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Abstract
Wireless sensor networks consist of a system of distributed sen-
sors embedded in the physical world, and promise to allow obser-
vation of previously unobservable phenomena. Since they are ex-
posed to unpredictable environments, sensor-network applications
must handle a wide variety of faults: software errors, node and link
failures, and network partitions. The code to manually detect and
recover from faults crosscuts the entire application, is tedious to
implement correctly and efficiently, and is fragile in the face of pro-
gram modifications. We investigate language support for modularly
managing faults. Our insight is that such support can be naturally
provided as an extension to existing “macroprogramming” systems
for sensor networks. In such a system, a programmer describes a
sensor network application as a centralized program; a compiler
then produces equivalent node-level programs. We describe a sim-
ple checkpoint API for macroprograms, which can be automatically
implemented in a distributed fashion across the network. We also
describe declarative annotations that allow programmers to specify
checkpointing strategies at a higher level of abstraction. We have
implemented our approach in the Kairos macroprogramming sys-
tem. Experiments show it to improve application availability by an
order of magnitude and incur low messaging overhead.

Categories and Subject Descriptors: D.1.3 [Programming
Techniques]: Concurrent Programming—Distributed Program-
ming; D.3.2 [Programming Languages]: Language Classification—
Specialized application languages; D.4.5 [Operating Systems]:
Reliability—Checkpoint/restartGeneral Terms: Wireless Sensor
Networks, Macroprogramming, Node-level programming, Fail-
ure, Recovery, Checkpointing, Declarative RecoveryKeywords:
WSN, Macroprogramming, Node-level programming, Declarative
Failure Recovery, Checkpointing

1. Introduction
Wireless sensor networks consist of a system of distributed sensors
embedded in the physical world. Sensor networks promise to al-
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low observation of previously unobservable phenomena. They have
found use in a variety of domains ranging from scientific experi-
ments involving habitat, environment, and marine monitoring [40]
to industrial and civil engineering deployments for measuring de-
vice and structure responses [4] to military and commercial appli-
cations involving detection and tracking of objects and phenom-
ena [16]. Building practical and reliable sensor network systems is
a significant challenge. Sensor networks combine many of the dif-
ficulties of traditional embedded systems, including scale, severe
resource constraints and an unpredictable operating environment,
with the difficulties of traditional distributed systems, including the
need for proper synchronization among nodes and the need for fault
tolerance.

We focus on the issue of fault tolerance for sensor networks.
Maintaining application accuracy and availability in the face of
faults is a nontrivial proposition. Software bugs can render a node
partially or wholly unresponsive. Network and hardware dynamics
such as node failures, burst losses on links, network partitions, and
reconfiguration events involving node addition and deletion can
completely disable nodes or alter their program state.

For example, consider a vehicle tracking application, in which
a group of nodes cooperatively and iteratively refines their esti-
mate of the current position of a moving vehicle. If one or more
nodes should fail in the middle of a computation, the resulting esti-
mate can be incorrect because only partial data from the operational
nodes is used. Depending on the extent and location of failure, the
application may not even be able to form an estimate, effectively
rendering it unavailable. Such failures are far more likely in sensor
networks, where a large number of nodes are exposed to an unpre-
dictable environment, than in traditional distributed systems.

Researchers have made impressive strides in providing pro-
gramming platforms (e.g., [13, 18]) and services (e.g., [23, 27]) that
simplify the development of sensor network systems. However, to
our knowledge, none of these systems provides special support for
managing faults. Instead, the programmer must manually imple-
ment a failure recovery strategy that is appropriate for the appli-
cation at hand. In our vehicle tracking example above, a program-
mer might insert code to track the dependencies among program
variables and nodes within the algorithm, detect when a node has
failed, and discard failed dependencies in the final output in order
to maintain program correctness and availability.

The need for suchad hocrecovery code significantly compli-
cates the development of robust sensor-network systems. Recovery
code crosscuts the entire application and is intimately tangled with
the application logic, making the system difficult to modify and
maintain. Further, the recovery code is tedious to implement cor-
rectly, for example requiring synchronization among the nodes in
the network while maintaining energy efficiency.

We aim to provide declarative support for modularizing the fail-
ure concern, allowing sensor-network programmers to easily and
reliably identify and recover from faults. Our insight is that this can
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be achieved by extending existingmacroprogrammingsystems for
sensor networks [17, 31]. Unlike the traditional approach, in which
programmers directly implement the programs to be run on individ-
ual nodes in the sensor network, macroprogramming makes it pos-
sible to write acentralizedprogram to express a computation. The
compiler then automatically produces node-level programs that im-
plement the specified behavior in a distributed manner. Macropro-
gramming allows programmers to focus on the algorithmic aspects
of their applications, without worrying about low-level details like
the protocol for communication among nodes.

In this paper, we make the following contributions:

• We describe a simple API forcheckpointing, a generic recovery
approach for a broad class of common sensor-network failures,
in the context of a macroprogramming language. The API lever-
ages the macroprogram’s centralized view to allow program-
mers to naturally specify application state to be checkpointed
at desired points in the program. The programmer can later roll
back to a previously created checkpoint in order to consistently
undo the effects of failed nodes, and re-execute the rolled back
code with only the set of available nodes. This API is imple-
mented by a novel low-cost distributed algorithm for check-
point and rollback. The API also supports an important variant
of recovery that is designed to preserve application work done
during a network partition event, calledPartition Recovery.

• Our generic recovery API described above is a distinct improve-
ment overad hocrecovery techniques used in traditional sen-
sor network systems, but it still requires the programmer to ex-
plicitly interleave recovery logic with the macroprogram. Our
second contribution leverages the recovery API to support a
form of automated recovery that we callDeclarative Recovery.
Declarative Recovery allows a programmer to provide modu-
lar code annotations that specify where checkpoints should be
taken, and the macroprogramming system then automatically
detects faults and rolls back execution appropriately. It also in-
cludes an algorithm to automatically determine at run time the
nearest checkpoint to which it is sufficient to roll back in order
for recovery to succeed.

• Finally, we push automated recovery even further, to explore a
form of Transparent Recovery. In this recovery scheme, the sys-
tem additionally automatically determines where checkpoints
should be taken. We describe a simple set of heuristics for plac-
ing checkpoints that appropriately handles common macropro-
gramming patterns.

We have instantiated this approach to failure recovery in sen-
sor networks as an extension of our macroprogramming system
called Kairos [17]. We have implemented three qualitatively differ-
ent sensor network applications using Kairos—localization, target
tracking, and data aggregation—and have used them to evaluate the
recovery API and the declarative recovery technique. Our primary
metrics are the benefits of improvement in correctness and avail-
ability of a recovered application in comparison to an unrecovered
application, and the performance costs of messaging and memory
overheads. Our recovery strategies can improve application avail-
ability by an order of magnitude: in some cases, an application is
unavailable for 30 times fewer reporting intervals than one which
does not incorporate our recovery mechanisms. Our strategies fully
preserve application accuracy for two common kinds of faults—
software faults and network partitions, incur acceptable messaging
overhead (less than 15% for vehicle tracking), and incur about a
factor of two additional data memory for storing checkpoints.

To our knowledge, ours is the first work to explicitly address
generic failure recovery methodologies for sensor networks. Tech-
niques for detecting and concealing faults and for recovering from

failures have been extensively considered in the distributed systems
literature (e.g., [8, 14, 29, 39]). Such work, however, has not exam-
ined the kind of high-level recovery API and automated recovery
techniques that we describe. We are able to support these tech-
niques in a practical manner by leveraging the centralized view of a
distributed computation provided by macroprogramming systems.

The rest of the paper is structured as follows. Section 2 moti-
vates the need for failure recovery support in wireless sensor net-
works, and describes the complexity of manually implementing re-
covery within node-level programs. Section 3 provides an overview
of Kairos, and describes our recovery API on top of Kairos and
how it can be used for manual recovery. In Section 4, we describe
how we can provide support for declarative and transparent recov-
ery mechanisms. Section 5 details our evaluation of these recovery
techniques for several classes of sensor network applications. We
describe related work in Section 6. Section 7 concludes and dis-
cusses future work.

2. Motivation
Real-world sensor network deployments see significant failures.
Figure 1 shows the distribution of failure durations in a real-world
sensor network deployment at the James Reserve in Southern Cali-
fornia [1]. In this deployment, each sensor periodically sends read-
ings to a base station; failure to receive any readings from a sensor
corresponds to a failure of the sending node or one or more other
sensors nodes that would otherwise have forwarded the sender’s
data to the base station. The figure plots the duration ofoutages
(intervals during which no data was received from a sensor) for a
total of twenty sensor nodes over a period of several months in 2003
and 2004. During this period, each node transmitted data for a to-
tal of at least six months. There were a total of 543 outage events
during this period.
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Figure 1—Distribution of outage durations in a real sensor network.

The Cumulative Distribution Function of the duration of out-
ages converges slowly, and outages range from a few minutes to
well beyond six hours, with most outages shorter than three hours.
Thus, in a real-world sensor network deployment, applications are
likely to see a range of node failure and recovery time-scales; there
is no single time-scale that one can engineer for. As such, it is de-
sirable for an application to incorporate mechanisms that allow it to
function for short periods of time with a smaller set of nodes than
it started with, and to re-use nodes that might have been down for
extended periods. Such mechanisms can improve the quality of a
sensor network computation.

One possibility, then, is for an application writer to manually
program failure recovery in sensor network applications. To illus-
trate some of the problems that arise from manual failure recovery,
consider an application in which sensor nodes periodically send
both temperature and light readings to a designated base station
node, which we assume to be the node with the lowest ID. The
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base station aggregates the data it receives in some fashion. Even
in this simple scenario, failures must be considered carefully:

1. What should be done if a node fails in some period when the
base station has only been able to obtain one of the two sensor
values (temperature and light) from the node? For our example,
we assume that the base station must remove the effect of the
incomplete sensor reading from the aggregation.

2. What should be done if the base station fails? In that case, a new
base station must be elected, by finding the live node with the
lowest ID. Further, whenever an old base station comes back
up, sensor data from the old and current base stations must be
merged, and the node with the lower ID must become the new
base station.

In a language like nesC [13], the default node-level program-
ming language for the Berkeley sensor motes [2], this application
would typically be written as a collection of components, each per-
taining to a different task, such as aggregation, leader election, and
base-station merging. Every node has the code for all of the com-
ponents and executes the appropriate procedures from these com-
ponents depending on its state (i.e., whether it is a normal node, a
current base station, or a rebooted old base station).

For ease of presentation we focus on the functionality for data
aggregation. Figure 2 shows pseudocode for the two main proce-
dures. Theaggregate send procedure is invoked by every node
and periodically sends temperature and light readings to the base
station. The value ofbs is set by the leader-election component,
which is not shown.

Theaggregate receive procedure is invoked by the base
station, in order to handle the receipt and aggregation of data from
the nodes in the network. In each period (orepoch), the base station
obtains a list of what it believes to be the live nodes, via a call to
the local procedureget available nodes() (line 15). This
list is maintained by the leader-election component (not shown) in
an efficient way through a simple membership management proto-
col. This protocol would be part of the leader election component,
whereby every node periodically announces its liveness. The base
station then uses aselect() facility (line 21) to wait for temper-
ature or light data from these nodes (sent viaaggregate send)
and update local state appropriately. This process repeats until ei-
ther all expected data from the live nodes has been received (line
25) or a timeout is received, indicating the end of the epoch (line
26).

The aggregate receive procedure handles node failures
through checkpoint and rollback, a standard failure recovery ap-
proach. The base station takes a checkpoint of its local state at the
beginning of each epoch (line 13). When a timeout is signaled, in-
dicating that some live nodes did not provide both sensor values,
the base station restores this checkpoint (line 27). This has the ef-
fect of removing all data obtained in the current epoch from the
aggregation, thereby ensuring consistency. (It is possible to per-
form finer-grained recovery, for example retaining sensor readings
in the current epoch from any node for which both values were able
to be obtained. However, doing this would require the programmer
to manually track dependencies to ensure consistency, which is te-
dious and error prone.)

To handle base station failures, we assume that whenever a
node determines that the base station has not broadcast its liveness,
as part of membership management described above, that node
triggers leader election. To handle the situation when an old base
station comes back, the current base station checks the live nodes
at each epoch for a node with a lower ID, invoking the merge
functionality if required (lines 16–17).

Manual recovery as illustrated by our example has a number of
drawbacks:

node bs;
//executed at every sender
void aggregate_send() {

1: uint temp,light;
2 for(;;) {
3: sleep(SAMPLE_INTERVAL);
4: sample(temp);
5: sample(light);
6: send_sample(temp,bs);
7: send_sample(light,bs);

}
}

Ckpt ckpt;
//executed at base station
void aggregate_receive() {

8: time next_epoch;
9: list node_list, received_list;
10:uint av_l, av_t, count, timeout;
11:boolean done;
12:for (;;) {
13: ckpt=take_local_ckpt();
14: next_epoch=get_cur_time()+SAMPLE_INTERVAL;
15: node_list=get_available_nodes(),received_list=NULL;

//check if node_list has an old base station
16: if (hasLower(node_list,id())) {
17: ...//invoke merge()...

}
18: timeout=SAMPLE_INTERVAL;
19: done=FALSE;
20: while (!done) {

//wait till timeout or at least one node sends
21: received_list=select(TEMP_T|LIGHT_T,node_list,&timeout);
22: if(received_list!=NULL) {
23: //read temp and/or lt values; compute averages...
24: //remove node from node_list if bs got temp,lt...
25: if (node_list==NULL) done=TRUE;

}
26: else{//bs timed out=>nodes in node_list are dead

//restore node-local state to previous epoch
27: restore_local_ckpt(ckpt);

}
}

28: sleep(next_epoch-get_cur_time());
}

}

Figure 2—Send and receive procedures for data aggregation in a node-level
program with manual recovery.

1. The code for the recovery concern is tangled with the rest of the
application logic. For example, the base station must explicitly
check for the presence of an old base station after accessing
the live nodes (line 16) and must explicitly restore a taken
checkpoint upon detecting a failure in the middle of an epoch
(line 27). Further, because a checkpoint could be restored at
any point in its dynamic lifetime, managing checkpoints is non-
modular. For example, if the innerwhile loop in Figure 2 were
defined in its own function, the checkpointckptwould have to
be restored from there, requiring it to either be a global variable
(whose deletion would then need to be manually managed to
save space) or to be explicitly passed to the function.

2. Proper recovery may require manual tracking of dependencies
across nodes. In our example, only the base station’s local state
is of interest upon a node failure, so local checkpoint and recov-
ery (take local ckpt and restore local ckpt) are
sufficient. However, suppose the base station’s local state had
dependencies with local state at other nodes in the network.
In that case, whenever the base station required a rollback,
the failed dependencies at other nodes would also have to be
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tracked and removed to maintain consistency. Further, when-
ever these dependencies change, through program maintenance
or extension, the recovery code must likewise be updated.

Dealing with network partitions also makes dependency track-
ing harder because a partition causes some nodes to be discon-
nected from others, thereby causing their states to drift as nodes
in the two partitions work independently. After a partition is re-
paired, one option is for the programmer to simply discard the
work done by nodes from one half of the partitioned network.
However, this is sub-optimal, because work done by both sets
of nodes can be integrated into the long-term state of the healed
network, which improves the quality of the final results. But,
again, this requires careful tracking of dependencies between
data across nodes during and after the partition has occurred.

3. Similarly, proper recovery may require synchronization across
nodes. If dependencies exist across nodes, requiring rollbacks
at multiple nodes, the programmer must be sure to synchro-
nize these rollbacks to ensure consistency. Otherwise, one node
could restart its rolled-back execution before another node has
been fully rolled back. Manual synchronization is difficult to
implement both correctly and in an energy-efficient manner,
which is critical on today’s resource-constrained sensor nodes.

3. Generic Checkpoint Recovery in a
Macroprogramming System

We first describe the particular macroprogramming language and
system we use throughout this paper, called Kairos [17]. While we
have concretely examined and evaluated the techniques described
in this paper within Kairos, we believe that the key concepts can be
adapted to other macroprogramming languages like Regiment [42].

3.1 An Overview of KAIROS

In this section, we briefly review the Kairos macroprogramming
system; it is described in more detail elsewhere [17].

Kairos lets a programmer directly express the desiredglobal
behaviorof a distributed computation. The programmer achieves
this by writing a centralized program in which sensor network
data can be manipulated as ordinary program variables. The Kairos
compiler then translates the centralized program into programs that
execute on individual nodes, with the support of the Kairos runtime.

We summarize the Kairos language abstractions here. Kairos
augments a host language with a small number of new program-
ming primitives, which allow a distributed computation on a sen-
sor network to be expressed centrally. The programming model
is analogous to that of mainstream imperative programming lan-
guages: Kairos has a sequential semantics by default and a cen-
tralized memory model. As such, Kairos fits well as an extension
to commonly used languages. We have built a Kairos extension to
Python, which we use in our implementation and experiments re-
ported here. The detailed description of our compilation and run-
time techniques is available in [17].

Kairos decouples a sensor network program from the underly-
ing node topology, thereby making it instantiable on an arbitrary
topology. Thenode data type is an abstraction of a network node.
Nodes can be conveniently manipulated using anodelist itera-
tor data type that presents a set-based abstraction of a node collec-
tion. Kairos makes sure that the values contained in these variables
are visible consistently and efficiently at all nodes. The function
get available nodes() provides access to thenodelist repre-
senting all nodes in the network, while theget neighbors(node)
function returns the current list ofnode’s radio neighbors. Given
the broadcast nature of wireless communication, a neighbor list is
a natural abstraction to build interacting groups of nodes in a pro-
gram, and is similar toregions[42] andhoods[43].

Kairos provides a natural way to access the program state at any
node from within the centralized program. Anode-local variable
is a program variable that is instantiated per node. A particular
node’s version of a variable can be accessed by the macroprogram
through avar@node syntax. All other variables are instantiated
only once within the network, and are calledcentral variables.
Kairos respects the scoping, lifetime, and access rules of variables
imposed by the host language.

void av() {
1: nodelist full_node_set;
2: node iter, bs;
3: uint sleep_interval=1000;
4: uint nodelocal count=1, av_t=0, av_l=0;
5: uint nodelocal sensor temp, lt;
6: full_node_set=get_available_nodes();
7: bs=get_first(sort(full_node_set));
8: for (;;) {
9: sleep(sleep_interval);
10: for (iter=get_first(full_node_set);iter!=NULL;

iter=get_next(full_node_set)) {
11: av_t@bs=(av_t@bs*(count@bs-1)+temp@iter)/count@bs;
12: av_l@bs=(av_l@bs*(count@bs-1)+lt@iter)/count@bs++;

}
}

}

Figure 3—Example macroprogram for computing average temperature and
light readings.

Figure 3 shows the Kairos code that uses these abstractions for
continuously computing the sample averages for light and temper-
ature readings and storing them at a base station node. It works as
follows. In lines 1, 2, and 3, we declare variables to represent the
list of nodes in the network, a temporary node, a node that will
be chosen as the base station, and the time to sleep between aver-
aging intervals. In lines 4 and 5, we declare node-local variables.
temp andlt are special node-local variables (indicated by their
sensor attribute) that are continuously updated with new readings
from a node. For each of the node-local variables, a copy of the
variable with the same name exists at each node in the network. In
line 6, we store the list of active nodes in the network in the vari-
ablefull node set, and in line 7 we instantiate the node with the
lowest id as the base station node. Finally, in lines 8–12, we cause
the network the repeatedly fetch temperature and light samples and
store their average at the base station.

Kairos implements the distributed version of a macroprogram
in anetwork-efficientmanner. The Kairos runtime has a distributed
caching layer that makes sure updates to central variables are visi-
ble across the network consistently. The caching layer also buffers
updates from node-local variables so that the programmer can per-
form synchronous reads and writes. For example, in lines 11–12 of
Figure 3, the macroprogram updates the base station’s node-local
variables in sequence, while in a node-level program such as Fig-
ure 2, the programmer is responsible for managing network mes-
sages that may arrive any time and out of order. Kairos minimizes
communication overhead for both data and control through three
techniques: by allowing asynchronous execution at nodes and min-
imizing their control flow synchronization; by exploiting relaxed
data consistency semantics where possible in order to further re-
duce control traffic overhead; and by caching remote variables for
reads and filtering unnecessary writes [17].

3.2 Recovery in Macroprograms

In addition to checkpointing, which was discussed in Section 2,
there are two approaches for programming recovery into macro-
programs. The simplest approach is for runtime support to provide
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error notifications, leaving it to the programmer to manually deal
with failures. For example, the runtime can return an error when
reads to a remote variable fail. Thus, in Figure 3, accesses to node-
local variablesav t, av l, count, temp and lt in lines 11–12
can return a special error code when a node is unavailable. But
such a facility only solves one of the three problems with node-
level manual recovery described in Section 2. While the program-
mer is relieved of the burden of manually synchronizing such ac-
cesses across nodes because the macroprogram’s runtime imple-
ments such synchronization, the programmer must still deal with
the first two problems: she would have to add checks around each
access to a node-local variable (there would be five such checks in
lines 11–12, for example), and manually track dependencies across
such node-local states.

The second approach is to augment the language with a trans-
action facility. While such a facility could potentially solve all the
three problems of manual recovery, it would be heavy-weight un-
less carefully implemented. Support for nested transactions would
be necessary in order to minimize lost work during recovery, but
such transactions are difficult to implement efficiently and correctly
in a distributed setting because of their potential for causing dead-
locks and livelocks [21]. Thus, we use checkpoint-based recovery.

3.3 Manual Failure Recovery for Macroprogramming

In this section, we examine a checkpointing approach to manual
failure recovery in the context of macroprogramming. In particular,
we describe a small checkpointing API for Kairos. The key novelty
is the way in which this API leverages Kairos’ centralized view
of the network: programmers specify checkpoints at the granular-
ity of the macroprogram, and the runtime system carefully ensures
the corresponding node-level programs take consistent checkpoints
and rollback in a synchronized manner when a failure is detected.
Programmers are still responsible for manually managing check-
points, thereby suffering from some of the drawbacks described in
Section 2. These drawbacks are addressed by our automated re-
covery strategies, which build on the checkpointing API and are
described in the next section.

The Checkpointing API

In a Kairos macroprogram, the programmer may call the following
function at any point:

Ckpt take_ckpt(nodelist nl);

This function takes a consistent checkpoint at every node in the
specified node list. By a consistent checkpoint, we mean that no
node in nodelistnl proceeds in the computation until it knows
that all other nodes innl have also taken the checkpoint. This call
returns a handle to the checkpoint.

To rollback to a checkpoint, a programmer may call the follow-
ing function:

boolean restore_ckpt(Ckpt ckpt);

This function takes a previously created checkpoint as an argument
and restores the state at each node (again, consistently) to that at
the specified checkpoint. Execution of the restored program then
resumes at the statement following the point where the specified
checkpoint was taken.

Figure 4 shows how this API can be used to implement a version
of fault tolerant sensor averaging in Kairos. It meets the require-
ments described at the beginning of Section 2 except for merging
data from old base stations, which we describe in the following sub-
section. The recovery code that is additional to the macroprogram
in Figure 3 is shown in bold. The basic idea behind the recovery
code is to use two checkpoints for the two failure scenarios that

Ckpt ckpt1, ckpt2;
void av() {

1: nodelist full_node_set;
2: node iter, bs;
3: uint sleep_interval=1000;
4: uint nodelocal count=1, av_l=0, av_t=0;temp;
5: full_node_set=get_available_nodes();

6: ckpt1=take_ckpt(full_node_set);
//Check if we have to take another checkpoint

7: if (ckpt1.restored){
8: full_node_set=get_available_nodes();
9: ckpt1=take_ckpt(full_node_set)

}

10:bs=get_first(sort(full_node_set));
11:for (;;) {
12: sleep(sleep_interval);

13: ckpt2=take_ckpt(bs);
14: full_node_set=get_available_nodes();

15: for (iter=get_first(full_node_set);iter!=NULL;
iter=get_next(full_node_set)) {

16: av_t@bs=(av_t@bs*(count@bs-1)+temp@iter)/count@bs;
17: av_l@bs=(av_l@bs*(count@bs-1)+lt@iter)/count@bs++;

}

18: if (_failed) {
19: full_node_set=get_available_nodes();
20: if (member(bs,full_node_set)) {
21: //bs still alive=>another node crashed
22: restore_ckpt(ckpt2);
23: } else {
24: restore_ckpt(ckpt1);

}
}
}

}

Figure 4—Example macroprogram with manual recovery code.

must be recovered from: when a base station crashes,ckpt1 cre-
ated in line 6 is used, and when any other node crashes,ckpt2
created in line 13 is used. Whenever one or more nodes fail during
the execution, the runtime ultimately triggers the recovery code in
lines 18–24. This is because failures of nodes are detected in the
background by the runtime and exposed through an internal vari-
able called failed, which the programmer can check anywhere
in the program.

In case a node other than the base station crashes, the program-
mer restores checkpointckpt2 in lines 20–22, and in case the base
station itself crashes, the programmer restores checkpointckpt1
in line 24. If ckpt1 is restored, execution resumes at line 7. The
programmer takes another checkpoint in lines 7–9 ifckpt1 has
been restored. Ifckpt2 is restored, execution resumes at line 14.
Thus, as long as any node other thanbs crashes, the state atbs is
unaffected, because of its recovery via checkpointckpt2. Further,
since restoring a checkpoint reinstates a previous state of the pro-
gram, the actual values of node-local variables that a program uses
in the time between taking and restoring a checkpoint is immate-
rial. Lines 16–17 of Figure 4 exploit this property by not checking
for the return values of node-local variables. Our implementation
currently returns a well-defined error code, which is useful if a pro-
grammer wants to implement finer-grained recovery.

A macroprogram written to use the checkpointing API is said to
usecheckpoint-rollback recovery(CRR). CRR solves the last two
problems of node-level recovery described in Section 2 as follows:
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1. Unlike the manual checkpoints taken in the pseudocode in Fig-
ure 2, which are local to a particular node, the Kairos check-
pointing API provides globally consistent checkpoints. There-
fore, the programmer is relieved from manually tracking de-
pendencies across nodes: as long as all nodes that have depen-
dencies among one another are checkpointed and the call to
take ckpt is placed at a globally consistent point, all depen-
dencies will be properly handled automatically.

2. The Kairos runtime automatically synchronizes nodes when a
checkpoint is taken or restored. For example, a node is only
allowed to resume execution after restoring its local checkpoint
once all other nodes have also restored their checkpoints. There-
fore, the programmer is completely relieved of the burden of
node synchronization.

Detecting Faults

Fault detection is a significant research challenge in its own right.
In this paper, we assume non-malicious faults and use a simple, yet
practical, fault detection strategy. A fault is said to occur when a
read or write to a node fails after three successive retries. Variable
reads and writes use a simple request/response protocol in Kairos.
This protocol has a three-second timeout, a reasonable upper-bound
on real-world latencies in sensor networks. When a fault is de-
tected, thefailed flag is set.

Implementing Checkpoints

Kairos implements the checkpointing API, and its various compo-
nents, in its runtime. This task involves coordinating the relevant
node-level runtimes to efficiently take and restore checkpoints.

By the time a program invokestake ckpt(nl), the runtime
ensures that the value ofnl is available at every node in the
network. Each node withinnl takes its own local checkpoint,
sends out a completion message, and stops the node-level program
execution until it hears the same message from other nodes. Nodes
that are not innl need not actually take a local checkpoint, but they
still have to participate in a global consensus algorithm [11]. In
the general case, this synchronization can be expensive, requiring
O

(

N2
)

reliable point-to-point transmissions for a network of size
N.

We propose two novel optimizations for communication reduc-
tion. First, we exploit the broadcast nature of wireless sensor net-
works in order not to require every node to communicate with ev-
ery other node. We build consensus using the following algorithm,
which has two phases of execution. In the first phase, a node re-
liably broadcasts “Done/Wait” to its immediate neighbors after it
takes its local checkpoint. Whenever it hears “Done/Wait” from
all neighboring nodes, it enters the second phase of execution by
reliably broadcasting “Done” in the local domain. Once it hears
“Done” from all current neighbors, the node independently deter-
mines that a consistent global checkpoint has been taken. Intu-
itively, this algorithm works because a node would not have en-
tered the second phase of the protocol if any neighbor had not yet
completed or even entered its own first phase.

The cost of this protocol is clearly at most 2N reliable local
broadcasts. Another distinguishing feature of this protocol is that
nodes only need to synchronize during this operation but otherwise
execute completely asynchronously with respect to one other.

Second, we optimize a common case scenario in which a check-
point is repeatedly taken over a single node. For example, in line
13 of Figure 4, we repeatedly checkpoint state atbs. In such cases,
the runtime can avoid global synchronization by only taking a lo-
cal checkpoint. The runtime implements the correct consistency se-
mantics so that such a checkpoint is valid. Our local checkpointing
implementation uses thelibckpt library to save the private pro-
cess state (the data, heap and stack segments) locally at a node.

When a program invokesrestore ckpt(ckpt), the runtime
restores the program state from the local checkpoints of nodes
stored inckpt structure. The distributed component of this oper-
ation uses the same machinery involved intake ckpt(), except
that the remaining nodes should obviously not expect protocol mes-
sages from the failed nodes. After the live nodes have agreed to
consistently restore ackpt, each node’s runtime locally restores its
own state.

Summary

The checkpointing API provides an abstraction that specifies recov-
ery actions at the level of the macroprogram itself. The Kairos run-
time carefully ensures that consistent checkpoints are taken at each
local node. This checkpointing mechanism is conceptually similar
to other distributed checkpointing techniques, all of which, includ-
ing ours, are variants of Chandy and Lamport’s algorithm [9]. The
main novelty is that our implementation is asynchronous and opti-
mized for the locally communicating and broadcast nature of sen-
sor networks. Moreover, we are not aware of similar language-level
recovery techniques that are tightly integrated with the underlying
distributed programming system, a feature which is useful in pro-
viding support for partition recovery, as described in the next sec-
tion.

3.4 Recovering from Partitions

Checkpointing can lose work between the last checkpoint and when
arestore ckpt() is called. If faults affect a single node, invoking
CRR is the right choice if we only want to ensure consistency of
the macroprogram state. In the case of many continuous-output
applications, such as vehicle tracking, it also happens to be the
optimal choice because it causes the macroprogram to respond
both rapidly and correctly to network dynamics, and compute the
continuous output with no loss of accuracy.

However, CRR on its own is not sufficient to properly han-
dle network partitions. We define a partitioning as an event which
causes one or more live nodes to be disconnected from the rest
of the network. Suppose a network partition occurs anywhere be-
tween lines 11–15 in Figure 4. With CRR, Kairos would rollback
the computation and resume it independently on both halves of the
partition. There are now twobs values, each of which keeps accu-
mulating averages. When the partition heals, we need a mechanism
to let a programmer specify how to unify the work done by each
side of the partition.

We provide such a mechanism, calledPartition Recovery, which
combines the global work done by each group during the partition.
The goal is to preserve the values of variables representing the long-
lived program state, such asav l@bs, av t@bs, andcount@bs.
The programmer invokes partition recovery by specifying amerge
function along with the macroprogram. The runtime indicates that
the partition has healed by setting ahealed variable, and the
programmer can detect this condition similar to the check used for
node failures in line 15 of Figure 4.

In order to make the ensuing discussion clear, we show the
entire code for the macroprogram in Figure 5. It is augmented with
the code for dealing with partitions in bold.

Figure 5 works as follows. When a partition occurs, the test for
failed in line 18 would succeed. One half of the partition that
contains the base station would work with a fewer set of nodes
because its runtime restoresckpt2 to line 14 of the macroprogram,
while the other half that does not contain the current base station
will additionally obtain a new base station when its runtime restores
ckpt1 to line 7 instead. Thus, there would be two global runtimes,
each of which is the union of the local runtimes of its constituent
nodes. We note that the original base station does not lose its long
term state (i.e., its values ofav l, av t, andcount) because the
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Ckpt ckpt1, ckpt2;

node bs, bs_P1, bs_P2;
uint nodelocal count=1, av_l=0, av_t=0;

void av() {
1: nodelist full_node_set;
2: node iter;
3: uint sleep_interval=1000;
4: uint nodelocal temp;
5: full_node_set=get_available_nodes();
6: ckpt1=take_ckpt(full_node_set);

//Check if we have to take another checkpoint
7: if (ckpt1.restored){
8: full_node_set=get_available_nodes();
9: ckpt1=take_ckpt(full_node_set)

}
10:bs=get_first(sort(full_node_set));
11:for (;;) {
12: sleep(sleep_interval);
13: ckpt2=take_ckpt(bs);
14: full_node_set=get_available_nodes();
15: for (iter=get_first(full_node_set);iter!=NULL;

iter=get_next(full_node_set)) {
16: av_t@bs=(av_t@bs*(count@bs-1)+temp@iter)/count@bs;
17: av_l@bs=(av_l@bs*(count@bs-1)+lt@iter)/count@bs++;

}
18: if (_failed) {
19: full_node_set=get_available_nodes();
20: if (member(bs,full_node_set)) {
21: //bs still alive=>another node has crashed
22: restore_ckpt(ckpt2);
23: } else {
24: restore_ckpt(ckpt1);

}
}

25: if (_healed) {
26: merge_av();

}
}

}
}

void merge_av()
{

27:bs=min(bs_P1,bs_P2);
28:av_l@bs=(av_l@bs_P1*count@bs_P1+av_l@bs_P2

*count@bs_P2)/(count@bs_P1+count@bs_P2);
29:av_t@bs=(av_t@bs_P1*count@bs_P1+av_t@bs_P2

*count@bs_P2)/(count@bs_P1+count@bs_P2);
30:count@bs=count@bs_P1+count@bs_P2;

}

Figure 5—Example macroprogram for recovering from partitions.

rollback of its partition is only until line 14. As long as they are
separate, both partitions work independently thereafter.

Later, when the two partitions merge, the runtimes of the two
halves will independently detect this condition, because the two
distributed runtimes maintain information about which nodes are
available. Before the merge, each runtime maintains its own copy
of the central variables, and the copies may become out of sync. Af-
ter the merge, the programmer may require access to both copies,
in order to determine an appropriate value to use for that central
variable upon program resumption. A programmer can indicate a
central variablevar whose values from the two partitions should
be saved by declaring two additional central variablesvar P1 and
var P2. For example, in the beginning of Figure 5, the programmer
declaresbs P1 andbs P2. Just before the two runtimes of a parti-

tion merge,bs P1 andbs P2 are updated respectively with values
from each of the two partitions.

The merge function is invoked by the programmer separately
for each runtime in line 26, after she detects that the underlying
partition has healed, by testing for thehealed flag in line 25.
The merge function synchronizes the two runtimes by making the
first caller wait until the second caller has also invokedmerge av.
merge av first updates the global variablebs of the macroprogram
to the lower-valued base station. It then updates theav l, av t, and
count values atbs. When it exits, the two runtimes are considered
unified, and the application resumes execution at line 11.

One observation we can make regarding the application domain
of sensor networks is that it is often possible to write merge func-
tions that follow a well-known idiom. Figure 6 describes some
common example applications and suitable merge functions.

Duplicate insensitive counting/sketch 
theory, q-digests, approx. aggregates, 

etc.

Max, min, quantiles, 
histograms, quantiles, etc.

Non-aggregatable
scalars

Model/problem-specific but simple 
low-state spatiotemporal interpolated 

composition
Isobars, contours, etc.

Spatiotemporal 
state

Textbook compositional formulae
Vector aggregates, auto- and 

cross-correlations, covariance, 
Fourier transforms

Linearly 
combinable vectors 

and matrices

Simple aggregationSum, average, count
Aggregatable 

scalars

Merge FunctionExampleState Type

Figure 6—Common tasks and their merge functions.

4. Automated Recovery Strategies
While our checkpointing API for macroprogramming is a signifi-
cant step from node-local manual recovery, it still requires the pro-
grammer to manually create checkpoints, manage their lifetimes
explicitly, and restore to the appropriate checkpoint at necessary
places within the application logic.

4.1 Declarative Recovery Annotations

In order to relieve the programmer from dealing with such issues,
and in order to only allow her to reason about recovery modu-
larly, we have designed aDeclarative Recovery (DR)annotation
technique. This annotation takes the following form:<nodelist,
merge func> wherenodelist is an expression that evaluates to
a list of nodes potentially affected by a fault, and the optional
merge func specifies a merge function to be used after a partition.
Thenodelist argument is specified using a set-theoretic notation,
with support for basic operations of union, intersection, and differ-
ence. Such an annotation may be placed at any line in the macro-
program, and more than one such annotation may be present in a
given macroprogram.

When a programmer places an annotation<nodelist, merge func>
at some point in the program, she is indicating that the global pro-
gram state is consistent at that point, and therefore that this is an
appropriate point at which to take a checkpoint. When such an an-
notation is encountered during execution, the runtime automatically
takes a checkpoint at all nodes innodelist (using the checkpoint-
ing API described in the previous section). The runtime also starts
a newrecovery scopeand watches for any failed or merged nodes
in the background. This recovery scope lasts for the dynamic extent
of the annotation’s smallest enclosing program block.

When any remote access encounters a failure within a recovery
scope, the runtimeautomaticallyrolls back the computation at each
node in the macroprogram to the most recent relevant checkpoint.
Relevance is determined by thenodelist argument to an annota-
tion, which indicates that forward progress can be made from this
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point as long as at least one node innodelist is live. Given this
information, the runtime can automatically rollback to the check-
point that discards the least amount of work while ensuring forward
progress. We describe this rollback algorithm in more detail in the
next subsection. Furthermore, when new nodes are added to the
system or when a partition heals, the runtime also rolls back the
computation, applies the specified merge function, and resumes the
computation.

void av() {
1: nodelist full_node_set;
2: node iter, bs;
3: uint sleep_interval=1000;
4: uint nodelocal count=1, av_t=0, av_l=0;
5: uint nodelocal sensor temp, lt;
6: full_node_set=get_available_nodes();

7: <full_node_set,NULL>
8: full_node_set=get_available_nodes();

9: bs=get_first(sort(full_node_set));
10:for (;;) {

11: <{bs},NULL>
12: full_node_set=get_available_nodes();

13: sleep(sleep_interval);
14: for (iter=get_first(full_node_set);iter!=NULL;

iter=get_next(full_node_set)){
15: av_t@bs=(av_t@bs*(count@bs-1)+temp@iter)/

count@bs;
16: av_l@bs=(av_l@bs*(count@bs-1)+lt@iter)/

count@bs++;
}
}
}

Figure 7—Example macroprogram to illustrate Declarative Recovery
(DR).

Figure 7 shows our averages example augmented with recovery
annotations (lines 7 and 11). Lines 8 and 12 are additional code
for ensuring that the program can make progress without the failed
nodes, and are executed immediately after the macroprogram has
been rolled back to the corresponding points. For simplicity, we
do not show a merge function, which would be very similar to the
one in Figure 5; thus, the second arguments of the annotations in
lines 7 and 11 areNULL. In line 7, we annotatefull node list
as the set of nodes over which the checkpoint is defined. In line
11, we activate another recovery scope, defined only over the base
station. This annotation indicates that forward progress can be
made from line 11 as long as the base station is still live. Therefore,
whenever any node other thanbs fails during the annotation’s
recovery scope, the runtime rolls the program back only to line 12,
and re-initializes the set of currently available nodes. If the base
station fails, however, the runtime instead rolls back to line 8, and
subsequently chooses a new base station in line 9.

These declarative recovery annotations eliminate the problems
of manual checkpointing described earlier. A simple annotation
tells the runtime where checkpoints should be taken. The runtime
then automatically creates and manages these checkpoints, detects
failures and determines an appropriate checkpoint to restore, even
across function boundaries. In this way, the recovery code is much
more insulated from the application logic and much more robust to
application updates. Finally, the runtime also automatically garbage
collects checkpoints as they become inactive, as described in the
next subsection.

4.2 Selecting and Managing Checkpoints

In a macroprogram with several annotations, the checkpoints cre-
ated by active annotations can be dynamically managed as a single
list. In this list, a checkpointA follows a checkpointB if the line
of code at whichA was taken is executed after the line at which
B was taken at run time. The runtime continuously tracks nodes’
membership status in the background to discover if one or more
nodes have failed or been partitioned. If it detects such a condition,
it searches this checkpoint list for a checkpoint with an annotation
that has specified at least one live node. Intuitively, the program-
mer intends each checkpoint to represent both a globally consistent
state, and, orthogonally, a liveness condition that declares that the
macroprogram can make forward progress if execution is retried
from that point on, after discarding the effects of failed nodes dur-
ing checkpoint recovery.

The runtime allocates and maintains memory for checkpoints
in an efficient and distributed manner. Metadata associated with
a checkpoint, which includes the list of nodes over which the
checkpoint was taken and the checkpoint’s parent checkpoint in the
list, is replicated at every node. One valuable optimization is that, if
this metadata does not change when the next checkpoint is taken at
the same place, global synchronization is averted. Thus, in Figure 7,
when the runtime repeatedly takes a checkpoint overbs’s state, it
can avoid global communication and synchronization after the first
time. This is because of our observation that if two checkpoints are
taken over the same node list, the older checkpoint can be safely
replaced by the newer checkpoint—the older checkpoint will never
be used in favor of the later checkpoint because (a) our liveness
requirement during rollback applies equally to both checkpoints,
and (b) our requirement to minimize work lost will cause the later
checkpoint to preferentially be chosen over the older one.

The runtime reclaims storage allocated for checkpoints in the
following simple fashion. Whenever execution encounters an anno-
tation, the runtime takes a checkpoint at that location, and then dis-
cards any previously taken checkpoints at that code location. This
strategy lazily discards checkpoints; an alternative would have been
for the Kairos compiler to carefully discard checkpoints whenever
execution exits the static program scope in which the annotation
is declared, but our approach requires less work on the part of the
compiler, and is comparably efficient. Furthermore, before restor-
ing the state corresponding to a selected checkpoint, the runtime
discards the saved memory associated with all later checkpoints in
the list.

4.3 Transparent Recovery

While Declarative Recovery significantly simplifies programming
recovery, it still requires the programmer to annotate code. In addi-
tion to identifying points in the code where consistent checkpoints
can be taken, the programmer has to indicate what the minimal set
of live nodes is at such points in order to optimize lost work. For
example, in Figure 7, the second annotation’s first argument must
contain the base station in order to avoid losingbs state. An inter-
esting question arises whether it is possible to provide completely
transparentrecovery, without programmer involvement at all.

We have taken a first step in this direction using a simple heuris-
tic that we call Transparent Recovery (TR). In Transparent Recov-
ery, the need for supplying declarative annotations is eliminated,
but the programmer must still supply a merge function for the pro-
gram, because merge functions are inherently application-specific.
We only allow one merge function to be provided; it is declared
with a special attribute indicating that it is the merge function.

Transparent Recovery works as follows. The Kairos compiler
generates code to take a checkpoint after each update to a variable
of type node or nodelist. Thus, going back to theoriginal ex-
ample (Figure 3), the compiler would direct the runtime to take a
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checkpoint offull node set after line 6, ofbs after line 7, and
of iter after line 10.

Transparent recovery can be sub-optimal, losing more work
than necessary, because it is not possible to infer the nodes that
must be live at a given point to ensure that forward progress can
be made. Therefore, TR’s rollback strategy must be conservative:
upon the failure of a noden, TR rolls back to the latest checkpoint
C such thatC and all earlier checkpointsdo not include noden.
Intuitively, it is safe to roll back toC if this condition is met, since
nothing in the program execution up toC depended upon noden. If
no such checkpoint exists, the runtime system simply rolls back to
the beginning of the macroprogram.

Because all nodes are checkpointed at line 6 in Figure 3, this
code represents a worst case of sorts for TR; failures always cause
rollback to the beginning of the macroprogram. However, our ex-
periments in Section 5 illustrate that the technique is practical for
other common sensor-network applications. For example, TR is
appropriate for many continuous-output applications like vehicle
tracking, because nodes in such a network do not accumulate long-
term state.

5. Evaluation
In this section, we describe the results of experiments conducted
on a wireless testbed using an implementation of Kairos and the
recovery mechanisms described in this paper. We quantify the ef-
ficacy of our recovery techniques along various dimensions: error
in application quality, application availability, and messaging and
memory overhead.

5.1 Methodology

Implementation: We implemented Kairos, and the recovery tech-
niques for Kairos partly in Python (using its embedding and extend-
ing APIs) and partly in C. The Kairos runtime uses EmStar [12]
to implement end-to-end reliable routing and topology manage-
ment. Our Kairos implementation runs on 32-bit embedded plat-
forms such as the Stargate [3], as well on PCs. We have presented
the details of our Kairos implementation in [17]. To this implemen-
tation, we added the recovery API described in Section 3, and the
compiler and runtime support for Declarative Recovery (DR) and
Transparent Recovery (TR) described in Section 4. All experiments
reported in this paper use this implementation.
Applications: We evaluate the efficacy of recovery in Kairos using
three representative sensornet applications written in Kairos, the
complete code for which is given in [17]. The three applications
are: vehicle tracking, for which an explicitly distributed algorithm
based on Bayesian belief propagation is given in Liuet al. [24];
node localization in a sensor network, for which we macroprogram
the distributed algorithm based on cooperative multi-lateration as
given in Savvideset al. [35]; and quantile estimation, for which we
macroprogram the distributed algorithm, based on the concept of a
summarizing data structure called q-digests, as given in Shrivastava
et al. [37].

These applications place different demands on Kairos, yet, as
we show below, Kairos is able to satisfactorily recover each appli-
cation. Vehicle tracking is an instance of a locally-communicating,
continuously-sensing, latency sensitive, periodic (duty-cycling) ap-
plication. Localization is an example of a globally-communicating,
single-shot, latency insensitive application, driven by network
events such as node addition, deletion, mobility, and reconfigu-
ration. Finally, q-digest is a network-wide locally-communicating
application, whose output and latency sensitivity requirements de-
pend on its use: for collecting statistics over a continuously chang-
ing sensor field, it can be configured to be a latency tolerant, con-
tinuous output application; however, for low frequency rare event

monitoring, it can be configured as a latency sensitive single-shot
application.

Figure 8—A single Mica-Z controlled by a PC (left), a single Mica-Z
attached to a Stargate (center), and Mica-Z’s (circled) on the ceiling (right).

The Testbed: Our testbed consists of 36 nodes, of which 15 are
Stargates with an attached Mica-Z mote (Figure 8). The remaining
21 are emulated nodes, each node being emulated by one EmStar
process. Each emulated node uses a real (not emulated) Mica-Z
mote for all communication. These Mica-Z motes are mounted on
the ceiling of our laboratory (Figure 8). This setup allows us to sim-
ulate real-world multihop configurations without being constrained
by the limited memory resources of the current generation of motes.

In our testbed, all nodes are within a single physical hop of each
other, but we configure nodes to multi-hop through other nodes
in order to more closely mimic real deployments. Specifically, we
arrange these node to form a 6x6 2D torus topology.
Experimental Setup: A single run of an experiment measures
application performance metrics (described below) forN faults,
where N ranges from 0 to 15. We inject three types of faults
into the system, and in a given run, all injected faults are of the
same type. In a software fault (SW), the application instance at
a node is killed, leaving the Kairos runtime operational. In this
case, for example, remote reads of raw (unprocessed) sensor data
can be satisfied by the Kairos runtime. In a hardware fault (HW),
the entire node is stopped, so that neither the Kairos runtime nor
the application can send or receive messages. When injecting a
software or hardware fault, we are careful to keep the network
itself connected. Finally, we also inject a network partition (PR),
whereN nodes are partitioned from the system, and the partition
then heals after 2 minutes. In all cases, the network is started with
no faults, and faults are injected immediately after the first call to
get availablenodes⊲⊳ has succeeded.

We set algorithm parameters as follows. For vehicle tracking,
we assume a constant speed target moving randomly within the
6x6 grid. Other parameters of the algorithm in [24] are scaled to fit
our topological dimensions. For localization, coordinates of bea-
con nodes are randomly perturbed with Gaussian noise according
to the parameters in [35]. The q-digest application uses a Kairos
application to construct the routing tree along which the data di-
gests are sent. We configure q-digest to periodically (every 100s)
send digests.

In all experiments, the recovery latency for checkpointing, after
failure detection, was less than a minute.
Comparing Recovery Strategies: We evaluate transparent recov-
ery (TR) for software faults (TR-SW) and for hardware faults (TR-
HW). In the programs we evaluate, TR-SW and TR-HW are re-
spectively equivalent to DR-SW and DR-HW because they happen
to roll back to the same checkpoint in each case, and are thus ex-
hibit identical performance. For evaluating the efficacy of recov-
ery after partition healing, we evaluate Declarative Recovery with
non-null merge functions in the annotations (DR-PR). Since Trans-
parent Recovery is primarily meant for applications that don’t ac-
cumulate long-lived state, we do not evaluate TR-PR. For DR-PR,
we have inserted declarative annotations into each of the Kairos
applications; none of our applications requires more than 5 annota-
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tions, although the largest of our applications is nearly 250 lines of
macroprogramming code, which is roughly how much large macro-
programmed tasks are in practice.

We compare these strategies against two baseline cases: the per-
formance of the application without any faults (NF), and the per-
formance of the application without recovery (NR) in the presence
of faults.
Metrics: Our comparison is based on the following four quantita-
tive metrics. Our first metric is applicationavailability, defined for
two of our applications, vehicle tracking and q-digest. In these two
applications, the application periodically (say everyT-second in-
tervals) returns a result (the current location of the vehicle, or the
current median). When a fault occurs, the application may or may
not be able to return an answer at a given instance. DefineUF to be
the fraction of intervals during which an unrecovered application
(NR) did not return an answer. DefineUR analogously, but for an
application with a recovery strategy applied. Then, we define ap-
plication availability to be log10⊲

UF
UR

⊳, a metric that is commonly
used for representing availability. Thislogarithmic metric defines
applications which return an answer during 0.999 of the intervals to
have 1x (or 100% more) availability compared to one which returns
an answer during 0.99 of the intervals.

Our second metric measures applicationerror. This metric ap-
plies to all three applications, of course, and is defined for vehicle
tracking as|zN−zR|

|zN|
, zN is the approximation computed by NF, and

zR is the approximation computed by either TR-SW, TR-HW or
DR-PR. The metric is similarly defined for our other applications.
Our last two metrics measure the messaging and memory overhead
of recovery. They are defined as the additional fraction of messages
sent, or memory used, relative to NF.

We chose these metrics because, for recovery techniques to
be practical in realistic multi-hop scenarios, they need to be
lightweight in addition to being expressive.

5.2 Results

In Figures 9, we plot the availability of the vehicle tracking appli-
cation as a function of the number of faults. Notice that the advan-
tages of recovery are apparent even with one failure; the increase in
availability is more than 1x, indicating that recovery strategiesre-
duce the number of intervals during which an answer is available
by a factor of 10. As the number of faults increases, this factor rises
to nearly 30 (101.5). The availability for the q-digest application is
qualitatively similar (Figure 10). For both applications, different
strategies exhibit slightly different availabilities, mostly due to dif-
ferences in the latency of recovery across the three approaches.
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Figure 9—Availability comparison of TR-Software (TR-SW), TR-
Hardware (TR-HW), and DR-Partition Recovery (DR-PR) strategies with
increasing node failures.

In Figure 11, we plot the relative error in the position estimate
as a function of the number of faults for the vehicle tracking ap-
plication. Our baseline for comparing our recovery strategies is the
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Figure 10—Availability comparison of TR-Software (TR-SW), TR-
Hardware (TR-HW), and DR-Partition Recovery (DR-PR) strategies with
increasing node failures.
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Figure 11—Accuracy comparison of TR-Software (TR-SW), TR-
Hardware (TR-HW), and No Recovery (NR) strategies with increasing node
failures.

case where no recovery strategy is employed (NR). The relative
error under NR is indicative of the loss of application fidelity in-
herent in failure; for example, when nodes fail, a vehicle tracking
application is essentially left with a less dense network than be-
fore, adversely affecting tracking quality. Our main observation in
this graph is that, while the application accuracy degrades linearly
with increasing numbers of faults (TR-HW), this degradation is no
worse than the relative error under NR. This indicates that the loss
of application accuracy is entirely inherent in node failure, and re-
covery does not exacerbate this loss. On the contrary, recoveryre-
ducesapplication error: TR-HW has lower application error than
NR, because the latter has lower availability resulting in missed
readings and therefore a more erroneous track (since the tracking
algorithm uses a smoothed history of position readings). Further-
more, note that TR-SW exhibits no relative error at all; when the
Kairos runtime is able to respond with sensor readings, even if the
application instance at the node itself is dead, the overall applica-
tion is still able to preserve fidelity. Finally, we do not show DR-PR
in this graph; partition healing is not relevant to an application in
which the answer (the position estimate) is continuously changing.

In Figures 12 and 13, we plot the relative error of the various
recovery strategies for q-digest and localization. The interesting
difference between this graph and Figure 11 is that, as expected,
DR-PR also exhibits zero application error since partition recovery
is able to recover lost work by merging two q-digests, or location
estimates. Furthermore, since medians and location estimates are
relatively less sensitive to node loss than vehicle tracking, the mag-
nitude of error for TR-HW is lower. Even in this case, however,
this error is comparable to the application error without fault recov-
ery (we do not shown application error under NR for localization
because a single failure causes the application to not successfully
terminate).
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Figure 12—Accuracy comparison of TR-Software (TR-SW), TR-
Hardware (TR-HW), DR-Partition Recovery (DR-PR), and No Recovery
(NR) strategies with increasing node failures.
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Figure 13—Accuracy Comparison of TR-Software (TR-SW), TR-
Hardware (TR-HW), and DR-Partition Recovery (DR-PR) strategies with
increasing node failures.

In Figure 14, we show the messaging overheads for the various
recovery strategies for each of the applications. The error bars
in the figure depict the variation in overhead with the number of
faults. We see that communication overhead of these mechanisms
is independent of the severity of faults, and depends mostly on the
nature of the application. TR-SW and TR-HW are almost equal
because they share the same logic when invoked, and incur no more
than 25% additional messaging overhead. DR-PR incurs twice as
much overhead as TR-HW or TR-SW for some applications like q-
digest that span the entire network, and, therefore, involve a large
number of nodes. For applications like vehicle tracking in which,
at any given time, only nodes within a certain locality are involved,
the overhead of DR-PR is almost a constant and quite small (about
15%).
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Figure 14—Message overhead comparison of TR-SW, TR-HW, and DR-
PR strategies.

Finally, we see in Figure 15, that TR requires between 2.2–2.5
times the data memory of an application without recovery, which
measures the amount of checkpointing state maintained. Today’s
sensor nodes have different program, SRAM, and flash memories.
Since SRAM (data) memory can be stored inside a (much larger)
flash, this problem is less severe. Nevertheless, clearly, this is an
aspect of our system that could benefit from some optimization.
This memory overhead is independent of the number of faults. It
does depend only on application characteristics, specifically the av-
erage nesting depth of checkpoints. Interestingly, for our applica-
tions, this nesting depth happens to be comparable (slightly more
than 2 for an average execution trial), hence the memory overhead
appears to be the same across applications.
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Figure 15—Memory overhead for CRR.

Summary. Our recovery strategies can improve application avail-
ability by an order of magnitude, while preserving application ac-
curacy for certain kinds of faults (software faults, and network par-
titions). They incur acceptable messaging overhead (less than 15%
for vehicle tracking), and a factor of two additional data memory
for checkpointing. While TR works well for continuous output ap-
plications like vehicle tracking, those requiring longevity, such as
q-digest, benefit from having declarative annotations with merge
functions for partition recovery.

6. Related Work
There are two primary approaches for generic rollback-based re-
covery schemes, a survey of which is given in [11]. Such schemes
can be classified as either checkpoint-based or log-based. Log-
based protocols tend to have unpredictable message logging re-
quirements, which are hard to provision for in memory-restricted
sensor nodes. However, log-based protocols are predominantly
used in databases [28] and file systems [34] because they have
access to a large and persistent disk storage. CRR is checkpoint-
based, and there is an extensive set of algorithms and implemen-
tations of distributed checkpoint schemes in a variety of domains
ranging from loosely coupled message passing systems to tightly
coupled multiprocessors [5, 6, 10, 19, 22, 30, 32, 36, 38]. A taxon-
omy and survey of such schemes is given in [20]. Two important
features of our checkpointing API are that (a) it is easier to use
than most of these techniques because it leverages the macropro-
gramming abstraction, and (b) it is implemented efficiently over
the broadcast facility in wireless sensor networks.

Declarative recovery through annotations is a novel aspect of
our work. We are not aware of prior work similar to these language-
level constructs, even though a growing body of literature exists
for augmenting systems such as MPI with recovery APIs and li-
braries [7]. Also, recently, there is a renewed interest in implement-
ing systems components using declarative approaches [15, 25], but
they do not directly deal with recovery.
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Our partition recovery support is also novel. Others have pro-
posed application-specific merge functions in varied contexts such
as distributed file systems [33] and mobile computing [41]. How-
ever, such systems have not been widely popular mainly because
their generality means merge functions are hard to write. We be-
lieve that it is simpler to write merge functions for sensor network
applications because they are frequently numerical in nature. Mad-
denet al. have proposed a form of merge functions for query pro-
cessing in sensor networks [26], but those merge functions were
for normal processing inside SQL queries, and not for recovery.
Finally, we are not aware of any prior work that considered recov-
ery in sensor networks, either in the context of macroprogramming
systems such as [31, 42, 43] or otherwise.

7. Conclusions and Future Work
Failures are a critical concern for sensor-network systems, and one
that crosscuts entire applications. In this paper, we have described
the problems for manual failure detection and recovery in sensor
networks, and we show how the notion ofmacroprogrammingcan
be used to largely untangle the failure concern from the applica-
tion logic. First, we have designed a generic checkpointing API
for macroprogramming systems that leverages the centralized view
of a network to allow checkpoint and rollback to be specified at
natural points in the overall application. Second, we explored two
automated recovery strategies, which significantly raise the level of
abstraction for specifying recovery and serve to further insulate the
recovery concern from the rest of the application. We have imple-
mented our checkpointing API and automated recovery strategies
in the Kairos macroprogramming system, and experimental results
illustrate their utility and practicality.

Several avenues for future work remain. First, it would be use-
ful to gather more experience with our techniques on real-world
deployments. Second, our work on transparent recovery is only a
first step; we plan to examine a range of applications to better un-
derstand appropriate heuristics for transparent recovery that will
be widely applicable. Finally, our recovery implementation is rel-
atively unoptimized; in future work we will use program-analysis
techniques to automatically minimize work lost in recovery and to
minimize the memory overhead of checkpoints.
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