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ABSTRACT OF THE DISSERTATION

The Impact of Uncertainty and Risk Measures

by

Soojin Jo

Doctor of Philosophy in Economics

University of California, San Diego, 2012

Professor James D. Hamilton, Chair

This dissertation seeks to better understand how uncertainty impacts a

variety of economic activities and how to measure systemic risk.

In the first chapter, “The effects of oil price uncertainty on the macroe-

conomy” focuses on oil price uncertainty, and how it affects the global economic

growth. In particular, I define oil price uncertainty as the time-varying standard

deviation of one-quarter ahead forecasting error that follows stochastic volatility.

Then I use a quarterly VAR with stochastic volatility in mean to examine the effect

of oil price uncertainty. Stochastic volatility allows for the separation of effects of

the oil price uncertainty from the level, and thus enables the examination of an oil

price uncertainty shock in a flexible yet tractable way. One important contribu-

tion of this chapter is that it makes significant improvements in recovering an more

xi



accurate historical uncertainty series by incorporating a realized volatility series

from daily oil price data to the main VAR as an additional oil price uncertainty

indicator. The estimation result suggests that apart from the changes in oil price

level, an oil price uncertainty shock alone has negative effects on both global and

advanced economies’ industrial production growth.

Next I move on to the propagation of uncertainty in the financial sector

of the economy in the second chapter, “Bank lending and loan securitization un-

der uncertainty”. This chapter analyzes how US commercial banks adjust lending

activities in response to macroeconomic uncertainty with a focus on asset securi-

tization. During 2001Q2-2009Q3, macroeconomic uncertainty has been negatively

related to the loan growth rate. In addition, comparing banking institutions with

and without asset securitization, I find that loan growth rate of asset-securitizing

banks was not particularly protected from the increase in uncertainty, which im-

plies that securitization did not effectively help transfer aggregate risk from the

banking sector to investors. I postulate factors that may have contributed to

the ineffective risk transfer of securitization; one important reason is due to the

banks’ credit exposure through explicit/implicit recourse and/or seller-provided

credit enhancements which also fluctuate with the changes in the macroeconomic

uncertainty level.

My final dissertation chapter surveys the recent literature on the systemic

risk measures in the purpose of better understanding the concept of systemic risk

in relation with financial stability. In “Financial stability and systemic risk: a

survey of systemic risk measure”, I start from “model-free” measure of CoV aR,

an extension of Value-at-Risk to quantify the contribution of an individual entity

to systemic risk, that can be used and applied to practice very easily and flexibly.

Then, I introduce GARCH-based measure, SRISK, whose main goal is to quantify

the expected capital shortfall of a firm given that the financial sector is in distress.

Next, I look at the measures rooted in the CDS pricing model, one of which

attempts to capture systemic risk among sovereigns. Finally, I review the recent

development that brings in the rare event, i.e., systemic risk crisis, into the DSGE

framework with the intermediary sector.

xii



Chapter 1

The Effects of Oil Price

Uncertainty on the

Macroeconomy

Abstract

This chapter examines the effect of oil price uncertainty on global real

macroeconomic activity using a quarterly VAR with stochastic volatility-in-mean

model. Stochastic volatility allows for the separation of effects of the oil price

uncertainty from the level, and thus enables the examination of an oil price uncer-

tainty shock in a flexible yet tractable way. The estimation results suggest that

apart from the changes in oil price level, an oil price uncertainty shock alone has

negative effects on world industrial production. This paper also improves the re-

covery of an accurate historical uncertainty series substantially by incorporating an

additional oil price uncertainty indicator, i.e., a realized volatility series obtained

from daily oil price data, into the main VAR.

1
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1.1 Introduction

The effects of an unanticipated oil price changes on real macroeconomic

activity have long been studied since the seminal paper of Hamilton (1983)[37],

which is one of the first papers indicating crude oil price shocks as a contributing

factor to economic recessions. A large body of subsequent literature has confirmed

this view and argued that an unforeseen oil price increase can slow down macroe-

conomic activity. One common empirical approach in this literature is to regress a

variable that represents the growth of macroeconomic activity on oil price changes,

which are defined using several different oil price series. This usually yields coef-

ficient estimates below zero, which is evidence of an inverse relationship between

the two. Implicit in this approach is the assumption that the relationship is linear

and symmetric: a sudden oil price spike drags down economic growth while an

unexpected oil price drop can generate economic expansion of the same magni-

tude. However, when the sudden oil price drop in mid-1980 failed to generate the

expected economic expansion, many researchers started to look at the relationship

from a different angle. For example, Mork (1989)[58] finds that price declines show

smaller and insignificant correlations compared to price surges, and hence supports

an asymmetry in the responses.

To explain this, one strand of literature emphasizes the role played by the

higher moments of the oil price series in addition to the changes in levels. The

second moment, which determines the distribution of the price series, has gained

special attention because this controls the size of a possible price variation in a

certain period. In other words, it is harder to predict the actual price realization

with a larger conditional variance, and there is a higher chance of an extreme oil

price change hitting the economy. This implies oil price uncertainty can be well

approximated by conditional time-varying volatilities of the series, which in turn

enables examination of a more integrated version of the oil-economy relationship

still in a computationally tractable way.

One other reason that this paper focuses on oil price uncertainty lies in the

theoretical background that reports negative effects of various types of uncertainty

on real economic activities. For instance, Bernanke(1983)[17] points out that firms
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may postpone irreversible investment decisions, resulting in cyclical fluctuation in

the economy under high inflation uncertainty. More recently Bertola, Guiso and

Pistaferri (2005) [18] find that uncertainty of income flows affect the size of the

inaction band that determines the frequency of durable goods adjustment. Finally,

Bloom, Fluetotto, Jaimovich, Saporta-Eksten, and Terry (2011)[23] recently find

that an uncertainty shock, defined as an unexpected change in the conditional

second moment of a productivity innovation process, can result in a sharp and

rapid economic recession even though the first moment remains unchanged. In

sum, the above mentioned papers suggest high economic uncertainty can induce

economic fluctuations by providing a “real option” as economic agents prefer to

wait for uncertainty to resolve before making any irreversible decision. Further, it

is reasonable to hypothesize that changes in oil price uncertainty, in addition to

the oil price movement itself, will have effects on economic fluctuations, as oil is a

salient factor for both households’ consumption and firms’ production decisions.

To see how oil price uncertainty has moved over time, Figure ??figure1

plots different measures of the crude oil price volatility series. The upper panel

plots the quarterly standard deviation of real average crude oil prices from 1957Q1

to 2010Q1 computed from three-month price data in the corresponding quarter 1.

The lower panel shows global crude oil price uncertainty from 1958Q2 to 2008Q3

recovered from the statistical model used in this paper. Note that the oil price

volatility series in both cases are increasing in level and become more volatile over

time. What induces the increasing trend in oil price uncertainty? One possible

factor pointed out by Hamilton (2009)[39] and Baumeister and Peersman (2010)[14]

is that both the oil supply and demand curves have become more inelastic. This

inelasticity means that even a small shock can bring more sensitive responses in

the oil market than in the past, leading to unstable oil prices. Another possible

factor that contributes to more volatile oil prices is increasing participation in the

oil related financial market as mentioned, for example, in Hamilton (2009). All

1The monthly average crude oil price series measured in US dollars per barrel is taken from
International Financial Statistics of International Monetary Fund and deflated by the US CPI
(CPIAUCSL: monthly seasonally adjusted consumer price index for all urban consumers: all
items, index 1982-1984=100) obtained from the FRED database.
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in all, the increasing trend of oil price uncertainty will continue in the market for

some time in the near future. In addition, as more and more people perceive and

fear the possibility of oil depletion in the near future, oil price uncertainty will

increasingly contribute to real economic activity. Therefore, it is important to pay

closer attention to the relationship between oil price uncertainty and economic

activity since Figure 1 suggests that its influence matters more and more to the

macroeconomy, if, in particular, oil price uncertainty has any direct effect on the

real economy at all.

In this study, I investigate how oil price uncertainty, defined as the time-

varying standard deviation of the one-quarter ahead forecast error, affects global

real economic activity.2 In particular, I quantify the effects of oil price uncertainty

directly by including the time-varying volatility in the mean equations of a three-

variable vector autoregression (VAR).

This paper makes a number of contributions. First, it recovers historical oil

price uncertainty series spanning a long period of 1958Q2 - 2008Q3 with substantial

improvement in precision by modeling it originally as stochastic volatility and later

incorporating realized volatility as an additional uncertainty indicator, based on

Dobrev and Szerszen (2010) [29].3 That is to say, I define oil price uncertainty

to follow stochastic volatility, which is a very flexible yet parsimonious way of

modeling the time-varying volatility. More importantly, this modeling strategy

has an advantage in incorporating an additional uncertainty indicator, realized

volatility, constructed by the jump-robust median realized volatility estimator that

is in principle similar to an average of squared daily oil price changes. The inclusion

of observed realized volatility series shows striking improvements in precision, and

as a result, the paper provides a reliable measure of oil price uncertainty time

series.

Another advantage of having a stochastic volatility process is that it per-

mits an independent source of innovations to the time-varying uncertainty process,

2Thus, I use the term oil price uncertainty and oil price volatility interchangeably henceforth.
3As discussed in detail in the later section, Dobreve and Szerszen (2010) incorporate the

information summarized in realized volatility of high-frequency data when estimating volatility
series which is modeled as stochastic volatility, achieving a high efficiency gain.
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regardless of the shocks to the first moment. Therefore, the paper provides an ef-

fective method to quantify the responses to an unanticipated oil price uncertainty

shock independent of price changes. This framework can also be easily modified

for the cases where the oil price shock and the oil price uncertainty shock are

correlated to each other. The impulse response result of this paper indicates that

the oil price uncertainty shocks have immediate and persistent negative effects on

global industrial production growth.

This paper also contributes to the literature on uncertainty by providing

an empirical evidence of its destructive impact on real economic activities. I find

oil price uncertainty deters global real economic activity growth, which further

suggests a steady price movement will have a less substantial impact on the econ-

omy – regardless of their direction – than does a sudden and unexpected price

shock. In addition, while the focus of previous literature lies more on measuring

the impact of price uncertainty at the national level, I use the global economy’s

industrial production series to extend the analysis to a broader context. With the

world industrial production index series, I draw a more general conclusion regard-

less of a country’s position in the oil market, i.e., whether it is an oil importer or

an exporter.4 This result is robust to the changes of oil price series, sub-periods of

the sample, and also holds for advanced economies. Together, the finding empha-

sizes the importance of tracking the oil price uncertainty series since it can distort

the effect of a policy that assumes the linearity in the oil price-economic activity

relationship.

The rest of the paper is organized as follows: Section 2 reviews the lit-

erature, with a particular focus on the non-linear relationship between oil prices

and the macroeconomy; Section 3 introduces a statistical model for the empirical

analysis; Section 4 presents empirical results along with impulse responses; and

Section 5 concludes.

4Oil price uncertainty refers to the dispersion of possible price change to either direction, i.e.,
increase or decrease. However, some studies, e.g., Kilian and Vigfusson (2010)[50], argue that
only one side of the price distribution would matter at the national level, depending a country’s
position in the oil market. Although the theoretical uncertainty literature shows that uncertainty
itself, regardless of the direction of the first moment change, is the factor that affects the economy,
looking at the global level data may provide evidence robust to such argument.
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1.2 Review of Literature

Broadly speaking, this paper belongs to the literature that looks at changes

in price uncertainty and their effect. In terms of oil prices, numerous papers have

studied empirically the relationship between oil price changes and real economic

activity, and many of them demonstrate non-linearity. This section reviews the lit-

erature that focuses on non-linearity, and further the ones analyzing price volatility

explicitly.

Hamilton (2003)[38] finds strong evidence supporting non-linearity. More

specifically, a price increase after a long stable period has a more prominent effect

than one after a more volatile period, which would be interpreted as a normal price

adjustment. He further defines a new oil price variable, net oil price increase, as the

amount by which the oil price in a certain quarter exceeds the previous 12-month

peak, and finds that this nonlinear transformation of the oil price movements

performs well in forecasting the GDP growth level.

Cologni and Manera (2009)[27] experiment oil-economy relationship with

different types of Markov-switching regime autoregressive models. They find that

positive oil price changes, net oil price increases and oil price volatility are the

three oil shock definitions that best describe the impact of oil prices on output

growth rate in G-7 countries among seven other variants of oil shock proxies. Not

only does this finding confirm non-linearity in the oil-economy relationship, but it

also supports the argument that oil price uncertainty measured by its volatility is

an important factor in forecasting real economic activity.

There are some papers that attempt to explore the possible effect of oil

price uncertainty more straightforwardly, and the empirical results have been in

support of the significance of uncertainty in various perspectives. First, Lee, Ni

and Ratti (1995)[55] construct a new variable reflecting both the unexpected level

change and the time-varying conditional variance of price change. They find that

this normalized oil price shock variable is highly significant and matches the US

data to a much higher degree than the usual price changes across different sample

periods. More importantly, this result implies that the oil price shocks would have

a less severe impact on economy when oil price movements are erratic since a price
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variation is possibly regarded as another transitory event.

Kellogg (2010) [48] takes a more direct approach to find the empirical evi-

dence to the real option theory by testing the responsiveness of firms’ investment

decisions to changes in uncertainty using Texas oil well drilling data and expecta-

tions of future oil price volatility from the NYMEX futures options market. The

result points to the support of the real option as firms reduce their drilling activity

in the magnitude that is consistent with the optimal response prescribed by theory

when expected volatility rises.

Elder and Serletis (2010)[32] and Bredin, Elder and Fountas (2010) [24],

which are most closely related to this paper, are among the first papers that mea-

sure the impact of oil price uncertainty directly in the two-variable GARCH-in-

Mean VAR using US and G-7 economies data. From the empirical analysis of the

US, they obtain robust results that an increase in oil price uncertainty deters var-

ious types of real economic activities, such as output production, investment, and

consumption. Furthermore, they document that economic activities are negatively

affected by oil price uncertainty in four of G-7 countries. Based on the results, they

suggest that the reason the 2003-2008 oil price surge did not lead to an economic

recession is because the price increase has been steady and continuous, resulting

in the oil price uncertainty kept at a very low level, so the overall change in oil

price had smaller effects on the economy.

It is worth noting that the main objective of the above papers by Elder et al.

and Bredin et al. is to gauge the oil price uncertainty-economy relationship using

data sets of specific countries. While this analysis has advantages in answering a

more specialized question, it is difficult to generalize the result to other countries

as the effect may differ depending on a country’s position in the oil trade. This

paper attempts to extend the analysis beyond the country level by making use

of global and advanced economies’ data. In addition, by modeling the oil price

uncertainty process with stochastic volatility, which allows a free driving variable

in the volatility generating process, it is possible to investigate the dynamic impact

of an unanticipated oil price uncertainty shock on economic activities, independent

of any other changes in the endogenous variables. Furthermore, I make use of three
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variables in the VAR, oil production quantity as well as oil price and economic

activity, to better reflect the underlying structure of oil markets.

Baumeister and Peersman (2008, 2010) [14] [15] approach the problem of

possible non-linearity in a much more flexible way; they generalize the presumed

linear relationship by letting the coefficients in a VAR be time-varying in every

period. The time-varying coefficients are then adaptable to the possible nonlin-

earities or structural changes between the variables in the VAR, and hence, can

closely capture the dynamic interaction between oil price changes and economic

growth that could be left out in a standard linear specification. In addition, they

also allow time-variation to the elements of the variance covariance matrix, upon

which the measurement of oil price uncertainty in this paper is based. Inspired

by this variance covariance matrix modeling strategy, I measure uncertainties of

variables harnessing the time-varying volatility of innovation and include it in the

mean equations of a VAR to investigate the impact of oil price uncertainty directly.

The statistical model in this paper also bears some similarity to that of

Berument, Yalcin and Yildirim (2009) [19] in that their model exploits a Stochastic

Volatility in Mean model5 which investigates the effect of the inflation uncertainty

innovation on inflation. However, their model is a univariate VAR and is not

directly applicable for our purpose where stochastic volatility of an endogenous

variable is assumed to have effects on the dynamics of another variable.

1.3 Model and Estimation

1.3.1 Model

In order to measure the effect of oil price uncertainty on the economy, I first

exploit a modified version of the VAR with the time-varying stochastic volatilities

by Primiceri (2005) [60] and Baumeister and Peersman (2008, 2010). I add an

additional term Λσt which captures the effect of time-varying oil price uncertainty

on the dynamics of economic activity. Another difference of the model lies in the

5See Koopman and Uspensky (2002)[52] for the detailed explanation of the application of this
model.
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time-invariance of VAR coefficients while the correlation and variance parameters’

time-dependence is preserved. This is partly because of the fact that this paper

focuses on a more specific form of non-linearity, namely, the effect of the conditional

second moment of oil price series. 6 Hence, the VAR can be written as,

yt = B0 +B1yt−1 + ...+Bpyt−p + Λσt + ut, (1.1)

where yt is a 3×1 vector consisting of quarterly global crude oil production, crude

oil price and real economic activity. The real economic activity is measured by the

industrial production index series of the global economy, as explained in detail in

the Data section. All variables are in first differenced logs multiplied by 100 to

represent the quarterly growth rate. The 3 × 1 vector B0 is an intercept, Bi for

i = 1, . . . , p are 3 × 3 coefficient matrices with number of lags p set at 4 to allow

for the dynamics of the system. The reduced form innovation vector ut is defined

to have conditional mean zero and conditional time-varying variance-covariance

matrix given by Ωt such that Ωt = A−1t ΣtΣ
′
t(A
−1
t )′ where

At =


1 0 0

a21,t 1 0

a31,t a32,t 1

 , Σt =


h1,t 0 0

0 h2,t 0

0 0 h3,t

 . (1.2)

By letting the lower triangular elements of At and the diagonals of Σt be

time-varying, any change in the correlations between variables will be captured,

and at the same time the possible structural changes in the oil market will be

reflected.

In the main VAR, σt = [log σ1,t log σ2,t log σ3,t]
′ is a 3 × 1 vector of uncer-

tainties given by logarithms of the diagonal elements of A−1t Σt. The time-varying

standard deviation series captures variability of the unforecasted part of the series,

which would be an appropriate way of modeling uncertainty.

6Moreover, not much variation over time is observed for the coefficient of interest (λ) when
I let the coefficients be time-varying, and hence, time-invariant coefficients seem to capture the
intended relationship sufficiently well in a more parsimonious way with lower computational
burden.
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The structure of Λ is restricted to be,

Λ =


0 0 0

0 0 0

0 λ 0

 , (1.3)

so that it can specifically capture the effect of oil price uncertainty on the real

economy – the main interest of this paper. While it is possible to have all other

elements of Λ unrestricted and to let the data determine them, the timing of the

variable may complicate the drawing from the posterior distribution. Put differ-

ently, as the model specifies that the volatility in one period affects variables in the

same period, an approximation method, e.g., second-order Taylor approximation,

needs to be applied in such cases, which comes at a cost of intensive computation

due to the non-linearity and high-dimensionality in the prior error distributions.

For the purpose of this paper, implementing the restriction on the elements of Λ

is sufficient and makes computation much faster.

Let αt ≡ [a21,ta31,ta32,t]
′. Then the dynamics of the volatilities are modeled

as follows:

at = at−1 + et, (1.4)

log ht = µ+ ρ log ht−1 + ηt, (1.5)

where et ∼ N(0, S) and ηt ∼ N(0,W ). This specification implies that at evolves as

a random walk process, and logarithms of ht, a first-order autoregressive process,

which falls into the category of the stochastic volatility model. Here, ρ is a diagonal

matrix with AR(1) coefficients in the diagonal and µ is a 3×1 vector of intercepts.

Instead of defining log ht as a unit root process a priori, I let the AR(1) coefficients

be determined by data.

Then, in the matrix form, the main VAR can be rewritten as,

yt = B0 +B1yt−1 + ...+Bpyt−p + Λ log ht + ut

= [Xt log ht]
′[β λ] + A−1t Σtεt.

Some comments about stochastic volatility will be in order. Having the

error term follow stochastic volatility is one common and flexible way of modeling
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time-varying volatilities. One popular alternative is to employ the Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH) model developed by Engle

(1982)[35], as in Elder and Serletis (2010). Two models differ crucially in that the

former has a free driving variable in the volatility data generating process and the

latter does not. Thus, in the GARCH model, the shock that changes the oil price

level is the same shock that increases volatility, whereas in the stochastic volatil-

ity framework, in principle, the volatility can have a shock independent from any

changes in the level. As a result, stochastic volatility enables investigating the

dynamic impact of an exogenous oil price uncertainty shock, which is hard to

achieve in a model where the data generating process of the volatility is defined to

be rather deterministic. In sum, the stochastic volatility model attains flexibility,

and yet it keeps the structure fairly parsimonious, so that the computation is not

very burdensome. More importantly, an additional oil price uncertainty indicator

obtained from the high-frequency oil price data can be easily incorporated into

the stochastic volatility model, which allows for better inference of unobservable

volatility components with higher precision, as explained next.

The idea of using an extra indicator for oil price uncertainty in addition to

the unforecasted price changes from the main VAR follows Dobrev and Szerszen

(2010), which belongs to the literature that links realized volatility to stochastic

volatility. Using intra-day stock return data, they show there is a substantial

efficiency gain when the information content of the realized volatility series is

added to a model of time-varying stochastic volatility. To be more specific, the

efficiency gain is the result of having an additional measurement equation in the

state-space model, where the additional measurement equation is obtained from

the asymptotic distribution of a realized volatility estimator.

In the context of my paper, where the main VAR models quarterly dynam-

ics, high-frequency data may refer to daily oil price changes. Dobrev and Szerszen

design this framework originally for the case when the sample period is relatively

short and both low and high frequency data are attainable for the full sample

period. Yet the daily price data are not available for the earlier sample period an-

alyzed in this paper, as the petroleum industry was heavily regulated and oil was
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not traded as often to begin with. For example, the daily West Texas Intermediate

(WTI) price series begins in 1983, and Brent oil in 1987. Hence, I extend Dobrev

and Szerszen’s framework using a time-varying Kalman filter so that as soon as

the high frequency data become available, the new information contained in the

daily price series is employed through a new measurement equation. In particular,

I construct the following state-space model of three measurement and one state

equations, when the oil price uncertainty is estimated in the algorithm:

y∗∗2,t = 2× log(h2,t) + ζ2,t, (1.6)

ỹ3,t = λ log(h2,t) + h3,tεt, (1.7)

log(R̂V t,M) = 2× log(h2,t) +

√√√√ ν

M

ÎQt,M

R̂V
2

t,M

ξt, (1.8)

log h2,t = µ2 + ρ2 log h2,t−1 + η2,t, (1.9)

where y∗∗2,t is the second element of the vector log({At(yt−X ′tβ−σ′tλ)}2 + c) with a

small offset constant c7 added to avoid the case that At(yt−X ′tβ−σ′tλ) is too small

and thus a logarithm is not well-defined, and, ζ2,t is log(εt)
2. This is the result of

the transformation that squares both sides of At(yt−X ′tβ− σ′tλ) = Σtεt and takes

logarithms. It is a part of a step in the Gibbs sampling algorithm for volatility,

where mixture Normal treatment of Kim, Shephard and Chib (1998)[51] is applied

to solve the problem of non-Normality of the state space model. In addition, ỹ3,t

denotes a value after subtracting the level effect of lags of endogenous variables

from y3,t.

The key feature due to the incorporation of the realized volatility series

is the appearance of new measurement equation (1.8) in the original state-space

model consisting of the measurement equations (1.6), (1.7) and the state equation

(1.9). That is, for the earlier period during which daily data are not available, the

state-space model consists of equations (1.6), (1.7), and (1.9), and from 1983, the

model expands to have three observation equations with equation (1.8) added.

This observation equation (1.8) is obtained from the asymptotic distribution

7I set c to be 0.001.
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of a general class of realized volatility estimators, i.e.,

√
M(R̂V t,M − h22,t)→D N(0, ν · IQt),

which is explained in detail in Appendix. Applying the Delta method to the above

distribution yields,

√
M
log(R̂V t,M)− log(h2,t)

2√
ν
ÎQt,M

R̂V
2

t,M

→D N(0, 1).

Approximating the above distribution results in the equation (1.8). Here,

log(R̂V t,M) denotes the logarithm of the realized volatility estimated by the jump-

robust median realized volatility estimator, M is the number of days in each quar-

ter, ν is a known asymptotic variance factor and ÎQt,M/R̂V
2

t,M is the asymptotic

variance of the realized volatility estimator.8 In short, the observed realized volatil-

ity is considered as a function of the unobserved stochastic volatility, and provides

additional information that otherwise would not have been available, thus the ef-

ficiency improves.

To show the improvements in efficiency more clearly, I estimate the main

VAR with and without the additional indicator of the price volatility and present

both results in the later section for comparison; even though the additional price

volatility indicator is used only during the half of the sample period, the coefficients

in the VAR, as well as oil price volatility, exhibit much higher precision. Together

with realized price volatility, the statistical model of this paper constructs a reliable

world oil price uncertainty series of extended time periods starting from 1958Q2.

In sum, conditional error terms of the whole system εt, et, ηt are assumed to

follow a Normal distribution and to be uncorrelated to each other given the history

up to t− 1, i.e.,: 
εt

et

ηt

 ∼ N

0,


I3 0 0

0 S 0

0 0 W


 . (1.10)

8More detailed explanations about the Kalman filter setup are provided in Appendix along
with notes on the estimation algorithm of the model.
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In addition, W is assumed to be a diagonal matrix with each error term being

independent of each other, and S is a block diagonal as,

S ≡ V ar(et) =

[
S1 0

0 S2

]
, (1.11)

where S1 ≡ V ar(e21,t) and S2 ≡ V ar([e31,te32,t]
′). As noted by Primiceri (2005),

this structure can be easily generalized to the non-block diagonal matrix case.

1.3.2 Bayesian estimation strategy and priors

The VAR model in the previous section is estimated using Bayesian meth-

ods to assess the joint posterior distributions of parameters of interest, unobserved

states and hyperparameters. Bayesian estimation is a natural choice for this model

as it has several state variables appearing non-linearly in the measurement equa-

tion. As pointed out by Primiceri (2005, pp.826), classical likelihood methods

may not be the optimal choice when high dimensionality and nonlinearity exist in

the model because of the danger of having multiple local peaks in the likelihood

function. Bayesian methods, on the other hand, deal with this type of problem

particularly well by separating the parameter space into several blocks which sim-

plifies the estimation process to a great extent. Thus the Markov Chain Monte

Carlo (MCMC) algorithm, particularly the Gibbs sampling procedure, is applied

to draw from a series of conditional posterior distributions of parameter blocks.

Furthermore, this algorithm can be expedited by imposing conjugate prior distri-

butions. Each step of the Gibbs sampler is explained in detail in Appendix.

In order to obtain parameter values that define the prior distributions,

the first 40 observations are used as a training period, i.e., 1947Q2 - 1958Q1. In

particular, an OLS regression is run assuming a time-invariant error structure, and

the obtained point estimates are then used to construct prior distributions. When

running the OLS regression, I use the logarithms of 5-quarter rolling standard

deviation as a proxy for uncertainty for the training period for the prior distribution

of λ, since it will cause a multicollinearity if a constant term and a time-invariant

volatility are included at the same time in the left hand side of the VAR. The
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priors for the VAR coefficients, time-varying covariance and log standard deviations

are assumed to follow Normal distributions, independent of each other and of

hyperparameters. Table ??table:prior summarizes all of the prior distributions

used in the estimation.

The mean of [β λ] prior comes from the OLS estimates and the variance-

covariance matrix of the prior is obtained by multiplying a constant, 4, to the

variance of OLS coefficient estimates, following the specification of Baumeister and

Peersman (2008). With respect to the prior of α and log h, I follow the previous

literature (i.e., Primiceri (2005), Benati and Mumtaz (2007)[16], and Baumeister

and Peersman (2008)) by applying the Cholesky decomposition to the variance-

covariance matrix and using the diagonal and the lower triangular elements after

standardization.

Hyperparameters S and W , which govern the variability of α and log h,

respectively, are presumed to follow the Inverse Wishart distribution and Inverse

Gamma. The prior distributions of µ and ρ reflect the belief that the log of

volatility series are so persistent that the process is close to random walks, which

would be one way of reflecting the modeling conventions of the previous literature

but still giving a chance to data to determine the posterior distributions. Later,

I multiply a constant p to

√
ν
M

ÎQt,M

R̂V
2

t,M

in equation (1.8) for a sensitivity check to

determine how large the measurement error of the realized volatility is relative to

what is predicted by the theory. When doing so, I impose the inverse-Gamma(2,2)

prior to have the prior average of 1, since p should be arbitrarily close to 1 if the

theory applies well.

1.3.3 Data

It is important to choose an appropriate oil price series that can be rep-

resentative of the global price series, as the key analysis of this paper is subject

to the world economy. Many candidates can be considered as a “world oil price”

series; however, for the baseline VAR estimation I use the imported refiner acqui-

sition cost (IRAC) for both global and advanced economies, as in Baumeister and

Peersman (2010). This series is a volume-weighted average price of all crude oils
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imported into the United States over a specified period. Since the United States

imports more types of crude oil than any other countries, this series is often re-

garded as the “true” world crude oil price. One problem arising from using IRAC

is that the series is available only from January 1974, and thus I use the backdated

series starting from 1947 that was generously provided by Christiane Baumeister.

Another caveat of this series is that it is provided at a monthly frequency at most.

This means that the same series cannot be used when constructing the realized

volatility series that requires at least daily frequency. Thus, daily West Texas In-

termediate (WTI) is used to estimate the realized volatility of each quarter starting

1983.9 To test the sensitivity of the results, I vary the combination of data sets by

using WTI for both the main VAR and realized volatility. The IRAC is originally

taken from the Department of Energy and used after being deflated by the US

CPI, WTI series is retrieved from Global Financial Database after adjusting for

inflation.

With respect to world economic activity, I use the world index of industrial

production series spanning from 1947Q1 to 2008Q310. This index covers global

industrial activities in mining and quarrying, manufacturing and electricity, gas

and water supply. Later in the paper, the sensitivity of the result is checked by

using the advanced economies’ industrial production index series taken from In-

ternational Financial Statistics (IFS) of International Monetary Funds (IMF).11

I apply the X-12-ARIMA of the U.S Census to adjust for the seasonality of the

series. The quarterly data series span from 1957Q1 to 2010Q1. The list of “ad-

vanced countries” are : Australia, Austria, Belgium, Canada, Cyprus, Czech Re-

public, Denmark, Finland, France, Germany, Greece, Hong Kong SAR, Iceland,

9Crude oil futures started to be traded on the New York Mercantile Exchange (NYMEX)
since 1983.

10This data series is also provided by Christiane Baumeister and is an updated version of the one
used in Baumeister and Peersman (2010)[15]. In particular, the original source of world index of
industrial production is the United Nations Monthly Bulletin of Statistics, from which a coherent
series is constructed by Baumeister by re-weighing and seasonally adjusting the raw data. The
series can be obtained by contacting Baumeister at CBaumeister@bank-banque-canada.ca. For
more detailed explanation on each series, see Baumeister and Peersman (2010), Appendix A.

11The coverage of this index also similar to that of world industrial production index, i.e.,
the index comprises mining and quarrying, manufacturing and electricity, and gas and water,
according to the UN international Standard Industrial Classification (ISIC) and is compiled
using the Laspeyres formula.
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Ireland, Israel, Italy, Japan, Luxembourg, Malta, Netherlands, New Zealand, Nor-

way, Portugal, Singapore, Slovak Republic, Slovenia, South Korea, Spain, Sweden,

Switzerland, Taiwan Province of China, United Kingdom and the United States.

The world oil production data provided by Baumeister are originally ob-

tained from the DoE starting January 1973, from Oil & Gas Journal for the period

April 1953 to December 1972, and the earlier series from January 1947 is interpo-

lated from the yearly oil production data.12 In addition, I add quarterly observa-

tions during the period October 2008 to March 2010 from the DoE for advanced

economies. Quarterly data are averages of monthly observations.

1.4 Results

In this section, I present the empirical results along with impulse responses

to the oil price uncertainty shock. First a closer look is given to the estimated

posterior distribution of the coefficient λ for the global economy followed by the

dynamic analysis on the effect of an oil price uncertainty shock, and then I perform

various types of sensitivity checks.

1.4.1 The estimated effect of oil price uncertainty

The column (1) of Table ??result1 reports the summary statistics of pos-

terior distribution for λ of the global economy analysis. Oil price uncertainty is

inferred to have a significantly negative effect on the global economic activity; from

the posterior sample draws, the mean of the coefficient λ is −0.1136, the standard

deviation is 0.0514, and 98.89% of λ draws is below zero. Figure ??figure2 dis-

plays the posterior distribution of the λ constructed from 15,000 sample draws.

The high probability of negative λ suggests that oil price uncertainty alone can

work as a deterrent to economic growth of the global economy when increased to

a higher level. This result further confirms that not only oil price movements but

12As noted by Baumeister and Peersman (2008), the use of interpolated data in the earlier
periods is of minor importance, as this part of the data set is mostly used in training sample to
construct priors that is dominated fairly quickly in the algorithm.
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also changes in the oil price uncertainty matter, supporting the non-linearity in

the oil price - macroeconomy relationship.

To better understand what the value of λ means, let’s take 1986Q1 for

illustration. The mid-1980s is recorded as the first period when the non-linear

relationship between oil prices and real economic activity has been observed. At

that time, the world oil consumption declined in response to the oil crises in 70’s

with improved energy use efficiency. On the other hand, there was additional

production particularly from Iran and Iraq to finance their lingering war. As

an effort to keep the prices from falling further, Saudi Arabia had cut back its

production in the meantime; however, in 1986, Saudi Arabia reversed its decision

and started pumping up oil production. As a result, the over-production and the

reduced demand for oil resulted in a huge drop in the price; the real price of oil

in 1986Q1 was $17.4, compared to $24.5 in the previous quarter.13 This sudden

and huge decline in oil prices resulted in an oil price uncertainty jump to 31.79%

points according to the median of the posterior draws of oil price volatility. This

is an increase from the much lower level of 14.11% points in 1985Q4, doubling oil

price uncertainty.

While the mid 1980s price plummet has partly been a positive factor for

oil consumers and thus, for output, the global economy in general did not go

through the anticipated expansion. Based on the empirical analysis of this paper,

one can postulate part of the reason we went through the modest growth was due

to the unusually rapid and severe increase of oil price uncertainty. The oil price

uncertainty had almost doubled, and if we multiply the differences in uncertainties

in logs (i.e., log 32.79− log 14.11 = 0.8123) by the posterior median of λ (-0.1131),

the result suggests the quarterly global industrial production growth rate would

have been 0.9348% on average instead of its predicted rate of 0.8443%. 14 Figure

??figure33 is the histogram of the possible realizations of the industrial growth

rate in 1986Q1 obtained using the posterior distribution of λ, assuming that the

oil price uncertainty had remained at the same level as the previous quarter. The

13For more detailed history of 1980’s, see Downey (2009)[30](pp.19) and Hamilton
(2011)[41](pp.17-18).

14The actual growth rate of global industrial production is realized at 0.7788%
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dotted line shows the predicted industrial production growth rate (0.8443%). The

95% interval of the counterfactual distribution is [0.6641, 1.1990], and there is

76.43% chance that the industrial growth rate would have been higher than its

predicted level. In sum, oil price uncertainty played a significant role in reducing

real economic activity in the mid-1980s even though the price level stayed quite

low.

With the baseline result in mind, I next estimate the main VAR, omitting

equation (1.8) from the state-space model to compare the effect of having the addi-

tional uncertainty indicator, the realized volatility series, on the estimation result.

In other words, the Gibbs sampling algorithm is run based on the same model but

the extra information content from the realized oil price volatility indicator is dis-

carded. The result is shown in column (2) of Table ??result1. The point estimate

is −0.1995, which implies a negative impact of oil price uncertainty, consistent

with the baseline result, although the mean is larger in size (in absolute value).

However, this is estimated with less precision, i.e., standard deviation is 0.0709,

compared to the baseline case, which shows one contribution of the additional

information content from the high frequency data.

To see if there is any other impact of including the additional price uncer-

tainty indicator, I plot the time series of the oil price uncertainties from the baseline

(with realized volatility indicator) and the current (without realized volatility in-

dicator) VAR estimations with 95% error bands, in Figure ??figure4. Here the

difference is more visible and striking. In the upper panel where I use the two oil

price uncertainty indicators, the error band become much narrower from 1983 on-

wards when additional information content becomes available. In addition, one can

observe the improvement in precision even in the period earlier than 1983 when the

realized volatility series is not available. On the contrary, the lower panel exhibits

a larger error band for the whole sample period, though the median (solid line)

does not differ very much. Therefore, appending the supplementary price volatil-

ity indicator substantially improves the inference of the posterior distribution of

the oil price uncertainty, also resulting in a more reliable and precise inference of

posterior distribution of λ. Hence, this demonstrates the benefit of using an extra
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volatility indicator from the high-frequency data.

In Figure ??figure45, I plot oil price uncertainty recovered from the baseline

model along with the global industrial production index, oil production, and oil

price growth rates. As seen in the above illustration, uncertainty is at its peak in

1986Q1, accompanied by the modest growth rate in industrial production. Fur-

thermore, the last two quarters in 1991 exhibit highest oil price uncertainty, which

coincide with the First Persian Gulf War. Oil price volatility retains a relatively

high level in 90’s and 2000’s, and the the stochastic volatility model captures the

periods in mid-1998 and the first half of 2003 as the time with particularly high

oil price volatility. Specifically, the first half of 2003 that lies in between the two

red vertical lines corresponds to the strike in Venezuela and the Second Persian

Gulf War. Although both the oil production and oil price were affected only mod-

estly for a relatively short period of time compared to the previous unrests, the

stochastic volatility measure of my paper picks the periods with doubling of oil

price uncertainty (2002Q4 : 12.18% point → 2003Q1 : 25.36% point). This pe-

riod can be a good example of the uncertainty measure moving idiosyncratically

from the oil price level, which can be easily modeled using the stochastic volatility,

showing the advantage of the framework of this paper. At this time, the global

industrial index exhibits a short-lived dip (2003Q2) for which oil price uncertainty

may have played a role. With respect to this point, I further investigate impulse

responses to the oil price uncertainty shock in the next section.

1.4.2 Dynamic impacts of an oil price uncertainty shock

Suppose oil price uncertainty increases unexpectedly and substantially with-

out affecting the actual price series, because, for example, it is not resulted from

the structural changes of oil market. This is surely feasible when, for example,

economic agents fear a much higher future oil demand that has not yet led into

any “meaningful” change in the actual oil market, and thus there is no obvious

variation in the first moment even if the underlying price distribution of oil price

series has become more dispersed, and hence, more uncertain. The “uncertainty

shock” of this paper may be comparable to the oil-specific demand shock defined
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in Kilian (2009)[49] in a sense that it does not necessarily reflect any visible fun-

damental changes of oil supply and/or demand. However, the uncertainty shock

here presumes more exogenous change since I do not require this shock to imply

any changes in the price growth rate level. In addition, it can also reflect some

changes in the market which is not strong enough to lead any severe results on oil

supply and/or demand as in the first half of 2003. In sum, the uncertainty shock

mainly describes higher possibility of facing an extreme change in oil price, but it

does not imply anything about increase, decrease or no change in the price growth

rate.

This type of impulse responses to the uncertainty shock has not been ex-

plored so far in the related literature, mainly because the statistical models im-

plemented in the previous papers are based on the ARCH/GARCH framework. It

is not feasible to have a sudden change in the uncertainty alone in such a frame-

work without making specific changes in innovations to the level of oil price, as

ARCH/GARCH models, by definition, do not allow any free driving variable in

the volatility generating process and thus, volatility is completely deterministic

according to past changes in the first moment. That is, the shock that raises or

drops the oil prices is the same shock that increases uncertainty.

By contrast, the stochastic volatility model of this paper enables us to look

at the impact of such an unanticipated oil price uncertainty increase on economic

activities, independent of any other changes in the endogenous variables included

in the VAR. This is due to the volatility generating process which has its own

free parameter (ηt in equation (1.5)) that permits exogenous innovations to uncer-

tainty. Thus, in principle, it is possible to have independent increase in oil price

uncertainty.

The specifics of this exercise are as follows: I generate a one-time oil price

uncertainty increase of 100-percent. Since we have the logarithm of oil price un-

certainty in the mean equation of VAR, this is equivalent to have the log oil price

uncertainty increase by a unit. As an illustration, the 100-percent uncertainty

surge is comparable to what has happened during the first oil shock in 1973 and

1986Q1, according to the statistical model of this paper. This shock will be highly
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persistent over time, as reflected in the posterior distribution of ρ2,
15,and as a re-

sult, the uncertainty series comes back to its normal path very slowly.16 It is worth

to note again that it is unnecessary to look at any possible subsequent changes in

oil price level as the uncertainty shock does not imply anything about the first

moment.

Figure ??figure5 shows the median impulse responses of the real price of

oil, the world oil production, and the global industrial production growth to a 100-

percent increase of oil price uncertainty over a 12-quarter horizon after the impact

period. As oil price uncertainty is negatively correlated with economic activities,

a shock which increases the oil price uncertainty unexpectedly would result in a

drop in industrial production growth rate. Confirming this view, a doubling of

oil price uncertainty yields an immediate drop of approximately −0.11 percentage

point in global industrial production growth rate in the same quarter. In other

words, the exogenous shock doubling oil price uncertainty solely can deter real

economic activity growth almost by 0.4%-point annually. This negative response

remains very persistent over the 12-quarter horizon due to the close-to-unit root

characteristics of the oil price volatility process, although oil price responds little.

Finally, oil production quantity decreases slightly along with the drop in industrial

production through the oil price uncertainty channel.

Next I look at the impulse responses to a temporary uncertainty shock.

That is, the oil price uncertainty doubles at the impact period, but in the next

period, it comes down to steady-state level by, say, a negative uncertainty shock

that reverts the previous increase, capturing the case that uncertainty resolves

quickly by a counter shock. Hence, oil price uncertainty shock propagates only

by the dynamics of endogenous variables, ignoring close-to-unit root feature of the

volatility process. Industrial production drops immediately as before, but recovers

15The point estimate of the oil price volatility AR(1) coefficient, ρ2, is 0.9590, and the standard
deviation is 0.0221, confirming the prior belief that oil price volatility follows a process close
to unit root. In case of oil production volatility, the posterior distribution of ρ1 is much less
persistent with mean 0.5287 and the standard deviation 0.1670. In addition, the point estimate
of the industrial production index volatility AR(1) coefficient is 0.2807 and the standard deviation
is 0.0988.

16Given the persistence of oil price uncertainty process, it can be interpreted as a permanent
shock to the oil price uncertainty in practice.
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the normal growth rate in about a year, and the same is true for oil production.

Thus, the size of initial response of industrial production is similar, but the negative

impact last for much shorter period.

1.4.3 Sensitivity Check

In this section, I check the robustness of the result in various ways. First,

I look at whether the oil market structural break detected in mid-80’s changes

the way that oil price uncertainty affects real economic activity. The structural

change in the oil market is noted by a number of recent studies, e.g., Blanchard

and Gali (2007)[21], although there is no consensus on the existence of the break

(e.g., Ramey and Vine (2010)[61]). In order to control for the possible changes in

the oil market, I first add an indicator variable for 1984Q1 n the right hand side

of the main VAR, which is the quarter set for the break in Blanchard et al. Next,

I split the sample period into two, one until 1983Q4, the other from 1984Q1, and

repeat the VAR estimation for different sample periods.17

Table ??1984d and Table ??split reports the summary statistics of the

posterior λ draws from the above variations. All three posterior distributions of λ

appear to mostly locate in the negative range, and furthermore, the means are in

line with the baseline result. Although standard deviations, particularly in the first

subsample period, are generally larger due to the fewer number of observations, it

is apparent that the negative impact of oil price uncertainty has not been affected

by the potential structural change in 1980’s, and remained very consistent.

Second, I use the industrial production index of the advanced economies

with more recent but shorter sample periods (1957Q1-2010Q1). The first column of

Table ??result2 reports the summary statistics of the posterior λ draws. The point

estimate, −0.1154, is very similar to that of the global economy, and the posterior

distribution is in the similar range with a very high chance of λ being negative

(95.09%). This result is in line with the fact that the world GDP distribution is

17For this exercise, the main VAR is run without including equation (1.8) of realized volatility.
The exclusion of realized volatility is because the realized volatility series starts only from 1983Q1,
and thus there is only four observation available for the first subsample period. Hence, to treat
two subsample period as equal as possible, I exclude equation (1.8) for both periods.
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highly skewed to advanced economies. It also confirms and extends the results in

Elder and Serletis (2010) and Bredin, Elder and Fountas (2010) obtained using

the U.S and G-7 countries’ various real economic activities data, since all of the

countries examined in their papers are the members of advanced economies.

In second column of Table ??result2, I present the result from VAR with

stochastic volatility without incorporating realized oil price volatility data, which is

comparable to the result in column (2) in Table ??result1. The point estimate of λ

shows weaker association, but well within the range. More importantly, consistent

with the global economy’s case, the posterior distribution appears to be more

dispersed with lower precision. This highlights the efficiency gain achieved by

the additional oil price uncertainty indicator. Moreover, the realized volatility

estimator also helps estimate more reliable historical oil price uncertainty series as

it does for global economy, though the posterior distribution is not presented here.

Then I rerun the estimation procedure using different oil price series. The

third and the fourth columns of Table ??result1 and Table ??result2 report the

estimation result obtained from using WTI as a world oil price series. Affirming the

baseline result with IRAC and WTI, oil price uncertainty works destructively both

in the global and advanced economies in all estimations, and the point estimates

are consistently statistically significant across the different combinations. One can

find that the previous improvements in precision through realized volatility are

also shown here; the posterior distributions of λ are more centered in all cases

when the additional price uncertainty indicator is included and thus show higher

chances of λ to be significantly negative. This again evidences the efficiency gain

due to the extra information content obtained from daily oil price series.

Finally, as briefly mentioned in the previous section, I re-estimate the

VAR , multiplying a constant p to the term representing the measurement er-

ror (

√
ν
M

ÎQt,M

R̂V
2

t,M

) in equation (1.8) and let the data determine that of the realized

volatility relative to what is predicted by the theory. That is, equation (1.8) is

substituted by

log(R̂V t,M) = 2× log(h2,t) + p×

√√√√ ν

M

ÎQt,M

R̂V
2

t,M

ξt.
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As explained in detail in Appendix, the generic asymptotic result predicts p

to be arbitrarily close to one as the data sampling frequency becomes infinitesimally

small. Table ??rs presents the summary statistics of the parameter p, and one can

see that the 95% interval does include one, although it might have been affected

by the relatively strong prior.

In sum, the baseline empirical result of this paper, that increase in oil

price uncertainty is detrimental, remains when the potential structural change

in the oil market is considered. Moreover, it is also applicable to the advanced

economies’ case, and is insensitive to the different combination of oil price time

series data. Furthermore, the statistical improvement achieved by having realized

volatility conforms to the baseline result, consistently shown across different data

sets. In addition, the improvement does not seem to be forcefully driven by the

small measurement error predicted by the asymptotic distribution of the realized

volatility.

1.5 Conclusion

This paper investigates the effect of oil price uncertainty on real economic

activity during 1958Q2 - 2008Q3, by estimating a VAR model with time-varying

volatility by Bayesian estimation methods. In line with Elder and Serletis (2010)

and Bredin, Elder and Fountas (2010), this paper shows that oil price uncertainty

has significantly negative effects on global economy’s real economic activities mea-

sured by industrial production index. This result implies when uncertainty, i.e.,

the possibility of an extreme oil price to be realized, increases, it can work as a

deterrent for the industrial production growth, regardless of the actual price level

change. For example, the case study of 1986Q1 shows high oil price uncertainty in

the economy may dampen economic growth even though oil price is low. The result

also applies to advanced economies, as reported in the sensitivity check section.

The main contribution of this paper is achieved by incorporating realized

volatility series of oil price as an extra uncertainty indicator in addition to the

stochastic volatility. In particular, the asymptotic distribution of realized volatil-
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ity indicator provides the extended version of state-space model with an additional

measurement equation. As a result, the historical oil price uncertainty series is es-

timated with much higher precision for the entire sample period with this indicator

at hand, and the overall statistical inference becomes more significant. Thus, a

reliable oil price uncertainty time series for a extended period is successfully recov-

ered. Furthermore, this improvement is observed consistently in case of advanced

economies, and robust to the changes of oil price series.

The empirical results of this paper add to the literature on the propagation

of uncertainty shocks, e.g., by Bernanke (1983) and more recently by Bloom et al.

(2011), which suggest that an uncertainty shock alone can bring a sizable negative

impact on the real side of an economy. However, the impulse responses to the

oil price uncertainty shock reports a persistent effect on real economic activity, as

opposed to a relatively brief recession followed by an overshooting period due to

pent up demand in Bloom et al (2011) . This result mainly arises from the high

persistence of oil price uncertainty series. In that sense, the dynamic response

result of this paper bears more similarity to that of Bachmann, Elstener and Sims

(2010) [10], in which they document protracted negative effects of an unanticipated

increase in uncertainty. More generally, this paper contributes to the literature

that emphasizes the importance of modeling time-varying volatility correctly (e.g.,

Hamilton (2010)[40]), as the volatility can directly have an effect on the conditional

first moment.

1.6 Appendix

Realized Volatility

As shown in Dobrev and Szerszen (2010), there is a high efficiency gain

when the information content from high-frequency data is additionally used in

estimating oil price volatility state. In the context of my paper, high-frequency

data refers to daily oil price changes as opposed to the quarterly price series used

in the main VAR. The daily series is not available for the entire sample period

analyzed in this paper; however, I estimate the realized volatility of each quarter
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by using jump-robust median realized volatility estimator (MedRV) of Andersen,

Dobrev, and Schaumburg (2009) [6] for the period when the daily price variation

is observable:

R̂V t,M = MedRVt,M

=
π

6− 4
√

3 + π

(
M

M − 2

)M−1∑
i=2

med(|∆OPi−1|, |∆OPi|, |∆OPi+1|)2.

Here, M is the number of days oil is traded in each quarter and ∆OPi denotes

the observed daily change of logarithmic oil price in quarter t with i = 1, 2, ...,M .

MedRV is a consistent estimator of IVt =
∫ t
t−1 ς

2
sds if the log oil price evolves in

continuous time as:

dOPt = µtdt+ ςtdBt + dJt

where µt is the drift, ςt is the volatility, Bt is a standard Brownian motion, and J

is a finite jump process (see Huang and Tauchen (2005) [43]; Dobrev and Szerszen

(2010)). IVt is equivalent to h22,t in our context and hence, MedRV will provide

further information for oil price uncertainty as an additional indicator.18

Then the central limit theorem implies the following generic asymptotic

results:

√
M(R̂V t,M − h22,t)→D N(0, ν · IQt)

where ν is a known asymptotic variance factor-i.e., 2.96 for MedRV-and IQt =∫ t
t−1 ς

4
sds is the integrated quarticity controlling the precision of realized volatility

estimators.

By applying the Delta method with a consistent jump-robust estimator

ÎQt,M of IQt, we get

√
M
log(R̂V t,M)− log(h2,t)

2√
ν
ÎQt,M

R̂V
2

t,M

→D N(0, 1).

18I use MedRV and MedRQ estimators by Andersen, Dobrev, and Schaumburg (2009), but the
result is robust to the use of different realized volatility estimators.



28

Here, I estimate IQt by the median realized quarticity estimator MedRQ such that

MedRQt,M =
3πM

9π + 72− 52
√

3

(
M

M − 2

)M−1∑
i=2

med(|∆OPi−1|, |∆OPi|, |∆OPi+1|)4.

for each quarter t. When obtaining the above asymptotic results, the log trans-

formation is conducted which becomes very handy to incorporate the additional

information to the stochastic volatility setup of this paper. With this result, I

write a new measurement equation which will be added into the step in the Gibbs

sampler algorithm to estimate oil price uncertainty as follows:

log(R̂V t,M) = log(h2,t)
2 +

√√√√ ν

M

ÎQt,M

R̂V
2

t,M

ξt

where ξt follows the standard Normal distribution and is independent of the un-

derlying process. Note that log(R̂V t,M) and

√
ν
M

ÎQt,M

R̂V
2

t,M

can be readily estimated

provided a high frequency data series. Therefore, in addition to the measurement

equation (6), I use the above measurement equation (equation (7)) for the period

that daily oil price data are observable. That is, a time-varying state-space model

is constructed to generate smoothed draws of volatility states. More accurate de-

scription on how to obtain draws from the posterior distribution of {h2,t}Tt=1 inside

the Gibbs sampler algorithm is provided in the next section.

Gibbs sampler algorithm

When it is not feasible to analytically derive the joint posterior distribu-

tion due to the model’s high dimensionality and non-linearity, the Gibbs sampler

algorithm provides a computationally tractable way of simulating the posterior

distributions. It is because the Gibbs sampler algorithm repeatedly draws from a

sequence of conditional posterior distributions after separating the parameters into

several blocks whose conditional posterior distributions are known. After iterating

the chains for long enough times, the draws will be equivalent to those from the

joint posterior distribution. Starting from the initial values for each block, the first

30,000 “burn-in” draws are discarded in order to eliminate the possible impact of
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initial values and to ensure the chain mixes well. Then following 15,000 draws are

collected, and thus, 45,000 iterations in total are conducted for each analysis.

Before getting into the algorithm, I rewrite the main VAR in a simpler

matrix form for convenient estimation such that

yt = X ′tβ + σ′tλ+ ut

= X ′tβ + σ′tλ+ A−1t Σtεt.

Here, Xt denotes I3⊗xt where xt is a vector containing one and all four lags

of yt and and σt is I3⊗σt. Furthermore, β and λ denote the vectors of parameters

with 3×(3p+1) and 3×3 elements obtained by stacking each row of the coefficient

matrices into vectors.

Step 1: Drawing coefficients of lags (β) and of uncertainty (λ)

Given αT , hT , yT and other hyperparameters, this step is equivalent to re-

gressing yt on X∗
′
t where X∗t is a (40× 3) matrix whose elements are the lags of yt

and the log of oil price uncertainty. We can expedite this step with the independent

conjugate Normal priors, whose parameters are based on the homoskedastic OLS

regression result of the training period. The error term is heteroskedastic; however,

given all the values of αT and hT , the error covariance and variance matrices are

completely known in this step as they consist ΩT .

Step 2: Drawing covariance states (α) and hyperparameter S

Conditional on β, λ, hT , Y T and other hyperparameters, the following equa-

tion simplifies the sampling procedure of covariance states αT and becomes the

measurement equations in this step with the observable homoskedastic reduced

form innovation ut:

At(yt −X ′tβ − σ′tλ) = Atut = Σtεt

This transforms the problem to a standard linear Gaussian state space model with

the state equation (4). Now, the elements of αT are divided into two sub-groups,
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{a21,t}Tt=1 and {a31,t, a32,t}Tt=1 and drawn in turn. More specifically, we have the

following two state-space models:

a21,t = a21,t−1 + e21,t e21,t ∼ N(0, S1)

u2,t = −u1,ta21,t + ε2,t ε2,t ∼ N(0, h22,t)

and(
a31,t

a32,t

)
=

(
a31,t−1

a32,t−1

)
+

(
e31,t

e32,t

) (
e31,t

e32,t

)
∼ N(0, S2)

u3,t = −u1,ta31,t − u2,ta32,t + ε3,t ε3,t ∼ N(0, h23,t).

More specifically, one can obtain the conditional mean ai,t|t−1 and variance

Pi,t|t−1 from a forward Kalman filter for each sub-group i of α. Note that the

last state of the forward Kalman filter yields ai,T |T and Pi,T |T of the posterior

distribution of ai,T . Using this state value, one can draw from N(ai,T |T , Pi,T |T ),

then feed this sample back into the backward recursion to get ai,T−1|T and Pi,T−1|T .

This is repeated until the beginning period by updating as following19 :

ai,t|t+1 = ai,t|t + Pi,t|tP
−1
i,t+1|t(ai,t+1 − ai,t)

Pi,t|t+1 = Pi,t|t − Pi,t|tP−1i,t+1|tPi,t|t.

After drawing αT , the elements of hyperparmeter S are sampled from the

inverse-Wishart posterior distributions by updating the observable innovations

given the new αT draws.

Step 3: Drawing volatility states (h) and hyperparameter W

With other parameter values given, drawing the volatility state hT becomes

a non-linear and non-Gaussian state-space problem. This is because ht is modeled

to follow a log Normal distribution and thus it is not possible to use the standard

linear state-space model applied in the previous step. Moreover, h2,t appearing

in the third mean equation of the main VAR multiplied by λ further complicates

19See Carter and Kohn (1994) [26] for more details on the use of Gibbs sampler for a state
space model.
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this stage. Therefore, I apply log transformation to linearize the system and then

apply use the mixture Normal treatment by Kim, Shephard and Chib (1998)[51].

In particular, the entire history of each element of the vector {hi}T is drawn one

after one starting from {h1}T . After {h1}T is sampled, sampling {h2}T is in order,

which requires the use of time-varying Kalman filter and smoother, depending the

data availability of high-frequency oil price series. Finally, {h3}T can be drawn

harnessing the updated value of {h2}T . This procedure requires the variance co-

variance matrix, W , to be diagonal since we implicitly disregard the possible effect

of correlation by drawing one {hi}T at a time.

The procedure common for {h1}T and {h2}T starts by obtaining the first

two elements of the orthogonalized innovation, i.e., At(yt − X ′tβ − σ′tλ) = Σtεt.

Conditional on αT from the previous step and all other values, these are observable.

To linearize the equations, I take logarithms after squaring both sides and adding

an offset constant c to the left hand sides.20 Then, the following state-space models

are obtained for {h1}T and {h2}T , respectively:

log h1,t+1 = µ1 + ρ1 log h1,t + η1,t+1

y∗∗1,t = 2 log h1,t + ζ1,t

log h2,t+1 = µ2 + ρ2 log h2,t + η2,t+1

y∗∗2,t = 2 log h2,t + ζ2,t

ỹ3,t = λ log(h2,t) + h3,tε3,t

where y∗∗i,t is the first two elements of the vector log({At(yt−X ′tβ−σ′tλ)}2+c) after

the transformations, ζi,t comes from log(εt)
2, and ỹ3,t denotes a value obtained after

subtracting the effect of lags of endogenous variables from y3,t. One should note

that at least two measurement equations are available for oil price volatility, h2,t

for all time periods since it appears in the mean equation of y3,t, multiplied by the

coefficient λ. The number of measurement equation increases to three, including

the equation (8), during the period when daily oil price series exists as described

20An offset constant is added since squared value of the right hand side can be infinitesimal.
Following the previous literature, I set c to 0.001.
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s qj = Pr(s = j) mj v2j

1 0.00730 -10.12999 5.79596

2 0.10556 -3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.77785 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

in detail in Section 3 and Appendix.

The above linear system is still non-Gaussian as the distribution of ζi,t

follows logχ2(1), and thus, it is approximated by mixing seven different Normal

distributions as Kim et al. (1998) and Primiceri (2005). In doing so, an indicator

variable si,t is assigned for each time period t, which determines the particular Nor-

mal distribution by which the distribution of ζi,t is approximated.21 In particular,

by independently sampling each si,t, is independently sampled from the discrete

density function defined as

Pr(si,t = j|y∗∗i,t , hi,t) ∝ qjfN(y∗∗i,t |2hi,t +mj − 1.2704, v2j ), j = 1, . . . , 7, i = 1, 2.

where the mean, mj − 1.2704, and the variance, v2j , of the seven Normal distribu-

tions are given in Table 1.

One can now apply the same forward and backward Kalman filter algorithm

as in Step 2 to obtain the volatility series of {h1}T and {h2}T . Lastly, this stage

is completed by sampling a new set of the indicator variable si,t conditional on

the updated {h1}T and {h2}T draws (see Kim, Shephard and Chib (1998) and

Appendix in Primiceri (2005)).

With the updated value of {h2}T , we are ready to draw the series of {h3}T

as the third element of the orthogonalized innovation vector, At(yt −X ′tβ − σ′tλ),

is observable. Denote this element as y∗3,t. Then, the state-space model is the

21To start the Gibbs sampling algorithm, one can randomly assign any number to si,t for all i
and t for the initial iteration.
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following:

log h3,t = µ3 + ρ3 log h3,t−1 + η3,t

y∗∗3,t = 2 log h3,t + ζ3,t.

where y∗∗3,t = log((y∗3,t)
2 + c) and ζ3,t denotes log(ε3,t)

2. With this arrangement, the

mixture Normal approximation method can be applied again to obtain the time

series of industrial production volatility using the forward and backward Kalman

recursions. This step is also completed by sampling the new values of s3,t according

to (12), which will be used in approximating the distribution of ζ3,t in the next

iteration.

Finally the diagonal elements of the hyperparmeter W are drawn one at a

time by updating the differences of newly sampled {h}T , as each element of the

matrix is considered to be distributed following the inverse Gamma distribution.

This step is fairly simple because conditional on the new set of {h}T draws, the

innovation is perfectly observable and the inverse Gamma distribution belongs to

the conjugate prior family.
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Table 1.1: Prior distributions

[β λ] N([β̂OLS, [λ̂OLS], 4 · V ([β̂OLS, λ̂OLS]))
α N(α̂OLS, 10 · V (α̂OLS))

logh0 N(log ĥOLS, log ĥOLS/ĥ
2
OLS)

[µi ρi] N( [0 1], 0.05 · I2)
S1 IW (V (α̂1,OLS), 2)
S2 IW (V (α̂2,OLS), 3)
w IG((0.01)2/2, 1/2)
s IG(2, 2)

This table shows the conditional prior distributions of the VAR coefficients [β λ],
the elements of the time-varying variance covariance matrix α and h, autoregressive
parameters for volatilities [µi ρi], and finally, hyperparameters S1, S2 and w.

Table 1.2: Summary statistics of posterior λ draws - Global economy

(1) (2) (3) (4)
Main OP series IRAC IRAC WTI WTI

RV series WTI n/a WTI n/a
mean −0.1136 −0.1995 −0.1087 −0.1887

std. dev. 0.0514 0.0709 0.0644 0.0742
95% interval [−.216,−.014] [−.341,−.064] [−.238,.011] [−.316, −.018]
P (λ < 0) 98.89% 99.99% 96.27% 98.81%

This table shows the summary statistics of the 30, 000 posterior λ draws. Column
(1) is the result from the baseline model that makes use of the additional mea-
surement equation (1.8) obtained using the realized volatility series. Column (2)
is the result from the same model but excluding equation (1.8). Column (3) and
(4) repeat the exercise of (1) and (2) using WTI series as the world oil price in the
main VAR.

Table 1.3: Robustness check - 1984Q1 dummy

λ
mean −0.1495

std. dev. 0.0763
95% interval [−0.3191, −0.0202]

P(λ < 0) 99.15%

This table reports the summary statistics of the posterior λ draws when the dummy
variable for 1984Q1 is included in the right hand side of the main VAR. The
inclusion of 1984 dummy variable is to see whether the effect of uncertainty remains
when considering the structural change in 1984 as noted in Blanchard and Gali
(2007).
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Table 1.4: Robustness check - split sample VAR

λ ∼1983Q4 1984Q1∼
mean −0.1115 −0.1310

std. dev. 0.1508 0.1036
P(λ < 0) 78.8% 89.6%

This table reports the summary statistics of the posterior λ draws for two subsam-
ple periods. The subsample periods is split before- and after- 1984Q1 and the main
VAR is run without including equation (1.8) of realized volatility. The exclusion of
realized volatility is because the realized volatility series starts only from 1983Q1,
and thus there is only four observation available for the first subsample period.
Hence, to treat two subsample period as equal as possible, I exclude equation (1.8)
for both periods. Again, this exercise is to see whether the effect of uncertainty
differs when the structural change in 1984 noted in Blanchard and Gali (2007) is
considered.

Table 1.5: Robustness check - Advanced economies

Main OP series IRAC IRAC WTI WTI
RV series WTI n/a WTI n/a

mean −0.1154 −0.0768 −0.1711 −0.1903
std. dev. 0.0963 0.0838 0.0734 0.0758
P (λ < 0) 95.09% 81.38% 99.17% 99.35%

This table reports the summary statistics of the 30, 000 posterior λ draws of the
advanced economy. As in the global economy’s case, Column (1) is the result from
the baseline model that makes use of the additional measurement equation (1.8)
obtained from the realized volatility series. Column (2) is the result from the same
model but excluding equation (1.8). Column (3) and (4) repeat the exercise of (1)
and (2) using WTI series in the main VAR.

Table 1.6: Robustness check - multiplication of the parameter p

p
mean 1.1807

std. dev. 0.5932
95% interval [0.4004 2.6825]

This table reports the summary statistics of posterior p draws, that is the param-
eter multiplied to the measurement error of equation (1.8).
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Figure 1.1: Oil price volatility

Upper panel : Quarterly standard deviation of the 3-month crude oil prices from
1957Q1 to 2010Q1.
Lower panel : Mean of the nominal refiner acquisition cost of imported crude oil
price uncertainty with 2.5th and 97.5th percentiles of posterior distibution.
The dotted red lines represent the series trends over time.
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Figure 1.2: Posterior distribution of λ

Figure 1.3: 1986Q1 illustration

This panel is a histogram of possible realization of the global industrial production
growth rate in 1986Q1 if oil price uncertainty had not increased at that time.
The dotted red line represents the predicted industrial production growth rate,
0.8423%.
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Figure 1.4: Oil price uncertainty with and without realized volatility

The posterior distributions of oil price uncertainty from the statistical model of
this paper. The upper panel plots the distribution obtained when the information
content of high-frequency data is incorporated to the main VAR. The lower panel
illustrates oil price uncertainty from the main VAR without using the additional
price volatility indicator.
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Figure 1.5: Industrial production, oil production, oil price and oil price volatility

This table plots the data series used in the main VAR along with the median oil
price uncertainty from the posterior draws recovered from the model. The red
vertical box denotes 2003Q1 and 2003Q2.
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Figure 1.6: Impulse responses to a 100 % uncertainty shock

Impulse responses to the shock that doubles the level of oil price uncertainty. Since
we have the logarithm of oil price uncertainty in the mean equation of VAR, this
means that the log oil price uncertainty increases by a unit. Thus, the left top
panel shows the dynamics of log of oil price uncertainty.
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Figure 1.7: Impulse responses to a temporary 100% uncertainty shock

A temporary uncertainty shock implies that the oil price uncertainty doubles at
the impact period, but in the next period, it comes down to steady-state level
by, for instance, a negative uncertainty shock that reverts the previous increase.
That is, oil price uncertainty shock propagates only by the dynamics of endogenous
variables.



Chapter 2

Bank lending and loan

securitization under uncertainty

Abstract

This chapter studies how US commercial banks adjust lending activities in

response to macroeconomic uncertainty with a focus on asset securitization. Dur-

ing 2001Q2-2009Q3, macroeconomic uncertainty has been negatively related to the

loan growth rate. In addition, comparing banking institutions with and without

asset securitization, I find that loan growth rate of asset-securitizing banks was not

particularly protected from the increase in uncertainty, which suggests that secu-

ritization did not effectively help transfer aggregate risk from the banking sector

to investors. I postulate factors that may have contributed to the ineffective risk

transfer of securitization; one important reason is due to the banks’ credit expo-

sure through explicit/implicit recourse and/or seller-provided credit enhancements

which also fluctuate with the changes in the macroeconomic uncertainty level.

42
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2.1 Introduction

This paper studies how US commercial banks adjust their lending activities

in response to macroeconomic uncertainty and whether the loan securitization

activity has played a role in the mechanism. If macroeconomic uncertainty surges,

banks face an increase in the probabilities of default across all the potential projects

they consider funding since the distributions become more dispersed, even when

all other things do not change. As a result, it is likely that banks reduce loan

supply as there are higher chances of default. However, loan securitization, which

has been at the center of many discussions during and after the Great Recession,

may have affected the way that commercial banks respond to the macroeconomic

uncertainty, as it provides the banking institutions with a tool to sell out the due

risk to investors, to remove loans from the balance sheets, and also to free up

extra liquidity with which banks can extend to new borrowers. In other words,

one might expect loan securitization to function as an extra layer of protection,

making loan growth less susceptible to the increase in aggregate uncertainty.

Contrary to this expectation, this paper finds that in practice, securitiza-

tion did not particularly work in such way; I fail to find a significant difference

between banks with and without loan securitization in terms of loan response to

macroeconomic uncertainty changes. Macroeconomic uncertainty has a significant

negative relationship with the growth of loans across all commercial banks, but

the magnitude does not seem to be changed much due to securitization. It should

be noted that the analysis of this paper is limited to the case where loans are sold

and securitized in a Special Purpose Vehicle (SPV) owned by the reporting bank.

Hence, loans that are sold to government-sponsored agencies, i.e., the Federal Na-

tional Mortgage Association (Fannie Mae) and the Federal Home Loan Mortgage

Corporation (Freddi Mac), or sold to and then securitized in other private SPV’s

are not included.1

The failure to find differences is potentially due to the exposure of securitiz-

1This is due to the limitation in data: in the Call Report data from which the securitization
variable is extracted, loans that are sold to and securitized by an entity outside of the reporting
bank is reported together with assets sold under the asset sales item, and hence it is not possible
to parse out how much of the sold asset is securitized in the end.
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ing banks to having to buy back the part of the loans securitized (explicit and/or

implicit recourse) and from any necessary credit enhancements. I find evidence

that securities-originating banks face increased credit exposure due to the various

types of credit enhancements in response to increases in uncertainty, thereby re-

taining more risk themselves rather than removing it. Moreover, I also find some

evidence that the quality of newly extended loans of securitizing banks is more

likely to be worse. In other words, the indirect effect of securitization in generat-

ing more loans may not have been positive in terms of coping with uncertainty.

As a consequence, loan-securitizing banks have not effectively transferred the risk

from the banks to investors, and hence, securitization did not protect the banks

from fluctuations in macroeconomic uncertainty substantially.

This paper is related to the line of recent literature investigating the effects

of the uncertainty shocks of various kinds on real economic activities. For exam-

ple, Bloom (2009)[22], Bloom, Fluetotto, Jaimovich, Saporta-Eksten, and Terry

(2011)[23] discuss general effects of uncertainty shocks. Gilchrist, Sims and Za-

kraǰsek (2010) [36] study the amplification of uncertainty shocks through financial

frictions. Baker, Bloom, and Davis (2011) [11] explain the effects of policy uncer-

tainty, Elder and Serletis (2010) [32] and Jo (2011) [45] look at oil price uncertainty,

and Baum, Caglayan, and Ozkan (2012) [13], and Valencia (2010) [63] explain the

effect of the uncertainty shocks on the banking sectors. In particular, Baum et

al. (2012) find financial uncertainty has an important and significant role in the

monetary policy transmission mechanism, but the actual size and the direction

of the effect of financial uncertainty differ across bank categories, balance sheet

strength, and the type of loans. This paper differs from Baum et al. (2012) in that

it focuses more on macroeconomic uncertainty in conjunction with securitization,

and abstracts from the policy transmission mechanism. In addition, the results

of this paper are based on pooled sample with no distinction made for different

characteristics of banks except whether a bank participates in loan securitization

or not.

This paper is also related to a number of previous studies that have looked at

the relationship between securitization and bank lending. Many of them find loan
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securitization strengthens banks’ capacity to generate loan supply using liquidity

slacks obtained from securitization.

Some studies focus more on how securitization would affect the transmis-

sion mechanism of monetary policy shocks; see for example Altunbas, Gambacorta,

Marques-Ibanez (2009)[4], and Aysun and Hepp (2011)[9] who reach different con-

clusions. Altunbas et al. (2009) analyze European bank data and show that

loan securitization has stimulated lending activities and that securitizing banks

are affected less by the monetary transmission mechanism. By contrast, Aysun et

al. (2011) find that loan securitizing banks become more sensitive to the balance

sheet channels of borrowers, and hence become more affected by monetary policy

changes.

A number of papers also examine the role securitization has played in en-

hancing financial stability or distributing credit risk. This is particularly because

subprime mortgage loan securitization has been in the center of discussions looking

for the cause of the Great Recession. For example, Shin (2009)[62], and Acharya,

Schnabl, and Suarez (2010)[2] show that actual transfer of risk to third party in-

vestors was little observed among the banks that securitize. In particular, Shin

(2009) shows that bad loans are more likely to be on the balance sheet of the

asset-securitizing banks or in SPVs, since lowering loan standards may have been

unavoidable in order to make use of the slack resulted from securitization. Hence,

Shin argues securitization may not have been helpful in enhancing financial sta-

bility. The findings of this paper are closely related to this line of literature and

provide empirical evidence that the U.S commercial banks that securitize loans are

by no means more resilient to changes in aggregate uncertainty in practice.

The remainder of this paper proceeds as follows. Section 2 briefly reviews

the background and key related literature. Section 3 describes the econometric

model and the data set used in the paper. Results are reported in Section 4,

followed by Section 5 which looks for explanations of these results. Section 6

concludes.
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2.2 Uncertainty and Securitization

Why would macroeconomic uncertainty matter for lending activity? To

answer this question, one can think about a random variable that determines the

loan repayment process, such as in a single-factor Vasicek model. This random

variable is often modeled as a sum of aggregate and idiosyncratic factors. To the

extent that the loan repayment probability is dependent upon the aggregate level

economic factor, macroeconomic uncertainty will matter as it affects the distri-

bution, especially dispersion of the aggregate factor. As a consequence, lending

activity is likely to be negatively affected by the increase in macroeconomic un-

certainty. Moreover, Valencia (2010) shows that banks also have a precautionary

savings motive, so that they are hesitant to extend loans under higher uncertainty

in order to maintain a specific capital level that can be used as a buffer.

Baum et al. (2012) empirically examine how commercial banks’ lending

activity responds to monetary policy and financial sector uncertainty using the

U.S. bank level data from 1986 to 2000. The key regression in their paper is:

∆ logLoanj,t =
4∑

k=1

β1k∆ logLoanj,t−k +
4∑

k=0

β2k∆GDPt−k +
4∑

k=0

β3k∆Mt−k

+
4∑

k=0

β4kσ(M)t−k∆GDPt−k +
4∑

k=0

β5kσ(M)t−k∆Mt−k

+
4∑

k=0

β6kσ(M)t−k +Bj,t−1(β7 + β8Yt +
4∑

k=0

β9k∆GDPt−k

+
4∑

k=0

β10k∆Mt−k +
4∑

k=0

β11kσ(M)t−k) +
12∑
k=1

β12kFRBj,k + β13Yt

+
3∑

k=1

β14kQk,t + ΓXj,t + εj,t

where the dependent variable ∆ logLoanj,t is loan growth rate, ∆GDPt is the

nominal GDP change, ∆Mt is a change in a monetary policy indicator, σ(M)t

denotes financial sector uncertainty, Bj,t is a balance sheet strength measure2,

2The measure is defined as the ratio of securities plus federal funds sold total assets.
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FRB is a geographic proximity to Federal Reserve banks, Y and Q represent year

and quarter dummies, and finally, Xj,t denotes a vector of bank-specific variables.

The above equation attempts to measure the direct (β6,0, · · ·, β6,4) and the

indirect (β4,0, · · ·, β4,4, β5,0 · ··, β5,4, and β11,0 · ··, β11,4) effects of financial uncertainty.

The empirical findings of Baum et al. (2012) regarding the effects of uncertainty

vary across different groups of bank. However, in general banks with lower liquidity

increase lending activities when uncertainty is high, whereas banks with higher

liquidity tend to reduce the loan growth, possibly due to the different risk appetite

already reflected in the level of liquidity held. They also find that larger banks are

more likely to increase lending under higher uncertainty, as they are more likely

to have more sophisticated risk management skills.

In my analysis, I will use a similar specification to that in Baum et al.

(2012), controlling for GDP and monetary policy. However, I do not include indi-

rect effects arising from interaction terms with uncertainty, as the main purpose of

this paper is to examine the role of securitization played in managing uncertainty.

Securitization has been used in the U.S. from the early 70s, and became

extremely popular during the last two decades. In order to securitize an asset,

originating banks first sell the loans to an organization called Special Purpose

Vehicle (SPV) that specializes in issuing securities. Then SPV pools different loans,

splits the resulting liquidity flow into different tranches so as to generate assets with

different risk characteristics, and finally makes them available to investors. Thus,

on the investors’ end, it provides assets of various classes that they can invest. With

respect to banking institutions, banks are able to obtain a new flow of liquidity

coming from the selling of loans and from the processing fees, which can be used to

extend new loans that generate more profits. Securitization also helps banks that

are bound by capital regulations, as it can remove loans from the balance sheet,

and thus, frees up some of the capital required. In addition, securitization itself

creates extra profit by regularly collecting fees. It is this perspective that gives

securitization a potential chance to mitigate the negative impacts of uncertainty

on the loan growth. Banks have a means to extend loans even during the periods

of high uncertainty through securitization, and therefore, securitizing banks can
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be, in theory, less sensitive to changes in uncertainty.

A number of studies analyze how securitization affects the monetary policy

transmission mechanism. The specification of the second model in this paper is

similar to that in Aysun et al. (2011), which is:

∆ logLoanijt = β0 +
4∑

k=1

β1k∆ logLoanijt−k +
8∑

k=0

β2kMt−k +
4∑

k=1

β3kBijt−k

+
4∑

m=1

m+7∑
k=m

β4kmBijt−kMt−k +
4∑

k=1

β5kXijt−k + εijt

where most variables are defined as the deviation of the bank i from the average of

all other banks affiliated to the same Bank Holding Company j.3 They estimate

the above model for two different groups: one that has securitized loans and the

other that has not.

Aysun et al. (2011) find that securitizing banks are more sensitive to mon-

etary policy changes even after controlling for both internal capital markets of

BHC affiliates and other bank-specific veriables. Specifically, a 100-basis-point in-

crease in the long term bond spread would result in 2.38 percent lower loan growth

rate of asset securitizing banks in two years, which is much larger than the esti-

mated effect of 0.16 percent decrease for non-securitizing banks. Based on a similar

method of comparison, I divide the sample into two groups and compare the size

of uncertainty coefficients in the second specification of this paper.

In sum, the model of this paper combines the two lines of literature on the

relationship of uncertainty and lending activity and on the effect of securitization.

Using Condition and Income Report data (Call Report data) from 2001Q2 to

2009Q3 of the U.S. commercial banks, I investigate whether asset securitization

affects the way loan growth responds to macroeconomic uncertainty.

In the next section, I present the details of the data and the models.

3Here, B again denotes the borrower’s balance sheet strength, but measured as the difference
of income gap of state where bank i is located from the average income gap of all states where
the i’s BHC has affiliates.
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2.3 Model and Data

2.3.1 Data

Bank Level Data

In this paper, I use Reports of Condition and Income data (FFIEC 031,

more commonly known as the Call Report) for commercial banks collected every

quarter by the Federal Reserve Board. The sample period is determined to be

2001Q2-2009Q3 due to the availability of securitized loan data, despite the fact

that longer time series data are available for other variables. Securitization data

for different categories of loans were first collected in 2001Q2. Then, there has been

a major change in accounting standard since 2010Q1 due to the implementation

of FAS 166,167 accounting rules, which mainly puts the securitized assets back on

the balance sheet. However, the actual change in data can be already observed

from 2009Q4 particularly in the 1-4 Family Residential loans, and hence, I restrict

the sample period to stop in 2009Q3.

To minimize the potential problem coming from the sample selection, I

ensure every commercial bank (i.e., RSSD9331=01) in the sample has nonnegative

equity capital and positive asset and total outstanding loans. In addition, I use

the ones that are insured (RSSD9424 = 1,2 or 6) and located within the fifty states

and DC area (0<RSSD9210<57), following Haan, Summer, and Yamashiro (2002)

[28]. I do not control for the exit and the entering of banks, but exclude mergers,

i.e., entities with loan growth rate more than five standard deviation away from

the group mean in each quarter. The final sample has 359 securitizing banks, and

7,406 non-securitizing commercial banks.

Securitization

Starting in 2001Q2, all commercial banks report the level of securitized

loans of different types; 1-4 Family residential loans, home equity lines, credit card

receivables, auto loans, other consumer loans, commercial and industrial loans, and

all other loans and all leases. Thus in addition to the on-balance sheet items, banks

file outstanding principal balance of assets sold and securitized by the reporting
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institution with recourse or other seller-provided credit enhancements (RCFDB705

- RCFDB711). However, one should note that these items exclude the outstanding

balance of assets, particularly that in case of 1-4 family residential mortgages, that

the reporting institution has sold to the Federal National Mortgage Association

(Fannie Mae) or the Federal Home Loan Mortgage Corporation (Freddie Mac)

and the government-sponsored agencies securitize, which have taken huge part of

securitization activity before the financial crisis. This also excludes the loans sold

to private entities outside of the reporting bank, e.g., to investment bank SPVs

such as Goldman Sachs. Thus, the main analysis is limited to the loans sold and

securitized by the reporting bank.

A binary variable, ISB, is created to categorize commercial banks. Specif-

ically, a bank that has engaged in securitization at least once is assigned ISB=1.

Hence, banks that securitized any type of the loan minimum one quarter during

the entire sample period are in group ISB=1. On the other hand, a bank is given

ISB=0 if it has never securitized loans. Table ??Number reports the summary

statistics calculated for two groups.

When looking at the data, only a small number of banks securitized their

loans. As shown in Figure ??NBS, there are only about 100 commercial banks on

average that securitize the loan in each quarter, which amounts to only around

1% of the total number of banks. Nevertheless, in terms of size, securitized banks’

asset takes up more than 70%.(Figure ??CBA) This reflects the fact that loan

securitization has been more popular among large banks, and it is more so con-

sidering that the securitization activity captured in the Call Report data is that

conducted by the reporting banks only. It also shows up in Table ??Number as

the higher mean of SIZE, log of total assets, of loan securitizing banks. Among

the different types of loan that are securitized, family residential loan takes the

largest part, followed by credit card loans, as shown in Figure ??LS.

Table ??SECsum reports summary statistics of loan securitization ratio to

total asset. For example, for those banks in group ISB=1, banks securitized about

12 % of total assets. When we narrow down the focus to the banks that were

involved in securitization in that quarter by eliminating ISB=1 banks with zero
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securitization in every quarter, then more than 30% of assets are securitized on

average.

Macroeconomic Uncertainty

Following Bassett, Chosak, Driscoll, and Zakraǰsek (2011)[12], I construct

an index that captures the macroeconomic uncertainty. In particular, this index

measures changes in the degree of certainty about the economic outlook. This

index is the first principal component of 10 series, which are VIX (a market-based

measure of uncertainty in equity return), and the cross-sectional forecast dispersion

of Survey of Professional Forecasters in the expectations of the year-ahead values

for 9 different variables: level of unemployment, of change in real GDP, indus-

trial production, housing starts, the GDP price index, corporate profits, personal

consumption expenditures, nonresidential fixed investment, and residential fixed

investment. As the macroeconomic outlook becomes less certain, the repayment

probability distributions will become more dispersed, and thus, the dispersion will

imply higher probability of default given no change in the threshold.

The Survey of Professional Forecasters is the quarterly survey of macroeco-

nomic forecasts in the United States, currently conducted by the Federal Reserve

Bank of Philadelphia. The measure of dispersion is the interquartile range of the

forecasts. VIX is also included to reflect the changes in the market’s expectation of

stock market volatility. Figure ??Basis plots the 10 original underlying series from

2001Q2-2009Q4. All of the series show increased uncertainty during the Great Re-

cession, and most of the series began at a relatively high level reflecting increased

level of uncertainty during 2001 recession. However, these two recessions are not

the only source that generates dynamics in the 10 underlying series; most of the

series exhibit a fair amount of variation throughout the sample periods except the

dispersion of housing starts, and interestingly enough, the dispersion of corporate

profit reaches to the maximum level not during the recessions but in 2004Q1.

With the 10 series total, I extract the first principal component to account

for the greatest possible common variance component in the series. In doing so,

figure ??Basis shows that the uncertainty index constructed as the first principal
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component would not be driven solely by a few underlying series, as most of the

series show reasonable time series variation.

Figure ??UN plots the uncertainty index from 2001Q2 to 2009Q3. From

Figure ??UN , the uncertainty index appears to increase during economic reces-

sions, and especially surged during the Great Recession. Thus, when 2007Q4-

2009Q3 period is included, the standard deviation jumps up to 2.67, whereas dur-

ing the “normal” period, it is much lower at 1.20.

2.3.2 Dynamic Panel Model

In the spirit of Kashyap and Stein (1995)[46], the first econometric model

is designed to see how banks adjust lending activities in response to changes in

macroeconomic uncertainty:

∆ logLoanj,t =
4∑

k=1

β1k∆ logLoanj,t−k +
4∑

k=0

β2k logNGDPt−k +
4∑

k=0

β3kFFRt−k

+
4∑

k=1

β4kLIQj,t−k +
4∑

k=1

β5kCAPj,t−k +
4∑

k=1

β6kSIZEj,t−k

+
4∑

k=0

β7kUt−k +
4∑

k=0

β8kISB × Ut−k + β9kIR + εj,t (2.1)

with j = 1, . . . , N and t = 1, . . . , T , where N is the number of banks and T is 30.

Here, the dependent variable ∆ logLoanj,t is the growth rate of total loans

outstanding at bank j in quarter t. Unlike the general literature on bank lend-

ing activities, I define the loan growth rate considering the level of securitization

altogether in the spirit of Altunbas et al. (2009). That is, for the banks that

securitize loans, I define the total loan to be the sum of on-balance sheet total loan

(RCFD2122) and the level of securitization (RCFDB705+· · ·+RCFDB711), and

use the change in the logs of the sum as loan growth. This is to measure the loan

growth more accurately including the newly extended loans that may be uncovered

if on-balance sheet loans are considered only. When a bank securitizes x dollars of

loans, then they will disappear from the balance sheet. And if the bank lends out

the exact same amount x to the new borrowers, then it will appear as if the bank

has made no change in loans. Therefore, to measure the lending activity that can
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be hidden by securitization, I define the total loan as the sum of the on-balance

sheet loan and securitization, and later check whether the result is sensitive by

using conventionally defined loan growth rate as the dependent variable.

Among the explanatory variables, three are aggregate variables, NGDP ,

FFR, and U , and their lags. First, the log of nominal GDP (NGDP ) is included

to control for the changes in the demand side of financial market. Second, effective

Fed Funds Rate (FFR) controls for the variations in loan growth due to changes

in monetary policy stance. In addition, inclusion of NGDP and FFR reflects the

intention to control for the first moment (level) changes in aggregate variables, as

the main focus of this paper is on the macroeconomic uncertainty, U , that is the

dispersion of forecast, or the second moment.

In addition to the aggregate variables, the model includes bank-specific

variables, such as the lags of liquidity (LIQ: the ratio of sum of cash and easily

liquidatable assets to total assets), size(SIZE: log of total assets), and capital to

asset ratio(CAP : the ratio total equity capital to total assets), and finally, four

lags of quarterly loan growth rate.4 Finally, IR is an indicator variable taking

the value one during the Great Recession referencing NBER recession dates, i.e.,

2007Q3–2009Q2.

To see the effect of macroeconomic uncertainty and how securitization plays

a role in the uncertainty propagation mechanism, I include the variables which

are the interactions between the securitization activity indicator (ISB) and the

dynamics of uncertainty. Hence, β7,0, ···β7,4 will capture the size of the relationship

of loan growth with uncertainty common to both groups, and β8,0, · · ·β8,4 can

quantify how much the lending activity of the asset-securitizing banks is differently

related to uncertainty than that of the non-securitizing bank.

Next, as a second test, I estimate the following model for each group, ISB=1

4See Appendix for more detailed description of the bank-specific variables.
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and ISB=0,

∆ logLoanj,t =
4∑

k=1

β1k∆ logLoanj,t−k +
4∑

k=0

β2k logNGDPt−k +
4∑

k=0

β3kFFRt−k

+
4∑

k=1

β4kLIQj,t−k +
4∑

k=1

β5kCAPj,t−k +
4∑

k=1

β6kSIZEj,t−k

+
4∑

k=0

β7kUt−k + β9kIR + εj,t. (2.2)

Then, I look for the difference in the mechanism by comparing coefficient estimates

of the two groups. Therefore, the main purpose of the second model is to look at

the coefficient estimates of the contemporaneous level of uncertainty, and its four

lags, i.e., β7,0, · · ·β7,4. This model is less restrictive than the first model, since it

allows the variation in the coefficients of other variables in addition to those of

uncertainty. Hence, equation (2.2) is to see whether the estimation result of (2.1)

is mainly driven by having all other coefficients but those of uncertainty pooled

across two groups.

Since the above models have lags of dependent variable on the right hand

side, they will give rise to autocorrelation, and the usual fixed effect panel regres-

sion is likely to yield biased estimates. Thus, I estimate the model with Arellano

and Bond (1991)[8] difference GMM estimation method. This method uses the

lags of dependent variables as instrument variables, and thus, provides consistent

estimates, simultaneously taking care of unobserved time-invariant bank-specific

fixed effects by taking first differences.

2.4 Results

Table ??model1 shows the estimation result for equation (2.1). First, the

sum of uncertainty coefficients (
∑4

k=0 β7,k) is negative: the point estimate is around

−0.004 and significant at the 1% level. In addition, most of the individual coef-

ficients are estimated to be significantly negative, except the one for the first lag

(β7,1), which is positive. Thus, macroeconomic uncertainty is negatively related

to bank lending activities especially during the same quarter. Although the loan
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growth bounces back to some extent in the next quarter, it again decreases later.

This result suggests that when macroeconomic uncertainty increases, a bank per-

ceives higher chance of default for loans in general, and thus, decreases lending.

This is in line with the previous literature that points out the negative effect of

uncertainty. In particular, the result indicates that when uncertainty increases by

one standard deviation (2.67), the loan growth rate (which includes the change

in the level of securitization for securitizing banks) is first reduced by around 0.8

percentage point in that quarter, and this is common for both groups. Considering

the fact that the sample means of loan growth are 2.3% and 2.6 % quarterly for

ISB=0 and ISB=1 banks, respectively, this is quite a huge change.

More importantly, examining the β8 estimates, the lending activity of asset-

securitizing banks does not seem to be particularly protected from the effect of

uncertainty. Rather, securitizing banks appear to be exposed more to the macroe-

conomic uncertainty; for example, in response to a one-standard deviation increase

in uncertainty, banks in ISB=1 group decrease the lending activity by 1.3% dur-

ing the contemporaneous quarter, 0.5% point more than non-securitizing banks,

as β8,0 is significantly negative. The result shows that the second and fourth lags

of uncertainty also affect securitizing banks significantly differently, although the

directions may differ. All in all, one can conclude asset securitization did not help

protecting the lending activity of commercial banks to macroeconomic uncertainty,

and sometimes it instead seems to have made the banks more vulnerable.

Next, Table ??bresult shows the estimation result for equation (2.2) when

allowing all coefficients to be varying across two groups. The first column of

Table ??bresult shows the result of securitizing banks (ISB=1), and the second

column is that of non-securitizing bank (ISB=0). Again, uncertainty is negatively

related to the lending activity overall for both groups except a temporary bounce-

back shown in the first lag coefficient (β7,1), and the point estimate of the sum of

the uncertainty coefficients (i.e.,
∑4

k=0 β7k) are almost similar at −0.003∼−0.004,

despite the sum for ISB=1 being statistically insignificant. From the second lag, the

uncertainty coefficients become insignificant for asset-securitizing banks; however,

the relationship is much stronger for the contemporaneous uncertainty for them,
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resulting in the totaling effect to be similar. Again, securitization does not seem

to be protecting banks from uncertainty, which contradicts out prior expectation

that uncertainty would affect loan-securitizing banks less, as the banks in theory,

sell out risks to investors and gain the ability to generate new loans.

In addition to the relationship with uncertainty, it is possible to assess

the relationships of loan growth and other variables through the result in Table

??bresult. Consistent with the previous literature, nominal GDP (NGDP) is posi-

tively related to loan growth for both groups, reflecting that when the economy is

in a good state and GDP growth is higher, the demand of loan increases since more

projects are expected to be profitable with higher net present values, as noted by

Kashyap, Stein and Wilcox (1993)[47]. The magnitude of the effect is larger for

the securitizing banks, as it can generate more loans through securitization when

economic conditions are better. The effects of monetary policy (FFR) appear to be

negative for both groups as expected; it should be noted that the size of monetary

policy effects is larger for the banks that securitize loans. This is consistent with

the empirical findings of Aysun et al. (2011) using the same data set as this pa-

per that monetary policy has a greater impact on lending activities of securitizing

banks since they are more sensitive to borrowers’ balance sheet channel. They

do not particularly consider the effect of economic condition (e.g., nominal GDP),

but higher sensitivity of ISB=1 banks to borrowers’ balance sheet can also explain

larger coefficients of GDP.

With respect to the bank specific variables, liquidity (LIQ) and capital-to-

asset ratio (CAP) of ISB=0 group are positively related to lending. This means

that banks with higher capital holding and more liquid portfolio can generate

more loans. As for asset-securitizing banks, liquidity still matters in a positive

way, whereas the coefficients of capital-to-asset ratio lose their overall significance.

On the other hand, the coefficients on SIZE have significant negative values in both

groups, implying that larger banks tend to expand the loan supply less. This result

is consistent to the result of Altunbas et al. (2009) and Ehrmann, Gambarcorta,

Martinez-Pagez, Sevestre and Worms (2001)[31], and implies that the size is not a

particularly useful indicator of informational asymmetries.
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Table ??rresult reports the second model estimation result (i.e., equation

(2.2)) for ISB=1 when the conventional definition of loan growth rate that excludes

the changes in securitization is used, along with the baseline result of asset securi-

tizing banks to check the robustness.5 The uncertainty coefficients has very similar

point estimate as the previous case, which further supports that the similarity be-

tween the two groups is robust. Hence, this again implies that asset-securitizing

banks are not different in terms of protecting loan growth from macroeconomic un-

certainty, and moreover, securitization has not effectively dispersed the risk from

the banking sector.

In sum, macroeconomic uncertainty is negatively correlated with the lending

activities of commercial banks. Furthermore, loan securitization does not seem to

decrease the magnitude of the negative effects, indicating that securitization did

not play the role of risk transfer from the banking institutions to investors.

2.5 Ineffective Transfer of Risk through Securi-

tization

The above results imply that securitization has not helped insulate lending

activity from uncertainty. In this section, I look for the potential factors that

might account for this result: (1) the seller provided credit enhancements that

accompanied asset securitization, (2) lower quality of newly generated loans, and

lastly (3) macroeconomic uncertainty as a common risk factor.

2.5.1 Recourse and Credit Enhancement of Securitized As-

sets

When securitizing assets, it has been very common for a bank to provide

some sort of credit enhancement. Credit enhancement can be implemented in

a variety of forms; the originating bank may purchase subordinate securities so

5Note that the results for the ISB=0 group by definition are unaffected by this choice, and
thus not reported.
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that it absorbs the loss first in case of underlying assets’ default; the bank can

hold interest spread with which it can make up for some defaults, and thus retain

constant cash flow for investors; haircut or cash collateral is another widely-used

option.

More importantly, it may have been a factor that retains the amount of

risk corresponding to the size of enhancement to the originator of securities. For

example, Kothari (2006)[53] notes on page 16 of his book that:

It is quite common for the originator to retain or re-acquire the first
loss risk, that is, to the extent the total loss in the portfolio does not
exceed the first loss limit, and the hit will be taken by the originator.
This is done by one of the several methods of credit enhancements
provided by the originator.

In the reporting form for the Call Report, asset securitizing banks are

asked to report the credit exposure arising from the particular forms of credit

enhancements in addition to the level of securitization: credit-enhancing interest-

only strips, subordinated securities and other residual interests, standby letters of

credit and other enhancements. Using this data, I construct a variable, CE, which

is the ratio of total credit exposure to the total level of securitization.6 Then

I estimate a forecasting regression that predicts the credit exposure ratio. The

regression model follows,

∆CEj,t =
4∑

k=1

β0k∆CEj,t−k +
4∑

k=1

β1k logNGDPt−k +
4∑

k=1

β2kFFRt−k +
4∑

k=1

β3kUt−k

+
4∑

k=1

β5kLIQj,t−k +
4∑

k=1

β6kCAPj,t−k +
4∑

k=1

β7kSIZEj,t−k

+
4∑

k=1

β8ksecj,t−k + β9IR + εj,t. (2.3)

where sec is the outstanding securitization level.

The first column of Table ??CE reports the estimates of uncertainty coef-

ficients. The second and the fourth lags are significant at the 1% and 5% levels,

6That is, CE =(RCFDB712+RCFDB713+. . .+ RCFDB724+RCFDB725)/(RCFDB705
+RCFDB706+. . . + RCFDB710 + RCFDB711).
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respectively, and the point estimate of the sum(
∑4

k=1 β3k) is also significantly pos-

itive. Therefore, it strongly supports the idea that asset-securitizing banks will

increase the credit exposure ratio as uncertainty increases. In line with the uncer-

tainty coefficients, I also find that the recession indicator, which becomes 1 during

the time when the uncertainty index jumped, is highly statistically significant and

the size is also economically very significant. To illustrate, if uncertainty has in-

creased by one standard deviation during the Great Recession, it will result in

8.01-dollar increase in the credit exposure for every 100-dollar loan a bank securi-

tizes in next two quarters. If the one-standard deviation uncertainty increase has

happened during the normal times, than cumulatively it is related to 2.14-dollar

increase in credit enhancement for every 100 dollars. Hence, as noted above, the

credit enhancement provided by banks implies that banks are still connected to

the off-balance sheet assets, and moreover, higher CE during the more uncertain

times will leave the banks more exposed to higher risks.

The last remark to make is that this result may be due to the higher chance

of securitization activity reported on the Call Report to be of a worse quality.

That is, the securitized assets captured in the Call Report are the ones that are

securitized by the reporting bank, which are not qualified to be sold and further

securitized by government-sponsored agencies or investment banks, or to be sold

separately. To make up for the lower quality, banks have to provide more credit en-

hancements during uncertain times. This argument is consistent since uncertainty

is no longer significantly related to credit enhancement change, when equation

(2.3) is estimated for asset sales with credit enhancement, or the sum of asset

securitization and sales, although the results are not reported here. Hence, it is

not just the business-cycle factor that brings about the significance of uncertainty

coefficients for credit enhancement of securitization. Rather, what is found here is

the feature which makes the reported securitization distinct from other asset sales

activity.

In sum, securitization in practice does not completely remove risk from the

originating banks. Moreover, the size of risk retained in the bank is positively

related to macroeconomic uncertainty, resulting in the banks’ larger exposure to
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the risk during the periods with high level of uncertainty. As a consequence,

asset-securitizing banks are not significantly protected from uncertainty than non-

securitizing banks.

2.5.2 Quality of New Loans

If asset-securitizing banks attempt to extend loans with the extra flow of

liquidity obtained from securitization, they might have to reach to the borrowers

whose credit ratings are lower. However, it is not easy to empirically test the

difference in the quality of loans using the balance sheet data, since the data only

contain information about the outstanding level of loans, and thus, it is difficult to

infer anything regarding the quality of the individual loan. Nevertheless, the Call

Report data includes provision for loan and lease losses, which is a widely used

ex-post accounting measure of credit risk. Although this analysis would be limited

to on-balance sheet loans and leases, we can gauge whether the asset-securitizing

banks adjust allowance for loan and lease losses more than non-securitizing banks

in times of high uncertainty, as this will imply such banks extend loans to borrowers

whose repayment decisions are later assessed to be more correlated with aggregate

risk, and thus, of lower quality.

I construct two new variables; first, PV S1, as the ratio of loan and lease

loss provision to total loans and leases (i.e., (RIAD4230/RCFD2122)×100), and

next, PV S2, as the ratio of loan and lease loss provision to total assets (i.e.,

(RIAD4230/RCFD2170)×100).7 Table ??sumPVS reports the means and the

standard deviations of these variables for different groups. The sample means

are very distinct, and the t-tests reject the hypothesis that the sample means of

PV S1 and PV S2 are the same across two groups at 1% significance level. More-

over, both means are much larger in size for asset-securitizing banks, indicating

that on average, banks in ISB=1 group tend to set larger amount aside for bad

loans relative to the on-balance sheet loans and relative to their size, and thus are

7Note that RIAD variable are reported on a calendar year-to-date basis, and thus one has
to convert the value to capture quarterly levels. In this paper, such conversion is necessary
for RIAD4230, provision for loan lease losses, and RIAD4301, income before taxes and other
adjustment.
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likely to hold riskier loans compared to banks that do not securitize.

To see whether this is the case in detail, I run the following forecasting

regression and whether there exist differences in the relationship between PV S1

and uncertainty across asset-securitizing and non-securitizing commercial banks:

PV S1j,t =
4∑

k=1

β0kPV S1j,t−k +
4∑

k=1

β1k logNGDPt−k +
4∑

k=1

β2kFFRt−k

+
4∑

k=1

β3kUt−k +
4∑

k=1

β4kISB × Ut−k

+
4∑

k=1

β5kLTAj,t−k +
4∑

k=1

β6kINCj,t−k +
4∑

k=1

β7kCAPj,t−k

+
4∑

k=1

β8kSIZEj,t−k + β9IR + εj,t. (2.4)

where LTA is the ratio of total loans to assets (i.e., RCFD2122/RCFD2170),

and INC is the ratio of income to assets (i.e., RIAD4301/RCFD2170) included

to capture income-smoothing purpose of banks. If the loans extended by asset

securitizing banks are riskier in the sense that they are more closely correlated

with macroeconomic uncertainty, this can show up as β41, . . . , β44 being positive,

and moreover, larger for ISB=1 group than for ISB=0.

Table ??PVS provides the estimation results. First, the coefficients of un-

certainty, i.e., β3k’s, are all significantly positive at 1% level, implying banks in

both groups commonly increase loan and lease loss provision when uncertainty is

high. Now, as for the interaction coefficients, β42 is significantly positive, and the

size of the point estimate is almost the same as that of β32. This means asset-

securitizing banks are expected to increase the loan loss provision twice as much

as non-securitizing banks. However, the fourth lag of uncertainty would revert

this tendency back to the pooled mean level with β44 being siginificantly negative.

Hence, the higher sensitivity of asset-securitizing banks’ to uncertainty appears to

be only short-living and is not very clear. Therefore, it is difficult to conclude the

estimation result strongly supports the idea of asset-securitizing banks’ reaching

out to lower-quality borrowers, despite the fact that sample means of PV S1 and

PV S2 are significantly higher for that group.
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Related to this analysis, Shin (2009)[62] claims that bad loans are more

likely to be on the balance sheet of the asset securitizing banks or in SPVs, since

lowering loan standards may have been unavoidable in order to make use of the

funds freed by securitization. He also points out that the bad loans were not passed

to investors as evidenced by 2007 - 2008 financial crisis. From this perspective, it

may have been the case that riskier loans are quickly moved to SPVs and securitized

in less than a year, so that the estimation result of equation (2.4) shows increase in

PV S and then decrease later. In sum, I find some evidence that asset-securitizing

banks use the new liquidity flow to finance riskier loans thereby still exposing

themselves to aggregate uncertainty, but the evidence is not very strong.

2.5.3 Uncertainty as a Common Risk Factor

Finally, if all loans are equally exposed to aggregate level common risk, it

is not easy for banking institutions to diversify macroeconomic uncertainty. Then

loan securitization cannot help banks hedge against common risk factors in princi-

ple. This argument may be true to the extent that macroeconomic uncertainty is

the common factor for every loan. Nevertheless, unless one believes the correlation

coefficients of all loans’ idiosyncratic factors with the aggregate factor are exactly

identical, it is reasonable to think that this type of uncertainty accompanying the

loans can also be dispersed through balance sheet adjustment, loan sales, and se-

curitization. Moreover, in the previous section, we found evidence though weak

that securitizing banks are lending to the borrowers whose individual risk factors

are likely to co-move more closely with the common factor, which also shows loans

are of different quality. Thus, this claim may be valid only in a limited sense.

2.6 Conclusion

This paper investigates how macroeconomic uncertainty affects the lending

activity of U.S. commercial banks. The estimation result shows that uncertainty

is negatively related to loan growth rates, and more specifically, a one standard-

deviation increase of uncertainty can drag down loan growth up to around 0.8
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percentage-point in the same quarter.

Moreover, it focuses on the role of asset securitization in protecting banks

from uncertainty increases and in transferring risks to investors. Comparing com-

mercial banks with and without asset securitization, I find banks are still exposed

to macroeconomic uncertainty even after securitization. That is, loan growth of

asset-securitizing banks is not particularly protected from the increase in uncer-

tainty, which implies that securitization did not effectively help transfer aggregate

risk from the banking sector to investors.

Searching for the factors that have resulted in such ineffective risk transfer

of securitization, I find that the credit exposure of a securitizing bank may have

played a significant role. Asset-securitizing banks usually securitize loans with

seller provided credit enhancements and recourse, and more importantly, the size

of credit enhancements is expected to increase during the times of high uncertainty.

This is likely to have made the risk transference role of securitization impotent, and

left loan-securitizing banks still vulnerable to macroeconomic uncertainty. Second,

the analysis on provision in loan and lease losses provides some evidence that

securitizing banks may have financed lower quality loans and hence, still exposed

themselves to changes in uncertainty. Finally, since macroeconomic uncertainty is

a common risk factor to all assets, one may argue it cannot be dispersed even with

asset securitization, although this can be valid only in a limited sense.
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2.7 Appendix

Call Report Data

Table ??TABLECR shows the items of the Call Report Data used for the

main analysis of this paper and their brief descriptions. More detailed descriptions

on the variables can be found in the Federal Reserve Board’s Micro Data Reference

Manual.8

Table 2.1: The Call Report Items

Item Description

Loan RCFD2122 Total loans and leases (net of unearned income)

Liquidity RCFD0010 Cash and balances due from depository institu-

tions

RCFD1754 Total securities held to maturity

RCFD3545 Trading assets

RCFD1773 Total available-for-sale securities

Capital RCFD3210 Total equity capital

Size RCFD2170 Total assets (sum of all asset items; equal total

liabilities, limited-life preferred stock, equity cap-

ital)

Securitization RCFDB705 1-4 Family residential loans

RCFDB706 Home equity lines

RCFDB707 Credit card receivables

RCFDB708 Auto loans

RCFDB709 Other consumer loans

RCFDB710 Commercial and industrial loans

RCFDB711 All other loans

8http://www.federalreserve.gov/reportforms/mdrm/DataDictionary/search.cfm



65

Table 2.1 continued

Item Description

Recourse & RCFDB712 -
Credit-enhancing interest-only strips

-RCFDB717

Credit Enhancement RCFDB718 - Subordinated securities and other

- RCFDB724 residual interest + Standby letters of

credit and other enhancement

Loan loss allowance RCFD3123 Allowance for loan and lease losses

RIAD4230 Provision for loan lease losses

ID RSSD9001 Primary identifier

Date RSSD9999 Report date

State RSSD9210 Two-digit code assigned to a state of the

US or a US territory

Primary Insurer RSSD9424 The highest level of deposit-related insur-

ance of the entity

Next, Table ??TABLEVAR summarizes how the variables used in the paper

are defined from the items in the Call Report.
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Table 2.2: Variable Definitions

Variable Definition
∆Loant log(RCFD2122t + sect )−log(RCFD2122t−1 + sect−1 )
LIQ (RCFD0010+RCFD1773+RCFD1754+RCFD3545)/RCFD2170
CAP RCFD3210/RCFD2170
SIZE log(RCFD2170)
sn (RCFDB705+RCFDB706+· · ·+RCFDB710+RCFDB711)
SEC sn/RCFD2170
sec sn × 10−7

CE (RCFDB712+RCFDB713+. . .+RCFDB724+RCFDB725)/sn
PV S1 (RIAD4230×100)/RCFD2122
PV S2 (RIAD4230×100)/RCFD2170
INC RIAD4301/RCFD2170
LTA RCFD2122/RCFD2170

Subscripts j and t are abstracted in the table unless necessary. RIAD4230 and
RIAD4301 are adjusted to denote quarterly level, which are originally reported as
calendar year-to-date values.

Table 2.3: Summary Statistics

Mean Std. Dev. Min Max

ISB=1
Loan growth 0.023 0.081 −1.235 1.166

LIQ 0.175 0.117 0.001 0.718
CAP 0.102 0.045 0.010 0.729
SIZE 13.350 2.306 8.397 21.293

ISB=0

Loan growth 0.021 0.070 −0.825 1.114
LIQ 0.240 0.143 0 1.391
CAP 0.108 0.026 0.000 1
SIZE 11.663 1.185 7.082 18.889

This table reports the pooled summary statistics for the bank-specific variables in
ISB=1 and ISB=0 groups from 2001Q2 to 2009Q3.
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Table 2.4: Summary Statistics of Securitization (SECt)

No. of banks No. of observations Mean Std. Dev.

ISB=1 425 11, 359 0.089 0.372
SB=1 425 3, 628 0.248 0.624

This tables reports the pooled summary statistics of securitized loan ratio of dif-
ferent groups. SEC is defined as the ratio of total securitization to total asset, i.e.,
(RCFDB705+ · · ·+RCFDB711)/RCFD2170. “The number of banks” denotes the
number of the group in each quarter. “ISB=1” indicates the group of banks that
securitized loans at least once during the whole sample period, whereas “SB=1”
only includes the observations of banks with positive securitization in a quarter.
That is, among the banks included in “ISB=1” group, we obtain “SB=1” group
by excluding the observations with zero securitization.

Table 2.5: Baseline Estimation Results I

β7,0 −0.003*** β8,0 −0.002**
(0.0002) (0.001)

β7,1 0.002*** β8,1 −0.008
(0.0001) (0.001)

β7,2 −0.0003 β8,2 −0.002**
(0.0002) (0.001)

β7,3 −0.001*** β8,3 0.0002
(0.0002) (0.001)

β7,4 −0.002*** β8,4 0.002***
(0.0002) (0.001)

U(
∑4

k=0 β7k) −0.004*** ISB × U(
∑4

k=0 β8k) −0.004***
(0.001) (0.001)

Loan(
∑4

k=1 β1k) −0.431*** NGDP(
∑4

k=0 β2k ) 0.619***
(0.030) (0.020)

FFR(
∑4

k=0 β3k) −0.007*** LIQ(
∑4

k=1 β4k) 0.821***
(0.001) (0.017)

CAP(
∑4

k=1 β5k) 0.488*** SIZE(
∑4

k=1 β6k) −0.393***
(0.089) (0.012)

IR(β9k) −0.004***
(0.001)

No. of banks 7,765
No. of observations 187,703

This table reports the regression result of equation (2.1). The number in paren-
theses are robust standard errors. The symbols ** and *** represent significance
levels of 5%, and 1%, respectively.
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Table 2.6: Baseline Estimation Results II

ISB=1 ISB=0
β7,0 −0.005*** −0.003***

(0.001) (0.0002)
β7,1 0.002** 0.002***

(0.001) (0.0002)
β7,2 −0.001 −0.0003

(0.001) (0.0002)
β7,3 0.001 −0.001***

(0.002) (0.0003)
β7,4 −0.0001 −0.002***

(0.001) (0.0002)

U(
∑4

k=0 β7k) −0.003 −0.004***
(0.004) (0.001)

Loan(
∑4

k=1 β1k) −0.207** −0.441***
(0.087) (0.030)

NGDP(
∑4

k=0 β2k ) 0.909*** 0.598***
(0.108) (0.021)

FFR(
∑4

k=0 β3k) −0.011*** −0.007***
(0.002) (0.001)

LIQ(
∑4

k=1 β4k) 0.612*** 0.827***
(0.086) (0.017)

CAP(
∑4

k=1 β5k) 0.079 0.536***
(0.265) (0.090)

SIZE(
∑4

k=1 β6k) −0.436*** −0.384***
(0.051) (0.012)

IR(β8k) 0.0002 −0.004***
(0.005) (0.001)

No. of banks 359 7,406
No. of observations 8,848 178,855

This table reports the regression results of equation (2.2). The number in paren-
theses are robust standard errors. The symbols ** and *** represent significance
levels of 5%, and 1%, respectively.
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Table 2.7: Results - Robustness Check

ISB=1 Baseline Conventional Loan Growth
β7,0 −0.005*** −0.004***

(0.001) (0.001)
β7,1 0.002** 0.002**

(0.001) (0.001)
β7,2 −0.001 −0.001

(0.001) (0.001)
β7,3 0.001 0.001

(0.002) (0.001)
β7,4 −0.0001 −0.0001

(0.001) (0.001)

U(
∑4

k=0 β7k) −0.003 −0.003
(0.004) (0.003)

Loan(
∑4

k=1 β1k) −0.207** −0.338***
(0.087) (0.111)

NGDP(
∑4

k=0 β2k ) 0.909*** 0.905***
(0.108) (0.096)

FFR(
∑4

k=0 β3k) −0.011*** −0.010***
(0.002) (0.002)

LIQ(
∑4

k=1 β4k) 0.612*** 0.673***
(0.086) (0.077)

CAP(
∑4

k=1 β5k) 0.079 0.410
(0.265) (0.290)

SIZE(
∑4

k=1 β6k) −0.436*** −0.465***
(0.051) (0.048)

IR(β8k) 0.0002 0.001
(0.005) (0.004)

No. of banks 359
No. of observations 8,848

The first column is the baseline estimation result of ISB=1 group, and the second
column is that of the same group using conventional definition of loan growth rate.
The number in parentheses are robust standard errors. The symbols ** and ***
represent significance levels of 5%, and 1%, respectively.
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Table 2.8: Credit Exposure and Uncertainty

β31 0.0003
(0.002)

β32 0.003***
(0.001)

β33 0.001
(0.002)

β34 0.004**
(0.002)∑4

k=1 β3k 0.008**
(0.003)

IR(β8k) 0.027***
(0.008)

NGDP(
∑4

k=0 β2k ) −0.104*
(0.058)

FFR(
∑4

k=0 β3k) 0.008***
(0.003)

LIQ(
∑4

k=1 β4k) 0.030
(0.074)

CAP(
∑4

k=1 β5k) 0.055
(0.125)

SIZE(
∑4

k=1 β6k) 0.009
(0.018)

sec(
∑4

k=1 β1k) 1.2× exp(−5)*
(7.48e−6)

This table reports the coefficient estimate of uncertainty effect’s on credit exposure
due to recourse and/or seller-provided credit enhancements in securitization. The
numbers in parenthesis are standard errors. The dependent variable of the first
column is the ratio of the credit exposure to outstanding securitization level. The
symbols *, ** and *** represent significance levels of 10%, 5% and 1%, respectively.
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Table 2.9: Summary Statistics of Loan Loss Allowance Provision

Mean Std. Dev
PV S1 ISB=1 0.419 1.098

ISB=0 0.257 0.707
PV S2 ISB=1 0.128 0.326

ISB=0 0.082 0.271

This table reports the sample means and standard deviations of PV S1, defined as
the ratio of loan loss allowance provision to total loans, and PV S2, the ratio of
loan loss allowance provision to total assets across different groups of commercial
banks. The t-test results reject sample means of the two groups are the same at
1% significance level for both variables.

Figure 2.1: Number of Banks That Securitized Loans

This figure plots the number of banks that reported securitization activity in the
Call Report from 2001Q2 to 2009Q2. A bank is considered to have participated
in securitization if any asset among 7 different categories (i.e., any item among
RCFDB705–RCFDB711) is reported to be non-zero.
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Table 2.10: Changes of Loan Loss Allowance Provision

U β3,1 0.030*** ISB×U β4,1 0.005
(0.002) (0.007)

β3,2 0.018*** β4,2 0.018**
(0.002) (0.007)

β3,3 0.021*** β4,3 0.008
(0.002) (0.007)

β3,4 0.025*** β4,4 −0.016**
(0.003) (0.008)∑4

k=1 β3k 0.094***
∑4

k=1 β4k 0.015
(0.005) (0.013)

PVS1(
∑4

k=1 β0k) −0.477*** NGDP(
∑4

k=1 β1k ) −0.494***
(0.115) (0.152)

FFR(
∑4

k=1 β2k) 0.033*** LTA(
∑4

k=1 β5k) 0.924***
(0.004) (0.140)

INC(
∑4

k=1 β6k) −0.588*** CAP(
∑4

k=1 β7k) 0.483
(0.186) (0.424)

SIZE(
∑4

k=1 β8k) 0.291*** IR(β9k) 0.132***
(0.044) (0.013)

No. of banks 7,767
No. of observations 187,791

This table shows the selected coefficient estimates of equation (2.4). The symbols
** and *** represent significance levels of 5% and 1%, respectively.
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Figure 2.2: Commercial Bank Assets

This figure shows the proportion of assets of each group in commercial banks.
The percentage is calculated from the sum of total assets of individual commercial
banks in the sample.

Figure 2.3: Loan Securitization Trend (in billions of dollars)
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Figure 2.5: The Measure of Uncertainty

This figure plots the time series of uncertainty index created as the first principle
component of ten underlying series which are forecast dispersion and VIX.



Chapter 3

Financial Stability and Systemic

Risk: A Survey of Systemic Risk

Measures

Abstract

Since the 2007-2009 financial crisis, a number of papers have tried to de-

velop a suitable method to measure systemic risk. This is a very critical problem

especially for a regulatory purpose to monitor the level of systemic risk properly

and, to implement a new set of regulations for the financial sector. Therefore,

this chapter surveys the recent literature on systemic risk measurement. I describe

five recent studies, starting with a review of the model-free and flexible measure,

CoV aR, and continuing on to the GARCH-based metric, SRISK. Then, the mea-

sures using credit derivative data are surveyed including a measure that quantifies

systemic sovereign credit risk. Finally, an approach that uses a macroeconomic

model to characterize systemic crisis state is introduced. By looking at a variety

of metrics along with advantages and disadvantages of each measure, this chapter

also seeks to better understand the concept of systemic risk.

76
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3.1 Introduction

Systemic risk generally refers to the possibility of the whole financial market

being in a distress state that adversely affects not only the financial market but

also the real economy. Since the onset of the Great Recession in 2007-2009, there

has been great interest in systemic risk, as the financial market went through the

serial breakdown of major investment banks and other banking institutions with

heightened uncertainty and liquidity stress, which caused the real economic growth

to plunge as well. However, only little has been understood regarding the nature of

systemic risk. What is systemic risk? What makes it systemic? Is there any way

the regulators would have been able to prevent the financial crisis from happening?

What is the chance of another occurrence of financial crisis in the future? These

are some of the many fundamental questions that are being very actively studied

at this moment.

Among the efforts to answer the above questions, Federal Reserve Chair-

man, Ben Bernanke once said in a letter to Senator Bob Corker in October 2009

that“Systemic risks are developments that threaten the stability of the financial

system as a whole and consequently the broader economy, not just that of one or

two institutions.” This broad definition reflects the perspective that systemic risk

can destabilize the whole market, and further, the real economy. In addition, the

speech by Governor Daniel K. Tarullo, at the 2011 Credit Markets Symposium,

shows four ways that the systemic risk state can be triggered. Among those are

a fire-sale effect that is caused by the asset sales of a distressed firm can further

reduce the market prices by creating excess supply, and also a contagion effect

that is due to market participants’ suspicion that firms with similar assets to the

distress firms are also at risk. 1

In sum, distress of an individual firm during financially less-stable times

imposes a negative externality through the above-mentioned effects, threatening

the system even more. Then, with the heightened systemic risk, more firms are

exposed to financial system’s distress, and this negative self-feeding loop may even-

1For full version of the speech,
http://www.federalreserve.gov/newsevents/speech/tarullo20110331a.htm.
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tually affect real economy side as well. Here, both externality and self-feeding loop

make it difficult to understand the nature of systemic risk.

Another very critical question that is a subject of many current studies

is how one should measure systemic risk. Especially for entities that regulate

the financial sector, it is necessary to find a suitable method that can measure,

and thus monitor systemic risk, for example, before implementing a new set of

regulations. Hence, this paper aims to survey the important developments in the

systemic risk measures, which regulators might use as a starting point to select

the most appropriate measure in practice. Among the many new papers on this

topic, I select five representative papers accommodating different approaches. I

start with reviewing the model-free and flexible measure, CoV aR, by Adrian and

Brunnermeier (2011) [3]. Next, I continue on to the GARCH-based metric, SRISK,

by Brownlees and Engle (2011) [25]. Then, I look at the measure using credit

derivative data by Bhansali, Gingrich and Longstaff (2008) [20], which extracts

information from the indexed credit derivatives’ prices. Next, I move on to the

extension of this measure to quantify systemic sovereign credit risk by examining

the recent work by Ang and Longstaff (2011) [7]. Finally, He and Krishnamurthy

(2012) [42]’s macroeconomic model in which systemic crisis state is characterized.

The metrics are slightly different in defining risk they measure as well as the specific

methodology, and thus, this paper is also intended to better understand the concept

of systemic risk by looking at a variety of metrics. I also highlight advantages and

disadvantages briefly after introducing the key estimation method/concept of each

measure.

Although it is not reviewed in detail here, the paper by Andersen, Bollerslev,

Christoffersen and Diebold (2012) [5] provides an extensive survey of literature

related to risk measurements at various levels, which also include a section on

systemic risk.
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3.2 CoV aR

Adrian and Brunnermeier (2012) proposes a systemic risk measure that is

an extension of widely-used Value-at-Risk (V aR), and hence, model-free in nature.

Contrary to V aR which quantifies risk at an individual institution level, the new

measure, CoV aR, is constructed to capture V aR of the whole financial system

given an individual institution is at a certain value. More formally, V aRi
q of an

institution i is defined as the q quantile :

Pr(X i ≤ V aRi
q) = q,

where the authors use market-valued total financial assets for X i. Analogous to

this definition, CoV aRsystem|i of the system is defined as the q quantile, i.e.,

Pr(Xsystem ≤ CoV aRsystem|C(Xi)
q |C(X i)) = q,

where C(X i) is the set of some events of institution i on which CoV aR is condi-

tioned.

In particular, the authors focus on the difference of CoV aRs, i.e., ∆CoV aR,

that is the difference between the value of the system at q quantile conditional on

a firm i being at risk and the system’s q quantile value when i is at its median

state, and considers it as the contribution of the firm i to the systemic risk. Thus,

∆CoV aR of the system is defined as:

∆CoV aRsystem|i
q = CoV aR

system|Xi=V aRi
q

q − CoV aRsystem|Xi=Mediani

q .

The idea behind ∆CoV aR
system|i
q is to capture the contribution of insti-

tution i, which will differ institution by institution. Hence, from a regulation

perspective, the standard required to those entities with large absolute value of

∆CoV aR
system|i
q should differ from those with ∆CoV aR

system|i
q = 0, as the lat-

ter imply that those institutions add little to the systemic risk. Therefore, one

direct advantage of CoV aR is it makes it possible to apply different level of reg-

ulation depending on the degree of contribution to systemic risk of an individual

institution.
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Next, by replacing system with another individual financial institution, j,

i.e., ∆CoV aR
j|i
q enables measuring the spillover effects of i’s distress to other indi-

vidual institutions easily. Thus, another merit is that it can be easily generalized

to use in various situations. As noted by the authors, it is also feasible to compute

∆CoV aR
i|system
q to capture the institution i’s increase in value-at-risk when there

is a financial crisis, which can be called “exposure CoV aR.”2

It is worthwhile to note some of the characteristics of ∆CoV aR. As men-

tioned above, ∆CoV aR
system|i
q is different from ∆CoV aR

i|system
q , showing the di-

rectionality of the measure. However, it does not imply any causality or exogeneity

of the conditioning institution i. That is to say, it is not feasible to distinguish

whether the institution i causes the financial system to be at risk or the changes in

systemic risk level is due to a shift in a common factor just by looking at ∆CoV aR

value. Related to that, the measure only quantifies the changes in the equilibrium,

which is the value after all the dynamics in the financial network are considered.

The lack of causality and exogeneity can be advantageous in case one is inter-

ested in having a more integrated, still simple measure, as ∆CoV aR summarizes

direct and indirect contributions of an individual institution through the financial

network in a single number.

Computation of CoV aR depends on whether one considers information

available up to time t or one is interested in the unconditional value. Here, I briefly

introduce the estimation of time-varying, conditional CoV aR, which is more use-

ful and relevant in many settings. First, one serially runs the following quantile

regressions of the institution i’s and the financial system’s values using the weekly

data:

min
{αi,γi}

∑
(ρq(X

i
t − (αi + γiMt−1))),

and

min
{αsystem|i,βsystem|i,γsystem|i}

∑
(ρq(X

system
t − (αsystem|i + βsystem|iX i

t + γsystem|iMt−1))),

where the vector of lagged state variables Mt−1 is included to reflect the overall

changes in mean and the conditional volatility of the economy. Note that ρq(·) is

2This measure is related to Huang, Zhou, and Zhu (2010) [44] and Acharya, Pedersen, Philip-
pon, and Richardson (2010) [1].
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a loss function, e.g., the tilted absolute value function that yields the qth sample

quantile as its solution. The specific variables included in Mt−1 are V IX, the

change in the three-month Treasury bill rate, and so on. Although these variables

are included as common factors that shift conditional distributions, one should

note that the coefficient attached can differ across institutions so that it is possible

to capture different risk-loadings.

Then, using the coefficients estimates from the quantile regression, the val-

ues of V aRi
t(q) and CoV aR

system|i
t (q) can be predicted in a straightforward manner

as:

V aRi
t(q) = α̂iq + γ̂iqMt−1,

CoV aR
system|i
t (q) = α̂system|iq + β̂system|iV aRi

t(q) + γ̂system|iq Mt−1.

Finally, ∆CoV aR is computed as the following:

∆CoV aR
system|i
t (q) = CoV aR

system|i
t (q)− CoV aRsystem|i

t (50%)

= β̂system|i(V aRi
t(q)− V aRi

t(50%)).

Later, the authors move on to an extension of CoV aR, which they call

forward-∆CoV aR that calculates forward looking systemic risk at a quarterly

frequency, by incorporating information from institution-specific variables, e.g.,

leverage ratio, size, and such. This is intended to measure how much a firm i is ex-

pected to contribute to the systemic risk in the future. Thus, forward-∆CoV aR

is an extremely useful measure for monitoring financial stability, and more impor-

tantly, has a purpose of alleviating the problems of systemic risk regulations in

practice so far: measurement error and procyclicality.

In particular, forward-∆CoV aR is constructed by first fitting a panel re-

gression of previously predicted ∆CoV aR values on an expanded set of explana-

tory variables that include lagged institution-specific characteristics in addition

to Mt−1. The lags of firm characteristics correspond to the forecasting horizon,

e.g., one-quarter, one-year, and two-year. The variables added by the authors

are: leverage ratio, maturity mismatch of liabilities, market-to-book value of to-

tal equity, size, equity return volatility, and finally, equity market beta. Then,
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forward-∆CoV aR is the fitted value from the panel regression. The firm-specific

variables at quarterly frequency are not only easily observable, but also more ro-

bust compared to the weekly data used in the original setup. Hence, adding these

variables is likely to result in more reliable inferences. In case of financial in-

stitutions like Bank Holding Companies, there are even more variables available,

such as loans and loan-loss allowances, from the balance sheet data. Moreover,

as forward-∆CoV aR aims to predict future contribution of institution i, it may

alleviate part of the procyclicality problem of financial regulations caused when

using a contemporaneous risk measure. This is mainly due to the idea that by

implementing a measure of future risk, it may give a chance to regulators to act

in advance before any real distress happens.

Out-of-sample exercise of forward-∆CoV aR shows that it moves quite

differently from the contemporaneous ∆CoV aR; there is a negative correlation

between the two, which supports the idea that regulations based on forward-

∆CoV aR are likely to be countercyclical. Moreover, forward-∆CoV aR predicted

at the end of 2006 was able to explain more than 50% of the realized cross sectional

covariance during the crisis regardless of the variation in forecasting horizon.

Overall, ∆CoV aR can be a powerful and parsimonious measure that con-

tains a lot of information content. In addition, it can be easily calculated from

many statistical packages due to the use of quantile regression. Another advan-

tage of ∆CoV aR is that it opens up the possibility of developing a countercyclical

regulation which can be particularly helpful given the procyclicality in regulation

policies, which have been pointed out to have aggravated the financial crisis.

However, as pointed out by the authors, one should note that ∆CoV aR

is not based on a structural model, and hence, it is not possible to parse out the

contribution of a firm i in a causal sense. This may be an advantage in that

∆CoV aR value represents total effect of a firm being at distress. Nevertheless,

this can be a disadvantage in implementing a more fine-tuned regulatory policy.

For example, if the contribution of the firm i is due to the changes in common

factor, the regulation policy required will be different from the case which it is the

firm i that is expected to cause financial system distress. One will not be able to
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distinguish the two cases just by monitoring ∆CoV aR only.

3.3 A Measure Based on GARCH Process

Brownlees and Engle (2011) propose a methodology to measure systemic

risk. Compared to CoV aR, the proposed measure, SRISK, has more structure,

and thus, incorporate more assumptions about return distributions and data gen-

erating processes. However, it is flexible enough to embrace time-varying volatility

and correlation of returns, and moreover, it provides additional estimates of some

important and interesting time series while generating the risk index series.

Before looking at the details of the measure, it is important to note that

the specific concept of systemic risk on which SRISK is based that is in line with

that of Acharya et al. (2010) : it is the failure of a firm when the financial sector is

already in distress, so that the capital shortfall of the firm cannot be accommodated

within the market as it would have during the normal times. Furthermore, it has

significant negative effects on the financial system and the real economy. Hence,

the key idea is to quantify the expected capital shortfall of a firm given that the

financial sector is in distress, i.e., market return is under a threshold value. If a

firm’s capital shortfall under the constrained financial market is expected to be

large, than one can say the firm is systemically risky. Therefore, the concept of

risk that SRISK measures is different from, and in opposite to that of CoV aR, in

the sense that the former measures individual firm’s exposure to system’s risk, but

the latter captures the contribution of an individual firm to the system’s risk.

With this idea, the authors intend to capture the capital shortage of differ-

ent firms, which is likely to depend on the leverage ratio and the expected equity

loss conditional on a financial crisis. One thing to note is that the expected equity

loss of a firm is something that has to be estimated while the leverage ratio is

observable. More specifically, the capital shortage of the firm i (CSi,t) is defined
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as,

CSi,t = Et(k(Fi,t+1 +Gi,t+1 +Wi,t+1)−Wi,t+1|Crisis)

= k(Fi,t+1 +Gi,t+1)− (1− k)Et(Wi,t+1|Rm,t+1 < C)

= k(Fi,t+1 +Gi,t+1)− (1− k)Wi,tEt(Ri,t+1|Rm,t+1 < C)

= k(Fi,t+1 +Gi,t+1)− (1− k)Wi,tMESi,t.

where k is the prudential ratio of asset value to equity, Fi,t+1 is the face-value of

risky debt the firm i has to repay at t+ 1 and Gi,t+1 that of guaranteed debt both

of which are known at t, and Wi,t+1 the firm’s equity capital. Financial crisis is

defined as the time when market return, Rm,t, plummets under a threshold value

C. The equity capital’s return is denoted as Ri,t+1. Finally, MESi,t is Marginal

Expected Shortfall which is the tail expectation of the firm return given market’s

failure. Hence, we see that the first term on the right can be observed whereas the

MES of the second term should be estimated.

Then, the systemic risk index of i (SRISKi,t) and its percentage version

(SRISK%i,t) are:

SRISKi,t = min(0, CSi,t),

SRISK%i,t =
SRISKi,t∑
i SRISKi,t

.

The estimation of MESi,t requires knowledge of the market and firm returns

according to the definition. The focus of the paper is to develop an appropriate

time series technique to have MESi,t, which is flexible yet easily applicable. In par-

ticular, the authors use a bivariate conditionally heteroskedastic model to describe

the dynamics of the daily market and firm log returns, ri,t and rm,t, respectively.

That is,

rm,t = σm,tεm,t,

ri,t = σi,tρi,tεm,t + σi,t

√
1− ρ2i,tξi,t

(εm,t, ξi,t) ∼ F.

where σm,t and σi,t are the conditional time-varying standard deviations of mar-

ket and the firm i, and ρi,t captures the conditional time-varying correlation of
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the returns. Hence, the model is general enough to allow time variations in both

standard deviations and the correlation coefficient. The errors (εm,t, ξi,t) are inde-

pendent and identically distributed following an unspecified distribution F with

zero mean and unit variance.

In order to estimate this model, the paper proceeds by defining processes

of volatilities and correlation, and finally the computation of the market and firm

returns’ tail expectations. First, the volatilities are defined to follow TARCH

(Threshold GARCH) process, which allows asymmetry in GARCH data generating

process to reflect the leverage effect3, i.e.,

σ2
m,t = ωm + αmr

2
m,t−1 + γmr

2
m,t−1I{rm,t−1 < 0}+ βmσ

2
m,t−1,

σ2
i,t = ωi + αir

2
i,t−1 + γir

2
i,t−1I{ri,t−1 < 0}+ βmσ

2
m,t−1.

Then, the correlation coefficient is modeled based on the Dynamic Con-

ditional Correlation (DCC) approach of Engle (2002, 2009) [33] [34] that models

the pseudo correlation matrix instead of covariance matrix of (rm,t, ri,t). In DCC

formulation, the pseudo correlation matrix is defined to follow ARMA(1,1) us-

ing the rescaled standardised (degarched) returns given the volatility estimates.

That is, the matrix is an exponentially weighted average of outer products of the

rescaled standardised returns and the lagged pseudo correlation matrix, which then

is mapped to the original correlation matrix.

Now, the final step of estimating tail expectations differs depending on

whether the main interest lies on estimating Short Term MES (one-day ahead) or

Long Term MES (six-month ahead). In case of Short Term MES, the task boils

down to compute E(εm,t|εm,t < C/σm,t) and E(ξi,t|εm,t < C/σm,t) given the time

3As long as γ is positive, we see that this process is able to capture the widely-observed
financial market behavior which is the negative return generates higher volatility than the positive
return, i.e., the “leverage effect”.
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series of (σm,t, σi,t) and ρt,
4 since

MES1
i,t−1(C) = Et−1(ri,t|rm,t < C)

= σi,tEt−1(ρi,tεm,t +
√

1− ρ2i,tξi,t|εm,t < C/σm,t)

= σi,tρi,tEt−1(εm,t|εm,t < C/σm,t)

+σi,t

√
1− ρ2i,tEt−1(ξi,t|εm,t < C/σm,t).

With respect to the Long Term MES which does not have a closed form

solution, the paper proposes the use of empirical cumulative density function of

the estimated residuals, F̂ , from which the innovation samples are drawn with

replacement. Then, the Long Term MES with h-period ahead can be forecast by

simulating the return paths up to horizon h for S times and averaging over the

simulated paths, i.e.,

MEShi,t−1(C) =

∑S
s=1R

s
i,t:t+h−1I{Rs

m,t:t+h−1 < C}∑S
s=1 I{Rs

m,t:t+h−1 < C}
,

where Rs
t:t+h−1 is the cumulative return in the sth simulation from period t to

t+ h− 1.

In estimating MES, one can also obtain the estimates of the time-varying

conditional probability of a systemic event, i.e., C% loss in the market:

PoSht (C) =

Pt−1(rm,t < C) when h = 1

Pt−1(Rm,t:t+h−1 < C) when h > 1.

In sum, SRISK is a well-defined measure that provides many interesting

statistics along the estimation procedure. In addition, the TARCH/DCC time

series structure imposed for the estimation of MES is very general in that it could

accommodate time-varying volatility and correlation structure, which is highly

advantageous considering the characteristics of financial market. Another huge

merit of the setup is that it is not limited to the particular TARCH/DCC process,

but one can replace it by the wide class of GARCH-type models and even expand

to some other volatility and correlation models.

4In other words, one can simply look at the average of the residuals (ε̂m,t, ξ̂i,t) of the cases when
ε̂m,t is under threshold. However, the authors also suggest a nonparametric kernel estimation
method to improve efficiency.
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One should note, however, that estimation of a bivariate conditionally het-

eroskedastic model with non-linear residual dependence for a large number of firms

may not be easy, as the authors point out, especially when the length of an asset

return time series is short. However, one can choose the parameters to be less fre-

quently updated, e.g., weekly or monthly, and produce daily short term and long

term MES, SRISK, and PoS, as it is currently done in the Volatility Laboratory

(V-Lab).5. In this way, the computational burden would be reduced, but still real

time risk measurement can be provided. Furthermore, SRISK gives a chance to

produce aggregate-level time series such as the time-varying probability forecast

of a C% loss in the market. Especially, one can also have the time series of the

expected capital shortage of the whole system by summing up all the positive cap-

ital shortfalls of all firms, which can be a particularly useful number to consider

when empirically analyzing the linkage between the financial sector and the real

economy.

3.4 Measures Using Credit Derivatives

Next, we look at the metrics based on the credit derivative pricing model,

which can be easily generalized to capture systemic risk of different groups. First,

Bhansali, Gingrich and Longstaff (2008) use the prices of indexed credit derivatives

and its tranches to get the information about the market’s expectation on different

types of financial risk. In particular, the model of the paper is the linearized version

of Longstaff and Rajan (2008) [57]’s three-jump Collateralized Debt Obligation

(CDO) pricing model. The important idea of Longstaff and Rajan is that the

credit spreads (price) of CDO are composed of multiple credit risk components.

Based on this idea, Bhansali et al. (2008) look at the linearized version of the

model, i.e., the index spread is the sum of company-specific default spread, sector-

specific spread, and finally, systemic risk spread which reflects an economy-wide

financial disaster.

The authors begin by defining L, the total portfolio losses realized on the

5http://vlab.stern.nyu.edu/
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index portfolio per $1 notional amount, as

L = γ1N1 + γ2N2 + γ3N3

where γi are jump size parameters, and Ni are independent Poisson counters which

models the number of jumps. Then, with λi that is time-invariant parameter of

intensity, Pij, the probability of j times jumps for the ith Poisson process can be

written as

Pij =
e−λiT (λiT )j

j!
.

As the indexed CDO is based on Credit Default Swap (CDS), an investor of

this index receives a flow of C as a premium for the underlying bonds that do not

default, and pays out the face value of a bond in case it defaults. Thus, equating

expected profit (premium leg, left hand side) to expected loss (protection leg, right

hand side) for a risk-neutral investor, we get the coupon rate C:

C

∫ T

0

D(t){1− E[L(t)]}dt =

∫ T

0

D(t)E[dL],

where D(t) is the riskless discount factor. From the previous equations, this be-

comes

C

∫ T

0

D(t)(1− γ1λ1t− γ2λ2t− γ3λ3t)dt =

∫ T

0

D(t)(γ1λ1 + γ2λ2 + γ3λ3)dt.

In other words, for every dollar put in the portfolio, the investor expects to receive

the coupon C for the proportion that did not default until time t, i.e., (1−γ1λ1t−
γ2λ2t − γ3λ3t), under the contract to compensate for the loss of the defaulted

bonds.

Rearranging the terms we get,

λ1 =
[C/(1 + AC)]− γ2λ2 − γ3λ3

γ1
, (3.1)

where A =
∫ T
0 D(t)tdt∫ T
0 D(t)dt

is the duration of an annuity. Now, we are ready to estimate

the parameters, λi’s and γi’s, using the index spreads and spreads on standardized

tranches data. In particular, the authors use Markit CDX for the U.S. and Markit

iTraxx for the European markets, and associated tranches.
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Now, one starts the numerical estimation process by assuming that jump

size γi parameters are given, and then, uses the tranche data with attachment point

a and detachment point b.6 Here, note that the spread (coupon) of this tranche,

Ca,b, is again determined by equating the premium leg and the protection leg:

Ca,b

∫ T

0

D(t){1− E[La,b(t)]}dt =

∫ T

0

D(t)E[dLa,b].

Conditional on a given set of γi’s, the model-implied coupon value is esti-

mated by allowing a sufficiently large number of jumps and computing the corre-

sponding Poisson probabilities, Pi,j. In doing so, the authors allow for up to 50

jumps for the first Poisson process, up to 10 jumps for the second Poisson process,

and up to 3 jumps for the third Poisson process.

Next, by minimizing the root-mean-squared percentage pricing error be-

tween the model-implied and the observed market tranche prices for each day, λ2

and λ3 are first identified among other parameters. Then, λ1 is determined from

equation (3.1), using the observed market index spread as C. Finally, this numer-

ical optimization loop is closed by iterating over the different set of γ1, γ2 and γ3

until the global minimum root-mean-squared percentage error is achieved.

Initially, the specification of the portfolio loss process L as a sum of three

factors is not based on a structural model; it is rather following the test result of

Longstaff and Rajan (2008) on the number of factors that the three factor model

can fit the data very closely. In fact, the γi estimates across eight index credit

derivatives provided in the paper show that the jump size estimated γi’s are very

different for the three Poisson processes, and the difference is consistently observed

in all eight index credit derivative data; γ1 is the smallest whereas γ3 is the largest,

and γ3 is on average 60 times larger than γ1. More importantly, this estimation

result is conformable to the interpretation that when a jump occurs for the first

Poisson process, then one firm defaults idiosyncratically, a jump for the second

process is sector-specific default, and finally, the a jump that causes about 60

cents loss per one dollar would be economy-wide systemic crisis.

6Simply put, the tranche of attachment point a and detachment point b starts to have loss
when a% of underlying portfolio default, and absorbs the loss increasingly until the size of the
total losses reaches b%. For more detailed description of Indexed CDOs and its tranches, see
Longstaff and Rajan (2008).
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Hence, with the estimated λ’s and γ’s values at hand, the full index spread

can be finally decomposed into three different spreads, and one can interpret this

decomposition to be:

Idiosyncratic spread ≡ S1 =
γ1λ1

1− (γ1λ1 + γ2λ2 + γ3λ3)A
,

Sector-wide spread ≡ S2 =
γ2λ2

1− (γ1λ1 + γ2λ2 + γ3λ3)A
,

Economy-wide spread ≡ S3 =
γ3λ3

1− (γ1λ1 + γ2λ2 + γ3λ3)A
,

where C = S1 +S2 +S3. It should be noted that this decomposition is done under

risk-neutral setting, thus, one can think of this as capturing both risk premium

and risk without distinction.

All in all, the proposed metric is based on the simple and intuitive idea of

decomposing the observed spread into three risk factors. Hence, it can be partic-

ularly useful when the intention is to look at the dynamics of aggregate level risk.

Nevertheless, this measure is general enough to accommodate different attachment

and detachment points of tranches. The advantage of this measure is that it can

integrate the co-movements of risk factors across multiple tranches thereby result-

ing in a more accurate systemic risk measure. This is because the recovered time

series of each component may be different across tranches or depending on the

attachment and detachment points, therefore, the relative size of components may

also differ. Thus, contrary to the copula-based measure based on the presumed dis-

tribution that focuses more on correlation, this measure quantifies the risk factors

at a more integrated sense, as the authors point out.

In addition, as the underlying portfolio is the indexed credit derivatives, the

measure is likely to be more forward-looking and reflective of market’s expectation.

Also, the linear structure makes it possible to quantify more aggregate level risk

easily, e.g., systemic risk of the whole European Union, by increasing the number

of factors in portfolio loss function.

Another thing to note is the setting behind the spread decomposition as-

sumes risk-neutrality without distinguishing risk premium from actual risk. Thus,

one should be careful about the interpretation of the spread series. Nonetheless,
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this might be a particularly useful measure in estimating the distress level of the

credit market that the market participants actually feel.

However, one important caveat is that it does not explicitly consider the

externality of an individual firm’s decision which is a critical component of systemic

risk; all the firms included in the index is treated as the same ignoring their

differences in the size of potential adverse effects on the financial system and the

real economy. As a result, in the regulatory point of view, this measure may not

provide enough information to implement a firm-specific regulations. The time-

invariant parameter setup of the model may also show some rigidity, compared to

other time-varying or conditional measures.

Next, I look at a systemic sovereign credit risk measure by Ang and Longstaff

(2011), that is rooted from a very similar model of CDS spread pricing. As pointed

out above, the flexibility of the systemic risk measure based on the credit deriva-

tive pricing model allows having layered structure of different types of risk, thereby

making it possible to quantify systemic risk from cross-country data. Thus, given

the on-going financial risk contagion among the members of European Union, this

method provides a widely-applicable metric as it enables to monitor the time se-

ries of systemic risk, and/or the sensitivity of sovereigns to systemic distress, etc.,

which is a great advantage compared to the other methods based on a single factor

(i.e., sovereign-specific risk factor in this context) model. In addition, it can be

also applied, as the authors show, to the countries like the U.S., where individual

state has sovereignty but is highly likely to be exposed to a common systemic risk

factor.

The specifics of this approach is an extened version of Pan and Singleton

(2008)[59] and Longstaff, Pan, Pedersen, and Singleton (2011) [56]. That is, a

sovereign may default by the realization of the sovereign-specific risk factor or

the systemic factor that triggers a series of default across sovereigns. Hence, the

authors model the two independent credit risk factors to follow the Poisson process,

whose intensity parameters are determined as:

dξ = (a− bξ)dt+ c
√
ξdZ,

dλ = (α− βλ)dt+ σ
√
λdZλ.
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Here, ξ and λ are the parameters of the intensity of the sovereign-specific pro-

cess and systemic shock process, respectively. In addition, a, b, c and α, β, σ are

constants, and dZ and dZλ are Brownian motions uncorrelated to each other.

However, no specific restriction is implemented about the correlation of Z across

sovereigns, so it is possible to capture some co-movement across different entities

in this framework. Also, note that the above structure allows for mean rever-

sion and conditional heteroskedasticity in ξ process and guarantees ξ and λ to be

nonnegative.

The key idea here is that a sovereign will default when the first jump of a

sovereign-specific Poisson process arrives, or when a systemic shock occurs. How-

ever, important distinctions between the two processes are that the probability of

a sovereign default conditional on the arrival of systemic process jump (denoted as

γ) differs across sovereigns7, and that it is thus possible for a country to survive

through a systemic distress with probability 1 − γ. Hence, a sovereign will de-

fault with probability 1, when the sovereign-specific jump occurs, or it will default

with probability γ when the systemic jump arrives given that the sovereign-specific

jump has not occurred. Or, it may survive the first systemic shock and default

by the second systemic jump arrival with probability (1− γ)× γ. Further, it can

default when the third systemic jump comes in with probability (1− γ)2 × γ, and

so on.

Based on this idea, one can write the probability that a default does not

occur by time t conditional on the realized paths of the intensity processes εt and

λt as,

P (no default|λ, ξ) = exp(−
∫ t

0

ξsds)[
∞∑
i=0

1

i!
exp(−

∫ t

0

λsds)((1− γ)

∫ t

0

λsds)
i]

= exp(−
∫ t

0

ξsds) exp(−
∫ t

0

λsds) exp((1− γ)

∫ t

0

λsds)

= exp(−
∫ t

0

γλs + ξsds).

Hence, the instantaneous probability of default will be proportional to γλs + ξ.

7Note that γ can thus be used as a parameter measuring the sensitivity of a sovereign to
systemic risk.



93

Now, the authors assume that a bondholder would recover a fraction 1−w
of the par value when the bond defaults following Lando (1998)[54]. Then, as in

Bhansali et al. (2012), one can calculate the spread (coupon) rate s, by equating

the premium (spread) leg to the protection leg of a sovereign CDS:

E[s

∫ T

0

D(t) exp(−
∫ t

0

γλs + ξds)dt]

= E[w

∫ T

0

D(t)(γλt + ξt) exp(−
∫ t

0

γλs + ξds)dt],

where D(T ) is the value of a riskless zero-coupon bond with maturity T given the

riskless rate rt, i.e.,

D(T ) = E[exp(−
∫ T

0

rtdt)].

Solving the pricing equation for s yields,

s =
wE[

∫ T
0
{D(t)(γλt + ξt) exp(−

∫ t
0
γλs + ξ)ds}dt]

E[
∫ T
0
D(t) exp(−

∫ t
0
γλs + ξds)dt]

This can be rewritten as a closed-form solution, since the intensity processes follow

the square-root dynamics, and the specific form and the terms are introduced in

Appendix.

With the closed-form solution, one can now start empirical analysis. In

particular, the authors use one-,. two-, three-, four-, and five-year CDS spreads of

ten U.S. state bonds, U.S. Treasury, and ten EMU countries.

The specific estimation process8 is as following: let sijt denotes the market

spread in time t for the i-th issuer for a CDS contract that matures in j years,

and ŝijt is the corresponding spread implied by the model after substituting in

the estimated values of the systemic intensity parameter λ, the sovereign-specific

intensity parameter ξ, and the other estimated parameter θ. Then, one minimizes

8The authors make two identifying restrictions for the estimation. First, they restrict the
coefficient γ for the U.S. Treasury is normalized to be one in order to scale the result more
conveniently and to emphasize the interpretation of γ as a sensitivity parameter. Second, a
Treasury default can only occur with the arrival of the systemic shock, as it is difficult to imagine
the case that the Treasury defaults idiosyncratically without having any affects on states. For
EMU members, they restrict Germany to be subject to the above identification conditions.
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the following:

min
λ,̇̇,̇ξN ,θ

∑
i

∑
j

∑
t

[sijt − ŝijt]2,

in order to estimate the parameter vector and the time series of the intensity

processes.

The advantage of the above model is it provides a stepping stone for mea-

suring systemic risk at a more aggregated level, which can be very useful and

practical given the current extremely integrated financial market. Especially, this

measure is effective in quantifying how much a sovereign is exposed to systemic

risk. In addition, it is flexible enough to reflect the different degree of exposure to

systemic risk across sovereigns, and/or to consider dependency between sovereigns

through the correlation of sovereign-specific factor.

However, as Bhansali et al. (2008)’s measure, it is silent about a more fun-

damental question; what makes systemic risk systemic? In line with this reasoning,

the measure would not be very appropriate to consider the contagion effect or the

size of contribution when a systemic distress state is triggered by a default of one

sovereign and the risk spreads to other entities. In sum, it will be a nice measure

to look at the degree of exposure of an individual sovereign to systemic credit risk,

but the contribution of an entity’s distress to systemic risk increase may not be

captured as well as other metric such as CoV aR.

3.5 Systemic Risk in Macroeconomic Model

Relatively few papers are devoted on developing systemic risk measure in

a full-blown macroeconomic model setup. Very recent work by He and Krishna-

murthy (2012) is one of the few studies that attempt to develop a macroeconomic

model in which systemic risk can be quantified by having a financial intermediary

sector. The key feature of the economy which their model can capture is the non-

linearity that real economic variables may respond very differently to shocks of the

same size, depending whether the current state of economy is normal, distress, or

systemic risk periods. This is done by modeling the financial intermediary sector
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having an equity capital constraint that binds only in a few states that corre-

spond to systemic risk states. With this feature, the model can accommodate the

nonlinearity in distress, non-distress and systemic crisis periods as it produces a

stochastic steady state distribution. Thus, the important advantages of the model

are 1) one can look at the transition dynamics from the normal state to the sys-

temic risk state, and 2) the impact of systemic risk state on the real economic

variables can be well captured, although the current version of the model does not

have a very explicit measure of systemic risk itself. Here, I describe the important

features of the model in the purpose of understanding how the occasionally bind-

ing equity capital constraint works to capture nonlinearity, but abstain from going

into details of the model solution and simulation.

The model consists of bankers and two types of households: the equity

households which invest their wealth to the equity of the bank, and the debt

households which instead purchase the bank-issued bonds. There are two types of

capital: productive capital Kt, and housing capital H that is normalized to 1.

Starting from the intermediary sector, there is a continuum of competitive

intermediaries owned by households but ran by bankers with managerial skills

and corresponding reputation, εt. The variable εt that depends on a banker’s

performance is very important since the banker can raise equity capital only up

to εt from equity households, and thus, has to make up for the remainder by

short-term debt financing. A banker’s objective is to choose the intermediary’s

investment in order to maximize their cumulative reputation,

maxE[

∫ ∞
0

exp(−ηt) log εtdt],

where η is a Poisson rate of a banker’s death on any date. With the assumption

that the reputation of the banker evolves as

dεt
εt

= mdR̃t,

with dR̃t denoting the realized profit-rate on the investment from t to t + dt, net

of debt repayment, i.e., return on equity, and a positive constant m. Then, the

banker’s objective function becomes,

maxEt[dR̃t]−
m

2
V art[dR̃t].
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Hence, a banker maximizes the mean excess return on equity minus the variability

with the parameter m that can be interpreted as the degree of risk aversion.

At the aggregated level, the dynamic of the maximum aggregated equity

capital, E , is defined as,

dEt
Et

= mR̃t − ηdt+ dψt,

where dψt which is non-negative is the entry of new bankers, contrary to the

exit of bankers due to death, ηdt.9 Intuitively, the maximum level of aggregated

equity (or, aggregate reputation stock) evolves with the equity return, mR̃t, of the

intermediary that is identical to each other, and is also affected by the exit and

the entry.

Now, let’s look at the working capital more closely. It is used to produce

consumption goods, where the production technology is as follow:

Yt = AKt

with a positive constant A. The fundamental shock arises to the capital evolvement

process as,

dKt

Kt

= itdt− δdt+ σdZt

where it is investment per capital, δ is a constant depreciation rate, and Zt is

standard Brownian motion. Thus, Kt can be understood as the efficiency of capital,

and Zt is a capital quality shock which is the only source of uncertainty in the

model.

Making investment it to the working capital K is dependent upon the deci-

sion of the producers (owned by households), and occurs some cost (in consumption

good unit),

Φ(it, Kt) = itKt +
κ

2
(it − δ)2Kt,

where κ is a positive constant. That is, installing itKt unit of new capital incurs

costs that is a quadratic function of net investment. After making the investment,

9The exit is to make the model stationary by removing strictly positive drift. In addition, the
entry is assumed to happen only when the aggregate intermediary sector has low capital level,
as it will increase the incentives to enter.
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the producers are assumed to sell the capital to the intermediaries at price qt.

Hence, the investment decision is made given qt to maximize,

max
it

qtitKt − Φ(it, Kt),

that yields the first oder condition for the optimal investment rate:

it = δ +
qt − 1

κ
.

The economic interpretation between this producers (owned by household)-

intermediary relationship is that a household either starts a business or purchases

car, needs to raise qt from banks, and is thus affected by the intermediary sector’s

lending decision.

Next, for the households, the utility function of the aggregate households

can be written as,

E[

∫ ∞
0

e−ρt((1− φ) log cyt + φ log cht )dt],

with cyt and cht are consumption of output and housing service, respectively, from

which the first order condition is driven as

cyt
cht

=
1− φ
φ

Dt,

where Dt is the rental rate on housing.

In addition, it is assumed that there is a unit measure of identical households

that enters time t with financial wealth Wt. The λ fraction is allocated to the “debt

household” who can only purchase the intermediary bond. Then, the remaining

(1− λ)Wt is assigned to the “equity household” that, in turn, decides whether to

invest in the intermediary capital equity or to purchase the intermediary bond.

The financial decision is subject to the above-mentioned equity capital constraint,

i.e., maximum amount of equity the equity household would invest will be the

sum of reputations at most. Hence, when Et > (1 − λ)Wt than the economy has

a sufficiently high level of reputation for the equity household. Or, in case when

Et < (1− λ)Wt, than the equity household will only place Et and buy the riskless

bond with the rest.
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Coming back to the intermediary sector, a bank makes a portfolio decision

of owning housing and working capital given the debt and equity financing. The

return on housing capital purchase is,

dRh
t =

dPt +Dtdt

Pt
,

where Pt is the housing capital price. In addition, the return on working capital

is,

dRh
t =

dqt + Adt

qt
− δdt+ σdZt + [

dqt
qt
, σdZt].

Given the above return equations, the net return on bank equity is,

dR̃t = αkt dR
k
t + αht dR

h
t − (1− αkt − αht )rt.

where rt is the riskless rate of return on the debt of the banking sector.10

Then, a Markov equilibrium can be derived after defining a new variable et

where et ≡ Et/Kt and setting up a system of ODEs for asset price functions p(et)

and q(et) where p(et) = Pt/Kt and q(et) = Qt.

The ODE system is solved with the boundary conditions of e. As for

the upper bound with e → ∞, the aggregate equity capital will not bind, i.e.,

Et > (1 − λ)Wt, thus the economy is essentially frictionless and one can solve for

p(∞) and q(∞). Next, on lower bound, as e approaches zero, the Sharpe ratio

(i.e., intermediaries’ portfolio volatility) increases, and the incentive to enter the

intermediary sector rises. The authors assume an entry requires physical capital,

but it will also increase the aggregate level reputation E at the conversion rate of β.

Then, there is an entry point e determined to be the point at which Sharpe ratio

equals γ exists that reflects a barrier to the intermediary sector. At this point, the

price of capital should not change during the entry although capital conversion to

reputation would affect the level of capital since q is measured as per unit of K.

However, as for housing capital, decline in K would lower equilibrium consumption

and housing rent, thereby lower P as well. That is,

q′(e) = 0,

p′(e) =
p(e)β

1 + eβ
> 0.

10Note that αk
t and αh

t do not necessarily add up to one.
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Next, one can calibrate the model and compare the simulation results to

aggregate consumption, investment, intermediary equity, land pries, and expected

excess return on corporate bond investment. The simulation of the model shows

it can capture the nonlinearity both qualitatively and quantitatively. Thus, by

analyzing the policy functions of variables over and under the systemic risk point

(entry point), one can compare how the economy behaves differently across normal,

distress and extreme systemic risk periods.

To analyze the features of systemic crisis state more closely, the authors im-

pose a sequence of negative quarterly shocks from 2007Q2 to 2009Q4, with which

the intermediary equity values of the model match the data during the crisis pe-

riod. Other key endogenous variables such as land prices, investment, and the

Sharpe ratio simulated after imposing this sequence of shocks seem to resemble

the observed series, supporting the mechanism through intermediary equity. Fur-

thermore, it is also possible to calculate the probability of a systemic crisis, i.e.,

the probability that the equity capital constraint binds in next T years. That is,

one can fix an initial condition, for example, that the economy is near the distress

boundary, and then simulate the model for T years. Then, one can calculate the

probability that the economy moves to the distress region, or the probability that

the capital constraint would bind. He et al. find the probability has been very

low even in early 2007, implying that it would have been not easy to predict the

arrival of the financial crisis early on.

Overall, this model suggests one way of how systemic crisis state can be

characterized into a stochastic macroeconomic model by making use of a constraint

that binds only occasionally. More importantly, the model foreshadows a way of

incorporating the linkage between systemic risk and the real economic activities,

and provides means to gauge the transition dynamics between different states of

the economy. Consequently, it may also be able to answer some of the important

policy questions, if it the current model is expanded to embody some other features

such as labor market and to elaborate production sides.
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3.6 Conclusion

After the 2007-2009 financial crisis, great efforts have made in economics

literature to understand what systemic risk is and how it can be measured. How-

ever, some key features of systemic risk, e.g., the externality of a firm’s decision

to the whole system, the co-movement among a number of firms, the self-feeding

loop that is contagious, and the adverse effect on the real economy, are difficulties

researchers face in achieving an agreed definition of systemic risk, or in develop-

ing an effective measure. Still, there are important developments on this line of

literature that can help understand the subject and inspire future research in this

line.

This paper surveys the recent literature on the systemic risk measure. I start

from “model-free” measure of CoV aR, extension of Value-at-Risk to quantify the

contribution of an individual entity to systemic risk, that can be used and applied

to practice very easily and flexibly. Then, I introduce GARCH-based measure,

SRISK, whose main goal is to quantify the expected capital shortfall of a firm

given that the financial sector is in distress. Next, I look at the measures rooted

from the CDS pricing model, one of which attempts to capture systemic risk among

sovereigns. Finally, I review the recent development that brings in the rare event,

i.e., systemic risk crisis, into the DSGE framework with the intermediary sector.

3.7 Appendix

The closed-form solution of Ang and Longstaff (2011)

As mentioned above, the CDS spread can have a closed-form solution where

s will be written as following with the current (or time-zeros) values ξ and λ:

s =
wE[

∫ T
0
D(t)(A(λ, t)C(ξ, t) + γB(ξ, t)F (λ, t))dt]

E[
∫ T
0
D(t)A(λ, t)B(ξ, t)dt]

,
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where

A(λ, t) = A1(t)exp(A2(t)λ),

B(ξ, t) = B1(t)exp(B2(t)ξ),

C(ξ, t) = (C1(t) + C2(t)ξ) exp(B2(t)ξ),

F (ξ, t) = (F1(t) + F2(t)λ) exp(B2(t)λ),

with

A1(t) = exp(
α(β + ψ)t

σ2
)(

1− ν
1− ν exp(ψt)

)2α/σ
2

,

A2(t) =
β − ψ
σ2

+
2ψ

σ2(1− ν exp(ψt))
,

B1(t) = exp(
a(b+ φ)t

c2
)(

1− θ
1− θ exp(φt)

)2a/c
2

,

B2(t) =
b− φ
c2

+
2φ

c2(1− θ exp(φt))
,

C1(t) =
a

φ
(exp(φt)− 1) exp(

a(b+ φ)t

c2
)(

1− θ
1− θ exp(φt)

)2a/c
2+1,

C2(t) = exp(
a(b+ φ)t

c2
+ φt)(

1− θ
1− θ exp(φt)

)2a/c
2+2,

F1(t) =
α

ψ
(exp(ψt)− 1) exp(

α(β + ψ)t

σ2
)(

1− ν
1− ν exp(ψt)

)2α/σ
2+1,

F2(t) = exp(
α(β + ψ)t

σ2
+ ψt)(

1− ν
1− ν exp(ψt)

)2α/σ
2+2,

and

ψ =
√
β2 + 2γσ2,

ν = (β + ψ)/(β − ψ),

φ =
√
b2 + 2c2,

θ = (b+ φ)/(b− φ).

See Appendix in Ang and Longstaff (2011) for more details.
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