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MD simulations in monocrystalline and nanocrystalline copper were carried out

with LAMMPS to reveal void growth mechanisms. The specimens were subjected

to both tensile uniaxial and hydrostatic strains; the results confirm that the emis-

sion of (shear) loops is the primary mechanism of void growth. The expansion of

the loops and their cross slip leads to the severely work hardened layer surrounding

a growing void. Calculations were carried out on voids with different sizes, and

a size dependence of the stress response to emitted dislocations was observed, in

disagreement with the Gurson model [1] which is scale independent. The growth

of voids simulated by MD is compared with the Cocks-Ashby constitutive model

and significant agreement is found. The density of geometrically-necessary dislo-

cations as a function of void size is calculated based on the emission of shear loops

and their outward propagation. Calculations were also carried out for a void at

the interface between two grains sharing a tilt boundary. The results show similar

dislocation behaviors.

A code that uses Voronoi tessellation for constructing nanocrystalline structures

was developed and used to prepare the structures for simulations. Nanocrystal

simulations reveal grain sliding and grain rotation as the nanocrystal deformed.
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Voids were nucleated at grain junctions and grew to coalescence as dislocations

accommodated the material transfer.

A code that can be used during post-processing to extract useful dislocation

information from MD simulation data was partially developed and proved the

feasibility of automatically analyzing dislocations.
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Introduction

1.1 Background

Classical, or Newtonian mechanics has become an important tool which physi-

cists use to describe numerous phenomena. It has been developed and used since

Newton himself stated his three laws: Law of motion, Law of inertia and Law of

action and reaction. Calculus is another tool which was developed to fully express

these laws. Motions, velocities, accelerations, forces, momentums and energies

are defined and used through the equations derived from the laws of Newton.

Classical mechanics can be used to describe motion of point particle very effec-

tively. As studies move toward more complex systems, more advanced mechanics

have been introduced, such as Lagrangian and Hamiltonian mechanics. Quantum

mechanics and Relativity theory were later developed where Classical mechanics

became invalid. Continuum mechanics employs techniques of classical mechanics

in order to study the behavior of continuum materials. Solid mechanics is sim-

ply a branch of Continuum mechanics. More recently, the mechanics of materials

has been developed, taking into account the complex microstructures of materials.

Computational methods play a key role in the mechanics of materials.

The fundamentals of solid mechanics were established when the need to describe

the behavior of solid continuum medium surfaced. The definitions of various quan-

1
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tities were created, such as deformation, stress and strain, in order to effectively

describe transformations of a body at rest into a deformed body. The deformation

of a deformed body relative to a body at rest is called strain and the intensity of

the force needed for the deformation is called stress. When the strain is small and

is directly proportional to stress, the state is called linearly elastic. The coefficient

of proportionality is called the modulus of elasticity or Young’s modulus. When

the stress reaches and passes a threshold, the yield stress, the body is deformed

plastically and cannot recover its original state after being unloaded. This state is

called plasticity.

Continuum mechanics enforces the following rules [2];

• Equilibrium condition

• Compatibility condition

• Hooke’s Law

• Conservation of mass

• Conservation of momentum

• Conservation of energy

Linear elasticity for metals is described by Hooke’s law. The material is simply

modeled as a spring with Young’s modulus in place of spring constant. When

the load is removed the material returns to the original shape. In case of a long

rod, since it is one dimensional, the stress is directly proportional to strain with

Young’s modulus, E.

σ = Eε (1.1)

In three dimensions, stress and strain are described with second order tensors

and the modulus of elasticity is a fourth order tensor. For isotropic materials, its

components are functions of Young’s modulus, E and Poisson’s ratio, ν.

σ = D(E, ν) : ε (1.2)
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Figure 1.1: Stress-strain curve for general description of elasticity and plasticity.

Plasticity is a study of the state of strain which has passed the yield point, in

one dimensional case, or passed a yield surface in three dimensional case, see Figure

1.1. At this state, material deformation can become greatly increased, softening,

or greatly decrease, hardening. In any cases, the body have failed to return to the

original shape when the load is removed. One of the basic yield surface is called J2

yield theory. Hardening or softening parameters, also referred as flow rule, usually

accompany with the yield criterion as it is used to predict the state of stress within

the body passed yield. Often times, it is described in terms of strain rate, ε̇ [2].

The Finite Element Method is a numerical tool which is used to solve partial

differential equations governing a continuum mechanics system. It models the

solution domain with shape functions and then assembly into governing equations

which enforce required conditions according to continuum mechanics. FEM has

its strong points where it is able to implement and solve problem with complex

domain well. Another advantage is that FEM doesn’t have intrinsic length scale

built into the formulation. This enables it to solve problems in arbitrary size scale
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without spending much of computation power, where as the length-scale has to

be implemented in the material model or constitutive model. Models that include

length scale are hard to produce and give accurate results only with its special

system size. It cannot be used for general cases and this is FEM’s draw back [3].

Since the development of X-ray diffraction, crystallography has evolved into

one of the largest branches of material sciences. Lattice spaces are found to be

the fundamental structure of material, enabling a well established structure for ad-

vanced studies about material behaviors. This leads to molecular dynamics(MD)

studies/simulations which is based on particles representing atoms of material in-

teracting under potential energy. The length scale of the system is already built

into the MD calculation, which is a great advantage, but this also limits the system

size as the present computing resources are not able to simulate a system large on

the continuum scale. For stability, the integration timestep size has to be smaller

than the vibration period of material atoms in order to capture this vibration and

this limits MD to high strain rate simulations [3]. MD and crystallography will be

discussed further in the next chapter.

Crystalline materials have been a topic of interest among researchers over the

past decade, especially, nanocrystalline materials. It was predicted by the Hall-

Petch relations [4, 5] that the material strength will increase as the grain size

decreases. This drove researchers to find ways to reduce the grain size in order

to obtain materials with great strength. There was also a report of inverse Hall-

Petch relationship [6] which added to more confusion. As a result, a large volume of

data under various conditions for nano materials was presented. The results were

scattered, and each researcher tried to come up with a theory/mechanism which

described their observed specific behavior. Only a limited range of experimental

results can be compared to the numerical studies/simulations because of their

limitations. As technology improves, more results from different studies will emerge

and a better understanding of nanocrystalline materials will lead to more highly

optimised materials [3].
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1.2 Experimental Observations

Dislocation activity around a void growing in the spall regime of shock com-

pressed copper was reported by Meyers and Aimone [7] and Christy et al. [8].

Fig. 1.2 contains evidence of dislocation activity surrounding a void with the plas-

tically deformed zone [9]. In Fig. 1.2(a), a TEM micrograph of copper shows a

peanut-shaped void. The picture was taken in the KRATOS, a 1 MeV TEM at

the National Center for Electro Microscopy. Fig. 1.2(b) shows a spherical void

in aluminum [9]. Fig. 1.3 shows slip bands emanating from voids that nucleated

at grain boundaries in copper. However, the exact nature of the dislocation gen-

eration and evolution cannot be obtained from these observations. This requires

detailed analysis methods such as molecular dynamics.

1.3 Literature Review

Fracture of ductile metals occurs by nucleation, growth and coalescence of

voids [10, 11, 12]. There have been numerous studies trying to understand the

mechanisms and to predict the strength of materials under different configurations,

e.g., [13, 14, 15, 16]. The following subsections will briefly review some of the

literatures that helped to guide my research in this field.

1.3.1 Simple Continuum Models for Void Expansion

The first continuum treatment of the expansion of void is based on a spheri-

cal hole under internal pressure [17]. An elasto-plastic solution was obtained. The

original treatment is given in form of Lamé solution by Timoshenko [18] and South-

well [19]. Fig. 1.4(a) shows the diagram of a thick spherical shell with internal

and external radii a and b subjected to the internal pressure p.

The stress components within the plastically deformed zone (defined by c in

Fig. 1.4, a ≤ r ≤ c) are
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(a) Peanut-shaped void

(b) Void with plastic region

Figure 1.2: Plastically deformed zone around a void, (a) TEM by Christy et al.
[8]; (b) SEM by Ahn et al. [9].
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(a) Small voids

(b) Large void

Figure 1.3: Evidence of slip around growing voids from Meyers and Aimone [7].
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b
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Figure 1.4: Plastic region round a spherical cavity expanded by uniformly dis-
tributed internal pressure.
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Figure 1.5: The normalized stress σ/E vs. expanded void radius R/R0, with
Y/E = 3/500 and two values of Poisson’s ratio ν = 1/3 (lower curve) and ν = 1/2
(upper curve)(from Lubarda and Meyers [20]).

σr = −2Y ln
(c

r

)

− 2Y

3

(

1 − c3

b3

)

(1.3)

σθ = Y − 2Y ln
(c

r

)

− 2Y

3

(

1 − c3

b3

)

(1.4)

where Y is the value of the yield stress. In case of a non-hardening material, we

have σθ − σr = Y according to the von Mises or Tresca yield criterian. When the

pressure is applied externally to the thick sphere, as in Figure 1.4(b), the current

radius of the void in terms of the applied stress [20] is

R = R0

[

1 − 3(1 − ν)
Y

E
exp

(

3σ

2Y
− 1

)]1/3

(1.5)

The plot of normalized stress σ/E vs expanded void radius R/R0 from the

above Equation is shown in Fig. 1.5 [20].
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1.3.2 Continuum Models for Material with Porosity

There have been several proposed continuum models for the growth of voids

in both two and three dimensions. However, until recently there was no well

established atomistic mechanism for void growth. Some exceptions are Meyers

and Aimone [7] and Stevens et al. [21], who proposed a dislocation model for void

growth in spalling, see Figure 1.6.

The following subsections summarize main ideas of some of the widely accepted

methods.

Gurson Model

An approximate plastic constitutive theory was developed by Gurson which

takes into account void nucleation and growth [1]. This constitutive theory pro-

vided the basis for many models which improved and modified Gurson’s model to

better model ductile fracture with porosity.

For spherical void and fully plastic flow, the yield function is

Φ =
σ2

e

σ2
y

+ 2f cosh

(

σh

2σy

)

− 1 − f 2 = 0 (1.6)

where σy is tensile yield stress of material, f is the randomly distributed void

volume fraction, σh = 3σm, σm = 1

3
Tr(σ) or mean hydrostatic stress. σe is the

equivalent von Mises stress.

σ2

e =
3

2
σ′

ijσ
′
ij =

3

2
Tr(σ′2) = 3J2 (1.7)

σ′
ij = σij − σmδij (1.8)

σ
′ is the deviatoric stress of the macroscopic Cauchy stress, σ. The resulting yield

function in Eq.1.6 has the properties of convexity and normality, which are used

during analytical analysis as constraint conditions.
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(a)

(b) (c)

(d)

Figure 1.6: Dislocation models for void growth from (a) Meyers and Aimone [7],
(b,c,d) Stevens and Davison [21].
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Needleman and Tvergaard Modification of Gurson Model

In order to improve Gurson’s model, Eq.1.6, a parameter q1 was introduced by

Tvergaard [22, 23] during the study of the behavior of a periodic array of voids

which result in interaction between neighboring voids.

Φ =
σ2

e

σ2
y

+ 2f ∗q1 cosh

(

σh

2σy

)

− 1 − (q1f
∗)2 = 0 (1.9)

f ∗(f) =

{

f for f ≤ fc

fc + 1/q1−fc

fF−fc
(f − fc) for f > fc

(1.10)

The results from shear band instabilities were compared with continuum con-

stitutive relations and suggest that q1 = 1.5. Furthermore, the function f ∗(f) was

introduced [24] to model the loss of load-carrying capacity associated with void

coalescence happening at void spacing of the order of the void diameter/length

[25].

fc is the critical value of the void volume fraction, when the material capacity to

carry stress starts to decay rapidly. fF is the actual void volume fraction associated

with the complete loss of stress-carrying capacity [25].

LS-DYNA Implementation

The LS-DYNA manual [26] adds an additional parameter q2 and uses the same

f ∗(f) as shown in Eq.1.10.

Φ =
σ2

e

σ2
y

+ 2f ∗q1 cosh

(

q2σh

2σy

)

− 1 − (q1f
∗)2 = 0 (1.11)

Wen et al. Modification of Gurson Model

The flow stress derived from Taylor dislocation model [27] was used by Wen

et al. [28] to replace tensile yield stress, σy, in Gurson’s model [1]. For a rigid-

perfectly plastic solid with yield stress σy, the flow stress becomes
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σflow = σy

√

1 +

√

5

2
Lf 1/3

b4

r4
(1.12)

where L is given in Eq. 1.15, b is Burgers vector and r is the distance away from

the void center. For a rigid-perfectly plastic solid, the J2 flow theory of plasticity

gives the microscopic deviatoric stress in terms of the microscopic strain rate by

(for example, Hill [17])

σ′
ij =

2ε̇ij

3ε̇
σy (1.13)

Replacing σy by σflow in Eq.1.12

σ′
ij =

2ε̇ij

3ε̇
σy

√

1 +

√

5

2
Lf 1/3

b4

r4
(1.14)

L =
Ekkl

a
=

Tr(E)

a
(1.15)

Where E is the macroscopic strain, l is intrinsic material length, l = 18α2

(

G
σy

)2

b,

a is void radius. α is an empirical material constant, α ≈ 0.3, G is shear modulus

and b is Burgers vector. f is void volume fraction and r is distance away from void

center, r = a at void surface.

After integration and solving the set of constraint equations given in Gurson’s

analysis [1], the yield function can be symbolically written as

Φ

(

Σe

σy

,
Σkk

σy

, f, L

)

= 0 (1.16)

Wen et al.’s yield function [28] doesn’t consider the effect of f ∗ suggested in

Needleman and Tvergaard’s model [25]. It can be seen that Wen et al.’s yield

function introduces a scale in the void equation.
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P-α Model

The separation of the volume change due to pore collapse from the compression

of the matrix material allowed the construction of a thermodynamically consistent

constitutive relation which covers most of the observed features of stress wave

propagation in porous materials [29]. It has been shown that functions for the

compaction relation, α = g(P ), and equation of state, P = f(V,E), suffice to fit

experimental Hugoniot data for porous iron and aluminum.

The porosity, α, is defined as α = V/Vs, E is the specific internal energy,

V is the specific volume of porous material and Vs is the specific volume of the

corresponding solid material at the same temperature and pressure. The porosity

becomes unity when the material is solid.

There are a few assumptions that have been made in this theory: 1) voids

do not reopen in the time scales of interest in stress wave propagation, 2) shear

strength is negligible throughout, 3) neglect of the melting phase change limits the

pressure range over which this theory might be expected to be applicable.

Later work [30] suggested a modification of P = f(V/α,E) to P = α−1f(V/α,E).

The discrepancy between the original equation and the modified one is significant

in the lower pressure range, where the porosity α is different from unity.

1.3.3 Single Crystal Studies

Several studies on void growth and coalescence, for example, [31, 32, 33, 34, 35,

36, 37, 38, 39], have shown the strength of the finite element method that one can

vary several parameters and loading configurations to investigate the parametric

influences on the growth of void. Nevertheless, the results only show plastic defor-

mation in the range of micro meter scale, not at the atomistic level. To achieve the

dislocation level of plastic deformation, slip, one must use the molecular dynamics

technique.
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Geometrically Necessary Dislocations

Ashby [40] suggested that materials that are composed of two or more phases

with different mechanical properties will deform plastically in a non-uniform way

with one phase deforming preferentially. This includes polycrystalline and nanocrys-

talline materials. The difference in deformation results in a gradient of deforma-

tion. Such materials are called plastically non-homogeneous. In order to have

different phases of material deform in a compatible way, “geometrically necessary”

dislocations were proposed as a characteristic of the microstructure in addition to

“statistically stored” dislocations which occur in homogeneous materials, see Fig-

ure 1.7. The density and arrangement of geometrically necessary dislocations can

be calculated in an iterative manner. Starting with the incompatible deformation

among phases, the dislocations are introduced which produce the deformation, then

the stress field of this array of dislocations is calculated. If the stress exceeds local

yield stress, then new dislocations must be introduced to lower the stress. When

the density of geometrically necessary dislocations exceeds that of the statistically

stored dislocations, geometrically necessary dislocations control the stress-strain

curve and the work-hardening rate is higher.

Void Growth by Dislocation Emission

It was found in a high strain rate laser shock experiment that voids initiated

and grew as the material deformed. Lubarda et al. [41] proposed that voids

grow by dislocation loop emission. The vacancy diffusion mechanism is unable to

provide fast enough transportation for the void to evolve, and therefore dislocations

were suggested to be the main mechanism in a combination of prismatic and shear

loops. Prismatic loops had been proposed earlier by Jones and Mitchell [42], Silcox

and Hirsch [43] and Humphreys and Hirsch [44], but the shear loops were a new

mechanism. Seitz [45] and Brown [46] postulated prismatic loops forming at the

interface between a rigid particle and the matrix. As the energy of dislocations are

calculated for different size of voids, it was found that the critical stress required
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Figure 1.7: Geometrically necessary dislocation around a rigid particle in softer
material, from Ashby [40], (a) undeformed model, (b) deformed model, (c) shear
loop dislocations, and (d) prismatic loop dislocations.
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to form dislocations decreases as the void size increases [41, 47]. Figure 1.8 shows

these loops as proposed by Lubarda et al. [41].

There is a dearth of information on the void initiation process, and it is generally

assumed that it is governed by the diffusion of vacancies towards a central point,

creating and nourishing a void. One of the most rapid diffusion mechanisms is

“pipe” diffusion, in which vacancies migrate along the dislocation line. Cuitiño

and Ortiz [48] developed a specific mechanism for this mode, with the following

equation (Eq. 1.17) predicting the time change of void radius, R, in terms of the

pipe diffusion coefficient, D,

dR

dt
=

1

R
D (c0 − ceq) (1.17)

where c0 is the plastic deformation void concentration and ceq is the equilibrium

vacancy concentration at the surface of the void. It is safe to assume c0 ≫ ceq

since c0 ∼ 10−4 after significant plastic deformation and ceq ∼ 3 × 10−15 at room

temperature [48]. Integrating with respect to time,

R

R0

=

(

1 +
2Dc0
R2

0

t

)1/2

(1.18)

where

D = D0exp

(

− Q

RT

)

(1.19)

The initial void radius, R0, was taken as the atomic radius for copper (a model

material), 0.128 nm. D0 is the pre-exponential factor in the diffusion coefficient

(= 4.86 × 10−7m2/s); Q is the activation energy (= 72.47 × 103J/mol). These

values are taken for ultra pure copper from Surholt and Herzig [49]. R is the gas

constant, T is the temperature in Kelvin and t is the time in seconds. Figure 1.9

shows the growth of a void at 300, 400 and 600 K for copper. Conventional plastic

deformation at a conservative strain rate 10−2s−1 will lead to a failure time of

102 s assuming a strain of 1. Failure is typically characterized by voids with radii

ranging in the micrometers. From Fig. 1.9, it can be seen that the time predicted

by Cuitiño and Ortiz [48] at 300 K is much longer (∼ 1010 s). Even at 600 K, voids
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(a)

(b)

Figure 1.8: Dislocation loops postulated by Lubarda et al. [41] with the direction
of dislocation motion marked by arrows. (a) Prismatic loops and (b) shear loops.
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Figure 1.9: Void-size prediction from growth through vacancy diffusion along dislo-
cations (Cuitiño-Ortiz model); void sizes reached in 100 s at the three temperatures
of 300, 400, and 600 K marked.

cannot grow to a size equal to 0.1 µm in 102 s (Fig. 1.9). Thus vacancy diffusion,

that is the principal mechanism of void growth in creep fracture, as treated by

Raj and Ashby [50], cannot be the operating mechanism in conventional plastic

deformation.

The model proposed by Cuitiño and Ortiz [48] is based on vacancy pipe diffusion

which was proved effective only for low strain rate and/or high temperature by

Lubarda et al. [41] and therefore this model is only relevant to creep deformation.

Failure in creep is preceded by void nucleation and growth at the grain boundaries

and has been successfully modeled using the diffusion equation by Raj and Ashby

[50]. The regime encountered in laser shock compression is radically different, with

strain rates on the order of 106 s−6 and higher. The characteristic material length,

determined by the dislocation structure in materials, can also become a limiting
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factor for growth of void at small size [51].

Expansion of Single Crystalline Materials

The continuum approach by Ohashi [52] and the molecular dynamics simula-

tions by Seppälä, Belak and Rudd [53, 54, 55], Marian, Knap and Ortiz [56, 57],

Srinivasan et al. [58] and Gungor and Maroudas [59] indicate that the disloca-

tion emission from growing voids is the primary mechanism of the radial material

transfer required for expansion. Void collapse calculations [60] lead to similar (but

opposite in sign) dislocation configurations. Both prismatic and shear loops were

postulated [41] and also observed in the above mentioned MD simulations and in

the recent work by Ahn and Sofronis [9]. Figure 1.8 shows the two types of dislo-

cation loops. It should be noted that Ashby [40] had also postulated prismatic and

shear loops in the deformation of metals containing rigid particles to accomodate

the strain gradients imposed: these are the “geometrically necessary dislocations”.

Size scale dependency of the yield stress for a fixed void volume fraction is observed

by Potirniche et al. [61].

Atomistic simulations performed by Horstemeyer et al. [62] in simple shear

using between 102 and 108 atoms revealed significant differences in the flow stress

when expressed as a function of a scale parameter (volume/surface of sample). The

resolved shear stress for plastic flow increases significantly with the decrease in size

scale, confirming experimental measurements related to gradient plasticity effects

(e.g., Fleck et al. [63, 64]). Interestingly, the MD results indicate that dislocation

nucleation effects, and not strain gradient effects (calculations in simple shear do

not produce strain gradients), are responsible for the significant differences in shear

flow stress obtained with the change in dimensional scale. These results have a

significant bearing in what is perceived to be gradient plasticity.

Studies of void growth in single crystal materials, [65, 66] showed that yield

strength also varies with size scale of the domain, not only the void volume fraction

and strain rates. One interesting feature of void growth in single crystal FCC



21

Figure 1.10: Growing void developed into an octahedron shape defined by slip
planes.

materials is that the void shape developed into an octahedron with faces parallel

to FCC slip planes, Fig. 1.10. This is the result of the dislocation mechanism that

transports material along the slip directions Experimental observations by Meyers

et al. [7, 8, 67] show that small voids (smaller than the grain size) often had this

geometric shape, Figure 1.11. This was also observed in aluminum by Stevens et

al. [21], Figure 1.12. Later, the study of stress triaxiality effects on void growth,

[53] showed that there are strong relations between the stress triaxiality and rate

of growth of the void.

Fatigue Loading of Single and Nanocrystalline Materials

Studies of fatigue loading in single crystal copper by Potirniche and coworkers

[68, 69] indicated that the shear band and the crack propagation directions depend

heavily on the slip direction or orientation of the crystal. For fatigue loading in

nanocrystalline materials, the growth of the crack across a grain boundary with
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(a)

(b)

Figure 1.11: Growing voids developed into geometric shapes from (a) Meyers and
Aimone [7] and (b) Christy et al. [8].
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(a)

Figure 1.12: Growing void developed into geometric shape from Stevens and Davi-
son [21].
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a high mis-orientation angle can change direction when moving from one grain to

another [70].

1.3.4 Nanocrystal Studies

The study by Ashmawi and Zikry [71] showed that mobile dislocation density

saturation, void size and shape, and dislocation density interactions within the

grains and the grain boundaries are interrelated triggering mechanisms that lead

to void nucleation, growth and localization.

Deformation Mechanism in Nanostructured Materials

Nanocrystalline materials behave much differently from polycrystalline mate-

rials in general. They have high strength, as predicted by the Hall-Petch relation,

and low ductility. This is because of their low hardening rate which allows failure

via strain localization and their inability to allow extensive plastic deformation

such as crack progression. Many deformation mechanisms have been suggested to

account for specific responses [3];

• Pile-up breakdown.

• Grain-boundary sliding.

• Core and mantle effect.

• Grain-boundary rotation and grain coalescence.

• Shear band formation.

• Gradient models.

• Twinning.

• Grain-boundary dislocation creation and annihilation.

Expansion of Nanocrystalline Material

Void nucleation and growth were studied by Belak, Rudd and coworkers [65,

72, 73, 74]. They found that nucleation happens at triple junctions while the
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growth of the void progresses along the grain boundary. Dislocations are the main

mechanism which transport material allowing the void to grow.

Compression of Nanocrystalline Material

High pressure-high strain rate compression simulations in ductile porous metals

showed the formation of nano-grains resulted from highly localized plastic defor-

mation induced by the presence of voids. The voids served as dislocation sources

during the process of grain formation. The collective interactions later lead to a

very high dislocation density and the reduction of the dislocation velocities as the

porosity decreased [75].

1.4 Outline of the Problems

Most metallic materials used in engineering are polycrystalline aggregates and

are highly susceptible to nano-scale failure induced by extreme conditions. In

order to effectively predict the overall failure of a structure, one must understand

the mechanism of failure propagation created from the atomic level. Material

models of finite element methods currently do not account for the mechanism

at the atomic/nano levels. Most of the molecular dynamics studies, show only

the quantitative mechanisms of dislocations at the atomistic level, and provide us

with mechanisms by observation and simple calculations because the interactions of

dislocations are complex and vary from one simulation to another. A consistent link

between dislocation mechanisms and statistical mechanics is still missing, resulting

in a missing relation of nano-scale mechanisms to micro-scale mechanisms. Once

the link has been established, continuum mechanics research would benefit greatly

from future molecular dynamics studies.
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1.5 Objectives of Research

Dislocations are the main mechanism by which crystalline metals locally relax

the stresses induced by deformation of the entire body. Dislocations also grow from

grain boundaries and grain junctions in the case of polycrystalline and nanocrys-

talline structures. Dislocations change direction and plane according to the orien-

tations of adjacent grains. The rate of multiplication or annihilation of different

dislocations (which run into each other) should be statistically studied and sum-

marized into the possibility at which the failure can occur. With the availability of

vast amount of information one can obtain from MD simulations, and the proper

computational routines to separate useful information out from complex interac-

tions, the link between atomistic scale mechanisms and the continuum level can

be established.

1.6 Acknowledgement

Some figures and materials in sections 1.2 and 1.3 also appear in S. Traiviratana,

E. M. Bringa, D. J. Benson, and M. A. Meyers. “Void growth in metals: Atomistic

calculations.” Acta Materialia, vol 56: page 3874-3886, 2008.
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Molecular Dynamics

Fundamentals

2.1 The Molecular Dynamics Simulation Process

In general, performing a molecular dynamics study requires a set of procedures

which can be roughly organized into domain construction, equilibrium and relax-

ation, objective run, and post processing. All of these steps are normally repeated

for different models or different simulations. The third step, or objective run, can

be repeated with different kinds of loading conditions and then followed by a post

processing session, which allows us to start each simulation at the same exact

domain configuration.

Domain
Construction

- Equilibrium
Relaxation

- Objective
Run

- Post
Processing6

Figure 2.1: Flow chart of general MD simulation.

27
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2.1.1 Domain Construction

Domain construction is a process where particles and their locations are gen-

erated. The information includes the size and organization of the microstructure.

Most of the time particles will be organized into a crystal structure according to

the type of metal or material and their lattice data. There can be one type of

crystal for the entire domain, i.e., a single crystal, or a combination of two or

more crystals in one domain. The latter will simulate a bi-crystal or polycrystal

structure. There has to be a configuration that defines how different crystals are

located next to, or against, other crystals. This leads to bi-crystal and polycrystal

structure construction which will be explained later.

2.1.2 Equilibrium and Relaxation

Once all particles are imported or generated, the next process is to equili-

brate all the particles, corresponding to their lowest energy state. The objective

is to start with a state that is close to the real material crystal. Voids or holes

can be introduced inside of a domain leaving empty spaces inside crystals. The

surface particles of these spaces will have high potential energy compared to “reg-

ular” crystal particles and need to be moved into new positions with lower energy.

Boundary conditions are usually assigned prior to this process. Both equilibrium

and relaxation processes usually take place in predefined environments, for ex-

ample, isothermal or isobaric conditions, to bring the status of a crystal into a

specified temperature and pressure.

2.1.3 Objective Run

In this step, the domain is subjected to applied forces. Typical loading condi-

tions include expansion, compression, and shock loading. During a shock compres-

sion simulation, a set of particles will be assigned with a piston velocity so that

the entire group of particles will impact the rest of the domain, creating a shock
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front that can travel through the domain in the direction of the piston velocity.

During an expansion simulation, the volume of the whole domain will be

rescaled to a bigger size, forcing the particles inside of the domain to readjust

their locations to new positions according to forces from the potential energy pro-

file.

The timestep, ∆t, which defines the step of integration time is usually fixed to

about 1 femtosecond. This is to ensure the stability of numerical time integration.

The number of timesteps (N) defines how long an entire simulation takes place and

will dictate the strain rate, ε̇, in the case of finite strain expansion or compression

of the domain,

ε̇ =
ε

t
=

ε

N∆t
(2.1)

where N∆t is equal to number of timesteps multiplied by the timestep size (about

10−15 seconds). Since molecular dynamics takes into consideration a large number

of particles and their properties, the simulation time is short, typically less than a

nanosecond. In order to run for thousands of picoseconds, the number of particles

has to be about 107 atoms with the computing power of up to 200 CPUs for EAM

potentials. In any case, the strain rate for general MD simulation will be high,

roughly 108 s−1 or greater, because, given ε = 0.10 or 10%, ∆t = 10−15s and

N = 106 steps;

ε̇ =
0.10

10610−15s
= 108s−1 (2.2)

2.1.4 Post-processing

During a simulation, the location of all particles can be written into files ac-

companied with their other parameters and attributes such as velocities, forces,

stresses, particle ID and centrosymmetry parameter. Often times, this informa-

tion will be collected at a certain number of timesteps as snapshots at different

points during the whole simulation. Commercial software, e.g. RasMol [76], or
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user created code (MDrender [77]) will be used to read in this information and

render particle locations and their attributes into images where the investigator

can examine the motion and behavior of the particles during the simulation. Color

coded particles are usually used to represent a variation of particle attributes such

as temperature and pressure. Studies of crystals and defects are mostly done using

this process and much useful information can be extracted for later analysis.

2.2 Molecular Dynamics Codes, LAMMPS

LAMMPS is a molecular dynamics code that models the behavior of particles

in a liquid, solid, or gas state. It can model atomic, polymeric, biological, metal-

lic, granular, and coarse-grained systems using different types of force fields and

boundary conditions [78].

LAMMPS integrates Newton’s equations of motion for collections of atoms,

molecules, or macroscopic particles that interact under short- or long-range forces

with a variety of initial and/or boundary conditions. For computational efficiency

LAMMPS uses neighbor lists to keep track of neighboring particles. On par-

allel machines, LAMMPS uses spatial-decomposition techniques to partition the

simulation domain into small 3D sub-domains, each one assigned to a different

processor. Processors communicate and store “ghost” atom information for atoms

that surround their sub-domain. LAMMPS is most efficient when particles fill a

3D rectangular box with a roughly uniform density [78].

2.3 The Embedded Atom Method

The embedded atom method was developed to improve on previous pair po-

tentials by accounting for the electron density. It views atoms as being embedded

in the host containing all other atoms. The embedded energy is electron-density,

ρ, dependent, where density is always definable [79, 80]. The total energy can be

given by



31

Etot =
∑

i

Fi(ρh,i) +
1

2

i6=j
∑

i,j

φij(Rij) (2.3)

where Fi is the embedded function of host density, φij is the short-range pair

potential and Rij is the distance between atoms i and j. The host density (ρh,i)

can be closely approximated by a sum of the atomic densities (ρa).

ρh,i =

j 6=i
∑

j

ρa
j (Rij) (2.4)

where ρa
j is the contribution to the density from atom j and ρh,j is the total host

electron density at atom j. The energy is a simple function of the position of the

atoms as implemented in LAMMPS [81].

Ei = Fα

(

∑

j 6=i

ρα(Rij)

)

+
1

2

∑

j 6=i

φαβ(Rij) (2.5)

The pair potential provides the attraction between atoms while the volume

dependent term (suggested to be added to account for the compressibility of the

electron gas [82]) serves to slightly expand the solid and gives the correct elastic

constants. In contrast, the embedding energy is dominant and provides cohesion

while the short-range repulsive pair interaction keeps the solid at a slightly larger

lattice constant. Embedded energy has replaced the volume-dependent energy

with an electron density-dependent one. This gives the advantage that electron

density is always definable [80].

Potential energy profiles that are used in this research are the universal Cu

interaction from the LAMMPS distributed package and the Cu potential from

Mishin et al. [83].
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2.4 Single-crystalline and Bi-crystalline Structure

Generation

In order to generate an organized structure of crystal particles, one must know

several parameters depending if the lattice is cubic or not. For cubic lattice,

only two parameters are required. The first parameter is the lattice size (lattice

parameter) of the material of interest and how the particles are packed into crys-

tal structure (lattice type), for example, Body Centered Cubic (BCC), or Face

Centered Cubic (FCC). This information can be looked up according to type of

material that we want to model. Next, data describing how the crystal is oriented

against the global coordinate system of the simulation domain in required. This

data is usually determined by the simulation setting, for example one must align

the <100> of the crystal to a preferred axis in order to apply the shock velocity

in this direction. Examples of crystal structures are given later in Table 2.1

2.4.1 Basic Crystallography

X-ray diffraction was introduced into crystallographic studies in 1912. Later

in the same year, the exact size and shape of fundamental units of structure of a

crystal was found by Bragg. This leaded to the widespread use of X-ray diffraction

for studies of crystallography and many other fields. Crystal structures that have

a periodic nature can be classified into network of points in space which repeat

themselves at a certain distance and direction. This is called a space lattice, see

Figure 2.2. For a three-dimensional space lattice, three fundamental directions are

needed [84].

Fig. 2.3(a) shows the three principal directions accompanied with their in-

teraxial angles. There can be many possible combinations of lengths of principal

directions and interaxial angles. However, there can only be seven crystal systems

which are listed in Table 2.1, showing the relation of unit lengths and interaxial

angles.
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a
b

c

Figure 2.2: A space lattice according to Barrett and Massalski [84]

Table 2.1: The crystal systems [84]

System Axes and interaxial angles Examples
Triclinic Three axes not at right angles, of any lengths K2CrO7

a 6= b 6= c α 6= β 6= γ 6= 90◦

Monoclinic Three axes, one pair not at right angles, β − S

of any lengths
a 6= b 6= c α = γ = 90◦ 6= β CaSO4·2H2O

Orthorhombic Three axes at right angles, all unequal α − S, Ga

a 6= b 6= c α = β = γ = 90◦ Fe3C

Tetragonal Three axes at right angles, two equal β − Sn

a = b 6= c α = β = γ = 90◦ TiO2

Cubic Three axes at right angles, all equal Cu, Ag, Au,

a = b = c α = β = γ = 90◦ Fe, NaCl

Hexagonal Three axes coplanar at 120◦, equal Zn, Cd

Fourth axis at right angles to these NiAs

a1 = a2 = a3 6= c α = β = 90◦, γ = 120◦

Rhombohedral Three axes equally inclined, As, Sb, Bi

not at right angles; all equal Calcite

a = b = c α = β = γ 6= 90◦
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α

β
γ

a

b

c

Y

Z

X

(a) (b)

Figure 2.3: (a) Lattice axes, interaxial angles and unit cell [84] and (b) configu-
ration of atoms for the Face Centered Cubic structure with the lattice size of a,
created by Bas Zoetekouw (bas@zoetekouw.net).

The cubic crystal system is the most simple case of all. There are three

space lattices for the cubic crystal system, Simple Cubic(SC), Body Centered Cu-

bic(BCC) and Face Centered Cubic(FCC). Fig. 2.3(b) shows the configuration of

atoms in lattices. Since all sides of a cube have the same length, it is denoted as

a or lattice spacing. For Copper(Cu), a = 3.615 Å. With the repetitive nature

of lattice spacing, the term “unit cell” is used to define a group of atoms that

repeats itself at specific directions and distances. For the cubic crystal system,

these directions are the bases a = a [100], b = a [010] and c = a [001] for a fixed

length of lattice spacing, a.

2.4.2 Single Crystalline Structure

The single crystal structure is the easiest and simplest type of crystal to gener-

ate. Once the basic type of crystal is known, the unit cell, which can be duplicated

multiple times, can be calculated. As the size of a domain, and crystal orienta-
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tion with respect to the global coordinates of the simulation domain are defined,

the unit cell can be repeatedly copied to fill the entire domain according to their

fundamental lattice directions. As a result, we have a simulation domain full of

particles that are organized into the predefined orientation.

2.4.3 Bi-crystalline Structure

A domain needs to be divided into two parts with different orientations for

each part. The unit cell of a known structure is multiplied into each part of the

domain according to the specified orientation of that part. Directions of the crystal

principal basis must be defined with respect to the global coordinate system of a

simulation domain, prior to the copies of each unit cell. Some MD codes, such as

LAMMPS, can handle this technique. LAMMPS allows the user to directly define

three crystal directions to align with the global simulation coordinate system.

2.5 Polycrystalline Structure Generation

To simulate a polycrystalline structure which can closely model the natural

organization of grains in a metallic material, most studies rely on Voronoi tessel-

lation, for example, Kadau et al. [85].

2.5.1 Voronoi Tessellation

The Voronoi diagram, or Voronoi tessellation, is a special kind of area/volume

decomposition determined by distances to a set of points in 2D or 3D space. It has

been widely used in computational geometry. For instance, the Voronoi diagram is

a possible solution for the cellphones and cellphone towers problem. Let us assume

the following;

• There are n cellphone towers distributed in an area.

• One cellphone connects to a cellphone tower at a time.
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Figure 2.4: 2D Voronoi diagram.

• A cellphone will connect to the closest cellphone tower.

Voronoi tessellation will divide an area into number of cell sites corresponding

to cellphone towers, where any cellphones that lie in this particular cell site will

connect only to the cellphone tower in this site. This allows a cellphone to only

connect to the closest tower and not to any other towers. Another cellphone that

lies in another cell site will connect to their respective cellphone tower. This is

the optimum solution where the radio wave will travel the shortest distance to the

tower. At the same time, the Voronoi diagram divides the 2D spaces into many

convex polygons. The convexity is important to many applications in physics,

astronomy, robotics and other fields [86].

Voronoi tessellation was used in this investigation to generate the grain con-

figuration in polycrystalline samples. All Voronoi tessellations in this work was

generated by a software called “Qhull”. Qhull computes the convex hull, Delaunay

triangulation, Voronoi diagram, and much more. The software runs in 2D, 3D,

and higher dimensions. Qhull makes use of the Quickhull algorithm to compute

the convex hull. It handles roundoff errors from floating point arithmetic. Qhull

also computes volumes, surface areas, and approximations to the convex hull [87].
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p

r

q

n̂

Figure 2.5: Plane and Normal vector sketch

2.5.2 Vectors and Planes

Each particle is described by a position vector containing x, y, and z coor-

dinates. A plane is defined by two vectors: a point on the plane, and a normal

vector pointing outward from it. If a plane divides space into two parts, front and

back, where the front space accompanies a positive normal vector and the back

space has a negative normal vector, one can identify if a particle, represented by a

position vector, is located in front of, or behind a plane, see Figure 2.5.

Let r be a position vector of a particle in space, p be a point on a plane with a

normal vector n̂. Let q be a vector from r to p. If q · n̂ ≥ 0 then r is behind or on

the plane. If q · n̂ < 0 then r is in front of the plane or on the same side as n̂ [88].

2.5.3 Coordinate Rotation and Orientation

For simplicity, let us look at a 2D case. The x1 and x2 axes are rotated by

angle θ (clockwise is positive) into x́1 and x́2.

x́ = R(θ)x (2.6)
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R(θ) =

[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]

(2.7)

For example, let x1 = i and x2 = j. After rotation by a counter-clockwise (neg-

ative) θ using Equation 2.6, we have x́1 = cos(θ)i + sin(θ)j and x́2 = − sin(θ)i +

cos(θ)j.

Orientation of a cubic crystal system can be represented as a three dimensional

rotation of bases(principal directions). For a cubic crystal system, those bases are

a = a [100], b = a [010] and c = a [001]. An orientation can be created by rotating

the three basis with R.

á = Ra, b́ = Rb, ć = Rc (2.8)

R ≡









r11 r12 r13

r21 r22 r23

r31 r32 r33









(2.9)

In order to satisfy the physical rotation, that is, the rotated vector must have

the same length as the original, R must be an orthogonal matrix. The following

must be true [89]:

R−1 = RT or RTR = 1 (2.10)

In addition, R must also be a proper orthogonal matrix [89], i.e. det(R) = 1.

2.5.4 Euler Angles and Euler Parameters

Euler’s rotation theorem states that an arbitrary rotation may be described by

only three parameters. For example, a rotation may be defined using Euler Angles,

φ, θ and ψ in the x-convention. This consists of a sequence of three rotations, first

a φ rotation about z-axis, second a θ rotation about the rotated x-axis, and last, a

ψ rotation about the twice-rotated z-axis [89]. Figure 2.6(a) shows this operation.
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R(φ, θ, ψ) = R1(ψ)R2(θ)R3(φ) (2.11)

R3(φ) ≡









cos(φ) sin(φ) 0

− sin(φ) cos(φ) 0

0 0 1









(2.12)

R2(θ) ≡









1 0 0

0 cos(θ) sin(θ)

0 − sin(θ) cos(θ)









(2.13)

R1(ψ) ≡









cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1









(2.14)

Each component of R will become [89];

r11 = cos(ψ) cos(φ) − cos(θ) sin(φ) sin(ψ) (2.15)

r12 = cos(ψ) sin(φ) + cos(θ) cos(φ) sin(ψ) (2.16)

r13 = sin(ψ) sin(θ) (2.17)

r21 = − sin(ψ) cos(φ) − cos(θ) sin(φ) cos(ψ) (2.18)

r22 = − sin(ψ) sin(φ) + cos(θ) cos(φ) cos(ψ) (2.19)

r23 = cos(ψ) sin(θ) (2.20)

r31 = sin(θ) sin(φ) (2.21)

r32 = − sin(θ) cos(φ) (2.22)

r33 = cos(θ) (2.23)

Although a set of three parameters are needed to describe a rotation, there

can be problems involving rotational symmetry. The other drawback for using

Euler Angles to calculate a rotation matrix is that it involves a large number
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(1)φ
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(3)ψ
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X Ẋ
Ẍ

(a) Euler angles

Y

Z

X

e2

e3

e1

e0

(b) Euler parameters

Figure 2.6: Euler rotation using (a) Euler angles and (b) Euler parameters
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of trigonometric functions. Numerical computations usually prefer using Euler

Parameters, which define a rotation matrix by four parameters, e0, e1, e2 and e3.

This is equivalent to a finite rotation about an arbitrary axis, described by three

components, see Fig. 2.6(b). The Euler parameters are defined as [89]

e0 ≡ cos

(

φ

2

)

(2.24)

e ≡









e1

e2

e3









= n̂ sin

(

φ

2

)

. (2.25)

Since the four parameters describe a rotation matrix that can also be defined

using only three parameters, there must be a relation between them [89].

e20 + e · e = e20 + e21 + e22 + e23 = 1 (2.26)

Each component of R can be calculated using Euler Parameters by [89];

r11 = e20 + e21 − e22 − e23 (2.27)

r12 = 2(e1e2 + e0e3) (2.28)

r13 = 2(e1e3 − e0e2) (2.29)

r21 = 2(e1e2 − e0e3) (2.30)

r22 = e20 − e21 + e22 − e23 (2.31)

r23 = 2(e2e3 + e0e1) (2.32)

r31 = 2(e1e3 + e0e2) (2.33)

r32 = 2(e2e3 − e0e1) (2.34)

r33 = e20 − e21 − e22 + e23 (2.35)

In an attempt to find a better method to generate a large number of random

rotations, in this investigation, 1000 random rotation matrices were made and

operated on a basis with x1 = [100], x2 = [010] and x3 = [001].
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• Euler Angles, a random selection of each of the three angles within the fol-

lowing limits;

φ ∈ [0, 2π] (2.36)

θ ∈ [0, π] (2.37)

ψ ∈ [0, 2π] (2.38)

• Euler Parameters, random selection of each of the four parameters with the

following rules;

e0 ∈ [−1, 1] (2.39)

ω = cos−1(e0) (2.40)

a ∈ [−1, 1] (2.41)

b ∈ [−1, 1] (2.42)

c ∈ [−1, 1] (2.43)

u = ai + bj + ck (2.44)

n̂ =
u

|u| (2.45)

e ≡









e1

e2

e3









= n̂ sin(ω) (2.46)

The result of the test is shown in Fig. 2.7. It can be seen that the distribution

of rotated bases behaves more homogeneously in case of Euler parameters than

Euler angles. The balls in purple, green and red represent the operated x, y and

z axes. In case of Euler angles, the z-axes stack up near the original z-axis.

2.5.5 Search and delete algorithm

With the C language’s dynamic memory allocation, one can quickly design a

search algorithm that can work efficiently for the construction of polycrystalline
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(a) Euler angles operation

(b) Euler parameters operation

Figure 2.7: Distribution of rotated bases by Euler angles and Euler parameters.
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Figure 2.8: Generated polycrystalline structure with average grain size of 5nm.

samples, for example, Figure 2.8. Search boxes can be generated, dividing the

domain equally in three dimensions. Each box will contain a number of particles

and their information. While looping through the particles within a box, the

distance between each arbitrary pair of particles can be calculated and checked for

violation of a minimum particle distance which can be prescribed in advance. The

particles that are too close to each other can be deleted. Looping and checking

members of adjacent boxes takes the similar approach. This idea was suggested

by Prof. Benson [88] and resulted in a very fast and effective algorithm that can

make sure any two particles will not stay at the same location.

2.6 Periodic Boundary Conditions

It is preferable to apply periodic boundary condition in molecular dynamics

simulation as it can vastly reduce the size of simulation domain and number of

particles. This can, in turn, enable us to study the molecular behavior almost as if
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Figure 2.9: Relaxed polycrystalline structure colored by centrosymmetry
parameter.

we had an infinite simulation domain free of any boundary effect. This boundary

condition connects one end of the simulation box to the opposite end For example,

any particles that come out the maximum x boundary will go through to the

minimum x boundary. Figure 2.9 is an example of a periodic boundary condition,

where grains are connected through the boundaries.

Using periodic boundary condition can also have a drawback. Once we use

periodic boundary condition, it is as if we are working with a 3D array of the same

simulation box stretching to infinity. Any dislocation mechanisms that happen in

the simulation box will be copied to the other 26 imaginary boxes directly around

it and it will feel the presence of the periodic images. This is an important limi-

tation of this boundary condition. If we design our simulation to study molecular

phenomena which are periodic, then the periodic boundary condition is flawless.

Note; However, the simulation is still limited to the wavelength within the size of

the simulation domain.
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2.7 Centrosymmetry Parameter

For a material with cubic symmetry, each atom has pairs of equal and opposite

bonds to its nearest neighbours. As the material undergoes homogeneous elastic

deformation, these bonds will change direction and/or length, but they will remain

equal and opposite. The equal and opposite relations for all the nearest pairs do

not hold when a defect (such as dislocation or stacking fault) is introduced nearby.

Kelchner et al. [90] introduced the centrosymmetry parameter which is defined

as:

P =
∑

i=1,6

|Ri + Ri+6|2 (2.47)

where Ri and Ri+6 are the vectors or bonds corresponding to the six pairs of op-

posite nearest neighbours in the FCC lattice, see Figure 2.10. The coordination

number (i.e., number of closest neighbors) for the FCC structure is 12, and there-

fore there are 6 pairs of 2 nearest neighbor atoms. This parameter will be zero

for the centrosymmetric material at a perfect crystal configuration, or under ho-

mogeneous elastic deformation, and the parameter will be nonzero for any plastic

deformation of the material. The value will grow as the particle dislocates off from

being in perfect crystal. The free surface within a void has the largest value of

centrosymmetry parameter. The centrosymmetry parameter is useful for filtering

out of all atoms with perfect crystal structure.

2.8 Schmid Factor

A characteristic shear stress is required for slip. Consider the crystal illustrated

in Figure 2.11 which is being deformed in tension by an applied force F along the

axis of the cylindrical crystal. If the cross-sectional area is A the tensile stress

parallel to F is σ = F/A. The force has a component F cosλ in the slip direction,

where λ is the angle between F and the slip direction. The force acts over the slip
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Figure 2.10: 12 nearest neighbor atoms surrounding a center atom, with the 3
dashed atoms belong in plane A, the 7 atoms belong in plane B and the last 3
atoms belong in plane C, in the FCC plane ABC configuration.

surface which has an area A/cosφ, where φ is the angle between F and the normal

to the slip plane. Thus the shear stress, τ , resolved on the slip plane in the slip

direction is

τ =
F

A
cosφcosλ (2.48)

The quantity cosφcosλ is known as the “Schmid Factor” [91]. When the loading di-

rection is known as ~a and the slip direction and slip plane are ~b and ~c, respectively.

The Schmid factor can be calculated as

S.F. = cosφcosλ =
~a · ~c
|a||c|

~a · ~b
|a||b| (2.49)

This calculation is used in the table of Schmid factor in section 3.8.2.
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Figure 2.11: Illustration of the geometry of slip in crystalline material. Note that
(φ+ λ) 6= 90◦ in general [91].
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Results and Discussion

3.1 Void Growth in Single-crystal - Hydrostatic

expansion

3.1.1 Simulation Setup

A cubic domain of single crystal copper with 108,000 atoms was generated using

LAMMPS. The crystal orientation was aligned in order that all three principal

directions of the crystal align with the global coordinate system. The domain has

dimension of 10.845 by 10.845 by 10.845 nanometers which is equal to 30 unit cells

by 30 unit cells by 30 unit cells of size a0 = 3.615 Å or 0.3615 nm. The boundary

conditions were set to be periodic. After the equilibration process (letting the

simulation without loading run for a certain timesteps), a spherical void was cut

at the cube center with radius of 1.446 nanometers, removing 1,061 particles. A

second process of equilibration, or relaxation, was done to reduce the energy of

the system. Once we have the domain with the proper temperature (T = 300K)

and pressure (∼ 1 atm), we started applying hydrostatic expansion by rescaling

the volume of the domain in all three directions. See Figure 3.1

The first simulated cubic domain was rescaled to 12.9939 by 12.9939 by 12.9939

nanometers, which is equal to a 72% volume gain. The timestep used in LAMMPS

49
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Z

X Y

Figure 3.1: Sketch diagram of simulation setup for single crystal cubic domain and
hydrostatic strain

was set to 1 femtosecond, and the number of integration steps would determine

how fast we were expanding the domain. For instance, in the first simulation we

used 2500 integration steps which give a strain rate of 2.88 × 1011 s−1.

For the second simulation, the domain volume was rescaled to 11.84 by 11.84 by

11.84 nanometers, which results in a 30.1267% volume expansion. This was done

in one million integration steps which give a lower strain rate of 3.01267× 108 s−1.

The followings sections give the results from these two simulations.

3.1.2 Results

High Strain Rate

With a high strain rate of 2.88 × 1011, the domain expanded so fast that the

transition between elastic into plastic deformation could not be determined clearly.

The crystal dislocation mechanism which enables expansion of the precut void was
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overwhelmed by several small defect spots that later developed into nucleation sites

for smaller voids outside of the precut void. These defects/nucleations suppressed

the dislocation mechanism to the minimum, Fig. 3.2. This result from applying

very high strain rate is similar to the results by Gungor and Muroudas [92], Kuksin

et al. [93, 94] and Norman and coworkers [95, 96].

Low Strain Rate

With the lower strain rate of 3.01267 × 108 s−1, expansion of the domain can

be observed. A suspected period of elastic deformation is followed by yield point

and plastic period as dislocations develop. Dislocations start to form during the

late “elastic” period and continue to grow as the domain moves into the plastic

regime. As the precut void starts to grow, its shape evolves into a geometric shape

facilitated by the influence of the dislocation planes which are aligned with the slip

plane systems. Filtering of the atoms using the centrosymmetry parameter shows

only the particles which have moved out of perfect crystal configuration, and we can

see that the dislocations indeed form into an octahedron, Fig 3.3(d). We can also

observe the multiplication and annihilation of dislocations that travel across the

periodic boundary. The stress calculation shows that dislocations are a mechanism

which relaxes internal stress while the domain is under tensile hydrostatic stress.

3.1.3 Interpretation

It is clear that strain rate significantly affects how dislocations can develop.

Lower strain rate lets dislocations grow as they relax stress concentration from

the growing void, while higher strain rates forced the void and the entire do-

main to grow in a very short time, rendering the dislocation mechanisms ineffec-

tive. We could not observe dislocation evolution in simulations with the applied

strain rate in the order of 1011 s−1 or greater. It should be noted here that the

above simulations used the copper EAM potential from the distribution package

of LAMMPS(2005) and may differ from results using Mishin’s copper potential,
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(a) Prismatic dislocation (0.9 ps) (b) Growing defects (1.7 ps)

(c) Void nucleation (2.0 ps)

Figure 3.2: Growth of voids from very high strain rate(2.88 × 1011) under hydro-
static expansion. The thin slab enables us to see defect atoms within the simulation
box. The color bar (purple, blue, cyan, green, yellow and red) represents the values
of centrosymmetry parameter from low to high.
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(a) Dislocations emanating from

void (340 ps)

(b) Expanding dislocation loops

(380 ps)

(c) Dislocations traveling trough

boundary (400 ps)

(d) Octahedral shape of defect atoms

surrounding void surface in 3D view

(the lines made of connecting atoms

represent the three axes (340 ps))

Figure 3.3: Growth of void from 3.01267 × 108 s−1 strain rate: dislocation gener-
ation and motion, and shape changing of void under hydrostatic expansion (a,b,c
are slabs of small ∆z which is perpendicular to [001].
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that were used in most of this work.

3.2 Void Growth in Bicrystal Structure

3.2.1 Simulation Setup

Simulation modeling is divided into two parts:

• a thin domain with dimensions of 72.3 × 180.75 × 361.5 nm (comparable to

20×50×100 unit cells) with a cylindrical void with radius of 1.8 nm (Figure

3.4(a));

• a thick domain with dimension of 180.75×180.75×361.5 nm (comparable to

50× 50× 100 unit cells) with a spherical void with radius of 1.8 nm (Figure

3.4(b)).

For the two setups, the domain had the same size in length and height with

differences in thickness and internal void geometry. The domains were divided

into two halves lengthwise. The right half was composed of a perfect crystal FCC

copper with a 21.8014◦ clockwise rotation while the left half had the same perfect

crystal but with 21.8014◦ counter-clockwise rotation. The total number of particles

(atoms) for the cylindrical void case was 400,720 and for the spherical void case

was 1,001,800.

After the creation of the domains, they underwent a session of equilibration

to readjust the boundary between the two halves. This was done with constant

temperature at 300K and pressure control within a range of 1 atm. Once the

equilibration (running the simulation without applying a load) was run for a few

thousand timesteps, cylindrical and spherical voids with radius of 1.8 nm was cut

with their respective domains where the origins of either cylinder or sphere voids

sit at the center of boundary of the two crystals. This was followed by another

session of relaxation with same temperature and pressure control for a few more

thousand timesteps to relax the internal surface of the voids.
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(a) Cylindrical void

(b) Sphereical void

Figure 3.4: Diagram of simulation setup for bicrystal domain with (a) cylindrical
void and (b) spherical void.
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Figure 3.5: Dislocations emanating from cylindrical void (loading axis z)

Once the relaxation was done, the domain underwent a uniaxial extension with

the rescaling of the volume in the length direction. The timestep was 1 femtosecond

and it was done for 60,000 time steps for 30.354% volumetric expansion, giving

5.05902 × 109 s−1 in strain rate.

3.2.2 Results

Cylindrical Void

During the expansion of the domain, the transition from the elastic region

through the yield point into the plastic region can be observed. The void grew

along the boundary both in the upper and downward directions. Once the domain

yielded, there is a sudden jump in the stress as the grain boundary failed to hold

the two crystals together. Dislocations play a very important role in relaxing the

internal stress by allowing the void to grow. As we have a thin domain with a

cylindrical void, the dislocations come out from a relatively large void surface,
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Figure 3.6: Dislocation loops emanating from spherical void (loading axis z)

growing toward the periodic boundary and interacting with their mirror images

rather quickly, see Figure 3.5. This gives a large dislocation density in a time of

few picoseconds.

Spherical Void

The result of uniaxial expansion in the case of a spherical void was similar

to one with a cylindrical void. Transition from elastic into plastic behavior was

observed. Dislocation propagation also showed similarities. What was significantly

different from the cylindrical void case is how the dislocation loops spread outward

radially instead of going through side boundaries and coming back the other side

of our periodic boundary. Dislocations had more time to grow and relax the stress

concentration from the growing void, see Figure 3.6.

The bicrystal uniaxial expansion run was simulated again later with the Cu

potential from Mishin [83]. This potential gives a correct stacking fault energy,

and the dislocation bands became narrower than in the previous results shown in
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Figure 3.5 and 3.6 done with the Cu potential that came with LAMMPS. The

higher stacking fault energy directly influences the distance of partial dislocations

separation that composes a band of dislocations [97]. The interaction between

dislocations also shows changed behavior as they become biplanar similar to inter-

action of dislocations in uniaxial expansion of single crystal with void(section 3.4).

The configurations using the Mishin et al. [83] potential is presented in Figures

3.7 and 3.8. The stacking fault ribbons are narrower than in Figure 3.6. The loops

generated are indeed shear loops that are analyzed in section 3.4.

3.2.3 Interpretation

When periodic boundary conditions are used, the simulation design of cylindri-

cal void and a thin domain was unacceptable in terms of dislocation interactions.

It tempting to think that we can represent dislocation activity with a simulation

box similar to a 2D model used in finite element analysis. This is incorrect, as

dislocation activity is indeed a 3D behavior. The best way to see dislocation prop-

agation is to allow enough space and time for them to grow, while trying to limit

the number of dislocation sources to the minimum. This produces a small number

of dislocations that travel some distance before interacting with other dislocations.

3.2.4 Dislocation Activity

The bicrystal simulation, although done at much higher strain rate (5 × 109

s−1), shows results consistent with single crystal void growth. Partial dislocation

loops are emitted from the void surface, interact, and travel together as the strain

increases, Fig. 3.9. One can see at least two biplanar shear loops emanating

from the void in Fig. 3.9 (marked 1 and 2), one in each grain. The dislocation

interactions are more complex because the number of slip planes involved is twice

as high. Figures 3.7 and 3.8 show the two-dimensional sections perpendicular to the

grain boundary (left) and three-dimensional views (right) at different times (40 to

45ps). The evolution of shear is evident, and the similarity with the experimental
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(a) 40 picoseconds side

view

(b) 42 picoseconds side

view

(c) 43 picoseconds side

view

(d) 40 picoseconds per-

spective view

(e) 42 picoseconds per-

spective view

(f) 43 picoseconds per-

spective view

Figure 3.7: Sequence of loop nucleation and growth in the bicrystal simulation.
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(a) 44 picoseconds side

view

(b) 44.5 picoseconds side

view

(c) 45 picoseconds side

view

(d) 44 picoseconds per-

spective view

(e) 44.5 picoseconds per-

spective view

(f) 45 picoseconds per-

spective view

Figure 3.8: Sequence of loop nucleation and growth in the bicrystal
simulation(continued).
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Figure 3.9: Shear loops and their interaction in bicrystal simulation with initial
void at grain-boundary (uniaxial strain).
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Table 3.1: Table of different potentials used for copper.

Potential Reference γSF (mJ/m2) γUSF (mJ/m2)
Cleri-Rosato [98] 20.6 154.1
Schiøtz-Jacobsen [99] 33.5 173.1
Mishin et al. 1 [83] 44.4 158
Mishin et al. 2 [83] 36.2 161

observations of Figure 1.3 is striking. Slip emanates from the void starting in Fig.

3.7(c) and propagates outward along 〈111〉; shear loops are activated in the two

grains shown in Fig. 3.8(a-c). In Fig. 3.8(c), one can see that the trailing partial

follows the leading partial. This can be seen better in the tridimensional views

shown in Figs. 3.8(d) and 3.8(f).

The separation of partials in MD calculations has been the object of consid-

erable study, and the potential used influences these values. Van Swygenhoven

et al. [97] discuss this for nanocrystalline metals and point out the importance

of two stacking fault energies: the stable and the unstable one. The generalized

planar fault energy curve provides the barrier that the leading and trailing partial

dislocations encounter. This barrier has two cusps with a trough between them.

The first cusp corresponds to the unsteady SFE, and the second cusp to the steady

SFE. Van Swygenhoven et al. [97] warn the readers of the limitations of the MD

analysis, where both the high stresses and short timescales can affect the sepa-

ration between partials. Table 3.1 shows the stable and unstable stacking fault

energies for different potentials used. There is some variation. The nucleation

of the trailing dislocation encounters the energetic barrier (γUSF − γSF ). Hence,

we are aware of the limitations of MD in predicting the actual partial separation.

Nevertheless, we observe both partials and perfect dislocations and the minimum

partial separation observed (Fig. 3.9) is (3 − 5)b. However, the stacking fault can

be considerably larger prior to the nucleation of the trailing partial.

The simulations were carried out under uniaxial strain, not uniaxial stress, as

in Potirniche et al. [61]. The lateral stresses have been computed as a function



63

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  500  1000  1500  2000

S
tr

es
s 

(G
P

a)

Time (ps)

Sxx
Syy
Szz

Figure 3.10: Lateral stresses generated when loading is applied in direction ZZ.
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of time and are shown in Figure 3.10. The difference between longitudinal (Szz)

and lateral stresses (Sxx and Syy) rises linearly until the maximum. At this point,

the longitudinal stress decreases as a result of dislocation loop nucleation at the

surface of void. There is a modest rise in the transverse stresses. As a result, the

three stresses approach each other and the state of stress approaches a hydrostat.

As the three stresses decay on unloading, their magnitudes are very close. Hence,

the emission of dislocations at the void surfaces relaxes the deviatoric stresses.

3.3 Compression and Expansion of Nanocrystalline

Nickel

TEM measurements observe voids in nanocrystals [97]. This simulation is mo-

tivated by the result of a measurement of voids and vacancies with in nanocrystal

nickel. Positron annihilation analyses have been performed on nanocrystal nickel

before and after shock loading experiment. The results showed that the amount

of voids and vacancies within the nano-structure stayed unchanged. This brought

up a number of questions, whether voids re-open after unloading or there were no

voids but just vacancies distributed throughout the structure [100].

3.3.1 Simulation setup

A simulation box of nanocrystal nickel with an average grain size of 5 nanome-

ters is created with the cubic domain size of 17.6 × 17.6 × 17.6 nanometers. The

nanocrystalline nickel structure was generated using Voronoi tessellation and was

provided by Eduardo Bringa and Paul Erhart and it had a mean grain size of 5 nm.

The nano structure was relaxed in LAMMPS with the following sessions [100]:
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• 0.25 picoseconds of equilibrating at 0.01 Kelvin.

• 1.25 picoseconds of equilibrating at 300 Kelvin.

• 2.5 picoseconds of equilibrating at 5 Kelvin.

• 2.5 picoseconds of equilibrating with no control of temperature.

The equilibrated simulation box undergoes a uniaxial-compression up to a cer-

tain strain then it is hold at this strain for a period of time and it then followed

by an unloading session. The unloading session is divided into: 1) unload to zero

strain and 2) unload to zero pressure. Two shock loading levels were modeled: 23

GPa and 38 GPa shocks. This gives three different MD simulations:

• Uniaxial compression of 8% strain (P=23 GPa) with ε̇ = 2×1010 s−1, holding

for 10 picoseconds, and unloading to zero strain with the same ε̇.

• Uniaxial compression of 13% strain (P=38 GPa) with ε̇ = 3.25 × 1010 s−1,

holding for 10 picoseconds, and unloading to zero strain with the same ε̇.

• Uniaxial compression of 13% strain with ε̇ = 3.25 × 1010 s−1, holding for 10

picoseconds, and unloading to zero pressure in 8 picoseconds.

The first run is comparable to the shock of 23 GPa while the second and the

last run are comparable to 38 GPa shock. A nanocrystalline nickel sample with

voids was given to us from Eduardo Bringa and Paul Erhart from LLNL. Voids

were created at the triple junctions with a constant radius (R = 1 nm). There are

four simulations for this sample with voids, two for two levels of loading and two

for two types of unloading.

3.3.2 Results

At the beginning of the compressive loading the nano-structure behaves elas-

tically for a very short period (up to 1% strain). Then it deforms plastically by

mechanisms within the grain boundary, such as grain boundary sliding [99]. Up

to this point there is no dislocation emission.
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Figure 3.11: Plot of pressure against time.
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Figure 3.12: Plot of shear stress versus strain for nanocrystal Ni (d = 5 nm).
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(a) Initial condition (b) Fully loaded

(c) End of holding at constant strain (d) Fully unloaded

Figure 3.13: Sequence of nanocrystalline nickel (d=5 nm) under 38 GPa loading.
Note the disappearance of most dislocations after unloading.
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Figure 3.14: Plot of pressure against time for nanocrystal sample with voids.

Plastic deformation becomes more noticeable (after ∼ 7% strain) when we

reach the second slope change, Fig. 3.12, is especially more pronounced in the

38 GPa run. Dislocations form and start to travel across grains at this point and

continues until it has passed the target strain. Since we are holding strain constant,

dislocation mechanisms now continue to work and try to equate σxx and σyy to σzz

and vice versa.

Dislocations have reached a saturation point where all of possible local stresses

are reduced (flat plateau before unloading in Fig. 3.11); this can be seen by the

leveling of pressure in plot in Figure 3.11. The average pressure no longer changes.

The amount of triaxiality becomes constant.

As soon as unloading happens dislocations pull back. For the case of unload-

ing to zero strain, the number of dislocations was reduced very fast and only a

few dislocations were left as residual deformation. For the case of unloading to

zero pressure, the rate of reduction of dislocation is much slower and many more

dislocations are left at the end.
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Figure 3.15: Plot of shear stress versus strain of nanocrystal sample with voids.

For the cases with voids, with 23 GPa loading, the voids shrank in size a little

but did not fully close. This is also accompanied by grain sliding and rotation

as found previously and also an additional small amount of dislocation activity.

Jarmakani et al. [101] showed that most of the plastic deformation (∼ 80%) in

nanocrystalline nickel is accommodated by the grain boundaries. It was until the

simulation had passed maximum strain that dislocations traveled further. When

unloaded, some dislocations stay, but the majority of dislocations pull back, and

the voids never grew larger.

With 38 GPa loading on the sample with voids, dislocations traveling from

the void surface and grain boundaries as well as void shrinking can be observed.

Voids collapsed completely before reaching maximum strain and extra dislocation

activity followed that. When the sample was unloaded, dislocations pulled back

slightly but the voids never reopened.
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(a) Initial condition (b) Fully loaded

(c) End of holding at constant strain (d) Fully unloaded

Figure 3.16: Sequence of nanocrystal nickel under 23 GPa loading with sample
containing voids.



71

(a) Initial condition (b) Fully loaded

(c) End of holding at constant strain (d) Fully unloaded

Figure 3.17: Sequence of nanocrystal nickel under 38 GPa loading with sample
containing voids
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3.3.3 Interpretation

With 23 GPa loading level, the voids did not all collapse. Rather, grain sliding

dominated the plastic deformation. As the load (strain) grew larger for 38 GPa,

dislocation activity played a dominant role in local stress relaxation. The voids that

existed before compression never reopened after they were fully collapsed. There

are several stages with different mechanisms of plastic deformation in combination

during the same simulation. This will need further analysis and properly designed

simulations that can separate different mechanisms during each individual step.

3.4 Void Growth in a Single-Crystal Structure -

Uniaxial expansion

As we have learned that strain rates directly affect how dislocations behave,

designing a new simulation become much easier. The simulations presented in

this section ( Figure 3.18) were designed to run at a fixed low strain rate of 108

s−1, with a few additional runs with different strain rates and loading direction, for

reference purposes. The following MD simulations are designed to mimic how finite

element methods would be generally set up for a simulation with uniaxial loading

conditions. The results of the simulations should therefore be easier to compare

with their continuum counterparts. These molecular dynamics simulations are

also motivated by the knowledge that continuum models for porous materials,

mentioned in section 1.3.2, do not take into account the size scale of the void[100].

3.4.1 Simulation Setup

A cubic domain of single crystal copper was created such that all three principal

directions of the crystal align with the global Cartesian coordinate system of the

simulation domain. The size of each cubic domain side was 28 unit cells or 10.122

nanometers. A spherical void was cut at the center of the cube with a radius of 1
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Z

X Y

Figure 3.18: Diagram of simulation setup for a single crystal cubic domain and
uniaxial strain.
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Table 3.2: Table of simulation configurations for void growth under uniaxial
expansion.

Rvoid (nm) L/a0 L (nm) Void/box (%) Total atom Removed
0.3 28 10.122 0.0101 87,808 13
0.5 14 5.061 0.404 10976 43
1.0 28 10.122 0.404 87,808 369
2.0 56 20.244 0.404 702,464 2,899
4.0 112 40.488 0.404 5,619,712 22,663

nanometer. This gives a void volume ratio of 0.404%. The total number of atoms

in the simulation was 87439.

The domain with void was equilibrated for 2 to 3 picoseconds, using an nph

ensemble (integration steps with a barostat, see detail in appendix A), to reach

the zero pressure state. Then uniaxial expansion in the z-direction (aligned with

[001] crystal direction) was applied with three different strain rates, 1010, 109 and

108 s−1. The target strain is 20% volume expansion in the z-direction. A smaller

simulation domain (0.5 nm void radius) as well as two larger domains (2.0 nm and

4.0 nm void radius) were also prepared with the same exact void volume fraction

of 0.404%. These small and larger models were run at strain rates of 108 s−1 alone

to compare the yield stress as a result of the difference in size scale. To compare

with previous results from hydrostatic expansion strain, a domain sample with 1.0

nm void radius also underwent hydrostatic expansion strain.

3.4.2 Result

Effect of Strain rate

With a high strain rate such as 1010 s−1, the material yields at about 10.6 GPa.

When the strain rate was lowered, the yield stress became lower to 9 GPa. This

is similar to the scenario in Figure 3.2 for 2.88 × 1011 s−1 strain rate. The rate

sensitivity is the result of dislocation lag, the behavior in which dislocations don’t

have enough time to relax stress concentrations. When dislocations have enough
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Figure 3.19: Plot of stresses against strain for different strain rates while fixing
void size at 1.0 nm radius.
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time to transport material and relax the stress in lower strain rate simulations, the

drop in the yield stress becomes obvious. The stress drop indicates the failure of

the material, and it is followed by a slight hardening behavior as dislocations reach

the simulation boundary and interact with their periodic images. This behavior

was only present in the two lower strain rates, as they allow dislocations enough

time to nucleate and travel across the simulation domain. See Figure 3.19.

Difference Between Hydrostatic and Uniaxial Strain

Hydrostatic and uniaxial strain simulations show a difference in the yield stress

(the stress at which the voids start growing); the yield stress for uniaxial strain

was lower, see Fig. 3.20. This difference is due to the fact that the shear stresses

resulting from hydrostatic strain are considerably lower than in the case of uniaxial

strain. An additional, but related, effect is that the formation of dislocations under

hydrostatic strain was generally more complex.

Size Scale Difference

The size-scale dependence of the yield stress can be observed in uniaxial strain

simulations with various sizes of voids, Fig. 3.21. The void fraction was kept con-

stant at 0.404%. As the void size increases, the yield stress drops: it is 11 GPa for

0.5 nm and 7 GPa for 2 nm void. It should be mentioned that Potirniche et al. [61]

have made similar calculations for nickel. Their void radius was varied from 0.75

to 4.5 nm whereas in the current calculations they were varied from 0.5 to 4 nm.

Potirniche et al. [61] used a constant ratio of specimen to void dimensions. Other

differences with the current calculations are the lateral boundary conditions; the

boundaries were assumed free by Potirniche et al. [61] whereas here the state was

assumed to be uniaxial strain with periodic boundary conditions. Free boundaries

lead to necking of the sample. There is also a significant difference in strain rate:

Potirniche et al. [61] used 1010s−1, whereas we used 108s−1. This lower strain

rate enabled individual observation of dislocations. In spite of the differences, the
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Figure 3.20: Plot of stresses against strain for different strain types while fixing
void size at 1.0 nm radius and strain rate at 108 s−1.
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Figure 3.21: Plot of stresses against strain for different void size at fixed strain
rate of 108 s−1.
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stresses calculated herein are in good agreement with the ones by Potirniche et al.

[61] for nickel; the ratios of stress to shear modulus vary from 0.12 to 0.22 in our

calculations and from 0.17 to 0.26 in Figure 8 of Potirniche et al. [61]. Note that

there are always error bars (on the order of ± 0.05 GPa) in the stress results from

MD simulations, but it is small and can be negligible.

The void size dependence is in opposition to the Gurson criterion [1], which is

size independent: σy = g (f, σkk, σe). The stress at which the quasi-linear behavior

is no longer obeyed is taken as the yield stress; it corresponds to the onset of

dislocation activity. The stress drop is substantial for the smallest void radius

(0.5nm); this is due to the fact that domain size is the smallest and therefore

the dislocation density becomes the largest. For the larger voids, a greater extent

of dislocation interaction takes place before the dislocations reach the boundaries

of the “box”. It is interesting that these results can also be interpreted in the

framework of gradient plasticity [63, 64, 102, 103, 104, 105, 106], however, this

transcends the goal of this report.

Figure 3.22(a) shows the yield stress (normalized to the shear modulus, G)

plotted as a function of the normalized void radius, R/b, where b is the Burgers

vector. The decrease of yield stress with increasing R/b is clear, and similar to

Dávila et al. [60]. The von Mises stress was obtained from the three components

of the principal stress in the uniaxial strain state, neglecting the cross terms, σxy,

σxz, and σyz because there were much smaller than the diagonal terms.

σvm =

√

((σxx − σyy)2 + (σxx − σzz)2 + (σyy − σzz)2)

2
(3.1)

σm =
(σxx + σyy + σzz)

3
(3.2)

Note that the results of the mean stress will give a slightly different threshold

at the yield point compared to von Mises stress. The atomistic results compare

well with the analytical calculations by Lubarda et al. [41] which are obtained
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from
σcr

G
=

b/R√
2π(1 − ν)

(1 +
√

2Rcore/R)4 + 1

(1 +
√

2Rcore/R)4 − 1
(3.3)

where the radius of the core, Rcore, was made equal to b, 2b, and 4b. The stresses

calculated by Lubarda et al. [41] are local values at the surface of the void, whereas

the current values are from the far field, and therefore a correction factor of 2 (stress

concentration for the spherical void) was introduced.

By contrast, Gurson’s formulation [1] is void size independent, since only the

porosity, f , enters the expression

Φ =
σ2

e

σ2
y

+ 2f cosh

(

σh

2σy

)

− 1 − f 2 (3.4)

where σy is the uniaxial yield stress of the material, σe is the equivalent von Mises

stress, σ′ is the deviatoric stress and σh is the hydrostatic stress. The latter two

are

σe =

[

3

2
σ′

ijσ
′
ij

]
1

2

(3.5)

σh = σkk (3.6)

The condition for plastic flow is

Φ = 0. (3.7)

The decomposition of the strain into hydrostatic and deviatoric parts is

ε =









εx 0 0

0 0 0

0 0 0









=









1

3
εx 0 0

0 1

3
εx 0

0 0 1

3
εx









+









2

3
εx 0 0

0 −1

3
εx 0

0 0 −1

3
εx









(3.8)

The corresponding stresses are

σ = σhydrostatic + σdeviatoric = K









1

3
εx 0 0

0 1

3
εx 0

0 0 1

3
εx









+ 2G









2

3
εx 0 0

0 −1

3
εx 0

0 0 −1

3
εx









(3.9)
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where K is bulk modulus and G is shear modulus. From Eq. 3.6

σh = Kεx (3.10)

With deviatoric stress from Eq. 3.5 and Eq. 3.9

σ2

e = 4G2ε2

x (3.11)

And the Gurson yield function now becomes

Φ =
4G2ε2

x

σ2
y

+ 2f cosh

(

Kεx

2σy

)

− 1 − f 2. (3.12)

We can assume, to a first approximation, that strain rate imparted to the material

(108 s−1) is such that the theoretical shear stress is reached. Thus:

τ =
σy

2
≃ G

10
(3.13)

where G is 48.7 GPa [107], K is 130 GPa and σy is 9.74 GPa. With f=0.0042,

one obtains εx = 0.099484 which results in a von Mises stress of 9.6897 GPa and

a mean stress of 4.311 GPa. These values are introduced into Fig. 3.22(a) for

comparison purposes. It can be seen that the Gurson model [1] is in reasonable

agreement with the analytical Lubarda et al. [41] results and the MD calculations

for larger void sizes. However, it does not have a void size dependence. Wen et al.

[28] modified Gurson’s model by incorporating the Taylor dislocation model. With

the introduction of this scale dependent hardening component, the stress required

to expand voids became scale dependent. This corresponds to the incorporation

of gradient plasticity [63, 64, 102, 103, 104, 105, 106] into Gurson’s model.

It is instructive to establish whether the void size dependence of the flow stress

is directly linked to the stress required to bow dislocation loops into semi-circles

(the stress minimum). Thus, the expression, e.g. [91], was used

σ

G
= α

b

R
(3.14)

where α is a parameter equal to approximately 0.5 and R was taken as the void

radius (assuming that loop and void radii are the same, to a first approximation).
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The results are plotted in Fig. 3.22(b). In the log-log scale, both stresses obtained

from atomistic simulations are linear and have expressions:

σm

G
= 0.2884

(

b
R

)0.3323

σe

G
= 0.1288

(

b
R

)0.3798 (3.15)

The exponents and pre-exponential factors in the atomistic calculation are 0.33-

0.38 and 0.13-0.29, in contrast with Eq. 3.14, in which they are 1 and 0.5, respec-

tively. Nevertheless, the compatibility of the results is strong evidence that loop

expansion beyond a semi-circle is an important contributing mechanism.

A few additional simulations for the uniaxial expansion at the strain rate of 108

s−1 on a single crystal copper with void radius of 1 nm were performed at several

varying porosities (by changing the size of the overall simulation domain). The

result is shown in Figure 3.23(a). The difference on the critical stress between the

porosity of 0.404% and 1% is small, while it is larger for the case of 3.6% porosity.

Furthermore, the simulations of 3.6% porosity single crystal copper under the

uniaxial expansion for void radius of 1 nm were performed for the various strain

rates of 107, 108, 109, and 1010 s−1. The result is shown in Figure 3.23(b). The

von Mises critical stresses are similar for the simulations with the strain rates of

107 to 109 s−1 and there is a large difference for the case of 1010 s−1 This shows

that the strain rate of 108 s−1 which was adopted almost throughout this work is

a reasonable trade off between the accuracy of the results and the computational

resources [100].

3.4.3 Interpretation and Calculation

Figures 3.24 and 3.25 show both the MD simulations (left) and models (right)

for the initiation and propagation of dislocations. Shear loops on different {111}
planes, making 45◦ with the void, connect at the 〈110〉 intersection (Fig. 3.24(b)).

Figures 3.24(a) and 3.24(c) show two views of a biplanar dislocation loop start-

ing to form. This is more clear in the schematic of Fig. 3.24(d) showing the

leading partials fully formed. As the leading partials expand, the trailing partials
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(a) (b)

(c) (d)

Figure 3.24: Initiation of plastic flow at void surface (at 590ps); (a) rendered atoms
from MD; (b) diagram of (11̄1̄) and (1̄1̄1̄) slip planes intersecting sphere surface at
45◦; (c) rendered atoms from (a), rotated to show two loops; (d) diagram showing
leading partial dislocations.



86

(a) (b)

(c) (d)

Figure 3.25: Continued loop expansion; (a) rendered atoms from MD (591ps);
(b) corresponding sketched diagram; (c) rendered atoms from MD (595ps); (d)
corresponding sketched diagram.
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(a) (b)

(c)

Figure 3.26: Later growth and interaction of shear loops emanating from void: (a)
597 ps; (b) 598 ps; (c) 599 ps.
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follow them. More complex dislocation interactions take place as the shear loops

propagate outwards (Figs.3.26).

In general, the stacking fault consists of two layers of atoms composing the

plane of the dislocation. This is an artifact of filtering using centrosymmetry

parameter (the range of centrosymmetry parameter for dislocation partial is ∼
0.2-0.5). Figure 3.25 shows the continued expansion of the biplanar loops. When

an additional layer forms on top of these two layers, the plane opens up with

trailing edge of dislocation closing the stacking fault. At this point, it becomes

a shear loop with a narrow stacking fault band. Shear loops continue to travel

outwards from the void surface as they transport material, accommodating the

growth of void. Dislocations travel at a very high velocity in the same level of

sound speed in the material.

Dislocation planes are of the family {111}. Partial dislocations on two planes

interact at the initiation stage, forming an angle in which they tie and travel

together as they expand. This interaction happens for any two partial dislocation

planes that nucleate next to each other, Fig. 3.24.

3.5 Calculation of Dislocation Interactions

For the shear loops postulated by Lubarda et al. [41] to undergo continued

expansion, they have to intersect, if they form in the same (111). Six loops with

edge dislocations at the center create the uniform expansion of the void segment

(calota) if they can expand uniformly. In this section the energetics of the process

are analyzed. Figure 3.27 shows three intersecting dislocations ([01̄1], [1̄01] and

[1̄10]) in the (111) plane that intersects the void at 45◦. These are the planes (shown

in Fig. 1.8(b)) that maximize the shear stress. Three nascent loops are shown in

Fig. 3.27(a); as they expand (Fig. 3.27(b)), their extremities touch and this would

encourage a reaction. We analyse this for perfect and partial dislocations in the

next subsection.
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(a) (b)

(c) (d)

Figure 3.27: In-plane dislocation interactions; (a) before interaction; (b) onset of
interaction; (c) interactions and reaction; (d) uniform expansion of loops leaving
dislocation segments behind.
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Figure 3.28: Plane (111) on principal directions.

3.5.1 In Plane Dislocation and Interactions

The following shows equations for a dislocation loop reaction in plane (111),

Fig. 3.28.

For Perfect Dislocations

Figure 3.27(b) shows three dislocation loops with Burgers vectors ~b1, ~b2 and ~b3.

The resulting reaction will lead to (Fig. 3.27(c))

~b1 +~b2 = ~b7. (3.16)

The Burgers vector of ~b7 is (the Burgers vectors have to be subtracted in order to

account for the dislocation lines; this is analogous to the interaction in a Frank-

Reed source)
a

2
[1̄01] + (−)

a

2
[1̄10] =

a

2
[01̄1] . (3.17)
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Figure 3.29: Plane (111) with in-plane partial dislocations interactions.

The simple energy reduction criterion is obeyed (E = G b2

2
) and the reaction takes

place

G
a2

2
+G

a2

2
> G

a2

2
. (3.18)

Additionally, there is a change in overall dislocation length when a reaction occurs

as shown in Fig. 3.27(c). One can estimate the equilibrium of the dislocation

configuration by using the energy equation incorporating the lengths.

Thus, the configuration seen in Fig. 3.27(d) can be envisaged: six dislocation

loops expanding uniformly in the same (111) plane, creating six segments through

reactions. These segments are not mobile but are not sessile, since they have

Burgers vectors in (111). They have edge character, with the Burgers vector

perpendicular to the line. This configuration is slightly different from the one

described by Marian et al. [56, 57].
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For Partial Dislocations

The partial dislocations corresponding to ~b1 in plane (111) are (Fig. 3.29)

~b1 =
a

2
[1̄01] ⇒ ~bp1 =

a

6
[1̄1̄2] ;~bp2 =

a

6
[2̄11] (3.19)

and the partial dislocations corresponding to ~b2 in plane (111) are

~b2 =
a

2
[1̄10] ⇒ ~bp3 =

a

6
[1̄21̄] ;~bp4 =

a

6
[2̄11] . (3.20)

The leading partials react as (again, we have to subtract ~bp3 from ~bp1 to account

for dislocation line direction normalization)

~bp1 +~bp3 =
a

6
[1̄1̄2] + (−)

a

6
[1̄21̄] =

a

2
[01̄1] . (3.21)

The trailing reaction produces

~bp2 +~bp4 =
a

6
[2̄11] + (−)

a

6
[2̄11] = 0. (3.22)

This is the same solution than for perfect dislocations, as expected. It is interesting

to note that the leading partials react, creating a perfect dislocation and the trailing

partials cancel.

3.5.2 Biplanar Dislocation and Interactions

A more detailed dislocation analysis is shown in Figs. 3.30 (perfect disloca-

tions) and 3.31 (partial dislocations). In Fig. 3.30, two perfect dislocation loops,

~b1 and ~b2, forming on (11̄1̄) and (1̄1̄1̄), respectively, interact from the early state

of dislocation formation. They have parallel Burgers vectors but are on differ-

ent planes. The intersection line is also aligned with [01̄1] which allows the two

dislocations to glide without forming sessile segments. Actually, they cancel each

other at the 〈110〉 intersection. An analysis analogous to the one made for in-plane

dislocation interactions was carried out with the different that we now use (11̄1̄)

and (1̄1̄1̄).
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Figure 3.30: Top view of two perfect dislocations.

For Perfect Dislocations

~b1 +~b2 = ~b7 (3.23)

a

2
[01̄1] + (−)

a

2
[01̄1] = 0 (3.24)

The energy becomes zero at the intersection line because the two perfect dislo-

cations cancel each other. Thus, the biplanar loop does not require the creation of

a radial dislocation. This is an energetic advantage over the planar loop emission

mechanism.

For Partial Dislocations

The interaction of perfect dislocations can be extended to partial dislocations

(Fig. 3.31). The leading partials ~bp1 and ~bp3 react and form a sessile dislocation

a
3
[1̄00]; the trailing partials form an opposite dislocation a

3
[100]. They cancel each
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Figure 3.31: Top view of partial dislocations.

other as the partials move, leaving the crystalline structure undistorted behind.

The a
3
[1̄00] dislocation is sessile and has an energy below the ~bp1 + ~bp3 sum. It

constricts the loop at the slip-plane intersection. Hence, the biplanar shear loop

mechanism is applicable to the case where perfect dislocations decompose into

partials. This is also clearly seen in the simulation of Fig. 3.25. It should be

noted that dislocation reactions should be ~b1 −~b2 (and, accordingly, ~bp1 −~bp3 and

~bp2 −~bp4) because of the dislocation loop line vectors in the (11̄1̄) and (1̄1̄1̄) which

are opposed.

The decomposition of a perfect dislocation ~b1 in (11̄1̄) leads to

~b1 =
a

2
[01̄1] ⇒ ~bp1 =

a

6
[1̄2̄1] ;~bp2 =

a

6
[11̄2] . (3.25)

The energy criterion is (∝ ~b2)

a2

2
>
a2

6
+
a2

6
=
a2

3
(3.26)
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The decomposition of a perfect dislocation ~b2 in (1̄1̄1̄) is

~b2 =
a

2
[01̄1] ⇒ ~bp3 =

a

6
[1̄1̄2] ;~bp4 =

a

6
[12̄1] . (3.27)

The energy criterion is (∝ ~b2)

a2

2
>
a2

6
+
a2

6
=
a2

3
. (3.28)

The reaction between the leading partials is (note the sign change required for

normalization of the dislocation line direction)

~bp1 +~bp3 :
a

6
[1̄2̄1] + (−)

a

6
[1̄1̄2] =

a

6
[01̄1̄] . (3.29)

The energy criterion is (∝ ~b2)

a2

6
+
a2

6
=
a2

3
>
a2

18
(3.30)

This reaction reduces energy. For the trailing partials

~bp2 +~bp4 :
a

6
[11̄2] + (−)

a

6
[12̄1] =

a

6
[011] (3.31)

The energy criterion is (∝ ~b2)

a2

6
+
a2

6
=
a2

3
>
a2

18
. (3.32)

This reaction also reduces energy. The sum of the two reaction products is, as ex-

pected, zero. This is consistent with the calculations conducted on biplanar perfect

dislocations. Thus the leading partials create a Lomer-Cottrell sessile dislocation

a
6
[01̄1̄]; the trailing partials react similarly and create another Lomer-Cottrell ses-

sile dislocation a
6
[011], which cancels the one created by the leading partials. This

sessile dislocation constricts the loop at the slip-plane intersection. Hence, the

biplanar shear loop mechanism is applicable to the case where perfect dislocations

decompose into partials. This is also clearly seen in the simulation of Fig.3.25.

The formation of sessile dislocations was successfully observed (molecular dynam-

ics and quasi-continuum computational approaches) by Marian et al. [56, 57] and

is confirmed here, although there are differences in the details of the reaction.
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3.6 Void Growth Kinetics

The Cocks-Ashby [108, 109] model for void growth is, strictu sensu, only ap-

plicable to creep; the mechanisms of matter transfer are not dislocations but flow

of vacancies along boundaries, surfaces, or dislocations (the latter is the power-law

creep, vacancies promoting the climb of dislocation segments). However, its form is

such that it can be used for an ideally plastic material with strain rate sensitivity.

The constitutive equation for power-law creep is

ε̇ss = ε̇0

(

σe

σ0

)n

, (3.33)

where ε̇ss is the equivalent strain rate, σe is the equivalent stress, and ε̇0, σ0 and n

are parameters. The “power-law creep” exponent is n and it is the inverse of the

strain rate sensitivity. Cocks and Ashby [108, 109] applied continuity conditions to

it in the presence of a void and obtained the following equation for the evolution

of damage, D
dD

dt
= βε̇0

[

1

(1 −D)n
− (1 −D)

](

σe

σ0

)n

, (3.34)

This constitutive equation was implemented by Bamman et al. [110] into FEM

codes to predict the failure of metals. The evolution of damage predicted by Cocks

and Ashby [108, 109] is dependent on the parameter n. In creep, it has a value

between 1 and 10 (with n = 5 being the most quoted value [111]), but in defining

the strain rate sensitivity of plastic flow, the value of (1/n) is much lower, on the

order of 0.01, corresponding to n = 100. Integration of the Equation 3.34 yields

the closed form solution:

ln|(1 −D)n+1 − 1| − ln|(1 −D0)
n+1 − 1| = (n+ 1)ε̇βt (3.35)

The damage evolution in the MD calculations was estimated by considering the

radius increase as a function of time. The initial damage D0 was evaluated for a

void radius r = 2 nm that gave an initial damage level D0 = 0.004. Figure 3.32(a)

shows the evolution of damage for three crystalline orientations: [001], [110] and

[111]. The computation was carried out for a longer time for [001]; nevertheless,
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the results from the three orientations are compatible. The predictions of the

Cocks-Ashby model are shown in the same plot and good agreement is obtained,

the shape of the curves being similar. A significant difference is that there is an

incubation time of ∼ 400 ps for the MD computations. This is the result of the

time required to nucleate a dislocation (shear) loop. The match with Cocks-Ashby

is best for a value of n = 30. This corresponds to a strain-rate sensitivity of

0.033. This value is somewhat higher than the strain rate sensitivity often used for

Ni at lower strain rates: 0.01. The higher strain rate sensitivity can be justified

by the exceedingly high strain rate used in the present MD simulations: 108s−1.

The Cocks-Ashby prediction can be easily extended to larger damages and this

is shown in Figure 3.32(b) for the values of n used in Figure 3.32(a). There is a

gradual increase in the rate until D = 0.2. Beyond this value, damage proceeds

essentially instantly. Note that there was an incubation time for MD simulation

where void did not grow until there were dislocation activities. Therefore, MD

results in Figure 3.32(a) should be shifted in order to have zero time at initial

growth of void (this might result in a match of n = 60 ∼ 70).

3.7 Density of Geometrically Necessary Disloca-

tions

It is possible to estimate the total dislocation length around the expanding void

using Ashby’s [112, 113, 40] concept of geometrically-necessary dislocations. This

can be done in an approximate manner by assuming that the dislocation loops

transport matter outside.

The length of a circumnavigating loops (each composed of six initial loops

whose ends react) is, at an angle of 45◦ with the surface

△L = 2

(

2πr√
2

)

k + 6(kr − r), (3.36)

where k is the extension ratio of the loop from its original value (k = R/r).
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Figure 3.32: Damage vs Time; (a) comparison of MD simulations and Cocks-Ashby
equation (b) predictions from Cocks-Ashby equation (n is exponent in power-law
constitutive equation).



99

Figure 3.33: Volume increment generated in void by the expansion of two shear
loop rings.

The distance that the dislocations travel outwards determines the radius R of the

work-hardened layer (Fig. 3.33). The two terms represent the circular loop and

six radii resulting from the reactions of loops extremities. The formation of two

loops expands the void by a volume △V (Fig. 3.33)

△V ≃ 2
√

2πr2b (3.37)

The corresponding average increase in void radius, △r, ignoring the distortion and

other effects, is

△r = (△V )
1

3 = (2
√

2πr2b)
1

3 . (3.38)

The ratio of equations gives

dL

dr
=

[

4πk√
2

+ 6(k − 1)
]

r

(

2
√

2πr2b
)

1

3

. (3.39)
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Integrating gives

L =

[

4πk√
2

+ 6(k − 1)
]

(

2
√

2πb
)

1

3

∫ rf

r0

r
1

3dr. (3.40)

If we make r0 = 0

L =
3
[

4πk√
2

+ 6(k − 1)
]

4
(

2
√

2πb
)

1

3

r
4

3 . (3.41)

The work-hardened volume is equal to

Vwh =
4

3
πR3 − 4

3
πr3 =

4

3
π
(

k3 − 1
)

r3. (3.42)

The dislocation density is defined as

ρ =
L

Vwh

=
9
[

4πk√
2

+ 6(k − 1)
]

16
(

2
√

2πb
)

1

3 π (k3 − 1)
r−

5

3 = P (k)r−
5

3 . (3.43)

The densities are plotted for values of k varying from 4 to 20, in Fig. 3.34. These

values are consistent with dislocation densities in highly work-hardened metals.

It is evident that k has to be larger for smaller voids, consistent with the mean

free path of dislocations. As the void expands, the dislocation density can be

accommodated with relatively a smaller work-hardened region. The prediction

from Eq. 3.43 applies only to the geometrically-necessary dislocations and does

not incorporate dislocation interaction effects that contribute to the statistically-

stored dislocation density.

3.8 Void Growth in Single Crystals with Differ-

ent Loading Orientations

Following the simulations of void growth in single crystal copper under uniaxial

expansion aligned with [001], the result from the void radius of 2 nm shows that the

size of the simulation domain is not too large to compute repeatedly and not too

small to produce evidents of dislocation interactions for detailed studies. We use
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the setup of the 2 nm void radius for two more simulations of uniaxial expansion

along [110] and [111] of single crystal copper. The void/volume ratio was kept

constant at 0.404% with the uniform expansion by 108 s−1 strain rate.

3.8.1 Simulation Setup

The molecular dynamics LAMMPS (Large-scale Atomic/Molecular Massively

Parallel Simulator) [78] code was used in this investigation. For the FCC copper

structure, an EAM [80] Mishin et al. [83] potential was used. The number of atoms

was varied from 105 to 107, and calculations were performed on parallel PCs and

on the supercomputer at San Diego Super Computer Center.

The single crystal copper domain was a cube with a spherical void at the

center, Figure 3.18. Periodic boundaries were used perpendicular to the expansion

plane, providing a uniaxial strain state. The different domains were subjected to

uniaxial strain along [100], [110] and [111]. All simulations were done at an initial

temperature of 150 K and strain rate of 108s−1 for times up to 2000 picoseconds,

corresponding to 20% volume strain. Visualization of stacking faults representing

dislocations was conducted with a filter using a centrosymmetry parameter [90].

3.8.2 Results

The calculations (for voids with 2 nm radius) were performed for three orien-

tations of the tensile axis; the Schmid factors were shown in Table 3.3, they have

the following number of slip systems with the highest magnitude of Schmid factor:

[100] eight slip systems
[110] four slip systems
[111] six slip systems

Loops emission occurs, as postulated by Lubarda et al. [41], at the line cor-

responding to the intersection of the slip plane making an angle of 45◦ with the

surface of the void and the void surface, which maximizes the shear stress. The
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Figure 3.35: Schematic showing traces of two slip planes intersecting void at 45◦:
loading axis ([110]) marked by arrows.
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Table 3.3: Table of Schmid factor calculation for three loading directions.

Slip plane Slip direction Load [001] S.F. Load [110] S.F. Load [111] S.F.
(111) [01̄1] 0.408248 -0.408248 0

[1̄01] 0.408248 -0.408248 0
[1̄10] 0 0 0

(1̄11̄) [01̄1̄] 0.408248 0 0.272166
[1̄01] -0.408248 0 0
[1̄1̄0] 0 0 0.272166

(1̄1̄1) [01̄1̄] -0.408248 0.408248 0.272166
[101] 0.408248 -0.408248 -0.272166
[11̄0] 0 0 0

(11̄1̄) [011̄] 0.408248 0 0
[101] -0.408248 0 -0.272166
[1̄1̄0] 0 0 0.272166

traces of two slip planes are illustrated in Figure 3.35 for a [110] loading direction

(marked by arrows). The 45◦ angles with the surface are marked, and they make

an angle of 109.47◦. The sequence of shear loop initiation and expansion is demon-

strated here for the three loading orientations, [110], [100], and [111], in order of

complexity.

Loading Application Direction [110]

Figure 3.36 shows the sequence of expansion of a shear loop for [110] loading.

The atoms on the surface of the voids are green, yellow, orange and red. The atoms

in the stacking fault, indentified through the centrosymmetry parameter [90], are

light blue. Only the leading partial dislocation is emitted during the computational

time (limited by the domain size), and the (111) slip plane, as expected, makes an

angle of 45◦ with the surface of the spherical void (radius = 2nm). This angle is

shown in Figure 3.36(d). The expansion of the loop proceeds as shown in Figures

3.36(a-c). The loop acquires a heart shape (Fig. 3.36(c)). In Figure 3.36(d) a

second loop is shown. For this direction of loading, the application of Schmid

equation predicts four slip systems with highest Schmid factors (=0.408):
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(a) (b)

(c) (d)

Figure 3.36: Sequence of shear loop nucleation and growth for [110] loading di-
rection. Note directions and planes in (d) as well as second loop forming (loading
direction perpendicular to plane of paper for Figs. 3(a-c) and marked in Fig. 3(d)).
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(111) → [01̄1]
→ [1̄01]

(1̄1̄1) → [01̄1̄]
→ [101]

Figure 3.36(d) shows that indeed the two slip planes ((111) and (1̄1̄1)) make

an angle of 54.7◦ with the loading axis.

Loading Application Direction [100]

For this orientation (sequence shown in Fig. 3.37), a cooperative growth of

partial dislocation loops is observed. This mechanism is analyzed in detail by

Traiviratana et al. [114] in a forthcoming paper. A biplanar shear loop emerges

from the surface of the void, on planes (11̄1̄) and (1̄1̄1̄), marked in Figure 3.37(b).

These planes define the maximum Schmid factor orientations. The two leading

partial dislocations advance, moving away from the void. The trailing partials are

subsequently formed, and the dislocation that is formed by the reaction of the

leading partials (a
6
[1̄2̄1]− a

6
[1̄1̄2] = a

6
[01̄1̄]) is cancelled by the one forming by the

reaction of the trailing partials (a
6
[11̄2]− a

6
[12̄1] = a

6
[011]). Upon further loading,

additional loops form on other planes (Figs. 3.37(c) and (d)).

Loading Application Direction [111]

The growth sequence is shown in Figure 3.38. Similar to [110] and [100], the

loading axis is perpendicular to the plane of the paper. Three loops are simulta-

neously generated on different planes. As the shear loops expand by the glide of

the leading partial dislocations, the trailing partials form (Fig. 3.38(c)). Figure

3.39(a) shows the schematic of the three slip planes with the leading and trailing

partial dislocations as well as the stacking faults shown. A more detailed MD view

of the expansion of the triplanar loops, shaped like a parachute, is seen in Figure

3.39(b). The three slip planes are (11̄1̄), (1̄1̄1), and (1̄11̄), and the slip directions

within each plane are indicated. Schmid factor computations predict the following

six slip systems with highest Schmid factors (=0.272) involving the three planes:
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(a) (b)

(c) (d)

Figure 3.37: Sequence of loop nucleation and growth for loading along [100] (load-
ing direction perpendicular to the plane of paper). Note two loops reacting and
forming biplanar loop.
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(a) (b)

(c) (d)

Figure 3.38: Sequence of loop nucleation and growth for loading along [111] (load-
ing direction perpendicular to the plane of paper). Note the formation of loops on
three planes in (b).
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(1̄11̄) → [01̄1̄]
→ [1̄1̄0]

(1̄1̄1) → [01̄1̄]
→ [101]

(11̄1̄) → [101]
→ [1̄1̄0]

3.8.3 Interpretation

When we consider the plot of mean stresses of the three loading orientations,

Figure 3.40(a), we see that the slopes during the elastic deformation are about

the same and the yielding stress are not clear enough to distinguish the yield

point. The plot of the von Mises stresses is an alternative plot that we can use

to study the stress behaviors, Figure 3.40(b). It is much clearer that the crystal

under the loading orientation of [110] and [111] yield at the earlier strain of about

0.035 compare to about 0.06 for the case of [001] loading orientation. However the

yielding stress is the highest in the case of [111] loading orientation, at 4.75 GPa,

and this indicates that the copper crystal is stronger in the direction of [111]. The

softer direction is the [001] orientation with the yielding stress of 2.8 GPa.

We also notice the sharp drop of the von Mises stress after it passes the yield

point consistently for all loading orientations. Since von Mises is a representation

of shear stress in the system, we can say that the shear stress accumulated in

the system by the applied uniaxial uniform expansion was relaxed by the activity

of the shear loop dislocation emission from the void surface. It should be noted

here that the stress values passed the yield point can be useful up to the start of

hardening because the hardening is a result of the collision between dislocations

(passing through the boundary) and their periodic images.
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(a)

(b)

Figure 3.39: Plane and directions labeled for [111] loading direction; (a), schematic
illustration and (b), MD simulation.
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= 2 nm.
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Algorithm for dislocation

information extraction

4.1 Motivation

As it is natural for Molecular Dynamics calculations, each atom is considered

individually and has at least 6 properties, namely a location vector (x, y, z coor-

dinate) and a velocity vector (in x, y, z components). The velocity vectors can be

used to calculate kinetic energy and temperature. When we combine these basic

parameters of a group of atoms in a given volume, we can calculate their pressure,

stress components and so forth. These values can be easily output from LAMMPS

during the run time as often as needed. This can result in an extremely large

amount of information. To retrieve the plane, the Burgers vector, the velocity

and the length information of an individual dislocation, one could use a rendering

application to visualize the organization of atoms in the crystal.

Our results from LAMMPS Molecular Dynamics simulations have shown that

one can see dislocation activity as a result of the material dynamics. With the

centrosymmetry parameter [90], one can study how dislocations propagate or travel

within material. To take this further, one can filter out, using the centrosymmetry

parameter, the particles that are still in their perfect crystal configuration, leaving

113
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only the particles in the dislocations. In general, particles which belong to stacking

faults align themselves in a way that one can notice as two contiguous planes or

disks.

4.2 Ideas

Once we observe atoms in dislocations, we need to separate them into groups

of particles which belong only to a particular dislocation plane. Visually, we can

define the leading and trailing edges for each dislocation. The normal to the

plane can then be approximated. The length of leading and trailing edges can be

measured or calculated to obtain the dislocation density. All of these can be done

by hand calculation in principle, measuring and counting, but since we have a large

amount of data from different simulations, hand calculations can only be done in

a very limited ranges of simple simulations, in practice.

To be able to understand the interactions of dislocations in large numbers, we

must take an advantage of the rich source information we have in MD calculations

and applied statistical analysis to that information. A large amount of information

must be processed, interpreted and summarized into what we can actually use to

adjust current continuum models or even constructing a new and better model.

4.3 Algorithm

The above ideas can be summarized into the procedure described below;

4.3.1 Filtering out non-defect particles

With the help of centrosymmetry parameter [90], one can filter out particles

that are in perfect FCC configuration, leaving only defects such as dislocations,

stacking faults, grain boundaries and void surfaces, as seen in Figure 4.1.
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Figure 4.1: Atom rendered with a centrosymmetry parameter filter showing dislo-
cation planes and grain boundary.

4.3.2 Search boxes generation

The simulation domain is divided into smaller boxes which various number of

particles. Each box will have a list of particles that reside within the box. To

conserve memory, each box will be represented by a linked-list (C programming

and dynamic dimensioning, see Appendix B) containing only particle IDs. This is

the preferred approach because each box can contain different number of particles,

so a fixed-size array of integers would waste too much memory. Members of each

search box are found by looping though all of the particles and comparing their

location vector to check whether it is in a given box or not.

In one dimension, the box number n is Int(x/∆x)+1, where x is the coordinate

of the particle, and ∆x is the box width. Spatial bucket sorting was pioneered for

finite element contact by Benson and Hallquist [115], and it was found to be equally

efficient for searching for dislocations.



116

Figure 4.2: Atom colored by number of neighbors showing outward normal vector.

4.3.3 Neighbor particles search

Once we have the lists of particle numbers that belong to the search boxes, we

search within each box for particles that are close to each other(r < 1.1(2r0), where

r0 is the copper atom radius) and count them as neighbors. The same comparison

is also done for neighboring boxes. This is done because particles along the edge

of the search box may have neighbors within neighboring boxes.

4.3.4 Filter for the Dislocation Planes

As the search for neighbors is run, the number of neighbors of a given particles

is counted and stored. Vectors that point from neighbor particles to the main

particle are added up to construct a normal for this particle. Since it is an artifact

of centrosymmetry parameter filtering that exposes dislocation planes with two

adjacent planes of atoms, vectors from neighbor atoms on the same plane will

cancel each other, while the vectors from neighbor atoms on the adjacent plane
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Figure 4.3: Separated dislocation planes and average plane normals, each with a
distinct color.

point toward the normal to the dislocation plane. If the particle is a member of a

dislocation plane, its normal will be close to parallel to the normal from neighbor

particles that also belong to the same dislocation plane, see Figure 4.2. There are

many types of data we can gather while we are searching for neighbor particle:

• The number of neighbors.

• The list that contains number of neighbors of neighbors.

• The average number of neighbors from list above.

• The standard deviation of the list above.

• The “normal” vector of an atom from adding up vectors pointing from neigh-

bors.

• The Average distance between neighbors.

There are many ways to use the above parameters and combinations of them

to search for particles that belong to a dislocation plane, and at the same time,



118

[110]

[111]

[100]

Dislocations plane

Figure 4.4: Stereographic triangle showing normal directions of dislocation planes
from a simulation of a void between two crystals of copper undergoes uniaxial
expansion. See section 3.2, spherical void configuration.

separate them from particles belonging to different dislocation planes, see Figure

4.3.

4.3.5 Normal of plane of dislocation

As it is mentioned above, that normal of a particle came from adding up vectors

that point from neighboring particles, when we include the information that shows

that this group of particle belong to a dislocation plane, the approximate normal to

the plane can be calculated by averaging the normals of all the member particles.

One can then compare this normal with the reference crystal directions and then

be able to represent the normal of a plane on a stereographic triangles, see Figure

4.4.
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4.3.6 Leading and Trailing Edge of Dislocation

After the particles that belong to a plane are determined, and the normal to

the plane is calculated, one can create two axes spanning the local x-y plane of

dislocation. The of dislocation can be calculated by averaging all the location

vectors of member particle. The final local coordinate system consists of an origin

which is at the centroid of the plane, the local x and y axes on the plane and the

normal to the plane as the local z-axis. The x-axis can be identified by drawing

a line from the farthest atom on plane to the centroid. Once the local x and z

axes are created the local y axis follows from the right hand rule. The atoms in

the plane are calculated in the local coordinate system. The local z component is

close to zero and not used. By using the local x and y components, together with

the local x axis (that separates the leading edge from the trailing edge), the search

for maximum and minimum y values within every small interval ∆x along x-axis

gives the location of the leading edge and trailing edges, respectively, see Figure

4.5.

4.3.7 The Length of Dislocation and Dislocation Density

The search for the leading edge and trailing edge also produces, by connecting

points that belong to each edge, two lines that define the leading and trailing

edges. The line of the two edges can be full of discontinuities and jumps. With

this information in mind, a mapping function is needed. A least square fit can

be used to smooth the edges. At the same time, one can calculate the length of

each line, which can later be used to find dislocation density, using the following

equation

ρ =
L

V
(4.1)

where ρ is the dislocation density, L is the sum of the dislocation lengths and V is

the volume of the material.
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Figure 4.5: Leading and trailing edge extraction and curve fitting. Note: the
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121

4.3.8 The Velocity of Dislocation

For each timestep, the locations of the leading and trailing edges can be calcu-

lated and smoothed. Comparing the locations from different timesteps allows us

to calculate the dislocation velocity. Similarly, the acceleration (or deceleration)

of a dislocation due to dislocation interactions can be calculated by differencing

the velocities at two time steps.

4.4 Difficulties

The centrosymmetry parameter filter alone only roughly distinguishes between

particles in dislocations and particles which are in a normal FCC crystal. This is

the case, for example, when we have voids, surface particles, and grain boundary

particles present in the simulation box. Those particles have range of CSP values

from those of normal FCC particle to particles on dislocations and beyond. Once

one sets a filter value for the CSP for the dislocation particles, the void surface

particles and the grain boundary particles will also appear as well. To get a more

accurate filter for dislocation particles, one must come up with a more complex

combination of filters.

To by-pass this filter-centric idea and move on to working with an already

filtered array of dislocation particles, I have hand picked some particles that are

seen on planes of dislocations and start from those to find the rest of the member

particles on the dislocation planes. Once that was done, the calculation of the

planes, the normal directions of the planes, the leading edges and trailing edges

were subsequently computed with much less complexity. Completing work on this

algorithm has been left for future research.
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Future Work

5.1 Algorithms for Dislocation Information Ex-

traction

The algorithms for dislocation detection described in the previous chapter have

to be further developed to be able to extract accurate information about defects.

These algorithms should be able to give useful information such as dislocation

length and velocity, dislocation interaction, and annihilation. Statistical analysis

will help relate dislocation activity with stress relaxation and concentration, the

yielding and the strength of the material. With the above mentioned development,

information from MD simulations can be transfromed into information that can

be compared with continuum analysis.

5.2 Atomistic Model for Void Growth Compared

to Current Continuum Models

With a robust, accurate dislocation extraction algorithm, yield drop and hard-

ening extracted from the stress-strain results could be directly linked with how

dislocations move and interact. The probability of such interactions could be stud-
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ied with statistical analysis, ultimately resulting in equations governing the yield

process of the material. Multiple voids simulations can be performed in order to

study the mechanisms of void growth and coalescence. As Gurson’s model [1] and

several modified ones [22, 23, 24, 25, 28, 29, 30] have predicted how voids should

influence the strength of material, direct results from MD simulations will be able

to test and refine the models. These results can then be used in continuum finite

element codes.

5.3 Bicrystal simulations

Grain boundaries are considered one of the most interesting features in mate-

rials because they can be sources and sinks of dislocations. There can be a large

number of configurations of grain boundaries between two crystals. Mathemat-

ically, there can be countless number of configuration, but, energetically, only a

few ones are preferred. Several selected grain boundary configurations can be gen-

erated for tensile strain simulation. For instance, we can use tilt boundaries and

show how the angle of tilt can influence dislocation interactions and the strength

of the bi-crystals. Void can be created at the boundary to compare dislocation

activities from void surface and grain boundary. With a dislocation detection

algorithm, one could further analyze the dislocation interactions and obtain mech-

anisms which could translate into continuum understanding.

5.4 Molecular Dynamics Simulation of Nanocrys-

tal Copper

Since the we can generate nanocrystal structures using the ideas provided in

Chapter 2, nanocrystalline structures can be generated for a FCC material of

choice with preset average grain sizes and random grain orientations. The size of

the simulation domain can be as large as the computational capacity allows. It
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would be interesting to see dislocation interactions and behaviors in nanocrystal

microstructures with various grain sizes. We could then compare them with what

has been postulated in Meyers et al. [3], regarding the strength of nanocrystalline

materials. There are already many publications on MD simulations of nanocrys-

talline materials at different given sizes, for examples, Schiøtz and Jacobsen [99]

and Kumar et al. [116]

5.4.1 Base Crystalline Structure, BCC, FCC

It would be interesting to see the behavior of dislocations on different basic

crystalline structures, like BCC and FCC. The grain sizes and grain orientations

can be fixed leaving only the basic crystalline structure as the variable. As this

will be a comparison of two or more materials, the loading conditions must be the

same with the amount of load normalized by the strength of each material.

5.4.2 Grain Size

Grain size is known to significantly affect the mechanical behavior of a material,

especially its yield stress. It is well established in the micron grain size range that

the yield stress, σy, varies with grain size, d, according to the Hall-Petch relation

[4, 5].

σy = σ0 +Kd
1

2 (5.1)

where σ0 is the friction stress and K is a constant. When the grain size is reduced

into the nanometer regime, the Hall-Petch relationship breaks down, as the pile-

up of dislocation cannot be a hardening mechanism because the grains are too

small. This leaves grain boundary sliding as a candidate for plastic deformation in

nanocrystalline metals [3]. Various grain sizes can be generated while having same

random grain orientation. MD simulations can be performed on different grain

size samples, as it has been done in previous work, for example, Vo et al. [117].
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5.4.3 Strain Rate

Strain rates are found to affect the yield stress in single crystals because they

directly interfere with the dislocation velocity. When applying tension at large

strain rates(∼ 1010s−1), the single crystals deform elastically with the nucleation

of voids. When the strain rate is reduced, the dislocation mechanisms take a

leading role in the plastic deformation of the single crystal. It would be interesting

to see the behavior of nanocrystals at different strain rates, as dislocations might

not be the main mechanism in plastic deformation. Some preliminary results have

been presented by Schiøtz and Jacobsen [99].

5.4.4 Voids in Polycrystalline Structure

Many attempts to study mechanical properties of nanocrystalline metals have

found that the synthesized nanocrystalline structures contain large amounts of

porosity or voids within the structure, most of them between grains [3]. These voids

are sometimes thought to be the reason why the nanocrystalline structures lose

their strength under tension [72, 95, 96]. These voids can be source of dislocations

as well as weak spots for fracture within the material. A comparison of MD

simulations with the same grain size and orientation, with voids and without voids,

can provide insight into the influence of voids on the strength of nanocrystalline

materials.
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Conclusions

The most widely adopted continuum models of void growth have no size scale

dependent input in their failure models and yield criterion, however, it was pointed

out by several MD studies [61, 62, 114, 118] that size scale can indeed affect the

yield strength of a material.

Several molecular dynamics simulations revealed previously unknown disloca-

tion interaction mechanisms. Further analyses are necessary to fully understand

all the mechanism of void growth at the atomistic level, and to be able to link

these mechanisms to the continuum scale.

It has been shown that shear loops are the main mechanism for void growth

under high strain rates, as opposed to the diffusion mechanisms proposed by others.

The expansion of the loops and their cross slip leads to the severely work hardened

layer surrounding a growing void. The size scale dependence of the void on the

yield strength of material was confirmed. Calculations were also carried out for a

void at the interface between two grains sharing a tilt boundary. The results show

similar dislocation behaviors.

The growth of voids simulated by MD is compared with the Cocks-Ashby con-

stitutive model and significant agreement is found. The density of geometrically-

necessary dislocations as a function of void size is calculated based on the emission

of shear loops and their outward propagation.
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The details of the dislocation interactions, and the examples of bi-planar and

tri-planar dislocation loop interactions were shown. These results should help

improve future studies in void growth and coalescence in ductile materials.

A code was written in C employing Voronoi tessellation to construct nanocrys-

talline material microstructures for MD simulations. Implemented in this code

is a method for generating random crystal orientations using Euler’s parameters,

which, produces equally distributed random direction on a unit sphere. This is

an improvement on Euler’s angles which tend to concentrate a large fraction of

the random distribution near the x, y and z axes on the unit sphere. In addi-

tion, a fast and effective method for searching for atoms that have the same or

similar locations, which can produce high repulsive forces, was implemented using

the pointer and linked-list capability in C to further reduce storage and increase

robustness.

A preliminary code that can be used to extract useful information from disloca-

tion activities from molecular dynamics results was created and tested successfully,

giving the initial steps for a post-processing code that can autonomously retrieve

useful data from the vast amount of rich information produced by MD simulations.
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Appendix A

This appendix describes molecular dynamics tools which I used for this study

from pre-processing to post-processing. The purpose of including this information

is to give some recommendations/guidance for future researchers who are going

to use MD for solid materials. This will include the tutorial of LAMMPS [78]

and tools I used for nanocrystal construction and to extract information from the

computation. There may be other possible ways to execute and run LAMMPS

simulations which I have not included in this section, but it is for the user to find

out what is suited to each situation.

7.1 LAMMPS Input File

This section will go through line-by-line the LAMMPS instructions inside of a

LAMMPS input file. The LAMMPS code is compatible with LAMMPS version

24Sept07. Since LAMMPS can be updated several times in a single year, the

input code and its statements might changed. It is recommended that the user

read the LAMMPS documentation (http://lammps.sandia.gov/doc/Manual.html)

for further details and troubleshooting.

128
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Listing 7.1: Relaxation input code

1 un i t s metal

2 boundary p p p

3 atom sty l e atomic

4 l a t t i c e f c c 3 .6150 o r i g i n 0 0 0 o r i e n t x 1 0 0 o r i e n t y 0 1 0

o r i e n t z 0 0 1

5 reg i on box block −14 14 −14 14 −14 14

6 reg i on void sphere 0 0 0 10 un i t s box

7 c rea te box 1 box

8 create atoms 1

9 group bulk r eg i on box

10 group void r eg i on void

11 de l e t e a toms group void

12 p a i r s t y l e eam/ a l l o y

13 p a i r c o e f f ∗ ∗ cuMishinAlloy Cu

14 neighbor 2 .0 bin

15 ne igh modi fy every 1 de lay 5 check yes

16 compute new3d a l l temp

17 v e l o c i t y a l l c r e a t e 300 14285736 temp new3d

18 thermo 1

19 the rmo s ty l e custom step temp pe ke e t o t a l p r e s s vo l l x ly l z pxx

pyy pzz pxy pxz pyz

20 thermo modify temp new3d norm yes

21 t imestep 0 .001

22 f i x 1 a l l nve

23 dump 1 a l l custom 5 dump . r e l ax1 .∗ x y z centro vx vy vz

sxx syy szz sxy sxz syz tag epa i r ke

24 r e s t a r t 10 r e s t a r t . r e l ax1 .∗
25 run 10

The first line tells LAMMPS to use metal units, for example, length in Angstroms,

time in picoseconds, mass in gram/mole, energy in eV, temperature in K and pres-

sure in bars. The second line set the boundary of the simulation box to be parallel

in all three dimensions, x, y and z. The third line sets the atom type to atom

particle and not charged particle, or something else.
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The 4th line describes how LAMMPS should generate the crystalline structure

of atom particles. In this case, it is set to the FCC structure with the origin of the

simulation box at (x, y, z) = (0, 0, 0). The x-axis of the simulation is aligned with

the crystal direction [100], while the y-axis and z-axis are aligned with [010] and

[001], respectively.

The 5th line tells LAMMPS to make a region (named box) with block region

type with each side contains 28 unit cells and to locate the center of simulation box

at the global origin. The 6th line also creates a spherical region (named void) with

the center at the origin and has the radius of 10 Angstroms (note the command

units box). The 7th and 8th lines tell LAMMPS to generate the simulation domain

and fill it with the atom of predefined particles.

The 9th and 10th lines name the two groups, bulk and void, from the two preset

regions, box and void. This group naming facilitates the application of commands

to the whole group, for example, the delete atom command, in line 11th, operating

on the group void which results in creating a spherical void where the region is

defined.

The 12th and 13th lines define the type of potential of the created atoms, in

this case, it is EAM alloy potential reading from the file cuMishinAlloy. Lines 14th

and 15th tell LAMMPS to manage the neighbor partitioning. Line 16th defines the

name of a computation, type Temperature, and name it new3d. The 17th assign

the temperature of 300K with a random seed 14285736 to the preset computation

name new3d, which is equal to assigning the kinetic energy to the system.

The 18th, 19th and 20th lines tell LAMMPS to output the information of

step number, temperature, potential energy, kinetic energy, total energy, pressure,

volume, simulation box sizes in x, y and z, pressure or stress of the whole simula-

tion domain as components of stress tensor every step of the run into the log file.

Timestep size is define in line 21st as 1 femtosecond(0.001 picosecond).

The 22nd line applies no loading constrain to the system and only allow the

computation to progress with the constant volume and internal energy. This is

the most basic instruction for a simulation. The dump command in line 23rd
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tells LAMMPS to output the following information of every atom into the file

dump.relax1 every 5 running steps;

• Location vector including the component x, y and z.

• Centrosymmetry parameter

• Velocities in x, y and z directions.

• Components of stress tensor

• Atom number

• Potential energy

• Kinetic energy

The 24th line tells LAMMPS to write a restart file into the name restart.relax1

for every 10 running steps. The last line tells LAMMPS to run the computation

for 10 steps.

The example from Listing 7.1 only run for ten steps without applying any

load to the simulation system. The Listing 7.2 shows the relaxation using “nph”

ensemble, which is used to bring down the pressure of the simulation system to

the 1 atm level.

Listing 7.2: NPH Relaxation input code

1 un i t s metal

2 boundary p p p

3 atom sty l e atomic

4 r e a d r e s t a r t r e s t a r t . r e l ax1 .10

5 p a i r s t y l e eam/ a l l o y

6 p a i r c o e f f ∗ ∗ cuMishinAlloy Cu

7 neighbor 2 .0 bin

8 ne igh modi fy every 1 de lay 5 check yes

9 compute new3d a l l temp

10 thermo 20

11 the rmo s ty l e custom step temp pe ke e t o t a l p r e s s vo l l x ly l z pxx

pyy pzz pxy pxz pyz

12 thermo modify temp new3d norm yes
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13 t imestep 0 .001

14 r e s e t t ime s t e p 0

15 f i x 1 a l l nph an i so 4712.2526 0 .0 4723.4878 0 .0 4721.2104

0 .0 0 .3

16 dump 1 a l l custom 1000 dump . r e l ax3 .∗ x y z centro vx vy vz

sxx syy szz sxy sxz syz tag epa i r

17 r e s t a r t 1000 r e s t a r t . r e l ax3 .∗
18 run 2000

Most of the command instructions in Listing 7.2 are similar to ones from Listing

7.1 with the differences in the following lines. The 4th line tells LAMMPS to read

a restart file from the file restart.relax1.10 which is created from the first run,

Listing 7.1. The frequency of outputting the thermo information in the log file

is changed to every 20 running steps as shown in line 10th. The 13th line resets

the timestep number to zero. The dump and restart instructions also change the

frequency of writing dump and restart files to every 1000 running steps, as seen in

lines 15th and 16th. This relaxation runs for 2000 timesteps.

The most important instruction is in the 15th line. It tells LAMMPS to update

the position and velocities for each timestep with Nose/Hoover pressure barostat.

This will bring the pressure from each x, y and z directions to the zero level. The

numbers 4712.2526, 4723.4878 and 4721.2104 are from the pressure pxx, pyy, and

pzz read from the last timestep within the log file of the previous run.

7.2 Running LAMMPS

This section will give an example of a running script (input file) for LAMMPS

in case of the uniaxial expansion in z direction. See Listing 7.3.
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Listing 7.3: Uniaxial expansion input code

1 un i t s metal

2 boundary p p p

3 atom sty l e atomic

4 r e a d r e s t a r t r e s t a r t . r e l ax3 .2000

5 p a i r s t y l e eam/ a l l o y

6 p a i r c o e f f ∗ ∗ cuMishinAlloy Cu

7 neighbor 2 .0 bin

8 ne igh modi fy every 1 de lay 5 check yes

9 compute new3d a l l temp

10 thermo 500

11 the rmo s ty l e custom step temp pe ke e t o t a l p r e s s vo l l x ly l z pxx

pyy pzz pxy pxz pyz

12 thermo modify temp new3d norm yes

13 t imestep 0 .001

14 r e s e t t ime s t e p 0

15 f i x 1 a l l nve

16 f i x 2 a l l volume/ r e s c a l e 1 z −106.4784 106.4784

17 dump 1 a l l custom 5000 dump . expand1 .∗ x y z centro vx vy

vz sxx syy szz sxy sxz syz tag epa i r

18 r e s t a r t 50000 r e s t a r t . expand1 .∗
19 run 500000

The most of the command instructions are similar to the Listing 7.2, except for

line 16th. It tells LAMMPS to rescale the simulation box in z direction for every

running step until it reaches the specified size (in this example from -106.4784 to

106.4784), which is 5% larger than the original size (can be found in the log file

from the previous run in the lz column). This input file tells LAMMPS to run for

500000 timesteps, which will give the strain rate of 108 s−1.

ε̇ =
ε

t
=

ε

N∆t
=

0.05

(500000)(0.001 × 10−12s)
= 108s−1 (7.1)

For some computational systems, it takes a long time to complete a full 2

million timesteps for a 20% of strain. We can take an advantage of restart file by
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separate the whole simulation into 4 parts. This 500000 timesteps is equal to a

half of a million timesteps or a quarter of an entire simulation.

7.3 Nanocrystalline Structure Simulation

The code for the construction of nanocrystalline structures is provided in ap-

pendix B. It is employed to generate nanocrystalline copper samples as LAMMPS

data files which can be included into the LAMMPS input file. The following listing

shows how the data file can be imported in to LAMMPS and the special relaxation

scheme for nanocrystal structure.

Listing 7.4: Relaxation of nanocrystal copper input code

1 un i t s metal

2 boundary p p p

3 atom sty l e atomic

4 p a i r s t y l e eam/ a l l o y

5 read data Nc5datNi−1. dat

6 p a i r c o e f f ∗ ∗ n i yu r i . eamalloy Ni

7 mass 1 58 .693

8 neighbor 2 .0 bin

9 ne igh modi fy every 1 de lay 5 check yes

10 compute new3d a l l temp

11 v e l o c i t y a l l c r e a t e 0 .01 5812775 temp new3d

12 f i x 1 a l l nve

13 f i x 2 a l l temp/ r e s c a l e 7 0 .01 0 .01 0 .001 1 .

14 thermo 100

15 the rmo s ty l e custom step temp pe ke e t o t a l p r e s s vo l l x ly l z pxx

pyy pzz pxy pxz pyz

16 thermo modify temp new3d norm yes

17 t imestep 0 .0001

18 dump 1 a l l custom 2500 dump . r e l ax .∗ x y z centro

19 run 2500

20 un f ix 2

21 v e l o c i t y a l l c r e a t e 300 5812775 temp new3d
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22 f i x 3 a l l temp/ r e s c a l e 7 300 300 0 .1 1

23 thermo 100

24 thermo modify temp new3d norm yes

25 t imestep 0 .0005

26 run 2500

27 un f ix 3

28 v e l o c i t y a l l c r e a t e 5 5812775 temp new3d

29 f i x 4 a l l temp/ r e s c a l e 7 5 5 0 .1 1

30 thermo 100

31 thermo modify temp new3d norm yes

32 t imestep 0 .001

33 run 2500

34 un f ix 4

35 thermo 100

36 thermo modify temp new3d norm yes

37 t imestep 0 .001

38 r e s t a r t 10000 r e l ax . r e s t a r t

39 run 2500

This relaxation scheme (lines 11th to 39th) is described in detail in section 3.3.

The import of the generated nanocrystal structure is in line 5th. The resulting

nanocrystal structure is output as a restart file in line 38th. The dump command

in this input file is optional.

7.4 LAMMPS Dump File Processing

The dump files from LAMMPS can be customised to output several desired

data from the simulation. The most frequency used style in this work can be seen

in Listing 7.3 at the 17th line. This dump style gives the LAMMPS dump file

which is partially shown in Listing 7.5.
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Listing 7.5: Part of a dump file

1 ITEM: TIMESTEP

2 0

3 ITEM: NUMBER OF ATOMS

4 699565

5 ITEM: BOX BOUNDS

6 −101.411 101.411

7 −101.413 101.413

8 −105.971 105.971

9 ITEM: ATOMS

10 −65.2733 −86.8902 −52.9935 0.185195 1.29046 −1.08892 0.823471 726609

1.08786 e+06 1.01682 e+06 233523 −222733 −113605 22217 −3.5146

11 −86.9162 −83.334 −53.0245 0.182712 1.47628 −2.17631 −1.88452 790687

900497 939671 134009 −130235 42192 22249 −3.53088

12 −97.8432 −99.6685 −104.113 0.172806 −1.36554 0.177734 −2.02157 562354

839236 826231 −26384.6 135577 161043 8 −3.51977

13 −101.344 −77.8583 −73.8101 0.207106 −0.103727 −1.31566 1.08847 592293

130014 679869 −161252 −178117 110780 12884 −3.49943

14 −94.2013 −99.5969 −104.213 0.37063 1.41066 1 .5959 1.86263 788915

634517 1.09649 e+06 23762.3 −87344.9 215950 12 −3.48832

There are 699565 atoms in this simulation and there will be the same number

of lines following the key word “ITEM: ATOMS” listing the parameter of each

atom. This dump file can be large and if we tell LAMMPS to write output dump

file frequently, we can have a large number of dump files. Processing these files

one-by-one is a very time consuming task. A script which I use to transform a

dump file into a Rasmol compatible (xyz) format is in Listing 7.6.

Listing 7.6: A bash shell script for the transformation of dump file into an xyz file

1 #!/ bin / bash

2 i f [ $# − l t 2 ]

3 then

4 echo ”Usage $0 dump . f i l e column”

5 exit 0

6 f i
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7 t imestep=‘head −2 $1 | t a i l −1‘

8 s tep=‘printf ”%07d” $timestep ‘

9 echo −n $step

10 tmp1=.tmp1

11 tmp2=.tmp2

12 ta r g e t=” s t ep ” $step ” C”$2” . xyz”

13 echo ”{ pr in t \”Cu\” ,\ $1 ,\ $2 ,\ $3 , $”$2”}” > $tmp1

14 c s p l i t −s $1 10 && echo −n ” c s p l i t ”

15 awk −f $tmp1 xx01 > $tmp2 && echo −n ” awk”

16 wc − l $tmp2 | cut −d ” ” −f 1 > $ ta rge t && echo −n ” wc”

17 echo ”Cu” >> $ ta rge t

18 cat $tmp2 >> $ ta rge t && echo ” ca t = done ! ”

19 rm $tmp1 $tmp2 xx00 xx01

The resulting xyz file can be read by atomic rendering application called “Ras-

mol” [76].
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Appendix B

The code for construction of nanocrystal copper will be shown here. The re-

quirement is that you have qhull application install in the system. There are five

listing showing the file needed to compile the code.

Listing 8.1: Makefile

1 CC = gcc

2 FL = −g

3 LB = −lm

4 OJ = −c

5 rev := $ ( s h e l l date +%y%m%d)

6

7 a l l : f i l l a t om s

8

9 f i l l a t om s : f i l l a t om s . c f unc t i on s . o

10 ${CC} ${FL} ${LB} −o f i l l a t om s f i l l a t om s . c f unc t i on s . o

11

12 func t i on s . o : f un c t i on s . c

13 ${CC} ${FL} ${OJ} f un c t i on s . c

14

15 c l ean :

16 rm −f f i l l a t om s ∗ . o

138
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Listing 8.2: fillatom.c

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <math . h>

4 #include <time . h>

5

6 #include ” f i l l a t om s . h”

7 #include ” g l oba l . h”

8

9 int main ( int ∗argc , char ∗∗ argv )

10 {
11 int i , j , k , l ,m, n , a , nop , noj , nos , nof , nopoly , noppp , noppf , extra , pfcatom ;

12 double x , y , z , boxvolume , un i t c e l l vo lume ;

13 double r0 = 0.25∗ s q r t ( 2 . 0∗ l a t t i c e ∗ l a t t i c e ) ;

14 double penalty , t o l ;

15 // doub le t o l = 0 . 0 ; //FIXME t h i s w i l l not check f o r i n t e r f e r en c e

16 double major lat = 2 .0∗ s q r t ( 2 . 0 ) ∗ r0 ;

17 double minor lat = 0 .5∗ major lat ;

18 double pi =4.0∗ atan2 ( 1 . 0 , 1 . 0 ) ;

19 double o f f s e t [ 3 ] = { −1 . 0 , 0 . 0 , 1 . 0} ;

20 Vector r ,∗p ,∗ s i t e ;

21 int ∗ junct ion ,∗ s i t e c e n t e r ;

22 Or i entat ion Or ;

23 Polyhedron ∗ph ;

24 Face ∗ f ;

25 FILE ∗ f i ,∗ f j ;

26 int ∗ f i l l e d l i s t , f i l l =0,bno=1;

27 t ime t s t a r t t ime ;

28 unsigned int seed ;

29

30 // srand ( time (0) ) ;

31 srand (14285736) ;

32

33 p r i n t f ( ” Star t read ing input f i l e s .\n” ) ;

34
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35 f j = fopen ( ”box” , ” r ” ) ;

36 f s c a n f ( f j , ”%l f %l f %l f %l f %l f %l f ” ,&gmx,&gmy,&gmz,&px,&py,&pz ) ;

37 f s c a n f ( f j , ”%d %l f %d”,&nos ,&penalty ,& seed ) ;

38 f c l o s e ( f j ) ;

39 i f ( seed==0) { srand ( time (0 ) ) ; p r i n t f ( ”Time seed \n” ) ;}
40 else i f ( seed==1) { srand (1 ) ; p r i n t f ( ” Defau l t seed \n” ) ;}
41 else { srand ( seed ) ; p r i n t f ( ”User seed \n” ) ;}
42

43 s i t e = ( Vector ∗) mal loc ( nos∗ s izeof ( Vector ) ) ;

44 p r i n t f ( ” X: %8.2 f %8.2 f \n Y: %8.2 f %8.2 f \n Z : %8.2 f %8.2 f \n” ,gmx

, px , gmy , py , gmz , pz ) ;

45 p r i n t f ( ”%d gra in s with ” , nos ) ;

46 t o l = 2∗ r0 − penal ty ∗ (2∗ r0 ) ;

47

48 f i = fopen ( ” s i t e q ” , ”w” ) ;

49 f j = fopen ( ” s i t e ” , ”w” ) ;

50 f p r i n t f ( f i , ”3\n” ) ;

51 f p r i n t f ( f i , ”%d\n” , nos ∗27) ;

52

53 for ( i =0; i<nos ; i++) {
54 s i t e [ i ] . x = RandomWithIn (gmx , px ) ;

55 s i t e [ i ] . y = RandomWithIn (gmy , py ) ;

56 s i t e [ i ] . z = RandomWithIn (gmz , pz ) ;

57 }
58

59 px = px − gmx ; py = py − gmy ; pz = pz − gmz ;

60 boxvolume = px∗py∗pz ;

61 un i t c e l l vo lume = major lat ∗major lat ∗major lat ;

62 p r i n t f ( ” gra in s i z e = %f Angstrom .\n” ,

63 2 .0∗pow ( ( 3 . 0∗ boxvolume /4 .0/ (double ) nos/ p i ) , ( 1 . 0 / 3 . 0 ) ) ) ;

64 p r i n t f ( ”Allow %f o f 2∗ rad iu s d i s t ance (% f Angstrom ) \n” , penalty , t o l )

;

65

66 for ( i =0; i <3; i++) {
67 for ( j =0; j <3; j++) {
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68 for ( k=0;k<3;k++) {
69 for (n=0;n<nos ; n++) {
70 f p r i n t f ( f i , ”%15.10 f %15.10 f %15.10 f \n” ,

71 s i t e [ n ] . x+o f f s e t [ i ]∗ px , s i t e [ n ] . y+o f f s e t [ j ]∗ py , s i t e [ n ] . z

+o f f s e t [ k ]∗ pz ) ;

72 f p r i n t f ( f j , ”%15.10 f %15.10 f %15.10 f \n” ,

73 s i t e [ n ] . x+o f f s e t [ i ]∗ px , s i t e [ n ] . y+o f f s e t [ j ]∗ py , s i t e [ n ] . z

+o f f s e t [ k ]∗ pz ) ;

74 }
75 }
76 }
77 }
78 f c l o s e ( f i ) ; f c l o s e ( f j ) ;

79 system ( ” cat s i t e q | qhu l l v o s Fv TO input ” ) ;

80

81 f i = fopen ( ” input ” , ” r ” ) ;

82 f j = fopen ( ” s i t e ” , ” r ” ) ;

83 f s c a n f ( f i , ”%d %d %d %d”,&a,&nop ,&nopoly ,& extra ) ; ext ra =0; //FIXME

ex t ra=verbose

84 i f ( ext ra ) p r i n t f ( ”Nop :%d\n” , nop ) ;

85

86 p = ( Vector ∗) mal loc ( nop∗ s izeof ( Vector ) ) ;

87 ph = ( Polyhedron ∗) mal loc ( nopoly∗ s izeof ( Polyhedron ) ) ;

88 s i t e = ( Vector ∗) mal loc ( nopoly∗ s izeof ( Vector ) ) ;

89 junc t i on = ( int ∗) mal loc ( nop∗ s izeof ( int ) ) ;

90 s i t e c e n t e r = ( int ∗) mal loc ( nopoly∗ s izeof ( int ) ) ;

91

92 nos = 0 ;

93 for ( i =0; i<nopoly ; i++) {
94 f s c a n f ( f j , ”%l f %l f %l f ” ,&x,&y,&z ) ;

95 s i t e [ i ] . x = x ;

96 s i t e [ i ] . y = y ;

97 s i t e [ i ] . z = z ;

98 i f ( inthebox(& s i t e [ i ] ) ) { s i t e c e n t e r [ nos ] = i ; nos++; }
99 }
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100 f c l o s e ( f j ) ;

101

102 maxatom = ( int ) ( boxvolume / un i t c e l l vo lume ∗ 4 . 01 ) ;

103 pfcatom = ( int ) ( boxvolume / un i t c e l l vo lume ∗ 4 . 0 ) ;

104 atom = ( Pa r t i c l e ∗) mal loc (maxatom∗ s izeof ( Pa r t i c l e ) ) ;

105 p r i n t f ( ” Al located %d p a r t i c l e s ( p e r f e c t c r y s t a l %d p a r t i c l e s ) .\n” ,

maxatom , pfcatom ) ;

106

107 noj = 0 ;

108 for ( i =0; i<nop ; i++) {
109 f s c a n f ( f i , ”%l f %l f %l f ” ,&x,&y,&z ) ;

110 p [ i ] . x = x ;

111 p [ i ] . y = y ;

112 p [ i ] . z = z ;

113 i f ( inthebox(&p [ i ] ) ) { j unc t i on [ noj ] = i ; noj++; }
114 i f ( ext ra )

115 p r i n t f ( ”P:%d %14.10 f %14.10 f %14.10 f \n” , i , p [ i ] . x , p [ i ] . y , p [ i ] . z )

;

116 }
117

118 i f ( ext ra ) p r i n t f ( ”Nopoly :%d\n” , nopoly ) ;

119

120 for ( j =0; j<nopoly ; j++) {
121 ph [ j ] . blank = 1 ;

122 ph [ j ] . p0 = &p [ 0 ] ;

123 f s c a n f ( f i , ”%d”,&noppp ) ;

124 i f ( ext ra ) p r i n t f ( ”Noppp :%d\n” , noppp ) ;

125 ph [ j ] . nop = noppp ;

126 for ( i =0; i<noppp ; i++) {
127 f s c a n f ( f i , ”%d”,&a ) ;

128 ph [ j ] . p [ i ] = a ; i f ( ext ra ) p r i n t f ( ”%d ” , a ) ;

129 }
130 }
131

132 f s c a n f ( f i , ”%d”,&nof ) ;
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133 f = ( Face ∗) mal loc ( nof ∗ s izeof ( Face ) ) ;

134 for ( i =0; i<nof ; i++) {
135 i f ( ext ra ) p r i n t f ( ”Face:%d\n” , i ) ;

136 f s c a n f ( f i , ”%d”,&noppf ) ; i f ( ext ra ) p r i n t f ( ”%d ” , noppf ) ;

137 f [ i ] . noppf = noppf ;

138 for ( k=0;k<noppf ; k++) {
139 f s c a n f ( f i , ”%d”,&a ) ;

140 i f ( ext ra ) p r i n t f ( ”%d ” , a ) ;

141 f [ i ] . p [ k ] = a ;

142 }
143 i f ( ext ra ) p r i n t f ( ”\n” ) ;

144 }
145 i f ( ext ra ) p r i n t f ( ”\n” ) ;

146 f c l o s e ( f i ) ;

147

148 p r i n t f ( ”\nFin ish reading , count ing ne ighbors o f each polyhedron .\n”

) ;

149

150 for ( j =0; j<nopoly ; j++) {
151 ph [ j ] . nof = 0 ;

152 ph [ j ] . com = s i t e [ j ] ;

153 for ( i =0; i<nof ; i++) {
154 i f ( ( f [ i ] . p[0]== j ) | | ( f [ i ] . p[1]== j ) ) {
155 i f ( ext ra ) {
156 p r i n t f ( ”Polyhedron :%d has Face:%d −> ” , j , i ) ;

157 for ( k=0;k<f [ i ] . noppf ; k++) p r i n t f ( ”%d ” , f [ i ] . p [ k ] ) ;

158 p r i n t f ( ”\n” ) ;

159 }
160 i f ( f [ i ] . p[0]== j ) {
161 r = va2b(& s i t e [ f [ i ] . p [ 0 ] ] ,& s i t e [ f [ i ] . p [ 1 ] ] ) ;

162 ph [ j ] . n [ ph [ j ] . nof ] = uni t (&r ) ;

163 ph [ j ] . ngh [ ph [ j ] . nof ] = f [ i ] . p [ 1 ] ;

164 }
165 else {
166 r = va2b(& s i t e [ f [ i ] . p [ 1 ] ] ,& s i t e [ f [ i ] . p [ 0 ] ] ) ;
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167 ph [ j ] . n [ ph [ j ] . nof ] = uni t (&r ) ;

168 ph [ j ] . ngh [ ph [ j ] . nof ] = f [ i ] . p [ 0 ] ;

169 }
170 ph [ j ] . c [ ph [ j ] . nof ] = cente r2 (& s i t e [ f [ i ] . p [ 1 ] ] ,& s i t e [ f [ i ] . p

[ 0 ] ] ) ;

171 ph [ j ] . nof++;

172 }
173 }
174 i f ( ext ra ) p r i n t f ( ”Nof:%d \n” ,ph [ j ] . nof ) ;

175 }
176

177 p r i n t f ( ”\nSearch Box genera t ing .\n” ) ;

178

179 searchbox = ( struct node ∗∗) mal loc ( nopoly∗ s izeof ( struct node ∗) ) ;

180 gb = ( struct node ∗∗) mal loc ( nopoly∗ s izeof ( struct node ∗) ) ;

181 p r i n t f ( ” Al located %d searchboxes ( polyhedron ) .\n” , nopoly ) ;

182 for ( j =0; j<nopoly ; j++) searchbox [ j ] = gb [ j ] = NULL;

183

184

185 p r i n t f ( ”\ nStart f i l l i n g up polyhedrons .\n” ) ;

186

187 ano=0;

188 f i l l e d l i s t = ( int ∗) mal loc ( nopoly∗ s izeof ( int ) ) ;

189

190 time(& s t a r t t ime ) ;

191 for ( i =0; i<nopoly ; i++) {
192 i f ( ( inthebox(& s i t e [ i ] ) )&&(ph [ i ] . blank ) ) {
193 Or = MakeOrientation (0 ) ;

194 i = F i l lA t (&ph [ 0 ] , nopoly , i ,&Or,&ph [ i ] . com) ;

195 for ( j =0; j<ph [ i ] . pr count ; j++) {
196 k = F i l lAt (&ph [ 0 ] , nopoly ,0 ,&Or,&ph [ i ] . p e r i o d i c [ j ] ) ;

197 }
198 p r in tpe r c en t ( s t a r t t ime , 1 0 0 . ∗ ( double ) ano /(double )maxatom) ;

199 }
200 }
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201 f i l l = UpdateF i l l edL i s t (&ph [ 0 ] , nopoly ,& f i l l e d l i s t [ 0 ] ) ;

202 p r i n t f ( ” F i l l e d %d p a r t i c l e s (%d d i f f e r e n t ) \n” , ano , ano−pfcatom ) ;

203

204

205 p r i n t f ( ”\ nF i l t e r atoms , too c l o s e with in neighbors , t o l = %f \n” , t o l

) ;

206

207 time(& s t a r t t ime ) ; n = 0 ;

208 for ( i =0; i< f i l l ; i++) {
209 for ( j =0; j<ph [ f i l l e d l i s t [ i ] ] . nof ; j++) {
210 a = Search2Boxes ( f i l l e d l i s t [ i ] , ph [ f i l l e d l i s t [ i ] ] . ngh [ j ] , t o l ) ;

211 n = n + a ;

212 }
213 }
214 p r i n t f ( ”Total %d to be d e l e t e \n” ,n) ;

215 p r i n tpe r c en t ( s t a r t t ime , 1 0 0 . 0 ) ;

216

217

218 p r i n t f ( ”\nPrint out atoms in to f i l e s .\n” ) ;

219

220 time(& s t a r t t ime ) ; a = 1 ;

221 for ( i =0; i< f i l l ; i++) {
222 a = pr intbox ( f i l l e d l i s t [ i ] , a ) ;

223 i f ( ( ( i +1)∗100/ f i l l ) % 10 == 0)

224 p r in tpe r c en t ( s t a r t t ime , 1 0 0 . ∗ ( double ) ( i +1)/(double ) f i l l ) ;

225 }
226

227 f r e e ( atom) ; atom = NULL;

228 f r e e ( searchbox ) ; searchbox = NULL;

229 f r e e ( gb ) ; gb = NULL;

230

231 return 0 ;

232 }
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Listing 8.3: functions.c

1 #include <s t d i o . h>

2 #include <s t d l i b . h>

3 #include <math . h>

4 #include <time . h>

5

6 #include ” f i l l a t om s . h”

7 #include ” g l oba l . h”

8

9 int UpdateF i l l edL i s t ( Polyhedron ∗ph , int nopoly , int ∗ f i l l e d l i s t )

10 {
11 int i , f i l l =0;

12

13 for ( i =0; i<nopoly ; i++) {
14 i f ( ! ( ph−>blank ) ) {
15 ∗( f i l l e d l i s t+ f i l l ) = i ;

16 f i l l ++;

17 }
18 ph++;

19 }
20 return f i l l ;

21 }
22

23 int NotInThisList ( int ∗ l i s t , int s i z e , int check )

24 {
25 int i , go=0;

26

27 for ( i =0; i<s i z e ; i++) {
28 i f ( check == ∗ l i s t ) go++;

29 l i s t ++;

30 }
31 i f ( go == 0) return 1 ;

32 else return 0 ;

33 }
34
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35 int PolyhedronHasThis ( Vector ∗ r , Polyhedron ∗ph , int nopoly )

36 {
37 int i , j ;

38

39 for ( i =0; i<nopoly ; i++) {
40 i f ( inpolyhedron ( r , ph ) < 1) {
41 j = i ;

42 break ;

43 }
44 ph++;

45 }
46 return j ;

47 }
48

49 Vector l a t s i z e ( Vector ∗a , Vector ∗ r , int mm)

50 {
51 double r0 =0.25∗ s q r t ( 2 . 0∗ l a t t i c e ∗ l a t t i c e ) ;

52 double major lat =2.0∗ s q r t ( 2 . 0 ) ∗ r0 ;

53 Vector v = ∗ r ;

54

55 i f (mm == 0) {
56 while ( v . x > a−>x ) {
57 v . x −= major lat ;

58 }
59 while ( v . y > a−>y ) {
60 v . y −= major lat ;

61 }
62 while ( v . z > a−>z ) {
63 v . z −= major lat ;

64 }
65 } else i f (mm == 1) {
66 while ( v . x < a−>x ) {
67 v . x += major lat ;

68 }
69 while ( v . y < a−>y ) {
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70 v . y += major lat ;

71 }
72 while ( v . z < a−>z ) {
73 v . z += major lat ;

74 }
75 }
76 return v ;

77 }
78

79 int SaveAtom( Vector ∗ rt , int j , int or , int noa , int tno )

80 {
81 atom [ ano ] . r = ∗ r t ;

82 atom [ ano ] . type = tno+2; //GB = 1 , i n t e r n a l = 2

83 atom [ ano ] . ph = j ;

84 atom [ ano ] . or = or ;

85

86 Push(&searchbox [ j ] , ano ) ;

87 i f ( tno==−1) Push(&gb [ j ] , ano ) ;

88

89 ano++;

90 noa++;

91

92 return noa ;

93 }
94

95 void bound ( Vector ∗min , Vector ∗max , Vector ∗p)

96 {
97 min−>x = min (min−>x , p−>x ) ;

98 min−>y = min (min−>y , p−>y ) ;

99 min−>z = min (min−>z , p−>z ) ;

100 max−>x = max(max−>x , p−>x ) ;

101 max−>y = max(max−>y , p−>y ) ;

102 max−>z = max(max−>z , p−>z ) ;

103 return ;

104 }
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105

106 int FindNeighbor ( Polyhedron ∗ph , int nopoly , int j , int ∗ t o b e f i l l e d l i s t ,

int t o b e f i l l e d )

107 {
108 Polyhedron ∗phj , ∗phk ;

109 int i , k , count ;

110 Vector ∗ r ;

111

112 phj=ph+j ;

113

114 // p r i n t f (” Polyhedron %d of %d with %d fa c e s %d po in t s \n” , j , nopoly ,

phj−>nof , phj−>nop ) ;

115 // p r i n t f (” Neighbor :\n”) ;

116 for ( i =0; i<phj−>nof ; i++) {
117 phk=ph + phj−>ngh [ i ] ;

118 // p r i n t f (”%d conta in %d po in t s ” , phj−>ngh [ i ] , phk−>nop ) ;

119 count=0;

120 for ( k=0;k<phk−>nop ; k++) {
121 r=phk−>p0 + phk−>p [ k ] ; // r i s the po in t t h a t bound t h i s

po lyhedron

122 // p r i n t v e c t o r ( k , r ) ;

123 i f ( inthebox ( r ) ) {
124 count++;

125 }
126 }
127 i f ( count >0) {
128 // p r i n t f (” In The Box %d / %d\n” , count , phk−>nop ) ;

129 i f (phk−>blank ) {
130 ∗( t o b e f i l l e d l i s t + t o b e f i l l e d ) = phj−>ngh [ i ] ;

131 t o b e f i l l e d ++;

132 }
133 } else {
134

135 // p r i n t f (”\n”) ;

136 }
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137 }
138

139

140 return t o b e f i l l e d ;

141 }
142

143 int Fi l lAt ( Polyhedron ∗ph , int nopoly , int j , Or i entat ion ∗or , Vector ∗ r )

144 {
145 Polyhedron box ,∗ phh ,∗ phk ,∗ phi ;

146 Vector xyz , tmp , rt , rr , pr ,∗ p0 , p1 ,dummy;

147 int noa=0, tno ;

148 double ∗rotM = &(or−>rotM [ 0 ] [ 0 ] ) ;

149 double r0 = 0.25∗ s q r t ( 2 . 0∗ l a t t i c e ∗ l a t t i c e ) ;

150 double major lat = 2 .0∗ s q r t ( 2 . 0 ) ∗ r0 ;

151 double minor lat = 0 .5∗ major lat ;

152 int i , k , extend [ 8 ] , ext=0, inph ;

153

154 phk = ph ;

155 r r = ro t a t i on (∗ r , rotM) ;

156

157 i f ( j==0) { //Search f o r po lyhedron [ j ] to f i l l

158 for ( i =0; i<nopoly ; i++) {
159 i f ( inpolyhedron ( r , ph ) < 1) {
160 j = i ;

161 phh = ph ;

162 break ;

163 }
164 ph++;

165 }
166 } else { //Already know which to f i l l

167 phh = ph + j ;

168 }
169

170 i f (phh−>blank ) { // I f i t ’ s b lank then f i l l

171 phh−>s t a r t = ano ;
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172 p0 = phh−>p0 ;

173 for ( i =0; i<phh−>nop ; i++) { // Figur ing out bound o f a po lyhedron

174 p1 = ro t a t i on (∗ ( p0+phh−>p [ i ] ) , rotM) ;

175 bound(&(phh−>min) ,&(phh−>max) ,&p1 ) ;

176 }
177 box = MakeBox( rotM) ;

178 bound(&dummy,&(phh−>min) ,&box . min ) ;

179 bound(&(phh−>max) ,&dummy,&box .max) ;

180 phh−>min = l a t s i z e (&(phh−>min) ,&rr , 0 ) ; //Make bound mu l t i p l e o f

181 phh−>max = l a t s i z e (&(phh−>max) ,&rr , 1 ) ; // La t t i c e s i z e

182

183 xyz . z = phh−>min . z ;

184 while ( xyz . z <= phh−>max . z ) {
185 xyz . y = phh−>min . y ;

186 while ( xyz . y <= phh−>max . y ) {
187 xyz . x = phh−>min . x ;

188 while ( xyz . x <= phh−>max . x ) {
189

190 r t = rotat ionT ( xyz , rotM) ;

191 inph = inpolyhedron(&rt , phh ) ;

192 i f ( inph < 1) { // i f in t h i s po lyhedron

193 // i = inpo lyhedron(&rt ,&box ) ;

194 i f ( inpolyhedron(&rt ,&box ) < 1) { // i f in working domain

195 noa = SaveAtom(&rt , j , or−>or , noa , inph ) ;

196 } else { // in po lyhedron but not in domain ( p e r i o d i c )

197 pr = pe r i o d i c (& r t ) ; // t h i s po in t on the o ther s i d e

198 k = PolyhedronHasThis(&pr , phk , nopoly ) ; // i s in which

ph

199 phi = phk + k ; // i t ’ s in t h i s ph

200 i f ( ( NotInThisList (&extend [ 0 ] , ext , k ) )&&(phi−>blank ) ) {
201 // not a l r eady s tored , not f i l l e d , then save i t

202 extend [ ext ] = k ; phh−>pe r i o d i c [ ext ] = pr ; ext++;

203 }
204 }
205 }
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206

207 tmp . x = xyz . x + minor lat ;

208 tmp . y = xyz . y + minor lat ;

209 tmp . z = xyz . z ;

210 r t = rotat ionT (tmp , rotM) ;

211 inph = inpolyhedron(&rt , phh ) ;

212 i f ( ( inph <1)&&(inpolyhedron(&rt ,&box ) < 1) ) {
213 noa = SaveAtom(&rt , j , or−>or , noa , inph ) ;

214 }
215

216 tmp . x = xyz . x + minor lat ;

217 tmp . y = xyz . y ;

218 tmp . z = xyz . z + minor lat ;

219 r t = rotat ionT (tmp , rotM) ;

220 inph = inpolyhedron(&rt , phh ) ;

221 i f ( ( inph <1)&&(inpolyhedron(&rt ,&box ) < 1) ) {
222 noa = SaveAtom(&rt , j , or−>or , noa , inph ) ;

223 }
224

225 tmp . x = xyz . x ;

226 tmp . y = xyz . y + minor lat ;

227 tmp . z = xyz . z + minor lat ;

228 r t = rotat ionT (tmp , rotM) ;

229 inph = inpolyhedron(&rt , phh ) ;

230 i f ( ( inph <1)&&(inpolyhedron(&rt ,&box ) < 1) ) {
231 noa = SaveAtom(&rt , j , or−>or , noa , inph ) ;

232 }
233

234 xyz . x += major lat ;

235 }
236 xyz . y += major lat ;

237 }
238 xyz . z += major lat ;

239 } // END whi l e

240 i f ( noa==0) {
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241 phh−>blank = 1 ;

242 } else {
243 phh−>noa = noa ;

244 phh−>pr count = ext ;

245 phh−>blank = 0 ;

246 // p r i n t f (”Ph:%5d Ano = %10d\n” , j , ano ) ;

247 }
248 }
249 return j ;

250 }
251

252 Polyhedron MakeBox(double ∗rotM)

253 {
254 double minx=gmx , miny=gmy , minz=gmz ;

255 double maxx=px+gmx , maxy=py+gmy , maxz=pz+gmz ;

256 int i ;

257 Vector pb [ 8 ] , r ;

258 Face fb [ 6 ] ;

259 Polyhedron box ;

260

261 pb [ 0 ] . x = minx−0.01; pb [ 0 ] . y = miny−0.01; pb [ 0 ] . z = minz−0.01;

262 pb [ 6 ] . x = maxx−0.01; pb [ 6 ] . y = maxy−0.01; pb [ 6 ] . z = maxz−0.01;

263 box . com . x = (minx+maxx) / 2 . 0 ;

264 box . com . y = (miny+maxy) / 2 . 0 ;

265 box . com . z = (minz+maxz) / 2 . 0 ;

266 pb [ 1 ] . x = pb [ 6 ] . x ; pb [ 1 ] . y = pb [ 0 ] . y ; pb [ 1 ] . z = pb [ 0 ] . z ;

267 pb [ 2 ] . x = pb [ 6 ] . x ; pb [ 2 ] . y = pb [ 6 ] . y ; pb [ 2 ] . z = pb [ 0 ] . z ;

268 pb [ 3 ] . x = pb [ 0 ] . x ; pb [ 3 ] . y = pb [ 6 ] . y ; pb [ 3 ] . z = pb [ 0 ] . z ;

269 pb [ 4 ] . x = pb [ 0 ] . x ; pb [ 4 ] . y = pb [ 0 ] . y ; pb [ 4 ] . z = pb [ 6 ] . z ;

270 pb [ 5 ] . x = pb [ 6 ] . x ; pb [ 5 ] . y = pb [ 0 ] . y ; pb [ 5 ] . z = pb [ 6 ] . z ;

271 pb [ 7 ] . x = pb [ 0 ] . x ; pb [ 7 ] . y = pb [ 6 ] . y ; pb [ 7 ] . z = pb [ 6 ] . z ;

272 minx = maxx = miny = maxy = minz = maxz = 0 . 0 ;

273 for ( i =0; i <8; i++) {
274 r = ro t a t i on (pb [ i ] , rotM) ;

275 minx = min (minx , r . x ) ;
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276 maxx = max(maxx , r . x ) ;

277 miny = min (miny , r . y ) ;

278 maxy = max(maxy , r . y ) ;

279 minz = min (minz , r . z ) ;

280 maxz = max(maxz , r . z ) ;

281 }
282 box . min . x = minx ;

283 box .max . x = maxx ;

284 box . min . y = miny ;

285 box .max . y = maxy ;

286 box . min . z = minz ;

287 box .max . z = maxz ;

288 fb [ 0 ] . c en t e r = cente r4 (&pb [1 ] ,&pb [2 ] ,&pb [5 ] ,&pb [ 6 ] ) ;

289 fb [ 1 ] . c en t e r = cente r4 (&pb [0 ] ,&pb [3 ] ,&pb [4 ] ,&pb [ 7 ] ) ;

290 fb [ 2 ] . c en t e r = cente r4 (&pb [2 ] ,&pb [3 ] ,&pb [6 ] ,&pb [ 7 ] ) ;

291 fb [ 3 ] . c en t e r = cente r4 (&pb [0 ] ,&pb [1 ] ,&pb [4 ] ,&pb [ 5 ] ) ;

292 fb [ 4 ] . c en t e r = cente r4 (&pb [4 ] ,&pb [5 ] ,&pb [6 ] ,&pb [ 7 ] ) ;

293 fb [ 5 ] . c en t e r = cente r4 (&pb [0 ] ,&pb [1 ] ,&pb [2 ] ,&pb [ 3 ] ) ;

294 fb [ 0 ] . normal = Vnormal(&pb [1 ] ,&pb [2 ] ,&pb [5 ] ,& box ,& fb [ 0 ] ) ;

295 fb [ 1 ] . normal = Vnormal(&pb [0 ] ,&pb [3 ] ,&pb [4 ] ,& box ,& fb [ 1 ] ) ;

296 fb [ 2 ] . normal = Vnormal(&pb [2 ] ,&pb [3 ] ,&pb [6 ] ,& box ,& fb [ 2 ] ) ;

297 fb [ 3 ] . normal = Vnormal(&pb [0 ] ,&pb [1 ] ,&pb [4 ] ,& box ,& fb [ 3 ] ) ;

298 fb [ 4 ] . normal = Vnormal(&pb [4 ] ,&pb [5 ] ,&pb [6 ] ,& box ,& fb [ 4 ] ) ;

299 fb [ 5 ] . normal = Vnormal(&pb [0 ] ,&pb [1 ] ,&pb [2 ] ,& box ,& fb [ 5 ] ) ;

300

301 for ( i =0; i <6; i++) {
302 box . c [ i ] = fb [ i ] . c en t e r ;

303 box . n [ i ] = fb [ i ] . normal ;

304 }
305 box . nof = 6 ;

306

307 return box ;

308 }
309

310 double dcos (double v )
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311 {
312 double pi =4.0∗ atan2 ( 1 . 0 , 1 . 0 ) ;

313 double rad=(v /180 . ) ∗ pi ;

314

315 return cos ( rad ) ;

316 }
317

318 Vector r o t a t i on ( Vector p , double ∗ r )

319 {
320 Vector u ;

321

322 u . x = ∗( r ) ∗p . x + ∗( r+1)∗p . y + ∗( r+2)∗p . z ;

323 u . y = ∗( r+3)∗p . x + ∗( r+4)∗p . y + ∗( r+5)∗p . z ;

324 u . z = ∗( r+6)∗p . x + ∗( r+7)∗p . y + ∗( r+8)∗p . z ;

325

326 return u ;

327 }
328

329 Vector rotat ionT ( Vector p , double ∗ r )

330 {
331 Vector u ;

332

333 u . x = ∗( r ) ∗p . x + ∗( r+3)∗p . y + ∗( r+6)∗p . z ;

334 /∗ t ime(& s t a r t t ime ) ;

335 f o r ( a=0;a<ano ; a++) {
336 i f ( atom [ a ] . ph > −1) {
337 printatom(&atom [ a ] . r , atom [ a ] . or , atom [ a ] . ph ) ;

338 printlammps(&atom [ a ] . r , bno , atom [ a ] . type , atom [ a ] . ph ) ;

339 bno++;

340 } e l s e i f ( atom [ a ] . ph == −1) {
341 printatom(&atom [ a ] . r ,4 ,999999) ;

342 } e l s e {
343 printatom(&atom [ a ] . r ,7 ,999996) ;

344 }
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345 f o r ( i =1; i <10; i++) i f ( a == i ∗ano/10) p r i n t p e r c en t ( s t a r t t ime , i

∗10 . ) ;

346 }
347 p r i n t p e r c en t ( s t a r t t ime ,100) ;

348 // FIXME

349 f o r ( a=1;a<noj ; a++) {
350 printatom(&p [ junc t i on [ a ] ] , 5 , 999998) ;

351 }
352 f o r ( a=0;a<nos ; a++) {
353 printatom(& s i t e [ s i t e c e n t e r [ a ] ] , 6 , 999997) ;

354 } ∗/
355 // FIXME

356 u . y = ∗( r+1)∗p . x + ∗( r+4)∗p . y + ∗( r+7)∗p . z ;

357 u . z = ∗( r+2)∗p . x + ∗( r+5)∗p . y + ∗( r+8)∗p . z ;

358

359 return u ;

360 }
361

362 void p r i n t v e c t o r ( int i , Vector ∗ r )

363 {
364 p r i n t f ( ”%3d %14.7 f %14.7 f %14.7 f \n” , i , r−>x , r−>y , r−>z ) ;

365 return ;

366 }
367

368 void printatom ( Vector ∗a , int value , int no )

369 {
370 FILE ∗ f j ;

371 char fname [ 2 0 ] ;

372

373 i f ( no < 10) s p r i n t f ( fname , ”polygon−000%d” , no ) ;

374 else i f ( no < 100) s p r i n t f ( fname , ”polygon−00%d” , no ) ;

375 else i f ( no < 1000) s p r i n t f ( fname , ”polygon−0%d” , no ) ;

376 else s p r i n t f ( fname , ”polygon−%d” , no ) ;

377 f j = fopen ( fname , ”a” ) ;

378
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379 f p r i n t f ( f j , ”%14.10 f %14.10 f %14.10 f %d\n” , a−>x , a−>y , a−>z , va lue ) ;

380 f c l o s e ( f j ) ;

381 return ;

382 }
383

384 void printlammps ( Vector ∗a , int atomno , int tno , int fno )

385 {
386 FILE ∗ f j ;

387 char fname [ 2 0 ] ;

388

389 i f ( fno < 10) s p r i n t f ( fname , ”Lpolygon−000%d” , fno ) ;

390 else i f ( fno < 100) s p r i n t f ( fname , ”Lpolygon−00%d” , fno ) ;

391 else i f ( fno < 1000) s p r i n t f ( fname , ”Lpolygon−0%d” , fno ) ;

392 else s p r i n t f ( fname , ”Lpolygon−%d” , fno ) ;

393 f j = fopen ( fname , ”a” ) ;

394

395 f p r i n t f ( f j , ”%7d%7d%14.8 f %14.8 f %14.8 f \n” , atomno , tno , a−>x , a−>y , a−>z ) ;

396 f c l o s e ( f j ) ;

397 return ;

398 }
399

400 /∗ i n t inSearchBox ( Vector ∗v )

401 {
402 i n t i , j , k , r=0;

403 doub le minx , miny , minz ,maxx ,maxy , maxz ;

404

405 f o r ( i =0; i<nx ; i++) {
406 f o r ( j =0; j<ny ; j++) {
407 f o r ( k=0;k<nz ; k++) {
408 minx = gmx+i ∗ bx ;

409 miny = gmy+j ∗by ;

410 minz = gmz+k∗ bz ;

411 maxx = minx + bx ;

412 maxy = miny + by ;

413 maxz = minz + bz ;
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414 i f ( ( v−>x >= minx )&&(v−>x <= maxx)&&

415 ( v−>y >= miny )&&(v−>y <= maxy)&&

416 ( v−>z >= minz )&&(v−>z <= maxz ) ) {
417 r = i ∗ny∗nz+j ∗nz+k ;

418 i = nx ;

419 j = ny ;

420 k = nz ;

421 }
422 }
423 }
424 }
425 re turn r ;

426 }∗/
427

428 int inpolyhedron ( Vector ∗x , Polyhedron ∗p) //FIXME

429 {
430 Vector a2x ;

431 int i , sum=0;

432 double val , v=−0.3;

433

434 for ( i =0; i<p−>nof ; i++) {
435 a2x = va2b(&p−>c [ i ] , x ) ;

436 va l = dot(&a2x ,&p−>n [ i ] ) ;

437 i f ( va l > 0 . 0 ) sum=i +1;

438 else v=max(v , va l ) ;

439 }
440 i f ( ( v > −0.3)&&(sum==0)) {sum=−1;};

441 return sum ;

442 }
443

444 int inthebox ( Vector ∗ r )

445 {
446 i f ( ( r−>x > gmx)&&(r−>x < gmx+px) )

447 i f ( ( r−>y > gmy)&&(r−>y < gmy+py) )

448 i f ( ( r−>z > gmz)&&(r−>z < gmz+pz ) ) return 1 ;
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449 else return 0 ;

450 else return 0 ;

451 else return 0 ;

452 }
453

454 Vector cente r2 ( Vector ∗ r , Vector ∗ s )

455 {
456 Vector c ;

457

458 c . x = ( r−>x + s−>x ) / 2 . 0 ;

459 c . y = ( r−>y + s−>y ) / 2 . 0 ;

460 c . z = ( r−>z + s−>z ) / 2 . 0 ;

461 return c ;

462 }
463

464 Vector s h i f t ( Vector ∗ center , Vector ∗normal ) //FIXME

465 {
466 Vector c ;

467

468 c = uni t ( normal ) ;

469 c = vs ca l e (&c , 1 . 2 7 8 1 ∗ 0 . 5 ) ;

470 c = va2b(&c , c en te r ) ;

471 return c ;

472 } //FIXME

473

474 Vector c ente r ( Vector ∗ r , Vector ∗ s , Vector ∗ t )

475 {
476 Vector c ;

477

478 c . x = ( r−>x + s−>x + t−>x ) / 3 . 0 ;

479 c . y = ( r−>y + s−>y + t−>y ) / 3 . 0 ;

480 c . z = ( r−>z + s−>z + t−>z ) / 3 . 0 ;

481 return c ;

482 }
483
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484 Vector cente r4 ( Vector ∗ r , Vector ∗ s , Vector ∗ t , Vector ∗u)

485 {
486 Vector c ;

487

488 c . x = ( r−>x + s−>x + t−>x + u−>x ) / 4 . 0 ;

489 c . y = ( r−>y + s−>y + t−>y + u−>y ) / 4 . 0 ;

490 c . z = ( r−>z + s−>z + t−>z + u−>z ) / 4 . 0 ;

491 return c ;

492 }
493

494 Vector Vnormal ( Vector ∗ r , Vector ∗ s , Vector ∗ t , Polyhedron ∗ph , Face

∗ f c )

495 {
496 Vector u , v , c , n , o ;

497 double d ;

498

499 u = va2b ( r , s ) ;

500 v = va2b ( s , t ) ;

501 n = c r o s s (&u,&v) ;

502 o = va2b(&ph−>com,& fc−>cente r ) ;

503 d = dot(&o,&n) ;

504 i f (d<0.0) n = c r o s s (&v,&u) ;

505 return n ;

506 }
507

508 Vector va2b ( Vector ∗ r , Vector ∗ s )

509 {
510 Vector u ;

511

512 u . x = s−>x − r−>x ;

513 u . y = s−>y − r−>y ;

514 u . z = s−>z − r−>z ;

515 return u ;

516 }
517
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518 double l en ( Vector ∗a )

519 {
520 double l ;

521

522 l = a−>x ∗ a−>x + a−>y ∗ a−>y + a−>z ∗ a−>z ;

523 l = sq r t ( l ) ;

524 return l ;

525 }
526

527 double lenA2B ( Vector ∗ r , Vector ∗ s )

528 {
529 Vector u ;

530 double l ;

531

532 u . x = s−>x − r−>x ;

533 u . y = s−>y − r−>y ;

534 u . z = s−>z − r−>z ;

535 l = u . x ∗ u . x + u . y ∗ u . y + u . z ∗ u . z ;

536 l = sq r t ( l ) ;

537

538 return l ;

539 }
540

541 Vector un i t ( Vector ∗a )

542 {
543 Vector u ;

544 double l=l en ( a ) ;

545

546 u . x = a−>x / l ;

547 u . y = a−>y / l ;

548 u . z = a−>z / l ;

549 return u ;

550 }
551

552 Vector uni t3 (double x , double y , double z )
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553 {
554 Vector u ;

555 double l=sq r t ( x∗x + y∗y + z∗z ) ;

556

557 u . x = x / l ;

558 u . y = y / l ;

559 u . z = z / l ;

560 return u ;

561 }
562

563 Vector v s c a l e ( Vector ∗a , double value )

564 {
565 Vector s ;

566

567 s . x = a−>x ∗ value ;

568 s . y = a−>y ∗ value ;

569 s . z = a−>z ∗ value ;

570 return s ;

571 }
572

573 Vector vmodify ( Vector ∗a , double value , int idx )

574 {
575 Vector u ;

576

577 i f ( ( idx >=0)&&(idx<=2)) {
578 i f ( idx==0) {
579 u . x = a−>x + value ;

580 u . y = a−>y ;

581 u . z = a−>z ;

582 } else i f ( idx==1) {
583 u . x = a−>x ;

584 u . y = a−>y + value ;

585 u . z = a−>z ;

586 } else i f ( idx==2) {
587 u . x = a−>x ;
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588 u . y = a−>y ;

589 u . z = a−>z + value ;

590 }
591 }
592

593 return u ;

594 }
595

596 Vector c r o s s ( Vector ∗ r , Vector ∗ s )

597 {
598 Vector u ;

599

600 u . x = r−>y ∗ s−>z − r−>z ∗ s−>y ;

601 u . y = r−>z ∗ s−>x − r−>x ∗ s−>z ;

602 u . z = r−>x ∗ s−>y − r−>y ∗ s−>x ;

603 return u ;

604 }
605

606 double dot ( Vector ∗a , Vector ∗b)

607 {
608 double d ;

609

610 d = a−>x ∗ b−>x + a−>y ∗ b−>y + a−>z ∗ b−>z ;

611 return d ;

612 }
613

614 Vector p e r i o d i c ( Vector ∗ r )

615 {
616 Vector u = ∗ r ;

617

618 i f ( r−>x < gmx) u . x = r−>x + px ;

619 else i f ( r−>x > (gmx+px ) ) u . x = r−>x − px ;

620

621 i f ( r−>y < gmy) u . y = r−>y + py ;

622 else i f ( r−>y > (gmy+py ) ) u . y = r−>y − py ;
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623

624 i f ( r−>z < gmz) u . z = r−>z + pz ;

625 else i f ( r−>z > (gmz+pz ) ) u . z = r−>z − pz ;

626

627 return u ;

628 }
629

630 int Triang le2Color ( Vector ∗ r )

631 {
632 int c o l o r ;

633 Vector d100 , d110 , d111 ;

634 int l1 , l2 , l 3 ;

635

636 d100 = unit3 ( 1 . 0 , 0 . 0 , 0 . 0 ) ;

637 d110 = unit3 ( 1 . 0 , 1 . 0 , 0 . 0 ) ;

638 d111 = unit3 ( 1 . 0 , 1 . 0 , 1 . 0 ) ;

639 l 1 = ( int ) (15 .0∗(1 .0 − lenA2B ( r ,&d100 ) ) ) ;

640 l 2 = ( int ) (15 .0∗(1 .0 − lenA2B ( r ,&d110 ) ) ) ;

641 l 3 = ( int ) (15 .0∗(1 .0 − lenA2B ( r ,&d111 ) ) ) ;

642 c o l o r=l1 ∗16∗16 + l2 ∗16 + l3 ;

643

644 return ( c o l o r ) ;

645 }
646

647 Or i entat ion MakeOrientation ( int k )

648 {
649 Or i entat ion or ;

650 double phi , theta , ps i , a , b , c , d ;

651 FILE ∗ f i ;

652 Vector Z , u , p ;

653 int i ;

654

655 i f ( k==1) { // <100> | | Z−ax i s

656 //or . or = k ;
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657 EulerAngles (&or . rotM [ 0 ] [ 0 ] , rad ian ( 9 0 . 0 ) , rad ian ( 90 . 0 ) , rad ian ( 0 . 0 ) )

;

658 } else i f ( k==2) { // <110> | | Z−ax i s

659 //or . or = k ;

660 EulerAngles (&or . rotM [ 0 ] [ 0 ] , rad ian ( 135 . 0 ) , rad ian (9 0 . 0 ) , rad ian

( 270 . 0 ) ) ;

661 } else i f ( k==3) { // <111> | | Z−ax i s

662 //or . or = k ;

663 theta = radian (54 .735610317245) ;

664 EulerAngles (&or . rotM [ 0 ] [ 0 ] , rad ian ( 135 . 0 ) , theta , rad ian ( 270 . 0 ) ) ;

665 } else {
666 a = RandomWithIn ( −1 .0 ,1 .0 ) ;

667 phi = acos ( a ) ;

668 b = RandomWithIn ( −1 .0 ,1 .0 ) ; u . x = b ;

669 c = RandomWithIn ( −1 .0 ,1 .0 ) ; u . y = c ;

670 d = RandomWithIn ( −1 .0 ,1 .0 ) ; u . z = d ;

671 u = uni t (&u) ;

672 b = u . x ∗ s i n ( phi ) ;

673 c = u . y ∗ s i n ( phi ) ;

674 d = u . z ∗ s i n ( phi ) ;

675 EulerParameters (&or . rotM [ 0 ] [ 0 ] , a , b , c , d ) ;

676 //or . or = ( i n t ) ( ( a+1.) ∗5000 + ( b+1.) ∗500 + ( c+1.) ∗50 + (d+1.) ∗5) ;

677 }
678

679 Z . x = Z . y = 0 . 0 ; Z . z = 1 . 0 ;

680 Z = rotat ionT (Z,&or . rotM [ 0 ] [ 0 ] ) ; // <001> in c r y s t a l coord ina te

681

682 p = uni t (&Z) ;

683 p = vpo s i t i v e (&p) ;

684 i =0; while ( ( ! ( i n t r i a n g l e (&p) ) ) && ( i <5) ) i = Vreorder(&p , i ) ;

685 or . or = Tr iang le2Color (&p) ;

686

687 f i = fopen ( ” eu l e r pa ramete r s ” , ”a” ) ;

688 f p r i n t f ( f i , ”%5d%14.7 f %14.7 f %14.7 f %14.7 f %14.7 f %14.7 f %14.7 f %14.7 f

%14.7 f %14.7 f \n” ,
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689 or . or , a , b , c , d , Z . x , Z . y , Z . z , p . x , p . y , p . z ) ;

690 f c l o s e ( f i ) ;

691

692 return or ;

693 }
694

695 void EulerAngles (double ∗rotM , double phi , double theta , double p s i )

696 { // phi = [0 ,2∗ p i ] : t h e t a = [0 , p i ] : p s i = [0 ,2∗ p i ]

697 ∗( rotM+0) = cos ( p s i ) ∗ cos ( phi ) − cos ( theta ) ∗ s i n ( phi ) ∗ s i n ( p s i ) ;

698 ∗( rotM+1) = cos ( p s i ) ∗ s i n ( phi ) + cos ( theta ) ∗ cos ( phi ) ∗ s i n ( p s i ) ;

699 ∗( rotM+2) = s in ( p s i ) ∗ s i n ( theta ) ;

700 ∗( rotM+3) = −s i n ( p s i ) ∗ cos ( phi ) − cos ( theta ) ∗ s i n ( phi ) ∗ cos ( p s i ) ;

701 ∗( rotM+4) = −s i n ( p s i ) ∗ s i n ( phi ) + cos ( theta ) ∗ cos ( phi ) ∗ cos ( p s i ) ;

702 ∗( rotM+5) = cos ( p s i ) ∗ s i n ( theta ) ;

703 ∗( rotM+6) = s in ( theta ) ∗ s i n ( phi ) ;

704 ∗( rotM+7) = −s i n ( theta ) ∗ cos ( phi ) ;

705 ∗( rotM+8) = cos ( theta ) ;

706 return ;

707 }
708

709 void EulerParameters (double ∗rotM , double a , double b , double c , double d

)

710 { // a = e0 = cos ( phi /2) : b i+c j+dk = e1 i+e2 j+e3k => normal ize ∗ s in (

phi /2)

711 ∗( rotM+0) = a∗a + b∗b − c∗c − d∗d ;

712 ∗( rotM+1) = 2∗(b∗c + a∗d) ;

713 ∗( rotM+2) = 2∗(b∗d − a∗c ) ;

714 ∗( rotM+3) = 2∗(b∗c − a∗d) ;

715 ∗( rotM+4) = a∗a − b∗b + c∗c − d∗d ;

716 ∗( rotM+5) = 2∗( c∗d + a∗b) ;

717 ∗( rotM+6) = 2∗(b∗d + a∗c ) ;

718 ∗( rotM+7) = 2∗( c∗d − a∗b) ;

719 ∗( rotM+8) = a∗a − b∗b − c∗c + d∗d ;

720 return ;

721 }
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722

723 double RandomWithIn (double a , double b)

724 {
725 double r ;

726

727 r = (double ) rand ( ) / ( (double ) (RANDMAX) + (double ) (1 ) ) ;

728 return r ∗( max(a , b) − min(a , b) ) + min (a , b) ;

729 }
730

731 double degree (double rad ian )

732 {
733 double pi =4.0∗ atan2 ( 1 . 0 , 1 . 0 ) ;

734 return ( rad ian / p i ) ∗180 . 0 ;

735 }
736

737 double rad ian (double degree )

738 {
739 double pi =4.0∗ atan2 ( 1 . 0 , 1 . 0 ) ;

740 return ( degree /180 . ) ∗ pi ;

741 }
742

743 void Push ( struct node∗∗ headref , int no )

744 {
745 struct node∗ newnode = malloc ( s izeof ( struct node ) ) ;

746 newnode−>no = no ;

747 newnode−>next = ∗ headre f ;

748 ∗ headre f = newnode ;

749 }
750

751 /∗ vo id makeVoid ( Vector ∗r , doub le v rad ius )

752 {
753 i n t boxno = inSearchBox ( r ) ;

754 i n t a , b , c , i , j , k ;

755 s t r u c t node∗ ca ;

756 s t r u c t node∗ l i s t a ;
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757 doub le d i s t ;

758

759 n2i ( boxno ,&a,&b ,&c ) ;

760 f o r ( i=a−1; i<a+2; i++)

761 f o r ( j=b−1; j<b+2; j++)

762 f o r ( k=c−1;k<c+2;k++) {
763 l i s t a = searchbox [ i2n ( i , j , k ) ] ;

764 f o r ( ca=l i s t a ; ca !=NULL; ca=ca−>next ) {
765 d i s t = lenA2B(&atom [ ca−>no ] . r , r ) ;

766 i f ( d i s t < vrad ius ) {
767 atom [ ca−>no ] . ph = −2;

768 }
769 }
770 }
771 re turn ;

772 }∗/
773

774 int pr intbox ( int boxno , int count )

775 {
776 struct node∗ ca ;

777 Vector r ;

778 FILE ∗ f i ,∗ f j ;

779 char fname [ 2 0 ] , lname [ 2 0 ] ;

780

781 s p r i n t f ( fname , ”polygon−%04d” , boxno ) ;

782 s p r i n t f ( lname , ”Lpolygon−%04d” , boxno ) ;

783 f i = fopen ( fname , ”w” ) ;

784 f j = fopen ( lname , ”w” ) ;

785

786 for ( ca=searchbox [ boxno ] ; ca !=NULL; ca=ca−>next ) {
787 r = atom [ ca−>no ] . r ;

788 f p r i n t f ( f i , ”%14.10 f %14.10 f %14.10 f %d\n” , r . x , r . y , r . z , atom [ ca−>no

] . or ) ;

789 i f ( atom [ ca−>no ] . ph > 0) {
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790 f p r i n t f ( f j , ”%7d%7d%14.8 f %14.8 f %14.8 f \n” , count , atom [ ca−>no ] . type

, r . x , r . y , r . z ) ;

791 count++;

792 }
793 }
794 f c l o s e ( f i ) ;

795 f c l o s e ( f j ) ;

796

797 return ( count ) ;

798 }
799

800 int Search2Boxes ( int boxA , int boxB , double t o l )

801 {
802 struct node∗ ca ;

803 struct node∗ cb ;

804 double d i s t ;

805 int count=0; //FIXME

806

807 for ( ca=gb [ boxA ] ; ca !=NULL; ca=ca−>next ) {
808 for ( cb=gb [ boxB ] ; cb !=NULL; cb=cb−>next ) {
809 d i s t = lenA2B(&atom [ ca−>no ] . r ,&atom [ cb−>no ] . r ) ;

810 // va l=min( va l , d i s t ) ;

811 i f ( d i s t < t o l ) {
812 count++;

813 atom [ cb−>no ] . ph = 0 ;

814 }
815 }
816 }
817 // p r i n t f (”%10d pairs , %f t o l , min d i s t ance = %f \n” , count , t o l , v a l ) ;

818

819 return ( count ) ;

820 }
821

822 void SearchDelete ( struct node∗ l i s t a , struct node∗ l i s t b , double t o l )

823 {
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824 struct node∗ ca ;

825 struct node∗ cb ;

826 double d i s t ;

827

828 for ( ca=l i s t a ; ca !=NULL; ca=ca−>next ) {
829 for ( cb=l i s t b ; cb !=NULL; cb=cb−>next ) {
830 i f ( ( atom [ ca−>no ] . ph >= 0)&&(atom [ ca−>no ] . ph < atom [ cb−>no ] . ph )

) {
831 d i s t = lenA2B(&atom [ ca−>no ] . r ,&atom [ cb−>no ] . r ) ;

832 i f ( ( d i s t > 1e−5 )&&( d i s t < t o l ) ) {
833 atom [ cb−>no ] . ph = −1;

834 }
835 }
836 }
837 }
838 return ;

839 }
840

841 /∗ i n t i2n ( i n t i , i n t j , i n t k )

842 {
843 i f ( i==−1) i = nx−1;

844 i f ( j==−1) j = ny−1;

845 i f ( k==−1) k = nz−1;

846 i f ( i==nx ) i = 0;

847 i f ( j==ny ) j = 0;

848 i f ( k==nz ) k = 0;

849 re turn i ∗ny∗nz+j ∗nz+k ;

850 }
851

852 vo id n2i ( i n t n , i n t ∗ i , i n t ∗ j , i n t ∗k )

853 {
854 ∗ i = n / (ny∗nz ) ;

855 n −= ∗ i ∗ ny ∗ nz ;

856 ∗ j = n / nz ;

857 ∗k = n − ∗ j ∗ nz ;



171

858 re turn ;

859 }
860

861 vo id SearchPack ( i n t i , i n t j , i n t k , doub le t o l )

862 {
863 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i , j , k ) ] , t o l ) ;

864 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i , j , k+1) ] , t o l ) ;

865 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i , j +1,k+1) ] , t o l ) ;

866 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i , j +1,k ) ] , t o l ) ;

867 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i +1, j , k ) ] , t o l ) ;

868 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i +1, j , k+1) ] , t o l ) ;

869 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i +1, j +1,k+1) ] , t o l )

;

870 SearchDele te ( searchbox [ i2n ( i , j , k ) ] , searchbox [ i2n ( i +1, j +1,k ) ] , t o l ) ;

871 re turn ;

872 }∗/
873

874 void pr in tpe r c en t ( t ime t s ta r t , double perc )

875 {
876 t ime t end ;

877 double runtime ;

878 int hours , minutes , seconds ;

879

880 time(&end ) ;

881 runtime = d i f f t im e ( end , s t a r t ) ;

882 hours = runtime / (60∗60) ;

883 minutes = ( runtime − hours ∗60∗60) /60 ;

884 seconds = runtime − hours ∗60∗60 − minutes ∗60 ;

885

886 p r i n t f ( ”%6.2 f%% done in %2d hours , %2d minutes , %2d seconds .\n” ,

perc , hours , minutes , seconds ) ;

887

888 return ;

889 }
890
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891 double r un l i n e ( Vector ∗ r , double x , double y , double z , double d i s t ) //

FIXME

892 {
893 Vector p , d ;

894 double t ;

895

896 p . x = x − r−>x ; d . x = x ;

897 p . y = y − r−>y ; d . y = y ;

898 p . z = z − r−>z ; d . z = z ;

899 t = lenA2B ( r ,&d) ;

900 p = uni t (&p) ;

901

902 r−>x = r−>x + d i s t ∗p . x ;

903 r−>y = r−>y + d i s t ∗p . y ;

904 r−>z = r−>z + d i s t ∗p . z ;

905

906 return t ;

907 } //FIXME

908

909 int Vreorder ( Vector ∗v , int i )

910 {
911 double a , b , c ;

912

913 a = v−>x ; b = v−>y ; c = v−>z ;

914 i f ( i==0) {
915 v−>x = b ; v−>y = c ; v−>z = a ; i = 1 ;

916 } else i f ( i==1) {
917 v−>x = b ; v−>y = c ; v−>z = a ; i = 2 ;

918 } else i f ( i==2) {
919 v−>x = b ; v−>y = a ; v−>z = c ; i = 3 ;

920 } else i f ( i==3) {
921 v−>x = b ; v−>y = c ; v−>z = a ; i = 4 ;

922 } else i f ( i==4) {
923 v−>x = b ; v−>y = c ; v−>z = a ; i = 5 ;

924 } else {
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925 p r i n t f ( ”Something might be wrong ! ! \ n” ) ;

926 }
927 return i ;

928 }
929

930 Vector s p h e r i c a l ( Vector ∗v )

931 {
932 double rho , phi , theta ;

933 Vector r ;

934

935 r . x = rho = len (v ) ; // r a d i a l d i s t ance

936 r . y = phi = acos (v−>z / rho ) ; // z en i t h ang l e from pos−z ( north

po l e )

937 r . z = theta = atan (v−>y / v−>x ) ; // azimuth ang l e from pos−x

938 return r ;

939 }
940

941 int i n t r i a n g l e ( Vector ∗v )

942 { // t ha t 100 , 110 , 111 t r i a n g l e

943 Vector r = sph e r i c a l ( v ) ,n , o , a2x ;

944 double pi =4.0∗ atan2 ( 1 . 0 , 1 . 0 ) ;

945

946 o . x = o . y = o . z = 0 . 0 ; // o r i g i n

947 n . x = 0 . 0 ; n . y = −1.0; n . z = 1 . 0 ; // normal = cros s (100 ,111)

948 a2x = va2b(&o , v ) ;

949 i f ( ( r . z < pi /4)&&( dot(&a2x ,&n)<=0 ) ) return 1 ;

950 else return 0 ;

951 }
952

953 Vector vpo s i t i v e ( Vector ∗a )

954 {
955 Vector s = ∗a ;

956

957 i f ( s . x < 0 . ) s . x ∗= −1.;

958 i f ( s . y < 0 . ) s . y ∗= −1.;



174

959 i f ( s . z < 0 . ) s . z ∗= −1.;

960 return s ;

961 }
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Listing 8.4: global.h

1 //#de f i n e pena l t y 0 .5 // a l l ow 50% of 2∗ r0

2 #define l a t t i c e 3 .615 // FCC (Cu) Copper La t t i c e

3 //#de f i n e l a t t i c e 3.52 // FCC (Ni ) Nicke l La t t i c e

4

5 Pa r t i c l e ∗atom ; // po in t e r to atom

6 double px , py , pz , gmx , gmy , gmz ; // g l o b a l domain d e f i n i t i o n

7 long ano , maxatom ; // running atom # and max #

8 struct node∗∗ searchbox ; // po in t e r to search box

9 struct node∗∗ gb ; // po in t e r to GB of each gra in

10

11 extern int UpdateF i l l edL i s t ( Polyhedron ∗ph , int nopoly , int ∗ f i l l e d l i s t

) ;

12 extern int NotInThisList ( int ∗ l i s t , int s i z e , int check ) ;

13 extern int PolyhedronHasThis ( Vector ∗ r , Polyhedron ∗ph , int nopoly ) ;

14 extern Vector l a t s i z e ( Vector ∗a , Vector ∗ r , int mm) ;

15 extern int SaveAtom( Vector ∗ rt , int j , int or , int noa , int tno ) ;

16 extern void bound ( Vector ∗min , Vector ∗max , Vector ∗p) ;

17 extern int FindNeighbor ( Polyhedron ∗ph , int nopoly , int j , int ∗
t o b e f i l l e d l i s t , int t o b e f i l l e d ) ;

18 extern int Fi l lAt ( Polyhedron ∗ph , int nopoly , int j , Or i entat ion ∗or ,

Vector ∗ r ) ;

19 extern Polyhedron MakeBox(double ∗rotM) ;

20 extern double dcos (double v ) ;

21 extern Vector r o t a t i on ( Vector p , double ∗ r ) ;

22 extern Vector rotat ionT ( Vector p , double ∗ r ) ;

23 extern void p r i n t v e c t o r ( int i , Vector ∗ r ) ;

24 extern void printatom ( Vector ∗a , int value , int no ) ;

25 extern void printlammps ( Vector ∗a , int atomno , int tno , int fno ) ;

26 extern int inpolyhedron ( Vector ∗x , Polyhedron ∗p) ;

27 extern int inthebox ( Vector ∗ r ) ;

28 extern Vector cente r2 ( Vector ∗ r , Vector ∗ s ) ;

29 extern Vector s h i f t ( Vector ∗ center , Vector ∗normal ) ;

30 extern Vector c ente r ( Vector ∗ r , Vector ∗s , Vector ∗ t ) ;

31 extern Vector cente r4 ( Vector ∗ r , Vector ∗s , Vector ∗ t , Vector ∗u) ;
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32 extern Vector Vnormal ( Vector ∗ r , Vector ∗s , Vector ∗ t , Polyhedron ∗ph

, Face ∗ f c ) ;

33 extern Vector va2b ( Vector ∗ r , Vector ∗ s ) ;

34 extern double l en ( Vector ∗a ) ;

35 extern double lenA2B ( Vector ∗ r , Vector ∗ s ) ;

36 extern Vector un i t ( Vector ∗a ) ;

37 extern Vector uni t3 (double x , double y , double z ) ;

38 extern Vector v s c a l e ( Vector ∗a , double value ) ;

39 extern Vector vmodify ( Vector ∗a , double value , int idx ) ;

40 extern Vector c r o s s ( Vector ∗ r , Vector ∗ s ) ;

41 extern double dot ( Vector ∗a , Vector ∗b) ;

42 extern Vector p e r i o d i c ( Vector ∗ r ) ;

43 extern Orientat ion MakeOrientation ( int k ) ;

44 extern void EulerAngles (double ∗rotM , double phi , double theta , double

p s i ) ;

45 extern void EulerParameters (double ∗rotM , double a , double b , double c ,

double d) ;

46 extern double RandomWithIn (double a , double b) ;

47 extern double degree (double rad ian ) ;

48 extern double rad ian (double degree ) ;

49 extern void Push ( struct node∗∗ headref , int no ) ;

50 extern int pr intbox ( int boxno , int count ) ;

51 extern int Search2Boxes ( int boxA , int boxB , double t o l ) ;

52 extern void SearchDelete ( struct node∗ l i s t a , struct node∗ l i s t b , double

t o l ) ;

53 extern void pr in tpe r c en t ( t ime t s ta r t , double perc ) ;

54 extern double r un l i n e ( Vector ∗ r , double x , double y , double z , double

d i s t ) ;

55 extern int Vreorder ( Vector ∗v , int i ) ;

56 extern Vector s p h e r i c a l ( Vector ∗v ) ;

57 extern int i n t r i a n g l e ( Vector ∗v ) ;

58 extern Vector vpo s i t i v e ( Vector ∗a ) ;
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Listing 8.5: fillatom.h

1 typedef struct {
2 double x ; // Vx

3 double y ; // Vy

4 double z ; // Vz

5 } Vector ;

6

7 typedef struct {
8 int noppf ; // # of po in t s per face

9 int p [ 5 0 ] ; // po in t s number

10 Vector c ente r ; // cen ter ( cg ) o f f ace

11 Vector normal ; // normal o f f ace

12 } Face ;

13

14 typedef struct {
15 int nof ; // # of f a c e s

16 int noa ; // # of atoms/ p a r t i c l e s in t h i s po lyhedron

17 int nop ; // # of po in t s

18 int s t a r t ; // f i r s t p a r t i c l e # in

19 int pr count ; // # of p e r i o d i c ad jacen t po lyhedrons

20 int blank ; // 1 = blank , 0 = f i l l e d

21 int ngh [ 2 5 ] ; // ne ighbor po lyhedron number

22 int p [ 1 0 0 ] ; // po in t number

23 Vector ∗p0 ; // po in t e r po in t to the f i r s t po in t

24 Vector c [ 3 0 ] ; // cen t e r s o f f a c e s

25 Vector n [ 3 0 ] ; // normals o f f a c e s

26 Vector p e r i o d i c [ 8 ] ; // r e f e r ence po in t f o r f i l l i n g ad jacen t ph

27 Vector com ; // cen ter o f mass

28 Vector min ; // a b s o l u t e max l oca t i on , change wi th o r i e n t a t i on

29 Vector max ; // a b s o l u t e min l oca t i on , change wi th o r i e n t a t i on

30 } Polyhedron ;

31

32 typedef struct {
33 int ph ; // Polyhedron No

34 int type ; // Atom Type
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35 int or ; // Or ien ta t ion

36 Vector r ; // Location vec t o r

37 } Pa r t i c l e ;

38

39 typedef struct {
40 double rotM [ 3 ] [ 3 ] ; // ro t a t i on matrix

41 int or ; // o r i e n t a t i on number

42 } Orientat ion ;

43

44 struct node { // search box l i nk− l i s t

45 int no ;

46 struct node∗ next ;

47 } ;

48

49 #define min(a , b) ( ( a ) <= (b) ? ( a ) : (b) )

50 #define max(a , b) ( ( a ) >= (b) ? ( a ) : (b) )
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[55] E. T. Seppälä, J. Belak, and R. E. Rudd. Three-dimensional molecular
dynamics simulations of void coalescence during dynamic fracture of ductile
metals. Physical Review B, 71(064112):1–10, 2005.

[56] J. Marian, J. Knap, and M. Ortiz. Nanovoid cavitation by dislocation emis-
sion in aluminum. Physical Review Letters, 93(165503):1–4, 2004.

[57] J. Marian, J. Knap, and M. Ortiz. Nanovoid deformation in aluminum under
simple shear. Acta Materialia, 53:2893–2900, 2005.

[58] S. G. Srinivasan, M. I. Baskes, and G. J. Wagner. Spallation of single crys-
tal nickel by void nucleation at shock induced grain junctions. Journal of

Material Sciences, 41:7838–7842, 2006.

[59] M. R. Gungor and D. Maroudas. Atomic-scale analysis of strain relax-
ation mechanisms in ultra-thin metallic films. Mater. Res. Soc. Symp. Proc.,
880E(BB2.2.1):03.2.1–03.2.6, 2005.

[60] L. P. Dávila, P. Erhart, E. M. Bringa, M. A. Meyers, V. A. Lubarda, M. S.
Schneider, R. Becker, and M. Kumar. Atomistic modeling of shock-induced
void collapse in copper. Applied Physics Letters, 86(161902):1–3, 2005.

[61] G. P. Potirniche, M. F. Horstemeyer, G. J. Wagner, and P. M. Gullett. A
molecular dynamics study of void growth and coalescence in single crystal
nickel. Int. J. Plasticity, 22:257–278, 2006.

[62] M. F. Horstemeyer, M. I. Baskes, and S. J. Plimpton. Length scale and time
scale effects on the plastic flow of FCC metals. Acta Materialia, 49:4363–
4374, 2001.

[63] N. A. Fleck and J. W. Hutchinson. A phenomenological theory for strain
gradient effects in plasticity. Journal of the Mechanics and Physics of Solids,
41(12):1825–1857, 1993.



184

[64] N. A. Fleck, G. M. Muller, M. F. Ashby, and J. W. Hutchinson. Strain
gradient plasticity: Theory and experiment. Acta Metallurgica, 42(2):475–
487, 1994.

[65] J. Belak. On the nucleation and growth of voids at high strain-rates. J.

Comput.-Aided Mater. Design, 5:193–206, 1998.

[66] J. Belak and R. Minich. Fracture and ductile vs brittle behavior–theory,

modeling and experiment, volume 539. Warrendale, PA: Materials Research
Society, 1999. MRS Symp. Proc.

[67] L. E. Murr, K. P. Staudhammer, and M. A. Meyers. Metallurgical Applica-

tions of Shock-Wave and High-Strain-Rate Phenomena. Dekker, 1986.

[68] G. P. Potirniche, M. F. Horstemeyer, B. Jelinek, and G. J. Wagner. Fatigue
damage in nickel and copper single crystals at nanoscale. Int. J. Fatigue,
27:1179–1185, 2005.

[69] G. P. Potirniche and M. F. Horstemeyer. On the growth of nanoscale fatigue
cracks. Philosophical Magazine Letters, 86:185–193, 2006.

[70] G. P. Potirniche, M. F. Horstemeyer, and P. M. Gullett. Atomistic modelling
of fatigue crack growth and dislocation structuring in FCC crystals. Proc.

R. Soc. A, 462:3707–3731, 2006.

[71] W. M. Ashmawi and M. A. Zikry. Single void morphological and grain-
boundary effects on overall failure in F.C.C. polycrystalline systems. Mate-

rials Science and Engineering, A343:126–142, 2003.

[72] R. E. Rudd and J. F. Belak. Void nucleation and associated plasticity in
dynamic fracture of polycrystalline copper: an atomistic simulation. Com-

putational Material Sciences, 24:148–153, 2002.

[73] J. Belak. Molecular dynamics simulation of high strain-rate void nucleation
and growth in copper. Shock Compression of Condensed Matter, 429:211–
214, 1998. AIP Conf. Proc.

[74] J. A. Moriarty, J. F. Belak, R. E. Rudd, P. Söderlind, F. H. Streitz, and
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