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Hamiltonian Theory of Guiding Center Motion

Robert Grayson Littlejohn

Lawrence Berkeley Laboratory
University of California '
Berkeley, California 94720

ABSTRACT

With problems involving inhomogeneous magnetic fields in plésmé
physics it is common to call upon the guidiﬁg Cénter'approximation.
Unfortunately, this approximation can lead fé 1engthy calculations,
especially when carried beyond lowest order. Hamiltonian methods
have proved to be an effe¢ti§e way of organiziﬁg-and condensing‘

such long calculations for many'othér perturbation problems in

~plasma physics, both in regard to single particle motion and collec-

tive effects. It has hitherto been difficult to apply similar
Hamiltonian methods for the guiding center approximation'becausé
the demand for canonical variables in Hamiltonian mechanics has

seemed to force one to use field line coordinates. These coordinates



are often not convenient in practical applications, and most research
in the past has been carried out with non-Hamiltonian methods in
rectangular coordinates.

This.work presents a theory of guiding center motion which cir-
cumvents these problems by using noncanonical coordinates in phase
~space and rectangular coordinates in physical space. Methods are "
developed for carrying out Hamiltonian perturbation theory in non-
canonical coordinates, and these preserve all the computational
advantages of the more traditional Hamiltonian methods. Close
attention is paid to the Poisson brackets of the‘coordinates among
themselves. Darboux's theorem is used to create a set of coordinates
which satisfy certain Poisson bracket relations and which simul-
taneously have a dynamical éignificance in the perturbation’expansion.
Lie transforms are used to carry out the perturbation expansion itself.

The theory is applied to the motion of a nonrelativistic particle
moving in a magnetostatic field. Thé\guiding center variables are the
following. X is the position of the éuiding center in recténgular
coordihates; U iﬁ the parallel velocity of the guiding center; 6 is
the gyrophase; and M is the magnetic moment. Although these variables
are well-known in guiding center theory and have simple physical inter-
pretation, nevertheless they were not selected on that basis. Instead
they emeige és a natural consequence of the transformation theory, v
.as thé sbiutions to a set of Hamiltonian differéntial equations. The
guiding center variables aré represepted as formal power seri?s in thé
adiabatié pafameter e of functions of thewparticle's positibn X and
velocity v. The guiding center variables exactly satisfy (i.e. to all

orders) the following Poisson bracket relations:



{o,M} = 1/e
{6,X} = {6,U} = (M,X} = MU} =0
{X,U} = g*/a*

= ) *
‘{Xi,Xj} seikjbk/n

where eikj is the Levi-Civita symbol, ﬁ is the unit vector along the
magnetic field B, Q* is the modified gyrofrequency vector eB/mc + eUVXﬂ,
and where Q* = ﬂ.g*,

Successive applications of the underlying transformation theory,
including Darboux's theorem and Lie transforms, produce é Hamiltonian
formulation of guiding center bounce and drift motions. Averaged
equations of motion are derived as well as the series for the adiabatic

invariants through (g).
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CHAPTER 1

INTRODUCTION



1. THE REVOLUTION IN CLASSICAL MECHANICS

Classical mechanics, the mainstay of theoretical physics in the
nineteenth century, has lain dormant for most of the first half of
this century. During this time the subject seemed to have solidi-
fied, and textbooks were written with a perspective based on the old
research problems of the nineteenth century, especially celestial
mechanics. These books became a part of every physicist's educational
experience, and the prevalent sentiment that classical mechanics was a
finished subject has no doubt been enhanced by this old perspective.

The last twenty years have witnessed a remarkable revival of
interest in classical mechanics under the stimulus of a whole host of
new problems. Among these are the practical problems of particle
accelerators and controlled fusion devices, as well as theoretical
problems in statistical mechanics, plasma physiés and quantum mechanics.
Under the impetus of the space program, even celestial mechanics has
been refived;

In the last few years it has been discovered, to name but a few
examples, that unstable motion is generic, even in systems with a small
number of degrees of freedom (the Henon-Heiles system); that stability
does not imply integrability (the KAM theorem); and that there are
hitherto unsuspected dimensions to integrability (the Korteweg-de Vries
equation).

The old and established methods of classical mechanics, on @hich it
was thought for so long that the last word had been written, proved té
be far from adequate to handle these new problems. As a result the
whole subject is in a state of revolution as new methods are developed

to handle new problems, and entirely new questions, as yet unresolved,
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‘have moved to the forefront of research activity. Undoubtedly ‘there will
come a time for assimilation, when sufficiently large areas of research
will have quieted down and the texfbooks’can be rewritten, but that

time is not yet. |

, One aspect is already clear, however, about the modern developments
in classical mechanics, and that is the predominantly mathematical
point of view which permeates the new research. On the one hand, it

is perhaps not surprising that the old mathematical methods, based
on the intuitive but logically inadequate concept of infinitesimal,
_should’give way to the differential-topological methods of today.
But this change is more than simply a matter of tidying up a few
logical shortcominés. Oﬁe's very ability to conceptualize and to
articulate the right questions, if not to find the right answers,

is enhanced by the global,'topological point of view of modern
mathematics.

The three papers which form the main body of this thesis concern
the guiding center problem, i.e. the perturbative solution of the
equations of motion for a charged particle in a given electromagnetic
field. Stated in these terms, the goal is quite traditional, and
would have been appreciated by any physicist of the ninéteenth
century. There is no consideration given here to questions of a
global nature, such as integrability or stability, and the whole
perturbative approach is based on an unquestioned assumption that
it can be useful to'expand decidedly nonanalytic functions in power
series. Nevertheless, this work does form a Small part of the
revolution in classical mechanics, for the simple reason that the

traditional Hamilton-Jacobi methods of classical mechanics do not



work for the guiding center problem.

In working out the perturbation methods to be presented here,
one cannot help but be impressed with the power of thinking in
terms of the calculus of Cartan on differentiable manifolds, even
though the three papers presented herein are written in terms of
the index calculus familiar to the largest number of physicists.
This was an unfortunate necessity; in fact, the very effort required
to transcribe the ideas involved into the more familiar language
is convincing proof of the superiority of the abstract, coordinate-
free point of view.

From the standpoint of classical mechanics, an important aspect
of this work is that is shows that a simple description of the
dynamics of a mechanical system; i.e. a convenient set of coordinates,
is not always easily compatible with a simple description of the
symplectic structure on phase space. That it was thought otherwise
in the past is due to the dominance of the perspective based on
celestial mechénics, where the transformation p=mv seems a small
price to pay to make both the dynamics and the symplectic structure
look simple. As a result, even an awareness of the symplectic

structure of phase space has in the past been subdued,

2. THE DEVELOPMENT OF THE METHOD OF THE DARBOUX TRANSFORMATION

It may be helpful to the reader‘in following the remainder of
this thesis if I give a brief ﬁistory of the considerations which
led to the ideas to be presented here.

The.original motivation for lookingat the guiding center problem

was to find a simple, well-known, and physically interesting example



of a berturbation‘problem in classical mechanics on which to try the
Poincaré-von Zeipel method, which I had just learned, for treating
perfufbatidns in Hamiltonian systems. (The Poincare-von Zeipel method
is ﬁhe sténdard method of claséical Hamiltonian perturbation theory,1
in which undesirable terms in the Hamiltonian, usually the oscillatory
ones, are transformed away by means éf successive canonical trans-
formations.) At first I did not have the slightest idea that the
guiding center problem would be anything more than a straightforward
vapplication of this method. But I quickly discovefed that things were
not going to be so easy. |

The reason is quite simple. All the books thch discuss Hamiltonian

perturbation theory do s6 in the context of a Hamiltonian of the form

H(q,p) = Hy(q,p) + eH,(q,P) (1)
Historically this model is taken from celestial mechanics, and, indeed,
it is of common occurrence in other applications as well. But. it is

not universal. Consider the Hamiltonian for a charged particle in

a static magnetic field:

olo
>

1
H(qsp) = n [g -

~ o~

(9)] (2)
The physicél meaning of the guiding center approximation, in terms
of the ratio of the gyroradius to the scale length of the magnetic
field; is well-known, but it is not clear how this approximation

is to be built into the Hémiltonian (2). The Hamiltonian (2) simply
does not look at all like the perturbation paradigm shown in (1).

The two leading ideas for introducing the guiding center



approximation were these. According to one idea, one replaces q with
€q, to indicate that the:field is slowly varying. But once this is
done, one does not know what to do next. In the other idea, one
expands ‘in powers of 1l/e; or equiwalentiy,"replaceS'e by e/e ‘and
expands in €. A curious aspect of this procedure is that it gives

a Hamiltonian which appears to have a leading term which is 0(572):

H(qu)=2 2A '_—A.P"'—l_ , (3)

The leading term is integrable, because it dependslonly»on g, but it
does not give periodic orbifs, as ohé éxpects for the guiding center
problem. It is also not gauge invariant, and so-it seemed that (3)-
was wrong. As it finally turned out, (3) is correct, but the
ordering is not as indicafed, sinéé b i;gelf iSfOke;l). Thus, the
‘Hamiltonian (2) consists of two O(e_l) terms in ‘the parentheses which
nearly cancel one anothér, leaving an 0(1) result for H. But even

if I had recognized this fact at the time,:it'wouldfstill not have -
been clear how to proceed.

In the meantime it seemed prudent to find out how the.guiding center
expansion was known at all. This turned out to be quite a rich
subject; there are at least four distinguishable methods for deriving
the guiding center expansion which were published before 1967.

One method is based on a physical picture, a little algebra,
and some intuitive notions-about ordering and averaging. This is
the method found in the plasma physics 'cextbooks,V2 and also in
No'rthrop's3 book. Perhaps the clearest and simplest application of

this method was made by Banos. But this method did not satisfy me,
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because it is not systematic-td any ordef, and because it gave no
insight into the Hamiltonian (2).,v

Another method is based on Kruskal's ansatz,5 which is a kind of
WKB_approximation. -This method is not Hamiltonian, but it is syste-
matic to any order; A discussion of it may also be found in No‘rthrop's3
book. This method has in recent years been used by Northrop and
Romeé‘to carry the guiding center expansion to one order beyond the
classic, well-known drift formulaé. By their own account, the ambunt
of algebra was brutal. But this approach also did not satisfy me,
because it gave no insight into the failure of the Poincaré;von Zeipe1
method on the Hamiltonian (2).

A third method was both systematic to any order and Hamiltonian.
This is the method of Gardner,7 which begins by transforming the
Hamiltonian (2) to field line coordinates, and follows with a sequencé
of canonical transformations. This method is certainly logically
complete, but it failed to satisfy me for a number of reasons. In
the first place, it was not clear what connection this method had
to the Poincare-von Zeipel method, and it did not explain the failure
of the latter on the guiding center pfoblem. Second,'the method seemed
to involve more labor than one would expect on the basis of experience
with the Poincaré4von Zeipel method. And third, the use of field
line coordinates seémed a strange artifice, and a rather high price
to pay to use Hamiltonian mechanics. Thevﬁse of field line coordinates
entailsicurvilinear coordinate systems in phfsical space, and these
lead to such things as the metric tensor and covariant derivatives.

It seemed that such cdmplications should really not be necessary in

Euclidean space, especially when non-Hamiltonian treatments of guiding



center motion can be carried out in rectangularjcobrdiﬁates.

The fourth method proved to be thelmostvinteresting of all to me,
even though it is non-Hamiltonian. This méthgd was called '"the method
of rapidly rotating phase'" by Bogoliubov and Mitrqpolski;g'who seem
to be its inventors. It is aiso often called "the method of averaging."
This method is applicable to systems of ordinary differential‘equations
whose solutions are nearly periodic, which includes the guiding center
problem, but which, most interestingly;'also includes other systems,
some of which can be analyzed by the method of Poincare-von Zeipel.
-Furthermore, the pfocedure one goes through in executing the method
of averaging has a parallel, step for step, in the method of Poincare-
von Zeipe1; The method of averaging was carefully analyzed in_an
important paper by Kruskal,9 in which he showed how adiabatic invariahté
could be extracted once the perturbation expansions themselves were

carried out with non-Hamiltonian means. Thus, a partial link had

already been established between the method. of averaging and traditional

Hamiltonian methods, and there were suggestions of other links as well.
It seemed that by paying close attention to the method of averaging
as applied to the guiding center problem, one might be able to
transcribe each step taken in the non-Hamiltonian procedure into an
equivalent step in a Hamilfonian‘analysis. But this idea ran into.
trouble on the very first step. In the non-Hamiltonian method of
averaging, one begins by introducing the instantaneouS'gyrophase 0.
This is done ‘in a preparatory transformation, the purpose of which
is to make the unperturbed system look simple. 1In a textbook example
of the Poincare-von Zeipel method, one does something very:similar,

which is to introduce action/angle variables for the unperturbed system.

Lo



But since the Hamiltonian (2) does not neatly fall into aniunperturbed
part and a perturbation, it was not clear what to do.

‘.This much was.cledr, however: it was the réStriction'to canonical
transformations -in Hamiltonian mechanics which wasfcauéing fhe
difficulty. For indeed, if arbitrary transformations were allowed
in Haﬁiltonian mechanics, then one could use the same preparatory
transformation for a Hamiltonian analysis as for a non-Hamiltoniaﬁ
analysis. This line of reasoning led to a realization that it is
either an unexplained phenomenon of some Significance,‘or else a
minor miracle, fhat the restricted class of canonical transformations
are so often useful in practice. It also caused an aﬁxiety thét.

a canonical transformation which would satisfy the preparatofy ;
desiderata for the guiding center probiem might not even exist.

What followed was a long and frustrating search for the right
canoﬁical transformation, one which would preparé the Hamilténian'
(2) for a perturbation analysis. After much work the'inadequacy
of mixed variable generating functions for the task at haﬁd becamé
apparent, ansiderably more work showed a similar inadequaéy'of Lie
transforms, whiéh,are extremely awkward for expressing finite canonical
transformations. o

It was an act of desparation to posé4thé following question: What
is the most general form of a canonical transformation (q,ﬁ) > tQ,Pj
in which one of the new variables is the instantaneous gyropﬁase 67
This séemed to be a question of last reéort, Because'the:Poisson'
bracket relations in which one would formulate this questidn give a

syétem_of nonlinear, over-determined partial differential equations.

Nevertheless, it was immediately apparent that the question was
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an interesting one, because it quickly produced the formulas shown
in Eqs. (4.20) and (4.28) of Chapter II. Verifying that these formulas
satisfied the nonlinear equatidns proved to be a more formidable' |
task, because the demonstration involved ihfinife series of noncommuting
linear operators. In the case of the relation {J,X}=0 (Eq. (4.13)
of Chapter I1I), I was unable at first to prove the desired result to
all orders, but a brute force substitution and calculation produced
a proof of the result through fourth order, in a miraculous mutual
annihilation of scores of terms. It was only later that the proof
Based on the commutativity of Hamiltonian flows, which forms the
essence of Darboux's theorem, became apparent.

The rest of the theory fell quickly into place, and it is ade-

quately explained in the papers which follow.

3. SYNOPSIS OF THE THESIS

The three research papers comprising the main body of this thesis
concern the application of Darboux's theorem in various aspects of
guiding center theory. Of the three, the first is the most important, .
since it gives an exposition of the new methods, whereas the other
two papers simply apply the methods to cases of practical interest.

The first paper, entitled "A guiding center Hamiltonian: A new
approach," c@mprises Chapter II of thi; thesis. This paper divides
roughly into two parts, The first part, consisting of Secs. 1-3,
presents a covariant formulation of Hamiltonian mechanics using the
index calculus familiar to physicists. included in this part is a
discussion of Darboux's theorem in the context in which it has been

understood in the past, i.e. concerning the existence of .canonical



coordinatés. The second part of the paper, consisting of Secs. 4-6,
applies Darboux's theorem to guiding center motion. As a model

to illustrate the method, particle motion in the two-dimensional
magnetic field ? =~B(x,y)2 is studied. ‘In.the application of Darboux's
theorem not just any canonical (or semicanonical) coordinate system
is sought, but raﬁher one which has a dynamical significance, based
on physical considerations of the unperturbed motion. One result is
a fascinating interplay between the dynamics and the symplectic
structure. After the Darboux transformation has been carried out,
the Hamiltonian is,subjectéd to an averaging transformation which is
effected by Lie traﬁsforms. One interestihg aspect of this procedure
is the use of scalar Lie generatiﬂg functions with noncanonicél
(variables.

The second paper, entitled "Hamiltonian formulation of guiding
center motion," comﬁrises:Chapter III. This paper is a'straight- -
forward application of the Hamiltonian’methods of the first paper
td guiding center motion in three-&imensional magnetic fields v
§=§(§), with g;o. Although there is little that is new here from
the standpoint of Hamiltonian mechanics, the thfee-dimensiona1 
guiding center problem is a substantial exercise in perturbation
theory, even with the new methods. In this paper the drift equations
are carried tb one order beyond their‘claésic, well-known forms. It
turns out that if one is willing to have the guiding center position
depend on the perpgn&icular unit vectors (these.define the origin
of gyrophase), then the O(ez) correction to the perpendicular drift
equations takes on a remarkably simple form (see Eq. (6.55) of Chapter

III). Perhaps the most striking result of this paper is the set of

11
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Poisson bracket relations in Eqs. (4.1)-(4.5) and (4.31)-(4.32).
It is an interesting consequence of the theory underlying the Darboux
transformation that these Poisson bracket relations are exact
expressions, good to all orders, rather than truncated power series..
The third paper, entitled '"Hamiltonian theory of guiding center
bounce motion," comprises Chapter IV of the thesis. Although this
paper, like the previous one, is' an application of the Darboux -
‘transformation to a practical problem, it includes in addition some
improvements on the Hamiltonian methods of Chapter II. In particular,
it 'is found: that the Lagrange‘téﬁsor is simpler .to deal with, for
many purposes, than the Poissqn tensor. In this paper a treatment
of the bounce motion is given which parallels that given for the
gyromotion in the previous paper. The averaged Hamiltonian for the
bounce motion is derived, and this gives in turn the averaged
equations of motion. In addition, the adiabatic invariant series
is carried through O(e), and Poisson brackef relations are derived
for the averaged variables. Like-the Poisson brackets derived in
the previous paper, these are also exact:.
Finally, in Chapter V, I suggest ways to improve on the methods
which have been presented, and I discuss applications and directions

for further research.
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A GUIDING CENTER HAMILTONIAN: A NEW APPROACH* -
Robert G. Littlejohn

Lawrence Berkeley Laboratory
University of California
‘Berkeley, California 94720

ABSTRACT

v

A Hamiltonian treatment of the guiding center problem
is given which employs noncanonical'COOrdinates in phase
space. Sépération of the ﬁnperturbed system from the per-
turbation is achieved by using a coordinate transformation
suggéStéd'by a theorem of Darboux. As”a model to illus-
‘trate the method, mﬂtioh in the magnefic“field §=B(x,y)2
is studied. Lie transforms are used to carry out the

perturbation expansion,
1. INTRODUCTION

In this paper I will report on a new apprcach to a Hamiltonian
formulation df.the guiding center problem, an approach which'léads
to a rémarkably deep‘insight into the formal Structure of classical
Hamiltonian mechanics. This insight is not new, in the sense that
the naturéllmafhematical apparatus for an abstract description of
Hamiltonian mechanics is that of differéntiél geometry, and differen;

tial geometry has been exhaustively studied by mathematicians.

* Work was supported by the Office of Fusion Energy of the U.S.
Department of Energy under contract No, W-7405-ENG-48.
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Nevertheless, even thoée mathematicians who have explicitly concerned
themselves with Hamiltonian mechanics have ten&éd to use a language
and a notation which is difficult for most physicists.  Among these

we might mention Abraham and Marsden,1 Vinogradov and Kupershmidt,2
and Arnold.3 As a result, very little of the abstract point of view
§f Hamiltonian mechanics has found its way into the physics literature,
and certainly not into the more familiar textbooks.4"6 In addition,
for most applications of interest in pﬁysics,_even quite theoretical
ones, a description of Hamiltonian mechanics which focuses on the
differential geomefry of phase space may be deemed to be unnecessarily
academic and impractical. The guiding center problem appears to be

an exception, however, since for this problem one is virtually
compelled to employ noncanonical‘coordinatés in phase space.

The term '"'the guiding center problem" refers to a certain pertur-
bative expansion of the solution to the equations of motion of a
charged particle in a given electromagnetic field. The perturbation
expansion is based on an apprbximation, the '"guiding center approxi-
mation," which may be foughly described by saying that electromagnetic
effects dominate over inertial effects. This problem is of great
interestland importance in plasma physics and astrophysics, and over
the years various means have been devised for effecting this pertur-

7-14 All of these methods involve an enormous

bative development,
amount of algebraic manipulations, which has hindered studies into

higher order effects, For example, there'still remains some contro-
versy over certain second order terms, This work has arisen out of

an attempt to find a better way to solve this problem.

If the differential equations of motion for the guiding center
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problem are written down without regard to their Hamiltonian origin,

then it is straightforward but laborious to subject these equations

to a systematic perturbative treatment, yielding the guiding center

expansion. The required perturbatién methods, which are designed
for systems of ordinary differential equations with nearly periodic

solutions, were largely developed by Kryloﬁ and Bogoliubov,15

~Bogoliubov and Mitropolski,16 and Kruskal.17 The work of Kruskal

is especially significant, because he showed how the perturbative
solutions relate to action integrals and adiabatic invariants in
thé case that the system of ordinary differential equations can be
derived from a Hamiltonian.

Similar perturbative methods exist for Hamiltonian systems.
These methods are older than their non-Hamiltonian counterparts,
having been developed originally by Poincaré,18 and they are the

standard methods found in textbooks.>»6:39-21

If a system can be
analyzed with Hamiltonian perturbation methods, then it is much
better to do so than to use non-Hamiltonian methods. The reason
is that the equations of motion in Hamiltonian mechanics are |
derivéble from a scalar function, namely the Hamiltonian, so that

one can deal with a scalar instead of a vector. Similar consider-

ations apply to coordinate transformations, which in Hamiltonian

mechanics are specified by a scalar, namely the generating fqnction

of the canonical transformation. This advantage becomes greatly
enhanced as one proceeds to higher and higher orders.
Unfortunately, the Hamiltonian for the guiding center problem,

which will be discussed in detail in Sec. 4 below, cannot be easily
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analyzed by the standard methods of Poincare. The reason is that the
relation between the canonical momentum p énd the physical variables

X and v describing the motion of the'particle involves the use of the
magnetic vector potentialié. That is, the. introduction of the vector
‘potential is the price'one‘must pay in order to use Hamiltonian mechanics.
This in itself would not be so bad, except that in the guiding center
approximation the transformation yielding.p'from X and v mixes up the
ordering schéme, so that there is no clear separation between the
unperturbed system and the perturbatioh. This difficulty is not inherent
to the problem, but only to a Hamiltonian description of the problem

in terms of the usual set of canonically conjugate q's and p's.

In this paper we take an approach to thebguiding center problem
which preserves the best antures of the perturbaﬁion method of Poincaré,
and yet avoids the use of the vector potentiél. These goalé are
accomplished by employing noncanonical coordinate systems in phase'
space. This step leads one to think more in terms of a geometrical
picture of phase space dynamics, and less in terms of coordinate
representations with respect. to canonically conjugate (q,p) pairs.

One result is a heightened appreciation for the role of differential
geometry in the formalism of Hamiltonian mechanics.

Sections 2 and 3 of this paper are inéluded,for the sake of

‘establishing certain notational conventions and for the sake of com- -
pleteness, Section 2 develops some ofPthe essentials of a covariant
formulation of Hamiltonian mechanics. This presentation is inten-.
tionally and necessarily incomplete, due to lack of space; for
example, certain propositions are stated without proof. Unfortunately,

there does not seem to be anything in print which covers this subject
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except in the abstract‘;anguage of mbdern/matheﬁatics.

In addition, in Section 2 we prove a certain theorem, Theorem 1,
which is not at all profound, but which seems heretofore not to have
been articulated in quite the same manner, and which is crucial to
our perturbation development_in Section 5. In Section 3 we discuss
in detail a theorem.of Darboux, pertaining to the existence of
canonical coordinates, which is central to our choice of coordinates
in phase spaée.‘ |

In Section 4 we sét up the Hamiltonian for the motion of a charged
particle in the guiding center approximation: The case studied is
‘that of a nonrelativistic particle in a static magnetic field with
a high degree Qf symmetry, namely §(§) = B(x,y)i. Although this is
a v;ry Specialucase; ifvsérves to illustrate the novel mathematical
techniques described in this paper. Tﬂe application of the same
tecﬁniques fo more réalistic problems is straightforward and will
be réported upoh in‘forthcoming publications. In Section 4 we use
a prdcedure suggested by the proof of Darboux's theorem to construct
a certain Vsémiéanonical" coordinaté sysfem in phase45pace, preparing
the Hamiltonian for a standard perturbatibn analysis, along the lines’
- of the method of Poincare,

In Section 5 we carry out the perturbation expansion to second
order in the guiding center approximation. The expansion is based
on the perturbation method of Poincaré, but it differs in two sig-
nificant ﬁays; bdne way is that canonical transformgtions are expréssed
in.terms of their Lié generators, instead.of the more conventionél
mixed—vériable generating functions. That is, we use a variant of

the so-called Lie transform method, which has been pioneered by
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. 22 .. 23 .24 . .
Hori, Deprit, Dewar, and others. The second way is that a
system of phase space coordinates is used which is noncanonical.
Finally, in Section 6 we discuss various technical aspects.

of the method and possible extensions and generalizationms.

2. A COVARIANT FORMULATION OF HAMILTONIAN MECHANICS

In this section we outline some of the essential features of
Hamiltonian mechanics in the context of an arbitrary céordinate
system in phase space. To do this it is necessary to call.upoﬁ tﬁe
formaiism of differential geometfy. A'relativelx accessibie source
for a more thorough coverage of this subject is the recent textbook
by Arnold.3

We will denote a coordinate system on phase space.by the symbol
z or-ii, representing 2N coordinates. N is the number of degrees
of freedom df the Hamiltonianvsystem. 'Whén these coordinates are
some éhoice of the usual q's and p's, we will call thém canonical
coordihates, énd refér to a éahonical coofdiné#e‘system. In £h15

section, when we refer to canonical coordinates we will decompose

the 2N coordinates z' into q's and p's as follows:

zl = (ql,---,qN:Pl,---,PN) (2.1)

Canonigal coordinates are td be regarded as a special case, and unless
we state.the contrary, the coordinates zi are not to be interpreted
as necessarily representing a canonical coordinate system.

A convenient place.to begin a covariant.formulation of Hamiltonian
mgchanics is with the Lagrange brackets. If z represents a set of
canonical coordinates, and if g represents a set of 2N independent

functions of z, then z may be interpreted as a possibly noncanonical

[y



coordinate system in phase space. The Lagrange bracket of the quantity

z' with the quantity z’ will be denoted by the symbol 6ij which,

s

according to the definition, is given by

=L I§<‘aqk apk ] apk‘aqk> . 2.2
1 x\azt sz? szt 8z’ .

It is convenient to introduce a certain constant, antisymmetric,
orthogonal 2Nx2N matrix vy, which is represented here by its partition

into four NxN matrices:
i .
; : ‘
Y = |k . . (2.3)
1

In terms of the matrix vy, the Lagrange Brackets &ij can be written
as foliows:
s : . |
- 92 9z
W,., & —+Y -z (2.4)
ij vail kg aZJ
Here and throughout this section summation over repeated indices is
understood.
The Poisson bracket of two phase functions f and g will be denoted
by {f,g}. The Poisson Brackets of the coordinates z among themselves.
are of special importance, and we denote these quantities by .

According to the definition of the Poisson Bracket, we have

- i s N/ocionzd azinzj
sii {zl, zq} - X(az 9z~ 3z 92 ) (2.5)
k

3qy 3p, - 3P gy
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This can also be written in terms of the matrix y, as follows:

5 - 8—2'1; Yk 2'12 (2.6)
9z 9z

In Eqs. (2.4) and (2.6) there may be recognized the transformation
laws for the components of second rank tensors of the covariant and
contravariant types, respeétively. According to this interpretation,
aij and 57 are the components pf two tensors with respect to the
coordinate system g. Wﬁen the coordinate system z is arbitrary, i.e.
not necessarily canonical, or when no distinction need be made between
two coordinate systems, we will drop the overbars and write simply

1]

coordinate system z.

w, or ¢J for the components of the two tensors with respect to the

The following connections between the w tensor and the ¢ tensor
are important. By the well-known properties of the Lagrange Brackets

and Poisson Brackets, we have, in any coordinate system,

kj _ .k '
wijo = Gi , (2.7)
In addition, it is easy to see that wij =o' = Yij if and only if

the coordinate system z is canonical.

The w and o tensors can be viewed in the abstract, apart from

their component representations.” For the o tensor, the relation

between the two points of view is given by

ij » 3 3 3
c=0 ~® = ) n (2.8)
pzt  32z) -1(BQk apk

Thus, for example, the Poisson Bracket of two phase functions f and

.



g can be regarded as the value of the ¢ tensor on the differentials

of the two functions:

{£,8} = o(df,dg) = 2L o1 28 (2.9
azl azJ ’

Likewise, the tensor w can be regarded as a 2-form:

: . N
_ -]__- 1 J _ C e
W=7 dz o~ dz { dq, ~ dp, (2.10)

The 2-form w is nondegenerate, meaning

det(mij) #0 (2.11)
It is also closed, meaning dw = 0, or

dW., . W, W, .
i, CYik L, TP _ (2.12)

azk 9z 52’

A'manifold, such as Hamiltonian phase space, which is endowed with
a closed, nondegenerate 2-form is said to be a symplectic manifold.
The fact that w is closed is especially important. It implies

and is implied by the Jacobi identity:
{f,{g,h}} + {g,{h,£}} + {h,{f,g}} =0 (2.13)

~We do not allow the 2-form w to depend on time, since to do so

causes the Poincare invariants to depend on time. That is, we demand

Q>
£

A . (2.14)

Q
(a2

23
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From a practical point of view, this means that most time-dependent
tfansformations z = z(q,p,t), taking us from a canonical coordinate
system to an arbitrary system, must be excluded; Time-dependent
canonical transformations are an exception, since wij = Yij =
constant in any canonical system. A dynamical system described by

a time-dependent Hamiltonain H may be treated by the well-known
procedure of taking t and -H as canonically conjugate variables

in an extended phase space of N+1 degrees of freedom. In this papér
there will be no need to consider either time-dependent coordinate
transformations or time-dependent Hamiltonians.

An important example of a noncanonical éoordinate system in phase
space is afforded by the dynamical system consisting of a nonrelati-
vistic particle of mass m and charge e moving in a given, static
magnetic field §(§). The usual canonical coordinates (3’2) for the

phase space of this system are give in terms of the particle's

position x and velocity v by

X

~

10
L]

(2.15)

p =mv + E;A(x)

~where A(x) is a vector potential corresponding to the magnetic field
B(x). The coordinates (x,v) parametrize phase space equally as well
as (q,p), but they are ndncanonical. Using Eq. (2.5), the components

of the ¢ tensor with respect to this coordinate system are easily

obtained:

(2.16a)

n
o

.{x.,x.}
1)

—

]

{xi,vj} -{Vi’xj} = Gi. (2.16b)

m oij



2 ij

v.,v.} = 238, | (216
i) mec¢ : RERE ~( o )

where

Bis = €55Bx (2.17)

The components of the o tensor can be written in matrix form, with

the ordering z = (x,v):

o
—

e
.
]

(2.18)

Q

]
et

Im
»

gl
1
1
]

t
- e == -
1
1
1
1
1

Ed
(s}

Here the symbol B represents the magnetic field tensor, defined in

Eq. (2.17). The.components of the 2-form w in the same coordinate

system are given by ' ’
|
-£B 1 I .
_ mc ! . . R
iy = W-m--- SRECEEE ’ (2.19)
S SR
I

Observe that-the closedness of w implies the Maxwell equation VeB=0.
Let us now turn our attention to Hamilton's equations of motion

and their coénsequences, These equations are easily cast into a

generally covariant form by using the Poisson Bracket and Eq. (2.9).

The reésilt is

i ) ..
SRR Pty L R ' : (2.20)

25



One may say that the Hamiltonian transforms as a scalar under

arbitrary time-independent coordinate transformations.

As an example of Hamilton's equations in a noncanonical coordinate

system, consider the (§,Y) coordinates used in Eqs. (2.15)-(2.19).

The Hamiltonian in the (q,p) coordinates is

H@,p) = 2= (@ - £ Aa)’ (2.21)

In the (§,Y) system this becomes, using Eq. (2.15),

H(§,Y) = %—-mv2 (2.22)
Then the equatibns of motion are
-:

x 01 I oH Y
d || 1 : BXx "
S U N BN S, o ]ecZa] = locmeoao (2.23)
de n | e oH e

v -1 1 —=B == — vxB

~ 1 me 9 mc ~ ~

These are, of course, the Newton-Lorentz equations. The "nonphysical"

magnetic vector potential A disappears from the formalism when the
(x,v) coordinates are used.

Lgt us now return to Hamilton's equations.of motion and replace
' the parameter t, describing the trajectories in phase space, by the
nondescript parameter A.. This is done because in two applications
~in this paper, one in the proof of Darboux's theorem and one in_thé
perturbation analysis of Sec. 5, the trajectories which arise from
Hamilton's equations have nothing to do with the time evolution of
a dynamical system, This replacement also avoids some inessential

confusion over our disallowal:of time-dependent coordinate



transformations.
Let §(§0,A) be the solution to Hamilton's equations which satisfies

z=2

2, at A=0, That is, §(go,k) satisfies

i,
25 . M)A - (2.24)
BzJ

(s3]

where the right hand side is evaluated at‘§=§(z0,k), and it also
satisfies §(%O,Q)=§O for all Z,- ‘We assume the equivalent of a time-

independent system, meaning that Hamilton's equations are autonomous,

so that
$(8(zg521)525) = 5(z45142)) . (2.25)

for all z A This is- an-elementary result from the theory

A .
~0” "1’ "2
of ordinary differential equations,25 and it gives rise to an inter-
?‘pfétation of the solution S as a representation of a one-parameter

group of_diffepmorphisms of phase space onto itself. In view of their

origin from Hamilton's equations, these diffeomorphisms are called = -

symplectic diffeomorphisms, and the group is called a Hamiltonian flow.
ESymplectic diffeomorphisms cén‘be rég#rdéd as mappings of phase
space onto itself in a manner independent of coordinate representation,
or, in conjunction with a given coordinate system z, they can be
fégarded as mappings of ZR?N onto itself.” Of course, the underlying
Hamiltonian_H‘and symplectic 2-form w are implicit. The latter point
of view is_more usefu1 to us here, because it encourages us to think
of symplectic diffeomorphisms as A-dependent coordihate transformations.

That is we associate a coordinate transformation z -+ z with z=S(z,A);

27

we will call such a coordinate transformation a symplectic transformation.

For the purposes of perturbation theory it is useful to associate



a symplectic transformation with a linear operator, which we denote
by T(A). This operator acts on the vector space of phase functions

and maps it into itself, according to the rule

(T (2) = £(5(z,1)) (2.26)

for any phase function f. That is, Tf = foS. The set {T(A)|A € R}
forms a linear representation of the Hamiltonian flow, and the group

multiplication law, corresponding-to Eq. (2.25), is

T(Al)T(AZ)

A suitable basis for the Lie algebra of the T representation of the

Hamiltonian flow is the operator L, defined by

= TO*A,) 227

Lf = {H,f} o (2.28)

for any phase function f. With these definitions, Hamilton's

equations can be written

- d

& TO) = -LT() | (2

with solution
T(A) = exp(~AL) (2.

It is well-known that the solutions of Hamilton's equations of
motion in the usual (q,p) language give rise to canonical transfor-
mations.. With respect to an arbitrary coordinate system in phase
space, symplectic transformations are the peoper generalizations of
cénonical transformations, or.at least the regular canonical trans-

formations.6 Moreover, these transformations play a privileged role

.29)

30)

28



among .all possible transformations, in spite of the covariant formalism
being pursued here; because the 2;fofm\w is invariant. under Hamiltonian
flowst ‘This invariance can be stated in ‘a number of different but
equivalent ways. : One way is'to say that symplectic diffeomorphisms
‘with fespect to a canonical coordinate system yield canonicai transfor-
mations. Another way is to state the invariance of fhe first Poincafé
invariant, which is the integral of w over some surface in phase space.
For our purposes we ¢hoose a third way. We consider some coordinate
system z, with respect to whigh w has components wij(g), which are to
be regarded as definite functions of z. Under an-arbitrary Chénge of
coordinates z + z the componenté”dfww gé into Bij(g), which we consider
to be functions of the new cdordinates-%, according ‘to the usual rule

for covariant tensors:l
(2) o (2.31)

However, if the trans?érmation z +J§ is a symplectic transformation,
:Fhen the invariance of.w means aiic§);é’mij(§)’ for all z. Thus we
have the following theorem: |

Theorem 1. The functional form of the components of the 2-form
w (and hence also of the ¢ tensor) is invariant under symplectic
transformations, .

* We will make use of this theorem in Section 5.

3. DARBOUX'S THEOREM
An axiomatic approach to Hamiltonian mechanics begins with the

2-form w, assumed to be closed and nondegenerate, and then develops

29
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the consequences of these assumptions, such as the Jacobi identity.
The appfpach taken in most textbooks on classical mechanics, on the
other h;nd, is to prove theorems such-as the Jacobi identity by
employing a canonical coordinate system. Tﬁe'axiomatic épproaéh is
equivalent to the.textbook.approach only if it can be shown that a

canonical coordinate system actually exists, i.e. a coordinate

system such that mij Yij' That one {and hence a whple class) does
exist is a consequence of Darboux's theorem, which we shall prove in
this sectio;.

For the purposes of Darboux's theorem, it ié convenient to

decompose a set z of canonical coordinates into q's and p's in

the follbwing order:

2 = (q3,P15+++5qPy) (3.1

Corresponding to this ordering, the matrix y has the form

(0 11 | )
-1 OJ J 0.
‘""';”6"1:
_ -1 0O .
Yij - fom=— .‘0. (3.2)
0 1571
\ :'1 OJ

This ordering differs from that used in Sec. 2.

We shall denote phase space by ¢, representing a 2N dimensional
manifold. The construction of canonical coordinates given in the
proof of Darboux's theorem generally holds only locally, i.e. in
some finite neighborhood of a given point, We shall, in this section,

ignore all questions of the region of applicability of the cohstruction,

)
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" and speak as if it were valid for all of ¢. With this understanding,
we may state the theorem,

Theorem 2 (Darboux's Theorem). Let there be given a closed,

nondegenerate 2-form w on ¢.and a coordinaie systém z with respect to
which ¢ has components wij' Then there exists a goordinate trané-
formation z - § such that the ¢omponents éij,Of w with respect to the
new coordinates have the form aij = Yij' Furthermore, any ong of

" the new coordinates Ei, considered as a function of the old.coordinates
z, can be chosen af‘will.

We remark that if the originai coordinate system z is canonical
itself, then the.constructive proof of Darboux's theorem gives a
method of determining a canonical transforméfion»f > % in which one
of the new coordinates Ei(g) takes on a specified form. It is in
fhig context that Darboux's theorem will be'used in Section 4.

Darboux's theorem is proved by induction, using the following
lemma: | o |

Lemma. Let there be giﬁén the hypofheses of Darboux's ihgorem.
Then thereiéQESfS a cdordiﬁ;te trénSformatioh §.+:§'§uch that fheir
components &ij of w with respect to the new coordinates g have the

form

E il . (3.3)
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where Qij represents a (2N-2)x(2N-2) matrix. Furthermore; any one of
the new coordinates Ei(g) can be chosen at will,

To show how this lemma impiies Darboux‘s,fheorem, we develop some
simple corollaries of the lemma. To do tﬁis, it is convenient to label

the new coordinates z as follows:

Z = (2,9,p) (3.4)

where the new coord%nates Z, corresponding to the Qij block in Eq. (3.3),
represent 2N-2 functions Zi(g). First of all, we note that the

(2N-2)x (2N-2) matrix'Qij is gntisymmetric. Next, since w is non-
degenerate? we have det(&ij) # 0, and hence also det(ﬂij) # 0. Then,

since w is closed, we have

dW.. dW. 20, .
U,dk, Moy (3.5)
9z 9z azd

If the index k in this equation is set to 2N-1 or 2N, corresponding to
the new coordinates q or p, and if neither i nor j takes on these’values,

then two terms vanish according to Eq. (3.3), since we have

wjk = Uy ='0, and the remaining term g1yes
ani. 391.
a—'lq = a——-—lp = 0 (3.6)

Hence the quantities Qij depend only on the new coordinates Z. When
none of the indices i,j,k takes on the value 2N-1 or 2N, Eq. (3.5)
becomes

an. . 3N, 98, .
+ — 4+ — = () (5.7)

?
I



In Eqs. (3.6)-(3.7), the indices i,j,k ruﬁ over the numbers
1,...,2N-2, corresponding to the éoordinates Z.

The result of these corollaries is that the quantities'ﬂij are
the components with respect to the coordinate system Z of a certain
closed, nondegenerate 2-form 2 on some manifold ¢ of dimensionality
2N-2. The manifold & can be identified with a submanifold of ¢, as
will be shown later. Hence on ¢ the 2-form Q satisfies the hypotheses
of Darboux's theorem, and by the lemma there exists a coordinate
transformation % -> 2, taking the components Qij into Qij’ such that
one more pair of q,p coordinates is constructed, and such that one
mofe step toward the form of Eq. (3.2) has been made, After N
applications of the lemma, Darboux's theorem is proved.

The proof of the lemma is constructive. We will call the program
for the construction of the coordinates §:= (g,q,p) the Darboux
algorithm.

_ By hypothesis, w is]nondeégnerate,_so det(mij) # 0. Therefore we
can define a tensor ¢ with components oij according to Eq. (2.7), and
from this, a Poisson Bracket according to Eq. (2.9). When we perform
a coordinate transformation z - z, the components 530 of the ¢ ‘tensor
with respect to the new coordinates z are the Poisson Brackets of
the new coordinates among themsglfes. With the definition g =.(%,q,p),

we demand the follewing form for these Poisson brackets:

{q,p} =1 | (3.8)
21,9} = 0 (3.9)
izt pr =0 » (3.10)

zi,29y = 51 (3.11)

33
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The precise form of the quantities 3') immaterial for the purpose of
proving the lemma, although these quantities will automatically be the
components of a (2N-2)x(2N-2), antisymmetric, invertible matrix, since

the form of %7 is given by

51 (3.12)

- v o -

- o o e -

Clearly, Eqs. (3.8)-(3.11) are equivalent to Eq. (3.12) which in
turh is equivalent to Eq. (3.3). 4

First we solve Eq., (3.8). We pick some function q(g) on ¢ for
one of the new coordinates; the other 2N-1 functions, p(g) and
Zi(g), will then be constrained by Eqs. (3.8)-(3.10). In terms of
the given function_q(g), Eq. (3.8) i$ a first-order, linear inhomo-
geneous partial differential equation for the unknown function p(z).
Such an equation always has a solution,26 which may be found by
integrating along the characteristics of the partial differential
operator.

In this case the characteristics are the curves z = E(A) which
are the solutions to the following set of ordinary differential

equations:
-——-='{zi,q} ' . (3.13)

These characteristics are the trajectories which result upon treating
q(z) as a Hamiltonian, Therefore we will call them "q-characteristics."

The parameter A, which is suggestive of time, is a real number
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parametrizing the trajectories. It is natural to treat the operator

d/dx as a field of tangent vectors, and to write

d _yotidasd o ' - (3.14)
A A j i
ij 3z” 3z

o

A piéture of the solution p(z) to Eq. (3.8) is useful; see Fig. 1.
In this figure, Q represents a contour Qurface of constant q, i.e. a
2N-1 dimensional manifold. Because q is constant along any q-charac-
teristic, every gq-characteristic lies in some such contour surface,
such as the g-characteristic Cq in the figure. To find p(g), we
choose a 2N-1 dimensional manifold PO’ cutting all the Q'surfaceél
PO is arbitrary, except that it must be nowhere tangent to any Q'surface,
since that would result in dq ~ dp = 0 and preclude the use of q and p
as new coordinates. The surface P0 is to be taken as an initial vaiﬁe

surface for p(z); for example, it is cqnvenient to takeip(§)=0 for

ZEP

Z 0 For z ¢ PO’ p(z) is defined as the negative of the elapsed A

parameter, relative to Pb,of the g-characteristic passing through

z. From Eq. (3.14) it then follows that

%E- = {p,q} = -] (3.15)

‘and Eq. (3.8) is satisfied.

Next we want to solve Eq. (3.9) for 2N-2 function Zi(g) which are
indepéndent of each other and also of q and p. Considering q as
given and p and Z as unknown;, Eq, (3.9) is the same partial differential
equation as Eq. (3.8), except that it is homogeneous. Such an equation
poésesses 2N-1 independent solutions, so we seem to have one more

solution than we need. Actually, we do not, because q itself satisfies
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the differential equation, i.e, {q,q} = 0, and the remaining 2N-2
solutions are left for the Z%,
To construct the solutions Zl(g) to Eq, (3.9), observe that

these functions must be constant along q-characteristics:

71
A

[a P

=0 | (3.16)

[aN)

The Zlmay be found by constructing a coordinate system on the surface
PO’ in which q is one of the coordinates and the .other 2N-2 coordin-
the values

ates are Z'. This defines Zl(g) for ze P For z &€ P

0° 0’
Zi(g) are propagated aiong q-characteristics so that Zi(g) = Zi(g')
whenever Z and'g' are on the same g-characteristic. The result clearly
satisfies Eq. (3.16), and hence also Eq. (3.9).

The functions Zi(g) so constructed are not unique, since any
invertible transformation of the form Z = Z(Z,q), taking Z into Z,
gives a new set of solutions. Such a transformation can be regarded
as a coordinate transformétion on PO.

When we turn to Eq. (3.10), we see that the Zi must satisfy
further constraints. The latitude we have in the choice of the Zi,
as mentioned in the last paragraph, is useful here, because by a

~ proper choice of the coordinate system (Z,q) on P it is possible

0
to satisfy Eqs. (3.9) and (3.10) simultaneously.
The characteristics of Eq. (3,10) are found by treating p(g) as

a Hamiltonian, and we will call them the "p-characteristics.'" They

are the solutions z = z(u) of the ordinary differential equations

92 _ (21 p) (3.17)
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As before, we may define a tangent vector field d/dp by

%2 _ . ,p) © (3.18)

=Jo
du ij 3zd 2zt

The functions Zi(g) are to be simultaneous éonstants of the
g-characteristics and the p-characteristics. An arbitrary pair of
Hamiltonian flows does not in general possess simultaneous constants,
since the diffeomorphisms 5elonging to the two flows do not in general
commute. It may be shown, however, that two Hamiltonian flows 7
commute if and only if the Poisson Bracket of the two Hamiltonians is
a constant. In the case at'ﬁand, the q-flow and the p-flow commute,
since {q,p} = 1. |

To construct the Zi(%), we first select some contour surface QO
of q(z), and form the 2N-2 dimensional manifold ¢ which is the inter-
section of this surface with PO’ as shown in Fig. 2, The manifold
¢ is the same one mentioned earlier, on which the 2-form Q is defined.
Within ¢ we construct a coordinate system by arbitrarily choosing
2N-2 independent functions Zi(g). Thus the Zi(g) are definéd for
z € ¢. The values Zi(g) are then propagated aloné the p-character-

istics passing through é. These characteristics lie entirely in

one contour surface of p, namely P.. Therefore the Zl(z) are now

0
defined. for z € PO’ and'they are constants of the p-characteristics
on this surface. The definition of the 7 is then extendéd to all
of ¢ by propagating along q-characteristics, as shown in Fig. 2.
Thus, finally, the Zi(g) are defined on all of phase space, and they

are constants of the g-characteristics everywhere in ¢.

The last step is to show that the Zl(z) are constants of the
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p-characteristics, not just on P, but everywhere in ¢. To do this,

0,
consider the quantities {Zl,p}, which are known to vanish on the

-, surface PO. To find their values elsewhere, we compute their deriva-
tives along the g-characteristics, using Eqs. (3.14) and (3.8)-(3.9):

’

L 1zhp) = 112 ,p),0) = Ua,ph,2' + {1zh,q),p) = 0 (3.19)

Hence the {Zi,p} vanish everywhere in‘¢, and Eq. (3.10) is satisfied.
The Jacobi identity has entered at this point, and it is here that
the closedness of w, which.implies the Jacobi identity, has been called
upon.

This completes our proof of Darﬁoux‘s theorem. Although it may
be fegarded as primarily of theoretical interest, we will méké a

practical épplication of it in the next section.

4, APPLICATION OF DARBOUX'S THEOREM TO THE GUIDING CENTER PROBLEM

4.1. Préliminaries

Eqs. (2,15) and (2.21) deséribe the meption of a nonrelativistic
charged particle in a static magnetic field. For the purposes of
‘_ this section and the next, we want to modify these equations in
three steps.

The first step is to introduce a dimensionless perturbation
parameter ¢ by replacing the charge e by e/e. Then when the solutions
to the equations of motion are developed in powers of ¢, the result.
is the "guiding center approximation." Although the true solution
is found in the end by setting e=1, it is useful to consider ¢ to be

a variable, describing a family of systems. In particular, we shall



speak of the order of an expression in terms of its behavior as

e + 0, it being understood that the parficle»variables X and Y»énd
the fields A and B are to be held fixed in this limiting process.

For exahple, the'gyroradiuévmylc/eB ié O(e), and the’gyréfrequéhcy
eB/mc i$ o). The physical meaning of the limit e - 0 is that

the particle motion is dominated by a nearly circular, rapid gyration
of small gyroradius, which samples only small variations in the
magnetic field during a single gyroperiod. The physical meaﬁing,of
this limit is discussed in greater detail by Northrop,8 and some of

the delicate mathematical‘aspeéts-of the limit are discussed by
9,27

!

Kruskal.
The second step is to suppress the constants e, m and c for
the sake of notational convenience. These constants are easily

restored by a dimensional analysis. The resulting Hamiltonian is

H(g,p) = 5@ - = A@)’ (4.1)

~ o~ -~

and the relation between the particle variables (x,v) and the canonical

coordinates (q,p) is =

13
u
1,0

(4.2)

o

vV=p-=A(q

The third step is to restrict consideration to magnetic fields of
the form B(x) = B(x,y)g, and furthermore to'consider only particle
motion in the x-y plane. The problem»thereby becomes two—dimensional,
and we write X = (x;y), v =‘(vx,vy), etc. The magnetic field cén be
treated as a scalar in the two-dimensional problem; we assume B > 0

in the region of space under consideration.
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4.2. Two coordinate transformations

In this section we will subject the Hamiltonian (4.1) to a
sequence of coordinate transformations. The first is given by
Eq. (4.2); it waé &iscuésed in Sec. 2 in greater detail. Under the

coordinate transformation (q,p) = (x,v), the Hamiltonian becomes

2

HOGY) = 5 v (4.3)

The components o) of the o tensor in this coordinate system can
be conveniently répresented by giving the formula for the Poisson

Bracket of two phase functions f and g:

el

(£,g} = of3ag af)?d

og _ 1
8§ 8~ 3 £

+
AV

~ .

-1 s

2f 9
13-(— x a—%) (4.4)

1]

This is easily seen to be equivalent to Eq. (2.16). Note that ¢
appears explicitly in the Poisson Bracket.

The second coordinafe transformation is motivated byAthe'form
of the solution for a uniform magnetic field, which corresponds to
the limit € + 0., A picture of the particle motion for the case that
B(x,y) is uniform is shown in Fig. 3, assuming a positively charged
particle. The following defintions; relating to the second coordinate
transformation, are valid for an arbitrary field B(x,y)}, but their
physical interpretation is most simple in the uniform case.

First we define a unit vector 6 along the magnetic field B,
According to previous conventions, we'havg ﬂ = 2. Next we define a

" unit vector ¢ in the direction of the particle's velocity:

(4.5)

g
]
<
(¢]
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2 A YA PREEATEPN
Finally, we define a unit vector a by a = b x ¢. Thus the triad (a,b,c)
forms a right-handed set. Note that for a uniform magnetib field a
is in the direction of the gyroradius vector r, which is the displacement

between the guiding center position X and the position of the particle Xx:-

X =

s

+ T ' (4.6)
In the units chosen, we have, for a uniform magnetic field,
1-=5B‘ia , | 4.7)

Fig. 3 also shows the gyrophase 6, which we define as the angle.
between a and the x-axis, measured in a clockwise sense. Using this

angle, we may state the relations between the triad (ﬁ,b,é) and (i,&,i):

¢ = -sin® X - cos® §
a= cosb X - sinf y (4.8)
b=z

Iﬁ thé uniform field 1limit, 6 evolves linearly in time with frequency
B/e. | |

We nbw makg the ébofdiﬁéte transformatioh (x,y,vx,vy) + (x,y,0,v).
The Hamiltonian keeps the form of Eq, (4,3), but the Poisson Bracket

changes, and indicated here by the components of the ¢ tensor:

/ '{xi,xj} =0
{x,v} = c
N (4.9)
{)‘f,e} = 'a/v
o= L
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4.3. The Darboux algoritﬁm

The third coordinate transformation is not trivial, and requires
some motivation. Consider a Haﬁiltonian H(q,p). A typical strateg?
in Hamiltonian.perturbatioﬁ theory is to find a canonical transformation
(q,p) + (q,p) such that the new Hamiltonian K is independent of one
or more (perhaps all) of the new generalized coordinates ﬁ, To be
specific, suppose it is made independent of.one new coordinate, say
ﬁl. Then none of the equations of motion'for the other 2N-1 phase
coordinates depends on ﬁl, i.e. tﬁe il>time evolution is decoupled
from thé evolution of all the other phasé coordinates. In addition,
the conjugate momentum 51 is a constant of the motion.

It may be seen from Eq. (2.20) that such a strategy does not
WOrk in the case of a noncanonical coordinate system. The Hamiltonian
may be independent of one of the coordinates zi, but it does not
follow in general that some other coordinate will be a constant of
the motion or that the given coordiﬁate will decouple from the others.
The reason is that cpnsideration must be given to the components of
the o tensor, thch in general depends on z, Consider, for exampie,
the Hamiltonian in Eq. (4.3) and the o tensor given by Eq. (4.9).

These give the following equations of motionm:

dx .

aT=VC

dv _ _ ‘

T 0 (4.%0)
92=B(§)

dt €

Thus, although 3H/36 = 0, 6 is not decoupled from the other variables.

It may not be necessary, however, to have a canonical coordinate

g
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system in order for tﬁe usual strategy of Hamiltonian perturbation theory
to work. Consider, for example, the components of the ¢ tensor shown

in Eq. (3.12), with respect to the coordinate system_(Zl,...,ZZN_z,q,p).
Such a coordinate system could be considered '"semicanonical,' because

of the relations in Egs. (3.8)-(3.10). If 3H/3q = 0 in a coordinate
system of this type, then p is a constaht_of the motion, and q is
decoﬁpled from the other coordinates. There ls no need for the other
2N-2 coordinates Z to fall into canonically conjugate pairs, and in

fact it may be desirable that they not do so.

These considerétions suggestnéhat we transform from the coordinates
(x,y,0,v) to a new, seﬁicanopical set (X,Y,6,J), in which‘e remains -
unchanged aﬁd J is.cahonicéll& conjugate to 6, i.e. {6,J} = 1-._Th¢_ \
other two coordinates X and Y are to have vanishing Poisson Brackets
with both 6 and J, but beyond that their form remains to be determined.
As it turns out, these two quantities are related to a kind of general-
ized guiding center position.

Evidently, the coordinate transformation we desire is the result
of'éne‘applicatlon of the Darboux‘algorithm to the coordinate set
(x,y,0,v), with 8 chosen as the new generalized coordinate q, with J
correspondingvtbip, and with'§ ; (X,Y) corresponding to the (2N-2)-
vector Z. Actually, it is desiraéle fo modify the form of Eqs. (3.8)-

(3.10) slightly, and ask for sblutions J, X to the set

{6,J} = 1/¢ ‘ (4.11)
{5,9} =0 : (4.12)
{§,J} =0 ' (4.13)

The form of Eq. (4.11), which is in contrast to {6,J} = 1, is chosen
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so that the solution J will be of order zero, i.e. 0(1), instead of
0(e).

. To solve these equafions we will need the 6-characteristics, i.e.
the trajectories which result from treating 6 as a Hamiltonian. We
put d/dk = { ,0} and use Eq. (4.9) to get the following differéntial

equations for the 6-characteristics:

dx

i (4.14)
B(x)
& = (4.15)
Likewise, Eqs; (4.11) and (4.,12) can be written in terms of the
parameter A:
1 _
%’)J\'= - -E:- (4.16)
X
" 0 | (4.17)

folget a picture of the e—charécteristics we may examine Eq. (4.15).
Since we are assuming B > 0, Eq} (4.15) shows thaf as the parametef A
increases the §-characteristics move monotonically inward on che surface
6=constant toward the two-dimensional Surface v=0, which we-shall call
V,. The projections of some of these characteristics onto the vx—vy

0

‘plane are shown in Fig. 4. It is clear that V, is a singulaxr surface

0
for the differential equations in Eqs. (4.14) and (4.15), since a

- single point on this surface is converged upon by a whole family of
@-characteristics, each one corresponding to a different value of 6.

That this is so is not surprising, since 6 has a branch point at v=0.

" The singular nature of the 6-characteristics on this surface will



cause us to make certain slight alterations in the Darboux algorithm,

as it was presented in Sec. 3,

4.4, Obtaining J
To proceed, it is useful to eliminate the parameter A from Egs.
(4.14)-(4.16) in favor of v. Since v depends monotonically on A,

this change of independent variables is permissible, and it gives

dx o -
E=§a v ) (4.18)
dJ _v |
-8B (4.19)

Althdugh these equations depend upon the unspecified fﬁﬁction
B(x) and cannot, therefore, be integratéd in closed form, nevertheless
a perturbative solution in powers of e is easily obtained. .Since .
every é-charécteristic meets the surface VO’ the simpiest,initial
condition to assume for the function J is J=0 when v=0. Then
integrating Eq. (4,19) by parts and using Eq. (4.18)}in an‘iterafive
Imanner yieldé the formal solution '
n_n+2

J(x,0,V) =n§0 L) e 17 Béﬁ (4.20)

where L is the Lie operator defined by

1 5_3

(4.21)

H

The function J is our solution to Eq. (4.11). Note that to lowest

order it is the magnetic moment of gyration:
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J = ‘2’—3 + 0(g) | (4.22)

The surface V, corresponds, in the sense that it is the initial

value surface for J, to the surface P, in Fig. 2 and in the discussion

0
of the Darboux algorithm in Section 3, Nevertheless, it fails to

correspond to P, in that it is two-dimensional instead of three-

0
dimensional. This failure is a result of the singularity of 6 on
v=0, and it causes V0 to correspond, in a somewhat different sense,

to the surface ¢ in Fig. 2. These considerations are a warning to

be careful in following the Darboux algorithm.

4.5, Obtaining X

We proceed with the construction of a simultaﬁeous solution to
Eqé. (4.12)-(4.13) as follows. First we defermine the J-characteristics
on VO' We let u be the real parameter associated with these charac-
teristics, i.e. we put d/dy = { ,J}. In an arbitrary region of phase
space the equations defining the J-charécteristics are complicated,
due to the complicated form of Eq. (4,20), But when v=0, they simplify

greatly, yielding

dx .

-a'a-= 0 (4.23)
dv _

vl 0 (4.24)

Eq. (4.24) is no surprise, because the J-characteristics must remain
in a J contour surface, which is v=0 by construction. As for Eq. (4.23),

it tells us that the J-characteristics on V., are not curves at all, but

0
rather immobile points,
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Next we select a coordina;e system on VO’ which is to correspond
to the coordinates Z on ¢ as described in Section 3, and hence also
to the quantities X in Egs. (4.12)—(4.13).’ The simplest and most
obvious coordinate system is the rectangular system x supplied by the
original problem. ‘It is for this reason that wé'use the symbol X

here instead of Z. Therefore we define, for points on VO’

X(x,v=0,6) ¥,x , (4.25)

The quantities X are now propagated along J-characteristics in

order to satisfy
{x,J} =0 : . (4.26)

on VO. But since the J-characteristics are just points, there is

~ nothing to this step, and Eq. (4.26) is automatically satisfied on VO.
The quantities X are now propagated along 6-characteristics to
extend their definition to all of phase space. The two-dimensional

|

surface VO reaches all of four-dimensional phase space by following
8-characteristics because a whole family of e-characteristics.meets

any given point of VO. The result is that the value of the function

X at any given phase point z = (X,6,v) is found by following the
8-characteristic passing through z until it reaches v=0, This is shown
schematically in Fig, 5. The coordinate 6 has been suppressed

in the figure in order to make a drawing possible. By this definition,

we have

{X,8} =0 | (4.27)

Exactly as was done in Section 3, we can prove that d/dA{{,J}=O,
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so that Eq. (4.26) is satisfied, not just on V,, but everywhere in

0’
phase space. It is not at all easy to verify Eq. (4.26) directly,
using the solution for J given in Eq, (4.20) and thaf for X given
“below,

At this poiﬁt we find an»explicit expression for the function
§(§,e,v). This is obtained from Eq, (4.18), by means of an iterated

integration By parts, exactly as Eq. (4.20) was obtained. Eq. (4.25)

serves as initial conditions, The result is
§(§,e,v) = exp(~-evL)x (4.28)

where the Lie operator L is defined in Eq. (4.21). It is interesting
fo note that when this series is carried through O(e), the result is

the guiding center~position:
eV A 20
2'( = )f - —B— a + 0(e ) (4.29)

This may be compared to Eqs. (4.6) and (4.7) for the case of the
uniform magnetic field,

Our ability to express the solution X in terms of a simple Lie
series is probably fortuitous. For example, the analogous situation
does not obtain for the guiding center problem in three dimensions.
Neverthgless, some of the hany properties of these series28 will be
of use to us here. For example, Eq, (4.28) may be inverted to solve

for X:
§(§,e,v) = exp(+evL)§ (4.30)

In this equation the Lie operator L is given by




independent components of the 4x4 antisymmetric component matrix ot

|QJ

1 .

L= 50y %

(4.31)

14

which is to ‘be contrasted with Eq. (4.21). Lie operators are best
regarded as operators which take functions into other functions, so

that the independent variables in question are dummies. Therefore

in what follows we shall usually not explicitly indicate the independent

variables in the Lie operator itself, it being understood that they
are the same as those of the operand, ‘Eqs. (4.28) and (4.30) are

examples of this convention,

4.6. Obtaining the ¢ tensor

We now have an explicit form for the variable transformation
(5,9,#) > (X,G,J), giveh by Eqs. (4.20) and (4.28). In order to make
use of the new coordinate syStem, we need in addition the components
of the ¢ tensor with respect to the new coordinates, Of the six
five were determined by the construction of the new coordinates, as
shown in Eqs. (4.11)-(4.13). The remaining component corresponds to

the one independent component of the 2x2 matrix £*J, which is shown in

"Eq. (3.12), This remaining component is the Poisson Bracket {X,Y},

which according to Eq, (3.6) can depend only on X, i.e, not on 6 or J.
Consider the Poisson Bracket {X,Y} at an arbitrary phase point .
z = (X,0,J). It is easily established that this Poisson Bracket is

constant along both g-characteristics and J-characteristics, i.e. ﬁhat
d vy =4qx,y1 =0 ! (4.32)
dr "’ du™"? : . :

Effectively, this is an application of Poisson's theorem: the Poisson

49



Bracket of any two constants of a Hamiltonian flow is another such
constant. Therefore {X,Y} can be evalﬁated at any point on the
-e-cﬁaracteristic which passes through z=(X,6,J), and the result will

be the same as at z itself. Clearly, the most convenient point to make
such an evaluation is on V.

0

In order to find {X,Y} on V, is it necessary to compute {X,Y} in

0
the neighborhood of V0 and then to let v»0. In this regard, it may
be seen that Eq. (4.28) can be considered a pbwer series in v as

well as ;n €. Writing this series out, and using Eq. (4.8), we have

X=x - %;-cose + 0(v2)
(4.33)
Y=y + %%-sine + O(v2)

Then a direct computation of the Poisson Bracket, using Eq. (4.9);

gives

B(EX) L o() (a.34)

{X,Y} = -
But when we let v-0, X becomes identical with X, and we obtain

€
B(X)

{X,Y} = - (4.35)

By the arguments above, this is valid at any point (X,6,J) of phase.
space. As predicted, {X,Y} depends only on X.
Altogether, in the coordinate system (X,Y,6,J) the components of

the matrix o are
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-€
0 50 O 0
+€
. 500 © 0 0
o' = . (4.36)
0 0 0 + 1
€
0 0 . 0
© J

That is, we can write the Poisson Bracket of two functions f and g

in terms of the coordinates (X,6,J) as follows:

1 =€ (3fdg dfdg) 1f6fdg afdg
{f,e} = B(X)<3Y 35X T 3X aY> * e<36 57 T 3756 (4.37)

4.7. >Iterating the he;boux algorlthm

" At this point it is interesting to consider what would happen 1f
another iteration of the Darboux algorlthm were carried out, |
representlng a coordlnate change x,vY,6 J) + (Q,P,8,J), which would
brlng the o tensor into the form olj =Yy /e Except for the factor
l/c, Wthh is a minor con51derat10n we would then have constructed
by means of a number of noncanon1ca1”1ntermed1ar1es, an overall
canonical_transformatron (qx,qy,px,ny) > (Q,P,e,J).. According to
the theory in Section 3, .the‘new coordinates Q and P would be
functions of X alone and they would satlsfy {Q, P} = 1/€.

The functlons Q and P of X which are produced by a second 1terat10n

of the Darboux algorlthm cannot be constructed perturbatlvelytias were
X end J. Nevertheiess, these functions are related in a simple_manner

to the well-known Euler Potentials,29 which are usually denoted by.

o and Bii
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Q) = B(X)/e |
(4.38)
P(X) = a(X)/e
The functions a and B satisfy
Vaxvg = B ' (4.39)

which in our two-dimensional field configuration- becomes

B(X,Y) ; _____ (4.40)

Frbm this and Eq. (4.37) it is easy to show that {Q,P} = 1/¢.
Incidentally, we see that Darboux's theorem implies the existence
of Euler Potentials, at least for the two-dimensional field configur-
ation considered here.

In thé remain&er of this paper we choose to use the coordinates
X instead of the Euler Potentials o and 8, i.e. we choose to remain
with the semicanonical coordinate system (X,Y,S,J). This is done for
several reasohs. In the first place, what we gain by using canonical
coordinates is the ability to use standard textbook formulas for
Hamiltonian mechanics, while what we lose is that we must deal with
Euler Potentials, which are nonphysical in the same sense that the
vector potential A is nonphysical. On the other hand, Eq. (4.37) shows
that the Poisson Bracket in the (§,e,J) coordinate system is not
excessively complicated in comparison to the usual formula for a
canonical coordinate system. In the second place,‘when the guiding

center problem is geheralized to three-dimensional fields and is



analyzed Along the lines presented here, there results a set of four
noncanonical variables, corresponding to the two variables (X,Y) given
here. These four variables cannot be transformed into two canonically
conjugate pairs except by using functiéns which are much less familiar
than the Euler Potentials. That is, the two-dimensional problem

is a special case, in that the second application of the Darboux
algorithm is solvable in terms of well-known funcfions. To treat the
general case, it seems better to stay with noncanonical or semicanonical
coordinate systems, and this we shall do also in the special two-dimen-

sional case.

4.8. The Hamiltonian

Let us now consider the inverse of the transformation (g,e,v) -
(X,6,J), which we will need in order to‘expreSS‘the Hamiltonian in
terms of the new coordinates. To begin with, we have in Eq. (4.20)
the quantity J expressed as a function of (x,6,v). Using Eq. (4.30),
J may be expressed as a function of (%,e,v). In the process of
eliminating x in favor of X, there results a double infinite series

involving the operator L. This can be collapsed back into a single

series, yielding finally

Jxa0v) = E, envn+2 Ln 1 : s a1
(8v) = L @ b Em ‘ - 4D

‘Next, we invert this series to obtain v as a function of (X,9,J).

Carried out through second order, this gives
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v(X,0,J) = (2BJ)1/2 + eLEE%l(a-VB)
_ 3B

3/2 N ,
&2 £3§912—+ [9B(Aa:VVB) - 7(A-VB)?] (4.42)

72 B

+

This can be substituted into Eq. (4.30) to obtain x as a function of

(Z(,Q,J) :

1/2
x(X,0,d) = X + LB T~ o 2 (2BI) 5 0mya
o i B 6B°

3/2
RN ):5))

72 B°

[-3B(34:VVB) + 5(3-vB)?]a (4.43)

In Eqs. (4.42) and (4.43), B means B(X) and V means 3/35. These
two formulas give the desired inverse transfromation, (%,e,J) ->
(x,0,v).

Finally, we can use Eqs. (4.3) and (4.42) to find the Hamiltonian

in the'(g,e,J) coordinate system. The result is

3/2
H(X,0,3) = BJ + 2B __(3.vp)
~ 3B
2 (2B3)2, .0 as .2 3
+ € 7 [3B(aa:VVB) - (a-VB)"] + 0(e") (4.44)
24B

In the next section we will follow the usual strategy of Hamiltonian
perturbation theory in order to find a transformation which will make
H independent of 6. The result will be a Hamiltonian for the guiding

. center motion,



5. . THE GUIDING CENTER HAMILTONIAN

In this section the Hamiltonian in Eq. (4.44) is subjected to a
near-identity coordinate transformation of the form (X,6,J) » (X,6,J)
such that three criteria are fulfilled. First, the new Hamiltonian
is to be independent of 6. Second, the transformation is to be free
of secular terms; And third, the new coordinates are to be semi-
canonical in the same sense that the old ones are, so that J will
be a constant of the motion (the generalized magnetic moment) and
so that the time evolution of 6 will decouple from that of the other
phase coordinates. The first two criteria are standard in Hamiltonian
perturbation theory. for nearly periodic systems; the third is a novel
element, afising from our use of noncanonical coordinates in phase
space... |

We are not looking for canonical transformétions, in the usual
sense, because our coordinate system is noncanonical. However, on
tﬁe:strength of Theorem 1, we do want to use symplectic trapsformations,
since these will cause the third criterion to be fulfilled.
Althoﬁgh these coordinate transformations are very much like canonical
trahsformations, being in a sense canonical traﬁsformations expressed
in noncanbnical coordinates, it“is nevertheless awkward to express
them in terms of the usual mixed variable generating funbtions. Instead,
we ekpress these symplectic transformations in terms of a set of Lie
generators, foilowing the theory outlined in Section 2. That is, we
will use a variant of the Lie transform méthdd.21'24
Consider a sequence Wy, W,, ... of time-independent phase functions,

and the associated operators Ll’ L .. which are defined on analogy

2’
to Eq. (2.28):
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Lnf = e{wn,f} (5.1)

for any phase fuﬁction £f. The factor ¢ has been introduced into this
definition because the Poisson Bracket given in Eq. (4.37) has a term
which is 0(e™l).

Next, each of these functions is used to generate a symplectic

transformation, according to the formula

. n , ‘
€ Ln
Tn = exp(} 3 > / . (5.2)

The factor 1/n is included in order to make the resulting formulas

follow as closely as possible the conventions of Cary.30 Finally,
a symplectic transformafion T is constructed by multiplying together

the T :
n

T = ...TSTZT1 , (5.3)

-1 -1-1-1
T =TT, T (5.4)

These operators are expanded as power series in e by multiplying
together the exponential series associated with Eq. (5.2). To
obtain the correct ordering in powers of e it is necessary to take
account of the‘fact that the operators Ln consist of a 0(1) part gnd
an O(ez) part, according to'Eq.(4.37). Therefore ﬁe define two more

series of operators, as follows:

]

ME=3% 57 " 57 56 (5.5)



and
oW RN
Y nof “'maf
Nn+2f - E{;Y 93X 89X dY (5.6)
so that
L =M +eN . (5.7)
n n n+2 :

When the operators T and T—1 are expressed in terms of the M and N

operators, the results are, through third order in e,

12 2 1 3
T=1- EMl + E‘E (-Mz + Ml) + '6— € (--ZM3 - 6N3
M2+ M) + 0(eh (5.8)
1 21 )
-1 _ 1 2 2, .1 3
T =14+ eMl *5 € (M2 + Ml) tgE (2M3 + 6N3
+ M3 + 3M_ M) + 0(e4) (5.9)
1 172 :

In terms of the coordinates z=(X,6,J) and z=(X,8,J), we may say,

somewhat loosely,

AN
i
-3
N

(5.10)

As was noted in Section 4, the independent variables of the Lie
operators Mn and Nn which appear in the expansion of T are the same as
those of the operand.

Whgn the symplectic transformation T is applied to the Hamiltonian

H, there results a new Hamiltonian K, according to
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K=T"H (5.12)

H=) eH (5.13)
K=) eK - (5.14)

Then using Eq. (5.9) and collecting terms gives a hierarchy of

equations, which through second order can be expressed as follows:

= - .1
0 =K, - Hy (5.15)
MH) = K - H (5.16)
M2H0 = 2(1<2 - H2) - Ml(Hl + Kl) (5.17)

‘'These equations are written in this form because they are to be
regarded as partial differential equations for the W which specify

the transformation T. To see this, note that
MH =B —2 (5.18)

The perturbation expansion is carried out by selecting the W
order by order, so that K is independent of 8§, and so that the w

contain only purely oscillatory terms in 6. The resulting W are

3/2 |
W, = ig?ﬂ%———(é-va) (5.19)
3B
(2B3)% ~n |
wy = ZBIL 5. (3Bvve - vBvB) (5.20)

24B
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The new Hamiltonian K, which we may justifiably call the guiding

center Hamiltonian, is given by

K(X,J) = B + ¢"—[BV

2
23'2 25 _ 3(vB)%1 + 0(e>) (5.21)
4B

where B means B(X) and where V means 3/5X.

The equations of motion resulting from K are immediate; the

effect of the € ordering of the Poisson Bracket should be noted.’

&l&

S 2 [2y a2 | |
%gx;jvs + &2 %r-v[VBB - S(Zg) ]%-+ 0(c”) (5.22)
B eI 18v%B - 3(vB)2] + 0(e) (5.23)
€ 2B2
0 o U (5.24)

 The first term of Eq. (5.22) is the so-called "grad B drift."

Finally, the relation (5.10) can be written out, connecting

z and z. This gives

2541

3, 3/2
X + %g-bxv[¥3§£%?—f'(5'VBﬂ s oty (5.25)
3B

‘ 1/2
6 + ¢ ZBJ% (c+VB) + ez ng%%—ac:(SBVVB
B 12B

- 5VBVB) + 0(ed) (5.26)
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3/2 2 ~
J=J+e ZBJ{S (4-VB) + &2 LZEQ%—{(755 + 9&¢) :VBVB
3B 488>

+ 3B(34 - 88):VVB] + 0(c) (5.27)

In all cases these formulas have been carried to the highest order
which is‘cohsistent with the knowledge of only Wy and Wy

By combining Eqs. (5.25)-(5.27) with (4.20) and (4.28) the
variables (X,6,J) can be expressed in terms of (x,v). We remark
that although the convergence of the sefies in Eqs. (5.25)-(5.27)
is questionable, fhe convergence of the series in Eqs. (4.20) and
(4.28) is easy to establish for sufficiently small values of ¢ and

for 1/B ‘'a real analytic function of x. The practical utility of

perturbation series may not be lost even if the series are divergent.

6. DISCUSSION AND CONCLUSIONS

The use of the transformation given in Eqs. (4.20) and (4.28),
which we may call the Darbéux transformation, is the most unusual'
element in the approach taken in this paper to a perturbation
problem. There is nothing new, however, in the function which this
transformation serves. The ﬁ;rboux transformation fulfills the |
purpose of isolating the unperturbed system from the perturbation,
and it is exactly the difficulty of achievihg this separation that
has made previous Hamiltonian treatments of guiding center motion
so nonstandard in appearance and awkward in execution. In addition,

the Darboux transformation yields a set of variables which are natural

to the unperturbed system, since to lowest order X and J are constants



of the motion and 6 evolves linearly in time. The importance of these
two goals--the isolation of the unperturbed'sysrem and the choice of
an appropriate set of coordinates for the unperturbed system-- has been
made very clear, on the basis of an invariant,.geometricél picture

of phase space orbits, in a seminal paper by Kruskail7 on nearly
periodic systems. These goals are common to both Hamiltonian and
non—Hamilfonian systems, and the Darboux transformation forms a kind
of bridge between a Hamiltonian and a non-Hamiltonian treatment of the
guiding center problem.

In textbook'problems on perturbation theory the unperturbed system
is separated from the perturbation at the outset, and hence the separ-
ation, as a task in itself, is hardly recognized. In a non-Hamiltonian
treatment of the guiding center problem it is nearly trivial to
achieve this separation, as has been shown by Bogoliubov and
Mitrbpolski.16 It was on the basis o0f this non-Hamiltonian separation
that the ‘angle 6 was choéen'as a new coordinate in the construction
of the Darboux“transformation in Sec. 4, and this choice caused the
desired separation in fhe Hamiltonian treatment as well.

Likewise, the éhoice of appropriate variables for the unperturbed
system is often nearly unconscious in textbook examples.. In Hamil-
tonian systems, this choice can be formalized by saying that one
must solve the Hamilton-Jacobi equation for the unperturbed system
before proceeding with a perturbation treafment, although often the
required solution is obvious, In our example, the Darboux trans-
formation automatically provides us with a set of coordinates
appropriate to the unperturbed system, because the canonically

conjugate variables 6 and J are effectively action-angle variables
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for the unperturbed‘system;

The construction of the Darboux transformation, as it was given
in Section 4; is not unique, in the sense that the selection of any
phase function which differs from ¢ by terms of order e or higher
would satisfy the two goals discuséed abové equally as well as 6
itself. ‘The only reason for choosing 6 is that it has a simple
dependence on (§,Y). Indeed, if 6, given by Eq. (5.26), were chosen,
then not only would the unperturbed system separate from the pertur-
bation, but also the entire Hamiltohian would decouple from 6.

This consideration raises the possibility that the construction of

the Darboux transformation in Section 4 and the perturbation treatment
in Section 5 could be merged, although I have not yet investigated
this quéstion.

In this paper a Hamiltonain treatment of the guiding center problem
has been achie?éd at the expense of the constrﬁction of the Darboux
transformafiﬁn. It may well be asked if the result is worth the
price.'bThere are 5evera1~reasons‘to believe that the answer is yes.

In the firstrplace, even if the results are carried to lowest
order, giviﬁg only the classic, well-known "drifts," the method
provides, nonetheless, a Hamiltonian treatment of these lowest order
results within the framework of a systematic ordering scheme.

Secoﬁd, the method seems to give the shortest avenue to higher
order results, in terms of the labor involved, although this may
best be judged by those who have used other methods. The pertur-
bation treatment in Section S is‘nb worse than any standard Hamil -
tonian perturbation treatment, and enormously better than a nbn—

Hamiltonian treatment. The Darboux transformation itself is



perturbative, i.e. it is a power series in € instead ofva trans-
formation in closed form, but it is based on a secuiar perturbation
treatment which is quite simple. On bal;nce, it seems that a simple
~secular perturbation treatment expansion plus a standard Hamiltohianl
perturbation expansion is much less laborious than a non-Hamiltonian
expansion.

| Third, a simple Hamiltonian treatment of the guiding center problem
opens the door to the addition of other perturbafions, such as electrOQ
magnetic waves, and to the study of, for example, the effects of
these on adiabatic invariants. Some results along these lines have
already been achieved by Grebogi, Kaufman and Littlejohn.31

Fourth, successive iterations of the Darboux algorithm give a
simple means of exploring the other adiabatic invariants of guiding |
center motion, such as the longitudinal invariant and the flux
invariant.8

Fifth, since the dynamics of statistical ensembles of charged
particles in the Vlasov ﬁpproximation can be descirbed in Hamiltonian
terms, the guiding center Hamiltonian can be uséd to treat nonuniform
magnetic fields in a plasma, a case of great practical importance.
The possible applications of a guiding center Hamiltonian to kinetic
theory are too numerous to mention.

Several extensions of the results of the present paper have
already.been completed and will be reported upon in forthcoming
publications.' Two~dimensional, fully electromagnetic fields have
been treated, as well as three-dimensional magnetostatic fields.

The results are promising, and work is beginning on three-dimensional

electromagnetic fields and relativistic treatments, as well as on



applications in other directions.
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FIGURE CAPTIONS.

Fig. 1. The q-characteristics and the construction of the functions
p(z) and Z(z).

Fig. 2. The constructibn of the functions Z(z) as simultaneous constants
of the q- and p-characteristics.

Fig. 3. Guiding center variables for a uniform magnetic field. The
<unit vectors a, c rotate with the particle.

Fig. 4. The 08-characteristics converge on the surface v=0.

Fig. 5. Geometrical meaning of'the functions X(x,6,v). The figure

shows a 6-characteristic moving toward the surface v=0.
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A HAMILTONIAN FORMULATION OF GUIDING CENTER MOTION*
Robert G. Littlejohn

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

ABSTRACT

Nonrelativistic guiding center motion in the magnetic
field §=§(§), with E=0, is studied using Hamiltonian
methods. The drift equations are carried to second
order in the perpendicular motion. The Hamiltonian
methods. which are used are described in detail in order
to facilitate possible applications.. Unusualvmathe- |
matical techniques are called upon, esbecially the use
of nohpanonical coordinates in phase space. Lie trans-

3 forms are used to carry out the perturbation expansion.
: Applitationsvin kinetic theory, in the area.of adiabatic

invariants, and in other areas are anticipated.

*Work was supported by the Office of Fusion Energy of the U. S.
Department of Energy under contract No. W-7405-ENG-48.
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I. INTRODUCTION

In a recent paper1 I have described the mathematical apparatus of
~a new approach to a Hamiltonian formulation of guiding center motion,
and I have illustrated the method with the problem of nonrelativistic
~ guiding center motion in the magnetic field B = B(x,y)%. In this
paper I will extend those results to the case of a nonrelativiétic
particle moving in a time-independent but otherwise arbitrary magnetic
field ? = §(§), with the electric field E = 0. Throughout this paper,
except in Appendix A, a familiarity with the mathematical methods of
Ref. 1 will be assumed. |

The study of guiding center motion is essentially a problem in
perturbation theory in classical mechanics. Although it has always
been known that chargeé particle motion can be described in Hamil-
tonian terms, nevertheless most of the results that have been.obtained
in this area have been derivedeith non-Hamiltonian perturbation

me1:hods.f2'°8

Therefore Hamiltonian methods have not found wide appli-
cation in studies of guiding center‘motion in plasma physics, in
spite of the great interest in the dynamics of plasmas in nonuniform
magnetic fields. This is unfortunate, because Hamiltonian methods
provide great computational advantages over non-Hamiltonian methods,
as well as a formalism which is notaﬁle for its elegance ahd nota-
tional compactness.

The original Hamiltonian treatment of guiding center motion was
given by Gardner,9 who employed field line coordinates and miked-
variable generating functions in an algorithm to systematically
remove the dependence of the Hamiltonian on gyrophase to all orders.

Gardner's methods were elaborated upon by Taniuti,10 Stern,11 and
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'others, who also used field line coordinatesvand mixed-variable
generating functions.

Recently Mynick12 has developed a theory of‘guiding center motion
using Hamiltonian methqu. Mynick has also used field line coordinates,
but in contrast to the authors above he has used a combination of mixed-
variable generatiné functions and Lie transforms, Mynick seems to be
the first to have employed'the great power of Lie transforms in guiding
center work. By way of additional contrast, Mynick has used an ordering
scheme which treats the parallel and perpendicular scale lengths with
different ordering parameters. His results are perturbative, i.e,
represented by power series, only in the parallel ordering parameter.
The results are in clésed form for the perpendicular ordering parameter.

In addition,. some recent work by Meierls has shown how the guiding
center problem can be treated without using either mixed-variable
generating functions or Lie transforms. Instead, Meier has developed .
canonical transformations by appealing directly to the defining Poisson
bracket relations., Furthermore, Meier has avoided the use of field
line coordinates, Meier's work has many points in common with the
theory presented in Ref. 1 and here, although the detailed nature of
the connection remains to be established. |

Two salient features of this work are the use of rectangular
coordinates instead of field line coordinates in configuration space
and the use of noncanonical coordinates in phase space. The latter
especially calls into play certain unusual mathematical techniques,
which are described in Ref. 1. In addition, the perturbation expan-
sion which is used to eliminate the dependence of the Hamiltonian on

gyrophase is effected by means of Lie transforms.
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It is the primary purpose of this paper to provide the details
of a Hamiltonian treatment of‘guiding center motion, rather than
simply the resulting drift equations. The hope is that this paper
will léfwthé groundwork for applicétions in kinetic thebry and
- other areas. Therefore I‘will go into much more detail than would
vbé necessary if oﬁly the drift equations were of interest.

Nevertheless, the most immediate and tangible results of this
work are the drift equations, which are carried out to second order
in the perpendicular motion of the guiding center. Using non-Hamil-
ténian methods,: Northrop and Rome8 have carried the drift equatiohs
to the same ofder under the same assumptidns, viz. nonrelativistic
motion in a static magnetic.field. Therefore there is little that
is new in the drift equafions, although the form which is developed
here for the second order guiding center position gives rise to
equatioﬂs of motion which are less complicated than those of Northrop
and Rome. -This may be.seen most easily in Appendix A. /Finally,

I should note that a detailed comparison of these results with those
of Northrop and Rome  shows complete agreement.

Since there will perhaps be readers wha will be interested only
in the drift equations, and not in the Hamiltonian methods used to
derive them, I have given in Appendix A a summéry-of thé drift
equations for a particularly convenient (but non-Hamiltonian) choice
of guiding center variables, employing a notationbwhich is 'as indepen-
dent as possible of conventions established earlier in the paper.
This appendix shquld be especially useful for numerical or simulation
work. |

The organization of this paper is as follows. The basic purpose
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of Sec. 2 is to define the problem. In this section, we introduce
three sets of phase space coordinates, which are called 'physical
particle variables." The last two sets especiaily have great
physical immediacy, and their use has the important effect of banishing,
once and for all, the magnetic vector potential A from the formalism. |
Sec. 3 contains a number of technical details of the algebra which
must be used in a treatment of guiding center motion to second ofder.
This algebra focuseé on the system of unit vecdtors employed, and
special attention is given to the perpendicular unit vectors. ‘Most
of this section would be unnecessary if the guiding center Hamiltonian
were only carried tojlowest order. Similarly, much of the algebraic
details given in this section would ﬁe unavoidable in any treatment

of guiding center motion to second order, whether it be Hamiltonian

or not,

Secs. 4 and 5 are devoted to thefDarboux transformation. Since
there are a number of properties of the Darboux transformation which
can be expressed in closédbform, most notably the components of the
Poisson tensor in the resulting coordinate system, these properties
are derived and listed in Sec. 4. The Darboux transformation itself
must be developed as a power series in e, and this development is
carried out in Sec. 5.

In Sec. 6 we perform the averagihg transformation, using Lie
transforms, énd obtain thereby the guiding center Hamiltonian as well
as a set of guiding center variables. It turns out that the guiding
center variables depend on the choice of perpendicular unit vectors
which.is made in the problem definition. In order to deal with this‘

situation, we discuss at length the degree of arbitrariness in the
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guiding center variables, and we prove that in any semicanonical
coordinate systen, suchias seems to be nécessary fdr a Hamiltonian
treatment of any kind, a dependence oﬁ/the.choiée of perpendicular
unit vectors is unavoidable. In a noﬁcanonical coordinate system,
however, such a dependence can be'eliminated, at least through
second order. Indeed, the noncanonicalrguiaing center variables
used in Appendix A are free of such dependencies. |
Finally,'in‘Sec. 7 we discuss‘tﬁe results and suggest various

extensions and applications,



2. PHYSICAL PARTICLE VARIABLES

In this section we will di;cuss three relatively simple
coordinate systems in phase space, Of these, the first consists
of a slight variation on the rectangular canonical coordinates (q,p)
which are usually used.in a Hamiltonian formulation of the motion
of a charged pafticle in a magnetic field., The other two coordinate
systems are related in a simple manner to the instantaneou§ dynamical
state of the particlé and to the magnetic field at the particle
position. Therefore the variables making up these coordinate systems
will be called "physical particle variables," in contrast to guiding
center variables, which will be introduced later. Of the three
coordinate systems described in this section, only the first is a
canonical system. In addition, we will establish certain notational
conventions in this section,

The motion of a particle of charge e and mass m in a static mag-

netic field B(x) with E=0 may be described by the Hamiltonian

Hg,p) = 5 [p - & A@)7 (2.1)

~ o~ ~

where A is the magnetic vector potential satisfying § = VXA, This
Hamiltonian differs slightly from the usual Hamiltonian for a charged
particle. It does, however, give the correct equations of motion

as long as the canonical coordinates (q,p) are related to the

particle's position x and velocity v by

13 ]
[l
1,0

(2.2)

IR
]
g
]
=]
o
-4
~
K]
| —
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To use the Hamiltonian (2.1) it should be remembered that the
Hamiltéﬂian has dimensions of energy/mass, i.e. (velocity)z, and
that the canonical momentum p has dimensions of veloéity.

With the ordering (q,p), the Poisson tensor (which was called

the o-tensor in Ref. 1) has the following componénts:

!
]
. o 1
ot = monjme (2.3)
1 .
1

- Here I represents the 3x3 identity matrix.
The guiding center approximation is introduced into' the Hamiltonian
(2.1) by replacing the charge e by e/ec, where ¢ is a formal expansion

parameter. The result is

H,p¢) = 5 [p - = A@1° (2.4)

In addition, the transformation law (2.2) is modified as follows:

1

X =g
~ (2.5)

e
V=D - g A

The Poisson tensor given in Eq. (2.3) does not change with the intro-

&uction,of e. Henceforth we will use Eqs. (2.4) and (2.5) instead of

(2.1) and (2.2). |
The parameter ¢ may be considered to be a variable, describing a.

family of systems, of which the one correspoqding to/e=1 is the physical

system. The order of an expression is determined by its behavior as

e -+ 0, while the position X, the velocity v, and the fields 5 and §

aré held fixed. Thus the Hamiltonian is 0(1), and the canonical

momentum p is 0(8—1).
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The second coordinate system consists of the particle variables x
and v, which are related to q and p by Eq. (2.5). In this coordinate
system, with the ordering (x,v), the Poisson tensor has the form

4
-
ii 04 I
e B (2.6)
-I —E—-B .
I emc
where the symbol B represents the antisymmetric tensor which is dual

to the magnetic field vector B:

Bij = €15k By (2.7)

Here and in the remainder of this paper summation over repeated

indices is to be understood. As for the Hamiltonian, it is especially

simple in the (x,v),coordinates;

2

H(x,v) =_%.v - (2.8)

An alternate for for the Poisson tensor, which is completely
equivalent to Eq. (2.6), is sometimes useful. If we are given any
two phase functions F and G, expressed in terms of (x,v), then their

Poisson bracket {F,G} is given by

: _9F3G 9F3G . 1 _ [F 36
(F,6) = 555y ~5ysx * & & [31’ x 82] (2.9)
where the vector @ iS-defined‘by
3
Q= s B | (2.10)

The third coordinate system represents a kind of cylindrical
coordinates in velocity space, with the local magnetic field vector

indicatihg the direction of the cylinder axis. We write B(xX) = |§(§)|,



and define the unit vector B(g) by

i)
~
11

A

b(x) = 3 (2.11)

e
W
~

It is ﬁonvenient td assume that B(gj is bounded away from zero in
the spatial region éf interest., Not only does this guarantee that
the vector ﬂ(§) is continuous, but it is also a necessary condition
for the validity of the guiding center approximation.

Two variables of the new coordinate system are defined in terms
of the vglocity v and the vector ﬂ. These are u and w, the instan-

taneous parallel and perpendicular velocities, respectively, and they

are given by

u = yob(x) o | (2.12)

= (2 - uHl/? (2.13)

£
{

Let us now introduce, in addition to ﬂ, two more fields of unit
vectors, which are called f1(§) and f2(§), and which are illustrated
in Fig, 1. Taken together with ﬂ, these form a right-handed set

of unit vectors:

TY0Ty T TytT, S b*b =1 (2.14)
Ty T, = Tl'b = T2°b =0 (2.15)
b= TyXT, (2.16)

For the time being, we may assumé that %1 and %2 are arbitrary, apart
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from the relations (2.14)-(2,16). Later we will consider the possibility



of a judicious choice for %1 and %2.

It is useful to define several more quantities, relative to the
%1-%2 plane, i.e. the perpendicular plane. These quantities are
shown in Fig. 2. First we define the perpendicular velocity vector

vy by vy =V - ub. Next, the gyroradius vector r is given by

r = e(ﬁxy)/ﬁ, where Q is' the signed gyrofrequency:

Q= E% = beg = sign(e)|a] (2.17)

It is convenient to introduce a velocity-dependent unit vector c,
which is in the direction of the perpendicular velocity vector v , so

that v = wC, or
vV = ub + wC (2.18)

In addition, we define another velocity-dependent unit vector a, given

by

a=bxe (2.19)

The triad (Q;b;E)"forms a‘right-hénded set. The gyroradius vector

r is related to the unit vector a by r = ewa/Q. Finally, the gyrophase
6 is defined as the angle, measured in a clockwise sense, between ?1

and a. Thus we have

>
n

coso Tl - siné T2
(2.20)

-~-sinbd Tl - cosé6 T2

o
L[}

Qur third coordinate system in phase space consists of the six

physical particlé variables (x,u,6,w) just defined. In these
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definitions we have refrained from referring to circles or ciréular
motion, because in general the motion is not exactly circular, and
because in a theory which is fovbe systematic to any order we do not
want to call upon concepts thgh are vague beyond lowest order. In
this sense the terms 'gyroradius" and '"gyrofrequency' are imprecise.
Therefore the definitions above may best be takén as closed-form,
algebraic relations specifying a variable transformation (x,v) -
(x,u,8,w).

| Neverthéless, in the special case of a uniform magnetic field,
these variables do have a meaning which is both simple and precise,
because the perpendicular motion of the particle is circular. Fig. 3
shows the meaning of some of these variables in the case of a uniform
. magnetic field. In this case the guiding center position is given
by X = x-r exactly, and it is the precise center of the circle of
motiong Léter we will discuss ways in thch the definition of X may
be extendeduto’fh; case of nonuniform fields in a manner which is
systematic;to all‘orders. For now; however, we simply use Fig. 3
for its suggestive value. For example, it méy be seen that the
unit vectors a and E.rotate with the particle, in a clockwise direc-
tion (6 increasing) for a positive particle, and‘in a éounterclock—
wise direétion (6 decreasing) for a negatiﬁe particle, |

To complete the description of the (x,u,6,w) coordinate system, -

we need the Hamiltonian and the Poisson tensor. The former is easy

to obtain:

H(l{,u,e,W) = %’ (wz

~ As for the Poisson tensor, it may be obtained frdm Eq. (2.9) and

) (2.21)
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the relation {zl;zJ} = olJ, with z = (x u,0,w) being taken as the
six-dimensidnal.coordinate vector. A 11tt1e calculatlon gives the

components of ‘the P01sson tensor in the follow1ng form:

{x,x} =0 (2.22a)
fx,u} = b (2.22b)
x,0} = -2 (2.22¢)

~ ) w
{x,u} = ¢ (2.22d)
©{u,0} = -4:vb-& - b-véd - L bevbed (2.22¢)
{u,w} = w GeVbC + u b+Vbsé R (2.22f)
'{eAw}4= 2, cch + E;hktvxh) : (2.22gj
R - wooo T o

| Two notatlonal conventlons have been used in these equatlons
and should be mentloned F1rst for any palr of vectors ¥ and Z,
VY. Z means (VY) Z and not V(Y Z). Thisheonventionlwill be followed
throughout thls paper And second;ithefoperator:v'is‘to be taken -
at fixed (u,0,w), and not at’fixed v. This convention is followed
whenever we are expressing any relation'in the (r;u,e,w) coordinate
system, |

There are altogether 15 independent components of a general 6x6

entisymmetric matrix, which EQSQ (2.22) give for the component matrix
oij. of these,‘e appears in'only“one, as shown by Eq. (2.22g).

.;Eqs::(2.22) contain.a number of dafferent eXpreseione‘inroiving
unit vectors and their gradients. Expressions of this type oecdrr
more and more frequently as one proceeds with the guiding center

problem, especially at higher orders7 Therefore we turn now to a

systematic study of the properties of these unit vectors.



3. PROPERTIES OF THE UNIT VECTORS

A number of simple but‘important properties of the unit vectors
follow from the orthonormality conditions, Eqs. (2.14)-(2.16). We
include in this list of properties the veiocity dependent vectors a
and c, defiﬁed by Eq. (2.20), since in theireméinAer of the calcu-
lation these vectors are even more useful'than ?1 and %2' First,

we express the identity tensor I and the vector operator bx in

terms of the unit vectors:

TyTy Tty t bb = aa + bb + c¢c = 1 (3.1)

A A A A AN AA Iy

TyFy = TyT, = ac - ca = bx1I ‘ (3.2)

Next, we have the following relations involving the gradients of the

unit vectors:

VTl.Tl, Vrzorz = Vasa = Vbeb = Vc-c = 0
Vrl-b = —Vbozl, VTz'b = -Vb-rz, VT T, = -V, Ty (3.3)

Third, the normalization of b implies the following useful identities:

ﬂx(Vxﬁ) = -be¥b (3.4)
Uxb = bx(b¥b) + b[be (Vxb)] » (3.5)
YZ:Wbeb = = (Y+Vb)+ (Z+Vb) (3.6)

where Y and Z are any two vectors. In particular, Eq. (3.6) implies

{

Bb:VTbeb = -(bevb)> (3.7)

In addition to the above, the vector b satisfies the following
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relation, on account of the Maxwell equation V+B = 0:

v-b=-3°§v—li . o , - (3.8)

. : A al aAoA L T : P a T ,.'V
The vector Vrl-rz = Vce¢a is of special importance, so we assign

to it the symbol R:
eI, = VCea - . (3.9)

The vector R has the following geometrical interpretation. The vectors

2

position x and hence vary from point to point. This variation is

and %2, which define the perpendicular plane, are a function of

partly due to the variation in the vector b, to which 7, and %, are

1 2

orthogonal, and partly due to an arbitrariness in the definition of

and 1,, which at this point in the work we are allowing for.

T1 2

Therefore if we examine the vectors ?1 and 1, at some point P and

2
at a neighboring point P', then these véctofs and the perpendicular
plane they define will be rotated at P' relative to their values

at P. If the vectors %1 and ?2 at P' are projected back onto the
perpendicular plane at P, then they will be_rotéted by a certain
angle Ay relative to the vectors él and ?é at P, and the angléqu
will, for small separations, be proportional to the distance between
P and P'. Indeed, if we let Ax be the displacement vector between

P and P', then we have Ay = AXeR.~ In particular, the quantity ﬂ-g

represents the rate (in terms of radians per unit length) at which

the vectors 7, and 7

1 2 "twist'' as one moves along a magnetic field

line.
These considerations are important when we consider the arbi-

trariness in the definition of %1 and %2. Without as yet addressing



the question of a possible judicious choice for %1 and ;2’ let us
suppose that we have, in addition to fl(g) and ¥2(§), another pair
of perpendicular unit vector fields fi(§) and %é(é). Both pairs
are required to satisfy the relations in Eqs. (2.14)-(2.16), but
beyond that their specificatiop is arbitrary. Both pairs of unit
vectors must lie in the perpendicular plane, so a relation of the

" following form must hold between them:

3>
.

f‘cos¢ Ty

- sing ?2
' : - (3.10)

2

u -

~

sing T, + cos$ T

'
2 1
where-¢ = ¢ (x) ié in general dependent on position. We conclude that
if %1 and‘%2 are given, then any other choice of perpendicular unit
vectors is related to the given 6ﬁe by some rotation angle field"
$(x), and conversely.

Let us now consider how the various quantities defined in Sec. 2
change under.the selection of'a'new set of perpendicular unit vectors,
as shown by Eq. (3.10) and as specified by the field ¢(x). Following
the notation above, we lét primes represeﬁt the new quantities.

Clearly, the parallel and perpendicular velocities are invariant
‘under such a change, i.e. u'=u and w'=w., The gyrophase, on the other

hand, changes by the amount ¢, since 8' is the gyrophase relative to

the %i direction:

8" =0 - ¢(x) | (3D
Therefore of the coordinates (x,u,0,w), only 6 depends on the choice

of perpendicular unit vectors.

The unit vectors a and c, which are defined in terms of b and the

o1



particle velocity v, are naturally invariant under the transformation
indicated by Eq. (3.10). Nevertheless, the vector R, which can be .
expressed in terms of the gradients of a and ¢ by R = Vc-a, is not

invariant:
‘ L A'o'\'.= -
R' VTl‘Tz R - V¢ - (3.12)

In view of the geometrical interpretétion of the vector R which was
given above, this result should not be surprising. Lest it seem
paradoxical from a mathematicalbpoint of view, i.e. that a and € are
invariant while R = VC-a is not, we recall that the operator V in.
the expression for B is taken ét fixed (u,do,w), and that 6 is not
invariant. That is, the operator V, in this sense; is not invariant,
It is interesting to observe that ‘Eq., (3.12) is analogous to a gauge
transformation for the magnetic vector potential é,ﬂ;'

Let us now ask ourselves tb what extent fhe vector R can. be .-
brought into some simple form by an appropriate choice of perpendicular
unit vectors.  We might begin by asking if it is possibie‘to chdosa.
%1 and %2 so that R=0, The answer, as may be seen from Eq.- (3.12),
is no, because in general VxR # 0. Nevertheless, this line of
reasoning raises an interesting point, namely that the curl of R is
invariant under a change of perpendicular unit vectors: VxR = VxR',
This in turn suggests that the vector VxR can be expressed purely
in terms of ﬁ. Some algebra shows that this is indeed the caée:

VR = b [(bi’.fjbj‘,i)ﬁ (v-0)%1 + (V+b) (b-Vb) - b-Vbe¥b  (3.13)
Ofdinary vector notation fails with the first term in 6, so index

notation has been used, with commas representing differentiation.
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For examble, bi,j means Bbi/axj. Eq. (3.13) is used in computiné the
“second order drifts appearing in Appendix A.

Although we cannot make R=0 by a choice of perpendicular unit
vecforégﬂit is possible to make oﬁe éomponent of‘g vanish by such a
choice. Consider, for example, the component along ﬁ_ Suppose ﬂog £#0
1’ ;2

with respect to some choice T - of perpendicular unit vectors.

Then define ¢(§) by
60 = [Fraaxt (3.14)

wﬁere the line integral is taken along a magnetic field line, and
where the lower limit refers to some arbitrary initial value surface.
Then B-v¢ =fﬁ-g}'and by_Eq. (3.12)'the'change in unit vectors engen;
dered by ¢ through Eq. (3.10) gives beR' = 0.

This result qan}be strengthened. Let y(x) be any scalar field.
Then_it is possible to choose a pair of perpendicular unit vectors

~

such that bR = y. To see this, let
EERICRY RO RRTCDIEDIES (3.15)

with the_same integration conventions as in Eq. (3.14). Then
6-V¢ = Q-B ~ ¢, and the conclusion follows. This result will_beA
of use later.

The practical appli;ations of guiding center theory fa;l into
two broad classes, namely theoretical and computational. In computa-
tional'work it wouid not be desirable to chooselperpendicular unit
vectors according to the method of the last paragraph, because in order
té determine T, and %2 at a given point x one would have to perform

1

a numerical integration along field lines. For this kind of work it
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would be much better to have a local determination of perpendicular
unit vectors. In theoretical.studies, on the other hand, there is no
harm in choosing perpendicular unit vectors in some nonlocal way,
if it will simplify the resulting expressions. Later in this paper
we will have opportuﬁity to make some such choice. i

It is possible to choose perpendicular unit vectors which depend

only locally on the magnetic field direction b. For example, one

might let T, and T, be the principal normal ,and binormal unit vectors:

1 2
L (3.16)
- |b-vb]
T, = bXTl (3.17)

However, this choice has the disadvantage, from a theoretical stand-
point, of producing discontinuities in %1 5

and 7, at an inflection
point of a.fieid line, and it is incapable of‘handling the aase of
straight field lines, which formed the subject of Ref. i.‘ In additian,
it does not seem to cause any simplification in expressions which
appear later in this work. Therefore we wiil make no further use of

1 and %2.

For mast of the remainder of this paper, the gyrophase 6 will

this possible choice for T

appear only implicitly, fhrough the unit vectors agand c. As may be
seen from Eq. (2.20), these vectors are linear in siné and cosf, i.e.
they are qdantities purely of the firat harmonic in 6. When these
vectors are multiplied together, fossibly in conjunction with contrac-
tions and spatial gfadients, in general there will result terms of
other multiples of the fundamental harmonic, i.e. a Fourier series in

6. The operation of projecting out the Fourier components of an



exbression is a familiar feature of perturbation theory for nearly
periodic systems, and it is convenient at this point to elaborate
upon the Fourier decomposition of various expressions which wili |
be used later. The discussion will not be particularly deep or
profound, since the highest harmonic we will encounter is the second,
and relativély ad hoc techniques will suffice for our purposes. It.is
for the same reason that we do not introduce complex unit vectors.

Let us begin with quantities of the zeroth harmonic in 6. First
we have the following two tensor operators, which are quadratic in

a and ¢, and which are of the zeroth harmonic:

I - bb (3.18)

[+
(Y
+
(2]
(¢}
i

bx1 | (3.19)

f
[¢]
|
o
(&)
]

These were already mentioned in Eqs. (3.1) and (3.2). Next, the
vectors b and Vxb, and any other vector expressed purely in terms of
b, are, of coursé, of the zeroth harmonic. The vector R = Vcea is

also of fhe zeroth harmonic. Fihally, we have the following scalars

of the zeroth harmonic, which we abbreviate by giving them special

symbols:
Zy = b (vxb) = CeVbed - A+Vbed (3.20)
Z, = Vb = asVbea + CeVb.C (3.21)
Z, = bevia = bR o (3.22)
The symbol Z 'is a mnemonic for "zeroth harmonic." Observe that ZO

vanishes in a current free region of space, i.e. where VxB = 0, and

that 22 can be made to take on any desired value by an appropriate
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choice of perpendicular unit vectors, as was noted above.
The principal vectors of the first harmonic are aand c. In
addition, we have the following scalars, in which the symbol F is

a mnemonic for "first harmonic':

F, = bevbea (3.23)
Fi = bevb-¢ (3.24)
F, = a:Vcea = a-R (3.25)
P, = CeViea = E-g : (3.26)

At the second harmonic, there are two tensor operators of
importance, namely aa-cc and ac+ca. From these we define the following

scalars, in which the symbol S is a mnemonic for '"second harmonic':

% (4-Vb+& + &-Vb+3) (3.27)

wn
1]

S, = % (8-Vbea - &evbeE) - (3.28)

Using these definitions, let us rewrite the Poisson bracket
relations in Eqs. (2.22e)-(2.22g) so as to show the Fourier decom-

position of the terms:

L 1 u

(6} =52, - 2, - 2F -8, (3.29a)
o} = wit Z. - S.) + uF (3.29b)
, 2% 7% 1 :

owl=2+%7 4§ (3.29¢)
i EW 0 3

We conclude this section by listing in Table I the derivatives
and integrals with respect to © of the various first and second harmonic

quantities defined above. This table will be of use later.
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4. THE DARBOUX TRANSFORMATION: FORMAL PROPERTIES

4.1. Preliminaries

In this section we will describe some of the formal properties
of the Darboux transformation, which will take us from the (x,u,6,w)
coordinate system in phase space to a new system, denoted by
(X,U,8,J). This transformation is defined and justified on the basis
of a straightforward and obvious extension of the methods of Ref. 1.A
We will postpone until Sec. 5 a derivation of explicit expressions
for the Darboux transformation, and concentrate in this section on
various closed-form results which can be obtaine& without these
expressions. Most importantly, we will derive in this section the
components of’thé Poisson tensor with respect to the X,0,6,J)

" coordinate system.

4.2. Specification of the Darboux transformation‘
Following the pattern established in Ref. 1, we seek a set of
five independent functions of (x,u,6,w), namely X, U, and J, which

- will satisfy the following Poisson bracket relations:

{6,J} = 1/e (4.1)
{6,X} = 0 | (4.2)
{e,ur =0 (4.3)
{J,X} =0 (4.4)
{J,u} =0 (4.5)

The solution of these equations for the five unknown functions
(X,U,J) will produce a ''semicanonical' coordinate system in phase

space, namely (X,U,8,J), in which the variables 6 and J are, one .
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might say, '"canonically decoupled" from the other four variables'(X,U).
The reason for choosing the symbols g and U for four of the new
coordinates will become apparent in a moment. Aé in Ref. 1, the
Poisson bracket {e,J}.is required té take on the value 1/¢ instead
of 1 so that J wil}vbe 0(1) instead of 0(6).

The transformation (},u,e,w) -+ (§,U,6,J) will be called the

Darboux transformation, because the solution to Eqs. (4.1)-(4.5)

is optained by applyihg'the Darboux algorithm, asvexplained in
detail in Ref. 1.. In the new coordinates the unperturbed system,
corresponding physically to rapid, circular gyrations, is separated
from the perfurbafion, which corresponds to inhomogeneities in the
magnetic field. The precise meaning of this statement will become
clear in Sec. 5, when we obtain the Hamiltonian in the (X,U,S,J)
coordinates. In addition, the semicanonical nature of the new
coordinate system allows us to carry out an averagihg transformation
by means of Lie transforms, as will be shown in Sec. 6, the result
of which is a Hamiltonian which is independenf of 6.

To solve Eqs. (4.1)-(4.5) we introduce two differential operators,

d/dx and d/du, defined by

d/dx = { ’e}' (4.6)

d/du

{,3} 6.

The operator d/du is not determined until we have, at least in
principle, a solution for J. Using these operators, Eqs. (4.1)-(4.5)

can be written in the following form:

dJ/dx = -1/¢e (4.8)
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dx/dx = 0 (4.9)
du/dx = 0 (4.10)
dx/du = 0 (4.11)
du/dy - 0 (4.12)

Let us write z = (x,u,6,w), and consider the phase space curves

z = z(}) which satisfy
dz/dx = {z,6} (4.13)

These curves will be called the '"6-characteristics," because they
are the characteristic curves of the partial differeﬁtial.operator
contéined in Eq. (4.6). Once the 8-characteristics have been

determined, the solutions to Eqs. (4.8)-(4.10) follow immediately.

Similarly, the cuives z = z(u) satisfying
dg/du = {E’J} - (4.14)

will be called the "J-characteristics," and they are used to solve
Eqs. (4.11) and (4.12).
"The defining equation for the 6-characteristics, Eq. (4.13),

may be written out, using Egs. (2.22) and (3.29). The result is

T _ & '
o w (4.15)
du _ 1 u
ai'— 5 Z0 - Z2 "W FO - S0 (4.16)
dw _- @ u _ .
D T w Z0 F3 (4.17)

For € sufficiently small, the right hand side of Eq. (4.17) is

dominated by the term -Q/ew, and w is seen to be a monotonic
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function of A, Therefore Eq. (4.17) can be used to eliminate X in
favor of w, yielding the following set of differential equations,

in which the equation for J, derived from Eq. (4.8), has been

included:

dx 3

il (4.18)

du _ ¢ 1

p vl E-[w(- E—ZO + 22) + uFO + wSO] (4.19)

dJ _w - -

el (4.20)
Here the denbminator D is given by

D=gq+ s(uZ0 + WFS) (4.2;)

Eqs. (4.18)-(4.20) are more useful than Eqgs. (4.8) and (4.15)-(4.17)

for a practical determination of the functions (X,U,J).

4.3. Geometrical interpretation of fhe coordinates (§,U,J)

Let us give a geometrical interpretation to the e-charactériétics,
and also to the functions (X,U,J) which are determined from fhem.
We may assume for the sake of argument that we have a positive
particle, so that Q>0. A similar sequence of’dédﬁctions will go
through for a negative particle. Let us also assume, as we did
above, that ¢ is small enough that the term -Q/;w dominates the
right hand side of Eq. (4.17). Then as A increases, w decreases
monotonically toward w=0. Therefore the g-characteristics, which
must lie on the surfaces 6=constant, converge inward toward the
four-dimensional surface w=0. This surface is a singular surface,

in the sense that it is a branch surface of the phase function @,
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and a éingle point of this surface is converged updn by a whole

'family of 0-characteristics. An entirely anaiogous behavior for

the 6-characteristics was observed in Ref. 1 and discussed there

in greatei detail. - ' | )

Every point z =-(§,u,e,w) of phase space (except those for
which w=0) has a unique 6-characteristic passing through it, and
that 6-characteristic, followed inward, reaches the surface w=0.
Fig. 4 gives a séhématic illustrétion of the 6-btharacteristics
and certain quantities associated with thém. When the surface
w=0 has been reached, the x and u coordinates take on certain
values, which can be considered functions of the original point
’ z. We will call these functions X(x,u,8,w) and U(x,u,8,w); they
have the property that when w=0, X=x and U=u. Effectively, the
\'functions X and U form a coordinafe system on the surface w=0,
which is being treated as an initial valué surface for the
e—characteristics. The values of the functions g and U elsewhere
in phase space are found by propagéting these functions along
evcharacteristics, i.e., by assigning the same values of X and U
to any two points é and z' which lie on‘thevsame 6-characteristic.
Clearly, the functions X and U so constructed are constants of the
f-characteristics, and hence satisfy Egs. (4;9) and (4.10).

As for the function J(x,u,8,w), we define it to be -1/¢ times
the elapsed A parameter between the point z =](§,u,e,w) and the w=0
point on the @-characteristic passing through z. The resﬁlting
function satisfies Eq. (4.8);, and it also satisfies the initial

vélue condition J=0 when w=0.



4.4, Constants of the J-characteristics

According to the Darboux algorithm; the four functions (X,U) will
be constants of the J-characteristics everywheré in phase space, i.e.
they will satisfy Eqs. (4.11) and (4.12), if they are constants of
the J-characteristics on the initial value surface w=0. In order
to analyze the J—characteristics.on'w=0a we need an expression for the
function J(g,u,e,w) near w=0, ;o that Poisson brackets may be formed.
That is, we need a solution to Eq. (4:20) as a power series in w.
To lowest order in w, the result can be obtained by inspection; it is

2

T(X,0,8,W) = g+ O(w) | (4.22)
0 .

where

D, =@+ Q#ZO. N . N (4.23)

Now we may find the J-characteristics near:w=0, using Eqs. (4.22)
and (4.14). The resulting differentiél equations for the J-charac--

teristics are

45 X ,
_:5_: we & O(wz) ' (4.24)
du D : :

0

wuF ‘

du _ 1 2
e oeh S e

0 v . .
¥ _owd T 4.26)

dp

The right hand sides of all three of these equations go to. zero as
w+0, so that the J-characteristics on the surface w=0 consist of
immobile points. Hence the functions (X,U), which take on the values

(x,u) on w=0, are constants of the J-characteristics on w=0, and
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therefore also everywhere else in phase space. We conclude that
the functions (X,U,J), whose construction has been described but
not yet explicitly demonstrated, satisfy Eqs. (4.8)-(4.12), and hence

also Eqs. (4.1)-(4.5).

4.5. The Poisson tensor in the (X,U,0,J) coordinate system

0f the 15 independent components of the Poisson tensor in the

(§,U,6,J) coordinate system, nine are given by Eqs. (4.1)-(4.5).

The remaining six components, i.e. the Poisson brackets of-the

, coordinatés (},U) among themselves, remain to be determined. The -
method ﬁe use for finding these Poisson brackets is exactly that used
in Ref. 1; since tﬁe Poisson brackets of the variables (§,U) among
themselves are constant along 6-characteristics, we can evaluate
them on the initial value surface w=0. The results, expressed in
terms of the variables (},U), will then be valid everywhere in phase
space. An interesting aspect of this procedure is that it gives
results in closed form, ji.e. not as a power series in €.

In order to find the required Poisséanrackets on the surface
w=0,‘we need the functions (X,U) in a neighborhood of w=0, so that
derivatives may be taken, ‘Therefore, as we did above with the function
J, we now‘solve Eqs. (4.18)-(4.19) as a power series in w, Again,

to lowest order, the results can be written down practically by

inspection;
X(f,u,e,w) =X - Wi 0(w2) (4.27)
0
. ewuF 0 2 : :
U(x,u,8,w) = u - ) + 0(w™) - (4.28)
" 0

Taking the Poisson brackets of these quantities with themselves
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4

and keeping track of the w-ordering gives, after some algebra,
= £ -
.{xi,xj} b, (aicj ajci) + Q(w)._ (4.29)

XU = b, £ (a.F -c,Fg) + 0(w) (4.30)

D0 il

Then taking the 1imit w0 and replacing (Xx,u) by (§,U) gives the
following results, which are valid everywhere in phase space:

~

bx1 | o 4.31)

- €
{x,x} T Q+eUZ
0
{X,U0} = b + e UZO bx(b Vb) | . (4.32)

In these equations all fields are evaluated at X, e.g. b means b(X),
and V means 3/3X. Eqs. (4.31) and (4.32), along with Eqs. (4.1)-(4.5),
completely specify the -Poisson tensor in the (g;U,e,J) coordinate

system.

4.6, The Lagrange‘tensor

Because of the.unfamlllarlty of the man1pu1at1ons‘ueed to derive
Eqs. (4.31) and (4,32), it would be reassurlng to check the self-
consistency of the underlylng theory One way to do this is to
compute the 4x4 component matrix of the Lagrange tensor (called
the m—tensor in Ref. 1) which corresponds to the 4x4 Poisson tenson
given in Egs. (4.31)-(4;32). According to the theory, the Lagrangeg
tensor must be closed (see Eq. (2.12) of Ref. 1). Here we are
dealing only with the reducedisystem'of two degrees of freedom,
described by the varlables (x,u), because the overall Poisson tensor,
1nc1ud1ng the variables (6,J), has been brought into block diagonal

form by Egs. (4.1)—(4.5)'(see Eq. (3.12) of Ref. 1).



Let us adopt the ordering (%,U) = (X,Y,Z,U) for the four phase
space coordinates, and define, for the purposes of this demonstration,

two vectors M and N by

A

eb , (4.33)

Lz
]

N = Q + cUVxb (4.34)

The vector N is closely related to the vector B* of Morozov and

Solov'ev.14 Using Eq. (3.5) it is then straightforward to show that

{x,x}

~ o~

MxI/ (b+N) (4.35)

XU} = N/ (beN) . (4.36)

Al

and hence the Poisson tensor has the form

0 -M M_N
z 'y X
e - 1 MZ 0 -Mx N
@ " Txlar w0 (4.57)
-N, -N_ -N_ 0
y 'z

Here the subscript 4 has been appended to the symbol o to indicate
that we are dealing with the reduced 4x4 Poisson tensor in the variables

(X,U).

On taking the negative of the inverse of ot

(i) we obtain the 4x4

Lagrange tensor w(4)ij:

(4.38)

o=
2z
o
1
4

“ij T
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Note that the expressions for the components of the Lagrange tensor
are simpler than those of the Poisson tensor, in that they lack the

denominator b*N. The tensor w( ) is closed, i.e. it satisfies

4

=0 | (4.39)

owij , 2wk, 2@k
32X szt 527
where z=(X,U), if the following relations hold:

VeN

~

i
(=]

(4.40)

VxM = 3N/sU , o _ (4.41)

It may be immediately verified that these two equations are valid, and

hence that the Lagrange'tensor is closed.

w
(4)
An important result may be obtained from the Lagrange tensor. Let
us tevért to the full six-dimensional coordinate set.z=(X,U,8,J), and

write mij for the 6x6 Lagrange tensor. Then in accordance with Eq. (4.1)-

(4.5) we have

______ (4.42)

ij = |-eeee-

| e mmm s ——————

,Let us now put z = (q,p) for the original canonical coordinates
of Sec, 2. Since the quantities w;j are the Lagrange brackets of
the coordinates z among themselves, we have, using the notation of

Ref, 1 for the matrix v,



th th _
= —_——, ' (4.43)
1) 2zt Vi 527 : '
On taking the determinant of this relation we obtain
2
det(mij) = A (4.44)

where A is the Jacobian of the transformation §c=(q,p)'* z=(X,U,6,J):

- 13 (q,p) ‘ :
A = det STiTﬁTETET (4.45)
From these relations and from Eq. (4.38) it.is‘easy to find |A]:
|__z_s] = |0 + eUZ| (4.46)
Therefore we have
| dsg dsg .=‘ g + ;uzov| a% du do & o )

This relation is of obvious importance in any Vlasov kinetic treatment

of a plasma which is expressed in the coordinates ({;U,S,J).

5. THE DARBOUX TRANSFORMATION: EXPLICIT EXPRESSIONS

In this.section we will give explicit fqrmuias for the Darboux
transformation (§,u,e,w) > (§,U,6,J) and its inverse, expressed as
_power series in €. To the order given the calculations are fairly -
simple and easily checked. In addition, Welﬁill give the Hamiltonian,

also as a power series in ¢, in the (X,U,6,J) coordinates,
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5.1. Specification of.the e-charécterisfics
The Darboux transformation is found by solving Eqs. (4.18)-(4.20)
for the 6-characteristics and for the evolution of the function J
along them. To this end it is useful to imagine two points z; =

(fi’ui’ei’wi) and z, = (§f,uf,ef,wf), the "initial" point and "final"

f
point, which lie on the same 0-characteristic. In addition, we will
call the values of the function J at the two points Ji and Jf. Since
a Q—characteristic always lies on a contour surface of 6, we have
ei=ef, and the subs¢ripts én this variable can be dropped. As for

the variables Xes U and Jf, we will find expressions, written as

f
power series in e, which give these quantities as functions of Wes
Wos Xss ui, and Ji' Due to the form of the differential equations
in Eqs. (4.18)-(4.20), w is regarded as the independent variable
parametrizing the 6-characteristics, so both wo and W appear in
the expressions for Xgs Ug, and Jf. The quantities Xis Uy and Ji
are to be thought of as initial conditions for the functions Xes
ue and Jf; clearly, the determination of these functions completely
specifies the 6-characteristics and the evolution of the quantity J
along them.

The method we use for finding the functions.§f, Ug, and Jf has

been called the method of parameter perturbations by Nayfeh.15 The

method is extremely simple; we put

x(W) = Xy ex, + €xy + 0% (5.1)
u(w) = uy + euy + 0(e3) | (5.2)
Jw) =J. + eJ, + 0(e2) | (5.3)

0 1



in which the quantities x X,» etc., are to be regarded as functions

0)
of w. These expressions are substituted‘into Eqs. (4.18)-(4.20), all
quantities are éxPanded out in powers of ¢, and then collected order

by order. For example, we have

2(x) = 9(950)?. eXy VR (xy) + 0(%) (5.4)

\

The solution of the differential equations requirés only trivial
integrations. When the results are collected together, we obtain
the following formulas, valid between any two points Zs and zZg on

a f-characteristic:
- 821'_ 211 2 ~. a
‘. ).Sf = X, h"' Q(Wf wi) + € 329(‘7f wi) a V(Q)

1

- ;‘??[(w WDIEg 2ui(wf-wi)ZO:H + O('e's,), e

'uf =u, + -zizﬁ[(w )(22 2 0+SO) + 2u, (w -W, )F] + 0(82) | (5.6)

Jf = Ji +Y (w2 -V, ) + e;;b(wf-wi)z(wa+wi)§-V(%g

- .,%[g(w - )F + 3u, (w —wi)z(;-]i + 0(€2) (5.7)

1Y)
In these formulas, all fields on the right hand side are evaluated

at x,.

~1

5.2. The Darboux transformation and its inverse

Let us specialize the formulas above so as to obtain X, U, and J

as functions of (x,u,6,w), To do this we identify z. with z and Ze
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with the w=0 point on the 6-characteristic passing through z. That is,
we set X;=X, u.=u, wi=w, and Ji=J, énd ?150 §f=§,.uf=U, wf=0, and
Jf=0. These substitutions are in accordance with the definition and

initial value properties of the functions X, U,napd_J, as described

in Sec.‘4, and they give the following:

[
v
1

(\. 2 A
X(x,u,6,w) = %’3,» ;zgl.sza.v(%) + psa]
280 : -

uw‘ A e 3
ot gi-zoaf + O(e_) o (5.8)

) = u - Elwiz- L 2
U(x,u,8,w) =u - ZQ[W (Z2 2ZO+SO) + 2uwF0] + 0(e™) (5.9)

J(x,u,6,w) = y2'§2_2 + e[-—-‘!;(Q-VQ-ZQFS) - !v_2_1_21_ ZO] + 0(82) (5.10)
62 2
In these formulas fhe.fields on the right hand ‘side are evaluated at
the particle position X. Eqs. (5.8)-(5.10) form the Darboux trans-
formatidn. | |
Note that through the O(e) term the quantity § corresponds with
the usual definition of the guiding cénter;‘ Alterﬁétively,lwe might
say that X coincides with the exact guid;ng‘center for a uniform
magnetic field. It is‘on these grounds that we will call the variables
(%,U,G,J) "guiding center variables," or, for reasons which will become
apparent in the next.secfion, ﬁintermediate guiding center variables."
The first term of the expression fér U needs no interpretation; it is
the instantaneous parallel velocity, And the first term of the
expression for J is, of course, proportional to the magnetic moment

to lowest order. Note that J is negative for a negative particle.

5, .



There is not much point in interpreting these formulas beyond these
lowest order terms, because the higher order ' terms will change when
we perform the averaging’transférmation, in Sec. 6.

Let us return to Eqs. (5.5)-(5.7) and swap the roles of z and ‘z..

This will allow us to determine X, u, and J as functions of g, U, and

w. That is, we set x.=X, u,sU, w.=0, and J.=0, and also x.=x, u
~1 - i 1 i X f
We=W, and Jf=J. Doing so, we obtain
ewa 2 2 a
x(X,U,0,w) = X + 5t € 3 Z,EIa V(—) - Fsa]
T N 20
-2 a% + 0(ed) (5.11)
0 4 .
Q .
\ e[ 2 1 2
‘ u(g,u,e,w) = U + Eﬁlﬁ (Z2 2ZO+SO) + 2UwF ] + 0(e™) (5.12)
' w? [ ‘w3 N wiu 2
J()g,u,e,w) = o5 + |- —g(@-vasaF,) - — Zo] + 0(e“) (5.13)

L 3” 20

In these formulas the fields on the right hand 51de are evaluated
at X, and V means 3/3X.

(5. 11) (5 13) do not quite form the inverse of the Darboux
transformatlon because to have the inverse 1t is necessary to
express the phy51;a1 particle variables (§,u,e,w) in terms of the
intermediate guiding center variables ({,U,G,J). To do this, we
first invert the series in Eq. (5.13) to find w as a function of
(S,U,G,J). To the order given this series inversion is trivial;

and it gives
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w(X,0,0,3) = 2an/? « E[Q&;.l(;.m + F)
N L3

(ZQJ) /

v 0] +.0(e?)

This is then substituted into Egs. (5.11)-(5f12), yielding

1/2 ‘
x(X,U,8,J) =X + )~ a+ 2)(2a7) 3Qa-va - OF. a
o\ - 9) 3 3
L 1)
7 . 1/2 .
- (a-VQ)a] - nggli——g-zoas + 0(33)
29
~ (20J) 1,

U()E,U,S,J) =U + [ 20 (Z ZZ +SO)

+ LZQQ%———ll Fo] + O(ez)

Again, all fields on the right hand side are evaluated at X.

(5.14)f(5.16) form the inverse: of the Darboux transformation.

5.3. The Hamiltonian

112

(5.14)

&

(5.15)

(5.16)

It is now possible to find the Hamiltonian in the intermediate

guiding center variables (X ﬁ 9,J). It is obtalned by 51mp1y substl—

tuting Eqs. (5. 14) and (5.16) 1nto (2 21), and this glves

' : 3/2
H(%’U,G,J) = QJ + %U2+ e[(ZQJ)z

30

(szfa;vn)

, 200U 1 1/2 2

2Q

(—Z +7 +So) . £20J)

We should not expect this Hamiltonian to be independent of 6,

o 5"
*———?{————— Fé] + 0(e™)

.(5.17)

and
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\ P

indeed, there are e—dependent terms in thelotsiaterm of Eq. (5.17).

The angle 6 is a well-defined function of the physical pérﬁicle ?ariables

(x,v), as indicated implicitly by Eqs. (2.18) and (2.20), and -this
r ‘particular functional form was chosen on the-ﬁasis of two considera-
tions. The first requirement was.thﬁt ® should reduce to the exact
gyrophase for a uniform magnetic field. (With sﬁfficient care in

the limiting process, this is equivalent to ¢+0.) This requirement

makes the unperturbed system "recurrent," in\Kruskal's16 terminology,
and it causes the Hamiltonian to be independént of 6 at lowest order.
The second rgquirement was that © should have a simple dependence .
on the physical particle variables. Neither of ﬁhese iequirements

takes into consideration the higher order corrections in the guiding

center expansion, and the result is a Hamiltonian which depends
on 6 beyond lowest order.
In spite of its 6-dependence, however, the Hamiltonian above

may be used to 6Btain the well-known, classic drifts, because the

]
!
i

6-dependence of H causes corrections only at an order in e which is
beyond these classic drifts. To see this, let us write H in the

form -

H(X,U,6,0) = 27 + 2 U7 + eH (X,0,6,0) + 0(c’) (5.18)

and then use the Poisson bracket relations, given in Eqs. (4.1)-(4.5)
and (4.31)-(4.32), to compute time derivatives. Let us carry the
results to the highést order in e'which is compatible with an

assumption of ignorance about the term eH The Poisson bracket

1'
relations in Egs, (4,31)—(4,32) are to be expanded ihtb a power series

in ¢ in this process.




The drifts themselves are found by computing dX/dt. Carried

through 0(5), this is

. 1 - v e o a0H 2
o bU + e[?-bX(JVQ) + ?T'bx(b'Vb) +Db 3T +.0(e™) (5.19)

Evidently, the parallel motion of the guiding center can be found only

/

through 0(1), because of the term in aHl/BU. That is, we have

X o o
'a—E' " = bU + O(E) (5-20)

The perpendicular motion, on the other hand, can be found through

0(e):

i
/

dX g 7 C2n | 2
3 I bx(JvQ + U"b+vb) + O(g”) . (5.21)
1

Mirroring effects are displayéd'by computing dU/dt:
U

S = -Jbva + 0(e) (5.22)

Finally, we can compute the time derivatives of 6 and J:

de _ @
F= Liom | (5.23)

oH

a7 °Hy
t =T 'Y + O(E) (5'24)

In Eq. (5.24) we see that J has a time evolution.at 0(1). This

evolution is, however, purely oscillatory at 0(1), because the
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operator 3/96 projeécts out purely oscillatory terms in 6. Therefore
J'has a'secular time evolution only at O(g). That J has a time
evolution at all-is, of course, a reflection ofvtheifact'that the
Hamiltonian does'depend on 6 in'terms‘beyondxlowest order, and
hence that J is a constant of the motion only to lowest order,

When the O(e) “term in the Hamiltonian is made independent of 0
by means of a near-identity coordinate transformation, all of the
results expressed in Eqs. (5.20)-(5.24) become extended by one
higﬁer.order. In particular, one obtains the second order perpen-
dicular drifts. We now turn our attention to the averaging trans-

formation, which will yield a Hamiltonian which is independent of 6.

6. THE: GUIDING CENTER HAMILTONIAN

-~ In this section we will develop a procedure for finding a near-
identity transformation of the form (X,U,6,J) » (X,0,6,J) such that
the Hamiltonian in the new coordinates is independent of 6. The
néw Qariables will be called "aVeraged guiding center variables,"

énd?the-new Hamiltonian K-will bé ¢alled the "guiding center

Hamiltonian," The procedure involved is a variant of the Lie transform

methpd,'as detailed in Ref., 1, Using the guiding center Hamiltonian,
we will be able to find, among other things, the second order perpen-

dicular drifts,

6.1. The averaging transformation-
AccordingftO'the'théory'developed in Ref. 1, coordinate trans-

formations associated with Hamiltonian flows preserve the functional
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form of the Poisson tensor, which in our case is given by Eqs. (4.1)-(4.5)



and (4.31)-(4.32). These transformations were given thé naﬁe
"symplectic transformations' in Ref. 1, and they are, in a sense,
canonical transformations expressed in noncanonical coordinates.

In order to develop an expression for a.near-identity'symplectic_
transformation, we consider a sequence of time-independent phése
functions 815 85> .;., which we will call the generators of the trans-
formation. The generators are associated with a sequence Ll’ L2’ o

of "Lie operators,'" defined by
L = elg, } | (6.1)

The factor € has been inserted into this definition in order to
cancel the factor 1/¢ in Eq. (4.1), So that the Lie‘operators Ln

are 0(1). The Lie operators are in turn associated with a sequénce
Tl’ T2, ... of symplectic transformation operators, éccording to the

rule
_ _.n ’
T = exp(-¢ Ln/n) (6.2)

Finally, the Tn are multiplied together, giving an overall symplectic

transformation T and its inverse'T'l:

T = ...T,T,T, | (6.3)

A1 o-lo-1-1
T : —Tl T2 T3 LAY X (6'4)

Under the action of the transformation T, the old variables

z=(X,U,0,J) go into new variables z=(X,0,8,J) according to

% = Tz ‘ (6.5)

z=T"72z ‘ | (6.6)
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Likewise, the old Hamiltonian H is transformed into the new Hamiltonian

K:
K=TTH ' (6.7)

Our goal is to design the transformation T, i,e. to find the generators
g, SO that the new Hamiltoniah K will be independent of 6, In
addition, we demand that the transformation itself be free of secular
terms. |

To this end we expand fhé components of the Poisson tensor, which

appear implicitly in Eq. (6.1), in a power series in e, and write

' 2
Ln = LnO + eLn1 + € an + ... (6.8)

where

L% %8y 5 (6.9)
n0 - 36 3J " 3J 36 :
. g .
- 9 n .,
Ly = bVg_ - st bev (6.10).

and so forth. These are substituted into Eq, (6.2) and thence into

Eqs. (6,3) and (6.4), giving
€ (L. + 12 S2L.) + 0@ (6.11)
0 11 ‘ '

T = 1w el + S(Lyy + Lo, + 2L, ) + 0(e) (6.12)

e™H (6.13)

-
1]
We~18
o=
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K=7J ek (6.14)

and combine Eqs. (6.12)-(6.14) with (6,7) to get, to the lowest two
orders,
K. =H ’ (6.15)

LlOHO = K1 - H1 (6.16)

For the purposes of this paper it will only be necessary to find the

first generator, gl,vwhich is specified by Eq. (6.16).

6.2. The guiding center Hamiltonian
Let us apply the results above to the Hamiltonian in Eq., (5.17).

First, from Eq. (6.15) we have

Ky (,0,3) = 2(®)3 + 3 0° (6.17)

Next, Eq. (6.16) is decomposed into its averaged and oscillatory
parts in 6. The averaged part gives K

1:

T, |
K, X,0,0) = J0G5 2, + 22)‘ (6.18)

The oscillatory part gives a differential equation for g:

og 3/2 ;
1>t ooy (200U
30
1/2.2
e
- F0 (6.19)

Using Table I, this is easily integrated, yielding
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3/2 1/2,2
g ————JL———( aF +3-70) - (ZQ{QU L el (6.20)

305 49 1 02 1

. Here we may collect together the terms of K, writing out Z,

and ZZ:
s = = = 1 -2‘ = 2. .
K(;,U,J) = QJ + E'U eJ0 b (VXb) + b R}+ 0(e") (6.21)
Of course, all fields on the right hahd side are evaluated at the

averaged guiding center positon X. K is the guiding center Hamiitonian.

6.3. The averaging transformation: explicit formulas
‘Using the result for g1 and the transformation formulas in
Eqs. (6.11)-(6.12), it is‘easy to write out explicit expressions for

the averaging transformation (X,U,6,J) + (X,0,6,J) We find the

following:
_ b 1/2.. 3
X(X,U,6,3) = X + £51-(223)8, + 8(20J) UF{] +0(e”) (6.22)
T 4Q “
0(X,U,6,9) = U + 0(c2) | (6.23)
J(X,U,0,d) =J + [2(293) 3/2 (st'3+£-vsz) + SQ(ZQJ)USO
; - : 652 . ~
{ + 69(29J)1/2 ] so?) (6.24)
I - e -1/2 ~ »
6(X,U,8,J) = & + —5[2(203) " “(-QF,+C-vQ) - QUS;

. 29(29J) ~1/2y2 1] + 0(e)) (6.25)




120

We need not write out the inverse qf Eqgs. (6.22)7(6.25), because
to the order given it may be obtained simply by swapping é and % and
changing the sign of the correction terms.

Of perhaps greater,iﬁportance than the above is the ‘transformation
éonnécting the averaged guidiﬁg center variableé with the physical
particle variables. This transformation‘is obtained by composing

Eqs. (6.22)-(6.25) with Eqs. (5.8)-(5.10). The result is

~ 2 ~ Y ~ ~
X(x,u,0,w) = x - =2+ ezgwﬂg{}SQSIb +.2(b*VQ)b + 20(bxR)
i 49
AA AA wu ) " 3
- V2 - (aa-cc).vQ| + —7{2 a+2F b)}p + 0(e7) (6.26)
} g2 0T R
U(x,u,6,w) = u - 29[% (Zz- z?QfSO) f ?9W30];+ O(e ). o (6.27)
N : e. . RS . u2
e(§,u,e,w) =0 + ;;El}w('QFZ+C'VQ) - SZuS-1 + 2Q :;—Fi]
, .
+ 0(e%) (6.28)
= w2 3 2 2
J(x,u,8,w) = &= + —=_|w”a.vQ + W u(S.-2.) + 2qwu’F
~ 2Q 293 00 . 0l
2
+ 0(e”) B (6.29)

In these expressions, all fields on the right hand side are evaluated
at the physical particle position Xx. .
For completeness, we give here the inverse of the transformation

specified by Eqs, (6.26)-(6.29).



. 1/2
x(%,0,5,3) = & + 2L 3 [QS b+ 4(beva)b
1/2 )
- ZQ(be) - 3vQ + (aa ce) -V ] (ZQJ) [8F1b
-22 3 - bx(4-Vb) - c-Vb] L b-Vb$ + 0(ed) (6.30)

| u(%,0,8,9) = ﬁ#i%[(mj)(zz- ; +S ) + 2(209) 1/25 O]

+ 0e2) C(6.31)

<D
~
>
cv
- @
[T}
~—
1}
<D
+

£ 2(293)1/2(9F -c.vQ) + oUS
202 27 1

- zsz(zsu) -1/2g2 1] vo(e?) (6.32)

=
r—
>4
(e}
Y
[ ]
S

1

= 20n)/? + [(293)1/ 2u(z 5,) - 2(‘1"21:0]

s0(® . (6.33)

In these expressions, all fields on the right hand side are evaluated

at the averaged guiding center position X, and the vectors a and ¢

are evaluated at e

of all these relatlons, Eq. (6 29) is espec1a11y 1mportant J is

the ad1abat1c 1nvar1ant assoc1ated w1th the gyratlon and it is

proporthnal to the magnetic moment, denoted here by u:

e = - ' |
o= E—J | (6.34)
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According to this relation, u is positive for particles of both signs
- of charge. The O(e) term in Eq. (6.29) is in agreement with the old
result derived originally by'Kruska1.4z The 0(52) term which would

follow has been worked out by Hastie, Taylor, and Haas.17

6.4. Uﬁiqueness of the averaged guiding center variables

It is important to ask to what extent the variables (g,ﬁ;é,J),
given by Eds;'t6.26):t6.29), are unique; so -that other guidihévcenter
variables of possible advantage may be selected in various applications.
IOnuthe face of it, fhis is a formidable question, because the route
from the physical particle variables in Sec, 2 to the averaged guiding
center variab1e$ here is long, and it is punétuated with a number
of reasonable but essentially arbitra;yvchoices whose ultimate effect
is not clear. To fofmulate én'ans&éfhii is perhaps best to study the
end product,.especially in the light of Kruskal's16 theory of '"njce"
variables, rather thén to analyze ingdeféil the method by which the
end product was obtained.

Let us begin by listing, roughly in order of increasing speciali-
zation, some properties which the averaged guiding center variables
satisfy. We may then examine the degrees of freedom which aré intro-
duced, step by step, as the iistéd pfopérfies, faken as‘resfricfing’
a;sumptions on the averaged guiding center variab{es, aré ieiaxed::

Firstiahd foremost, thé averaged gﬁiding\centgr vériable; are
free of rapid oscillations fo aii ofdérs, at least in the;iﬁaginéd
and formal limit that the required powef series are carried out to
all orders. To state this property a little more precisely, we may say

that the time derivative of the averaged guiding center variables



is independent of the angle-like variable §. This is the property
of "niceness,'" and its exact definition involves the singling out of
an angie—like variable whose time evolution, unlike that of the
remaining variables, is non-zero at lowest order. (In the case at
hand, the lowest order is 0(5_1).) In a noncanonical theory of
guiding center motion, such as that developed by Northrop and Rome,8
niceness is the only essential requirement. The overbar notation for
our variables heré, as well as the word "averaged,' are feminders that
the variables are nice. |

Second, the averaged guiding center variables form a semicanonical
coordinate system in phase space. By this we mean that the set of
six variables (X,0,8,3) consists of two, namely & and J, which are
(apart from the factor l/é) canonically:conjugate, plus four more,
namely X and U, which have vanishing Poisson brackets with & and J.
Let us write ¢ for the four variables X and U collectively. Then |
the semicanonical requirement can bé written as {6,J}=1/¢ and
{§,§}={§,3}=0. With the given identification for T, this requirement
is equivalent to the Poisson bracket relations in Eqs. (4.1)-(4.5).

Third andvfinally, the four variables ¢ satisfy Poisson bracket
relations among.themselves whose form is given Qy‘Eqs, (4.31)-(4.32).
These relations, as well as those in Eqs; (4.1)-(4.5), were preserved
under the symplectic averaging transformation. |

Given all three of these requirements, the averaged guiding
center variables are still not unique. Consider first the Poisson
bracket relations. These relations are'certainiy preserved under
any symplectic transformation. Conversely, if a transformétion

preserves the Poisson bracket relations, and if the transformation
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can be continuously connected with the i&entity transformation, then
it is (questions of convergence aside) a symplectic\transformation
such as shown in Eq. (6.3).

bnly a certain subclass of the symplectic transformations will -
preserve niceness, however, The members of this subclass are
associated with generators g which are independent of 6. If we put
L = e{g, } for such a genérator and T = exp(-L), then it is easy to
see that T takes any phase function which is independent of 8 into
another such function. (Here we are treating factofs of ¢ slightly
differently than in Eqs. (6.1)-(6.2),) In particular, a é—indepéndent
Hamiltonian goes into another such Hamiltonian, and henée niceness
is preserved.

Such a transformation T takes the variables z = (£,6,J) into

a new set T? =z! = (¢',6',J') according to
' = exp(-L)Z , (6.35)
§' = exp(-L)8 ' (6.36)
Jr =7 , (6.37)

Since we are assuming that 3g/36 = 0, the action of T on the variable

J can be written out explicitly. The action of T on the variables

-

£ and 6, given by Eqs. (6.35)-(6.36), can be written as a power series

~

in e, assuming that g itself can be expanded in powers of e¢. Explicitly, -

we have

+ b 28 4 0(c%g)  (6.38)
50
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U' =0 - eG-Vg + O(EZg) (6.39)



5 =6+ 2% +o0(eg) (6.40)

The transformation given by Eds.‘(6.35)-(6;37) isitﬁe most'
genéral one which satisfies all three properties liéted above, if
we restrict consideration to transformations which can be continuously
connected with the identity. It is interesting to observe that the
degree of arbitrariness in the averaged gudiing center variables,
as indicated by.this transformation, can also be aqhieved by modifying
certain steps in’the procedure used-to derive the averagéd guiding
cenﬁer vériébles (%,ﬁ,é,i). For example, a Suitaﬁlé choice for g
in Eqs. (6.38)-(6.40) will reproduce the effects of a redefinition
of perpendicular unit veétors, as.will be shown below; In addition,
if we héd allowed for a constanf of integrétion;:depending'on
(X,U,J), on passing from Eq. (6.19) to Eq. (6.20), thennthe éffec;
would be the same as tﬁe transfofmationAaﬁove; with é =_éc'andfc
being the constant of integration, | | | |

Let us now suspend the tﬁi;d réquirement, and ask for the general
form of a transformation (g,é;j) -+ (g"gé",j"), such that the double
primed variables are nice, and such that the variables 8" and J'" are
canonically decoupled from thé variables g" in the manner shown by
Eqgs. (4,1)-(4;5); but where the Poisson brackets of the variables
é" among themselves may take on whatever form they will. Certainly

there is nothing sacred about the forms given in Eqs. (4.31)-(4.32).

>

These forms came from our choice of coordinate system on the
surface w=0, namely that which is naturally induced there by the

(§,u) coordinate mesh. Although this choice was reasonable, it was not
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compelling,
We may answer this question first by noting that the symplectic
transformation given by Eqs. (6.35)-(6,37), followed by a transfor-

mation of the-form

L3
]

g" = 2(3") (6.41) o
g" = 8¢ (6.42)

. ju =J' . IR . ' ' (6.43)

where Z is an arb1trary 1nvert1b1e transformatlon of four variables
into four variables, will be a member of the class of transformatlons
we seek. Because the second transformatlon mixes up the four variables
;' among themselves, but leaves 6' and J' alone, Eqs. (4. 31) (4. 32)
will in general pass 1nto a form w1th 11tt1e resemblance to 1ts
antecedent; whereas the form of Eqs (4 l) (4.5 W111 remain 1nvar1ant
An example of such a transformatlon Z would be the transformat1on
which leaves U unchanged but wh1ch converts X 1nto spherlcal (or
toroidal) coordinates, Secondly and conversely, it is p0551b1e to
argue that any transformatlon wh1ch preserves niceness as well :as the
form of Egs., (4.1)—(4,5) ls the composition‘of a transformation of the
form of Egs. (6.35)-(6 38) wlth one‘of the form of Eqs. (6.41) - (6 43)
When we abandon the second requlrement that the form of the
Poisson brackets in Egs. (4.1)-(4.5) hold, then we are left only
with the requirement of'niceness It was argued in Ref. 1 that
at least a sem1canonlca1 coordlnate system is necessary in order
to carry out Hamiltonian perturbat1on theory, although Hamlltonlan
mechanics itself can be made generally covar1ant.» Therefore, for

practical purposes, the relaxation of the second requirement amounts
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r'to an abandonment of Hamiltonian nechanics; Let: us note, therefore,

before taking leave of semicanonical .coordinate systems, certain-

features which are common to all such systems.

Most outstandingly, the quantity J is common to all such systems,
as shown by Eqs. (6.37) and (6.43). Kruskal has shown that J is an
action integral associated with certain closed curves in phasevspace,
called "rings." The detailed form of the actlon 1ntegra1 is equivalent
to the P01sson bracket relatlon in Eq (4 1) Rlngs are geonetrlcal
constructs wh1ch are based on the propertles of nice varlables and wh1ch
are 1ndependent of coordlnate system.' It follows that J cannot change
under a transformatlon of coordlnates whlch preserves both niceness
and the semlcanonlcal P01sson bracket condltlons. One mlght summarlae
thlS by saylng that the ad1abat1c 1nvar1ant assoc1ated w1th gyratlon
‘1s unlque.k' | r | | o

Next we note that the quantlty 6 can change only by the add1t10n
of some functlon whlch is dependent on the other f1ve var1ables,l

as shown by Eq (6 40) ' Geometrlcally, this amounts to a change in
the or1g1n of phase d1fferent for eachvrlng, wh1ch nevertheless |
leaves unchanged the relatlve reckon1ng of phase along any given
ring. | | |

Let us now relax all requirements except that of nlceness\ =Let
us‘wrlte 5 for the five nice varlables (X 0 J) collectlvely, and ask

for the most general variable transformation which preserves niceness.

Kruskal has answered this question; it is

8' =8 + £(£) - (6.44)

2N
1]

[ $3]

~

[ ¢

A

(6.45)
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where f is an arbitrary function and where g-is an arbitrary invertible
transformation of five variables into five others. Note that Eq. (6.45)
involves a much greater freedom of choice of variables than was allowed
in the semicaﬁonical coordinate systems. We will see later that this

extra freedom makes non-Hamiltonian treatments of guiding center motion

somewhat more convenient, for some purposes, than Hamiltonian treatments.

6.5. A judiciou# choice for_perpendiéular unif vectors

It may be seen in Egs. (6.26)f(6.295 that ali of thevaveraged guiding
center variables except 3 depend Qnuthe.choice of perpendicular unit
vectof;, as shown by their dependenée;on the vector g. In addition,
the Héﬁiltonian K, shown in Eq. (6.21), depends on R in the 0(e) term.
That 3 does not must be a fgflgctiqn_of the fact that J can be defined
invinvariant‘fefmé, 5; wasvm;ntioned above. The deeper significance
of this obseryatiqn is not clgar, but.it may be potedvby way of providing
a ciuelthat J is fhe generatorqu displacements in 6. ‘

In an&bé#se, those quantities which>depend on B through Zz=ﬂ-g can
be brought into a possibly simplef form by avjuqicious chqicevof
perpendicular ﬁnit Vectors;uas Shown in Sec. 3. As noted before, such
a choice cannot be determined locally and hence is not useful for
numerical work. But for theoretical‘qrbglgebraic purposes, there is
no harm in setting ﬂ.g equal to any scalar field we like. In particular,

if we take

-~ . 1 ~ ~ . e )

beR = - 5 b-(VxD) (6.46)
then the 0(e) term in the Hamiltonian K vanishes, and we have

K(X,0,7) = aF + %-ﬁz + 0(e) (6.47)
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This choice of perpendicular unit vectors is equivalent to taking

for the field _¢(§), appearing in‘Eqs. (3.11)-(3.12), the following:
, ' X 1 - .
¢ (x) -f (R + 5 Vxb) «dx’ : (6.48)

where the integrand is evaluated at x' and the integral is taken along

a field line. It is also equivélent to taking

gX,0,3) = -J ¢(X) (6.49)

in Egs. (6.35)—(6.40).
In addition to simplifying the Hamiltonian K, the assumed choice of

perpehdicﬁlar unit vectors simplifies Eqs. (6.27) and (6.31), giving

U(x,u,6,w) = u - fﬁ[wz(so-ze)_ + ZuWFO] + 0(52) , (6.50)
u(X,0,8,3) =0 + %[(295) (S4-2o) * 2(295)1/261:0] + 0(62) (6.51)

On taking the phase average, which agrees with the time average
to lowest order, Eq. (6.51) gives an equation which provides an

interpretation of the variable U:
0 = Avg(u) + eJb-(vxb) + 0(e?) (6.52)

The'ﬁariable U agrees with the variable v” used by Northrop and Rome8
through the order given. A different choice of perpendicular unit
vectors could have been made which would cause U to be identical with
Avg(u), although if would also cause the Hamiltonian K to be more

complicated. The effect of the O(e) term in Eq. (6.52) has been
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carefully discussed by Northrop and Rome.
No matter what choice is made for perpendicular unit vectors,
however, it is impossible to rid the expression for X, given in
(6.26), of its dependence on g, which is through the term ﬁ-g.
(The only exception is the case that ng, given by Eq. (3.13),

should vénish.) We shall return to'this point later.

6.6. The equations of motion

Let us make the choice of perpendicular unit vectors implied by
Eq. (6.46) and derive the equations of:motion, which will give us,
among other things, the second order perpendicular drifts, The
general case ofian arbitrary choice of perpendicular unit vectors
,need not be glven' the more complicated formulas which result in
thls case are ea51ly worked out, |

First let us compute dg/dt. We have

a.
<

3 = X, X}-[Jva + O(e 7 {X,0}[0 + 0(e 31 '(6.53)

Taking the parallel and perpendicular components of this relative to

b(X), we obtain

dXx ~ 2

a—” = bl + 0(e) (6.54)

dx c :

T T bx(Jm + 0%b- Vb) + O(e ) - (6.55)
1 Q+eUb (VXb) N

Eq. (6.54) shows that U is actually the parallel velocity of the

guiding center. Eq. (6.56) shows that the O(ez)fcorrection to the



perpendicular drifts is proportional to the O(e) term, although this
simpiicity has been achieved at the price of making a special and
not necessarily convenient choice for the definition of the guiding
center position g. Of course, Eq. (6.55) is easily expanded properly
into a power series inls.

Next, we may obtain the Q(e) correction to the mirroring
expression. |

Q+elb- (Vxb)

Eq.'(S.S) has been used in wrifing this result in the form given.

Finally, we have the evolution of the gyrophase:

- Q():() . :
3-2-= — + 0(e) | (6.57)

Q.

Of course, we have dJ/dt = 0 to all orders.

6.7. Eliminating the dependence of X on R
One's intuition says that the guiding center position g should

not depend on the choice of perpendicular unit vectors, and hence that
the appearance of the term axg'in Eq. (6.26) represents a flaw or
a shortcoming in the theory. Therefore we may ask if it is possible
to choose a new set of averaged guiding center variables which are
free of this term in the new quantities which correspond to g. It is
here that we call upbn the discussion of subsection 6.4.

. Any alternate definition for g musf be nice, since niceness is the

one inviolate requirement which averaged guiding center variables must
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satisfy. Northrop and Rome have used the expressioni”guiding point"
for some arbitrary, nice definition_of 8. There are many ways to
define a variable 8' which agrees with our 8 in any number of leading
terms of Eq. (6f26) and which is also nice, and.at the O(sz) term
there is.little physical reééon for choosing one form over another.
This may be seen from Egs. (6.44)-(6.45), showing_how a new setaof
nice'variébles can be creafeé from an oid set.

In particular, we may set
bxR (6.58)

and we have a nice variable X' which is both nice and independent of

perpendicular unit vectors. Likewise, we can kill the term}Zzébfg in

Eq. (6.27) by putting

be (¥xb) ] (6.59)

=

' = G + eJ[beR +

and we obtain a parallel velocity 0 which is also independent of
perpendicular unit vectors. .This‘ﬁ; is identical to the U of Eq. (6.50),
but obtained in a very different way. |

Unfortunately, the variable X' shown in Eq. (6.58) cannot be used
in a Hamiltonian theory, nor can any other nice alternatives which
eliminate the dependence on the choice of perpendicular uﬁithéC£ors;'
This can be seen by examining Eqs. (6.35)-(6.43), which give the most
general coordinate transformation allowed in a semicanonical theoryL
Therefore it appears that the intuition referred to above is wrong,
at least for Hamiltonian mechanics, |

For certain applications, especially numerical ones, it is desirable

to employ guiding center variables .which are independent of the choice
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of perpendicular unit vectors. Furthermore, the Hamiltonian structure
of the underlying theory may not be important in such work. Therefore
we give, in Appendix A, a set of noncanonical variables and their

equations of motion which would be useful for such purposes.

7. CONCLUSIONS

One shortcoming of.this work is that it does not allow for time-
dependent fields. Nevertheless, the mathematical techniques which were
developed in Ref. 1 and apflied to static magnetic fields in this
paper can be extended in a straightforward manner to time-dependent
electromagnetic fields. The results of this extension will be reported
uponiiﬁ future pﬁblicafions. |

The Hémiltonian,methods developed here seem to yield results with
lesé lébor'than oldef methods, especiaily when carried beyond lowest
order. Of'course, there is a compensation in thét there is more theory
t&wbe mastéréd, but this refrésents a kind of fixed 0verhead‘which does
not increése as one proceeds to higher orders. For example, it seems
feasible for one person working alone to extend the results of this
papér to one higher order, although the amount of algebra is significant.
I myself have cafried out approximately half of this calculation, but
I have not recorded it here because of its incompleteness and because
if does not have much practical value.. On the other hand, to the
order given the equivalents of Eqs. (6.54)-(6.56) for general electro-
magnetié fields are unknown and may perhaps best be derived by these
methods.

Even when carried to lowest order, however, the Hamiltonian methods



134

presented here promise to be useful for the analysis of additional
perturbations. For example, the effects of a smalllamplitude electro-
magnetic wave on single particle motion in a nonunifbrm background
magnetic field have been studied by Grebogi, Kaufman, and Littlejohn.18
In this analysis, the guiding center Hamiltonian in Eq. (6.47) is taken
to be the unperturbed system, to which perturbing terms representing
the wave are added. The resulting Hamiltonian can then be treated
by standard perturbation techniques.

Additional results ih the realm of single particle motion can
be obtained.by iterating the Darboux algorithm. fhis will allow
one to study the nearly periodic motion_of the guiding.center
corresponding to thé longitudinal bouncing and motion on the flux

? involve an

surfaces. The results obtained to date in.thi# area3
averaging over the phase of the ldngitudinal géuncing motion, which
is introduced after an averaging over the phase of gyration has
been pefformed. If both phases are iﬁtfoduced.before averaging, then
the door is open to an analysis of reséﬂanceS-between gyration and
bouncing. These resonances ﬁave an important effect on partiéie
confinement in fusion devices of‘the mirror type, and a perturbation
treatment should be especially useful in the so;called superadiabatic
regime. | |
Self-consistent treatments of engembles of paftiéleé are éspeéiélly
important in plasma physics. In the Vlasov‘approximation, Hamiltonian
methods are well adapted to sucﬁ'f}eafmenfs, aﬁd they'héve Béen |
applied in recent years to a number of‘different problems.zo"26

Nevertheless, for the case of nonuniform magnetic fields one has had

to make do with non-Hamiltonian methods, such as are used with drift



kinetic equations. Possibly the area of application of greatest value

for the Hamiltonian methods of this paper will be in kinetic theory.
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APPENDIX A

This appendix gives the guiding center equations of motion in a
form which would be suitable for numerical integration or other .
purposes with a minimum of overhead of notational cohﬁentions. The
formulas of this appendix are similar to those given'by.Northrop and
Rome,8 but they are_somewhat simpler. For the numefical integration
of systems of ordinary differential equations it is important for
efficiency reasdns that the "driving terms," represented below by
the right hand sides of Egs. (A.S)-(A.S), be as ;imple as possible.
Therefore tﬁe defipitions of the guiding center variables given
below have been juggléd so as to simplify the corrgsponding equations
of evolution. | |

For those readers cbntinuiﬂg from the main text, we note that
the guiding'center variables (%,U,J) used in this appendix are nice
but noncanonical variables.  The overbar notation has been dfopped,
and these variables are not to be confused with the intermediate
guiding center variables of Sec. 4. The variables U and J are
identical to U and J of Sec. 6, while X is identical to X' of Eq. (6.58).
| Lef x and Y be the particle'é instantaneous position and velocity,
let b be the unit vector in the direction of fhe magnetic field B,
let Q=eB/mc be the'signea'gyrofrequency, and let u=b.v be the particle's
instantaneous parallel velocity. ‘Then the guiding center position

X may be defined as follows:
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1 2. 2
-853[4\11 (Y_L'_VQ) + 9Vl b(b-vQ) - 4V_LVQ

<
1

X - g bxy + 623

+

ooy, -75-1,)] 25 by < zaa;.w,.m]}
- : 2 - »

+

o) | | (A.1)
In this formula and those that follow, e represents a mnemonic device
for keeping track of the 6rder of the terms. It should be set to unity
in applications. Furthermore, the operator V in expréssions involving
Vl; is taken to operate only on the vector I; One ma); think of Vt; as a
matrix M with components M, . = abj/axi. |

J
The parallel velocity of the guiding center U is defined as follows:

A ’ ~ 2 A ~ ’ ~ A -~
U=u - z%I:Z(bxy)-bel -V b (Vxb) + 4ub~Vb-(be)]_ |
- N 2 )
+ 0(e™) - (A2)

The quantity U is identical with the qﬁantity Y| used by Northrop and

Rome.

The adiabatic invariant of gyration J is related to the magnetic
moment 4 by u = eJ/c. It is given by
v2
2L
2Q

Jd =

+ LS 2v_|2_ (ﬂxy)-va + Qu[Z(f)xy)-vl;-yl - vfﬂ-(VXI;):I

* 4Quzl;-\713-(f>‘xy)§ + 0(e%) (A.3)
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Note that J is negative for a negative particle.
Eqs. (A.1)-(A.3) are to be regarded as definitions of the guiding
center variables in terms of the instantaneous particle variébles
x and v. Therefore all fields on the right hand sides, such as @
and G, are evaluated at the instantaneous particle position Xx.

In addition, note that these equations can be written in a number

of different forms. The forms chosen are more or less arbitrary.

The kinetic energy K =%-mv2 of the particle can be expressed in

terms of the guiding center variables. The relation is

1

K = m[a(0J + : u?] + o(e?) (A.4)

The equations of motion of the guiding center variables are

as follows. First, the parallel velocity:

-j—‘t’- - -Jf)-[vsz " 599 (6-vf>)xvsz] + 0(eD) (A.5)

This is completely equivalent to Eq. (6.56). Next we have the parallel
motion of the guiding center, by which we mean the component of dX/dt

which is in the direction b(X). This is
dXx A 2
e bU + O(e") (A.6)
el

Finally, we have the perpendicular motion of the guiding center:
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dX € 25 0 | U3
rry —-bX(JVQ + U'be Vb) + € bxg- ——-(b be)b Vb
t 1 Q Q
+ J-QE[- -@(b “VxDb) - —-(b Vxb)beVb + l V(b be) |
A
- bx(b+Vb-Vb) + (v-f))f)x(ﬂ-vﬂ)] s + 0(e) (A.7)

In this expression,'the term in V(b.Vxb) is not in a form which would
be most convenient for numerical integration{ When this term is
expanded out, along with all the other terms multiplying JU above,

there results

Ju _Ju VQX‘(VXI;)\ 5 D By
bX[...] = Q[———————Q Z(Vb)be > bb: :VVb

+ beVbeVb - & V(v ) + & Vzb] (A.8)
1

where the symbol 1 means to take the perpendicular projection relative

to b(X). Finally, we note that in Eqs.” (A.5)-(A.8) all fields on the

‘right hand sides are evaluated at the guiding center position X.
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TABLE I. Derivatives and integrals of various quantities with
respect to 6. The symbol X refers to any of the quantities in the

first column.

X dX/de [Xde

a c -C
¢ -a a
F, F, -F,
F, R, E,
F, Fy F,
F F, F
So -25, 75
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FIGURE CAPTIONS.

Fig.

Fig.

Fig.

Fig.

1.

2.

The three unit vectors ﬁ, fi, and fzw
The perpendicular plane. 6 is the gyrophase to lowest order,
and the unit vectors a and C rotate with the particle.

Motion in a uniform'magnetic field. X is the guiding center
position.

A schematic illustration of a 6-characteristic. The w=0

"plane" in the diagram actually represents a four-dimensional

surface in phase space.
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CHAPTER IV

GUIDING CENTER BOUNCE MOTION



HAMILTONIAN THEORY OF GUIDING CENTER

BOUNCE MOTION*
Robert G. Littlejohn

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

ABSTRACT

Guiding center bounce motion is analyzed with Hémil-
tonian methods, which include the use of Darboux's theorem
and Lie transforms. The system studied is a nonrelativistic
particle moving in a static magnetic field B = B(x) with
E = 0. The averaged equations of motion and adiébatic

~

invariant series are derived.

*Work was supported by the Office of Fusion Energy of the U.S.
Department of Energy under contract No. W-7405-ENG-48.
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1. INTRODUCTION

In two previous papersl’2 I have given a Hamiltonian treatment of

particle gyro-motion using Darboux's theorem and Lie transforms. In

this paper thé same methods are used to analyze the longitudinal
oscillatiohs of guiding center motion (the 5qunce motion); a brief
Hamiltonian treatment of the drift motion comes quite easily at

the end. As in Refs. 1-2, the problem definition includes the
restriction to a nonrelativistic particle moving in a static magnetic
field §=§(§) with EfO.

This work parallels quite closely some prévious work on bounce.
motion, especially that of Northrop, Liu, and Kruskal.3 The results
derived here are identical to the results of those authors, although
the methods of derivation are quite different. In particular, there
is complete agfeement on the averaged Qquations of field line motion
and on the first correction to the bounce invariant. This correction
was élso worked out by Hastie, Taylor, and Haas,4 using an approach
based on the V1asov equation rather than single pérticle equations
of motion. All three sets of results are in agreement. |

The original treatment of bounce motion was given by Northrop and

\ Teller,5 and Northrop6 has given an excellent review of the whole

subject. Throughout this paper a fimiliarity with Northrop's review
is'éssumed; and several techniques are drawn from this source without
explicit referénce.

The unique feature of this work concerns the Hamiltonian methods
used to carry out the perturbation expansion. These are the methods

deVeloped in Ref. 1-2, and a familiarity with them is assumed here.

Nevertheless, in several places improvements on the methods of Refs. 1-2
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were called upon for this work, and they are described in detail.

The new Hamiltonian methods are a replacement for Kruskal's7
systematic adiabatic theory. In an actualwcalculation, they have
the effect of replacing large amounts of mechanical algebfa with
a small amount of simple calculations, requiring nevertheless
careful concentration,.

Although the formalism of differential geometry is called upon
from time to time in this work, it is for the sake of enrichment
value, and is not a critical element in any proof or demonstration.
Theréfore this paper can be read quite satisfactorily without
any knowledge of differential geometry. A physicist's standard
knowledge of tensor calculus is, however, reqﬁired.

For eése of comparison of this work with Refs: 2 and 3,‘Tab1e I
has been prepared showing notafional differences.

A pervasive notational problém with this work concerns partial
derivatives. There are at least six‘coordinate systems used in this
papef, and a ﬁartial differential operator such as 3/3E can have ‘
a different meaningnin different coordinate systems, depending on
which other variables besides E are held fixed. This problem is
solved in thermodynamics by explicitly indicating the variables
which are to be held fixed, but such a solution would lead to
extremely cumbersome formulas for this work. Therefore in this paper
the variables to be held fixed are determined from the context. For
example, when we are discussing the coordinate system (y,w,E) in
Sec. 3.5, the operator 3/3E is taken at fixed (y,y). In cases of
possible confusion the variables to be held fixed are indicated in

the text.



A similar problem concerns the components of covariant vectors
and tensors. It is not enough, for example, to ask for the y-com-
ponent of the vector p. One must also indicate what the other

\ N

coordinateé are, whether they be (y;E) or (Y,J), for example.

Therefore in reading this paper one must be careful to note the

coordinate system involved, especially when dealing with the 1-form

p and the Z-form w.

Sec. 2 of this paper places.the Hamiltonian method used here,
which we call the Kruskal-Darboux-Lie method, in the context of
general Hamiltonian syétems. Sec. 3 analyzes the unperturbed
bouﬁge motion (iQe. in the limit e+0), and establishes séveral
important coordinate systems and their properties. Sec. 4 carries
out the Darboux transformation, and derives the Poisson tensor in
the new coordinates. As in Refs. 1-2, the Poisson tensor appears
as an exa;t expression, .i.e. it is not a power se?ies iﬂ e.. In
Sec. 5 we carry out the averaging transformation using Lie trans-

forms, and we derive the averaged equations of motion and the

adiabatic invariant. Sec. 5 also gives a brief discussion of the drift

motion. Finally, in Sec. 6 we discuss the significance of this

work and suggest some extensions. Most importantly, this paper

lays the groundwork for the study of resonances among the different

degrees of freedom of charged particle motion, and ways of carrying

this out are suggested.
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2. THE KRUSKAL-DARBOUX-LIE METHOD FOR NEARLY PERIODIC SYSTEMS

2.1, Introduction

This section summarizes and coordinates some material from Refs.
1-2 which will describe an explicit program for the Hamiltonian
treatment of nearly periodic systems. This program is a kind of
Hamiltonian extension of Kruskal's theory,7 using Darboux's theorem
to find an appropriate set of variables and Lie transforms to carry
out the averaging transformation. Refs. 1-2 have already illustrated
the program with the example of the nearly periodic motion of particle
gyration, but at the risk of some repetition it is useful to summarize
it here before proceeding with an analysis of the guiding center
bounce motion.

There are two reasons for this. First, although Kruskal7 has
given a clear exposition of his theory, the Hamiltonian extensions
to it can be found in Refs. 1-2 only intertwined with the details of
their épplication to the gyro-motion. Therefore a description of
the new method is in order which emphasizes its generality. Second,
when applying the Hamiltonian program to the case of guiding center
bounce motion, it is easy to become confused by the algebraic detaijls
of the application, unless one keeps clearly in mind the general
structure and purpose of the system of variable transformations. This
was not the case for the gyro-motion, because for that problem the
unperturbed oscillator is harmonic. For the bounce motion the unper-
turbed oscillétor is in general anharmonic, and it depends on the
unspecified function B(x) for its description. As a result the bounce

motion is potentially more confusing.
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. 2.2, Kruskal's theory

It is appropriate to begin with a brief description of Kruskal's
Atheory, the structure of which may be seen in Table II. Although
Kruskal's theory works equally well for Hamiltonian and non-Hamiltonian
systems, it is assumed here that the nearly periodic system in question
is a Hamiltonian system with N degrees of freedom. Thus the variable
', sét (S,p) in Table I1 represénts two N-vectors of canonical coordinates
in a phaﬁe space of dimensionality 2N.

The notation used in Table II is based on that of Kruskal's original
paper,7 which employs symbols in quite a different manner from either
Refs. 1-2 or the main body of this papef. Kruskal's notatidn appears
in this paper only in this section and in Table II and column (a) of
Table III. Some care may be required to avoid confusion.

The fi;st preparatory transformation, (q,pj -+ X, is simply a matter
of convenience that ﬁay‘be useful in certain cases. The 2N-vector X
is some éet of phése space coordinates, which are possibl} non-canonical.
A non-Hamiltonian system begins with coordinates of this type, rather
than (@,E).

The second preparatory transformation takes account of the nearly
periodic nature of the system. The expression ''nearly periodicﬁ
means that the equations of motiop can be written in the form

dx

rrle Eo(§) + 551(5) + ... (2.1)

and that the equations of motion for the unperturbed system

I = EO()"(‘) (2-2)
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are solvable and yield only periodic orbits in phase space. Generically
speaking, the phase space solutions to Eq. (2.1) look like the orbit
shown in Fig. 1(a), while the solutions to Eq.. (2.2) are topologically
equivalent to circles, as illustrated by .the two orbits shown in

Fig. 1(b). These orbits are called loops by Kruskal.

The unperturbed phase space orbits provide a set of phase space
coordinates which are descriptive of the unperturbed system in a natural
way. Since a finite region (poséibly all) of 2N-dimensional phase
space is filled up by a (2N-1)-parameter family of loops, it is
natural to make some choice of 2N-1:variab1es y’which select a particular
loop out of the family. Regarded as functions of the 2N quantities
X, the 2N-1 quantities y are constant along any given loop,‘and
their time derivatives vanish with respect to the unperturbed system.:
Likewise, position along a given loop can be specified by some
angle-like variable 6, which can be taken to run monotonically  from
0 to 27 around the loop. The variables (y,6) form the third coordinate
system in Kruskal's scﬁeme, as shown in Table II.

The equations of motion of the unperturbed system in the variables

(y,6) have the form

dy

a =0

_ (2.3)
do _

at = Yo

Clearly, the 2N-1 quantities y are constants of the unperturbed motion.
Since in general the frequency of the unperturbed motion differs from

one loop to another, the function ¢, in Eq. (2.3) depends on y. The
0 P Y
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fact that wO is independent of 6 is not automatic, but depends on the
definition of the angle 6, as discussed by Kruskal. Note that the
angle 6 evolves linearly in time with respect to the unperturbed system,
with a peridd Zw/wo(z). It may be seen that carrying out the second
preparatory transformation of Table II involves solving the unperturbed
system, finding all the constants oflmotion, and finding an angle
whose time evolution is linear in the unperturbed system. By
hypothesis, this can always be done.

When the full equations of motion (2.1) are expressed in the

coordinates (y,0), there results a set of the form

= = 0 + egl(y,e) + ..

(2.4)

. |
=)+ e (5,0 +

Because of the higher order terms which have appeared, the quantities
y are not constants of the true motion. Also, because of the 6-depen-.
dence of these terms, the y- and 6-evolutions do not decouple from
one another. In these circumsténces it is often said that y and 6
have '"rapid oscillations'" in their time evolution. |

The next variable transformation in Kruskal’s theory, indicated

as the "averaging transformation" in Table II, is a near-identity

transformation of the form (y,6) - (y,6), or, more explicitly,

y(y,0) =y + e¥ (¥,0) *+ ...

(2.5)

6(y,8) = 6 + €0 (¥,0) + ...
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The functions Yl’

fulfilled. Firsf, the transformation itself is periodic in 6, i.e.

91, etc., are chosen so that two criteria are

it is free of secular terms.  Second, the equations of motion¢for'

‘the overbarred variables have the form

dy _ :
I 0 + egl(x) + ..,

(2.6)

dé - -
It wo(z) + ewl(z) + ...

where the essential point is that the right hand sides are independent
of the angle 6. Kruskal's theory gives an iterative algorithm for

the detefmination of the functions ¥n’ @n, gn"wn’ etc. It may be
very laborious to carry out in practice.

An important result of the averaging transfofmation is that the
time evolutions of 2 and 8 are decoupled, since the functions @n and
w in Eq. (2.6) are independent of 8. On account of this property, the
new variables are said to be 'free of rapid oscillations'; in this
paper they will be called averaged. " Kruskal called them Eiéi
variables. The overbaf notation is a reminder that the variables
in question are averaged.

An impoitapt mathematical advantage of using the averaged variables
y is that their time evolution is governed by a system of only 2N-1
differential equations, rather than 2N for the earlier variables X.
Once the evolution of the variables y has been determined, that of
§ follows by a simple quadrature.

Actually, assuming that the original system is Hamiltonian, it is

possible to reduce the system by two variables instead of just one.



To do this, one first expresses the original coordinates (q,p) as
functions of the averaged variables (y,8). Then the quantity J is
computed as a function of y:

2r
13(

IQD

- - 1 -
I9) = 5 8)-

Y0

[ ]

«3(2,5) dé (2.7)

(o1

6 .

This integral can be considered to be a line integral in phase space
taken around the closed phase space curve y = constant, which is called
a ring by Kruskal; Kruskal's ring encircles one direction of the
torus or cylinder-like surface in phase space on which the orbit lies.
Further details;concerning the topological pfoperties of this surface
may be found in Abraham and Marsden.8 Actually performing the ring
integrallcan be quite tedious, as may be seen in the work of Northrop,
Liu, a'nd‘Kruskal.3

Kruskal has shown that the quantity J is a constant of the motion,
and this fact allows the system to be reduced by one more variable.
The last variable transformation shown in Table II is completed by
finding 2N-2 other functions z of 2, in addition to 3(2). The variables

z evolve according to a set of 2N-2 differential equations.

2.3. The Darboux-Lie extension to Kruskal's theory

The structure of the Darboux-Lie extension to Kruskal's theory
may be seen in column (a) of Table III. Again, a warning is in order
concerning notation; the notation used here for a description of the
general case is based on that of Ref. 7,.and is independent of the
remainder of this paper. By comparing column (a) of Table III with

Table II it may be seen that the Darboux-Lie extension to Kruskal's
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theory involves, roughly speaking, performing the last two variable
transformations in rgvérse order:

Column (b) of Table III exemplifies the Kruskal-Darboux-Lie method
with the problem of particle gyro-motion, the subject of Ref. 2, and
may be compared with column (a) in order to see more clearly the meaning
of the transformations. Column (c) shows the application to guiding
center bounce motion, which will be discussed in later sections of
this paper.

The first two.preparatory_transformatiqns have exactly the same
form and purpose in the Darboux-Lie extension to Kruskal's theory as
they héve in the origiﬁal theory. Referrring to column (b) of
Table III, the purposé of the first preparatory transformation
(q,p):+ (5,2) méy be seen to be the creation of a set Qf gauge
indépendént phase coordinates. This is merely a matter of convenience.
Likewise, the second preparatory transformation is conéerned with_
the properties of the unperturbed orbits. For example, the (2N-1)- .
vector X in the generalrcase corresponds to the five quantities (§,u,w)
for the cése of the gyro-métion, and these quantities are constants
.of the motion at lowest order.

Thé Darboux transformation, shown in column (a) of Table III as
(y,8) » (g,e,J), is designed to create two variables, © ahd J, which
‘are canonically conjugate and which are '"canonically decoupled," one
might say, from the remaining 2N-2 variables z. More precisely, one

demands that the following Poisson bracket relations be sétisfied:

{6,J}

constant
(2.8)

{6,2} = {J,z} = 0



The attention which is paid to Poisson bracket relations is a -
characteristic feature of the Darboux-Lie extension to Kruskal's
theory. Clearly, the 2N—2.variab1es z in the general case correspond
to the four variables (},U) in the case of the gyro-motion.

Finally, the last variable transformation shown in Table III
is the averaging transformation. This is a.near—identity, symplectic

transformation which is specified by its scalar Lie generators, in

.the manner illustrated in Refs. 1-2.

Let us now apply the Kruskal-Darboux-Lie method to the case of

guiding center bounce motion.

- 3. THE PREPARATORY TRANSFORMATIONS

3.1. The guiding center variables

35,6 that for certain magnetic field configurations

It is Qell known
§(§) guiding center motion exhibits a bouncing behavior, which is a kind
of nearly periodic motion. In addition, guiding center motion can be
represented by a Hamiltonian dynamical system, as shown in Ref. 2.
Therefore guiding center motion is a suitable candidate for the Kruskal-
Darboux-Lie method, as outlined above in Sec. 2. An équivalent analysis
of this system, using Kruskal's non-Hamiltonian method, has been carried
out by Nbrthrop, Liu, and Kruskal.3

The guiding center vériables will be denoted by ({,U,G,M) in
this and remaining sections of this paper. These are thg averaged,
not the intermediate, guiding center variables, in the terminology of
Ref.2; the overbars have been dropped for notational convenience. .

Note that the adiabatic invariant of gyration is denoted here by M,

rather than J, as indicated in Table I. The latter symbol is reserved
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in this paper for the longitudinal invariant, as is customary in
plasma physics.

The’guiding center variables satisfy the following Poisson bracket
felations, which specify ihe'symplgctic structure of the six-dimensional

phase space of which they are coordinates:

.{69M} = 1/¢ (3'1)
{6,X} = {8,U} = {M,X} = M,U} =0 (3.2)
{xu}-?:_ﬁJ,Eﬂ;"__(élﬂ;.l (3.3)
_v, = Q* = Q* . .
bxI |
XX} = 55 (3.4)

~In these equations b is the unit vector along the magnetic field B,
I is the unit tenSor, Q is the signed gyrbfrequency eB/mc, Q is the
gyroffequenéy vector eB/mc =‘bQ;vand Q* and Q* are the Morozov and

Solov'ev9 variables:

Q*

~

Q + eUvxb o (3.5)
Q* = beg* = 0 + eUbe (Vxb) (3.6)

All fields in Eqs. (3.1)-(3.4) are evaluated at the guiding centeér
position X, aﬁd-v means 9 /5 X. Finally, ¢ is a dimensionless parameter
indicating ordér'in the guiding center approximation. Physiéai results
correspond to e=1.

Because the right hand sides of Eqs. (3.3) and'(3.4) are indepen--
dent of 6 and M, these equations define a éymplectic structure on a

reduced phase space of four dimensions, which has the four variables
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(X,U) for coordinates. This property is not an accident, but follows

from the use of the Darboux algorithm, as explained in Ref. 1. It

is the reduced phase space which will be of interest in this paper.
The time evolution of the guiding center variables is governed

by the following Hamiltonian, in which the 0(e) term has been made

to vanish by an appropriate choice for the origin of gyrophase, as

explained in Ref. 2:

HOXUM) = M2(X) + 2 0% + 0(e?) | (3.7)

The Hamiltonian is independent of o, implyiné that M is a constant
of the motion. Because of this property, the Hamiltonian can be
considered to be a function on the reduced phase space of four
dimensions &eecribed‘by the variables ({,U), with the constant M‘
Being taken as a parameter.,

Sometimes it is nseful to imagine the Hamiltonian in its formal
limit ee‘an'infiniﬁe power series in €, whereaslfor practical
purnosesrit must be-truncated after a finite number of terms. In
either case the Hamiltonian can Be thoﬁght of as a function on the
reduced phase space parametrized by (X,U), and it gives rise to
nearly periodic motion on that space, The unperturbed system,
in the sense of Eqs. (2.1)-(2.2), depen&s only on the leading term
in the Hamiltonian, so that the preparatory transformations indicated
in Table III do net depend on how the Hamiltonian is truncated.
Using the Poisson bracket relations, Egs. (3.3)-(3.4), it is trivial
to write out the differential equations of the unperturbed system in

the variables (X,U):
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§
[=
c

&
@ _,
(3.8)

du

qp = - Mbeve

For certain magnetic fields B and ‘in certain regions of phase space,

this system is periodic, and it defines Kruskal's loops.

3.2. Transforming the Poisson tensor

In a Hamiltonian theory it is necessary to know .in each coordinate
system used, at least implicitly; the Poisson brackets of the coordinates
among‘themselves. These Poisson brackets are the_components oij of the
contravariant'Poisson.tensor with respect to the given coordinate
system, and}a straightforward computation of the new Poisson brackets
under a change of coordinates*is equivalent to the execution of the
usual transformatlon law for contravariant tensors.

In the stralghtforward method of transformlng the POISSOH tensor,;
the P01sson brackets of the new coordlnates among themselves are p
computed f1r$t These emerge 1n1t1a11y as functlons of the old |
coordlnates, and the second’ step is to express them as functlons of the
new coordinates. . Flnally, any partial derivative expressions appearing
1n the P01sson brackets, such as the operator Vv in Eqs. (3 3) (3. 4), |
must be transformed to the new coordlnates.

' The stralghtforward method sufflced for the purposes of Refs. 1-2,
ibut it qu1ck1y leads to very laborlous calculatlons when applled to
"gu1d1ng center bounce mot1on. The follow1ng is a presentatlon of a
ﬁjshort-cut method, which could have-been’used to adVantage in Refs.
';1-2, but which is nearly essential here. Instead of dealing with
ij

“the Poisson tensor o , the short-cut method focuses on the Lagrange



t

tensor wij’ and even more so on the covariant vector Pys of which

wij is the exterior derivative.

A brief review of the properties of the vector Py and the tensors

wij and 6°J is in order. If the phase space coordinates are zl, then

the Poisson tensor o'J is defined by ot = {zl,zJ}, with the usual
definition for the Poisson bracket. Next, the Lagrange tensor wij has

. . . C . ) .oo-ij
components which form a matrix which is inverse to the matrix o I,

] ot W = 6 | (3.9)
k=1 ;o

This definition for the components wij differs by a sign from that

employed in Refs. 1-2, and it causes the quantity wij'td be the

J, according to the usual

negative of the Lagrange bfacket o‘fvzi with z
definition of the Lagrange bracket whiﬁh is given in mechanics texts.
The present sign convéﬁtién is better, however, because it is more
in accordance with the theory of differential forms as applied to
méchahids.S’lO
The Lagrange tenéor is closed, thch méans>that it satisfies the
following differenfial equation:
amij awjk awki
kK "1 T3
0z dz 92

The closedness of w is equivalent to the Jacobi identity. Eq. (3.10)
will prove to be a theorem of great power and utility in Secs. 4 and 5
of this paper. Because w is closed, it can, according to a theorem

called Poincare's lemma, be written in terms of the derivatives of a

covariant vector L which will be called the distinguished 1-form:

=0 | (3.10)
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9p.  3p. -
=—d _ 1 (3.11)

RS T S
92z 9z

The eséence of the'éhért;Cut method for findiﬁg the Poisson teﬁsor
undef~a change 6f cobrdihates is to transform first the comfonehts
of the distinguished l-férm. Next, the Lagrange tensor is COmputed
from Eq. (3.11), and then the Poisson tensor is cdmputed ffom Eq. (3.9),
i.e. by métrix inversion. Since oy is a first rénk tensor it is easier
to transform than oij, which is a second rank tensor, and in practice
this advantage more than compensates for the,neéessity for matrix
inversion. Aétually, as will be shown below, the distinguished 1-form
pi‘can Be written as a linear combination qf theAgradiehts'of phasev
space séalars. Because the frangfofmation properties of séalars
are tfivial, the result is an almost immediate wéy of writihg down _
the coﬁpdnents of the Poissoh fensorvin any’coordiﬁate sysféﬁ.% .

For later reference it is usefﬁl to tabulaté here the relations
between the dﬁantities wij and.6ij.Whi§h follqw from Eq; (3;9), i;é.»
from matrix inversion. We let D represent an arbitrary invertible

antisymmetric 4x4 matrix, and we let G be its inverse. Then

Gyp = “Dg,/T
Gyz = *Dy,/T
Gyg = ~Dps/T
- (3.12)
Gyz = Dy/T |
Gyq = *Dq3/T

Gg4 = -Dyp/T

P
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where

r=>0.,D

12034 = P13P24 * Dy4D23 (3.13)

It is interestiﬁg to note that if w is identified with D then the
quantity T is proportional to the one independent compénent of the
4-form w~w, i.e. the Liouville volume element.

It is interesting to examiné.the,ngrange tensor wij and the
distinguished 1-form Py in the (X,U) coordinate system. It is also
useful to do so, because beforé pi can be found in an arbitrary
coordinate system, it must be kndwn in a’given system.

The Lagrange tensor is found from Eqs. (3.3)-(3.4) and (3.12)-(3.13).
To display the results it is convenient.to'let'the indices i,j run
over the numberé 1,2,3, corresponding tdvthe components of X, and

to let the index 4 correspond to the coordinate U. Then we have

1

*
i © € %15k %k

W
(3.14)

wig = by

where e, . is the Levi-Civita symbol.

jk
Let us now find the distinguished 1-form p. This is a problem
which is very similar to finding a vector potential A corresponding

to a magnetic field B. A satisfactory sclution is given by

o
. = —— A, + Ub,
i emc 1 i

©
]

(3.15)
p4=0

The first three components of p are suggestive of a modified vector

potential 5*, such as that introduced by Morozov and Solov'evgz



A* = A + — Ub (3.16)

- Likewise, the Vanishing fourth component of p can be associated with
a modified electrostatic potential ¢* by 0 = Py = -(e/emc)¢*. Then
the verification of Eq. (3.11), using Eqs.(3.14)-(3.15), reduces to

the following identities:

Q* - .g. VxA*
~ me ~

. o[ 3AF
- = e e — . *
eb mc < 18] vé

It is also interesting to write out the closedness property of

(3.17)

w for the specific form given in Eq. (3.14). The result is

VeQ* = 0

, (3.18)
3 Q¥ ;
Y eVxb

The obvious analogy between these equations and the well-known
formulas of eleétromagnetic theory is bofh interesting and suggestive.
It comes about because the electromagnetic fieid tensor Fuv’ like
wij’ represents a closed 2-form on a space of four dimensions. In
the case of Fuv’ the space in question is space-time, with coordinates
(x,t), and in the case of mij the space is our four dimensional phase
space, with coordinates (§,U). Evidently, it would be suggestive to

write E* = -(emc/e)b in Eqs. (3.17)-(3.18).
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3.3. Field line Coordiﬁates; the transformation (§,U) + (y,s,U)

According to the discussion of Sec. 2, we now seek a transfor-
mation to a set of phase space coordinates corresponding to the set
(y,6) of column (a) of‘Table I1I. These variables will consist of
three quantities which are constants of the unperturbed‘motion, and
an angle evolving linearly in time. In practice, it is convenient
to carry out this transformation in a number of steps, of which
the first is a transformation to field line coordinates. By 'field
line coordinates' we mean a curvilinear coordinate system in physical
space in which two of the thrée coordinates label field lines. Trans-
fbrming to such a syéfem has the advantage of immediately creating
two constants of'the unperturbed motion, since this motion, according
to Eq. (3.8), is always parallel to field iines.

| Two of the field line coordinates will be denoted by the 2-vector

¥=(y1,y2), which is related to the familiarvEulerbpotentials11 (a,B)

of the guiding center position X by

y; = B(X)
(3.19)
= = a(X)
Y2 = e %2
Since B = VoxVB, it follows that
ay2 ayl
a(x) = 5% 15X (3.20)
and that
L3y :
be = 0 ‘ (3.21)
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In this paper the letters a,b,c,d will always be used for indices
which run over the numbers 1,2,
In association with the coordinates y it is convenient to employ

the two-dimensional Levi-Civita tensor yab,'with Y11 =0 and

Y22
Y12=-Y21=1. For example, if the gauge A = (1/2)(aVB - BVa) is chosen,

then

(3.22)

Here and‘throughout this paper the summation convention is used, unless
greater clarity is called for. The tensor Yab satisfies the following

identities, which are of use later:

8 é

Yab¥ed = %actba = $addbe

(3.23)

ac'ch -Gab

A third spatial coordinate is conveniently chosen to be s, the
distance along a field line relative to an arbitrary initial value

surface:

xa
5 (X) --/"b(y)-d:f' (3.24)
It follows from this definition that s satisfies

" 3s

b-'§= 1

(3.25)
~ X
b-g-;-‘-‘ 1

To complete the coordinate transformation (X,U) =+ (y,s,U) we first
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work out the equations of motion of the unperturbed system. From

Eq. (3.8), these are

ds _ ¢ - (3.26)

30
k- Mg

Second, the distinguished 1-form is transformed to the new
coordinates. This transformation can be carried out using the usual
transformation law for covariaﬂt vectors, but it is easier to
observe that in the gauge given by Eq. (3.22), the distinguished 1-form
is a linear combination of phase space gradients. That is, with

z' = (X,U), Egs. (3,15) and (3.22) are equivalent to

.aya AVBX
9z 39z

where i=1,2,3,4. This is a manifestly covariant equation, in which

the five quantities (yl,yz,xl,x XS) are being treated as phase space

2,

scalars, and hence it is valid in any coordinate system zl.

In particular, in the coordinate system (y,s,U), Eq. (3.27) gives

1 » 3%
Pa §E'Yabyb Ub.a
pg = u : ‘ (3.28)
= 0 .
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In the first of these equations, Py stands for the ya'compohent of p.
This notation avoids the use of milti-level subscripts, and.it will
be followed throughout this paper. Eq. (3.25) has been used to sim-
plify the component Py If the Poisson brackets were needed in these
coordinates, it woqld be easy to derive them from the components of

p given above.

3.4, The variable E; the transformation (y,s,U) -+ (Z,s,E)

In the unperturbed system of Eq. (3.26) the variables y are
constants of the motion and the variables s and U form a potential
system of one degree of freedom. Therefore this 5ystem possessés
an energy-like integral, supplying a third constant of the unper-

turbed motion:
- : ) . 1 2 . . . . ) » *
E(}’:S,U) = 'Z_U +-MQ(}’,5) . , (3-29)

The quantity E is not a constant of the true, perturbed motion, and
it is to be treated here as a variabie or new phase space coordinate.
The three variables.tx,E) correspond to the variables y of column
(a) of Table III.

Eq. (3.29) may be used to eliminate U in favor of E, thus
effecting the transformation (Z’S’U) > (X,S,E). The coordinate

transformation is not one-to-one, because of the double root for U:

1/2

U(;:,s,p) = #{Z[E-Mﬂl(y,s)]} (3.30)

‘It is convenient to imagine that the one coordinate system (y,s,U)
breaks up into two patches when variables are changed to the (y,s,E)

system. The upper sign in Eq. (3.30) corresponds to the 'upper
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patch," meaning U>0, and.similarly for.thevlower patch. The same
convention will be followed throughout this paper wherever a double
sign appears. If an equation is quoted without a double sign, then
it may be presumed to be valid in both patches.

Let us assume thaf for some value of y the quantity MQ(X,S),
considered as a functidn of s, has the form shown schematically
in Fig. 2. In particular, we assume that at s=sm;_MQ has a minimum.
Recall from Ref. 2 that sign(M)=sign(Q)=sign(e), so that a minimum
in M@ is also a'minimum in the magnetic field stfength B(Z,s). The
quantity Sn is to be regarded as a function.of Ys and;we will write
Qm(Z) for Q(X,sﬁ(x)). It follows that E must be greater .than Mﬂm(z),
and if there are two turning points of the unperturbed motion, as
shown in Fig. 2, thén this motion is periodic. It will not, however,
be harmonic in general, so we are obliged to deal with a nonlinéar
oscillator. Note that there are other ways that the unperturbed motion
oan be periodic, for.example if Q(y,s) is periodic in s. These cases
will not be considered here, however. |

The turning points Sy i=0,1, are the roots of
E = M2(y,s;) ' - (3.31)

It is convenient to order the roots so that $0<S; - The quantities S;
are regarded as functions of (y,E), and in the unperturbed motion U=0
when s=si(y,E). In this paper we will only consider a range of

parameters such that Eq. (3.31) has two roots.

3.5. The variable y; the transformation (y,s,E) - (y,¥,E)

Fig. 3 shows the s-U plane for the unperturbed system, for some
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specific field line with coordinates y. The unperéurbed motion takes
piace on the closed ﬁurves E=constant, two of which are shown in Fig. 3.
These curves are symmetric about the line U=0, and they form a family
which is topologically-equivalent to a set of concentric circles.

The point s=sm(Z), U=0 is a fixed point of the unperturbe motion,

and it forms the center of the family of curves E=constant.

It is convenient to define ¢ as the phase of the unperturbed
oscillator, taking on the value 0 at the pqint $=50(Z’E)’ U=0, the
value m at the point s=sl(¥,E), U=0, and appfoaching 27 as the unper-
turbed phase point returns to s=sO(Z,E), U=0. Two contour lines
of ¢ are shown in Fig. 3; considered as a function of (s,U) or (s,E),
¥ has a branch point at $=S > U=0.

Let us denote the frequency of the unperturbed oscillator by

wo(y,E). Then it follows from Eq. (3.26) that

SI(Y’E) .
1 1 ~  ds!
———— =t — [k
TN B B [Cor > (3.32)
So(X’E)
Similarly, ¢ itself is given by
) .8
¥(7,5,E) = u_ (y,E) st __ (3.33)
A 0’ u(y,s',E) )
$o(+E)

in the upper patch, and 27 plus the expression above in the lower
patch. Eq; (3.33) can be used, at least in principle, to- eliminate

s in favor of ¢, thus bringing about the transformation (y,s,E) =
(¥'¢’E)° The following identities follow immediately from Eq. (3.33),

and are useful in.carrying out this transformation:



B4

(y,E) .

oy ot 4

ds  U(y,s,E) (3.34)
U(y,s,E)

9s :

B A — 3.35

W wy(y,E) (3:39)

In addition, it is useful to note that although the guiding center
position X depends on both ¢ and E in the new coordinates, it does

so only through the function s(y,y,E). Therefore we have

aX '

iy _ A a_s-'_ A _l—]_ ) B

W—bw-bmo (3.36)
9X "

~=p 2 (3.37)

oE 9E

In a similar manner, if f and g are any two functions depending only

on X, then they satisfy the differential equation

%

d

ag _ af 3g
5 5E 30 (3.38)

oE

<

Using these relations, it is easy to work out the components of
the distinguished 1-form in the coordinates (y,y,E). Here we call upon

Eq. (3.27). The result is

~ 9X
Pa = 2¢ Yab'b _Ub’5§;
2
_pds U |
p¢ = U 5y - ™ (3.39)
9S
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The derivatives in these expressions are taken with respect to the
(y,¥,E) coordinates.
Finally; there is a relation of importance connecting the action
-of the unperturbed oscillator with its frequency. We define the action
I(y,E) as follows:
sl(z,E)
I(y,E) = £ %- Uy,s',E)ds’ (3.40)

so({,E)

Then it follows, using Eqs. (3.30) and (3.32), that

1

————“’O(X’E) (3.41)

D) =
This result is not as obvious as it looks, because the integrand of
Eq. (3.40) is not differentiable at the endpoints. Nevertheless it
is true and it can be justified rather easily.
The unperturbed system (3.8) possesses an important symmetry,
which finds simple expression in the coordinates (y,y,E). If the
original coordinates (X,U) are expressed as functions of (y,y,E),

then we have

X(X,-¢,E) +§(¥:¢:E) (3-42)

U(Z,-¢,E) 'U(X:w’E) (3-43)

This is obviously a kind of time-reversal symmetry, since § evolves
linearly in time in the unperturbed system. It is a curious fact that
this system possesses time-reversal symmetry, since neither the

perfurbed guiding center equations, described by Egs. (3.1)-(3.4)
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and (3.7), nor the original charged particle motion from which the
guiding center equations were derived possesses such symmetry. Imppr-
tant use of Eqs. (3.42)-(3.43) will be made as we proceed.

Referring to Table III, column (c), it may be seen that the intro-
duction of the angle ¥ completes the second preparatory transformation,
taking us altogether from the ofiginél coordinates (§,U) to the

coordinates (y,¥,E). Let us now turn to the Darboux transformation.

4, THE DARBOUX TRANSFORMATION

4.1. The Poisson tensor in the coordinates (y,y,E)

The Darboux transformation will follow from treating}the angle ¢
as a Hamiltonian and determining the phase space trajectories (the
y-characteristics) which result. The Poisson tensor in the (Z’w’E)

coordinates is required for this analysis, since Poisson brackets

~are used to determine equations of motion.

According to thé‘discussion of Sec. 3, we will proceed from the
distinguished 1-form p to the Lagrange tensor w to theiPoisson tensor
o. The Lagrange tensér w has a linear dependence on the distinguished
1-form p, and the latter consists of an 0(1/¢) term and an 0(1) term,
as can be seen in Eq. (3,39). Therefore w alsd breaks up into two

such terms when ordered in e, so that it is convenient to write

21 .
wij =2 “ij + vij 4.1
The tensors u and v are both closed (see Eq. (3.10)), and important
consequences will follow from this fact as we proceed.

By drawing on Eq. (3.11), the components of p and v can be written

down immediately. The only non-vanishing component of u is



l—‘ab = _Yab (4"2)

The notation here is like that of Eq. (3.28); Hap represents the
(ya,yb) component of y. It is curious to note that although u is
closed, it is not-éymplectic, since det(uij)=0.

The components of v can be found similarly. They are

v, o= 2 AJ be - /hg 2 > (4.3a)

ab aya\ ayb ayb\ 3y, '
22 (u2s) |2 (. | |

\)aw. = BYa< 3‘1’) BIP(Ub > (4.3b)
_ 2 LK 9 b e

\)aE = —a—}-,—-< ﬁ) - 3E (U > (4.3C)

o2 f2s) 2 fps) |

VuE © IPQJ E) 5E (an> (4.3d)

0f these, a significant and important simplificatidn occurs in (4.3d).
Expanding out the derivatives and using Eqs. (3.30), (3.38), (3.35),

and (3.41), we have

“WE T Tag T TRE (4-4)

The components of the tensor v have the‘following symmetry

properties:

Vap(-¥) = -v (V)
Vay (79 = *v,, () .5
Vap(-v) = v £ (9)
Ve (F¥) = v e (V)
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Thése follow simply from Egs. (3.42)-(3.43); Recall that y and s
are functions only of X, and hence are even under y = -y.

To find the Poisson tensor we may return to Eqs. (3.12) and
identify w with the matrix D and o with the matrix G. Then the"

equation for T, Eq. (3.13), may be written in terms of the tensor
Yab’

W

bw) 4 (4.6)

T=vy.( 1 W W,
ab" 2 "ab YE aE
Substituting Eqs. (4.1)-(4.4) into this and simplifying gives

I = -1 (1+ea) @
E(.UO .

where

1

A= Yab(MO?aEvbw " 7 Vap) (4.8)

With the help of Eq..(3.12) the Poisson tensor may now be computed.

The result is -

{ya,yb} = EYab/-(lfeA)

{y_,v} = ew. ¥y v, ./ (1+eh)

a 0'ab bE (4.9)
{Ya,E} = -ewoyabvbw/(1+eA)
W,EY = wy(1- 5 ey v, )/ (1+eh)

4.2. The yY-characteristics
The y-characteristics result from treating y as a Hamiltonian. We
are also interested in the function J(y,¥,E), which is to satisfy

{y,J}=1. Setting d/dia={ ,y}, we have
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dya-_ €90Yab bE

e Tveh (4.10a)
T ‘%‘ Y 3bVab) :

L= < . (4.10b)
% = -1 (4.10c)

Before proceeding to an analytic treatment of these equations,
it is vaiuable to fix in mind a qualitative picture of the y-charac-
teristics, which always lie in contour surfaces of the function y.
These are three-dimensional surfaces in four-dimensional phase
space, and their general nature can be seen in Fig. 3, in which the
two coordinates y are suppressed. The two-dimensional surface
s=sm(¥), U=0, which appears as a single point in Fig. 3, will be
called the "initial value surface." Thié surface can also be
characterized by the equation E=M9m(¥)’ so that it is not»a'surface
of constant E. As the parameter ) increases, the y-characteristics
converge inward.toward the initial value sufface, passing thréugh
decreasing values of E, This conclusion‘follows from the equation
above for dE/d), Eq. (4.10b), which shows that fér e small, E is
a monotonically décreasing function of ). When viewing Fig. 3 it
is important to remember that this figure is a cross-cut taken at
constant y, and that the quantities y suffer an O(e) evolution
along the y-characteristics, according to Eq. (4.10a). Therefore
the lines y=constant shown in Fig. 3, representing three-dimen-
sional surfaces in phase space, differ from the exact y-character-
istics by 0(e).

Another picture of a y-characteristic is given in Fig. 4, this



time in the coordinates (y,¢,E)}. The cbordinate ¥ is suppressed in
the drawing, since this coordinate does not change along y-charac-
teristics, and only the thfee coordinétes (Z’E) are shown.

Fig. 4 shows why the initial value surface is so called. The
quantities Y are the values y take on when A is such that the
p-characteristic is on the initial value surface. Thaf is, Y are
the initial values for the functions y(A). Similarly, it is convenient
to let the function J(A) take on the value zero on the initial value
surface. This is a reasonable convention, since, as may be seen in
Fig. 3, the action I of the unperturbed oscialltor vanishes on the
initial value surface.

vThgiahalogy between these definitions and those of Ref. 2 should
be clear. In particular, the relation between the variables y and Y

here is the same as that between (x,u) and (X,U) in'Ref. 2.

4.3. The Poisson tensor in the coordinates (Y,y,J)

The solution to Eqs. (4.10), subjgct to the given initial conditions,
gives the Darboux transformation (y,y,E) -+ (¥,¢,J). Before obtaining
explicit formulas fer the Darboux fransformation, let us evaluate
the Poisson fénsor in the new coordinatés. As in Refs, 1-2, the
results will be exact, i.e. they are represented by formulas in
closed form, rather than by infinite power series.

In Ref, 2 the Poisson tensor in the coordinates (§,U,9,M) was
evaluated by examining the behavior of the 6-characteristics near
the initial value surface. The analogous strategy does not work
well for this problem, because there is no natural expan$ibn para-

meter to describe the w—charactéristics near the initial value
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surface. Such-a parameter can.be introducedvartificially, but then
one is led through a calculation which is complicated by numerous

" details which are specific to the paramefer chosen. These details
show their superfluity by -vanishing from consideration once the B
final result is obtained. Therefore in the following we will
present an alternate method of deriving the Poisson tensor, a method
‘which «could have been used to advantage in Refs. 1-2, Once again,
the key is to focus on the Lagrange tensor, rather than the Poisson
tensor.

‘Of the six independent components of the Poisson tenmsor in the
(Y,¥,J) coordinates, three are built into the construction of the
y-characteristics, These are {Y,p}=0 and {p,J}=1.  Using these known
Poisson:Pracka;s,~Eqs. (3;12)=(3.13) allow us to write down the
following equations for the components of the Lagrange tensor in the

coordinate system (Y,y,J):

P bl/{Ying}
waw = Yab{Yb’J}/{Yl’YZ} )
o (4.11)
waJ =0
wa = -1

Here the indices 1,2;a refer to the components of Y, not y. 1In the
following we will determine first the three unknown components of

the Lagrange tensor, w,, and w_,, and then complete the Poisson tensor,

12 a'(p |
using the equations above.

Using Poisson's theorem, it is easy to show that all the



components of the Poissbn tensor in the coordinates (Y;y,J) arel
constant along w-characteristics. The proof of this fact was giveﬁ :
in Ref. 1, and need not be repeated here. Since the components
of the Lagrange tensor are functions of the'cqmpqnents~of the Poisson
tensor, these also, with respect to the coordinates (!,w,J), are
constant along y-characteristics. Therefore the uﬁknown components
) and Way MY be found at any point of phase space by‘determining
their values on the initial value surface.

Of the four coﬁpgnents of the distinguished 1-form p in the
coordinates (!,w,J), the J-component is not ﬁeeded in order to deter-

mine the unknown:. components of the Lagrange temsor. By using Eq. (3.27),

the other three components of p may be written down:

Byb ~ X

1 b =
Pa = % Yb¥e 37 T Ub 3
R a a
(4.12)
: ay ~ 09X
-1 b —
Py = 26 Tode 3% ¢ UP5p

These ‘expressions simplify on the initial value surface. First, we
have U=0 on the initial value surface. Next, note that the differé
entigl operators 3/3y and a/aYa, taken in the coordinate §ystem
(Y,v,J), imply that J is held constant. Siﬁce the initial value
surfaéé'is J=0, these operatbrs; when evaluated on the jnitial
value,surface; reprgseﬁt directional derivatives which lie in the
‘initial value surface. Thefefore if a function is known on the
ihitial value surfaqe, but not nécessarily anywﬁere else, it is
pdssible to evaluate the action ofwfhe.operators 3/3y and a/aYa

on this function at points on the initial value surface. Since
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y=Y on the initial value surface, these arguments imply

Y.

1
Pa © 7¢ Yab'b
(4.13)
=0 '
Py
on the initial value surface,
This in turn gives
N 1.
Yab ~ " & Yab
. (4.14)
w = 0

ay

These are valid on the initial value surface, and hence everywhere else
in phase space as well.
Finally, by using Eq. (4.11) all these results may be assembled to

give the complete Poisson tensor in the coordinates (Y,y,J):

{YasYb} =y | (4.15a)
{Y,9} = {Y,J} = 0 (4.15b)
R T S S (4.15¢)

The especially simple form of Eq. (4.15a) comes about because of I
the simpleirelatibn between y and the Euler Potentials4(a,6), which
satisfy §=Vuxvs. If y had been defined in terms of some arbitrary
pair of field line labels. (what Sternll‘has cailed'"unmatched"
Euler POtentials),»then the right hand side of‘Eq. (4.15a) would l'

have been some nonconstant function of Y.
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4.4, . Explicit formulas for the Darboux transformation

Let us return to Egs. (4.10)'énd develop an exPlicit solution

- representing the y-characteristics. As in Refs. 1-2, the solution

will be developed as a power series ine. In Eqs. (4.10), the
independent variable A may be eliminated in favor of E, since the
two are monotdnic functions of one another. Expanding the resulting
differential equations in powers of e giveé’

)

_ |
& " Tapbe * OC) (4.16)

e 2VaEVby * 0(82)

Eqs. (3.41) and (4.8) have been used in writing the results in this
form. | |

Through 0(e), Eq. (4.16) may be ihtegrated immediately. Much less
sophistication is called for here than in the integration of the
Darboux equations in Ref. 2. It is convenient to introduce the

two-vector E,idefined by

E - -
F (y:¥,E) =/ Vg (Ys¥,E')dE (4.18)
MQm(Z)

In terms of F, the solution to Eq. (4.16) can be written

' 2
Y, - €YgpFy (L,V,E) + 0(e") (4.19)

Y, (Ys9,E)

or

, _
y, * evabe(y,w,E) + 0(e™) . (4.20)

Y, 0.E) =y,
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The quantities F satisfy the following useful identities:

a _ , '
5~ VaE . (4.21)
oF
a 91
31’)—— \)aw -W- (4.22)
a
oF oF
3o - 5-11 =V - (4.23)
b Ya a
The proof'of these identities will be deferred for a moment.
In Eqs. (4.17) all the terms shown are evaluated at (y,y,E).
Since y is not a constant-along Y-characteristics, we may use
Eq. (4.19) to eliminate y in favor of Y, which is constant.
dJ _ ol 321 2
dE " " eYab<%a'3EaYb * vaEvbw> + 0(e™) (4.24)

In this equation, all terms are evaluated at (Y,y,E), so that
integration is immediate. An integration by parts may be performed
on the term in F, and by using Eqs. (4.21)-(4.22) the result can be

written as

IO U,E) = I(Y,E) + e(yabFa S G(x,w,E)) + 0(e%) (4.25)
b .
where
E  OF, oF
6(y,4,E) = Yabf 2 s " (4.26)

MRm(X)
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Finally, usihg.Eq. (4.20) to re&ert fo the variables (y,¥,E), we have
- - ' ' e
J(y,¥,E) = I(y,E) + eG(y,¥,E) + O(c) (4.27)

Along with Eq. (4.20), this equation specifies the Darboux transfor-
mation, (y,y,E) -+ (Y,¥,J).
The symmetry properties of F and G are important. From their

definitions and from Eqs. (4.5) we have

E(Y,-‘P,E) = -E()’,‘P,E)- )
~ ~ (4.28)
G(}’,-ll’,E) = 'G(Zﬂp)E)
To obtain the inverse of the Darboux transformation, it is
convenient_to‘introducé the function W(y,I), defined by
E = W(y,I(y,E)) i (4.29)

W'ié merely the function which gives the energy of the unperturbed

oscillator in terms of its action. It satisfies

oW
ﬁ(.}:’I) = wo (4‘30)

1 ' ‘
'“05§{¥’E) (4-3;)

oW

ay D
where the independent variables given indicate which variables are
to be held fixed in the differentiation process. Using these relations;
'Eq.v(4.25) may be inverted to give

_ d1 2
E(Y,¥,J) = W(Y,J) - ewo<YabFa 5?;'+ G) + 0(51) (4.32)



In this.equation the E argument of the O(e) terms, e.g. wo(!,E),

is evdluated at W(X;J). Along with Eq. (4.19), this equation gives
the inverse of the Darboux transformatioh. It also gives the
Hamiltonian, through 0(e), in the variables (X,w,i), because of

Eq. (3.7):

'H(Z,xp,ﬁ) E + 0(e?) (4.33)

ol 2. g
W(X,J) - Ew0<YabFa'§—Y; + G) + 0(e ) (4.34)

H(Y,¥,J)

t

4.5, A proof of Eqs. (4.21)-(4.23)
Let us réturn to Egs. (4:21)—(4.23)‘ahd supply their proofs,
as promised. Ed; (4;21)'follows immediately from fﬁe definition of
F, Eq. (4.18). Eq. (4.22) also follows from the definition, but
it requires more work. Directly differehtiating Eq. (4.18) with

respect to and‘using the closedness of v (see Eq. (3.10)) give

oF E ,

a _ 9 < 91 ) .
—2 = (v - Z—)E’ (4.35)
oy ‘/l;ﬂna ) 9E\ ay Sya -

The quoted result follows if it can be shown that the quantity in
the parentheses vanishqs at the lower limit E=MQm(¥), which represents,
of course, the iniﬁja} value surface.
To see fhis, it.i;.égnvenieﬁt to change from the variable E
to the new variable ﬁl,.givenlby
E1 = E - MQm(X) (4.36)

The advantage of the variable set (y,w,El) is that in this set, the
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operators‘a/ay and 9/9y, when evaluated on the initial value surface,
are directional derivatives lying in this surface. This follows

because the initial value surface is E.=0, and the indicated operators

1

are taken at fixed El. To transform partial derivatives from the

variable set (y,y,E) to the set (y,w,El), the following substitutions

may be used:

5,0y
0 o 3 JE,
% . ’ 1
E_‘__}?_'_ (4.37)
oy 9y
,wl

By using Eq. (4.3), the term in parentheses in Eq. (4.35) can

be written in the original variables (y,y,E) as

aX )

3 .0 o1

= & UBYe— - 3 (Ub) e . 8L
(e ) = (U0 gy - G5B 5 - 5 (4.38)

Since U and T both vanish on the initial value surface, the derivatives
of these quantities with respect to y or y, in the new variables
(y,w,El), also vanish. - Transforming Eq. (4.38) to the new variables

and taking advantage of this fact gives

’ aX af
“ ¥may .~ MTm
(ver ) = M —2 S (Ub) o + —— = (4.39)
aya BEI Y W aya

plus terms which vanish on the initial value surface. Next, with the

help’of Eqs. (3.30) and (3.36) and the fact that b is a unit vector,
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this becomes

¥ aq s

(:..) = _—'5§;'3§'3E1 (4.40)

“o
Finally, this vanishes on the initial value surface because 3%/3s
vanishes at s=s .

The proof of Eq. (4.23) is similar, but somewhat simpler.

. 4.6. The equations of motion in the coordinates (y,y¥,E)

The equations of motion in the coordinates ﬁy,w,E) are interesting
on account of the physical picture they proﬁide‘and because of their
relation to the averaged equations of motion to be derived later.
These equations can be derived from the Poisson bracket relations
in Eqs. (4.9) and the Hamiltonian (4.33). Expanding the equétions

of motion in powers of € gives, through 0(e),

dy

T © Sy * 0(e?) o (4.41a)
d 2 2

H%1= wg - EwOYabvaEvbw + 0(e™) (4.41b)
d ' : L :

a%.= o(ez) ‘ - (4.41c)

Eq. (4.41a) is especially‘ipteresting. This equation is nothing
more than the usual perﬁendicular drift equation expressed in field
line coordinates. As the guiding center bounces between its mirror
points, the slow drift across field lines gradually accumulates.

This is because the instantaneous drift, given by Eq. (4.41a), consiéfé

of a partvwhich is oscillatory in the bounce cycle, and a part which
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k3

is secular. One advéntage of the coordinates (z,¢,E) is that it is
relafively éasy to separate termsmintb their averaged and osciliatory
parts.

To this end, we define the linear averaging operator, Avg, which
takes a function f of (¥,¢,E) and produces a function Avg(f), depending

on (y,E):
1 27 : -
Avg(f) = 5;;/” f(y,v,E)dy (4.42)
0 .
The complementary operator is Osc, defined by
Osc(f) = £ - Avg(f) - (4.43)

The variables (y,s,E) are more physically immediate than (y,y,E),

and the operators Avg and Osc can be expressed in these coordinates.

If £ is a function which is even in U, then
| sl(Y:E) )
wo(}’,E) - f(X:S"E) ds! .
Avg(f) =+ —>—F TSy & ( .44)
) e o 5G00E) AU ‘

If £ is odd in U, then Avg(f)=0. Note that the integrand is singular
at' the endpoints.

To lowestiorderIEq.i(4;41a) may be averaged to obtain a kin&
of drift kinetic equatibn.'_This new equation’}epresents thevmofion.
of the guiding center across fieldvlines, with the oscillatory
behavior on the bounce time scale having been removed. To obtain

this equation, note that Eq. (4.22) implies

_ L
Avg(vaw) = aya | (4.45)
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OF
Osc(v ¢) -,Sir. (4.46)
Then from Eq. (4.41a),
- (dy ;
a) _ I 2
AVg(EE_> = -eWY .y ayb + 0(e™) (4.47)

This is a well-known result, and more conventional proofs of it may
be found elsewhere.>?®

The O(ez) term in Eq. (4.41a) could eésily have béen worked out,
because the Hamiltonian is kﬁown through O(e){ This term represents
the. second order perpendicular drifts of the guiding center, which
were first derived, in rectangular cgordinates, by.Northrop and
Romé.12 NéVertheléss, fhe simpié.ayeraging procédure used above to
derive Eq. (4.47) ié valid oniy thr&ﬁgh 1owesthdrdef, ang the.averaged
equations af 0(e2) must be>derived by perfofminé én averagiﬁg trans-

formation. This will be done in Sec. 5.

4.7. The equations of motion in‘fhe cgordinates (g,w,J)

The variables (Y,y,J) are not free of rapid oscillations tb all
qrders, becausevno attention has been paid as yet to the higher order
terms in the Hamiltonian. Nevertheless, they arenfree of rapid
oscillations to onq,highér ordeg,than the variables (y,y,E), as will
be shown below. An -analogous behavior was observed in Ref. 2 in
relation to.the sets of—variableS;(g,U;e,M) and:(§,u,e,w)f

By using the Poisson brackets. in ‘Eq. (4.4) aﬁd.the lowesf érder
term of the Hamiltoﬁian in‘Eq. (4.34), it is easy to derive the

equations of motion to lowest order:
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dYa EL

. = AL 2 . -
d® T Vap ey O | as)
& _ | o S

i RO R | . (4.48b)
dJ _

- 0© - (4.48¢)

By using Eqs. (4.30)- (4 31), these may be seen to be the averaged
versions of Eqs (4.41), as anticipated. A

From this observation it folloﬁs thét the O(é) térm iﬁ thQ bafbéﬁx
transformation for ihe variables y and Y, given by Egs. (4.i9)-(4720);
must be responsible for removing the rapid oscillations to lowést |
order.

An altérﬁafe‘form for‘tﬂévfunctioﬁs Elﬁili show this property
more cleafly. ‘Bééause of ﬁq. (4;28) we have g(z,w=0,5)=o. Wiﬁh.the 
use of this‘eﬁuation aS‘initial\ébhditiéns, Eq. (4.46) may be

integrated to give
| ¥ o o
( Fa(y,‘b,ﬁ) =f OSC(Vaw)dlp (4.49)
o el o ’ .

This equation allows a convenient numerical determination of the
functions F, since by Eq. (4.44) it is equivaléﬁt to an-integration
along field lines. |

Apother form of this equation follows from Eq, (4.41):

s v dyb drp)
Fa(Z.W,E) »= ZUTO" Yabf dt - Avg dt dy (4 .50)
. . 0 : , } - |



This form shows clearly how the term in F in Eqs. (4.19)-(4.20) causes

the rapid oscillations to be removed. It should also be compared with
(23) of Ref. 4, where the same expression was derived in a

‘non-Hamiltonian context.

5. THE AVERAGING TRANSFORMATION

Although averaged equatlons of motlon can be obtained at lowes;
order By’ throw1ng away osc111atory terms, as we d1d in Sec. 4,
nevertheless it is necessary to employ an averaging transfor@aqion
to obtain averaged equatlons of motlon beyond lowest order Th;e’

we shall do 1n thls sectlon

5.1. The Lie transform procedure

The averaging transformation is a near-identity,~$ymp1ectic

transformation of theﬂformn(g,w,J)‘fﬂ(Y,ﬁ,J), which preserves the o

functionaleformuof_theﬁPeissqn.bragyets in Egs. (4.15)..

purpose and method of execution are so similar to those of the B
averaging transformations in Refs. 1-2 that only the barest out-
lines need be given here.

| 6he aspect that is slightly different, however, concerns the
expansion of the Poisson bracket asa pewer series in €. If f and

g are anxftwo functions of (!,d,J), then, according to Eqs. (4.15);

their Poisson bracket is given by

£y - 3£ Edg, A dg
{f.8} = 5535 " 37 30 * ab aY, oY (5.1)

b

Note that the Poisson braeket consists of an 0(1) term and an O(g)
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term.

We let'gn represent the n-th Lie generator, and we define two

vectors)~Mn and Nn+1 by

.corresponding first-order, partial diffg;eg;ia; operators (i.e. tangent

Mn='5r§'j'f5-—1-_.5—¢7 (5.2a)
dg_ -
- na_
Npe1 " Yap 3V, o, (5.2b)
Then the dperator Ln’ defined by l
L = {gn, } - (5.3)
can be written as
. ,:Ln i Mn * eNﬂ"‘l .- (5.4)
The rest of the details of the use of Lie transforms'hayfbefj“
summarjzed by the following list of formulas:
enLn
TQ = exp| - "y | §5.5)
RS BRSNS WG HES | o S
T T T, T L \ (5.7)
g = T z (5.83)
-1 - ‘
z2=T" 2z (5.8b)
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K=T"H (5.9)
1 2.2 NP o
=D - eMy 4.5 (M7 £ M,y - 2N,) +0(e") (5.0
! - I+eMl+%ez(M2+M2+2N)+0(s) - (5.11)
H(Y,¥,9) = ] "H (Y,,9) (5.12)
=0
K(¥,J) ='X‘e'“l<h(i;3) (5.13)
n=0. ‘
K, = H, : » | © (5.14a)
MHy = K - Hy (5.14b)

5.2, The Lie*generator 84
To the order we are worklng, we need only the first Lie generator -

g;- Ca111ng on Eq (4 34), we. have
Hy=WCLD) T (s.18)

o 21
Hy = -u ( abFa 8y (;) | 6

where the E argument of the terms in H, is evaluated at E=W(Y,J).

1
Then Eqs. (5.2), (5.14b) and (4 30) give the following equation
for 8% ‘
ag o .
1.k P2 . | (5.17)

59 - 17 Yaba 3V
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According to the usual procedure we break this equation into
its averaged and oscillatory parts. Sinée both F and G are odd

in.y (see Eq. (4.28)), they are purely oscillatory, and we have
K. =0 - (5.18)

and

. ) :
= 1. oI - r ot ' 0! . .
gl —/0‘ d\[) Yab[aYb Fa(X,‘P ’E) + G(Xﬂl’ ,E):l dy (5.19)

where the integrand is evaluated at E=W(Y,J).

5.3. The averaged variables (Y,y,J)
Using the Lie generator g, we may work out the averaging trans-
formation through O(e). The transformation for the variables Y is

easiest. From Egs. (5.6)-(5.8) we have

Y=Y +0(d) (5.20)

~Actually, the»knowledgg_of g, wbuldfallow us to determine theIO(éz)

term in Eq. (5.20), but since the Darboux transformation was carried
only through O(e) it is consistent to leave this equation‘atbthe same
order.

The transformation for the variable ¢ is

Jevrestioeh G

. The quantity @gl/aJ can be written in a number of forms, using Egs.

(3.41), (4.21)—(4.22), and (4.30). One of the most interesting is
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i

- » . w , 3 1 : ' 2 .
Y=y + eonat‘)/' dy [Fa -5—?;<a'6-> + \)aE\)b‘p] + 0(e) (5.22)
: 0 _ ' :

In a sen#é, tﬁe first term in this integral is a correction for
the fact that wovchanges as the guiding center drifts from one field.
line to another, while the second term is a correction for the O(e).
term in the equation for dy/dt (see Eq. (4.41b)). The result is

the variable § which is free of rapid oscillations.

The transformation for the variable J is

; %, 2, : | -
J=J-¢e—=+0() (5.23)
| L
or, using Eq. (5.17),
= oI 2
J=J -c¢ <YabFa 3?; + G) + 0(e™) » | (5.24)

This gives J as a function of;(x,w,J).vaf perhaps greater interest
is the cdmposition‘ofvthis transformation with the Darboux trans-
formation, which will give J as a function of (y,y,E). From Eq.

(4.27), this is

= 9l 2 |
J(y,¥,E) = I(y,E) - ey, F, o, +0(e) (5.25)
This result has been obtained prevously by Northrop, Liu, and

Kruskai3 and independently by Hastie, Taylor, and Haas.4 To show the

eqﬁivalence of  the results we may use Eqs. (4.47) and (4.50):
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- v dy \ dy |
= 1 a b 2
=t ?‘"‘z’Yabf dv A"ﬁ(ar) ® D (5.26)
) 0 | L

This may be compared.to Eq. (41) of Ref. 3, or Eq. (5.13) of 'Ref. 4.

5.4. The averaged equations of motion

The averaged Hamiltonian K was obtained above:
K(L,T) = WE,H) + oe®) (5.27)

The independence of K on @Ihoids to any order to which one has the
endurance to carry out the required Darbbux fransformation and Lie
transforms. In Eq. (5.27) we imagine that ¥ has been eliﬁinated to
all orders, i.e. that K represents a formal power'séries.

From the averaged Hamiltonian and the Poisson bracket relations

in Eq. (4.13) the equations of motion are immediate:

dy : : '

a _ oW . 3
IqE 7 Vap v * O) (5:28)
dj _ 20
Tr = Y + 0(eT) | (5.29)
g%-: 0 ‘to all orders . (5.30)

The quantities on the right hand sides of these equations are eval-
uated at (?,E:W(?,J)j; These.shqud be compared to Eqs. (4.41) and
(4.48). Note in pértiﬁular that the éﬁeragéd equations for ? and ¢
hold to oné higher order than the equations for Y and y, which still
coﬁtain rapid oscillations. B

Eq. (5.30) is especially interesting, because it gives a constant
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of the motion, In practice, of course, one must deal with a truncated
series for J, so it is relevant to examine Fhe propertieé of the time
derivative of these truncated series.

Supposefto be definite that J is expressed in terms of the variables
(y,¥,E) as in Eq. (5.25), so as to give a unique specification of a

sequence of functions jn:

J(Y:‘P,E) =
~ n

e"J_(¥,¥,E) : (5.31)
0 n-o.

nes-18

Let us definé j[N] as the tfuncated_version‘of this serie§:'

- N"n- ‘ ‘

Iy = L eI 0av.E) - B3
Then we héve{‘
(5.33)

or, on taking the time derivative and using Eqgs. (5.30) and (4.41),

' 3J '
N+1 N+1 + 0(eN+2) (5.34)

INI T "% Yo%y

L
[}

Thus, j[N] is a.constant through.O(eN)., More importantly, however, the

average of the time derivative of J; : vanishes to ohe'highér'order:

[N]

Avg(%{%NJ)‘oceN*?) BN R
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Egs. (5525)-(5.26) éfféctively give’j[l]’\ Northrop? Liu, and
Kruskal3 showed that this quantity is a constant through 0(e), in
accordance with Eq. (5.34). It was correctly pointed out by Hastie,
Taylor, and Haas;4 however, that the average of thé time derivativé
of 3[1] must vanish through O(ez), in accordancé with qu.(5.35), and
that any demonstration of the constancy Sf 3[1] which does not prove
Eq. (5.35) is incomplete. A lengthy'bﬁt straightforward calculation,
which calls on many of the identities proved in Sec. 4, shows that

Iy

1] does indeed satisfy Eq. (5.35).

5.5. The drift motion
- The Hamiltonian (5.27) is essentially of one degree of freedom,

since the constant J can be treated as a parameter. 'The two-dimen-

~ sional phase space for the drift motion can be identified with the

initial value surface descirbed in Sec. 4, althbugh’its only essential
characteristic is that points of this phase space must' be in one-to-

one correspondence with magnetic field lines. From an abstract point

~ of view, the phase space of drift motion is the differentiable

manifold consisting of field lines.

If we write Q -—,-'Y1 2

and revert to the symbol H for the
Hamiltonian, then the Hamiltonian for thé’drift motion is

~and P = Y

CHQPD) = WL v oh) (5.36)
The variables Q and P satisfy the Poisson bracket relation
{Q,Pr=e - (5.37)

which comes from Eq. (4.15a). Because this system is of one degree
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freedom, it is. integrable, and a transformation to action/angle
variables is possible with the traditional Hamilton-Jacobi method.

It is not necessary to use the Darboui algorithm. We assume here that
the drift motion is periodic, so that action/angle variables exist.

The action variable ¢ is the integral |

¢=_1;( PdQ . : ~ (5.38)

2n :

which is taken around a contour of H(Q,P;J) = constant. This contour
is, of course, the trajectory in the phase space of-drift.motion, |
since it is the curve of constant energy. The constancy ofié is
trivial, since ¢ i; a function only of the energy. Itfis well-known
that an expression simiiar fo Eq. (5.38) givés a constant of the *
motion in;fhe'éaéé of"time-dependent fiéidg, and that;in thié mbfé»
general Caéé the ébnSténéy is not trivial. Uhfortunately, if is
not possible to aﬁafyzéEhere the case of time-dépéﬁdent fieids.

The représentation'éf ¢ as a pbwer series in ¢ comes about
through tﬁe pdwer series representation of the contour of integration,
given by Eq. (5.36). Thus, as it stands,vK. (5.38) is valid to all
orders. If instead the contour of integration were taken around
W(Q,P,J) = constant, then‘Eq. (5.38) would be valid through Ote);
This is a matter of pfactical imporfance,.because in practicé one
possesses only a finite series for H(Q,P;J).

If the frequency of fhe drift motion is denoted by Wes then we
have

-1
1. 1 f(m
.'u'):_f"' 27 (ap) dQ ‘ (5739)
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Since the contour of integration depends only on the energy, so also
does Wee Alternatively, we may be considered a function of ¢.

The drift angle ¢ is given by

@B\t
$(QP) = wg 5] 4Q (5.40)

with the integral, once again, taken along a contour of constant H.
Because the transformation (Q,P) -+ (¢,%) is a canonical transfor-

mation, we have
{¢,8} = ¢ - (5.41)
The variables (¢;§) are action/angle variables for the drift motion.

6. CONCLUSIONS

The major obstacle to the Hamiltonian treatment of guiding center

‘motion is the difficulty of finding an app:opriéte set of canonical

variables in which‘go carry out the perturbation expansion and to

express the results. Thé standard Hamilton-Jacobi method does not

‘work for this probiem, and it was for this reason that the approach

based on Darboux's theorem was developed in Ref. 1. The result
of the first application of Darboux's theorem is a semicanonical
coordinate system which is not only adequate for an aﬁalysis of
the gyro-motion but even preférable, for many purposes, to a fully
canonical set of variébles.

Nevertheless, the original goal of finding a set of canonical
vafiables for the guiding center problem is a question both of

academic interest and of practical importance for the description
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of the bounce and drift motion. This paper has gone a long way toward
the completion of‘thissgoal, since we have constructed here a set of
variables (dropping the overbars) (6,M,y,J,¢,8) which satisfy the

Poisson bracket relations

{o,M} = 1/¢
{p,J} =1 (6.1)
{¢,0} = ¢

The system is stilllnet completely canonical,'because in addition to
these Poisson brackets, the Poisson brackets {6,y}, {9,¢}, and
{¥,¢} are non-zero.
Nevertheless, the coordinates (6,M,y,J,¢,®) are capable of giving
a complete and‘systematic&(to any desired order in €) Hamiltonian
description of the three degrees.of freedom of charged particle.motion.
Such a descrlptlon is qu1te new;. although many aspects of the Hamiltonian
structure of gu1d1ng center motion have been notlced in the past these
came about as observat1ons based on the averaged equatlons of motion at
lowest order, rather than as a resplt o£;a systematlc.Ham11ton1an“theory.
The most‘promisingAapplicationbfor the methods of this paper may well
be a Hamiltonian formalism for the study of resonances among.the
three degrees of freedom 1nd1cated by Eq. (6 1) This is eurrently an
active area of research and the results of these 1nvest1gat10ns will

be reported on in future publlcatlons.
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Table I. Symbol equivalences. A formula from this paper or for Ref.

o

P

¥

2 can be translated into the notation of Ref. 3 by making the indicated

symbol substitutions.

This Paper Ref. 2 Ref. 3
1, € E (e/m)e
R : X r
3 b b L
s X" b
5.  smee-- w o
6.  —---- u n
v 1
7. -——r-- ] 2r(u + Eﬂ
: X & P
9 U g° H
' - 1
10. ‘ 9 6 2n(p + '2-)
11. M J (mc/e)M
12. 2 ——— 2my !
13. . K©
14, ©y =T 2w/T
15. I —eee- mJO/Zw
16. \ J  aeea- mJ/2m

®The omitted variables do not appear in the indicated paper.

quual through 0(g).

cEqual through 0(52).
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Table II. The structure of vériable transformations in Kruskal's
theory. The notation is based on that of Ref. 7. The variables
q, p are N-vectors, X is a 2N-vector, y and y are (2N-1)-vectors,

and z is a (2N-2)-vector.

Transformation Variables

1 (a,p*
Preparatory v

2 §a
Preparatory Yy

3 (y,8)
Averaging v

4 (¥,8)
Ring Integralb ¢

5 (z,6,5)°

4The method begins with the variables x instead of (q,p) if the
system is non-Hamiltonian.

bThe variable J can be computed only for a Hamiltonian system.
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Table III.

Darboux-Lie method.

The structure of variable transformations in the Kruskal-

In (a), the general case; the notation is based

on Ref. 7 and is independent of this paper; q,p are N-vectors, X is a

2N-vector, y is a (2N-1)-vector, and z and Z are (2N-2)-vectors. In

(b), the application to particle gyro-motion, as explained in Ref. 2;

q,p,g,y,},x are 3-vectors. In (c), the application to bounce motion,

the subject of this paper; X is a 3-vector, and y,!,f are 2-vectors.

(a) (b) (c)

Transformation General Case: Gyro-Motion Bounce Motion

H @.p) @
Preparatory ¥

2. X (x,v) x,n?
Preparatory ¥ ¥ ¥

3. (v,8) (x,6,6,w) ¥, E)°
Darboux . + ¥ +

4. (2,0, (X,U,0,M)° (Y,9,9)
Averaging/Lie ¥ ¥ ¥

5. (2,8,3) (%,0,8,m° ¥,9,9

%These variables are identified with the overbarred variables X,0)

of column b.

steps; see Sec. 3.

cThe symbol J was used instead of M in Ref. 2.

bThe transformation (§;U) + (y,¥,E) passes through several intermediate
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FIGURE CAPTIONS.

Fig.

Fig.

Fig.

Fig.

1.

In (a), a qualitative picture of nearly periodic motion,
i.e. the exact, perturbed motion. In (b), the unperturbed'
motion. These are Kruskal's loops.

Potential eﬁergy diagram for the unperturbed bounce motion,

which takes place at fixed y. s, and s, are the turning

0 1
points, and S is the minimum of the potential well.
The s-U phase plane for the unpefturbed bounce motion. The
motion follows the contours of constant E in the direction
of the arrows. Two contours of constant y are shown.
A Y-characteristic in phase space. The surface E=M9m(¥)’

or J=0, is the initial value surface, which is two-dimen-

sional.
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CONCLUDING REMARKS
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1. IMPROVEMENTS ON THE DARBOUX TRANSFORMATION METHOD

The method of the Darboux transformation which was developed
in Chapter II and applied in Chapters III and IV is undoubtedly
capable of improvement. Some suggestions for this may be offered
here, and any careful reader will certainly think of others.

The most obvious drawback to the method is the requirement
for carrying out two transformations, the Darboux transformation
and the averaging transformation, both of which are expressed as
infinite series. If these two transformations could be merged
there would perhaps result a simplification. One way to do this
would be to carry out the Darboux transformation using a modified

gyrophase ¢:
¢ (X,v) = 0(x,v) + ep, (x,v) + ... (1)

where 6(x,v) is the instantaneous gyrophase, exactly as defined

in Chapters II or III, and where ¢1, ¢2, ... are initially unknown
functions. The resulting Darboux transformation would then be
parametrized by the functions ¢1, ¢2, ..+, Which wbuld be determined
by the demand that the Hamiltonian be independent of ¢.

Another approach is based on the appreciation, gathered in
Chapter IV and elsewhere, that the Lagrange tensor w and the distin-
guished 1-form p are easier to deal with than the Poisson tensor.

In reference to the problem of gyromotion, for example, one might
proceed as follows. First, observe that in any phase space coordinate
system 2z, the components Py of the distinguished 1-form p can be

written

v
S
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35(2)
+

3q(z)
= (2)

where the index i runs from 1 to 6, where p and q are the usual
Cartesian canonical coordinates, and where S is an arbitrary scalar
function on phase space which specifies a ''gauge transformation"
on the 1-form p. Of course, w=dp is not affected by the term in S,
since ddS=0.

Next, one would consider a set of coordinates which is equal,
to lowest order, to the final guiding center variables one wants.
The (x,u,6,w) coordinate system of Chapter III is close to this,
but since the variable w is not canonically conjugate to 6, even
at lowest order, it should be replaced_by m = wz/ZB(g). Then, one
would consider a near-identity coordinate transformation of the form
(§,u,6,m) -+ (§,U,®,M) such that the following criteria are fulfilled.
First, the Hamiltonian in the new variables is to.be independent, of
©. Second, the components of p corresponding to © and M are to have

the values

Po
(3)

Py =
And third, the other four components of p are to Be independent of
both M and ©. These criteria give a hierarchy of underdetermined
equations for the O(e) and higher correction terms in the trans-
formation (§,u,e,m) - (g,U,S,M), and allow those terms io be
defermined,

Finally, when the new Hamiltonian, the components of p, and the
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transformation itself are known, the Lagrange and Poisson tensors
are computed from p, and the averaged equations of motion follow
immediately.

There are many unresolved questions about this approach, but
if it worked as iﬁdicated, it would completely bypass Darboux's
theorem and it would be easier to understand than the method
developed in Chapter II.

In working with the Lagrange tensor one is often faced ﬁith
the problem of inverting a 2Nx2N antisymmetric matrix in order
to pass from the Lagrange tensor to the Poisson tensor and vice
versa. In this connection. I have worked out the following rela-
tions for performing such a matrix inversion, which are helpful
especially when N is three or greater. Tﬁese relations are essen-
tially simplificationS'to Cramer's rule which come about because
of antisymmetry.

Let M be ‘a 2NX2N antisymmetric matrix with components Mij'= -M.

ji-
Define the quantity T by

P=)S, M . M . ..M 4)

where the sum is taken over all permutations (1,2,...,2N) -»

(11,31,12,32,...,1N?JN) which sat1§fy i<dy<n. <d and i

1 N K Ik’

k=1,...,N, and where S, is the parity of the permutation. The

P
quantity T is the square root of the determinant of M, and it is
computed in (4) with only (2N-1)!! terms instead of the (2N)! terms

which would be required in a straightforward expansion of the

determinant. The reduced number of terms is smaller by a factor of
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ZNN!, which can be substantial. If the matrix Mij is taken to be the

component matrix of a 2-form w, then I' is 1/N! times the one indepen-
dent component of the 2N-form w~w~ ... ~w (N times), i.e. the Liouville
volume element,

If T #£ 0, let K be the inverse of M. Then if i < j, the component

Kij is given by

_1yi+]
= TsM oM ()
J p! 171 1292 N-1IN-1

where the sum is taken over all permutations P' of the numbers
(1,2,...,2N), with i,j removed, to (il’jl’iz’jz"’”iN—l’jN—l)’

where i1 < 12 < L .. < iN-

Sp: 1s the parity of the permutation. If i > j, then use Kij = _Kji'

The sum (5) contains (2N-3)!! terms.

1 and i< k=1,2,...,N-1, Again,

2. EXTENSIONS OF THE DARBOUX TRANSFORM METHOD

An obvious shortcoming of the work presented in Chapters II, III
and IV is that it does not allow for time-dependent fields. Time
dependence cannot be added to these results as an afterthought, but
rather must be built into the formélism from the outset.

It is shown in any textbook on classical mechanics that the form
of Hamilton's equations of motion is preserved under time-dependent
canonical transformations, although the Hamiltonian does not transform

as a phase space scalar:

K(g:gst) = H(q:P,t) + —(ﬂ’g’t) (6)
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However, when one considers general coordinate transformations in

phase space, it is easily shown that a new Hamiltonian does not in

_ general,exist. The reason for this is encapsulated in Eq. (2.14)

of Chapter II. : : 45,
Therefore in treating the time-dependent problem, using noncanon-

ical coordinates in phase space, it seems best to employ an extended

phase space of N+1 degrees of freedom in which time is made conjugate

to a new variable h which is physically akin to the energy of the

particle. For eXample, in théannrélativistic problem, one c&uld

begin with the Hamiltonian

1 1 2 1 ’
H(q,t,p,h) = 5 [p - —A(q,t)]" + T ¢(q,t) - h (7)
where t and h are "anticonjugate," i.e. {t,h} = -1.

Instead of doing this, however, it seems better to treat the
relativistic problem, which has the same number of degrees of
freedom as the Hamiltonian. (7). The nonrelativistic equations

then follow as a limit. I have carried out part of this calculation,

using the Hamiltonian
1 1 1/2
H]“l = -[-(p" - =AY - - A 8
(x%p) = -[-(0" - T AR, - TAD] ) (8)

The independent parameter. specifying phase space trajectories is,

with this Hamiltonian, the proper time of the particle, and the

Hamiltonian (7) may be directly derived as the nonrelativistic limit

of (8). » , . N
It is not possible to give final results on the analysis of the

Hamiltonian (8), but at least the Poisson brackets in the guiding

center variables may be displayed. These variables are denoted
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(XU,K,U,G,M), and they result from the Darboux transformation. InAa
simplified description of these variables, we may say that X" is
the guiding center position (and time), K and U are the energy and

A - parallel velocity oflthe guiding center (relative to the gxg'drift in
the nonrelativistic 1limit), and 6 and M are the gyrophase and magnetic

moment. We let A*" be ‘a modified vector potential, given by
A =AY ¢ g(kd” + UbM) (9)

where d" is the time-like eigenvector of the electromagnetic stress-
energy tensor, and where " is a space-like eigenvector, having
(0,&) as its nonrelativistic limit. From A*" we define a modified
fie1d tensor F*"V and its dual, G;v. In terms of these, the Poisson

brackets are

W oyVy _ € _uvVaT
{X°,x'} = - 5 © dGbT
@XHK =+ 2V
? D v
(10)
Ly = - Lgewy
{X7,u0} ) G dv
-1 *HVpe 1 * JR%
KUl =g OGN = TR
where
D = G*“Vdubv (11)

In quite another sense, the method of the Darboux transformation -
can be extended to other systems, apart from the guiding center

problem. It seems that the mefhod is generally applicable to
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Hamiltonian systems which display multiple time scéles,vand these
are not easily treated by the standard perturbation techniques. The
guiding center problem is a rather complicated example of such é
system, and perhaps some features could be seen moré easily with

simpler systems.

3. APPLICATIONS OF THE éUIDING CENTER HAMILTONIAN
When carried only to the order of the classic, well-known drift
equations, the formalism developed here may be of limited préctical
advantage for problems in plasma physics, in spite of its intrinsic |
interest. When carried beyond this lowest order, however,-its
advantages as a labor saving device become striking."This much is
clear from the analysis of single particle motion presented in this -
thesis, but oflcourse the same will be true in other applications.
Applications to single particle motion are not exhausted by
the derivation of the guiding center equations of motion. For example,
guiding center motion in the presence of an electromagnetic wave,
with various possible relations between the wave frequency and the
gyrofrequency, is relevant to plasma physics and may be treated, as
a first approximation to reality, as a problem in single particle
motion. This problem has already been analyzed to lowest order
in ¢ by Giebogi, Kaufman, and Littlejohn,1 who derive a ponderomotive

Hamiltonian for this problem, i.e. an averaged Hamiltonian carried

‘to second order in the wave amplitude.

The bounce and drift motions can also be analyzed with the Hamil-
tonian methods presented here, as shown in Chapter IV. These analyses

should be extended to time-dependenf phenomena, and they should also



be generalized to handle other cases of interest, such as trapped
partiéles in a tokamak. There are a number of resonance phenomena
in particle motion in tokamak fields which are of current interest,
such as resonances caused by diQertor coils, and these may be
investigated with Hamiltonian means.

As was mentioned in Chapter IV, another area of application for
the guiding center Hamiltonian is in the study of gyro-bounce-drift
resonances in single particle métion. These resonances are intrin-

sically higher order effects in the parameter ¢, because of the

separation of time scales for the three types of near periodicities.

Although much work has been done on this problem, a thorough and
unified treatment has yet to be given.

Finally, the use of the guiding center Hamiltonian for self-
consistent problems is a rich field that is as yet completely
unexplored. Hamiltonian methods are most useful for the analysis
of nonlinear phenomena, such as mode coupling and nonlingar wave
packet evolution, It is likely that weak dissipation can also
be included in such analyses. The guiding center Hamiltonian would
certainly be useful for treating such phenomena in inhomogeneous
magnetic fields, and, in the caée of higher order effects in the

gyroradius, it would be nearly indispensible.
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