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Model-free model-fitting

and predictive distributions

Dimitris N. Politis∗

Department of Mathematics

University of California—San Diego

La Jolla, CA 92093-0112, USA

Abstract
The problem of prediction is revisited with a view towards going beyond

the typical nonparametric setting and reaching a fully model-free environment
for predictive inference, i.e., point predictors and predictive intervals. A basic
principle of model-free prediction is laid out based on the notion of transforming
a given set-up into one that is easier to work with, namely i.i.d. or Gaussian. As
an application, the problem of nonparametric regression is addressed in detail;
the model-free predictors are worked out, and shown to be applicable under
minimal assumptions. Interestingly, model-free prediction in regression is a
totally automatic technique that does not necessitate the search for an optimal
data transformation before model fitting. The resulting model-free predictive
distributions and intervals are compared to their corresponding model-based
analogs, and the use of cross-validation is extensively discussed. As an aside,
improved prediction intervals in linear regression are also obtained.

Keywords: Bootstrap, cross-validation, frequentist prediction, heteroskedas-
ticity, linear regression, nonparametric estimation, prediction intervals, regres-
sion, smoothing, transformations.

∗This version: March 2010. Research partially supported by NSF grant DMS-07-06732. Many
thanks are due to Arthur Berg, Wilson Cheung and Tim McMurry for invaluable help with R
functions and computing, to Jeff Racine and Dimitrios Thomakos for helpful discussions, and to Bill
Schucany for alerting the author on the undercoverage of bootstrap prediction intervals in regression
some twenty years ago!
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1 Introduction

In the classical setting of an i.i.d. (independent and identically distributed) sample,

the problem of prediction is not very interesting. Consequently, practitioners have

mostly focused on estimation and hypothesis testing in this case. However, when

the i.i.d. assumption no longer holds, the prediction problem is both important and

intriguing; see Geisser (1993) for an introduction. Typical examples where the i.i.d.

assumption breaks down include regression problems and dependent data.

Two key models are given below.

• Regression

Yt = µ(xt) + σ(xt) εt for t = 1, . . . , n. (1)

• Time series

Yt = µ(Yt−1, · · · , Yt−p; xt) + σ(Yt−1, · · · , Yt−p; xt) εt for t = 1, . . . , n. (2)

Here, Y1, . . . , Yn are the data, εt are the errors assumed i.i.d. (0, 1), and xt is a fixed-

length vector of explanatory (predictor) variables associated with the observation Yt.

The functions µ(·) and σ(·) are unknown but assumed to belong to a class of functions

that is either finite-dimensional (parametric family) or not; the latter case is the usual

nonparametric set-up in which case the functions µ(·) and σ(·) are typically assumed

to belong to a smoothness class.

Given one of these two models, the optimal model-based predictors of a future

Y -value can be constructed. Nevertheless, the prediction problem can, in principle,

be carried out in a fully model-free setting, offering—at the very least—robustness

against model misspecification. For example, Politis (2003,2007a) explored model-free

prediction in the practical setting of financial time series, i.e., a setting like example (2)

with µ ≡ 0 and a parametric structure for σ, and found that the model-free predictors

outperform the ones based on the popular ARCH/GARCH models.

In this paper, we identify the underlying principles and elements of model-free

prediction that apply equally to cases where the breakdown of the i.i.d. assumption

is either due to non-identical distributions, i.e., the regression example (1), and/or

due to dependence in the data as in example (2). In Section 2, these general princi-

ples for model-free prediction are theoretically formulated; their essence is based on
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the notion of transforming a given set-up into one that is easier to work with, e.g.,

i.i.d. or Gaussian. We also describe how the model-free prediction principle can be

combined with the bootstrap to yield frequentist predictive distributions in a very

general framework.

The remainder of the paper is devoted to the regression example (1) that is

quintessential in statistical practice. Model-based and model-free predictors are de-

rived in detail in Sections 3 and 4 respectively, with particular emphasis on the

derivation of predictive distributions and intervals. As a running example we use

the Canadian earnings data from the 1971 Canadian Census; this is a wage vs. age

dataset concerning 205 male individuals with high-school education. Finite-sample

simulations are also provided comparing the different prediction intervals in the con-

text of nonparametric, as well as linear, regression. In the latter case, a model-free

variation on the model-based theme seems to give a long awaited answer on the re-

ported undercoverage of bootstrap prediction intervals. Furthermore, the model-free

prediction principle can be viewed as a general framework for statistical inference

that includes the ubiquitous Least Squares (and L1) fitting as special cases. Finally,

Appendix A provides some technical details while Appendix B brings up the notion

of L1—cross validation.

2 Model-free prediction: a basic principle

2.1 The i.i.d. case

As already mentioned, the prediction problem is most interesting in cases where the

i.i.d. assumption breaks down. However, we now briefly focus on the i.i.d. case in

order to motivate the more general case.

Consider real-valued data Y1, . . . , Yn i.i.d. from the (unknown) distribution FY .

The goal is prediction of a future value Yn+1 based on the data. It is apparent that

FY is the predictive distribution, and its quantiles could be used to form predictive

intervals. Furthermore, different measures of center of location of the distribution FY

can be used as (point) predictors of Yn+1. In particular, the mean and median of FY

are of interest since the represent optimal predictors under an L2 and L1 criterion

respectively.

Of course, FY is unknown but can be estimated by the empirical distribution of the
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data Y1, . . . , Yn denoted by F̂Y . Thus, practical model-free predictive intervals will be

based on quantiles of F̂Y , and the L2 and L1 optimal predictors will be approximated

by the mean and median of F̂Y respectively.

2.2 The general prediction paradigm

In general, the data Y n = (Y1, . . . , Yn)
′ may not be i.i.d. so the predictive distribution

of Yn+1 given the data may depend on Y n and on Xn+1 which is a matrix of observable,

explanatory (predictor) variables; for concreteness, we will assume the predictors are

deterministic but provisions for random regressors can be made. The notation Xn

here is cumulative, i.e., Xn is the collection of all predictor variables associated with

the data Y t for t = 1, . . . , n; in the regression example of eq. (1), the matrix Xn

would be formed by concatenating together all the (fixed-length) predictor vectors

xt, t = 1, . . . , n.

Let Yt take values in the linear space B which typically will be Rd for some in-

teger d. The goal is to predict g(Yn+1) based on Y n and Xn+1 without invoking

any particular model; here g is some real-valued (measurable) function on B. The

key to successful model-free prediction is the following model-free prediction principle

that was first presented in a conference announcement (extended abstract) of Politis

(2007b). Intuitively, the basic idea is to transform the non-i.i.d. set-up to an i.i.d.

dataset for which prediction is easy—even trivial—, and then transform back to the

original setting to obtain the model-free prediction.

Model-free prediction principle.

(a) For any integer m ≥ some mo, suppose that a transformation Hm is found that

maps the data Y m = (Y1, . . . , Ym)′ and the explanatory variables Xm onto the i.i.d.

sequence ε
(m)
m = (ε

(m)
1 , . . . , ε

(m)
m )′ where each ε

(m)
i , i = 1, . . . , m has distribution Fm,

and Fm is such that Fm
L

=⇒ some F as m → ∞.

(b) Suppose that the transformation Hm is invertible for all m (possibly modulo some

initial conditions denoted by IC), and—in particular—that one can solve for Ym in

terms of Y m−1,Xm, and ε
(m)
m alone, i.e., that

Ym = gm(Y m−1,Xm, ε(m)
m ) (3)

and

Y m−1 = fm(Y m−2,Xm; ε
(m)
1 , . . . , ε

(m)
m−1; IC) (4)
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for some functions gm and fm and for all m ≥ mo.

(c) Then, the L2-optimal model-free predictor of g(Yn+1) on the basis of the data Y n

and the predictors Xn+1 is given by the (conditional) expectation∫
Gn+1(Y n,Xn+1, ε)dFn+1(ε) where Gn+1 = g◦gn+1 denotes composition of functions.

(d)The whole predictive distribution of g(Yn+1) is given by the distribution of the

random variable Gn+1(Y n,Xn+1, εn+1) where εn+1 is drawn from distribution Fn+1

and is independent to Y n. The median of this predictive distribution yields the L1-

optimal model-free predictor of g(Yn+1) given Y n and Xn+1.

The predictive distribution in part (d) above is meant to be conditional on the

value of Y n (and the value of Xn+1 when the latter is random), as is the expectation

in part (c). Note also the tacit understanding that the ‘future’ εn+1 is independent

to the conditioning variable Y n; this assumption is directly implied by eq. (4) which

itself—under some assumptions on the function gm—could be obtained by iterating

(back-solving) eq. (3). The presence of initial conditions such as IC in eq. (4) is

familiar in time series problems of autoregressive nature where IC would typically

represent values Y0, Y−1, . . . , Y−p for a finite value p; the effect of the initial conditions

is negligible for large n. Note that in regression problems the presence of initial condi-

tions would not be required if the regression errors can be assumed to be independent

as in eq. (1).

Remark 2.1 Eq. (3) with ε
(m)
i being i.i.d. from distribution Fm looks like a model

equation but it is more general than a typical model. For one thing, the functions gm

and Fm may change with m, and so does ε
(m)
i which, in essense, is a triangular array of

i.i.d. random variables. Furthermore, no assumptions are made a priori on the form of

gm. However, the process of starting without a model, and—by this transformation

technique—arriving at a model-like equation deserves the name model-free model-

fitting, (MF2 for short).

Remark 2.2 The predictive distribution in part (d) above is the true distribution in

this set-up but it is unusable as such since it depends on many potentially unknown

quantities. For example, the distribution Fn+1 will typically be unknown but it can be

consistently estimated by F̂n, the empirical distribution of ε
(n)
1 , . . . , ε

(n)
n , under the as-

sumed convergence in part (a). The estimator F̂n can then be plugged-in to compute

estimates of the aforementioned (conditional) mean, median, and predictive distrib-

ution. Similarly, if the form of function gn+1 is unknown, a consistent estimator ĝn+1
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should be plugged-in instead. The resulting empirical estimates of the (conditional)

mean and median would typically be quite accurate but such a ‘plug-in’ empirical

estimate of the predictive distribution will be too narrow, i.e., possessing a smaller

variance and/or inter-quartile range than ideal. The correct predictive distribution

would incorporate the variability of F̂n and/or ĝn+1. The only general �frequentist way

to nonparametrically capture such a widening of the predictive distribution may be

given by resampling methods should these be applicable in the setting at hand; see

Section 2.6 for more details.

2.3 A variation of the model-free prediction principle

The prediction principle sounds deceptively simple but its application is not. The

task of finding a set of candidate transformations Hn for any given particular set-up

is challenging, and demands expertise and ingenuity; see Remark 2.3 and Section 2.5

for some discussion to that effect. Once, however, a set of candidate transformations

is identified (and denoted by H), the procedure is easy to delineate: Choose the

transformation Hn ∈ H that minimizes the (pseudo)distance d(L(Hn(Y n)),Fiid,n)

over all Hn ∈ H; here L(Hn(Y n)) is the probability law of Hn(Y n), and Fiid,n is

the space of all distributions associated with an n-dimensional random vector whose

B–valued coordinates are i.i.d., i.e., the space of all distributions of the type F ×F ×
· · · × F where F is an arbitrary distribution on space B. There are many choices for

the (pseudo)distance d; see Hong and White (2005) and the references therein.

Remark 2.3 If a model such as (1) or (2) is plausible, then the model itself suggests

the form of the transformation Hn, and the residuals from model-fitting would serve

as the ‘transformed’ values ε
(n)
t . Of course, the goodness of the model should now

be assessed in terms of achieved “i.i.d.”—ness of these residuals. It is relatively

straightforward—via the usual graphical methods—to check that the residuals have

identical distributions but checking their independence is trickier; see e.g. Hong

(1999). However, if the residuals happened to be (jointly) Gaussian, then checking

their independence would be easy since in this case it would be equivalent to checking

for correlation, e.g. portmanteau test, Ljung-Box, etc.

The above ideas motivate the following variation of the prediction principle that may

be of particular usefulness in the case of dependent data.
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Transformation into Gaussianity as a prediction stepping stone.

(a) For any integer m ≥ some mo, suppose that a transformation Hm on Bm is

found that maps the data Y m = (Y1, . . . , Ym)′ into the jointly Gaussian vector

W (m)
m = (W

(m)
1 , . . . , W

(m)
m )′ with covariance matrix Vm whose eigenvalues—viewed

as sequences in m—are bounded above and below by positive constants.

(b) Also suppose that the transformation Hm is invertible (possibly modulo some

initial conditions denoted by IC), and—in particular—that one can solve for Ym in

terms of Y m−1,Xm, and W
(m)
m alone, i.e., that

Ym = g̃m(Y m−1,Xm, W (m)
m ) (5)

and

Y m−1 = f̃m(Xm; W
(m)
1 , . . . , W

(m)
m−1; IC) (6)

for some functions g̃m and f̃m for all m ≥ mo. Finally, define the vector ε
(m)
m =

(ε
(m)
1 , . . . , ε

(m)
m )′ to equal V

−1/2
m W (m)

m where V
1/2
m is a square root of matrix Vm. Note

that Ym = g̃m(Y m−1,Xm, W
(m)
m ) = g̃m(Y m−1,Xm, V

1/2
m ε

(m)
m ) which we can rename as

gm(Y m−1,Xm, ε
(m)
m ) since the random vector (ε

(m)
1 , . . . , ε

(m)
m−1)

′ is related in a one-to-

one fashion to Y m−1 (by induction on m).

Let Fn denote the common normal distribution of ε
(n)
1 , . . . , ε

(n)
n that are i.i.d. by

construction. Then, the L1 and L2–optimal model-free predictors and the predictive

distribution of g(Yn+1) given Y n and Xn+1 are given verbatim by parts (c) and (d)

of the Prediction Principle.

In applications, the covariance matrix Vn must be estimated from the transformed

data W
(n)
1 , . . . , W

(n)
n using some extra assumption on its structure (e.g., a Toeplitz

structure in stationary time series), or an appropriate shrinkage and/or regularization

technique—see e.g. Bickel and Li (2006) and the references therein; then, the estimate

V̂n must be extrapolated to give an estimate of Vn+1. As before, the distribution Fn+1

can be consistently estimated by F̂n, the empirical distribution of ε
(n)
1 , . . . , ε

(n)
n , or by

a Gaussian distribution with unit variance and estimated mean; the former option

may be more robust in practice.

Applying the Gaussian ‘stepping stone’ can be formalized in much the same way

as before. To elaborate, once H, the set of candidate transformations is identified,

the procedure is to: choose the transformation Hn ∈ H that minimizes the distance

d(L(Hn(Y n)), Φn) over all Hn ∈ H where now Φn is the space of all n-dimensional
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Gaussian distributions on B. Many choices for the distance d are again available,

including usual goodness-of-fit favorites such as the Kolmogorov-Smirnov or χ2 test;

a pseudo-distance based on the Shapiro-Wilk statistic is also a valid alternative.

However, now that Hn is essentially a normalizing transformation, a collection of

graphical and exploratory data analysis (EDA) tools are also available to facilitate

this search. Some of these tools include: (a) Q-Q plots of the W
(n)
1 , . . . , W

(n)
n data

to test for Gaussianity; (b) Q-Q plots of linear combinations of W
(n)
1 , . . . , W

(n)
n to

test for joint Gaussianity; and (c) autocorrelation plots of ε
(n)
1 , . . . , ε

(n)
n to test for

independence—since in the (jointly) Gaussian case, independence is tantamount to

zero correlation. In any case, these tools are often used as model-checking diagnostics

in a regression context.

Remark 2.4 Note that if the normalizing transformation Hn is such that the co-

variance matrix Vm has diagonal elements that are (approximately) constant, then

Hn deserves the name ‘normalizing and variance-stabilizing’ transformation1 (No-

VaS, for short). Of course, if a normalizing transformation Hn is found, then it is

a matter of simple re-scaling to construct a NoVaS transformation for the data. So

the Gaussian ‘stepping stone’ principle could equivalently have been stated insisting

that the transformation Hn is also variance-stabilizing, i.e., a NoVaS transformation.

Politis (2003,2007a) gives details of applying a NoVaS transformation in a setting of

heteroskedastic time series, i.e., a setting like our example (2).

2.4 Comparison with other approaches

The application of the prediction principle appears similar in spirit to the Minimum

Distance Method (MDM) of Wolfowitz (1957). Nevertheless, their objectives are

quite different since MDM is typically employed for parameter estimation and testing

whereas in the prediction paradigm there is no interest in parameters. A typical

MDM searches for the parameter θ̂ that minimizes the distance d(F̂n,Fθ), i.e., the

distance of the empirical distribution F̂n to a parametric family Fθ. In this sense, it

is apparent that MDM sets an ambitious target (the parametric family Fθ) but there

is no necessity of actually ‘hitting’ this target. By contrast, the prediction principle

1This is a data transformation, not to be confused with the classical normalizing and variance-
stabilizing transformations of statistics like Fisher’s z tranformation for the correlation, etc.
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sets the minimal target of independence but its successful application requires that

this minimal target is more or less achieved.

In anticipation of the detailed discussion on the set-up of regression in Sections 3

and 4, it should be mentioned that devising transformations in regression has always

been thought to be a crucial issue that received attention early on by statistics pioneers

such as F. Anscombe, M.S. Bartlett, R.A. Fisher, etc.; see the excellent exposition

of DasGupta (2008, Ch. 4) and the references therein, as well as Draper and Smith

(1998, Ch. 13), Atkinson (1985), and Carroll and Ruppert (1988).

Regarding nonparametric regression in particular, the power family of Box and

Cox (1964) has been routinely used in practice, as well as more elaborate, computer-

intensive transformation techniques. Of the latter, we single out the ACE algorithm

of Breiman and Friedman (1985), and the AVAS transformation of Tibshirani (1988).

Both ACE and AVAS are very useful for transforming the data in a way that the

usual additive nonparametric regression model is applicable with AVAS also achieving

variance stabilization. However, as will be apparent in Section 4, the model-free

approach to nonparametric regression is remarkably insensitive to where such pre-

processing by Box/Cox, ACE or AVAS has taken place. Consequently, the model-

free practitioner is relieved from the need to find an optimal transformation and, as

a result, model-free model-fitting in regression is a totally automatic technique.

2.5 Model-free model-fitting in practice

As mentioned in Section 2.3, the task of identifying the transformation Hn for a given

particular set-up is expected to be challenging since it is analogous to the difficult

task of identifying a good model for the data at hand, i.e., model-building. Thus,

faced with a new dataset, the model-free practititioner could/should take advantage

of all the model-building know-how associated with the particular problem. The

resulting ‘best’ model can then serve as the starting point in concocting the desired

transformation as mentioned in Remark 2.3.

As in the case of model-fitting, the candidate transformation will typically de-

pend on some unknown parameter, say θ, that may be finite-dimensional or infinite-

dimensional—the latter corresponding to a ‘nonparametric’ model. There are many

potential strategies for chosing an optimal value for the parameter θ based on the

data; the simplest strategy is to:

(A) Continue with the model-fitting analogy, and use standard estimation tech-
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niques such as Maximum Likelihood (ML) or Least Squares (LS) when θ is

finite-dimensional, or standard nonparametric/smoothing techniques when θ is

infinite-dimensional. At the end, however, the practitioner must use diagnos-

tics and/or formal tests to ensure that the resulting values achieve the goal

of the transformation, i.e., render the transformed data i.i.d. and/or Gaussian

according to whether the original model-free principle or its Gaussian variation

is adopted.

If the goal of the transformation is not achieved by step (A), then the strategy may

be modified as follows.

(B) The parameter θ may be divided in two parts, i.e., θ=(θ1, θ2) where θ1 is finite-

dimensional—and, ideally, of small dimension, say 2 or 3. Firstly, θ2 is fitted

using standard methods2 as in strategy (A). After a value for θ2 is determined,

θ1 may be chosen as the solution to an optimization problem, i.e., as the value

that renders the transformed data closest (according to some metric) to the

desired goal of ‘i.i.d.–ness’ or Gaussianity.

Nevertheless, in certain examples the form of the desired transformation Hn is

apparent; this is—fortunately—the case in the regression example analyzed in detail

in Section 4.

2.6 Model-free predictive distributions and resampling

As mentioned in Remark 2.2, plugging-in estimates of F̂n and/or ĝn+1 in the theo-

retical predictive distribution of the model-free principle may result in an estimated

predictive distribution that is too narrow, i.e., possessing a smaller variance and/or

inter-quartile range than ideal. The only general way to practically correct for that is

via resampling; fortunately, the model-free principle seems ideally amenable to analy-

sis via the i.i.d. bootstrap of Efron (1979). For simplicity—and concreteness—we

assume henceforth that the effect of the initial conditions IC is negligible as is, e.g.,

in the regression example (1).

We will focus on constructing bootstrap prediction integrals of the ‘root’ type in

analogy to the well-known confidence interval construction; cf. Hall (1992), Efron

2If a value for θ1 is required in order to complete the calculation of a value for θ2, then a
preliminary value for θ1 is obtainable from step (A).
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and Tibshirani (1993), Davison and Hinkley (1997), or Shao and Tu (1995). To

see how, let Π(g, ĝn+1, Y n,Xn+1, F̂n) denote the best (with respect to either L1 or

L2) data-based point predictor of g(Yn+1) as obtained by the Model-free prediction

principle coupled with Remark 2.2. The notation Π(g, ĝn+1, Y n,Xn+1, F̂n) is meant

to clarify how the point predictor depends on known (given) vs. estimated quantities;

for example, F̂n is the empirical distribution of ε
(n)
1 , ..., ε

(n)
n , and ĝn+1 is the estimated

prediction function associated with the estimated transformation Ĥn. To elaborate,

the L2–optimal point predictor of g(Yn+1) is given by: Π(g, ĝn+1, Y n,Xn+1, F̂n) =

=

∫
g (ĝn+1(Y n,Xn+1, ε)) dF̂n(ε) = n−1

n∑
j=1

g
(
ĝn+1(Y n,Xn+1, ε

(n)
j )

)
;

similarly, the L1–optimal predictor is the median of the set {g
(
ĝn+1(Y n,Xn+1, ε

(n)
j )

)
,

for j = 1, ..., n}.
Then, our ‘root’ is nothing else than the prediction error:

g(Yn+1) − Π(g, ĝn+1, Y n,Xn+1, F̂n) (7)

whose distribution we can approximate by that of the bootstrap root:

g(Y ∗
n+1) − Π(g, ĝ∗

n+1, Y
∗
n,Xn+1, F̂

∗
n) (8)

where ĝ∗
n+1, F̂

∗
n and Y ∗

n are bootstrap quantities to be formally defined in step 2 of

the Resampling Algorithm that is outlined below.

Resampling algorithm for model-free predictive distribution of g(Yn+1)

1. Based on the data Y n, estimate the transformation Hn and its inverse H−1
n by

Ĥn and Ĥ−1
n respectively. In addition, estimate gn+1 by ĝn+1.

2. Use Ĥn to obtain the transformed data, i.e., (ε
(n)
1 , ..., ε

(n)
n ) = Ĥn(Y n). By con-

struction, the data ε
(n)
1 , ..., ε

(n)
n are approximately i.i.d.

(a) Sample randomly (with replacement) the data ε
(n)
1 , ..., ε

(n)
n to create the

bootstrap pseudo-data ε�
1, ..., ε

�
n whose empirical distribution is denoted F̂ �

n .

(b) Use the inverse transformation Ĥ−1
n to create pseudo-data in the Y domain,

i.e., let Y �
n = (Y �

1 , ..., Y �
n ) = Ĥ−1

n (ε�
1, ..., ε

�
n).
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(c) Calculate a bootstrap pseudo-response Y ∗
n+1 as the point ĝn+1(Y

�
n,Xn+1, ε)

where ε is drawn randomly from the set (ε
(n)
1 , ..., ε

(n)
n ).

(d) Based on the pseudo-data Y �
n, estimate the function gn+1 by ĝ�

n+1 respec-

tively.

(e) Calculate a bootstrap root replicate using eq. (8).

3. Steps (a)—(e) in the above should be repeated a large number of times (say B

times), and the B bootstrap root replicates should be collected in the form of

an empirical distribution whose α—quantile is denoted by q(α).

4. Then, a (1 − α)100% equal-tailed predictive interval (of root type) for g(Yn+1)

is given by

[Π + q(α/2), Π + q(1 − α/2)] (9)

where Π is short-hand for Π(g, ĝn+1, Y n,Xn+1, F̂n).

5. Finally, our model-free estimate of the predictive distribution of g(Yn+1) is the

empirical distribution of bootstrap roots obtained in step 3 shifted to the right by

the number Π; this is equivalent to the empirical distribution of the B bootstrap

root replicates when the quantity Π is added to each.3

The above resampling algorithm is closely related to the so-called ‘residual bootstrap’

schemes in model-based situations—cf. Efron (1979). The only difference is that,

in the model-free setting, the i.i.d. variables ε
(n)
1 , ..., ε

(n)
n are not residuals but the

outcome of the data-transformation.

Note that, using an estimate of the prediction error variance, prediction intervals

of the studentized root type can also be constructed. If Λ2(g, ĝn+1, Y n,Xn+1, F̂n)

is an (accurate) estimator of the variance of root (7), and Λ2(g, ĝ∗
n+1, Y

∗
n,Xn+1, F̂

∗
n)

is the corresponding estimator of the variance of the bootstrap root (8), then the

predictive distribution of the studentized root

g(Yn+1) − Π(g, ĝn+1, Y n,Xn+1, F̂n)

Λ(g, ĝn+1, Y n,Xn+1, F̂n)
(10)

3Recall that the predictive distribution of g(Yn+1) is—by definition—conditional on Y n and
Xn+1; hence, the quantity Π = Π(g, ĝn+1, Y n,Xn+1, F̂n) is a constant given Y n and Xn+1.
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can be approximated by that of the bootstrap root:

g(Y ∗
n+1) − Π(g, ĝ∗

n+1, Y
∗
n,Xn+1, F̂

∗
n)

Λ(g, ĝ∗
n+1, Y

∗
n,Xn+1, F̂ ∗

n)
. (11)

Letting Q(α) be the α–quantile of the empirical distribution of (11) based on B

bootstrap root replicates, then a (1 − α)100% equal-tailed predictive interval for

g(Yn+1) of the studentized root type is given by

[Π(g, ĝn+1, Y n,Xn+1, F̂n) + Q(α/2) · Λ, Π(g, ĝn+1, Y n,Xn+1, F̂n) + Q(1 − α/2) · Λ]

where Λ in the above is short-hand for Λ(g, ĝn+1, Y n,Xn+1, F̂n). Analogously to step

5 of the Resampling Algorithm, our estimate of the predictive distribution of g(Yn+1)

would be an appropriately shifted and scaled version of the above empirical distrib-

ution of the B bootstrap root replicates.

In contrast to what happens in confidence intervals, studentization does not ensure

second order accuracy of prediction intervals; see e.g. Shao and Tu (1995, Ch. 7.3)

and the references therein. Thus, in this paper we will focus on the simpler intervals

of root type (9).

3 Model-based prediction in regression

3.1 Model-based nonparametric regression

We now focus on the nonparametric regression set-up of eq. (1). For simplicity, the

regressor xt will be assumed univariate and deterministic, and denoted simply as xt.

In other words, here and throughout Section 3, our data {(Yt, xt), t = 1, ..., n} are

assumed to have been generated by the model

Yt = µ(xt) + σ(xt) εt , t = 1, . . . , n, (12)

with εt being i.i.d. (0,1) from the (unknown) distribution F ; in the above, the func-

tions µ(·) and σ(·) are also unknown but are assumed to possess a certain degree of

smoothness (differentiability, etc.).

There are many approaches towards nonparametric estimation of the functions µ

and σ such as wavelets and orthogonal series, smoothing splines, local polynomials,

13



and kernel smoothers. The reviews by Altman (1992) and Schucany (2004) give con-

cise introductions to popular methods of nonparametric regression with emphasis on

kernel smoothers; book-length treatments are given by Härdle (1990), Hart (1997),

Fan and Gijbels (1996), and Loader (1999). For simplicity of presentation, we will

focus here on kernel estimators but it is important to note that the prediction proce-

dures of this paper can equally be implemented with any other appropriate regression

estimator, be it of parametric or nonparametric form.

The most popular form of a kernel smoother is the Nadaraya-Watson estimator

(Nadaraya (1964), Watson (1964)) defined by

mx =

n∑
i=1

YiK̃

(
x − xi

h

)
(13)

where K(x) is a symmetric kernel function, and

K̃

(
x − xi

h

)
=

K
(

x−xi

h

)∑n
k=1 K

(
x−xk

h

) . (14)

The estimator mx depends on the kernel K as well as on the bandwidth parameter h

but this dependence will not be explicitly denoted.

Similarly, the Nadaraya-Watson estimator of σ(x) is given by sx defined as the

(positive) square root of

s2
x = Mx − m2

x where Mx =

n∑
i=1

Y 2
i K̃

(
x − xi

q

)
, (15)

and q is another bandwidth parameter.

Selection of the bandwidth parameters h and q is usually done by (predictive)

cross-validation. To elaborate, let et denote the fitted residuals, i.e.,

et = (Yt − mxt)/sxt for t = 1, . . . , n. (16)

and ẽt the predictive residuals, i.e.,

ẽt =
Yt − m

(t)
xt

s
(t)
xt

, t = 1, . . . , n (17)

where m
(t)
x and M

(t)
x denote the estimators m and M respectively computed from the

delete-Yt dataset: {(Yi, xi), i = 1, . . . , t − 1 and i = t + 1, . . . , n}, and evaluated
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Figure 1: (a) Log-wage vs. age data with fitted kernel smoother mx (solid line). (b) Plot
of the unstudentized residuals Y −mx with superimposed estimated standard deviation sx

(solid line).

at the point x; as usual, we define s
(t)
xt =

√
M

(t)
xt − (m

(t)
xt )2. In other words, ẽt is the

(standardized) error in trying to predict Yt from the aforementioned delete-Yt dataset.

Cross-validation amounts to picking the bandwidths4 h and q that minimize

PRESS=
∑n

t=1 ẽ2
t , i.e., the PREdictive Sum of Squared residuals. PRESS is an L2

measure that is obviously non-robust in case of heavy-tailed errors and/or outliers.

For this reason, we instead propose using cross-validation based on an L1 criterion;

is it more robust, and is not any more computationally expensive than PRESS cross-

validation. L1—cross-validation amounts to picking the bandwidths that minimize∑n
t=1 |ẽt|; the latter could be denoted PRESAR, i.e., PREdictive Sum of Absolute

Residuals, to distinguish it from PRESS. In what follows in this paper, L1—cross-

validation will be used; Appendix B provides some further discussion on this choice.

As a running example we use the Canadian high-school graduate earnings data

from the 1971 Canadian Census; this is a wage vs. age dataset concerning 205 male

4Rather than doing a two-dimensional search over h and q to minimize PRESS, the simple
constraint q = h will be imposed here that has the additional advantage of rendering Mx ≥ m2

x

as needed for a well-defined estimator s2
x in eq. (15). Note, however, that the choice q = h is not

necessarily optimal; see e.g. Wang et al. (2008). Furthermore, note that these are global bandwidths;
techniques for picking local bandwidths, i.e., a different optimal bandwidth for each x, are widely
available but will not be discussed further here in order not to obscure the paper’s main focus.
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individuals with common education (13th grade). The data are available under the

name cps71 within the np package of R, and are discussed in Pagan and Ullah (1999).

Figure 1 (a) presents a scatterplot of the data with the fitted kernel estimator mx

superimposed using a normal kernel for smoothing. The kernel smoother seems to be

problematic at the left boundary; the problem can be alleviated either using a local

linear smoother as in Figure 2 of Schucany (2004), or by employing the reflection

technique of Hall and Wehrly (1991). Nevertheless, we will not elaborate further

here since our purpose is to develop general prediction procedures that can equally

be implemented with any chosen regression estimator. Finally, Figure 1 (b) shows

a scatterplot of the unstudentized residuals Y − mx with the estimated standard

deviation sx superimposed.

3.2 Model-based prediction in regression

The prediction problem amounts to predicting the future response Yf associated with

a potential design point xf . Recall that the L2–optimal (point) predictor of Yf is

the expected value of the response Yf associated with design point xf which will be

denoted E(Yf |xf); under model (12), we have that E(Yf |xf) = µ(xf). However, if the

Yt–data are heavy-tailed, the L1–optimal predictor might be preferred; this would be

given by the median response Yf associated with design point xf ; under model (12),

this is given by µ(xf) + σ(xf) · median(F ). If the error distribution F is symmetric

around zero, then the L2— and L1—optimal predictors coincide.

To obtain practically useful predictors, the unknown quantities µ(x), σ(x) and

median(F ) must be estimated and plugged in the formulas of optimal predictors.

Naturally, µ(xf) and σ(xf) are estimated by mxf
and sxf

of eq. (13) and (15). The un-

known F can be estimated by F̂e, the empirical distribution of the residuals e1, . . . , en

that are defined in eq. (16). Hence, the practical L2— and L1—optimal model-based

predictors of Yf are given respectively by Ŷf = mxf
and Ỹ(x) = mxf

+ sxf
·median(F̂e).

Suppose, however, that our objective is predicting the future value g(Yf) associated

with design point xf where g(·) is a function of interest; this possibility is of particular

importance due to the fact that data transformations such as Box/Cox, ACE, AVAS,

etc. are often applied in order to arrive at a reasonable additive model such as (12).

For example, the wages in dataset cps71 have been logarithmically transformed before

model (12) was fitted in Figure 1 (a); in this case, g(x) = exp(x) since naturally we

are interested in predicting wage not log-wage! In such a case, the model-based
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L2–optimal (point) predictor of g(Yf) is E(g(Yf)|xf) which can be estimated by

n−1

n∑
i=1

g (mxf
+ σxf

ei) .

Note that the naive predictor g(mxf
) can be grossly suboptimal when g is appreciably

nonlinear. Similarly, the model-based L1–optimal (point) predictor of g(Yf) can be

approximated by the sample median of the set {g (mxf
+ σxf

ei) , i = 1, ..., n}.

3.3 A first application of the model-free prediction principle

Consider a dataset like the one depicted in Figure 1. Faced with this type of data, a

practitioner may well decide to entertain a model like eq. (12) for his/her statistical

analysis. However, even while fitting—and working with—model (12), it is highly

unlikely that the practitioner will believe that this model is exactly true; more often

than not, the model will be simply regarded as a convenient approximation.

Thus, in applying strategy (A) of Section 2.5, the model-free practitioner computes

the fitted residuals et = (Yt − mxt)/sxt that can be interpreted as an effort to center

and studentize the Y1, . . . , Yn data. In this sense, they can be viewed as a preliminary

transformation of the Y –data towards “i.i.d.–ness” since the residuals e1, . . . , en have

(approximately) same 1st and 2nd moment while the Y –data do not.

Recall that throughout Section 3 we assume that—typically unbeknownst to the

statistician—model (12) is true. Hence, the model-free practitioner should find (via

the usual diagnostics) that to a good approximation the fitted residuals et = (Yt −
mxt)/sxt are close to being i.i.d. However, the model-free practitioner does not see

this as model confirmation but as a good starting point for the model-free principle

as suggested by Remark 2.3.

Here, and for the remainder of Section 3, we will assume that the form of the esti-

mator mx is linear in the Y data; our running example of a kernel smoother obviously

satisfies this requirement, and so do local polynomial fitting and other popular meth-

ods. Motivated by the studentizing transformation in Politis (2003,2007a), we can

use the linearity of mx and consider a more general centering/studentization that may

provide a better transformation for the model-free principle. Such a transformation

is given by:

Wt =
Yt − m̃xt

s̃xt

, t = 1, . . . , n. (18)
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where

m̃xt = cYt + (1 − c)m(t)
xt

, M̃xt = cY 2
t + (1 − c)M (t)

xt
and s̃2

xt
= M̃xt − m̃2

xt
. (19)

In the above, m
(t)
x and M

(t)
x denote the estimators m and M respectively computed

from the delete-Yt dataset: {(xi, Yi), i = 1, . . . , t − 1 and i = t + 1, . . . , n}, and

evaluated at the point x. Note that the W ’s, as well as m̃xt , M̃xt , depend on the

parameter c ∈ [0,1] but this dependence will not be explicitly denoted. Details on the

choice of parameter c will be given later.

Eq. (18) is a more general—and thus more flexible—reduction to residuals since it

includes the fitted residuals (16) as a special case. To see this, note that (13) implies

that the choice c = K(0)/
∑n

k=1 K
(

xt−xk

h

)
corresponds to m̃xt = mxt and M̃xt = Mxt

in which case eq. (18) reduces to eq. (16). The generality of eq. (18) is further

shown by considering different options for c. For example, consider the extreme case

of c = 0; in this case, Wt is tantamount to a predictive residual, i.e., Wt = ẽt defined

in eq. (17).

Thus, eq. (18) is a good candidate for our search for a general transformation

Hn towards “i.i.d.—ness” as the model-free prediction principle of Section 2 requires.

With a proper choice of the design parameters (c and the bandwidth), W1, . . . , Wn

would be—by construction—centered and studentized; hence, the first two moments

of the Wt’s are (approximately) constant. Since the original data are assumed inde-

pendent, the Wt’s are also approximately5 independent. The (approximate) indepen-

dence and constancy of the first two moments generally falls short of claiming that

the Wt’s are i.i.d. but it often suffices in practical work. Note, however, that the Wt’s

will be (approximately) i.i.d. here due to model (12) which is assumed to hold true.

3.4 Model-free/model-based prediction

Recall that the prediction problem amounts to predicting the future value Yf associ-

ated with a potential design point xf . As customary in a prediction problem one starts

by investigating the distributional characteristics of the unobserved Yf centered and

studentized. To this effect, note that eq. (18) can still be written for the unobserved

5Strictly speaking, the Wt’s are not exactly independent because of dependence of mxt and sxt to
mxk

and sxk
. However, under typical conditions, mx

P−→ E(Y |x) and s2
x

P−→ V ar(Y |x) as n → ∞.
Therefore, the Wt’s are—at least—asymptotically independent.
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Yf , i.e., the yet unobserved Yf is related to the yet unobserved Wf by

Wf =
Yf − m̃f

xf

s̃f
xf

(20)

where m̃f and s̃f are the estimators from eq. (13) and (15) but computed from the

augmented dataset that includes the full original dataset {(xi, Yi), i = 1, . . . , n} plus

the pair (xf , Yf). As in eq. (19) we have:

m̃f
xf

= cYf + (1 − c)mxf
, M̃ f

xf
= cY 2

f + (1 − c)Mxf
and s̃f

xf
=

√
M̃ f

xf
− (m̃f

xt
)2 (21)

where mxf
, Mxf

are the estimators m, M computed from the original dataset as in

Section 3.2 and evaluated at the candidate point xf .

Solving eq. (20) for Yf is the key to model-free prediction as it would yield an

equation like (3). As verified in the Appendix, the solution of eq. (20) is given by

Yf = mxf
+ sxf

Wf√
1 − c − cW 2

f

. (22)

Eq. (22) is the regression analog of the general eq. (3) of Section 2.2, and will form

the basis for our model-free prediction procedure.

One may now ponder on the optimal choice of c. It is possible to opt to choose c

with the goal of normalization of the empirical distribution of the W ’s in the spirit of

the ‘Gaussian stepping stone’ of Section 2.3. As a matter of fact, the transformation of

Y to W is a kurtosis-reducing transformation. As can easily be verified, the (sample)

kurtosis of W1, ..., Wn is a continuous function of c that tends to zero when c → 1. So,

by the intermediate value theorem, there is an appropriate choice of c ∈ [0, 1) that

makes the (sample) kurtosis of W1, ..., Wn match any desired value in (0, k̃) where k̃

is an estimate of the kurtosis of the Y ’s. In particular, if the Y data are heavy-tailed

with approximately symmetric distribution, then an appropriate choice of c would

make the kurtosis of W1, ..., Wn equal to the Gaussian value of 3; in that case, the

transformation of Y to W would be a normalizing transformation—at least as regards

the first four moments.

But inasmuch as prediction is concerned, Gaussianity is not required. Since the Wt

are (at least approximately) i.i.d., the model-free prediction principle can be invoked,

and is equally valid for any value of c. It is interesting then to ask how the predictors

based on eq. (22) depend on the value of c. Surprisingly (and thankfully), the answer
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is not at all ! To see this, note that after some algebra:

Wt√
1 − c − cW 2

t

≡ ẽt for any c ∈ [0, 1), and for all t = 1, . . . , n, (23)

where the ẽts are the predictive residuals defined in eq. (17). In other words, the

prediction equation (22) does not depend on the value of c, and can be simplified to:

Yf = mxf
+ sxf

ẽf . (24)

Eq. (24) will form the basis for our application of the model-free prediction prin-

ciple under model (12). Since the model-free philosophy is implemented in a set-up

where model (12) is true, we will denote the resulting predictors by MF/MB to indicate

both the model-free (MF) construction, as well as the predictor’s model-based (MB)

realm of validity.

To elaborate on the construction of MF/MB predictors, let F̂ẽ denote the empirical

distribution of the predictive residuals ẽ1, . . . , ẽn. Then, the L2— and L1—optimal

model-free predictors of the function g(Yf) are given, respectively, by the expected

value and median of the random variable g(Yf) where Yf as given in eq. (24) and ẽf

is a random variable drawn from distribution F̂ẽ.

Focusing on the case g(x) = x, if follows that the L2— and L1—optimal MF/MB

predictors of Yf are given, respectively, by the expected value and median of the

random variable given in eq. (24). Note, however, that the only difference between

eq. (24) and the fitted regression equation Yt = mxt + sxtet as applied to the case

where xt is the future point xf is the use of the predictive residuals ẽt instead of the

regression residuals et. The different predictors are summarized in Table 3.1.

Model-based MF/MB case

Predictive equation Yf = mxf
+ sxf

ef Yf = mxf
+ sxf

ẽf

L2—predictor of Yf mxf
mxf

+ sxf
· mean(ẽi)

L1—predictor of Yf mxf
+ sxf

· median(ei) mxf
+ sxf

· median(ẽi)

L2—predictor of g(Yf) n−1
∑n

i=1 g (mxf
+ σxf

ei) n−1
∑n

i=1 g (mxf
+ σxf

ẽi)

L1—predictor of g(Yf) median(g (mxf
+ σxf

ei)) median(g (mxf
+ σxf

ẽi))

Table 3.1. Comparison of the model-based and MF/MB point prediction procedures

obtained when model (12) is true.
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3.5 Model-free/model-based prediction intervals

Note that the model-based L2—optimal predictor of Yf from Table 3.1 uses the model

information that the mean of the errors is exactly zero and does not attempt to

estimate it. Another way of enforcing this model information is is to center the

residuals ei to their mean, and use the centered residuals for prediction; the necessity

of centering of the residuals was first pointed out by Freedman (1981), and will also

be used in the Resampling Algorithm in what follows.

Of course, the use of predictive residuals is both natural and intuitive since the

objective is prediction. Furthermore, in case σ2(x) can be assumed to be constant,6

simple algebra shows

ẽt = et/(1 − δxt) where δxt = K(0)/
n∑

k=1

K

(
xt − xk

h

)
. (25)

Since h → 0 as n → ∞, it follows that δxt → 0, i.e., the model-free and model-based

predictors are asymptotically equivalent in the regression example. Nevertheless, since

δxt > 0 for any finite n, ẽt will always be larger in absolute value (i.e., inflated) as

compared to et, and this may make a difference in practice.

Eq. (25) suggests that the main difference between the fitted and predictive residu-

als is their scale; their center should be about the same (and close to zero). Therefore,

the model-based and MF/MB point predictors of Yf are almost indistinguishable; this

is, of course, reassuring since, when model (12) is true, the model-based procedures

are obviously optimal. Nevertheless, due to the different scales of the fitted and

predictive residuals, the difference between the two approaches is more pronounced

in terms of construction of a predictive distribution for Yf in which case the correct

scaling of residuals is of paramount importance; see also the discussion in Section 3.7.

With regards to the construction of an accurate predictive distribution of Yf , both ap-

proaches (model-based and MF/MB) are formally identical, the only difference being

in the use of fitted vs. predictive residuals.

The Resampling Algorithm of Section 2.6 reads as follows for the case at hand

where the predictive function gn+1 is essentially determined by µ(x) and σ(x).

6If σ2(x) is not assumed constant, then ẽt = etCt/(1 − δxt) where Ct = sxt/s
(t)
xt .
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Resampling Algorithm for the predictive distribution of g(Yf)

1. Based on the data Y n, construct the estimates mx and sx from which the fitted

residuals ei, and predictive residuals ẽi are computed for i = 1, ..., n.

2. For the model-based approach, let ri = ei − n−1
∑

j ej, for i = 1, ...n, whereas

for the MF/MB approach, let ri = ẽi, for i = 1, ...n. Also let Π be a short-hand

for Π(g, mx, sx, Y n,Xn+1, F̂n), the chosen predictor from Table 3.1; e.g. for the

L2–optimal predictor we have Π = n−1
∑n

i=1 g (mxf
+ σxf

ri)

(a) Sample randomly (with replacement) the data r1, ..., rn to create the boot-

strap pseudo-data r�
1, ..., r

�
n whose empirical distribution is denoted by F̂ �

n .

(b) Create pseudo-data in the Y domain by letting Y �
i = mxi

+ sxi
r�
i , for

i = 1, ...n.

(c) Calculate a bootstrap pseudo-response as Y �
f = mxf

+sxf
r where r is drawn

randomly from the set (r1, ..., rn).

(d) Based on the pseudo-data Y �
1 , ..., Y �

n , re-estimate the functions µ(x) and

σ(x) by the kernel estimators m�
x and s�

x (with same kernel and bandwidths

as the original estimators mx and sx).

(e) Calculate a bootstrap root replicate as g(Y �
f )−Π(g, m∗

x, s
∗
x, Y

∗
n,Xn+1, F̂

∗
n).

3. Steps (a)—(e) in the above are repeated B times, and the B bootstrap root repli-

cates are collected in the form of an empirical distribution whose α—quantile

is denoted q(α).

4. Then, a (1 − α)100% equal-tailed predictive interval for g(Yf) is given by:

[Π + q(α/2), Π + q(1 − α/2)]. (26)

5. Finally, our estimate of the predictive distribution of g(Yf) is the empirical

distribution of bootstrap roots obtained in step 3 shifted to the right by the

number Π.

Remark 3.1 As an example, suppose g(x) = x and the L2–optimal point predictor

of Yf is chosen in which case Π 	 mxf
. Then, our (1−α)100% equal-tailed, predictive

interval for Yf boils down to [mxf
+ q(α/2), mxf

+ q(1 − α/2)] where q(α) is the

α—quantile of the empirical distribution of the B bootstrap root replicates of type

Y ∗
f − m∗

xf
.
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Remark 3.2 As in all nonparametric smoothing problems, choosing the bandwidth

is often a key issue due to the ever-looming problem of bias; the addition of a boot-

strap algorithm as above further complicates things. In the closely related problem

of constructing bootstrap confidence bands in nonparametric regression, different au-

thors have used various tricks to account for the bias. For example, Härdle and

Bowman (1988) construct a kernel estimate for the second derivative µ′′(x), and use

this estimate to explicitly correct for the bias; the estimate of the second derivative is

known to be consistent but it is difficult to choose its bandwidth. Härdle and Marron

(1991) estimate the (fitted) residuals using the optimal bandwidth but the resampled

residuals are then added to an oversmoothed estimate of µ; they then smooth the

bootstrapped data using the optimal bandwidth. Neumann and Polzehl (1998) use

only one bandwidth but it is of smaller order than the mean square error optimal rate;

this undersmoothing of curve estimates was first proposed by Hall (1993) and is per-

haps the easiest theoretical solution towards confidence band construction although

the recommended degree of undersmoothing for practical purposes is not obvious.

In a recent paper, McMurry and Politis (2008) show that the use of infinite-order,

flat-top kernels alleviates the bias problem significantly permitting the use of the op-

timal bandwidth. Although the above literature pertains to confidence intervals, the

construction of prediction intervals is expected to suffer from similar difficulties; see

Section 4.7 for more discussion.

Remark 3.3 An important feature of all bootstrap procedures is that they can han-

dle joint prediction intervals, i.e., prediction regions, with the same ease as the

univariate ones. For example, xf can represent a collection of p ‘future’ x–points in

the above Resampling Algorithm. The only difference is that in Step 2(c) we would

need to draw p pseudo-errors r randomly (with replacement) from the set (r1, ..., rn),

and thus construct p bootstrap pseudo-responses, one for each of the p points in xf .

Then, Step 5 of the Algorithm would give a multivariate (joint) predictive distribution

for the response Y at the p points in xf from which a joint prediction region can be

extracted. If it is desired that the prediction region is of rectangular form, i.e., joint

prediction intervals as opposed to a general-shaped region, then these can be based on

the distribution of the maximum (and minimum) of the p targeted responses that is

obtainable from the multivariate predictive distribution via the continuous mapping

theorem.
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For completeness, we now briefly discuss the predictive interval that follows from

an assumption of normality of the errors εt in the model (12). In that case, mxf
is

also normal, and independent of the ‘future’ error εf . If σ2(x) can be assumed to be

at least as smooth as µ(x), then a normal approximation to the distribution of the

root Yf − mxf
implies an approximate (1 − α)100% equal-tailed, predictive interval

for Yf given by:

[mxf
+ Vxf

· z(α/2), mxf
+ Vxf

· z(1 − α/2)] (27)

where V 2
xf

= s2
xf

(
1 +

∑n
i=1 K̃2(xf−xi

h
)
)

with K̃ defined in eq. (14), and z(α) being the

α–quantile of the standard normal. If the ‘density’ (e.g. histogram) of the design

points x1, ..., xn can be thought to approximate a given functional shape (say, f(·))
for large n, then the large-sample approximation

n∑
i=1

K̃2(
xf − xi

h
) ∼

∫
K2(x)dx

nh f(xf)

can be used–provided K(x) is such that
∫

K(x)dx = 1; see e.g. Li and Racine (2007).

Interval (27) is problematic in at least two respects: (a) it completely ignores the

bias of mx, so it must be either explicitly bias-corrected, or a suboptimal bandwidth

must be used to ensure undersmoothing; and (b) it crucially hinges on exact, finite-

sample normality of the data as its validity can not be justified by a central limit

approximation. For all the above, the usefulness of interval (27) is quite limited.

3.6 Fitting parametric regression via the MF/MB paradigm

In this subsection, we show how the model-free principle can be applied to fit a

parametric model when such a model is assumed. To fix ideas, consider the simple

straight-line regression set-up where Yi = β0 + β1xi + Zi with Zi ∼ i.i.d. (0,σ2) for

i = 1, . . . , n. The essence of the above model—as far as model-free prediction is

concerned—is that ηi ≡ Yi − β1xi are i.i.d. albeit with (possibly non-zero) mean β0.

Thus, a candidate transformation to ‘i.i.d.–ness’ by ri = Yi − β̂1xi where β̂1 is a

candidate value. The model-free principle mandates choosing β̂1 with the objective

of having the ris become as close to i.i.d. as possible. However, under the linear

regression model, the ris would be i.i.d. if only their first moment was properly ad-

justed. So, in this case, the model-free principle suggests choosing choosing β̂1 in such
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a way to make r1, . . . , rn have (approximately) the same first moment. Noting that

the latter is well approximated by the empirical value r̂ = n−1
∑n

i=1 ri, we can use a

subsampling construction to make this happen.

To start with, assume that the design points x1, ..., xn are fixed (nonrandom), and

sorted in ascending order. Following the construction in Politis, Romano and Wolf

(1999, Ch. 9.2) using partially overlapping blocks of size b, compute the block means

r̄k,b = b−1

L(k−1)+b∑
t=L(k−1)+1

rt for k = 1, ..., q (28)

where q = [L−1(n − b)] + 1 and [·] is the integer part. Here L indicates the de-

gree of overlap of the blocks; with L = b we have non-overlapping blocks, whereas

with L = 1 the overlap is the maximum possible—the latter is recommended if it is

computationally feasible.

Note that r̄k,b is an estimate of the first moment of the ris found in the kth block.

Thus, the requirement that all r1, . . . , rn have first moment (approximately) equal to

r̂ can be written formally as follows:

Choose β̂1 that minimizes LS(b) =

q∑
k=1

(r̄k,b − r̂)2 or L1(b) =

q∑
k=1

|r̄k,b − r̂| (29)

according to whether an L2 or L1 criterion of closeness is preferred.

In contrast to the use of subsampling for variance or distribution estimation, it is

not necessary here that b is large. Even the value b = 1 is plausible in which case we

have:

d

dβ̂1

LS(1) = 0 ⇒ β̂1 =

∑n
i=1(Yi − Ȳ )(xi − x̄)∑n

i=1(xi − x̄)2
where Ȳ =

1

n

n∑
i=1

Yi and x̄ =
1

n

n∑
i=1

xi.

In other words, the model-free procedure (29) with L2 criterion and b = 1 is re-

assuringly identical to the usual Least Squares estimator! Now the ris serve as proxies

for the unobservable ηis which have expected value β0 under the model; hence, β0 is

naturally estimated by the sample mean of the ris, i.e.,

β̂0 =
1

n

n∑
i=1

(Yi − β̂1xi) = Ȳ − β̂1x̄

which is again the Least Squares estimator.
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Note that minimizing LS(b) with b > 1 gives a more robust way of doing Least

Squares in which the effect of outliers is diminished by the local averaging of b neigh-

boring values; we do not elaborate further here due to lack of space. Similarly to

the above, minimizing L1(1) is equivalent to L1 regression, whereas minimizing L1(b)

with b > 1 is an even more robust procedure.

Remark 3.4 In all the above, the block mean r̄k,b of eq. (28) could be replaced by

the (sample) median of the block {rt, for t = L(k − 1) + 1, . . . , L(k − 1) + b}. The

resulting minimization of LS(1) or L1(1) is still equivalent to Least Squares or L1

regression respectively while the minimization of LS(b) or L1(b) with b > 1 gives

some different variation of robust regression.

In concluding, we now outline the general case of fitting a parametric regres-

sion via the model-free principle. Consider the model Yi = fθ(xi) + Zi with Zt ∼
i.i.d. (β0, σ

2) for i = 1, . . . , n; here, fθ belongs to a parametric family indexed by the

finite-dimensional parameter θ. We again assume that the design points x1, ..., xn are

fixed (nonrandom), and sorted in ascending order. Let θ̂ be a candidate value, and

define ri = Yi − fθ̂(xi) with r̂ = n−1
∑n

i=1 ri as before. Letting r̄k,b denote the sample

mean (or median) of the block {rt, t = L(k − 1) + 1, . . . , L(k − 1) + b}, the MF/MB

fitting procedure amounts to

choosing θ̂ that minimizes LS(b) =

q∑
k=1

(r̄k,b − r̂)2 or L1(b) =

q∑
k=1

|r̄k,b − r̂| (30)

according to whether an L2 or L1 criterion is preferred. Finally, estimate β0 and σ2

by the sample mean and sample variance of the ris respectively.

Finally, note that in all the above—and in eq.

3.7 Application: better prediction intervals in linear regres-

sion

The literature on predictive intervals in regression is not large; see e.g. Caroll and

Ruppert (1991), Patel (1989), Schmoyer (1992) and the references therein. Further-

more, the literature on predictive distributions seems virtually non-existent outside

the Bayesian framework. What is most striking is that even the problem of under-

coverage of prediction prediction intervals in linear regression reported 25 years ago
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by Stine (1985) has not been satisfactorily resolved to this day; see the recent paper

by Olive (2007).

Thus, in this subsection we focus on the usual linear regression model:

Yi = x′
iβ + Zi, for i = 1, . . . , n, (31)

with Zt ∼ i.i.d. (0,σ2). Equivalently, Y n = Xβ + Zn where Y n = (Y1, . . . , Yn)
′ and

Zn = (Z1, . . . , Zn)
′ are n × 1 random vectors, β is a p × 1 deterministic parameter

vector, and X is an n × p deterministic design matrix of full rank having the p × 1

vector x′
i as its ith row.

Let β̂ be an estimator of β that is linear in the data Y n so that the MF/MB

methodology of Section 3.4, and in particular eq. (24), applies; an obvious possibility

is the Least Squares (LS) estimator. Also let β̂
(i)

be the same estimator based on

the delete-Yt dataset. The predictive and fitted residuals (z̃i and zi respectively)

corresponding to data point Yi are defined in the usual manner, i.e., z̃i = Yi − x′
iβ̂

(i)
.

and zi = Yi − x′
iβ̂. Analogously to eq. (25), here too the predictive residuals are

always larger in absolute value (i.e., ‘inflated’) as compared to the fitted residuals.

To see this, recall that

z̃i =
zi

1 − hi

, for i = 1, . . . , n, (32)

where hi = x′
i(X

′X)−1xi is the ith diagonal element of the ‘hat’ matrix X(X ′X)−1X ′;
see e.g. Seber and Lee (2003, Th. 10.1), or Efron and Tibshirani (1993, ex. 17.1).

Assuming that the regression has an intercept term, eq. (10.12) of Seber and Lee

(2003) further implies 1/n ≤ hi ≤ 1 from which it follows that |z̃i| ≥ |zi| for all i.

Noting that the fitted residuals have variance depending on hi, Stine (1985) sug-

gested resampling the studentized residuals ẑi = zi/
√

1 − hi in his construction of

bootstrap prediction intervals. The studentized residuals ẑi are also ‘inflated’ as com-

pared to the fitted residuals zi, so Stine’s (1985) suggestion was an effort to reduce the

undercoverage of bootstrap prediction intervals that was first pointed out by Efron

(1983). However, Stine’s proposal does not seem to fully correct the problem; for

example, Olive (2007) recommends the use of an ad hoc further inflation of the resid-

uals arguing that “since residuals underestimate the errors, finite sample correction

factors are needed”.

Nevertheless, it is apparent from the above discussion that |z̃i| ≥ |ẑi|. Hence,

using the predictive residuals is not only intuitive and natural as motivated by the
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model-free prediction principle, but it also goes further towards the goal of increasing

coverage without cumbersome (and arbitrary) correction factors.7 To obtain predic-

tive intervals for Yf , the Resampling Algorithm of Section 3.5 now applies verbatim

with the understanding that in the linear regression setting mx ≡ x′β̂.

As the following subsection confirms, the MF/MB method based on predictive

residuals seems to correct the undercoverage of bootstrap prediction intervals. Finally,

note that the methodology of Section 3.5 can equally address the heteroscedastic

case when V ar(Zi) = σ2(xi), and an (accurate) estimator of σ2(xi) is available via

parametric or nonparametric methods.

3.8 Simulation: better prediction intervals in linear regres-

sion

We now conduct a small simulation in the linear regression set-up of subsection 3.7

with p = 2, i.e., xi = (1, xi)
′, and Yi = β0 + β1xi + Zi, for i = 1, . . . , n. For

the simulation, the values β0 = −1 and β1 = 1 were used, and Zt ∼ i.i.d. (0,1)

from distribution Normal or Laplace. The design points x1, ..., xn for n = 50 were

generated from a standard normal distribution, and the prediction carried out at

the point xf = 1. The simulation focused on constructing 90% prediction intervals,

and was based on 900 repetitions of each experiment. Figure 2 shows two typical

scatterplots with superimposed Least Squares (LS) line; both LS regression and L1

regression were considered for estimating β0 and β1.

Table 3.2 reports the empirical coverage levels (COV), and (average) lower and

upper limits of the different prediction intervals in the linear regression case. The

standard error of the COV entries is 0.01; the provided standard error (st.err.) applies

equally to either the lower or upper limit of the interval. For the first five rows of

Table 3.2, β0 and β1 were estimated by Least Squares which is optimal in the Normal

case; in the last two rows of Table 3.2, β0 and β1 are estimated via L1 regression which

is optimal in the Laplace case. Note that the ideal point predictor of Y at xf = 1

is zero; so the different prediction intervals are expected to be centered around zero.

Indeed, all (average) intervals of Table 3.2 are approximately symmetric around zero.

7Efron (1983) proposed an iterated bootstrap method in order to correct the downward bias of the
bootstrap estimate of prediction error; his method notably involved the use of predictive residuals
albeit at the 2nd bootstrap tier—see Efron and Tibshirani (1993, Ch. 17.7) for details.
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Figure 2: Typical linear regression scatterplots with superimposed Least Squares

lines; (a) Normal data; (b) Laplace data.

Linear regression is, of course, a model-based set-up; so both interval construc-

tions MB (=model-based) and MF/MB (=model-free/model-based) of Section 3.5

are applicable; they were both considered here in addition to three competing inter-

vals: Stine’s (1985) interval that is analogous to the MB construction except that

Stine used the studentized residuals; the usual NORMAL theory interval, namely

mxf
± tn−2(α/2)S

√
1 + hf ; and Olive’s (2007) ‘semi-parametric’ interval:(

mxf
+ ane(α/2)

√
1 + hf , mxf

+ ane(1 − α/2)
√

1 + hf

)
.

In the above, mxf
is the usual point predictor given by β̂0 + β̂1xf , hf = x′

f(X
′X)−1xf

is the ‘leverage’ at point xf , and S2 = (n − 2)−1
∑n

i=1 e2
i . In Olive’s interval, e(α) is

the α (sample) quantile of the residuals {e1, ..., en}, and an = (1 + 15
n

)
√

n
n−2

is an ad

hoc ‘correction’ factor designed to increase coverage.

The findings of Table 3.2 are quite interesting:

• The NORMAL theory interval (based on t–quantiles) has exact coverage with

Normal data—as expected—but slightly over-covers in the Laplace case. It is

also the interval with smallest length variability.

• Olive’s interval shows striking over-coverage which is an indication that the an
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correction factor is too extreme. Also surprising is the large variability in the

length of Olive’s interval that is 50% larger than that of our bootstrap methods.

• Looking at rows 1—3, the expected monotonicity in terms of increasing coverage

is observed; i.e., COV(MB) < COV(MB Stine) < COV(MF/MB).

• The MF/MB intervals have (almost) uniformly better coverage than their MB

analogs indicating that using the predictive residuals is indeed the solution to

the widely reported undercoverage of MB and Stine’s intervals.

Distribution: Normal Laplace

Case xf = 1 COV INTERVAL (st.err.) COV INTERVAL (st.err.)

MF/MB 0.890 [−1.686, 1.682] (.011) 0.901 [−1.685, 1.691] (.016)

MB 0.871 [−1.631, 1.609] (.011) 0.886 [−1.611, 1.619] (.015)

MB Stine 0.881 [−1.656, 1.641] (.011) 0.892 [−1.640, 1.663] (.015)

MB Olive 0.941 [−2.111, 2.097] (.017) 0.930 [−2.072, 2.089] (.025)

NORMAL 0.901 [−1.723, 1.711] (.009) 0.910 [−1.699, 1.716] (.011)

MF/MB L1 0.896 [−1.715, 1.709] (.012) 0.908 [−1.699, 1.705] (.016)

MB L1 0.871 [−1.647, 1.632] (.012) 0.896 [−1.619, 1.636] (.015)

Table 3.2. Empirical coverage levels (COV), and (average) lower and upper bounds

of different prediction intervals with nominal coverage of 0.90 in linear regression; the

standard error (st.err.) applies equally to either the lower or upper limit.

4 Model-free prediction in regresion

4.1 Constructing the transformation

We now revisit the nonparametric regression set-up of Section 3 but in a situation

where a model such as eq. (12) can not be considered to hold true (not even approx-

imately). As an example of model (12) not being valid, consider the set-up where

the skewness and/or kurtosis of Yt depends on xt, and thus centering and studenti-

zation will not result in ‘i.i.d.–ness’. For example, kernel estimates of skewness and

kurtosis from dataset cps71—although slightly undersmoothed—clearly point to the

non-constancy of these two functions; see Figure 3.

30



20 30 40 50 60

−2.0
−1.5

−1.0
−0.5

0.0
0.5

age

log−
wag

e sk
ewn

ess

(a)

20 30 40 50 60

−1
0

1
2

3
4

5

age

log−
wag

e ku
rtos

is

(b)

Figure 3: (a) Skewness of log-wage vs. age. (b) Kurtosis of log-wage vs. age. [Kernel-based
estimates from dataset cps71.]

Throughout Section 4, the dataset is still {(Yt, xt), t = 1, . . . , n} where the re-

gressor xt is again assumed univariate and deterministic, and the Yts are independent

although not identically distributed. We will denote their conditional distribution by

Dx(y) = P{Yf ≤ y|xf = x}

where (Yf , xf) represents the random response Yf associated with predictor xf .

We will assume throughout that the quantity Dx(y) is continuous in both x and y.

To elaborate, we assume Dx(y) to be continuous in y, i.e., that Y1, . . . , Yn are con-

tinuous random variables, since otherwise standard methods like Generalized Linear

Models can be invoked, e.g. logistic regression, Poisson regression, etc.; see McCul-

lagh and Nelder (1983), or McCulloch (2000). Furthermore, we assume that the

collection of functions Dx(·) depends in a smooth way on x in order to make use of

local regression ideas. Consequently, we can estimate Dx(y) by a ‘local’ empirical

distribution such as

N−1
x,h

∑
t:|xt−x|<h/2

1{Yt ≤ y} (33)

where 1{Yt ≤ y} denotes the indicator of event {Yt ≤ y}, and Nx,h is the number

of summands, i.e., Nx,h = # {t : |xt − x| < h/2}. More generally, we can estimate
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Dx(y) by

D̂x(y) =
n∑

i=1

1{Yi ≤ y}K̃
(

x − xi

h

)
(34)

where K̃
(

x−xi

h

)
= K

(
x−xi

h

)
/
∑n

k=1 K
(

x−xk

h

)
as before; for any fixed y, this is just

a Nadaraya-Watson smoother of the variables 1{Yt ≤ y}, t = 1, . . . , n. Note that

eq. (33) is just D̂x(y) with K chosen as the rectangular kernel, i.e., K(x) = 1{|x| ≤
h/2}; in general, we can use any non-negative, integrable kernel K(·) in (34).

Estimator D̂x(y) enjoys many good properties including asymptotic consistency

under some conditions; see e.g. Theorem 6.1 of Li and Racine (2007). Nevertheless,

it is discontinuous as a function of y, and therefore unacceptable for our purposes.

To come up with an estimator that is continuous (and strictly increasing) in y we

propose the following construction.8

For x fixed, D̂x(y) is a step function with (possible) jumps at the data points

Y1, . . . , Yn. However, some data points receive zero weight in (34) being far away from

the x location in question. As before, suppose there are Nx,h data points receiving

positive weight in (34), i.e., Nx,h = # {t : K(x−xt

h
) > 0}. Assuming Nx,h > 1, we

order these Nx,h data points in increasing order and denote them by Y
(x)
[1] < Y

(x)
[2] <

· · · < Y
(x)
[Nx,h]. Now let A1, . . . , ANx,h−1 denote the midpoints of the step ‘sizes’ of the

step function D̂x(y), i.e., let Ai = (Y
(x)
[i] +Y

(x)
[i+1])/2 for i = 1, . . . , Nx,h−1. To complete

the construction we have to define A0 and ANx,h
; a conservative choice is A0 = Y

(x)
[1]

and ANx,h
= Y

(x)
[Nx,h] but in what follows the symmetric assignment A0 = 2Y

(x)
[1] − A1

and ANx,h
= 2Y

(x)
[Nx,h] −ANx,h−1 will be used. Finally, linear interpolation between the

points A0, A1, . . . , ANx,h
gives our continuous and strictly increasing (in y) estimator

that will be denoted by D̃x(y); Figure 4 (a) exemplifies this construction.

Remark 4.1 For D̃x to be an accurate estimator of Dx, the value x must be such

that it has an appreciable number of h-close neighbors among the original predictors

x1, ..., xn, i.e., that the number Nx,h is not too small. For example, if Nx,h ≤ 1 the

estimation of Dx is not just inaccurate—it is simply infeasible.

8A smooth (differentiable in y) version of D̂x(y) can be concocted in the usual way by integrating a
kernel estimator of the underlying density; see Section 6 of Li and Racine (2007) for details. However,
the resulting estimator of Dx(y) will not be almost surely strictly increasing in y unless a kernel K

of infinite support is employed. In addition, we have little use for (nor assume) differentiability of
Dx(y) in y here.
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Figure 4: (a) Empirical distribution of a test sample consisting of five N(0, 1) and five
N(1/2, 1) independent r.v.’s with the piecewise linear estimator D̃(·) superimposed; the
vertical/horizontal lines indicates the inversion process, i.e., finding D̃−1(0.75). (b) Q-Q
plot of the transformed variables ui vs. the quantiles of Uniform (0,1).

Remark 4.2 If there are large ‘gaps’ in the scatterplot of the data, i.e., if there

are large x–regions within the range of x1, ..., xn where no data are available, then

a variable bandwidth might be advisable in connection with the construction of D̂x

and D̃x. Alternatively, a k–nearest neighbor technique may be used; in this case, the

form of D̂x and D̃x remains the same but the bandwidth h is taken as the (Euclidean)

distance of between x and its kth nearest neighbor among x1, ..., xn. The result is

a ‘local’ bandwidth, i.e., a bandwidth that depends on x; see e.g. Li and Racine

(2007, Ch. 14). In addition, a local linear (or polynomial) smoother of the variables

1{Yt ≤ y} could be used in place of the local constant estimator (34), and may be

preferable because of better handling of edge effects as well as non-equally spaced

x–points; details can be found in Li and Racine (2007, Ch. 6) but the essence of our

discussion here remains unchanged.

Recall that the Yts are non-i.i.d. only because they do not have identical distribu-

tions. Since they are continuous random variables, the probability integral trasform is

the key idea to transform them towards ‘i.i.d.–ness’. To see why, note that if we let

ηi = Dxi
(Yi) for i = 1, . . . , n
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our transformation objective would be exactly achieved since η1, . . . , ηn would be

i.i.d. Uniform(0,1). Of course, Dx(·) is not known but we have the consistent estimator

D̃x(·) as its proxy. Therefore, our proposed transformation amounts to defining

ui = D̃xi
(Yi) for i = 1, . . . , n; (35)

by the consistency of D̃x(·), we can now claim that u1, . . . , un are approximately

i.i.d. Uniform(0,1). Figure 4 (b) shows that this claim is plausible even with a sample

size of just ten independent r.v.’s that are only approximately identically distributed

as in the nonparametric regression case.

Remark 4.3 If a parametric specification for Dx(y) happens to be available, i.e., if

P{Yt ≤ y|xt = x} has known form up to a finite-dimensional parameter θ—that in

general will depend on x—, then obviously our probability integral trasform of Yt

would be based on the parametric distribution with parameter θ estimated from a

local neighborhood of the associated regressor xt.

Remark 4.4 If there is some suspicion of non-independence of the Yts, then the

Gaussian ‘stepping stone’ may be useful. To elaborate, one would let Zt = Φ−1(ut)

for t = 1, . . . , n where Φ is the distribution of a standard normal. Then, one would

examine (an estimate of) the covariance matrix of Zn = (Z1, ..., Zn) to diagnose a

possible non-independence.

The probability integral trasform has been used in the past as an intermediate

step towards building better density estimators; see e.g. Ruppert and Cline (1994).

However, our application is quite different as the following sections make clear.

4.2 Model-free optimal predictors

Since a transformation of the data towards ‘i.i.d.–ness’ is available from eq. (35), we

can now formulate optimal predictors in the model-free paradigm. The key idea is

to invert the probability integral trasform; to do this, we will be using the inverse

transformation D̃−1
x which is well-defined since D̃x(·) is strictly increasing by con-

struction. Note that, for any i = 1, ..., n, D̃−1
xf

(ui) is a bona fide potential response Yf

associated with predictor xf since D̃−1
xf

(ui) has (approximately) the same distribution

as Yf . These n valid potential responses given by {D̃−1
xf

(ui) for i = 1, ..., n} can be
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gathered together to give us an approximate empirical distribution for Yf from which

our predictors will be derived.

Thus, analogously with the discussion associated with the entries of Table 3.1 in

Section 3, it follows that the L2—optimal predictor of g(Yf) will be the expected value

of g(Yf) that is approximated by

n−1
n∑

i=1

g
(
D̃−1

xf
(ui)

)
. (36)

Similarly, the L1—optimal predictor of g(Yf) will be approximated by the sample

median of the set {g
(
D̃−1

xf
(ui)

)
, i = 1, ..., n}. The model-free predictors9 are

summarized in Table 4.1 that can be compared to Table 3.1 of the previous section.

Model-free (MF2)

L2—predictor of Yf mean{D̃−1
xf

(ui)}
L1—predictor of Yf median{D̃−1

xf
(ui)}

L2—predictor of g(Yf) mean{g
(
D̃−1

xf
(ui)

)
}

L1—predictor of g(Yf) median{g
(
D̃−1

xf
(ui)

)
}

Table 4.1. The model-free (MF2) optimal point predictors where ui = D̃xi
(Yi).

Note that any of the two optimal model-free predictors (mean or median) can

be used to give the equivalent of a model fit. To fix ideas, suppose we focus on the

L2—optimal case and that g(x) = x. Calculating the value of the optimal predictor of

eq. (36) for many different xf values—say taken on a grid over the range of the original

predictors x1, ..., xn—, the equivalent of a nonparametric smoother of a regression

function is constructed, and can be plotted over the (Y, x) scatterplot. In this sense,

model-free model-fitting (MF2) is achieved as discussed in Remark 2.1.

Recall that the L2—optimal predictor of Yf associated with design point xf is

simply the conditional expectation E(Yf |xf). The latter is well approximated by our

kernel estimator mxf
(or a local polynomial) even without the validity of model (12),

9For D̃−1
xf

to be an accurate estimator of D−1
xf

, the value xf must be such that it has an appreciable
number of h-close neighbors among the original predictors x1, ..., xn as discussed in Remark 4.1. As
an extreme example, note that prediction outside the range of the original predictors x1, ..., xn, i.e.,
extrapolation, is not feasible in the model-free paradigm.
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Figure 5: (a) Wage vs. age scatterplot. (b) Circles indicate the salary predictor from eq. (36)
calculated from log-wage data with g(x) exponential. For both figures, the superimposed
solid line represents the MF2 salary predictor calculated from the raw data (without the
log-transformation).

therefore also qualifying to be called a model-free (point) predictor. Predictor (36)

can then be seen as an alternative method to estimate E(Yf |xf); although it is not

identical to mxf
, it tends to give results very close to it in practice—as one would

hope since both methods are consistent for E(Yf |xf) under standard assumptions. For

example, Figure 1 (a) looks exactly the same when the curve obtained from predictor

(36) is used in place of the kernel smoother mx since the relative difference between

the two smooth curves is less than 0.1% for the log-wage vs. age dataset.

The real advantages of the model-free philosophy, however, are twofold: (a) it

gives us the opportunity to go beyond the point predictions and obtain valid pre-

dictive distributions and intervals for Yf as will be described in Section 4.4—this

is simply not possible on the basis of the kernel estimator mxf
without resort to a

model like (12); and (b) it is a totally automatic method that does not require any

preliminary preprocessing and/or data transformations—see Remark 4.5 below.

Remark 4.5 The model-free prediction technique based on transformation (35) re-

lieves the practitioner from the need to find an optimal transformation for additivity

and variance stabilization such as the Box/Cox power family, ACE and/or AVAS;

see Linton et al. (1997) and the references therein. Figure 5 (a) is the analog of
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Figure 6: Q-Q plots of the transformed variables ui vs. the quantiles of Uniform (0,1) for
the Canadian wage/age dataset. (a) The ui’s are obtained from the log-wage vs. age dataset
of Figure 1 using bandwidth 5.5; (b) The ui’s are obtained from the raw (untransformed)
dataset of Figure 5 using bandwidth 7.3.

Figure 1 (a) using the raw salary data, i.e., without the logarithmic transformation.

Superimposed is the MF2 predictor of salary that uses transformation (35) on the

raw data; as Figure 5 (b) shows, the latter is virtually identical to the MF2 predictor

obtained from the logarithmically transformed data and then using an exponential

as the function g(x) for predictor (36). Figure 6 (a) shows the Q-Q plot of the trans-

formed variables ui based on the logarithmically transformed data whereas Figure 6

(b) is its analogue based on the raw data; in both cases, the uniformity seems to be

largely achieved. Note, however, that the cross-validated optimal bandwidth choice

is different in these two cases; the next subsection elaborates upon this phenomenon.

4.3 Cross-validation for model-free prediction

As seen in the last two subsections, estimating the conditional distribution Dx(·) by

D̃x(·) is a crucial part of the model-free procedure; the accuracy of this estimation

depends on the choice of bandwidth h. Recall that cross-validation is a predictive

criterion since it aims at minimizing the sum of squares (or absolute values) of pre-

dictive residuals. Nevertheless, we can still from predictive residuals in model-free
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prediction, and thus cross-validation is possible in the model-free framework as well.

To fix ideas, suppose we focus on the L2—optimal predictor of eq. (36), and let

Π
(t)
t denote the predictor of Yt as computed from the delete-Yt dataset: {(Yi, xi)

for i = 1, . . . , t − 1 and i = t + 1, . . . , n}, i.e., pretending the (Yt, xt) data pair is

unavailable; this involves estimating Dx(·) by D̃
(t)
x (·) computed from the delete-Yt

dataset, and having only n − 1 values of ui in connection with eq. (35) and (36).

Finally, define the MF2 predictive residuals

ẽt = g(Yt) − Π
(t)
t for t = 1, . . . , n. (37)

Choosing the best bandwidth h to use in our model-free predictor (36) can then be

based on minimizing PRESS=
∑n

t=1 ẽ2
t or PRESAR=

∑n
t=1 |ẽt| as before. If D̂x and

D̃x are based on k–nearest neighbor estimation as in Remark 4.2, then minimizing

PRESS or PRESAR would yield the cross-validated choice of k to be used.

Note that cross-validation using the MF2 predictive residuals of eq. (37) can be

quite computationally expensive. In view of the discussion in the previous subsection

argueing that the L2—optimal predictor of eq. (36) is close to a kernel smoother of

the (g(Y ), x) scatterplot, it follows that cross-validation on the latter should give a

quick approximate solution to the bandwidth choice for the predictors of Table 4.1

as well; see Appendix B for more details.

4.4 Model-free predictive distributions and intervals

The empirical distribution of g(Yf) constructed in the Algorithm of Section 4.2 can

not be regarded as a predictive distribution because it does not capture the vari-

ability of D̃x; resampling gives us a way out of this difficulty once again. Generally,

the predictive distribution and prediction intervals for g(Yf) can be obtained by the

resampling algorithm of Section 2.6 that is re-cast below in the model-free regression

framework.

Let g(Yf)−Π be the prediction root where Π is either the L2– or L1–optimal predic-

tor from Table 4.1, namely Π = n−1
∑n

i=1 g
(
D̃−1

xf
(ui)

)
or Π = median {g

(
D̃−1

xf
(ui)

)
}.

Then, our algorithm for MF2 prediction intervals reads as follows.

Resampling Algorithm for MF2 predictive distribution of g(Yf)

1. Based on the Y –data, estimate the conditional distribution Dx(·) by D̃x(·), and
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use eq. (35) to obtain the transformed data u1, ..., un that are approximately

i.i.d.

(a) Sample randomly (with replacement) the transformed data u1, ..., un to

create bootstrap pseudo-data u∗
1, ..., u

∗
n whose empirical distribution is de-

noted F̂ ∗
n .

(b) Use the inverse transformation D̃−1
x to create pseudo-data in the Y domain,

i.e., let Y �
n = (Y �

1 , ..., Y �
n ) where Y ∗

t = D̃−1
xt

(u∗
t ).

(c) Generate a bootstrap pseudo-response Y ∗
f by letting Y ∗

f = D̃
−1

xf
(u) where

u is drawn randomly from the set (u1, ..., un).

(d) Based on the pseudo-data Y �
n, re-estimate the conditional distribution

Dx(·); denote the bootstrap estimator by D̃∗
x(·).

(e) Calculate a replicate of the bootstrap root g(Y ∗
f ) − Π∗ where

Π∗ = n−1
∑n

i=1 g
(
D̃∗−1

xf
(u∗

i )
)

or Π∗ = median {g
(
D̃∗−1

xf
(u∗

i )
)
} according

to whether L2– or L1–optimal prediction has been used for the original Π.

2. Steps (a)—(e) in the above are repeated B times, and the B bootstrap root repli-

cates are collected in the form of an empirical distribution whose α—quantile

is denoted q(α).

3. Then, the model-free (1 − α)100% equal-tailed, prediction interval for g(Yf) is

[Π + q(α/2), Π + q(1 − α/2)] (38)

and our estimate of the predictive distribution of g(Yf) is the empirical distribu-

tion of bootstrap roots obtained in step 2 shifted to the right by the number Π.

Remark 4.6 To further build on Remark 4.5, note that the above model-free pre-

diction interval is invariant with respect to the choice of function g(·) in a way anal-

ogous to the transformation invariance property of bootstrap confidence intervals of

percentile type. To elaborate, if either point or interval prediction of g(Yf) is desired,

then the model-free techniques can be immediately applied to the {(g(Yt), xt), t =

1, . . . , n} dataset without worrying about how the scatterplot of g(Y ) vs. x looks.

For example, if the objective is prediction of wage for a certain age group as in our

cps71 dataset, the regression would simply be wage vs. age and the need for the
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log-transformation is obliterated. Consequently, the model-free prediction scheme in

regression is a totally automatic technique.

Remark 4.7 Smoothing techniques are often plagued by edge effects. As previously

mentioned, this is especially true for kernel smoothers; local linear and local polyno-

mial estimators are much preferable in that respect. Hopefully, the future point of

interest xf will not be a boundary point in which case it may be advisable to omit

the uis that are obtained from xis that are close to the boundary; for example, both

Figures 1(a) and 5(a) show the bias problems near the left boundary. Thus, to imple-

ment the Resampling Algorithm for prediction intervals of this Section—but also to

construct the point predictors of Table 4.1—it is practically advisable to only include

the uis obtained from xis that are away from either boundary by more than half a

bandwidth.10 Note that a full-size dataset (Y ∗
1 , ..., Y ∗

n ) can (and should) be re-created

in Step 1(b) of the Resampling Algorithm even though we are using just the uis that

are away from either boundary (say there are m of these); to do this, a bootstrap

with larger resample size is employed, i.e., based on a u—dataset of size m, a boot-

strap resample (u∗
1, ..., u

∗
n) of size n is generated. Based on the full size pseudo-sample

(Y ∗
1 , ..., Y ∗

n ), we compute the bootstrap estimator D̃∗
x(·); however, only the Y ∗s that

are away from the boundaries (m in number) will be used in the construction of Π∗

in Step 1(e) of the Resampling Algorithm.

4.5 Better model-free prediction intervals: MF/MF2

The success of the MF/MB method of Section 3.5 is based on the fact that the

distribution of the prediction error can be approximated better by the (empirical)

distribution of the predictive residuals as compared to the (empirical) distribution of

the fitted residuals; using the latter—as the MB method does— typically results in

variance underestimation and undercoverage of prediction intervals.

Since MF2 predictive residuals are computable from eq. (37), one might be tempted

to try to use them in order to mimic the MF/MB construction. Unfortunately, the

MF2 predictive residuals of eq. (37) are not i.i.d. in the context of the present section;

hence, i.i.d. bootstrap on them is not recommended. In what follows, we will try to

identify analogs of the i.i.d. predictive residuals in this model-free setting.
10The same recommendation also applies to the MB and MF/MB of Section 3: for either point

or interval predictors, only include the eis and/or ẽis obtained from xis that are away from either
boundary by more than half a bandwidth.
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Recall that the accuracy of our bootstrap prediction intervals hinges on the accu-

racy of the approximation of the prediction root g(Yf) − Π by its bootstrap analog,

namely g(Y ∗
f ) − Π∗. However, Π is based on a sample of size n, and Yf is not part

of the sample. Using predictive residuals is a trick that helps the bootstrap root

mimic this situation by making Y ∗
f into a a genuinely “outside” point. We can still

achieve this effect within the MF2 paradigm using an analogous trick; to see how,

let D̃
(t)
xt denote the estimator D̃xt as computed from the delete-Yt dataset: {(Yi, xi),

i = 1, . . . , t − 1 and i = t + 1, . . . , n}. Now let

u
(t)
t = D̃(t)

xt
(Yt) for t = 1, . . . , n; (39)

the u
(t)
t variables will serve as the analogs of the predictive residuals ẽt of Section 3.5.

Although the latter are approximately i.i.d. only when model (12) holds true, the

u
(t)
t s are approximately i.i.d. in general under the weak assumptions of smoothness

and continuity of Dx(y).

Resampling Algorithm for MF/MF2 predictive distribution of g(Yf)

• The MF/MF2 Resampling Algorithm is identical to the Algorithm for MF2

predictive distribution of Section 4.4 with the following exception: replace the

variables u1, ..., un by u
(1)
1 , ..., u

(n)
n throughout the construction.

The above Resampling Algorithm is denoted by MF/MF2 to differentiate it from the

algorithm of the previous subsection. The MF/MF2 name alludes to the MF/MB

construction of Section 3.5 to which it (approximately) reduces when model (12)

happens to be true. Finally, the MF/MF2 optimal point predictors are identical

to the MF2 predictors of Table 4.1 with the same exception: replace the variables

u1, ..., un by u
(1)
1 , ..., u

(n)
n .

4.6 Problems and diagnostics

The model-free prediction scheme in regression has been developed under minimal

assumptions including continuity of Dx(y) in both x and y, and availability of enough

data so that ‘local’ estimation can take place. With regards to the latter, traditional

conditions for asymptotic validity would include the usual requirement that h → 0

as n → ∞ but also ensuring Nx,h → ∞ for all x over an interval of interest; see
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Remark 4.1. For good finite-sample results, however, we would like D̃x(·) to remain

largely unchanged over an interval of length 2h where h is the chosen bandwidth in

the practical application.

With regards to the requirement of continuity of Dx(y) in y, consider the extreme

example where Y = β0 + β1x exactly (no random error), and assume an equi-spaced

design on the x axis. Here, Y (given x) has a distribution that is degenerate having

a point mass of unity at β0 + β1x; hence, the continuity assumption for Dx(y) breaks

down and complications ensue.

To elaborate, let x be a point not on the boundary; since h must be big enough

so that Nx,h is appreciable, it follows that our D̂x(·) will be a discrete uniform dis-

tribution with center at β0 + β1x and range dictated by the parameter h. By the

linearization, D̃x(·) will be a continuous uniform distribution with same center and

range. Therefore,

ui = D̃xi
(Yi) = D̃xi

(β0 + β1xi) = 1/2 (40)

for any i such that xi is not on the boundary, since β0 +β1xi is the center (median)

of the distribution D̃xi
(·).

It is apparent, that the probability integral transform does not work in this exam-

ple as the uis are not Uniform (0,1); as eq. (40) suggests their distribution is a point

mass at 1/2. Nevertheless, they do have the same distribution, hence the model-free

prediction still works giving perfect point predictions:

D̃−1
xf

(ui) = D̃−1
xf

(1/2) = β0 + β1xf for all i.

We now consider a more problematic model where Yt = β0 + β1xt + ctεt where

xt = t for t = 1, ..., n, εt ∼ i.i.d. N(0, σ2), and ct = 1{t ≥ n/2}. In other words,

the first half of the scatterplot has no error like the previous example but the second

half may have appreciable error; see Figure 7 (a) for an illustration. Here, we have

ut 	 1/2 for all t < n/2, but ut ∼ i.i.d. Uniform (0,1) for t ≥ n/2. This mixed

quality of the transformed variables ut causes the model-free prediction method to

break down.

Fortunately, in both the above examples the problem can be diagnosed by an ex-

ploratory investigation of the transformed variables ui much like the usual diagnostics

on residuals in regression. It is obvious that non-uniformity of the uis is a red flag,

and can be easily diagnosed by a histogram and/or Q-Q plot. In particular, if the
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Figure 7: (a) Scatterplot of model Y = 2x +1{x ≥ 25} · εx for x = 1, ..., 50 with εx ∼ i.i.d.
N(0, 100). (b) Q-Q plot of the transformed variables ut vs. the quantiles of Uniform (0,1).

distribution of the uis appears to contain a point mass at 1/2 or elsewhere, then a

problem is identified; for example, the Q-Q plot of Figure 7 (b) clearly indicates the

presence of a point mass on 1/2.

Finally, let us go back to the homoscedastic example, where Y = β0 + β1x + εx

with εx ∼ i.i.d. N(0, σ2) for σ2 > 0. Even if σ2 is very small, the situation can

be salvaged from a model-free point of view by a careful design of the x points that

would ensure Nx,h is large for all x with h small enough that h|β1| is also small; if |β1|
is appreciable, this would either require obtaining multiple Y responses associated

with each design point x and/or employing a very high density of the x points to be

used.

4.7 Simulation: when a nonparametric regression model is

true

The building block for the simulation in this subsection is model (12) with µ(x) =

sin(x), σ(x) = (cos(x/2) + 2)/7, and errors εt i.i.d. N(0,1) or two-sided exponential

(Laplace) rescaled to unit variance. For each distribution, 500 datasets each of size

n = 100 were created with the design points x1, . . . , xn being equi-spaced on (0, 2π),

and Nadaraya-Watson estimates of µ(x) = E(Y |x) and σ2(x) = V ar(Y |x) were
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Figure 8: Typical scatterplots with superimposed kernel smoothers; (a) Normal data; (b)
Laplace data.

computed using a normal kernel in R.

Prediction intervals with nominal level α = 0.90 were constructed using the

two methods presented in Section 3: Model-Based (MB) and Model-Free/Model-

Based (MF/MB); the two methods presented in Section 4: Model-Free (MF2) and

MF/MF2; and the NORMAL approximation interval (27). For all methods (except

the NORMAL) the correction of Remark 4.7 was employed. The required bandwidths

were computed by L1 (PRESAR) cross-validation as described in Appendix B. For

simplicity—and to guarantee that Mx ≥ m2
x—equal bandwidths were used for both

mx and Mx, i.e., the constraint h = q was imposed.

For each type of interval, the corresponding empirical coverage level (COV) and

average length (LEN) were recorded together with the (empirical) standard error as-

sociated with each average length. The standard error of the reported coverage levels

over the 500 replications is 0.013; notably, these coverage levels represent overall (i.e.,

unconditional) probabilities in the terminology of Beran (1990); see also Cox (1975).

Attention focused on two possible prediction points, namely xf = π and xf = π/2.

The first point represents a case where µ(x) displays high slope but zero curvature; in

the second case, the situation is reversed: zero slope but high curvature. The latter

is actually a ‘peak’ of the function µ(x), and results into large bias of nonparametric

estimators of µ(x). Note that the point xf = 3π/2 corresponds to a ‘valley’ of the
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function µ(x); the situation here is distributionally identical to that of the case xf =

π/2, and thus is omitted. Since xf = π/2 and xf = π are extreme points in terms of

curvature and bias, it is expected that points in-between would result in prediction

interval performance that is somewhere in-between the relevant entries of Table 4.2

below.

As previously mentioned, in the practical construction of bootstrap predictive

intervals one would employ a large number of bootstrap simulations, say B = 1,000

or 2,000. Nevertheless, bootstrap predictive intervals are very computer-intensive;

hence, for the purposes of our simulation this number was curtailed to B = 333.

Even with B = 333 and with the generation of just 500 series for each scenario, the

compilation of the entries of Table 4.2 takes five days of CPU time on a standard

2.5GHz PC. Of course, simulations (including bootstrap) are especially amenable to

parallel computing that can drastically reduce the computation time; the author took

advantage of the Triton Resource at the San Diego Supercomputer Center of UCSD.

The R functions used in the computation are provided (with absolutely no warranty!)

at: http://www.math.ucsd.edu/∼politis/SOFT/MF3functions.R.

Table 4.2 summarizes our findings, and contains a number of important features:

• The NORMAL intervals are characterized by under-coverage even when the

true distribution is Normal. In particular, in the case xf = π/2, the NORMAL

interval’s under-coverage is striking; the reason is the high bias of the kernel

estimator at the points of a ‘peak’ or ‘valley’ that the normal interval (27)

‘sweeps under the carpet’.

• The length of the NORMAL intervals is quite less variable11 than those based

on bootstrap; this should come as no surprise since the extra randomization

implicit in any bootstrap procedure is expected to inflate the overall variances.

• The MF/MB intervals are more accurate than their MB analogs in the case

xf = π/2. However, in the case xf = π, the MB intervals are most accurate, and

the MF/MB intervals seem to over-correct (and over-cover); this over-coverage

can be attributed to ‘leakage’ in the smoother bias and should be alleviated with

a larger sample size or the use of undersmoothing—see the discussion below.

11The standard deviation of the length is estimated as 22.4 × st. err. where 22.4 	 √
500.
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• Interestingly, the performance of MF2 intervals resembles that of MB intervals;

similarly, the performance of MF/MF2 intervals resembles that of MF/MB in-

tervals. As a matter of fact, the MF/MF2 intervals have the best coverage in

the case xf = π/2; this is quite surprising since one would except the MB and

MF/MB intervals to have a distinct advantage when model (12) is true.

• The price to pay for using the more generally valid MF/MF2 intervals instead

of the model-specific MF/MB ones here seems to be the increased variability

associated with interval length of the former.

Distribution: Normal Laplace

Case xf = π/2 COV LEN (st.err.) COV LEN (st.err.)

MB 0.760 0.992 (0.010) 0.788 0.986 (0.013)

MF/MB 0.838 1.260 (0.017) 0.836 1.211 (0.017)

MF2 0.768 1.033 (0.011) 0.768 0.987 (0.015)

MF/MF2 0.888 1.587 (0.022) 0.884 1.687 (0.027)

NORMAL 0.754 0.937 (0.004) 0.815 0.928 (0.004)

Case xf = π

MB 0.882 0.973 (0.010) 0.898 0.975 (0.010)

MF/MB 0.950 1.214 (0.012) 0.942 1.195 (0.013)

MF2 0.884 0.989 (0.010) 0.888 0.985 (0.011)

MF/MF2 0.970 1.510 (0.014) 0.954 1.584 (0.018)

NORMAL 0.877 0.937 (0.004) 0.874 0.933 (0.004)

Table 4.2. Empirical coverage levels (COV), and (average) lengths (LEN) of different

prediction intervals with nominal coverage of 0.90; n = 100 and bandwidths chosen

by L1 cross-validation.

Finally, the problematic case xf = π deserves special discussion. In principle,

this should be an easy case since kernel smoothers have approximately zero bias

there. Nevertheless, smoothers will have appreciable bias at all other points where

the curvature is nonzero, and in particular, at the peak/valley points xf = π/2 and

xf = 3π/2. This bias is passed on to the residuals (fitted, predictive, or even the

ui variables of MF2 and MF/MF2) in the following way: residuals obtained near

the point xf = π/2 will tend to be larger (their distribution being skewed right),
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while residuals near the point xf = 3π/2 will tend to be smaller (more negative, i.e.,

skewed left). By the bootstrap reshuffling of residuals, the skewness disappears but

an artificial inflation of the residual distribution ensues that adversely influences the

prediction performance at all points—even points associated with low estimation bias.

This is the phenomenon previously referred to as ‘bias leakage’; it can be alleviated

with a larger sample size and/or using higher-order smoothing kernels or other low

bias approximation methods, e.g., wavelets. It can also be alleviated using bandwidth

tricks such as undersmoothing—see the detailed discussion in Remark 3.2. A different

way out of this difficulty may be to use a version of local resampling as in Shi (1991);

we will not pursue this further here due to lack of space.

4.8 Simulation: when a nonparametric regression model is

not true

In this subsection, we investigate the performance of the different prediction intervals

in a set-up where model (12) is not true. For easy comparison with Section 4.7, we

will keep the same (conditional) mean and variance, i.e., we will generate independent

Y data such that E(Y |x) = sin(x), V ar(Y |x) = (cos(x/2) + 2)/7, and design points

x1, . . . , x100 equi-spaced on (0, 2π) as before. However, the error structure εx =

(Y −E(Y |x))/
√

V ar(Y |x) will be assumed to have to have skewness and/or kurtosis

that depends on x, thereby violating the i.i.d. assumption.

So, for our simulation we will consider the simple construction:

εx =
cxZ + (1 − cx)W√

c2
x + (1 − cx)2

(41)

where cx = x/(2π) for x ∈ [0, 2π], and Z ∼ N(0, 1) independent of W that has mean

zero and variance one but will have either an exponential shape, i.e., 1
2
χ2

2 − 1, to

capture a changing skewness, or Student’s t with 5 d.f., i.e.,
√

3
5

t5, to capture a

changing kurtosis.
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Distribution of W : χ2
2 t5

Case xf = π/2 COV LEN (st.err.) COV LEN (st.err.)

MB 0.768 0.948 (0.014) 0.762 0.972 (0.011)

MF/MB 0.844 1.230 (0.027) 0.844 1.206 (0.017)

MF2 0.754 0.955 (0.015) 0.762 0.980 (0.013)

MF/MF2 0.880 1.646 (0.028) 0.882 1.616 (0.027)

NORMAL 0.843 0.930 (0.005) 0.801 0.937 (0.005)

Case xf = π

MB 0.874 0.969 (0.010) 0.884 0.967 (0.010)

MF/MB 0.920 1.193 (0.012) 0.932 1.207 (0.011)

MF2 0.878 0.968 (0.011) 0.862 0.988 (0.011)

MF/MF2 0.950 1.505 (0.016) 0.967 1.550 (0.017)

NORMAL 0.874 0.935 (0.005) 0.871 0.931 (0.005)

Case xf = 3π/2

MB 0.744 0.484 (0.005) 0.766 0.491 (0.005)

MF/MB 0.836 0.618 (0.008) 0.850 0.607 (0.007)

MF2 0.734 0.500 (0.006) 0.782 0.508 (0.006)

MF/MF2 0.902 0.745 (0.011) 0.910 0.738 (0.012)

NORMAL 0.980 0.928 (0.005) 0.978 0.939 (0.005)

Table 4.4. Entries as in Table 4.2 but with errors εx from eq. (41)

Table 4.4 presents our findings; they are qualitatively similar to those of Table 4.2

although differences between methods are more accentuated. In particular:

• The NORMAL intervals are totally unreliable which is to be expected due to

the non-normal error distributions.

• The MF/MF2 intervals are the best (by far) in the cases xf = π/2 and xf = 3π/2

attaining close to nominal coverage even with a sample size as low as n = 100.

• The case xf = π remains problematic for the same reasons previously discussed.
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Conclusions

Prediction has been traditionally approached in a model-based fashion. In this paper,

we outline a model-free approach to prediction based on a new ‘model-free prediction

principle’, and its closely related Gaussian ‘stepping-stone’. The idea behind those

two principles is transforming the data into a domain that is easier to work with,

e.g. an i.i.d. set-up or a Gaussian set-up respectively. The latter may be most useful

for dependent data as it reduces the task of empirically assessing independence to

the easier one of assessing uncorrelatedness. However, as demonstrated in Sections 3

and 4, the model-free prediction principle, i.e., the trasformation to an i.i.d. setting,

works very well in the context of regression data.

In particular, model-free model-fitting yields intuitive point predictors that are

very close to the corresponding model-based ones when a model is true without ex-

plicit resort to a model equation; see Tables 3.1 and 4.1 for a summary. In addition,

it is shown how resampling ideas can be coupled with the MF2 methodology in order

to construct frequentist predictive distributions and intervals that are generally valid

in the presence or absence of an additive regression model. As an aside, MF2 gives

an intuitive solution to the well-documented problem of under-coverage of bootstrap

prediction intervals in linear regression without the need for ad hoc correction factors.

The model-free prediction principle suggests the way to do nonparametric re-

gression when an additive model is not available (MF2), as well as suggesting an

improvement (MF/MB) when such a model is available. As a surprising by-product,

the MF2 methodology seems to obliterate the need to search for optimal transforma-

tions in regression. Finite-sample simulations confirm the good performance of these

prediction intervals, and compare the different variations.

All in all, the paper presents a novel philosophy for statistical inference that

encompasses standard methods such as Least Squares (see subsection 3.6) or non-

parametric regression (see subsection 4.2).
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Appendix A: the solution of eq. (20).

Squaring eq. (20) and using (21) we obtain the double solution:

Yf =
mxf

(1 − c)(1 − c − cW 2
f ) ± |Wf |

√
(1 − c)2m2

xf
(−1 + c + cW 2

f ) + (1 − c)Mxf
Df

Df

(A.1)

where s2
xf

= Mxf
−m2

xf
, and Df = (1−c)2+(c2−c)W 2

f . A little algebra shows that the

denominator Df is strictly positive and the argument of the square root in eq. (A.1)

is nonnegative provided the bound (A.2) below holds:12

|Wt| <

√
1 − c

c
for all t. (A.2)

To see that (A.2) is indeed true, note that eq. (18) implies

1

W 2
t

=
s̃2

xt

(Yt − m̃xt)
2

=
M̃xt − m̃2

xt

(Yt − m̃xt)
2

=
cY 2

t + (1 − c)M
(t)
xt − (cYt + (1 − c)m

(t)
xt )2

(1 − c2)(Yt − m
(t)
xt )2

=
c − c2

(1 − c2)
+

(1 − c)
(
M

(t)
xt − (m

(t)
xt )2

)
(1 − c2)(Yt − m

(t)
xt )2

≥ c − c2

(1 − c2)

since13 M
(t)
xt − (m

(t)
xt )2 ≥ 0. From the above, it follows that |Wt| ≤

√
(1 − c)/c as

desired, with strict inequality provided M
(t)
xt > (m

(t)
xt )2.

Now as previously noted, c is in general a small number. For example, if c =

K(0)/
∑n

k=1 K
(

xt−xk

h

)
, then c tends to zero as h → 0 in which case eq. (A.1) becomes

Yf 	 mxf
± |Wf |sxf

. (A.3)

Comparing eq. (A.3) to eq. (20), it follows that the solution Yf 	 mxf
+ Wfsxf

is the

uniquely correct one for eq. (A.3). By the same token (and due to the continuity in

12If c = 0, the bound (A.2) is trivial: |Wt| < ∞.
13To ensure that M

(t)
xt ≥ (m(t)

xt )2, the bandwidths h and q must be the same.
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the variable c), the double solution (A.1) reduces to the unique solution of eq. (20)

given by

Yf =
mxf

(1 − c)(1 − c − cW 2
f ) + Wf

√
(1 − c)2m2

xf
(−1 + c + cW 2

f ) + (1 − c)Mxf
Df

Df

(A.4)

that simplifies to eq. (22) as claimed.


Appendix B: L1 vs. L2 cross-validation.

Early proponents of (predictive) cross-validation include Allen (1971, 1974), Geisser

(1971, 1975), and Stone (1974). Minimizing the PREdictive Sum of Squared residuals

(PRESS) has been shown to be generally consistent for the optimal bandwidth—

although characterized by slow rates of convergence; see e.g. Härdle and Marron

(1985), and Härdle, Hall, and Marron (1988).

To further discuss the cross-validation procedure, we will focus here on the non-

parametric model (12) with the objective of prediction of Yf under the two criteria

L1 and L2; see Table 3.1 for a summary. Since the L2–optimal predictor is the one

minimizing the Mean Squared Error (MSE) of prediction, the minimization of PRESS

makes perfect sense in order to further reduce this MSE. However, the L1–optimal

predictor is the one minimizing the Mean Absolute Error (MAE) of prediction; to

fine-tune it, it may be preferrable to use an L1—cross-validation criterion, i.e., to min-

imize the PREdictive Sum of Absolute Residuals abbreviated as PRESAR =
∑n

t=1 |ẽt|
where ẽt are the predictive residuals of eq. (17).

L1—cross-validation may be advisable also on robustness considerations. Note

that the random variable ε2
t (of which ẽ2

t is a proxy) has a distribution with poten-

tially heavy tails. For example, if εt ∼ N(0, 1), then the density of ε2
t at point u

has tails of type: |u|−1/2 exp(−|u|), i.e., tails of exponential thickness. If εt is itself a

(two-sided) exponential, then the matters are much worse: the density of ε2
t at point

u has tails of type: |u|−1/2 exp(−√|u|). Now recall that n−1×PRESS = n−1
∑n

t=1 ẽ2
t

is an empirical version of Eε2
t . Although this expectation is finite in the two cases dis-

cussed above, the heavy tails of ε2
t make a sample average like n−1×PRESS somewhat

unstable in practice. In other words, the presence of a large value generated by the

heavy tails (or by potential outliers) can throw off PRESS together with the result-

ing bandwidths estimated by cross-validation. For this reason, L1—cross-validation

51



x

MS
E_

x (N
orm

al)

1 2 3 4 5 6

0.0
15

0.0
20

0.0
25

0.0
30

(a)

x

MS
E_

x (L
apl

ace
)

1 2 3 4 5 6

0.0
15

0.0
20

0.0
25

(b)

Figure 9: Plot of estimated MSEx as a function of x in the case τ = 4 using either L1

(—o—) or L2 cross-validation (——). (a) Normal data; (b) Laplace data.

may be preferable, and is not any more computationally expensive than the usual

L2—cross-validation.14

To see the difference between L1 and L2 cross-validation in practice, a small

simulation was conducted. For the simulation, data were generated from model (12)

with the choices µ(x) = sin(x), σ(x) = 1/10, εt ∼ i.i.d. (0, τ 2) with distribution

normal or two-sided exponential (Laplace), and different values for τ ; reducing the

error standard deviation τ has a similar effect as increasing sample size. For each of

the error distributions, 999 datasets each of size n = 100 were created; the design

points x1, . . . , xn were drawn each time from a uniform distribution on (0, 2π).

The MSE of estimator mx is denoted by MSEx and was empirically evaluated at

25 different x–points taken equi-spaced on a grid of the interval (0, 2π); those points

were: 0.24, 0.48, · · · , 5.79, 6.03. Figure 9 shows a plot of the estimated MSEx as a

function of x in the case τ = 4 using either L1 or L2 cross-validation. The peaking of

the MSE at the boundaries is a well-known problem associated with kernel smoothers;

it can be alleviated using the reflection technique of Hall and Wehrly (1991) which,

in effect, makes the kernel estimator approximately equivalent to local linear fitting

when the data are evenly distrubuted on the x-scale—see e.g. Fan and Gijbels (1996)

14In the rare case of non-unique minima in PRESAR cross-validation, the dilemma may be resolved
by picking the result closest to one given by PRESS.
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or Hastie and Loader (1993).

The performance of PRESS appears slightly better in the Normal case—see Figure

9(a), while PRESAR has a definite (and seemingly uniform) advantage in the Laplace

case—see Figure 9(b). This is hardly surprising since minimization of
∑n

t=1 ε2
t (resp.∑n

t=1 |εt|) is tantamount to Maximum Likelihood in the Normal (resp. Laplace) case.

However, note that PRESAR’s target is minimization of the Mean Absolute Error

(MAE) of estimator mx and not its MSE; the fact that PRESAR yields MSE’s that

are smaller than that from PRESS (whose target is MSE minimization) is quite

noteworthy.

Estimating MSEx on a grid of points also gives a natural estimate of the Inte-

grated MSE of mx denoted by IMSE =
∫ 2π

0
MSEx dx. Table B.1 compares the

IMSE of mx using either L1 or L2 cross-validation for the bandwidth. The standard

error of each entry of Table B.1 is approximately 0.01 as evaluated using subsampling;

see e.g. Politis, Romano and Wolf (1999). The implication is that the two methods

are very similar in the Gaussian case (with PRESS being slightly better); however, as

expected, L1 cross-validation has a definite advantage in the heavy-tailed case, and

this is particularly true when the error variance is large (and/or the sample size is

small).

τ = 1 2 4

Normal 1.010 1.026 1.034

Laplace 0.970 0.959 0.941

Contam. 0.987 0.934 0.887

Table B.1. Entries are estimated ratios IMSE(L1)/IMSE(L2) where L1 and L2

indicate the type of cross-validation used, and τ 2 is the error variance.

The simulation was repeated in a situation involving outliers; here the errors

were εt ∼ i.i.d. N(0, τ 2) with a 5% contamination of N(0, (10τ)2). Not surprisingly,

PRESAR displays robustness to outliers and clearly outperforms PRESS in this case

as indicated by the last row of Table B.1. As a consequence of the above discussion,

it seems that PRESAR may be preferrable to PRESS overall since (a) it is optimal

for the L1 predictor, and (b) it works very well even for the L2 predictor and MSE

minimization—outperforming PRESS cross-validation in the non-normal examples.

Finally, note that if our ojective is prediction of g(Yf), then ideally our cross-
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validation procedure would focus on the predictive residuals obtained from predicting

g(Yt) on the basis of the delete-Yt dataset; see Section 4.3 for more details.
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