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Abstract

Real-time traffic information is crucial for traffic operations and management. Due

to budget constraints, strategies for deploying sensors to effectively acquire the most

critical information are desirable. While significant progress has been made on sensor

location problem based on flow observability concept, most research on flow observ-

ability is based on static traffic data and only takes network topology into account.

This thesis addresses the traffic network observability problem in a dynamic setting.

Different from the observability concepts adopted for static settings, we consider all

temporal and spatial relations of traffic flows to determine unobserved states. We first

develop a state-space model to describe link density dynamics in virtue of a recently

proposed link queue model. We then analyze the link queue model properties includ-

ing phase transition, subspace boundary variation, and stability. Finally, based on full

rank test or PBH test, we use examples to show critical network components where

data need to be collected to ensure full network observability under different topology

and congestion conditions.
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Chapter 1

Introduction

Information is indispensable in the transportation system, which improves traffic

efficiency and safety by providing a basis for transportation planning in the long run

and reflecting the current traffic condition for traffic monitoring, information service,

traffic guidance, and so on in the short run.

Due to the budget constraint, it is impractical to put sensors everywhere to get

enough information for system identification. How to obtain the system information as

much as possible with the minimum budget for sensors attracts much attention from

researchers during recent decades. To solve this problem, the concept of observability

was firstly adopted by Castillo et al. (2008) and widely used by others in transportation

system identification. Observability of the system is to measure how well the internal

states could be identified by external outputs, which could be used as the objective

of system information acquisition to deploy sensors. In the traffic system, flow infor-

mation could be read directly by sensors or derived from relations, such as network

topology and conservation law. The traffic flow observability aims to uniquely infer the

unobserved flows by observed ones. In other words, based on observability analysis, we

could determine the subset of flow information that need to be collected to obtain all

flow information.

Currently, most of the state-of-the-art observability analysis in transportation lit-
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erature is studied under a steady-state or in a static setting based on the null space

method or network topological relations. Because the traffic condition is changing

with time and traversing between stable and unstable phases back and forth, static

observability conducted at a specific traffic condition is not enough to provide the op-

timal sensor location and then identify the whole system. Several studies employed

the dynamic traffic model or other mathematical approaches to extend the observabil-

ity in the dynamic setting. However, in these pieces of literature, linearization at the

equilibrium point of the nonlinear traffic system constrains the scope of study space,

the linearized system can not accurately describe the network traffic dynamics under

unsteady states, employment of switching-mode model is plagued by the explosion of

the number of subspaces, and there is no relevant research to analyze the properties of

subspaces.

This thesis addresses the observability problem in the dynamical setting by using

the link queue model proposed by Jin (2021) to approximate the nonlinear traffic system

by a piecewise affine system, which extends the studied traffic network condition from

a specific one (steady-state) to the whole state space. Instead of relying only on the

network topological relationship, the paper also considers the traffic flow operational

and temporal relations to infer unobserved link densities to achieve full observability.

Specifically, properties including phase transition, subspace boundary variation, and

stability of the link queue model are analyzed. Based on the proposed dynamic traffic

system, full observability is analyzed under different network topology and congestion

conditions for system identification.

The rest of the thesis is organized as follows. In Chapter 2, we review the related

literature on dynamic traffic models and traffic observability problems, and the link

queue model properties specifically. In Chapter 3, we display and analyze several

properties of the link queue model and conduct observability analysis. In Chapter 4,

we use several examples to show critical links where data need to be collected to ensure

full network observability under different network congestion conditions and topologies.

2



In Chapter 5, we conclude this study with discussions, limitations, and future research

topics.
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Chapter 2

Literature Review

To address the dynamic observability problem, firstly, we need to select a proper

dynamic traffic flow model to describe the traffic system, then solve the observability

problem to identify the traffic system by relations like topology, conservation law, and

so on. In this chapter, we reviewed the literature about dynamic traffic models and the

observability problem in transportation, and layout the properties of the link queue

model and reasons for selecting it.

2.1 Dynamic Traffic Flow Models Review

Dynamic traffic flow models used to describe the driver behaviors and explain the

traffic phenomenon could be partitioned into deterministic models and stochastic ones.

2.1.1 Deterministic Models

According to different studied objectives, deterministic models could be classified

into macroscopic models and microscopic models.

Macroscopic traffic flow models originated from the LWR model (Lighthill and

Whitham (1955b), Lighthill and Whitham (1955a), Richards (1956)), which simulates

traffic flows as continuous flows. Daganzo (1992, 1995) formulated the cell transmission
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model (CTM) by discretizing the LWR model in space and time domains, which could

describe the formation and propagation of flows under corridor case and three-legged

junctions based on the triangular fundamental diagram. Various modifications of the

CTM were proposed, like lagged cell transmission model (LCTM) in Daganzo (1999)

and enhanced lagged cell transmission model (ELCTM) in Szeto (2008). To reduce

the computation work, link-based models were proposed. Jin (2021) proposed the link

queue model to enlarge the cell in CTM to link and treats vehicle accumulation on

each link as a queue, in which link density dynamics is computed by in- and out-flux

corresponding to ordinary, merging, and diverging junction rules. The model based on

exit flow functions (MNO) is proposed by Merchant and Nemhauser (1978) to describe

flow evolution on links, which yields the same result as the LWR model by refining the

discretization of link length in Carey and McCartney (2004). For modeling the speed

evolution with higher accuracy, additional higher-order terms were added in models

proposed by Papageorgiou et al. (1990).

Microscopic models treat a single vehicle as the research object to study its tra-

jectory and interaction with other vehicles, which includes the car-following model

proposed by Newell (1993, 2002) and lane changing model by Gipps (1986).

2.1.2 Stochastic Models

In real life, various factors have an influence on traffic dynamics which includes

weather, traffic facility, driver behavior, and so on. To better simulate the traffic

dynamics, deterministic models are modified into stochastic ones.

In macroscopic models, Boel and Mihaylova (2006) and Sumalee et al. (2011) mod-

ified the CTM with stochastic demand and supply functions. However, modification of

demand and supply functions could lead to negative densities, Jabari and Liu (2012)

focused on the uncertainty on headway and could address this issue. Also, the stochas-

tic higher-order continuum model based on the boltzmaan approach was proposed by
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Prigogine and Andrews (1960).

In microscopic models, Markovian models and probabilistic cellular automation

models are used to simulate the movement of an individual vehicle (Zhao and Spall

(2018), Schreckenberg et al. (1995)). Compared with deterministic models, simulating

stochastic Markovian models are more straightforward and faster. However, in the view

of drivers, the stochastic model is unreasonable, because part of the driver’s movement

is determined in advance.

2.2 Reasons for Choosing Link Queue Models

This paper adopted the link queue model proposed by Jin (2021) to describe the

dynamic traffic system because of the following properties:

(1) Compared with microscopic traffic models, the link queue model is a macroscopic

model which describes the evolution of traffic flow rather than an individual vehicle.

The studied parameter in the link queue model, link density, is the kind of information

we want to acquire because this level of aggregated traffic condition can be directly

used to support most traffic control strategies and it is readily obtainable by existing

sensors deployed on roads.

(2) Based on the link queue model, the traffic system could be built easily in terms of

conservation law, and we could directly use the definition of observability in control

theory.

(3) Compared with the well-known LWR model, which is an infinite-dimensional PDE

model, the link queue model is a finite-dimensional ODE model which enlarges the size

of cells in the CTM to the link. The link queue model considers the traffic on each

link as a queue that distributes uniformly on the link. Although it is too coarse for

capturing the traffic dynamics on each link, it reduces the computation work efficiently

by neglecting the difference of traffic condition for different locations on each link.

(4) Compared with exit flow models, which focus on more accurate exit flux functions,
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the link queue model determines the in- and exit-flux functions by link densities and

proper demand (supply) functions.

(5) The link queue model is a continuous approximation of kinematic wave models.

Although shock waves and rarefaction waves cannot be captured in the link queue

model, which are denoted by jumps of in- and exit flux function in kinematic wave

models, the link queue model could exponentially approximate the transition of these

jumps, which could be considered as continuous shock waves and rarefaction waves.

2.3 Review of Observability

In transportation, the flow observability problem studies whether there exists a

unique solution of the flow conservation equation, or how to select the observable infor-

mation to uniquely identify the whole traffic system. Based on the flow observability,

we can deploy the sensors to obtain the most information of interest.

2.3.1 Static Observability

Most of the studies are based on static or steady-state traffic. Castillo et al.

(2015) and Gentili and Mirchandani (2012) provided state-of-the-art reviews of the

sensor location method, in which the observability problem is also discussed in detail.

The static observability problem could be classified by categories of traffic flow as

link flow observability, OD flow observability, and path flow observability, and general

flow observability.

For link flow observability, methods could be further subdivided into OD-based

approaches, node-based approaches, path-based approaches, and graphical approaches.

Based on the link-OD incidence matrix, Castillo et al. (2008) proposed the nullspace

method to uniquely determine the unobserved flow. Based on the link-path incidence

matrix, a reduced row echelon form (RREF) method is proposed for path-based observ-

ability by Hu et al. (2009). Path enumeration is required for path-based observability,
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which is infeasible for large-scale networks. Therefore, a node-based approach based on

flow conservation law is proposed for full link flow observability by Ng (2012). Based

on graph theory, the spanning tree method was firstly suggested by Mori and Tsuzuki

(1991) in power system observability and used by He (2013) to solve the link flow ob-

servability in virtue of a virtue node and virtue links to reproduce node inflows and

outflows. If the system wants to achieve full observability, at least 60-70 percent of links

need to be equipped with counting sensors (Hu et al. (2009); Ng (2012); He (2013);

Castillo et al. (2013)), optimal partial observability solution is proposed by Viti et al.

(2014).

For OD, path, and general flow observability, information from counting sensors is

limited in that counting data is not sufficient to identify OD and path flow. Therefore,

the plate scanning technique is introduced to provide the OD and path flows. Castillo

et al. (2012) proposed a method of measuring information (FAO), and determined the

minimal set of links to be scanned for full observability of all flows (link, OD, path).

2.3.2 Dynamic Observability

Recently, observability is analyzed in dynamic traffic system setting to gain more

real-time information.

A switching-mode model based on the cell transmission model is proposed by

Muñoz et al. (2003) to estimate traffic densities only for the corridor case, in which

the observability and controllability properties of each switching mode are summarized

to advise sensor location. Agarwal et al. (2016) formulated a state-space model based

on the ordinary differential equation setting to describe the network routing dynam-

ics at the node and density dynamics on the link. Then observability is analyzed at

the equilibrium point of the linearized system, which only holds for a certain network

condition. Rostami-Shahrbabaki et al. (2020) formulated a two-layer model for traffic

flow evolution based on connected vehicle data to transform the inherently switching
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nonlinear system into a non-switching linear-in-parameters one and employed a graph-

ical approach proposed by Liu et al. (2013) to find the optimal sensor location for

full observability of link densities. Compared with other methods, using connected

vehicle data could efficiently reduce the number of or even without counting sensors

to estimate all link densities. Nevertheless, the penetration of connected vehicles will

influence the accuracy, and the graphical approach is necessary and generally not suffi-

cient for the full observability of an arbitrary network. Moreover, the two-layer model

underestimates link densities for the no queue case and overestimates link densities for

the spillback case.
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Chapter 3

Methodologies

This chapter firstly reviews the link queue model and rewrites it as a piecewise

affine system based on the triangular fundamental diagram. Then based on the sim-

plest two-link network, we show some properties of the link queue model, including

phase transition, subspace boundary variation, and stability. Finally, we introduce the

definition of observability in the dynamical system and show the full rank test and

Popov-Belevitch-Hautus (PBH) test.

3.1 Preliminaries of the Link Queue Model

3.1.1 The Link Queue Model Review

According to flow conservation law, the classic macroscopic traffic flow model, the

LWRmodel (Lighthill andWhitham (1955b), Lighthill andWhitham (1955a), Richards

(1956)) treats traffic flows as continuous flows and formulates the relationship between

traffic density and flux in a partial differential equation given by (3.1), in which k(x, t)

denotes the traffic density of location x at time t, q(x, t) denotes the flux of location x

at time t.
∂k(x, t)

∂t
+
∂q(x, t)

∂x
= 0 (3.1)
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For the sake of simplification and reduce the computation work, Jin (2021) as-

sumed that traffic on the link is homogeneous and treated traffic as a queue on each

link, then proposed the link queue model which transforms the LWR model from PDE

model to the ODE model. The flow conservation on normal links is shown as (3.2),

where ka(t) denotes the average link density of link a at time t, fa(t) denotes the influx

of link a at time t, ga(t) denotes the outflux of link a at time t, La denotes the length

of link a, ∆ denotes the set of directed links in the studied traffic network.

k̇a(t) =
fa(t)− ga(t)

La
,∀a ∈ ∆ (3.2)

In order to solve the equation (3.2), demand and supply functions are introduced

as (3.3a) and (3.3b) to relate the inflow and outflow of each link with link densities. In

euqation (3.3), da(t) and sa(t) denote the demand and supply flow of link a at time t

respectively, Qa(ka(t)) denotes a unimodal function of traffic flow in link density ka, Ca

denotes the capacity of link a attained at critical density ka,c(Qa(ka,c) = Ca ≥ Qa(ka)).

da(t) =


Qa(ka(t)), if not congested(ka(t) < ka,c)

Ca, if congested(ka(t) ≥ ka,c)

(3.3a)

sa(t) =


Ca, if not congested(ka(t) < ka,c)

Qa(ka(t)), if congested(ka(t) ≥ ka,c)

(3.3b)

The formulation of demand and supply functions are intuitively understandable.

The demand function describes the relationship between sending flow from the current

link to the downstream link and current link density, which increases with density if the

current link density less than critical density and stays at the capacity level otherwise.

When the link density is bigger than the critical density, the queue begins to form and

flows out at the maximum rate, like the situation that the traffic light turns to green
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from red. Similarly, the supply function describes the relationship between receiving

flow from the upstream link to the current link and current link density, which decreases

with increasing density if the current link density is bigger than critical density and

stays at the capacity level otherwise, that is because the queue in the present link will

occupy some space and influence the receiving flow.

The function of inflow (outflow) regarding demand and supply of each link is for-

mulated as (3.4), which under node flow conservation law and could track the direction

of flow propagation. At a junction j ∈ J , gj(t) denotes the vector of the outflow of

upstream links of junction j, fj(t) denotes the vector of the outflow of downstream

links of junction j, dj(t) denotes the vector of upstream demands of junction j, gj(t)

denotes the vector of the outflow of downstream supplies of junction j.

(gj(t),fj(t)) = FF(dj(t), sj(t)) (3.4)

Equation (3.4) is consistent with macroscopic flow behaviors at three types of

junctions, which guarantees the convergence to the LWR model and determines the

unique solution of equation (3.2) in Jin (2017). To reduce categories of junctions, we

consider the following three types: ordinary, merging, and diverging. In practical traffic

network, to avoid the conflict of flows of different directions, most networks could be

reconstructed by these three junctions. Three types of junctions are shown as Figure

3.1. Flux functions not only reflects the practical flow dynamics on all three types of

junctions but also under several constraints:

(1) Flow conservation at each junction;

(2) The influx of each link is not greater than its supply and upstream demand;

(3) The outflux of each link is not greater than its demand and downstream supply;

(4) The flux function should be invariant (Jin (2017)).

Ordinary Junction

Ordinary junction is depicted in Figure 3.1 on the left. The function of the outflux

12



Figure 3.1: Three types of junctions, from left to right are ordinary, diverging, and
merging

of upstream link equals that of influx of downstream link in (3.4) are formulated as

equation (3.5).

g1(t) = f2(t) = min{d1(t), s2(t)} (3.5)

Diverge Junction

Diverge junction is depicted in Figure 3.1 in the middle. According to the first-

in-first-out diverging rule and known split ratio, functions of ourflux and influx are

defined as (3.6), where ξ1→2(t) denotes the ratio of the number of vehicles advancing

from link 1 to 2 to the total number of vehicles passing junction j.

g1(t) = min

{
d1(t),

s2(t)

ξ1→2(t)
,
s3(t)

ξ1→3(t)

}
, (3.6a)

f2(t) = ξ1→2(t)g1(t), (3.6b)

f3(t) = ξ1→3(t)g1(t). (3.6c)

Merge Junction

Merge junction is depicted in Figure 3.1 on the right. Functions of outflux of

upstream links in (3.4) are defined as (3.7b, c) by fair merging rule, the function of the

influx of the downstream link in (3.4) is defined as (3.7a).

f3(t) = min {d1(t) + d2(t), s3(t)} , (3.7a)

g1(t) = min
{
d1(t),max

{
s3(t)− d2(t),

C1

C1 + C2

s3(t)

}}
, (3.7b)

g2(t) = f3(t)− g1(t). (3.7c)
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3.1.2 Triangular Fundamental Diagram-Based Link Queue Model

To extend the studied network statuses from steady state to all states, we choose

the triangular fundamental diagram to formulate a switched linear dynamic system

instead of following the path of linearizing the nonlinear system based on Greenshields’

model at the steady state. The triangular fundamental diagram of link a is shown in

Figure 3.2, the corresponding flow, demand, and supply function are defined as (3.8)

respectively, where va denotes the free flow speed of link a (the slope of increasing

part in blue), wa denotes the speed of backward shock wave on link a (the slope of

decreasing part in orange), ka,c denotes the critical link density of link a, ka,j denotes

the jam density of link a.

Figure 3.2: Triangular fundamental diagram and corresponding demand and supply
function

Qa(t) = min{vaka(t),−waka(t) + (
wa
va

+ 1)Ca}, (3.8a)

da(t) = min{vaka(t), Ca}, (3.8b)

sa(t) = min{−waka(t) + (
wa
va

+ 1)Ca, Ca} (3.8c)

Bringing the piecewise linear demand (supply) function in influx (outflux) function,

and then in equation (3.2), we obtain the piecewise affine system as equation (3.9a, b)

14



to describe traffic dynamics considering all traffic conditions:

K̇(t) = AiK(t) + bi, if K(t) ∈ Ri,Ri = {K(t)|EiK(t) + ei ≤ 0}, (3.9a)

Y (t) = CK(t) (3.9b)

Based on the link queue model proposed by Jin (2021) and triangular fundamental

diagram, we could rewrite the network flow conservation equations into general form of

linear system shown in (3.9a), which is also known as transition equation. The transi-

tion equation of each subspace is shown in (3.9a), where K(t) ∈ Rn denotes the vector

of link densities at time t, Ai ∈ Rn×n denotes the transition matrix corresponding to

the ith subspace, bi(t) ∈ Rn denotes the vector of constant term corresponding to the

ith subspace at time t. The studied space of the piecewise affine system consists of n

dimensions, each dimension measures the density of one link, which satisfies the con-

straints ka(t) ∈ [0, ka,j(t)],∀a ∈ ∆. Because of the Min operator in demand (supply)

and influx (outflux) function, there exists some switching points in demand (supply)

and influx (outflux) functions. The sets of switching points make up boundaries which

divide the whole studied space into subspaces. Each element of the Min operator is

linear, therefore each subspace is a linear system. Ri = {K(t)|EiK(t) + ei ≤ 0}

denotes the ith subspace, that is the ith closed convex polyhedral. The measurement

equation of each subspace is shown in (3.9b), where Y (t) = CK(t) denotes the vector

of output, in other words, observed link densities at time t, C denotes the measurement

matrix, indicating which link could be observed and the location of sensors.
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3.2 Properties of the Link Queue Model

3.2.1 Subspaces and Phase Transition

For simplicity, the ordinary two-link case as an example is shown to display the

piecewise affine system. The two-link network with demand d0(t) and supply s3(t) is

shown in Figure 3.3.

Given the condition that demand and supply as d0(t) = 2340veh/h, s3(t) =

1170veh/h, link capacities as C1 = 4680veh/h, C2 = 2340veh/h, free flow speed as

v1 = v2 = 65km/h, backward shock wave speed as w1 = w2 = 16.25km/h, and length

of two links are 1 km, there are total 8 subspaces in the feasible space. Each subspace

corresponds to a distinct network congestion status in real life. In each subspace, the

transition equation is unchanged, that is, the influx and outflux function of each link is

fixed, the dynamics of traffic are homogeneous. The transition equation, corresponding

transition matrix, and eigenvalues of the transition matrix of eight subspaces are shown

in Table 3.1.

Figure 3.3: Two-link network

Table 3.1: Transition equation of each subspace of two-link network

Index Transition equation Transition matrix Eigenvalues

1
k̇1 = d0 − v1k1

k̇2 = v1k1 − v2k2

−v1 0

v1 −v2

 −v1,−v2

2

k̇1 = −w1k1 + (w1

v1
+ 1)C1

−(−w2k2 + (w2

v2
+ 1)C2)

k̇2 = −w2k2 + (w2

v2
+ 1)C2 − s3

−w1 w2

0 −w2

 −w1,−w2

3
k̇1 = −w1k1 + (w1

v1
+ 1)C1 − C2

k̇2 = C2 − v2k2

−w1 0

0 −v2

 −w1,−v2
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4
k̇1 = d0 − v1k1

k̇2 = v1k1 − s3

−v1 0

v1 0

 0,−v1

5
k̇1 = d0 − (−w2k2 + (w2

v2
+ 1)C2)

k̇2 = −w2k2 + (w2

v2
+ 1)C2 − s3

0 w2

0 −w2

 0,−w2

6
k̇1 = d0 − C2

k̇2 = C2 − v2k2

0 0

0 −v2

 0,−v2

7
k̇1 = −w1k1 + (w1

v1
+ 1)C1 − C2

k̇2 = C2 − s3

−w1 0

0 0

 0,−w1

8
k̇1 = d0 − C2

k̇2 = C2 − s3

0 0

0 0

 0, 0

Above 8 subspaces are shown in Figure 3.4 by phase portrait with labels corre-

sponding to index in Table 3.1. Setting the initial condition as k1(0) = k2(0) = 0 and

solving the two link network piecewise affine system above numerically, the trajectory

of the solution is sketched in Figure 3.4 in black. The trajectory starts at the origin

and ends at k1 = 288veh/km, k2 = 108veh/km after passing through 4 subspaces,

index as 1-4-5-2 shown in Table 3.1 in order. The density, influx, and outflux of each

link changes with time are shown in Figure 3.5, in which phase 1-2-3-4 corresponding

to 4 subspaces in order.

The first subspace the trajectory traverses in blue in Figure 3.4, refers to light

traffic condition with increasing outflux for all links and the fixed influx of link 1 which

equals to d0 shown in Figure 3.5, the traffic rarefaction wave begins to form at the start

point of link 1 and reach the end of link 2.

The second subspace the trajectory traverses in gold in Figure 3.4, refers to light

traffic condition with fixed outflux of link 2 which equals to s3 shown in Figure 3.5,
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Figure 3.4: Phase portrait and a trajectory start from origin

the number of vehicles on the network continues to increase.

The third subspace the trajectory traverses in orange in Figure 3.4, refers to light

traffic on link 1 and congestion on link 2 with decreasing influx of link 2 (outflux of link

1) shown in Figure 3.5. The queue begins to form on link 2 and propagate backward

to upstream.

The fourth subspace the trajectory traverses in red in Figure 3.4, refers to con-

gestion on both links with decreasing influx of link 1 shown in Figure 3.5. There is no

additional space on link 2 and queue begins to form on link 1 and propagate backward

to upstream until both links are totally congested.

3.2.2 Variation of Subspace Boundaries

Subspaces in the studied state space are disjoint, so the boundaries between dif-

ferent subspaces are explicit and could be expressed by linear equations. The related

variables of boundaries are demand d0, supply s3, and link capacities C1, C2. In this

part, we analyze the influence of 4 variables on the variation of boundaries one by one.

The number of subspaces is changing with mentioned 4 parameters. Some of the sub-
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Figure 3.5: Density vs. Time and inflow(outflow) vs. time

spaces exist in the whole range of the parameter space, however, others disappear in

certain ranges of the parameter space. Most of the time, there are total 8 subspaces.

When d0(t) = 2340veh/h, s3(t) = 1170veh/h, C1 = 4680veh/h, C2 = 2340veh/h,

v1 = v2 = 65km/h, w1 = w2 = 16.25km/h, the whole state space is divided by 5

straight lines into 8 subspaces shown in Figure 3.6.

In Figure 3.6, two lines in black are the boundaries of state spaces, line 1 is

k1 = k1,j, line 2 is k2 = k2,j, line 3 in magenta is v2k2 = s3, line 4 in red is −w2k2 +

(w2

v2
+ 1)C2 = C2, line 5 in cyan is v1k1 = C2, line 6 in blue is −w1k1 + (w1

v1
+ 1)C1 = d0,

line 7 in green is v1k1 = −w2k2 + (w2

v2
+ 1)C2. The label of subspaces in Figure 3.6 is

accord with that in Table 3.1, and Figure 3.4.

If we fix the other three parameters and only change d0 from 0veh/h to 4680veh/h,

the variation of boundaries is shown in Figure 3.7 on the left. We can find that only

the plane in blue is not orthogonal to k1-k2 plane, so the boundary in blue is moving to
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Figure 3.6: Subspaces and boundaries

Figure 3.7: Boundaries variation with changing d0 only on the left and changing s3
only on the right
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the bottom left as the demand d0 increases. In addition, when d0 = 0veh/h, the 2nd,

3rd and 7th subspaces disappear and there are a total of 5 subspaces. As d0 reaches

4680 veh/h and continues increasing, the boundary in blue stops moving to the left,

and the expression is changed to −w1k1 + (w1

v1
+ 1)C1 = C1. Moreover, the 1st, 4th,

5th, 6th and 8th subspaces are replaced by the following subspaces in Table 3.2.

Table 3.2: Replaced subspaces and their substitutes

Index Replaced transition equation Index New transition equation

1
k̇1 = d0 − v1k1

k̇2 = v1k1 − v2k2
1’

k̇1 = C1 − v1k1

k̇2 = v1k1 − v2k2

4
k̇1 = d0 − v1k1

k̇2 = v1k1 − s3
4’

k̇1 = C1 − v1k1

k̇2 = v1k1 − s3

5
k̇1 = d0 − (−w2k2 + (w2

v2
+ 1)C2)

k̇2 = −w2k2 + (w2

v2
+ 1)C2 − s3

5’
k̇1 = C1 − (−w2k2 + (w2

v2
+ 1)C2)

k̇2 = −w2k2 + (w2

v2
+ 1)C2 − s3

6
k̇1 = d0 − C2

k̇2 = C2 − v2k2
6’

k̇1 = C1 − C2

k̇2 = C2 − v2k2

8
k̇1 = d0 − C2

k̇2 = C2 − s3
8’

k̇1 = C1 − C2

k̇2 = C2 − s3

Similarly, if we only change s3 from 0veh/h to 2340veh/h, the variation of bound-

aries is shown in Figure 3.7 on the right. Except for the plane in magenta, other

planes are orthogonal to the k1-k2 plane, so the boundary in magenta is moving

to the upper left as the supply s3 increases. In addition, when s3 = 0veh/h, the

1st, 3rd and 6th subspaces disappear, and there are a total of 5 subspaces. When

s3 = 2340veh/h, the boundary in magenta and that in red coincide with each other at

the line −w2k2 + (w2

v2
+ 1)C2 = C2, 7th and 8th subspaces disappear and there are 6

subspaces in total.
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Figure 3.8: Boundaries variation with changing C1 only on the left and changing C2

only on the right

If we choose link 1 capacity C1 as the only variable and change it from 2340veh/h

to 5000veh/h, the variation of boundaries is shown in Figure 3.8 on the left. Using the

same method described above, we can find the boundary in bule and the boundary of k1

are moving to the upper right with the increasing C1. Besides, when C1 = 2340veh/h,

the boundary in cyan overlaps a part of the boundary in blue, the 6th and 8th subspaces

disappear and there are 6 subspaces in total.

If we choose link 2 capacity C2 as the only variable and change it from 2340veh/h

to 5000veh/h, the variation of boundaries is shown in Figure 3.8 on the right. In the

same way, we can find the boundary in bule, in magenta, and the boundary of k1

is fixed and other boundaries are moving with the increasing C2. After C2 reaching

C1 and continuing increasing, the boundary in cyan is changed from v1k1 = C2 to

v1k1 = C1 and fixed at this line, the movement speed of the boundary in red increases

as well. Moreover, when C2 > C1, the 3rd, 6th, 7th and 8th subspaces are replaced

by other subspaces displayed in Table 3.3. However, no matter how we change the C2,

the number of subspaces is always 8.
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Table 3.3: Replaced subspaces and their substitutes

Index Replaced transition equation Index New transition equation

3
k̇1 = −w1k1 + (w1

v1
+ 1)C1 − C2

k̇2 = C2 − v2k2
3"

k̇1 = −w1k1 + (w1

v1
+ 1)C1 − C1

k̇2 = C1 − v2k2

6
k̇1 = d0 − C2

k̇2 = C2 − v2k2
6"

k̇1 = d0 − C1

k̇2 = C1 − v2k2

7
k̇1 = −w1k1 + (w1

v1
+ 1)C1 − C2

k̇2 = C2 − s3
7"

k̇1 = −w1k1 + (w1

v1
+ 1)C1 − C1

k̇2 = C1 − s3

8
k̇1 = d0 − C2

k̇2 = C2 − s3
8"

k̇1 = C1 − C2

k̇2 = C2 − s3

According to the above four experiments, we can find that besides boundaries are

moving with changes in parameters, the configuration of the whole space is changing

as well, some subspaces appear or disappear for a certain range of parameters. In ad-

dition, with changes in parameters, the vector field is affected as well, the trajectory of

the solution may pass through different subspaces, but it will definitely end at the equi-

librium point, so subspaces containing the equilibrium point which is defined as stable

subspaces are more crucial for us to consider. As the network topology becomes more

and more complex, the number of subspaces will explode. It is impractical to consider

all subspaces in that not all subspaces will occur simultaneously and the importance of

subspaces are different as well. Considering the practical range of parameters, and the

equilibrium analysis discussed in the following section, we could determine the stable

subspaces and select the subspaces of interest to conduct observability analysis, which

is helpful for sensor deployment.
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3.2.3 Stability

Stability is an important property studied in a dynamical system, which describes

the stability and recovery of trajectories of dynamical systems under small perturba-

tions of initial conditions. Compared with transient unstable states, stable equilibrium

could recover itself, like the simple gravity pendulum, which is always back to the equi-

librium position no matter where to release it. For the piecewise affine system, only

equilibriums within corresponding subspaces are valid as sinks to attract trajectories.

Therefore, in this section, we firstly introduce the related definitions of stability, then

determine stable equilibrium points and conditions of them within corresponding sub-

spaces.

Definition(Hirsch (2004)):

Equilibrium point: For the ordinary differential equation Ẋ = F (X), X∗ ∈ Rn

is an equilibrium point if F (X∗) = 0 for all t.

Asymptotically stable: Suppose X∗ ∈ Rn is an equilibrium point for the differ-

ential equation, Ẋ = F (X). The X∗ is a stable equilibrium if for every neighborhood

O of X∗ in Rn there is a neighborhood O1 of X∗ in O such that every solution X(t)

with X(0) = X0 in O1 is defined and remains in O for all t > 0. If O1 can be chosen so

that, in addition to the properties for stability, we have lim
t→∞

X(t) = X∗, then we say

that X∗ is asymptotically stable. A sink is asymptotically stable and therefore stable,

sources and saddles are examples of unstable equilibria.

Sink: For a linear system Ẋ = AX,X ∈ Rn, the equilibrium point is sink if and only

if all eigenvalues of transition matrix A have negative real part.

Stable Equilibrium Point

We continue to take the two-link network as an example. Most of the time, the

two-link network has 8 subspaces in the state space, where each subspace corresponds
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to specific transition equations shown in Table 3.1 describing the dynamics of two link

densities, the transition matrix A and the corresponding eigenvalues of each subspace

are shown in Table 3.1 as well. By considering the influence of changing parameters,

d0, s3, C1, C2, some subspaces are replaced by others, and the supplement information

is shown in Table 3.2, Table 3.3.

According to Table 3.1, we can find that only the first three subspaces have sinks

(stable equilibrium point), because all eigenvalues of the transition matrices of first

three subspaces are negative. Then using the definition of the equilibrium point, we

can get the expressions of the equilibrium point of different subspaces shown in Table

3.4.

As analyzed in section 3.2.2, with the increases of d0, subspace 1 will transform

to 1’ when d0 > C1, at the meantime, the transformation of expressions of equilibrium

point is shown in the first row of Table 3.4. Subspace 2 always exists in the state space

as long as d0 > 0. When C2 reaches C1 and continues to increase, subspace 3 will

transform to 3", the variation of expressions of equilibrium point is shown in the third

row of Table 3.4.

By taking the boundaries of subspaces into account, we only focus on stable equi-

librium points within corresponding subspaces, the condition of occurrence is shown as

follows:

Condition of the equilibrium point within the subspace 1: d0 ≤ min{C1, C2, s3}

Condition of the equilibrium point within the subspace 1’: C1 ≤ min{C2, s3, d0}

Condition of the equilibrium point within the subspace 2: s3 ≤ min{C1, C2, d0}

Condition of the equilibrium point within the subspace 3: C2 ≤ min{C1, s3, d0}

Condition of the equilibrium point within the subspace 3": C2 ≤ min{s3, d0}∩C2 > C1.

Table 3.4: Equilibrium points of subspaces

Index Sink Index Sink

1 k1 = d0
v1
, k2 = d0

v2
1’ k1 = C1

v1
, k2 = C1

v2
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2
k1 =

(
w1
v1

+1)C1−s3
w1

k2 =
(
w2
v2

+1)C2−s3
w2

3
k1 =

(
w1
v1

+1)C1−C2

w1

k2 = C2

v2

3" k1 = C1

v1
, k2 = C1

v2

3.3 Observability

3.3.1 Concept of Observability

The concept of controllability and observability are proposed by Kalman (1960),

which are dual to each other for a given state equation. Controllability studies steering

the system states by inputs, on the contrary, observability studies determining the

system states from outputs (observations). In this paper, we only focus on system

observability, and assume that we have already known the transition equation.

Consider a general form of n-dimensional, p-input, q-output time-invariant linear

system:

ẋ = Ax +Bu, (3.10a)

y = Cx (3.10b)

Where x ∈ Rn, u ∈ Rp, y ∈ Rq are state variables, inputs, and outputs respectively,

A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rq×n are constant matrices.

Definition (Chen (1999)): The state equation is said to be observable if for any

unknown initial state x(0), there exists a finite t1 > 0 such that the knowledge of the

input u and the output y over t ∈ [0, t1] suffices to determine uniquely the initial state

x(0). Otherwise, the equation is said to be unobservable.
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3.3.2 Full Rank Test

Theorem 1(Chen (1999)): The system (3.10) is observable if and one if the observ-

ability matrix O defined as (3.12) has full column rank.

Proof : By taking the derivatives of the continuous time measurements (3.10b), we

can obtain:

y(0) = Cx(0)

ẏ(0) = Cẋ(0) = CAx(0) + Cu(0)

ÿ(0) = Cẍ(0) = CA2x(0) + CAu(0) + Cu̇(0)

...

y(n−1)(0) = Cx(n−1)(0) = CAn−1x(0) + CAn−2u(0) + · · ·+ Cu(n−2)(0)

Above equations consists of nq linear equations, which could be transformed in matrix

form as:



y(0)

ẏ(0)

ÿ(0)

...

y(n−1)(0)



(nq)×1

=



C

CA

CA2

...

CAn−1



(nq)×n

× x(0) +D



u(0)

u̇(0)

ü(0)

...

u(n−2)(0)



p(n−1)×1

(3.11)

where D =



0 0 0 . . . 0

CB 0 0 . . . 0

CAB CB 0 . . . 0

...
...

...

CAn−2B CAn−3B CAn−4B . . . CB



(nq)×p(n−1)

.

We define the observability matrix O as below:
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O =



C

CA

CA2

...

CAn−1


(3.12)

Because the output, input, matrix A and B are known, the initial condition x(0) can

be determined uniquely from (3.11) if and only if the observability matrix O has full

column rank, rank(O)=n.

Example: Consider a linear dynamical system with:

A =


−1 0 0

0 −2 0

1 2 −3

 , C =

[
0 0 1

]

We can calculate the observabiltiy matrix O as:

O =


0 0 1

1 2 −3

−4 −10 9


Which is nonsingular with rank(O)=3, the system is observable.

3.3.3 PBH Test

Theorem 2: The system (A, C) is observable if and only if there exists no non-zero

vector p ∈ Rn such that:

Ap = λp, Cp = 0 (3.13)

Proof : The theorem 2 could be proved if the following statement is true:

The system (A, C) is unobservable if and only if there exists a non-zero vector p ∈ Rn

such that Ap = λp and Cp = 0 for some λ 6= 0.
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Firstly, we assume there exists a non-zero vector p ∈ Rn, which satisfies the conditions,

and multiplies it by observability matrix O:

Op =



C

CA

CA2

...

CAn−1


p =



Cp

λCp

λ2Cp

...

λn−1Cp


= 0

Thus, observability matrix O is singular and the system (A, C) is unobservable.

Now we assume that the system (A, C) is unobservable, based on Kalman canonical

decomposition, the system could be separated into observable and unobservable parts

by a transformation matrix T like:

Â =

 Âo 0

Â21 Âu

 , Ĉ =

[
Ĉo 0

]

Then, for any eigenvector pu of Âu, we could obtain pT = [0 pTu ], which satisfies the

following conditions:

Âp = λp, Ĉp

T−1ATp = λp, CTp = 0

ATp = λTp, CTp = 0

Therefore, there exists a vector Tp, satisfies the condition of the theorem.

Theorem 3: The system (A, C) is observable if and only if rank

sI − A
C

 = n, for

all s ∈ R.

Proof : If rank

sI − A
C

 = n, the nullspace of

sI − A
C

 is empty, there not exists
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a non-zero p ∈ Rn such that:

sI − A
C

p = 0, ∀s ∈ R (3.14)

Then by theorem 2, the system (A, C) is observable. The converse could be easily

obtained by reversing the above proof.

Example: Consider a linear dynamical system with:

A =


−1 0 0

0 −1 0

1 1 −3

 , C =

1 0 0

0 0 1


If (sI − A)p 6= 0, equivalently, s is not one of the eigenvalues of A, there not exists

a non-zero p ∈ Rn such that

sI − A
C

p = 0, which is equal to rank

sI − A
C

 = n.

If (sI − A)p = 0, equivalently, s is one of the eigenvalues of A. Matrix A has three

eigenvalues, repeated s1 = s2 = −1 and distinct s3 = −3.

Bring s1 = s2 = −1 into equation(3.14):

rank

s1I − A
C

 = rank



0 0 0

0 0 0

−1 −1 2

1 0 0

0 0 1


= 3

Bring s3 = −3 into equation(3.14):

rank

s3I − A
C

 = rank



−2 0 0

0 −2 0

−1 −1 0

1 0 0

0 0 1


= 3
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In a nutshell, rank

sI − A
C

 = 3 for all s ∈ R, the system is observable.
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Chapter 4

Numerical Examples

In this chapter, to begin with, given transition matrix A of stable subspaces of or-

dinary, merging, and diverging junctions, we will show the corresponding measurement

matrix C, which guarantees the full observability. Then we will give two examples

of small expressway networks and discuss the relationship among network topology,

congestion conditions, and measurement matrix C for full observability.

4.1 Examples of Different Junctions

Any network could be partitioned into three types of junctions, ordinary, merging,

and diverging, so we only focus on these three junctions in this section. Moreover, the

number of subspaces will explode as the network becomes more and more complex, and

stable subspaces, which contain stable equilibrium point under some conditions, are

more critical than unstable ones. Therefore, we only display the measurement matrix

C for stable subspaces of the three junctions.

Based on the full rank test or PBH test introduced in the last chapter and given

transition matrix A of each stable subspace, we could obtain the corresponding mea-

surement matrix C, which makes sure the system within that subspace is observable.

The congestion condition, transition matrix A, and corresponding measurement matrix
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C of each stable subspace are shown in Table 4.1 for ordinary junction, Table 4.2 for

diverging junction, and Table 4.3 for merging junction, where F and C in congestion

condition column denote light traffic, ka(t) ≤ ka,c, and congestion, ka(t) > ka,c, of link

respectively.

Clearly, there is no one-to-one or onto mapping between congestion conditions and

subspaces, the total number of congestion conditions of n-link is 2n, the total number

of subspaces is much bigger. Mostly, a stable subspace is included in the range of a

congestion condition, however, exception will occur when split ratio is equal to the

ratio of supplies for diverge junction. We use congestion condition here to reflect the

traffic condition of each stable subspace.

Table 4.1: Measurement matrix C of stable subspaces of ordinary junction

Congestion Condition Transition Matrix A Measurement Matrix C

F − F

−v1 0

v1 −v2

 [
0 1

]

C − C

−w1 w2

0 −w2

 [
1 0

]

C − F

−w1 0

0 −v2


1 0

0 1



According to Table 4.1, we can find there are three congestion conditions for

stable subspaces of the 2-link ordinary junction. Also, we need to observe the last link

of successive light traffic links and the first link of successive congested links to achieve

system full observability.
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Table 4.2: Measurement matrix C of stable subspaces of diverge junction

Congestion Condition Transition Matrix A Measurement Matrix C

F −
F

F


−v1 0 0

ξ12v1 −v2 0

ξ13v1 0 −v3


0 1 0

0 0 1



C −
F

F


−w1 0 0

0 −v2 0

0 0 −v3




1 0 0

0 1 0

0 0 1



C −
C

F


−w1

w2

ξ12
0

0 −w2 0

0 −w2ξ13
ξ12

−v3


1 0 0

0 0 1



C −
F

C


−w1 0 w3

ξ13

0 −v2 −w3ξ12
ξ13

0 0 −w3


1 0 0

0 1 0



C −
C

C
or C −

C

F


−w1

w2

ξ12
0

0 −w2 0

0 −w2ξ13
ξ12

0


1 0 0

0 0 1



C −
C

C
or C −

F

C


−w1 0 w3

ξ13

0 0 −w3ξ12
ξ13

0 0 −w3


1 0 0

0 1 0



According to Table 4.2, besides the same rule of full observability mentioned ahead,

we find stable equilibrium points also appear in subspaces with rank 2, like the last

two rows. If the ratio of split ratio is equal to the ratio of supplies, ξ12
ξ13

= s4
s5
, the

trajectories with any initial condition will end at subspaces with rank 2. Otherwise,

the trajectories with any initial condition will end at subspaces with full rank, like two
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Figure 4.1: Trajectories and stable equilibrium point of two examples

rows in the middle. Two examples of trajectories with different initial conditions and

stable equilibrium points are shown in Figure 4.1. Figure 4.1a shows that when link

capacities are 4680 veh⁄h, 2340 veh⁄h, 2340 veh⁄h respectively, split ratios are ξ12 = 0.7

and ξ13 = 0.3, supplies are s4 = 1170veh/h and s5 = 1170veh/h, trajectories in green

with condition d0 = 0.5(s4 + s5) end at one of the subspaces whose transition matrix A

is shown in the first row of Table 4.2, trajectories in blue with condition d0 = 1.2(s4+s5)

and those in red with condition d0 = 1.5(s4 + s5) end at one of the subspaces whose

transition matrix is shown in the third row of Table 4.2. Figure 4.1b shows that when

link capacities are 4680 veh⁄h, 2340 veh⁄h, 2340 veh⁄h respectively, split ratios are

ξ12 = 0.7 and ξ13 = 0.3, supplies are s4 = 0.7× 2340veh/h and s5 = 0.3× 2340veh/h,

trajectories in green with condition d0 = 0.5(s4 +s5) end at one of the subspaces whose

transition matrix A is shown in the first row of Table 4.2, trajectories in blue with

condition d0 = 1.2(s4 + s5) and those in red with condition d0 = 1.5(s4 + s5) end at

one of the subspaces whose transition matrix is shown in the fifth row of Table 4.2,

and still in these subspaces, the congestion condition of link 3 is uncertain.

Table 4.3: Measurement matrix C of stable subspaces of Merge junction

Congestion Condition Transition Matrix A Measurement Matrix C
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F

F
− F


−v1 0 0

0 −v2 0

v1 v2 −v3



ifv1 6= v2,

[
0 0 1

]

ifv1 = v2,

1 0 0

0 0 1


or

0 1 0

0 0 1


C

F
− F


−w1 0 0

0 −v2 0

0 v2 −v3


1 0 0

0 0 1



F

C
− F


−v1 0 0

0 −w2 0

v1 0 −v3


0 1 0

0 0 1



C

C
− F


−w1 0 0

0 −w2 0

0 0 −v3




1 0 0

0 1 0

0 0 1


C

F
− C


−w1 v2 w3

0 −v2 0

0 0 −w3


[
1 0 0

]

F

C
− C


−v1 0 0

v1 −w2 w3

0 0 −w3


[
0 1 0

]

C

C
− C


−w1 0 C1w3

C1+C2

0 −w2
C2w3

C1+C2

0 0 −w3


1 0 0

0 1 0



According to Table 4.3, we can find that the rule of full observability concluded

based on the former cases is violated. In the fifth and the sixth row, because the
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dynamics of link 1 density and link 2 density include all link information, we only need

to observe link 1 in subspaces whose transition matrix is shown in the second row and

link 2 in subspaces whose transition matrix is shown in the third row. In addition, if

the symmetry happens, that is link 1 and link 2 share the same free flow speed, like

the example shown in the first row, besides observing link 3, which contains all link

information, we still need to observe one of the first two links to distinguish them.

4.1.1 Example of 5-link Corridor Without Ramps

Firstly, we consider a simpler case, a 5-link corridor without ramps, which consists

of ordinary junctions only. The network topology is shown in Figure 4.2. The network

congestion condition, transition matrix, and corresponding measurement matrix for

full observability of each stable subspace are shown in Table 4.4.

Figure 4.2: Corridor without ramps

Table 4.4: Measurement matrix C of stable subspaces of corridor without ramps

Congestion Condition Transition Matrix A Measurement Matrix C

FFFFF



−v1 0 0 0 0

v1 −v2 0 0 0

0 v2 −v3 0 0

0 0 v3 −v4 0

0 0 0 v4 −v5


[
0 0 0 0 1

]
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CFFFF



−w1 0 0 0 0

0 −v2 0 0 0

0 v2 −v3 0 0

0 0 v3 −v4 0

0 0 0 v4 −v5



1 0 0 0 0

0 0 0 0 1



CCFFF



−w1 w2 0 0 0

0 −w2 0 0 0

0 0 −v3 0 0

0 0 v3 −v4 0

0 0 0 v4 −v5



1 0 0 0 0

0 0 0 0 1



CCCFF



−w1 w2 0 0 0

0 −w2 w3 0 0

0 0 −w3 0 0

0 0 0 −v4 0

0 0 0 v4 −v5



1 0 0 0 0

0 0 0 0 1



CCCCF



−w1 w2 0 0 0

0 −w2 w3 0 0

0 0 −w3 w4 0

0 0 0 −w4 0

0 0 0 0 −v5



1 0 0 0 0

0 0 0 0 1



CCCCC



−w1 w2 0 0 0

0 −w2 w3 0 0

0 0 −w3 w4 0

0 0 0 −w4 w5

0 0 0 0 −w5


[
1 0 0 0 0

]
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From Table 4.4, there are 6 stable network states of the 5-link corridor without

ramps. When a queue starts to form, the shock wave will propagate backward, so the

congestion state always continues to the first upstream link. Expect for the first and

the last row, congestion conditions in other rows exists a shift from congestion to light

traffic state. This is because the outflux of the link where the queue begins to form

equals the minimum capacity of this link and the adjacent downstream link, in other

words, the shift will happen when a queue accumulates in the link, and the adjacent

downstream link has enough spare space.

4.1.2 Example of Corridor with On- and Off- ramps

Now, we will take on- and off-ramp into consideration, the structure of a network

consisting of a merging junction and a diverging junction is shown in Figure 4.3. Ac-

cording to the network topology, the merging junction and the diverging junction share

the link 3. Intuitively, this network’s stable network congestion conditions are the com-

bination of merging and diverging junctions under the restriction that the congestion

status of the shared link is consistent. For instance, if the last link of the diverging

junction is congested, the first link of the diverging junction will be congested as well.

Figure 4.3: Corridor with ramps

We can obtain the corresponding transition matrix with the known congestion

status of the network and then search the measurement matrix C by utilizing the

full rank test or PBH test. In addition, we find that if the shared link needs to be

observed in the merging junction and its information could be inferred by other links

in the diverging junction, we need not to observe it anymore for the full observability.
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Examples are shown in Table 4.5.

Table 4.5: Measurement matrix C of stable subspaces of corridor without ramps

Congestion Condition Transition Matrix A Measurement Matrix C

F

F
F

F

F



−v1 0 0 0 0

0 −v2 0 0 0

v1 v2 −v3 0 0

0 0 ξ34v3 −v4 0

0 0 ξ35v3 v4 −v5



ifv1 6= v2,

0 0 0 1 0

0 0 0 0 1



ifv1 = v2,


1 0 0 0 0

0 0 0 1 0

0 0 0 0 1



or


0 1 0 0 0

0 0 0 1 0

0 0 0 0 1



C

C
F

F

F



−w1 0 0 0 0

0 −w2 0 0 0

0 0 −v3 0 0

0 0 ξ34v3 −v4 0

0 0 ξ35v3 v4 −v5





1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1



In a nutshell, under stable conditions, we could decompose the network into three

types of junctions and then determine which links need to be observed to achieve

network full observability based on Table 4.1, 4.2, 4.3 with considering shockwave

propagation. Generally, we need to observe the last link of the successive light traffic

links and the first one of the successive congested links to achieve full observability.

However, there exist some exceptions like symmetry merge, which will appear when

the infrastructure conditions of the merge links are the same, and we need to add

sensors to distinguish merge links. The exception shows the relationship between the

measurement matrix and eigenvalues of a certain transition matrix. In addition to the
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position of the transition matrix elements, the values of the transition matrix elements

will also affect the final determination of the measurement matrix. For unstable condi-

tions of the system, the number of congestion condition will explode when the network

topology becomes more and more complex, the above observations will be violated.

Therefore, we are going to explore the relationship between eigenvalues, eigenvectors,

and measurement matrix, and expect to find a more general approach to determine

which links need to be observed for the system full observability in the future.

41



Chapter 5

Conclusions and Discussion

5.1 Conclusion

The thesis analyzed the observability problem in the dynamic system setting.

Compared with studies in the static setting, in which the relationship between link

densities is only described by network topology, this model also considers the traf-

fic operational and temporal relations to infer link densities that cannot be observed

directly.

In virtue of the link queue model based on a triangular fundamental diagram

to describe traffic dynamics, the nonlinear traffic system could be approximated by a

switched linear system by separating the state space into subspaces in which the system

is time-invariant linear. Therefore, we could extend the observability analysis from the

equilibrium point to stable subspaces even to the whole space.

In particular, properties of the link queue model including phase transition, bound-

ary variation, and stability are analyzed, which could help us understand traffic network

dynamics better. We found that each subspace corresponds to a specific network traffic

state in reality. Any trajectory of the solution of our piecewise affine system will move

across a lot of subspaces and end at the equilibrium point, this process is in accord

with shock wave or rarefaction wave propagation on links. There exists only one equi-
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librium point in the whole space and it will transfer to different subspaces according to

the changes in parameters. In addition, from experiments on the boundary variation

with parameters, we found that some subspace will disappear for a certain range of

parameters, but the subspace with equilibrium point always exists. So we determined

the equilibrium point and the boundaries of subspaces containing the equilibrium point

and set them as objectives to conduct observability analysis.

In observability analysis, the full rank test and PBH test are employed as con-

ditions for searching the measurement matrix of full observability by enumeration.

Besides the corridor network without ramps, we considered merge and diverge junc-

tions to improve the network complexity. According to our examples, generally, the

last link of successive light traffic links and the first one of successive congested links

need to be observed to achieve full observability. However, there exist some exceptions,

like symmetry merge, which appears when the transition matrix has repeated eigen-

values, and on behalf of the same infrastructure condition of merge links in reality,

so we need to add more sensors to distinguish merge links. This exception also shows

that in addition to the relationship between positions of transition matrix elements and

measurement matrix, the exact value of transition matrix elements matters as well.

5.2 Limitaions

The main limitations of this study are listed below:

(a) As the network becomes more and more complicated, the number of subspaces will

explode, and the subspaces within the studied state space are changing continuously

as the parameters change. So, it is too difficult to analyze system properties, including

observability and stability, for all subspaces.

(b) In this thesis, the demands and supplies of the network are constants. The network

could always end at an equilibrium point and reach a stable state. However, the

demands and supplies are changing with time in reality, the trajectory of the solution
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of our piecewise affine system will move across different series of subspaces, the static

sensor deployment strategy described in this thesis is not enough, a dynamic sensor

deployment strategy is needed.

(c) We assume the split ratio is known for any diverging junction, which is hard to

measure based on counting sensors in real life.

5.3 Future Works

(a) Currently, our network traffic flow model is deterministic, we could add stochastic

elements in the initial condition, the boundary flow, and the fundamental diagram to

extend it into a stochastic model, which might describe the traffic dynamics more ac-

curately.

(b) Method of solving the subspace explosion is expected. For example, the transition

matrix that describes the traffic dynamics could be transformed from the time-invariant

of each subspace into a general form. Each entry of the transition matrix could be ex-

pressed by a function of parameters, like demands, supplies, and link capacities.

(c) According to examples shown in chapter 4, there is a big difference among obser-

vations for full observability under different network congestion conditions. If we want

to obtain full observability under any network condition, we maybe need to observe all

links. If we use counting sensors only, equipping all links with sensors is unpractical.

We could propose an optimization problem by setting the objective to gain the most

link information and cost the least in future studies. If we also consider mobile sen-

sors, we need to know the optimal location of counting sensors and the arrangement of

mobile sensors.

(d) As the number of links increases, the computation work of searching measurement

matrix by enumeration surges, we expect to find a more systematic approach to de-

termine the measurement matrix by considering the relationship between eigenvalues,

eigenvectors, and measurement matrix.
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(e) Sensor error could also be considered to improve the accuracy of direct observations

and indirect deductions of links.
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