and practical if we know all the “important” scenarios that we need to

consider. Unfortunately, power systems are large-scale systems and the number of

possible scenarios is quite large. Since an exhaustive search of all of these scenarios

is impossible, power engineers need to guess the important cases that they need to

analyze. These guesses, as made by humans, are prone to errors. Moreover, time-

domain simulations do not provide insight for developing control laws that guarantee

transient stability [55]. Because of these reasons, additional methods are required for

transient stability analysis. Currently, the methods that do not rely on time-domain

simulations can be collected in two different groups: direct methods and automatic

learning approaches. The latter, automatic learning approaches [75], are based on

machine learning techniques. In this work, we do not consider automatic learning

approaches and we focus on direct methods.

Direct methods are based on obtaining Lyapunov functions for simple models of

power systems [31, 54, 69]. Although in the power systems literature it is considered

that Lyapunov-based methods for power systems were introduced in the early sixties,

to the best of our knowledge, the origin of the idea can be found in the 1947 paper

of Magnusson [46], which uses the concept of “transient energy” which is the sum

of kinetic and potential energies, i.e. Hamiltonian, to study the stability of power

systems. In 1958, Aylett, assuming that a two-machine system can be represented

by the dynamical equation

θ̈ = B − sin(θ),

showed that there exists a separatrix on the two-dimensional plane of θ̇ and θ that
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divides the two-dimensional plane into two regions [4]. One of the regions is an in-

variant set with respect to two-machine system dynamics, i.e., if the initial condition

is in this set, trajectories stay inside this set for all future time. Aylett concluded

that in order to check the stability of the system, we only need to check whether

we are in the invariant set or not. Aylett also characterized the separatrix that

defines the invariant set, extended the results from the two-machine case to the

three-machine case in the same monograph. Although the term “Lyapunov func-

tion” was not stated explicitly in his work, Aylett’s work used Lyapunov-based ideas.

Some of the other pioneering works on direct methods include Szendy [61], Gless

[33, 34], El-Abiad and Nagaphan [29], and Willems [77, 78, 79, 80]. There is a vast

literature stemming from these early works, unfortunately without questioning the

modeling assumptions. The later works in direct methods mainly focused on find-

ing better Lyapunov functions that work for more detailed models and provide less

conservative results. These Lyapunov functions are used for estimating the region

of attraction of the stable equilibrium points that correspond to desired operating

conditions. The obtained region of attraction estimates are used for reasoning about

the stability of the power system after the clearence of a fault. For a detailed sum-

mary of these results, we refer the reader to [31, 54, 55, 56, 69]. There are several

problematic issues with direct methods.

The first problem is the set of assumptions used to construct these models. The

models used for the transient stability analysis implicitly assume that the angular

velocity of the generators are very close to the synchronous velocity. In other words,

it is assumed that the system is very close to desired equilibrium and the models

developed based on this assumption are used to analyze the stability of the same

equilibrium. The standard answer given to this objection is the following: the models

that are used in transient stability studies are used only for the “first swing” tran-

sients and for these transients the angular velocities of the generators are very close

to the synchronous velocity. Unfortunately, in real world scenarios this assumption is

violated. One example of such violations is the August 14, 2003 blackout in Canada

and the Northeast of the United States. As stated in the post-mortem report of
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this blackout [66], frequency swings in the later stages of the blackout indicate that

the assumption was violated. Using models based on these violated assumptions to

analyze cases, like the August 14, 2003 blackout, seems unreasonable.

The second problem is the following: the models used for transient stability

analysis, again implicitly, pose certain assumptions on the grid. The transmission

lines are modeled as impedances and the loads are either modeled as impedances

or as constant current sources. These modeling assumptions are used to eliminate

the internal nodes of the network via a procedure called Kron reduction [5, 27].

The resulting network after Kron reduction is a strongly connected network. Every

generator is connected every other generator via transmission lines modeled as a

series connection of an inductor and a resistor. After this reduction process, the

resistances in the reduced grid are neglected. The fundamental reason behind the

neglect of the resistances lies in the strong belief, in the power community, about the

non-existence of Lyapunov functions when these resistances are not neglected. The

idea stems from the paper [17] which asserts the non-existence of global Lyapunov

functions for power systems with losses in the reduced power grid. This belief is

further supported by the fact that the Lyapunov functions that the power community

have developed contain path-dependent terms unless these resistances are neglected.

The reader should note that the resistors here represent both the losses on the

transmission and the loads. Hence this assumption implies that there is no load

in the grid (other than the loads modeled as current inductions), which is not a

reasonable assumption. In addition to these problems that have their origin in

neglecting the resistances of the grid, the process of constructing these reduced

grids, i.e. Kron reduction, can only be performed for a very restrictive class of

circuits unless we assume that all the waveforms in the grid are sinusiodal [10, 11].

In other words, in order to perform this reduction process for arbitrary networks,

we need to use phasors, which in turn requires that all the waveforms in the grid are

sinusoidals and every generator in the power grid is rotating with the same velocity.

This assumption is not compatible with the study of transients.

There were several attempts to address the aforementioned issues. In order to
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deal with the unreasonable “zero resistance” assumption, structure-preserving mod-

els were suggested by A. R. Bergen and D. Hill in [6]. In the structure-preserving

model, instead of incorporating the loads into the reduced network by applying Kron

reduction, the loads in the network, which are assumed to be frequency-dependent,

are preserved. Since the loads are not absorbed to the reduced grid, the resistances

on the grid represent the transmission line losses only. Neglecting the resistances in

the reduced grid of the structure-preserving model is less problematic because trans-

mission line losses are considered to be negligible in practice. Lyapunov functions

that can be used for direct method studies of the structure-preserving models were

also suggested in [65].

Direct method techniques analyze the transient stability of power systems. One

can also design control laws that guarantee transient stability for power systems.

Despite the long efforts to obtain control laws for power systems with nonnegligible

transfer conductances, results only appeared in the beginning of the 21st century. For

the single machine and the two machine cases, a solution, under restrictive assump-

tions, is provided in [53]. In the same work, the existence of globally asymptotically

stabilizing controllers for power systems with more than two machines is also proved

but no explicit controller is suggested. An extension of the results in [53] to structure

preserving models can be found in [23]. To the best of our knowledge, the problem

of finding explicit globally asymptotically stabilizing controllers for power systems

with nonnegligible transfer conductances and more than two generators has only

been recently solved in [15, 16]. The proposed control law requires certain restric-

tive assumptions such as the uniqueness of equilibria. Although a solution has been

offered for an important long-lasting problem, the models that are used in [16] are

still the traditional models that we want to avoid in our work.

There are also some recent related results on synchronization of Kuramoto os-

cillators [25, 26, 28]. If the generators are taken to be strongly overdamped, these

synchronization results can be used to analyze the synchronization of power net-

works. The synchronization conditions obtained in [25, 26, 28] can also be used in

certain microgrid scenarios [60]. In our work, we provide results that do not require
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any assumption on generator’s damping. In this section, we explain the fundamental

results based on direct methods. We refer the reader to the sources [31, 59, 54, 65, 69]

for a more detailed treatment. We first state the assumptions on the equilibrium

points of the power system. Then we present an estimate for the region of attraction

of the stable equilibrium. This region of attraction estimate is the essence of the

results based on direct methods. The method for computing the region of attraction

is also introduced in this section.

4.2.1 Unstable Equilibrium Points (UEP)

In this section, we explain the concept of unstable equilibrium point (UEP) of multi-

machine power systems. In the power systems literature, including the work related

with the transient stability analysis, the system is assumed to have multiple equi-

libria. This idea has its roots in the ideas reviewed in this section. We consider

a multi-machine power system with N + 1 generators. We use the last generator,

generator N + 1, as a reference generator by assuming δN+1 = 0 and EN+1 = 1.

The dynamical equations for the the reference generator are neglected. We begin by

defining P ′i = P ′m,i − E2
iiGii and assuming Gij = 0 for all j ∈ 1, . . . N + 1 and j 6= i.

By setting Gij = 0, we neglect the losses in transmission lines and loads. With these

assumptions, (4.56) and (4.57) can be written as

δ̇i = ω̂i (4.84)

M ′
i
˙̂ωi +D′iω̂i = P ′i −

N+1∑
j=1,j 6=i

EiEjBij sin(δi − δj) (4.85)

At equilibrium, dropping the equations for the reference bus, we have ω̂i = 0, i.e.

ω = ωs, for every i ∈ {1, . . . N} and

P ′i −
N+1∑

j=1,j 6=i

EiEjBij sin(δi − δj) = 0.

Since δn+1 = 0, we have N unknowns: δi for i ∈ {1, . . . , N}. It is assumed that the

equilibria satisfy −π < δi ≤ π. Consider the special case N + 1 = 2. This is the
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case in which a single machine is connected to the infinite bus. In this case,

P ′1 = E1E2B12 sin(δ1). (4.86)

If we have −P ′1 < E1E2B12 < P ′1, we have two solutions for δ1. One of the solutions

is δ1
1 = arcsin

(
P ′1/(E1E2B12)

)
and the other solution is either δ2

1 = π − δ1
1 or δ2

1 =

−π − δ1
1. Hence we have two equilibrium points: (0, δ1

1) and (0, δ2
1). One of these

equilibrium points is stable and the other one is unstable [69]. Now, consider another

special case in which Pi = 0 for all i ∈ {1, . . . , N}. We have

N∑
j=1,j 6=i

EiEjBij sin(δi − δj) = 0. (4.87)

We construct 2N vectors in (δ1, . . . , δN) ∈ (−π, π]n by picking, for each i ∈ 1, . . . , N ,

δi = 0 or δi = π. Each one of these 2N vectors satisfies (4.87). Hence the (n+1)-

tuple elements (0, v), where v ∈ (−π, π]n is one of the constructed 2N vectors, is an

equilibrium point. One of these equilibrium points is a vector of zeros and it is stable.

The other 2N − 1 equilibrium points are unstable [3, 69]. Based on these special

cases, the following statement was conjectured in the power systems literature.

Conjecture 4.2.1 The multi-machine power system represented by (4.84), (4.85)

has 2N equilibrium points. One of the equilibrium points (0, δs1, . . . , δ
s
N) is stable.

Other equilibrium points, different from the stable equilibrium point, are located in

one of the small neighborhoods around the points of the form (0, δu1 , . . . , δ
u
N), where

δui = δsi or δui = π − δsi or δui = −π − δsi .

We present Conjecture 4.2.1 because, to the best of our knowledge, all the results

in the direct methods that we have encountered are based on Conjecture 4.2.1. In

the power systems literature, there is no quantification of how “small” the neigh-

borhoods introduced in Conjecture 4.2.1 are. This lack of formalism makes classical

direct methods, which are based on Conjecture 4.2.1, imprecise. Estimating these

2N −1 unstable (conjectured) equilibrium points is considered to be one of the most

important problems in the transient stability analysis by the power systems commu-

nity [31]. The compositional analysis in Section 4.3 does not require Conjecture 4.2.1

to hold.
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4.2.2 Region of Attraction of the Stable Equilibrium Point

Let x = (ω̂, δ1, . . . , δN) ∈ Rn × Sn. By Conjecture 4.2.1, there exists a stable

equilibrium point xs = (0, δs1, . . . , δ
s
N) for the multi-machine power system described

by the equations (4.84) and (4.85). Let ξ(x0, t) be the solution of (4.84) and (4.85)

with initial condition x0 ∈ Rn × Sn.

Definition 4.2.2 The region of attraction of the equilibrium point xs of (4.84),

(4.85) is the set

A = {x0 ∈ Rn × Sn | lim
t→∞

ξ(x0, t) = xs}

We define the smooth function V : Rn × Sn → R as:

V (x) =
1

2

N∑
i=1

M ′
i ω̂

2
i−

N∑
i=1

(δi−δsi )P ′i−
N+1∑
i 6=j

EiEjBij

(
cos(δi−δj)−cos(δsi−δsj )

)
. (4.88)

It is easy to check that V (xs) = 0 and d
dt
V (x) = −

∑N
i=1 Diω̂

2
i . Following theorem

is a restatement of [65, Theorem 5.2].

Theorem 4.2.3 Let xs be the stable equilibrium point. Define Av = {x ∈M | V (x) <

v}. Let v̄ be the smallest positive real number such that there exists an unstable equi-

librium point xu ∈ ∂Av̄, where ∂Av̄ is the boundary of Av̄. Then Av̄ ⊆ A.

Assuming that Conjecture 4.2.1 is true, let U be the set of all 2n − 1 unstable

equilibrium points. Define

xuc = argminxu∈UV (xu). (4.89)

This unstable equilibrium point xuc is called the controlling unstable equilibrium

point [31]. The following result follows from Theorem 2.3.

Corollary 4.2.4 The set {x0 ∈ Rn × Sn | V (x0) < V (xuc)} ⊆ A is an estimate of

the region of attraction of the stable equilibrium point xs.

In practice, these results are applied in the following manner. First, it is assumed

that Conjecture 4.2.1 is true. Then, we use a numerical method, such as Newton’s
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method, to determine the unstable equilibrium points [69]. Conjecture 4.2.1 as-

sumes that the actual unstable equilibrium points are located in small neighborhoods

around 2N − 1 points and these 2N − 1 points are also specified. If Conjecture 4.2.1

is true, and we give one of these points as an initial condition to Newton’s method,

then the algorithm should converge to the corresponding unstable equilibrium point

which is assumed to be located in a small neighborhood around the selected initial

point. Note that Conjecture 4.2.1 assumes that the number of unstable equilibrium

points is 2N − 1, hence the complexity of this step is exponentially increasing with

the number of machines in the system. Once all the unstable equilibrium points are

determined, the controlling unstable equilibrium is computed from (4.89). Using

Corollary 4.2.4, the region of attraction of the stable equilibrium point can be esti-

mated. Several ad-hoc methods have been suggested to approximate the region of

attraction without checking all the unstable equilibrium points [59, Chapter 9]. The

aim of these methods is to reduce the complexity of obtaining unstable equilibrium

points. Unfortunately, none of the methods that we are aware of, including the

“Potential Energy Boundary Surface” method that approximates the power system

as a nearly Hamiltonian system [74], has a theoretical justification. We refer the

readers interested in these methods to [31, 69].

The region of attraction estimation is followed by the simulation of the fault.

After the fault is cleared, if the state is inside the estimated region of attraction,

then the state will converge to the stable equilibrium point. One can also find an

estimate for the critical clearing time by simulating the fault and computing the

value of the function V , defined in (4.88), during the simulation. If at some time

instance τ , the value of the function V is equal to V (xuc), then τ is an estimate

for the actual critical clearing time. If the fault is cleared by the estimate critical

clearing time, the state of the system will converge to the stable equilibrium point

after the fault is cleared [59]. We want to emphasize at this point that the region of

attraction estimate in Corollary 4.2.4, is a conservative estimate [69] and based on

Conjecture 4.2.1 being true.
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4.2.3 Extensions

In Section 4.2.1, we assumed that Gij = 0 in the swing equation (4.57). Since these

Gij terms represent resistive components of both the transmission lines and the loads,

this implies that on average, there is no power dissipation at the loads. This is not

a reasonable assumption. In order to address this limitation, a structure-preserving

model is suggested in [6]. In this model, instead of treating loads and transmission

lines as a single linear electrical circuit, the loads are preserved in the system and

they are modeled separately as generators with Mi = 0. In the swing equation

(4.57), if we replace N + 1 by N + M + 1 and set Mi = 0 for i = N + 1, . . . ,M ,

we obtain the structure preserving model presented in [6]. A Lyapunov function

for direct-method studies is also provided in the same work. Different Lyapunov

functions for the structure-preserving model are also suggested in [43]

Another limitation is the exclusion of the reactive power demand. When we

derived the swing equation, we used the equation

Pe,i = Re{E∗i Ii} = Ed,iId,i + Eq,iIq,i,

to relate the electrical power in the mechanical equation for generator i with the

electrical variables. The meaning of this equation is the following: electrical power

is equal to the average power in one cycle of oscillation. However, this is not the

whole picture. One can also define the reactive power for generator i as

Qe,i = Im{E∗i Ii}.

The time-domain interpretation of this concept is not as obvious as the real power.

One can think the reactive power as a concept that represents the gap between the

average power and the instantaneous power or as a quantity that represents the

power fluctuating between the generator and the grid. In [50], an additional set of

equations that model the reactive power demand at the loads is introduced. In a

relatively new paper, a different set of results is suggested by R. J. Davy and I. A.

Hiskens in [8] that are using dynamic load models, introduced by D. J. Hill in [44].
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The constant Ei assumption was relaxed by the more detailed models suggested

in [7, 65]. A general procedure for constructing analytical Lyapunov functions is

presented in [18]. There are other results for obtaining better estimates for the region

of stability and constructing Lyapunov functions via iterative processes. These ad-

hoc methods will not be covered in this section. We refer the reader to [31, 69] and

the 2013 paper of M. Anghel, F. Milano and A. Papachristodoulou [2].

4.3 Compositional Transient Stability Analysis

In this section, we provide sufficient conditions for the equilibrium point computed

in Section 4.1.2.2 to be globally asymptotically stable. All the previously described

methods use classical models for power systems. They are only valid when the gener-

ator velocities are very close to the synchronous velocity. In this section, we abandon

these models and use port-Hamiltonian systems [70] to model power systems from

first principles. As already suggested in [62], a power system can be represented as

the interconnection of individual port-Hamiltonian systems. There are several ad-

vantages of this approach. First of all, we have a clear understanding of how energy

is moving between components. Secondly, we do not need to use phasors. Thirdly,

we do not need to assume all the generator velocities to be close to the synchronous

velocity. Finally, using the properties of port-Hamiltonian systems, we can easily

obtain the Hamiltonian of the interconnected system, which is a natural candidate

for a Lyapunov function. A similar framework, based on passivity, is being used in a

research project on the synchronization of oscillators with applications to networks

of high-power electronic inverters [64].

We first obtain transient stability conditions for generators in isolation from a

power system. These conditions show that as long as we have enough dissipation,

there will be no loss of synchronization. In [62] the port Hamiltonian framework

is also used to derive sufficient conditions for the stability of a single generator.

The techniques used in [62] rely on certain integrability assumptions that require

the stator winding resistance to be zero. In contrast, our results hold for non-zero
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stator resistances. Moreover, while in [62] it is assumed that synchronous generators

have a single equilibrium, we show in this paper that generators have, in general, 3

equilibria and offer necessary and sufficient conditions on the generator parameters

for the existence of a single equilibrium. With the help of useful properties of port-

Hamiltonian systems, we obtain sufficient conditions for the transient stability of

the interconnected power system from the individual transient stability conditions

for the generators.

4.3.1 Stability of a Single Generator

A natural choice for Lyapunov function candidate is the Hamiltonian H of the

single generator. However the minimum of H occurs at the origin instead of ξ∗ =

(Mωs, λ
∗
xyz), where λ∗xyz = LxyzI∗xyz. We shift the minimum of the Hamiltonian to

ξ∗ by defining a function we call the shifted Hamiltonian. Explicitly, the shifted

Hamiltonian is given as

Ĥ =
1

2

(
λxyz − λ∗xyz

)T L−1
xyz

(
λxyz − λ∗xyz

)
+

1

2
M (ω − ωs)2 . (4.90)

We also define the shifted state by ξ̂ = ξ − ξ∗. It is easy to check that we have

∂Ĥ

∂ξ̂
=
∂H

∂ξ
− ∂H

∂ξ

∣∣∣
ξ∗
. (4.91)

where ∂H
∂ξ

∣∣∣
ξ∗

is the gradient of the Hamiltonian H with respect to ξ, evaluated at

ξ = ξ∗. Note that Ĥ is positive definite and Ĥ = 0 implies ξ̂ = 0, which in turn

implies ξ = ξ∗. Therefore, in order to prove that ξ∗ is globally asymptotically stable,

it is enough to show that dĤ
dt
< 0. The time derivative of ξ∗ is given by

d

dt
ξ∗ = 0 = (J (ξ∗)−R)

∂H

∂ξ

∣∣∣
ξ∗

+ g

 τ ∗m
V ∗xyz

 , (4.92)
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From equation (4.15) and Vxyz = V ∗xyz, we obtain

ξ̇ =
˙̂
ξ = (J (ξ)−R)

∂H

∂ξ
+ g

 τ ∗m
Vxyz


= (J (ξ∗) + J (ξ̂)−R)

(
∂Ĥ

∂ξ̂
+
∂H

∂ξ

∣∣∣
ξ∗

)
+ g

 τ ∗m
Vxyz


=

(J (ξ∗)−R)
∂H

∂ξ

∣∣∣
ξ∗

+ g

 τ ∗m
V ∗xyz


+ J (ξ̂)

∂H

∂ξ

∣∣∣
ξ∗

+ (J (ξ∗) + J (ξ̂)−R)
∂Ĥ

∂ξ̂
+ g

 0

V̂xyz

 . (4.93)

where V̂xyz = Vxyz − V ∗xyz and we used the equality J (ξ) = J (ξ∗) + J (ξ̂). From

(4.92), we know that the term inside parentheses in (4.93) is equal to zero. Hence

(4.93) implies

˙̂
ξ = J (ξ̂)

∂H

∂ξ

∣∣∣
ξ∗

+ (J (ξ∗) + J (ξ̂)−R)
∂Ĥ

∂ξ̂
+ g

 0

V̂xyz

 . (4.94)

Taking the time derivative of the shifted Hamiltonian Ĥ, we get

dĤ

dt
=
∂Ĥ

∂ξ̂

T
˙̂
ξ =

∂Ĥ

∂ξ̂

T

J (ξ̂)
∂H

∂ξ

∣∣∣
ξ∗
− ∂Ĥ

∂ξ̂

T

R∂Ĥ
∂ξ̂

+ V̂ T
xyz Îxyz (4.95)

where Îxyz = Ixyz − I∗xyz. Note that the last element of Îxyz is zero since a constant

field winding current implies Îf = If − I∗f = 0. We can write the first term in the

right-hand side of (4.95) as a quadratic function of ∂Ĥ

∂ξ̂
. Explicitly,

∂Ĥ

∂ξ̂

T

J(ξ̂)
∂H

∂ξ

∣∣∣
ξ∗

= ω̂λ̂yI
∗
x − ω̂λ̂xI∗y + ωs

(
λ̂xÎy − λ̂y Îx

)
.

= ω̂ÎyLssI
∗
x − ω̂ÎxLssI∗y

=
∂Ĥ

∂ξ̂

T



0 −1
2
LssI

∗
y

1
2
LssI

∗
x 0 0

−1
2
LssI

∗
y 0 0 0 0

1
2
LssI

∗
x 0 0 0 0

0 0 0 0 0

0 0 0 0 0


∂Ĥ

∂ξ̂
. (4.96)

70



where we used λ̂xyz = Lxyz Îxyz to eliminate the flux variables. Replacing (4.96) in

(4.95), we obtain

dĤ

dt
=
∂Ĥ

∂ξ̂

T

P ∂Ĥ
∂ξ̂

+ V̂ T
xyz Îxyz, (4.97)

where

P =



−D −1
2
LssI

∗
y

1
2
LssI

∗
x 0 0

−1
2
LssI

∗
y −r 0 0 0

1
2
LssI

∗
x 0 −r 0 0

0 0 0 −r 0

0 0 0 0 −rf


. (4.98)

The eigenvalues of the matrix P are λ1 = −rf , λ2 = λ3 = −r and

λ4,5 = −D + r

2
±

√
D2 − 2Dr + r2 + (LssI∗x)2 + (LssI∗y )2

2
.

Since we have Vxyz = V ∗xyz, i.e. V̂xyz = 0, if P is negative definite, then dĤ
dt
< 0. It is

easy to check that if

(LssI
∗
x)2 + (LssI

∗
y )2 < 4Dr. (4.99)

holds, then λ4,5 < 0, which implies that the matrix P in (4.97) is negative definite.

Hence, if (4.104) holds, we have dĤ
dt

< 0, which in turn implies that ξ∗ is globally

asymptotically stable. We can summarize the preceding discussion in the following

result.

Theorem 4.3.1 Let ξ∗ be an equilibrium point of the single generator, described by

equation (4.15) when we have τm = τ ∗m and Vxyz = V ∗xyz. The equilibrium point ξ∗ is

globally asymptotically stable if

(LssI
∗
x)2 + (LssI

∗
y )2 < 4Dr. (4.100)

It is useful to express inequality (4.100) in terms of d-axis and q-axis cur-

rents. We know that the x-axis and y-axis currents are different from the tra-

ditional d-axis and q-axis currents during the transient stage. However, we have

(I∗x)2 + (I∗y )2 = (I∗d)2 + (I∗q )2 at equilibrium. Thus, we can replace (4.100) with
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(LssI
∗
d)2 + (LssI

∗
q )2 < 4Dr. Note that we are using motor reference directions. In

order to find the generator currents, we need to replace I∗x and I∗y by −I∗x and −I∗y ,

respectively. However, this change in reference directions does not effect (4.100).

Condition (4.100) relates the total magnetic energy stored on the generator wind-

ings at steady state (left hand side of (4.100)) to the dissipation terms D and r.

This relation gives us a set of admissible steady-state currents in xy-coordinates (or

alternatively, dq-coordinates) that lead to global asymptotical stability.

Remark 4.3.2 One can verify that if inequality (4.100) holds, then inequality (4.28)

also holds while the converse is not true. This is to be excepted since global asymp-

totical stability requires a unique equilibrium.

Remark 4.3.3 In the single machine infinite bus scenario, a generator is connected

to an infinite bus modeling the power grid as a constant voltage source. The analy-

sis of the single machine in this section, which is based on the assumption that the

terminal voltages are constant, can also be seen as the analysis of a single machine

connected to an infinite bus. In the classical analysis of this scenario [1], there are

multiple equilibrium points and energy based conditions for local stability are ob-

tained. The analysis in this section shows that in fact a single equilibrium exists,

under certain assumptions on the generator parameters, and that global asymptot-

ical stability is also possible. Such conclusions are not possible to obtain using the

classical models as they are not detailed enough.

Inequality (4.100) is a sufficient condition for asymptotic stability. Typically,

the stator winding resistance r is small and inequality (4.100) is only satisfied for

small steady state currents. However, inequality (4.100) can be enforced by actively

controlling the voltage at the generator terminals using a static synchronous series

compensator (SSSC), a FACTS device that is typically used for series compensation
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[37] of real and reactive power. Using a SSSC we can introduce voltage drops of

VFACTS,x = R (Ix − I∗x) , (4.101)

VFACTS,y = R
(
Iy − I∗y

)
, (4.102)

VFACTS,z = R (Iz − I∗z ) , (4.103)

at the generator terminals without altering the current. The turn-on and turn-off

times for the thyristors in a SSSC are at the level of microseconds [37], small enough

to enforce a voltage drop that is a piece-wise constant approximation of R (Ix − I∗x),

R
(
Iy − I∗y

)
, and R (Iz − I∗z ). The approximation error can always be reduced by

increasing the number of converter valves in the SSSC. By repeating the stability

analysis in this section, while taking into consideration the voltage drops (4.101)-

(4.103), we arrive at the relaxed condition for global asymptotic stability:

(LssI
∗
x)2 + (LssI

∗
y )2 < 4D (r +R) . (4.104)

Since the power throughput of SSSC devices is in the order of megawatts [37] we can

choose a value for R that is several order of magnitude larger than ri. Therefore,

the relaxed inequality (4.104) allows for large steady-state currents and is widely

applicable to realistic examples. The following theorem summarizes this discussion.

Theorem 4.3.4 Let ξ∗ be an equilibrium point of the single generator, described

by equation (4.15) when we have τm = τ ∗m and Vxyz = V ∗xyz, and let (4.101)-(4.103)

be the voltage drops introduced by the SSSC controller. The equilibrium point ξ∗ is

globally asymptotically stable if

(LssI
∗
x)2 + (LssI

∗
y )2 < 4D(r +R). (4.105)

It is assumed that Vxyz = V ∗xyz in both Theorems 4.3.1 and 4.3.4. We can replace

this assumption with Vabc = V ∗abc by modifying the voltage drops (4.101)-(4.103)

introduced by the SSSC device to

Vdrop,x = R (Ix − I∗x) + Vcx, (4.106)

Vdrop,y = R
(
Iy − I∗y

)
+ Vcy, (4.107)

Vdrop,z = R (Iz − I∗z ) + Vcz, (4.108)
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where 
Vcx

Vcy

Vcz

 = V ∗xyz − T Tθ V ∗abc, (4.109)

and by introducing a current drop using a static synchronous compensator (STAT-

COM) device, where the current drops are given by
Idrop,x

Idrop,y

Idrop,z

 = I∗xyz − T Tθ I∗abc. (4.110)

By repeating the stability analysis in this section, while taking into consideration

the voltage and current drops given by (4.109) and (4.110), respectively, we conclude

that
dĤ

dt
=
∂Ĥ

∂ξ̂

T

P ∂Ĥ
∂ξ̂

+ V̂ T
abcÎabc, (4.111)

where the matrix P is negative-definite if (4.104) holds. This discussion is summa-

rized in the following theorem.

Theorem 4.3.5 Let ξ∗ be an equilibrium point of the single generator, described by

equation (4.15) when we have τm = τ ∗m and Vabc = V ∗abc. Let (4.109) and (4.110) be

the voltage and current drops introduced by the FACTS controllers, respectively. The

equilibrium point ξ∗ is globally asymptotically stable if

(LssI
∗
x)2 + (LssI

∗
y )2 < 4D(r +R). (4.112)

4.3.2 Stability Analysis of Multi-Machine Power Systems

4.3.2.1 Multi-Machine Power System Model

We consider a multi-machine power system consisting of N generators, M loads

and a transmission grid connecting the generators and the loads. We distinguish

between different generators by labeling each variable in the generator model with

the subscript i ∈ {1, 2, . . . , N}. We make the following assumption about the multi-

machine power system.
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Assumption 4.3.6 The transmission network can be modeled by an asymptotically

stable linear port-Hamiltonian system with Hamiltonian Hgrid.

Concretely, this assumption states that whenever the inputs to the transmission

network are zero, Hgrid can be used as a quadratic Lyapunov function proving global

asymptotic stability of the origin. Although it may appear strong, we note that it

holds in many cases of interest. In particular, it is satisfied whenever we use short

or medium length approximate models to describe transmission lines in arbitrary

network topologies. Furthermore, we discuss in Remark 4.3.9 how it can be relaxed.

We denote the three-phase voltages across the load terminals and currents enter-

ing into the load terminals by V`,abc,j and I`,abc,j, respectively. Here, we use the letter

` to distinguish the currents and voltages that correspond to a load from the ones

that correspond to a generator. The current entering into the load terminals when

we set V`,abc,j = V ∗`,abc,j is denoted by I∗`,abc,j. It follows from the linearity assumption

on the transmission network that we can perform an affine change of coordinates so

that in the new coordinates we have

ûTgridŷgrid +
N∑
i=1

V̂ T
abc,iÎabc,i +

M∑
j=1

V̂ T
`,abc,j Î`,abc,j = 0 (4.113)

where ûgrid and ŷgrid are the input and the output of the port-Hamiltonian model of

the grid in the new coordinates with shifted Hamiltonian Ĥgrid, V̂`,abc,j = V`,abc,j −

V ∗`,abc,j, and Î`,abc,j = I`,abc,j − I∗`,abc,j. Equation (4.113) represents an “incremental

power balance”, i.e., a power balance in the shifted variables. Intuitively, it states

that the net incremental power supplied by the generators and the loads is equal to

the net incremental power received by the transmission grid.

4.3.2.2 Assumptions on Load Models

We make the following assumption regarding loads.

Assumption 4.3.7 Each load is described by one of the following models:

• a symmetric three-phase circuit with each phase being an asymptotically stable

linear electric circuit;
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• a constant current source.

The proposed load models are quite simple and a subset of the models used in

the power systems literature. It has recently been argued [58] that the increase of

DC loads, such as computers and appliances, interfacing the grid through power

electronics intensifies the nonlinear character of the loads. However, there is no

agreement on how such loads should be modeled. In fact, load modeling is still an

area of research [47]. The first class of models in Assumption 4.3.7 contains the

well-known constant impedance model in the power systems literature. Constant

impedance load models are commonly used in transient stability analysis [31] and can

be used to study the transient behavior of induction motors [32]. According to the

IEEE Task Force on Load Representation for Dynamic Performance, more than half

of the energy generated in the United States is consumed by induction motors [39].

This observation, together with the fact that these three-phase induction motors

can be modeled as three-phase circuits with each phase being a series connection of

a resistor, an inductor and a voltage drop justifies the constant impedance model

usage in transient stability studies. The RL-circuit model suggested for induction

motors in [39] is also captured by Assumption 4.3.7. In [39], it is also stated that

lighting loads behave as resistors in certain operational regions. This observation

also suggests the usage of constant impedances for modeling the aggregated behavior

of loads. The second load model in Assumption 4.3.7 is also common in the power

systems literature [47].

Any asymptotically stable linear electrical circuit has a unique equilibrium and

admits a port-Hamiltonian representation with Hamiltonian H`,abc,j. By performing

a change of coordinates, we can obtain a port-Hamiltonian system for the shifted

coordinates with the shifted Hamiltonian Ĥ`,abc,j satisfying:

dĤ`,j

dt
< V̂ T

`,abc,j Î`,abc,j. (4.114)

Let us now consider constant current loads. If a load j draws constant current from

the network we have I`,abc,j = I∗`,abc,j. This implies Î`,abc,j = 0 and the contribution
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of the constant current load j to the incremental power balance (4.113) is zero.

This observation shows that we can neglect constant current loads since they do

not contribute to the incremental power balance. Therefore, in the remainder of the

paper we only consider the first type of loads in Assumption 4.3.7.

4.3.2.3 Stability of Multi-Machine Power Systems

Let Ĥi be the shifted Hamiltonian for generator i with respect to the equilibrium

point ξ∗i = (Miωs, λ
∗
xyz,i), as defined in Section 4.1.2.2. From Section 4.1.2.2, we

know that, under the FACTS control law that introduces the voltage drops (4.106)-

(4.108), for every generator i we have

dĤi

dt
=
∂Ĥi

∂ξ̂i

T

Pi
∂Ĥi

∂ξ̂i
+ V̂ T

abc,iÎabc,i, (4.115)

where Pi is a matrix obtained by adding subscript i to the elements of the matrix

P given by (4.98), where the stator resistance r is replaced by r + R. Using the

definitions above, we select our candidate Lyapunov function as

Ĥtotal = Ĥgrid +
N∑
i=1

Ĥi +
M∑
j=1

Ĥ`,j,

where Ĥgrid is the shifted Hamiltonian of the transmission grid that was introduced

in Assumption 4.3.6, Section 4.3.2.1. Our objective is to show that the equilibrium

ξ∗ = (ξ∗1 , . . . , ξ
∗
N) for the generators is globally asymptotically stable. Note that ev-

ery equilibrium ξ∗i shares the same synchronous velocity ωs. Hence, asymptotical

stability of ξ∗ implies that all the generators converge to the synchronous velocity ωs.

In addition to synchronize the generators’ angular velocity we also need to ensure

that the currents flowing through the transmission network converge to preset values

respecting several operational constraints such as thermal limits of the transmission

lines. This will also be a consequence of asymptotical stability of the equilibrium

ξ∗. When this equilibrium is reached, the voltages and currents at the generator

terminals are V ∗abc,i and I∗abc,i, respectively. If we now regard the transmission net-

work and the loads as being described by an asymptotically stable linear system

driven by the inputs V ∗abc,i and I∗abc,i, we realize that all the voltages and currents
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in the transmission network and loads will converge to a unique steady state. We

assume that such steady state, uniquely defined by V ∗abc,i and I∗abc,i, satisfies all the

operational constraints.

Taking the time derivative of Ĥtotal, we obtain

dĤtotal

dt
=
dĤgrid

dt
+

N∑
i=1

dĤi

dt
+

M∑
j=1

dĤ`,j

dt
(4.116)

≤ ûTgridŷgrid +
N∑
i=1

dĤi

dt
+

M∑
j=1

dĤ`,j

dt
(4.117)

=
N∑
i=1

∂Ĥi

∂ξ̂i

T

Pi
∂Ĥi

∂ξ̂i
, (4.118)

where (4.117) follows from (2.20), and (4.118) follows from (4.113), (4.114), and

(4.115). If

(Lss,iI
∗
x,i)

2 + (Lss,iI
∗
y,i)

2 < 4Diri. (4.119)

holds for i ∈ {1, . . . , N}, then Pi < 0 for every i ∈ {1, . . . , N} by Theorem 4.3.1.

Therefore, if (4.119) holds for every i ∈ {1, . . . , N}, we conclude from (4.118) that

dĤtotal

dt
≤

N∑
i=1

∂Ĥi

∂ξ̂i

T

Pi
∂Ĥi

∂ξ̂i
< 0. (4.120)

This only shows that dĤtotal

dt
is negative semi-definite. Since all of the Hamiltonians

that constitute the total Hamiltonian Ĥtotal have compact level sets, the level sets

of Ĥtotal are also compact. Hence, we can apply La Salle’s Invariance Principle to

conclude that all the trajectories converge to the largest invariant set contained in

the set defined by
N∑
i=1

∂Ĥi

∂ξ̂i

T

Pi
∂Ĥi

∂ξ̂i
= 0. (4.121)

The left hand side of (4.121) is a sum of negative definite quadratic terms (recall

that Pi < 0) and thus only zero when ∂Ĥi
∂ξ̂i

= 0 for all i. This implies ξ = ξ∗, hence

the generator states globally asymptotically converge to ξ∗ if (4.120) holds. The

preceding discussion is summarized in the following result.

Theorem 4.3.8 Consider a multi-machine power system with N generators de-

scribed by equations (4.15) with τm,i = τ ∗m,i, and M loads satisfying Assumption
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4.3.7 interconnected by a transmission network satisfying Assumption 4.3.6. Let ξ∗

be an equilibrium point for the generators that is consistent with all the equations de-

scribing the power system. Let (4.109) and (4.110) be the voltage and current drops

introduced by the FACTS controllers, respectively. The equilibrium ξ∗ is globally

asymptotically stable if

(Lss,iI
∗
x,i)

2 + (Lss,iI
∗
y,i)

2 < 4Di(ri +Ri). (4.122)

holds for all i ∈ {1, . . . , N}.

Theorem 4.3.8 states that in order to check the stability of the multi-machine

system, we only need to check a simple condition for each generator in the system.

This makes our result compositional in the sense that the complexity of condition

(4.122) is independent of the size of the network. All these conditions are bound

together by I∗x and I∗y that obviously depend on the whole network. However, the

computation of the desired steady state currents needs to be performed for reasons

other than transient stability and thus are assumed to be readily available.

Remark 4.3.9 We note that if Assumption 4.3.6 is weakened from asymptotic sta-

bility to stability of the transmission network, the equilibrium ξ∗ is still globally

asymptotically stable. However, the voltages and currents in the transmission net-

work are no longer uniquely determined and may violate the operational constraints.

Remark 4.3.10 If there exists a reference trajectory for the grid that satisfies

ûTgridŷgrid +
N∑
i=1

V̂ T
xyz,iÎxyz,i +

M∑
j=1

V̂ T
`,abc,j Î`,abc,j = 0, (4.123)

then we can replace the FACTS controllers in Theorem 4.3.8 with the FACTS con-

troller defined by (4.101)-(4.103). The multi-machine power system in Section 4.3.3

is an example of a power system where this replacement can be performed.

4.3.3 Example

We apply our results to the two-generator single-load scenario depicted in Figure 4.8.

The generators are connected to the load via transmission lines with impedances
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g1 g2

z1 z2

z`

Figure 4.8: Two-generator single-load scenario

z1 = z2 = (5 + j0.1ωs) Ω . The load impedance is z` = 1kΩ. We use the generator

parameters provided in [59, Table 7.3]. Using the provided Hi values, the damping

coefficients are selected as D1 = 0.2H1

ωs
= 1.25 MVAs and D2 = 0.4H2

ωs
= 0.68 MVAs

as was done in [59, Example 7.1]. The stator winding resistances for the generators

are taken to be r1 = r2 = 0.05Ω. Using the values for Xd,i and Xq,i provided in

[59, Table 7.3], we obtain Ls,1 = 0.2049 H and Ls,2 = 1.2570 H from the equations

Xd,i = ωsLs,i. Since the parameters Ls0,i and Lm,i cannot be obtained from [59, Table

7.3] we assume Ls0,i = 0 and Lm,i = Ls,i. The steady state phase-xyz voltages are

V ∗x,1 = −17.56 kV, V ∗y,1 = 280.16 kV, V ∗x,2 = −24.14 kV, and V ∗y,2 = 278.76 kV. The

steady state phase-xyz currents satisfying the circuit constraints are I∗x,1 = 19.83

A, I∗y,1 = −227.33 A, I∗x,2 = 6.2 A, and I∗y,2 = −50.9402 A. The mechanical torques

and field winding currents are selected so as to be consistent with these steady-state

values. For both generators, (4.28) is satisfied with this choice of parameters and

the equilibrium is unique. We now investigate global asymptotic stability for this

example. We connect a static synchronous series compensator (SSSC) in series with

the generator terminals providing the voltage drops Ri

(
Ix,i − I∗x,i

)
, Ri

(
Iy,i − I∗y,i

)
,

and Ri

(
Iz,i − I∗z,i

)
in phases x, y, and z, respectively. Condition (4.122) holds for

generator i if:

Ri >
(Lss,iI

∗
x,i)

2 + (Lss,iI
∗
y,i)

2

4Di

.

Replacing the generator parameters into this inequality, we obtain R1 > 0.437 mΩ

and R2 > 1.53 mΩ. We choose R1 = R2 = 10Ω to satisfy these inequalities and

provide enough damping.

We numerically simulated the dynamics of the circuit in Figure 4.8 to obtain the

transient behavior following the occurrence of a fault. Without conjecturing any-

thing about the nature of the fault or the pre-fault circuit, we simply assumed that
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the initial condition for the frequencies of the generators lies in the set [59.8, 60.2].

For a generator current with steady state value I∗, we assumed that the initial

condition for the current lies in the set [I∗ − 50, I∗ + 50]. With this assumption

about the initial states, we performed numerical simulations for 25 randomly cho-

sen initial state vectors. These simulations indicate that the generator states con-

verge to the steady-state values as expected. We present in Figure 4.9 a typical

trajectory corresponding to initial conditions ω1(0) = 2π(60.08) rad/s, ω2(0) =

2π(60.17) rad/sec, I∗x,1(0) = −62.46 A, I∗x,2(0) = −46.95 A, I∗y,1(0) = −249.61 A,

and I∗y,2(0) = −70.71 A. The reader can appreciate how the states and the value of

the total shifted Hamiltonian converge to the desired values.

Figure 4.9: Evolution of the generators’ states (x-axis currents on upper left, y-axis

currents on upper right, frequencies on lower left) and the value of the total shifted

Hamiltonian (on lower right).
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CHAPTER 5

Conclusions and Future Work

In this thesis, we demonstrated through counter-examples that the usage of the swing

equation to study transient stability leads to erroneous conclusions. We explained

how to perform transient stability analysis using a first principles model instead of

the traditional models based on the swing equation. The stability conditions we

proposed in this thesis are compositional, that is, it is enough to verify that a simple

stability condition holds for every generator to conclude that the power system is

stable. We also showed that one can enforce these conditions by deploying local

controllers on the generators. Finally, we presented a way of performing circuit

reduction to reduce the complexity of the power system. In contrast to the circuit

reduction methods, such as Kron reduction, that are widely used in the literature,

the proposed method does not require the usage of phasors.

There are certain limitations in our framework. We want to address these limi-

tations in future. First of all, we use FACTS devices to implement our control law.

In practice, these devices are costly and thus not widely used. In the future, we

want to design a controller that can act on the field windings of the generators to

reduce the cost of implementation. Other limitations are the load models that we

use. We can only deal with loads that can be modeled as linear circuits. We need to

find alternative ways of dealing with loads that cannot be represented by this model.

We also need to quantify the class of practical loads that can be modeled accurately

with this model. Finally, higher order generator models can be used instead of the

five state model that we use.
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