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Abstract
In this paper, under the stationary 𝛼-mixing dependent
samples, we develop a novel nonlinear modal regres-
sion for time series sequences and establish the con-
sistency and asymptotic property of the proposed non-
linear modal estimator with a shrinking bandwidth h
under certain regularity conditions. The asymptotic dis-
tribution is shown to be identical to the one derived
from the independent observations, whereas the con-
vergence rate (

√
nh3 in which n is the sample size)

is slower than that in the nonlinear mean regres-
sion. We numerically estimate the proposed nonlin-
ear modal regression model by the use of a modified
modal expectation–maximization (MEM) algorithm in
conjunction with Taylor expansion. Monte Carlo sim-
ulations are presented to demonstrate the good finite
sample (prediction) performance of the newly proposed
model. We also construct a specified nonlinear modal
regression to match the available daily new cases and
new deaths data of the COVID-19 outbreak at the
state/region level in the United States, and provide for-
ward predictions up to 130 days ahead (from 24 August
2020 to 31 December 2020). In comparison to the tra-
ditional nonlinear regressions, the suggested model can
fit the COVID-19 data better and produce more precise
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predictions. The prediction results indicate that there
are systematic differences in spreading distributions
among states/regions. For most western and eastern
states, they have many serious COVID-19 burdens com-
pared to Midwest. We hope that the built nonlinear
modal regression can help policymakers to implement
fast actions to curb the spread of the infection, avoid
overburdening the health system and understand the
development of COVID-19 from some points.

K E Y W O R D S

COVID-19, dependent data, MEM algorithm, modal regression,
nonlinear, prediction

1 INTRODUCTION

COVID-19 is caused by a coronavirus called SARS-CoV-2 and was identified in Wuhan, the capital
city of Hubei province, China, for the very first time in December 2019. On 30 January 2020, the
World Health Organization (WHO) declared the COVID-19 outbreak as a Public Health Emer-
gency of International Concern (PHEIC). COVID-19 is a global threat spreading exponentially
rather than linearly, that is, the number of new cases is proportional to the existing number of
cases, which has been dramatically affecting the health and safety of people all over the world.
Based on the information from the Johns Hopkins Coronavirus Resource Center (Dong et al.,
2020), due to the extensive spread of COVID-19, there are more than 23 million cases of COVID-19
and more than 800 thousand deaths worldwide as of 23 August 2020 (Figure 1 shows that com-
pared to other countries, the United States (US) has suffered from COVID-19 in a more severe
way (Yancy, 2020)). In the US alone, since the first US case of COVID-19 infection was identi-
fied in Washington state on 20 January 2020, more than 5.6 million COVID-19 cases and 170
thousand COVID-19 deaths have been identified across the US up to 23 August 2020 (Figure 2
indicates the urgency and necessity of providing reliable predictions to understand the growth
behaviour of COVID-19 in the US). WHO quotes 3.4% as the fatality rate (% people who contract
the coronavirus and then die). The ongoing global outbreak of the COVID-19 pandemic, which
was eventually classified as a pandemic on 11 March 2020 by WHO, poses serious challenges for
countries/regions worldwide in designing tailored methods of epidemic control to provide effec-
tive and reliable health protection while allowing as much as possible societal and economic
activity. It is unclear to anyone where this pandemic will lead us. In such an emergency situation
without globally effective antiviral drugs for treating COVID-19 infections, a reliable prediction
model for COVID-19 data is undoubtedly essential for policymakers to implement fast actions
to curb the spread of the infection, avoid overburdening the health system and understand the
dynamics of the COVID-19 spread.

Most of the existing methods for predicting the incidence and prevalence of COVID-19 pro-
vided by researchers with backgrounds in epidemiology, biostatistics and economics focus on
some mechanistic models, such as the Susceptible–Exposed–Infectious–Recovered (SEIR) model
(Grimm et al., 2020; Hauser et al., 2020; Maugeri et al., 2020), the Institute for Health Metrics
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(a) (b)

F I G U R E 1 Visualization of the total number of cases and deaths in the world-23 August 2020; data source:
Tencent News https://new.qq.com/ch/antip/ [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F I G U R E 2 Visualization of the total number of cases and deaths in the US-23 August 2020; data source:
the GitHub repository managed by The New York Times https://github.com/nytimes/covid-19-data [Colour
figure can be viewed at wileyonlinelibrary.com]

and Evaluation (IHME) model (IHME, 2020; Jewell et al., 2020) and the Risk-Based model (Barda
et al., 2020; Pueyo, 2020), or some statistical models/distributions (Deb & Majumdar, 2020; Fenga,
2020; Linton et al., 2020; Lu et al., 2020; Verity et al., 2020), such as the time series ARMA model
and the machine learning model, for the number of cumulative deaths or cases. However, the
accuracy of prediction largely depends on the reliability of data, and it is a widespread opinion
in the scientific community that the current official COVID-19 data are often noisy with outliers,
biased, skewed and/or truncated (Linton et al., 2020; Rudnicki & Piliszek, 2020; Tuli et al., 2020).
Therefore, the traditional statistical regression model built on mean might provide low accuracy
and even misleading prediction results.

To meet the challenges of the noisy and skewed COVID-19 data, we propose a new statistical
regression tool—nonlinear modal regression—that goes beyond the traditional regression mod-
els to investigate the dynamic of COVID-19 prevalence in different regions, where the dependent
variable of our interest is the official number of daily new cases or new deaths of COVID-19 in a
region that could be a state of the US (we concentrate on the daily change value as it is a more
representative indicator of epidemic severity and an important metric for assessing the effective-
ness of COVID-19 regulation). Note that the built model can be applied to conduct predictions for
some regions which are still in the early stage of the COVID-19 pandemic or when the COVID-19
pandemic happens again in the future (there is a growing belief among epidemiologists that
COVID-19 will behave similarly to the seasonal flu and re-emerge annually in the winter).

It is well-known that the independence assumption for observations is not always valid
in empirical applications. There are many statistical/economics analysis problems with

https://new.qq.com/ch/antip/
http://wileyonlinelibrary.com
https://github.com/nytimes/covid
http://wileyonlinelibrary.com
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high-dimensional data or information network data, where the data exhibit some sort of depen-
dency, such as Markovian chains, mixing sequences, long-range memory process and so on.
In these cases, the statistical properties of the estimator presented in the papers considering
independent identically distributed (i.i.d.) samples may change. Because of this, there has been
an extensive literature concerning the estimator for dependent data (Bester et al., 2011; Cai &
Ould-Said, 2003; Fan & Yao, 2008; Härdle et al., 1997; Pagan & Ullah, 1999; Robinson, 1984).
Nevertheless, nearly all of the existing models/methods regarding dependent samples were
considered from the mean or quantile regression and are especially useful when there is no
outlier in the data, or the density is not very skewed. When the time series dataset contains
many outliers (or aberrant observations) or the data are skewed resulting in non-normally esti-
mated standardized residuals (or heavy-tailed error distributions), which is a common feature
of financial/macroeconomics/panel time series data, the traditional mean or quantile regression
may lose robustness/efficiency or have misspecification (Krief, 2017; Ullah et al., 2021). Thus,
modal regression that focuses on the conditional mode, instead of the mean or quantile, of the
response variable given the predictor may be more feasible for modelling processes in such cases.
Furthermore, when the data are symmetrically distributed, where the modal regression line coin-
cides with the mean regression line, modal regression can overcome the shortcoming of lack
of robustness of mean regression to achieve robust and efficient estimators (Yao et al., 2012).
To the best of our knowledge, besides Kemp et al. (2020) which considered the estimation of
parametric vector autoregressive conditional mode models, there has not been any attempt to
estimate modal regression for dependent samples. Substantially different to Kemp et al. (2020),
in this paper, we fill the literature gap by focusing on the estimation of a nonlinear modal regres-
sion for stationary and weakly dependent samples under 𝛼-mixing condition, which is indeed
omnipresent in time series econometrics and is less restrictive than other mixing conditions avail-
able in the literature. Due to the space constraint, we leave the nonlinear modal-based robust
regression for dependent data derived from mode value in another research, which is based on
but significantly different from the proposed nonlinear modal regression in the current paper;
see Remark 3.

This paper is primarily aimed at applying nonlinear modal regression to understand the
characteristics of dependent samples from a mode perspective and settle theoretical properties
rigorously. For the simplicity of notations, in what follows, we let {(Yt,Xt)nt=1} be a stationary
discrete-time random process, defined on the probability space (Ω, ,), where Ω denotes the
sample space,  is the 𝜎-algebra (the information) of events, and  is a probability measure.
{(Yt,Xt)nt=1} has the same marginal distribution as (Y , X), where Yt is the dependent variable of
the main interest and Xt ∈ Rp denotes the covariates that may contain the lagged values of Yt to
reflect the dynamical characteristics of the underlying data generating mechanism. Let f (Y |X)
be the conditional density function of Y given X . The conventional regression model usually
employs the mean (or the median) of f (Y |X) to model the relationship between Y and X . For
example, linear regression assumes that the mean or median of f (Y |X) is a linear function of X .
The main distinction of modal regression is to find the most probable value/scenario (i.e. mode)
of a dependent variable Y given covariates X , which is defined as

Mode(Y |X) = arg max
Y

f (Y |X). (1)

When the dimension of X is not low, estimating (1) directly based on nonparametric kernel
density estimation will raise many challenges due to the ‘curse of dimensionality’. We in this
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paper avoid directly estimating the conditional density by imposing certain model assumptions
on the conditional mode of the response given the covariates (assuming that the global mode
is uniquely defined), that is, Mode(Y |X); see Section 2 for more details. There is emerging lit-
erature on studying modal regression. Due to space limitations, we refer the interested readers
to Yao and Li (2014), Chen (2018), Ullah et al. (2021), and the references therein for a compre-
hensive review of modal regression. Notice that Khardani and Yao (2017) extended the results in
Kemp and Santos Silva (2012) to put forward a nonlinear modal regression for the independent
samples. However, to the best of our knowledge, there is no existing literature investigating non-
linear modal regression under stationary 𝛼-mixing dependent samples using a kernel smoother,
which is one of the main contributions of the current paper. It is noteworthy that compared to
mean or median regression, modal regression has the following noticeable advantages (Ullah
et al., 2021; Yao & Li, 2014): (a) better for reflecting the characteristics of skewed data; (b) bet-
ter point prediction and narrower prediction intervals; (c) more robust to outliers and certain
forms of measurement error; and (d) consistent estimation even for truncated data. Therefore,
the modal regression can overcome the limitations of the traditional existing regressions and
naturally provide reliable (prediction) models for the noisy COVID-19 data, which is the main
innovation of the present paper contributing to the rapidly growing literature on predicting the
spread of the current COVID-19 pandemic. We also show a new and interesting theoretical
result that the asymptotic theorem for the proposed nonlinear modal estimator under stationary
𝛼-mixing dependent samples is the same as that for independent data under certain conditions,
indicating the asymptotic negligence of the dependence. This remarkable result is intrinsic for
nonparametric estimation for dependent samples and was already observed in the mean regres-
sion estimation (Cai & Ould-Said, 2003). Compared to the mean regression estimator, the modal
regression estimator depends heavily on error term observations which are confined to the neigh-
bourhood of a given point (i.e. zero) and will unexpectedly have a much slower convergence rate
(the modal estimation requires a shrinking bandwidth h due to the use of a small portion of
data around the mode), which is the price to be paid in order to estimate mode (Parzen, 1962).
The proposed nonlinear modal estimator is relatively simple to implement, where we develop a
computationally efficient MEM algorithm in conjunction with Taylor expansion to numerically
estimate it.

Generally, most new confirmed cases are infected via contact with the new confirmed cases
in recent days, indicating the necessity of incorporating lagged value for analysing and predicting
COVID-19 new cases. Ho et al. (2020) introduced a flexible statistical model for the infections and
deaths caused by COVID-19 in New Zealand, in which the growth rate of the cumulative num-
ber of cases depends on the current cumulative number of cases. Li and Linton (2021) developed
a quadratic time trend model that was applied to the log of new cases and obtained satisfying
results for the trajectory of the epidemic in most countries. Based on these observations, we apply
the proposed nonlinear modal regression to model the log of new cases/deaths as a function of
time (to capture the trend or bell-shaped curve) and its own one-step lagged value (to capture the
dynamics by autoregressive fluctuations) based on the general structure of the effects and pro-
cess of infection from a mode perspective; see Section 3 for more details on the model setting for
COVID-19 data. Under the constraint imposed by a reasonable length of the paper, we compare
the performance of nonlinear modal regression to that of nonlinear mean and median regressions
for US COVID-19 data in the paper (for the sake of thoroughness, we also list the results associ-
ated with COVID-19 data obtained from the robust nonlinear mean regression with the bisquare
weight in Online Appendix B. We emphasize that the outbreak spreads of COVID-19 are largely
affected by the policies and social responsibilities of each state/region, it will be interesting in the
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future to compare the prediction results from the proposed model to some well-known predictions
such as those from the IMHE model, SIR models in epidemiology, machine learning methods or
other models that can take policy effects into account).

The results indicate that the newly proposed model has good fit performance for most
states/regions in the US. We use mean squared error (MSE) and mean absolute percentage error
(MAPE) to compare the out-of-sample prediction performance of the proposed nonlinear modal
regression to that of nonlinear mean and median (and robust) regressions for the last 20 days of
the samples, where we show that nonlinear modal regression can have considerably more precise
predictions. We then apply the proposed nonlinear modal regression to predict COVID-19 new
cases and new deaths in the US. Based on the prediction results up to the next 130 days (from 24
August 2020 to 31 December 2020), we can observe that there are systematic differences in spread-
ing distributions across US states. Some states are showing a clear decreasing trend in the number
of new cases and new deaths, such as Connecticut, Illinois, Maine, Maryland, Massachusetts, New
Hampshire, New Jersey, New York, Pennsylvania, among others, while others, such as Alabama,
Arkansas, California, Florida, Georgia, Mississippi, Montana, North Carolina, North Dakota, Ore-
gon, Texas, Utah, Washington and so on, are still in the first wave of the COVID-19 outbreak.
Among the states, California, Florida, Texas and Georgia are the worst affected ones in terms of
the number of predicted new cases and new deaths for the next 130 days. For most western and
eastern states, they have many serious COVID-19 burdens compared to the Midwest. It is interest-
ing to note that the prediction results may reflect the effect of different possible policy interven-
tions, which can be interpreted as holding the current policies in place or under minimal inter-
ventions in each state/region. With the newly developed nonlinear modal regression, we hope
that the prediction results can provide some timely information (i.e. turning point) to help poli-
cymakers to implement fast actions to curb the spread of the infection and avoid overburdening
the health system.

The remainder of this paper is organized as follows. In Section 2, we introduce a nonlinear
modal regression for dependent samples under the stationary 𝛼-mixing condition and develop
an efficient modal estimation algorithm. We also present the asymptotic distributional theory for
the resulting estimator under mild conditions, which gives guidelines for practically selecting
a reliable bandwidth. Monte Carlo simulations are conducted to show the good finite sam-
ple performance of the proposed model. A specified nonlinear modal regression is introduced
in Section 3. Based on the built model, we produce a modal multi-step-ahead point forecast
framework for COVID-19 new cases and new deaths data, and present the out-of-sample pre-
diction results of the behaviour of COVID-19 at the state/region level in the US. The paper
is concluded with some remarks in Section 4. We put additional numerical results, list all
figures related to the prediction results, and outline the proofs for the main theorems in the
online appendix.

2 NONLINEAR MODAL REGRESSION

In order to streamline the discussion, we start in this section with the nonlinear modal esti-
mator for dependent samples, where the numerical solutions are obtained via a modified MEM
algorithm (Li et al., 2007; Yao, 2013) with the help of a first-order Taylor expansion. Under the
assumption of 𝛼-mixing, we then present the asymptotic property and optimal bandwidth.
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2.1 Nonlinear modal estimator

As mentioned previously, the traditional method of estimating (1) is to directly estimate the condi-
tional density f (Y |X) nonparametrically based on the multivariate kernel density estimation; see
the related discussions in Chen et al. (2016). However, due to the ‘curse of dimensionality’, such
a method is practically infeasible when the dimension of covariates is moderate or high, which
also contributes to the lack of enough research interest in modal regression. In this paper, simi-
lar to mean or quantile regression, we propose estimating the modal regression (1) by imposing
some model assumptions on Mode(Y |X) directly (assuming that it is uniquely defined) to avoid
the ‘curse of dimensionality’ of the fully nonparametric kernel method. In particular, we assume
the following baseline model

{
Yt = r(Xt, 𝛽) + 𝜖t,

Mode(Yt |Xt) = r(Xt, 𝛽), t = 1, … ,n,
(2)

where t represents calendar day that equals to one for the first date of the data, 𝛽 ∈ Θ is an
unknown parameter vector with dimension p, Θ is the known compact parameter space, r(⋅) ∶
Rp × Θ → R is a parametric nonlinear function measurable on Rp for each 𝛽 in Θ, and {𝜖t}n

t=1 is
a sequence of stochastic random variables with Mode(𝜖t|t) = 0 almost surely (a.s.) for every t in
which t is the 𝜎-field generated by {Xs, 𝜖s}s≤t. Different from the most existing regressions, we
do not impose any second moment conditions on 𝜖t, thus it can be conditional homoscedastic or
conditional heteroscedastic. It is worth pointing out that in order to illustrate the applicability of
nonlinear modal regression for time series data in a more general setting, we focus on dependent
observations. However, Equation (2) could also be an autoregressive time series model with finite
order p, that is, Mode(Yt|Yt−l) = r({Yt−l}p

l=1, 𝛽), which characterizes the nonlinearity in terms of
lags and could be considered as a special case of time series model in this section. The form of
r(⋅) for analysing the COVID-19 data will be discussed in Section 3. Then, the modal parameter 𝛽
can be estimated by maximizing the following kernel-based objective function given observations
{(Yt,Xt)}n

t=1 and knowledge of r(⋅)

Qn(𝛽) =
1

nh

n∑

t=1
K
(

Yt − r(Xt, 𝛽)
h

)
, (3)

where K(⋅) is a nonnegatively symmetric kernel function such as the Gaussian kernel (i.e. K(t) =
(2𝜋)−1∕2 exp[−(1∕2)t2]) that we will use by default in this paper, and h :=h(n) is a bandwidth that is
assumed to go to 0 with n going to infinity (‘:=’ denotes ‘equals by definition’). To keep the notation
simple, we however suppress n throughout the paper. Notice that K(⋅) is a function following the
same rules as a probability density function, for example, it is positive and integrable. However,
the role of bandwidth h (control mode) is different from that in nonparametric regression (control
smoothness). According to Yao et al. (2012), the choice of kernel function is not very important
in modal regression compared to the choice of bandwidth. We choose the Gaussian kernel in this
paper for the sake of simplicity. In particular, we can obtain an explicit expression for the M-Step
in Algorithm 1.

Remark 1 When r(Xt, 𝛽) = 𝛽∗, only an intercept term, Qn(𝛽∗) is a kernel density estimate of Y ,
and thus the maximizer of Equation (3) is the estimated mode of f (Y ). Here, we extend
this kernel-type objective function to estimate the modal regression parameter 𝛽 in the



ULLAH et al. 1431

regression setting. When r(Xt, 𝛽) = XT
t 𝛽 in which T represents the transpose of a matrix

or a vector, the modal regression (2) is simplified to the linear modal regression (Kemp
& Santos Silva, 2012; Yao & Li, 2014). Note that if K(t) = 2−1I(|t| ≤ h), a uniform kernel,
then Equation (3) tries to find the curve r(Xt, 𝛽) such that the band r(Xt, 𝛽) ± h contains the
largest number of response Yt, where 𝛽 is the modal estimator. Therefore, the modal regres-
sion provides more meaningful point predictions and shorter prediction intervals than the
mean regression.

It is well-known that the estimation of nonlinear models is a notoriously difficult problem,
especially for modal regression, as maximizing (3) does not have an explicit solution. We thus
develop a modified MEM Algorithm 1 originally proposed by Li et al. (2007) and Yao (2013) to
simplify the computations, which decomposes the optimization (3) into E-Step and M-Step. Given
the initial value 𝛽(0) (e.g. nonlinear least squares (NLS) estimate), we shall repeat the two steps
in the algorithm until it converges. Note that if r(Xt, 𝛽) is a linear function of Xt, then M-Step is
just a weighted LS estimation and has an explicit solution. To simplify the computation of M-Step
for a general nonlinear function r(⋅), we approximate r(Xt, 𝛽) by a first-order Taylor expansion
around the current parameter estimate. It can be proved that each iteration of the above algorithm
monotonically nondecreases the objective function (3) following the procedures in Yao and Li
(2014), that is, at each iteration Qn(𝛽(g+1)) ≥ Qn(𝛽(g)) and the equality holds if and only if 𝛽(g+1) =
𝛽
(g). Therefore, the algorithm is very stable and converges. However, for the bandwidth h with a

small value, the objective function may have multiple maxima, and there is no guarantee that the
MEM algorithm will converge to the global maximizer. Accordingly, it is important to try different
starting points on each occasion to compare the values of the target function to choose the best
optimal one (Yao & Li, 2014).
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Based on the above algorithm, it can be seen that the major difference between the mean
regression by the LS estimation and the modal regression lies in the weight𝜋(t|𝛽(g))used in E-Step.
For the LS estimation, each observation has an equal weight 1/n. On the other hand, for modal
regression estimate, the weight 𝜋(t|𝛽(g)) calculated in E-step depends on how close Yt is to the
modal regression curve r(Xt, 𝛽). This weighting scheme allows modal regression to reduce the
effect of observations far away from the modal regression curve to achieve robustness, which is
one of the advantages of modal regression over mean regression.

2.2 Asymptotic property

Before proceeding to the asymptotic theorem for the estimator under the 𝛼-mixing assumption,
it is convenient to introduce some notations that will be used in the remaining part of this
section. We define Tn(x) = T(x) + op(sn) (or Op(sn)) uniformly for x ∈  if supx∈ |Tn(x) − T(x)| =

op(sn)
(
or Op (sn)

)
, and use ‘

d
−→’ to represent convergence in distribution. We say that f (n)= o(g(n))

if for all c > 0, there exists some k > 0 (not depend on n) such that 0 ≤ f (n) < cg(n) for
all n ≥ k. Let ||⋅|| denote the Euclidean norm, that is, ||A|| = [tr(AAT)]1∕2 in which tr(A) is
the trace of the matrix or vector A. For positive sequences {an} and {bn}, we write an ≍ bn
if an∕bn + bn∕an is bounded for all large n. To facilitate the derivation of the consistency and
asymptotic theorem for the estimator from (3) in a general framework, we impose the following
regularity conditions.

C1 The true value of parameter 𝛽0 defined in (2) is in the interior of the known compact
parameter space Θ, which is a subset of Rp.

C2 The kernel function K(⋅) is a nonnegatively symmetric density function with bounded sup-
port and integrates to one. It is four times continuous differentiable with all derivatives
bounded in absolute value. Furthermore, ∫ t2+𝛿K2+𝛿(t)dt < ∞with probability one in which
𝛿 ∈ [0,1) is a constant.

C3 The regression function r(⋅) has at least a continuous first derivative on an open set that
contains the true parameter point 𝛽0. In addition, n−1∑n

t=1{𝜕r(Xt, 𝛽)∕𝜕𝛽}{𝜕r(Xt, 𝛽)∕𝜕𝛽}T

converges to a finite positive definite matrix at 𝛽 = 𝛽0.
C4 The conditional density of 𝜖 given X denoted by q(𝜖 |X) ∶ R → R is bounded away from zero

and infinity, and has the fourth continuous derivative. q(c)(⋅|X) denotes the cth derivative
of q(⋅|X). Furthermore, q(𝜖 |X) < q(0 |X) for all 𝜖 ≠ 0 and X , and the first derivative
q(1)(𝜖 |X) = 0.

C5 {(Yt,Xt)} is a stationary 𝛼-mixing process, and the mixing coefficient 𝜌(n) =
supA∈0

−∞,B∈
∞
t
|P(A ∩ B) − P(A)P(B)| tending to zero for n → ∞ satisfies

∑
n≥1 n𝛾 (𝜌(n))𝛿∕(2+𝛿) < ∞ for some 𝛾 > 𝛿/(2+𝛿), where 𝛿 is a constant given in C2

and  is the 𝜎-algebra of events generated by the random variables {(Yt,Xt)}. More-
over, there is a sequence of positive integers dn such that dn → ∞, dnh → 0, and
h4∑n

k=dn
[𝜌(k)]𝛿∕(2+𝛿) = o(nh−3).

C6 As n → ∞, n−1∑n
t=1q(2)(0 |Xt)

{
𝜕r(Xt ,𝛽)
𝜕𝛽

}{
𝜕r(Xt ,𝛽)
𝜕𝛽

}T
converges in probability to a negative

definite matrix.

Most of the above conditions have been used in Kemp and Santos Silva (2012), Yao and Li
(2014) and Ullah et al. (2021). Condition C1 is a common condition and can be easily satisfied
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in practice, as there are no constraints on 𝛽. The bounded support in Condition C2 imposed on
the kernel function K(⋅) is for the brevity of proofs, and may be relaxed somewhat if we impose
certain restrictions on the tail of the kernel function; for example, the Gaussian kernel is allowed
(Ullah et al., 2021), which is the default kernel used in this paper. Condition C3 is a commonly
used condition on the smoothness of the nonlinear function and the information matrix to ensure
the existence of the asymptotic mean and variance for the proposed nonlinear modal estimator, as
the modal estimator 𝛽 must satisfy− 1

nh2

∑n
t=1K(1)

(
Yt−r(Xt ,𝛽)

h

)
r(1)(Xt, 𝛽) = 0 where K(1)(⋅) and r(1)(⋅)

are the first derivatives of K(⋅) and r(⋅) respectively. Condition C4 implies a certain smoothness of
q(𝜖t|Xt) in the neighbourhood of zero, which is necessary for identification. It imposes that the
conditional density of 𝜖 has a well-defined global mode at zero (Kemp & Santos Silva, 2012; Ullah
et al., 2021). It is to be conceded that this assumption is used for simple illustration; when the pop-
ulation is not homogeneous, the proposed method could also be applied to the multimode setting
to capture different modal regression lines, under which the newly developed nonlinear modal
regression can reveal the possible heterogeneity of COVID-19 development patterns across differ-
ent states/regions. Condition C5 is a condition on the data generating process that permits, and
is the standard requirement for the 𝛼-mixing process, which is used to control the dependence
between two random variables as the time distance increases. It is reasonably weak and is known
to be satisfied by many stochastic processes, such as the stationary Markov process and the sta-
tionary autoregressive-moving average process. A sufficient condition for the mixing coefficient
𝜌(n) to satisfy Condition C5 is to set 𝜌(n) = O(n−d) for some d > 2(𝛾 + 1)/𝛾 (Cai & Ould-Said,
2003). When {(Yt,Xt)}n

t=1 are independent in which 𝛿=0, the results in this paper also hold. Con-
dition C6 is the classic rank condition placing restrictions on the moments of covariates, which
is necessary for deriving the asymptotic property of the proposed nonlinear modal estimator. All
conditions related to bandwidth h are specified for each of the theorems stated below.

We are now in a position where we can state the main asymptotic results for the proposed
nonlinear modal estimator. The results are presented in the following Theorems 1 and 2, where
the modal convergence rate

√
nh3 can be considered as a new one in the literature of nonlinear

regression models for dependent samples.

Theorem 1 Under the regularity conditions C1–C6, with probability approaching one, as n →∞,
h → 0, and nh5 → ∞, there exists a consistent maximizer 𝛽 of (3) such that

||𝛽 − 𝛽0|| = Op((nh3)−1∕2 + h2).

Theorem 2 With nh7 = O(1), under the same conditions as Theorem 1, the parameter satisfying
the consistency result in Theorem 1 has the following asymptotic result

√
nh3

[
𝛽 − 𝛽0 −

h2

2
J−1M{1 + op(1)}

]
d
−→N

{
0,
∫

t2K2(t)dtJ−1LJ−1
}
.

If we allow nh7 → 0, the asymptotic theorem becomes

√
nh3(𝛽 − 𝛽0)

d
−→N

{
0,
∫

t2K2(t)dtJ−1LJ−1
}
,

where J = E

[
q(2)(0 |Xt)

{
𝜕r(Xt ,𝛽)
𝜕𝛽

}{
𝜕r(Xt ,𝛽)
𝜕𝛽

}T
]

, M = E

[
q(3)(0 |Xt)

{
𝜕r(Xt ,𝛽)
𝜕𝛽

}]
, and

L = E

[
q(0 |Xt)

{
𝜕r(Xt ,𝛽)
𝜕𝛽

}{
𝜕r(Xt ,𝛽)
𝜕𝛽

}T
]

at 𝛽 = 𝛽0.
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The proofs of the above two theorems are outlined in Online Appendix C. For Theorem 1, the
first term (nh3)−1∕2 in the convergence rates characterizes the magnitude of the estimation vari-
ance, while the second term h2 characterizes the magnitude of the estimation bias. It is necessary
to emphasize that these results are consistent with those in Yao and Li (2014) and Ullah et al.
(2021) for the i.i.d. data. Theorem 2 shows that the asymptotic bias term is mainly determined
by the bandwidth and can be successfully removed under certain undersmoothing conditions.
However, the asymptotic mean squared error (AMSE) optimal bandwidth h satisfies h ≍ n−1∕7,
which does not meet the condition that nh7 → 0. Hence, undersmoothing is required, that is,
limn→∞

√
nh7 → 0, which will be incorporated into this paper when selecting bandwidth in prac-

tice. We remark that the asymptotic results hold for both i.i.d. data and dependent samples under
mild conditions including strongly mixing (𝛼-mixing). The asymptotic negligence of dependence
with a large sample size is intrinsic to nonparametric estimation for dependent samples and
it was already observed in the mean regression estimator; see Cai and Ould-Said (2003). This
should be expected as a heuristic principle for nonlinear modal regression as well due to the fact
that under the 𝛼-mixing process, the covariance between random variables 𝜖t and 𝜖j such that
𝜖t, 𝜖j ∈ (𝜖 − h, 𝜖 + h) is dominated by the variance of 𝜖t through the conditions imposed on the
smoothing parameter; see Lemma 1 in Online Appendix C. Thus, the dependence between the
random variables 𝜖t and 𝜖j in a short interval is of ‘short memory’ which makes them behave as if
they were independent (Härdle et al., 1997).

Remark 2 The convergence rate of the proposed nonlinear modal estimator 𝛽, n2∕7 with the
MSE-optimal bandwidth, is slower than the root-n convergence rate of the traditional NLS
estimator, which is the cost we need to pay in order to estimate the conditional mode
(Parzen, 1962). How to improve the convergence rate of the nonlinear modal estimator
needs to be researched further in the future. For example, we may assume a certain ana-
lytical relationship among mean, median and mode to help estimate the nonlinear modal
regression line. Nevertheless, for skewed data with moderate sample size, the modal regres-
sion usually provides better prediction performance than the mean and median regressions,
as the mode is trying to capture the most likely data points; see the Monte Carlo simulation
results in Yao and Li (2014) for cross-sectional data and Ullah et al. (2021) for fixed effects
panel data. Our analysis of COVID-19 time series data in Section 3 also shows the supe-
rior prediction performance of the proposed nonlinear modal regression over the nonlinear
mean and median (and robust) regressions.

Remark 3 It is observed that the proposed nonlinear modal regression focuses on asymmetric data
to reveal the characteristics of the data that have been neglected by mean or quantile regres-
sion. In practice, it is also common to encounter symmetric data with outliers/aberrant
observations or heavy tails. In such a case, we might still be interested in estimating the
mean regression, while the proposed modal regression may not be directly applicable owing
to the slower convergence rate and the traditional LS estimator is not robust to outliers or
heavy tailed data. One way in the literature to handle this kind of data is to utilize robust
regression models, like M-estimation, which will lose efficiency for normal errors. We can
then supplement the robust regression literature by demonstrating that with symmetric
data having only one mode at the centre and a heavy-tailed distribution, the nonlinear
modal regression can be used alternatively as a robust regression to achieve robustness
and efficiency. Compared to the proposed nonlinear modal regression, the main feature
of the nonlinear modal-based robust regression is that we treat bandwidth h as a con-
stant, which does not depend on sample size. Under suitable conditions, we can establish
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the asymptotic normality for the proposed modal-based robust estimator with
√

n con-
sistency, and demonstrate that the modal-based robust estimator could be more efficient
than the NLS estimator with a heavy-tailed distribution, or as efficient as the NLS esti-
mator with a normal distribution. Due to the space constraint, we leave the detail of the
nonlinear modal-based robust regression for dependent data derived from mode value in
another research.

2.3 Optimal bandwidth

Compared to the bandwidth selection method for density estimation in order to estimate modes,
it is more challenging to calculate the optimal bandwidth for modal regression, as the value of
bandwidth can strongly affect the regression estimates. Particularly, if bandwidth is large enough,
the modal regression will instead capture the mean estimate; see Remark 3. In addition, band-
width plays an important role in estimating dependent observations, as the dependency can
be controlled with the observations in a small window. There exist some methods for select-
ing the optimal bandwidths for nonparametric estimation of conditional modes based on kernel
density estimation; see Chen (2018) and Zhou and Huang (2019). However, the methods for band-
width selection in modal regression by directly imposing structural assumptions on Mode(Y |X)
are rather limited. One of them is related to the plug-in bandwidth selection method for linear
modal regression, which was presented in Yao and Li (2014) and Ullah et al. (2021) by replacing
the unknown quantities with the corresponding estimates. Nevertheless, such a plug-in method
places a heavy burden on calculation. In this part, we discuss the asymptotic optimal bandwidth
for h and suggest a simple data adaptive method to obtain the bandwidth.

To derive the asymptomatically optimal bandwidth, we minimize the AMSE of the proposed
nonlinear modal estimator, that is,

E
{
(𝛽 − 𝛽0)TW(𝛽 − 𝛽0)

}
≈ MTJ−1WJ−1Mh4∕4 + (nh3)−1tr(J−1LJ−1W)

∫
t2K2(t)dt, (4)

where the symbol ‘cn ≈ dn’ indicates that cn∕dn → 1 as n →∞ and W is a weight function, such
as an identity matrix, reflecting which coefficient is more important in inference. Therefore, the
asymptotically optimal bandwidth h is

̂hopt =

[
3 ∫ t2K2(t)dt tr(J−1LJ−1W)

MTJ−1WJ−1M

]1∕7

n−1∕7
. (5)

If W = (J−1LJ−1)−1, which is proportional to the inverse of the asymptotic variance of 𝛽, then
tr(J−1LJ−1W) = p, and we can have

̂hopt =

[
3p ∫ t2K2(t)dt

MTL−1M

]1∕7

n−1∕7
. (6)

The optimal bandwidth in the above equation depends on the unknown density q(⋅) in
a complicated manner, which is not available in practice. However, the expression can give
some guidelines on how to select the optimal data-driven bandwidth in practice. To simplify
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the calculations, we can follow Kemp and Santos Silva (2012) to choose the bandwidth, and
let ̂h = 1.6MADn−0.143(−0.13 comes from the rate −1/7 and undersmoothing requirement) be a
normalized median absolute deviation (MAD) estimate, where

MAD = medj{|(Yj − r(Xj, 𝛽m)) −medt(Yt − r(Xt, 𝛽m))|}, (7)

𝛽m represents the corresponding mean estimate, and med representing the median value. Besides
the above procedure, researchers could also follow the cross-validation method or the weighted
integrated squared error method developed in Zhou and Huang (2019) to select the bandwidth.

2.4 Monte Carlo experiments

To illustrate that the asymptotic result investigated in the above subsection provides a good
approximation of the finite sample behaviour of the proposed nonlinear modal estimator, we
present two numerical examples based on Monte Carlo experiments (one is shown in Online
Appendix A). We mainly focus on asymmetric data and use DGP to represent the data gen-
erating process in what follows. For comparison, both nonlinear modal regression and mean
regression are considered to estimate parameters with M = 200 replications and sample size
n ∈ {200, 400, 600, 1000}. We examine how estimators behave in finite samples in terms of bias,
standard error and MSE,

MSE(𝛽) = 1
M

M∑

j=1
||𝛽

(j) − 𝛽||2

in which 𝛽(j) is the estimate in the jth replication and 𝛽 is the true value. In order to validate the
asymptotic normality property, we present the shape of the empirical density of the standard-
ized (recentred and rescaled) modal estimate. The coverage probabilities to assess the prediction
performance of the proposed nonlinear modal regression are reported as well.

DGP 1 We generate the dependent data from the following model

Yt = X1,t + exp(2X2,t) + X1,t𝜖t,

where X1,t = −0.3X1,t−1 + u1,t, u1,t
i.i.d.∼ 𝒩 (0, 0.82), X2,t = 0.4X2,t−1 + u2,t, u2,t

i.i.d.∼ 𝒩 (0, 0.52), and
𝜖t

i.i.d.∼ 0.5𝒩 (−1, 2.52) + 0.5𝒩 (1, 0.52)with E(𝜖t) = 0 and Mode(𝜖t) = 1 (Ullah et al., 2021; Yao & Li,
2014). We then have

{
Mean Regression: E(Yt |X1,t,X2,t) = X1,t + exp(2X2,t),
Modal Regression: Mode(Yt |X1,t,X2,t) = 2X1,t + exp(2X2,t).

Notice that the median value of 𝜖t is around 0.67, which indicates that the nonlinear median
regression line is Median(Yt |X1,t,X2,t) = 1.67X1,t + exp(2X2,t). For space considerations, we do not
present results for median estimates, but they are available upon request.

The simulation results are summarized in Table 1 (𝛽m represents the coefficients of mean
regression), from which we can see that the proposed nonlinear estimation procedure can recover
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T A B L E 1 Results of simulations—DGP 1

Modal estimation Mean estimation

Sample size 𝜷1 (SE) MSE(𝜷1) 𝜷2 (SE) MSE(𝜷2) 𝜷m,1 (SE) MSE(𝜷m,1) 𝜷m,2 (SE) MSE(𝜷m,2)

n = 200 1.9329
(0.2288)

0.0566 2.0078
(0.0574)

0.0033 1.0073
(0.2371)

0.0560 1.9974
(0.0402)

0.0016

n = 400 1.9604
(0.0924)

0.0101 1.9995
(0.0313)

0.0010 1.0000
(0.1816)

0.0328 2.0008
(0.0241)

0.0006

n = 600 1.9620
(0.0817)

0.0081 2.0003
(0.0237)

0.0006 0.9956
(0.1440)

0.0207 1.9999
(0.0193)

0.0004

n = 1000 1.9620
(0.0603)

0.0051 1.9985
(0.0178)

0.0003 0.9886
(0.1043)

0.0110 1.9990
(0.0153)

0.0002

True value 𝛽1 = 2 𝛽2 = 2 𝛽m,1 = 1 𝛽m,2 = 2

F I G U R E 3 Empirical density of the standardized estimate [Colour figure can be viewed at
wileyonlinelibrary.com]

modal coefficients well with finite samples. Also, when the sample size increases, the perfor-
mance of all estimators improves as expected, both in terms of biases and standard errors. With
skewed data where the mean, median and mode differ by a location shift, it is necessary to per-
form the nonlinear modal regression to complement the nonlinear mean or quantile regression
and capture the most likely effect that the existing regressions cannot directly reveal.

We present the shape of the empirical density of the standardized modal estimate in Figure 3
to examine the asymptotic normality property of the nonlinear modal estimator. In accordance
with the theoretical findings, most of the results manifest asymptotic normality as the sample
size n increases. It is noticed that the performance of the asymptotic normality approximation is
not perfectly good. We attribute it to the value of the bandwidth selected, which has a substantial
effect on the estimation of parameters. How to develop a more efficient way to select the optimal
bandwidth needs to be carefully researched in the future.

To show the advantage of the proposed nonlinear modal regression in prediction, we follow
Yao and Li (2014) and Ullah et al. (2021) to report the coverage probabilities of prediction intervals
of three different lengths (0.1𝜎, 0.2𝜎, 0.5𝜎, 𝜎 =

√
Var(𝜖t) ≈ 2). We use the same DGP procedure as

http://wileyonlinelibrary.com
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F I G U R E 4 Boxplots of average of coverage probabilities: the numbers 2, 4, 6 and 10 represent the values of
n = 200, 400, 600 and 1000 respectively [Colour figure can be viewed at wileyonlinelibrary.com]

before but implement the out-of-sample prediction with 200 repetitions for the additional n data
points. The representative results of the coverage probabilities of the proposed nonlinear modal
regression model and the nonlinear mean and median regression models are reported in Figure 4,
which shows that in comparison to the nonlinear mean and median regressions, the nonlinear
modal regression tends to have superior predictive performance by providing the highest cover-
age probabilities. Although median regression outperforms mean regression due to the skewness
of the error distribution, its performance is worse than that of modal regression. As expected, the
nonlinear modal regression and mean and median regressions would have closer coverage prob-
abilities with the increase in the interval length. These simulation findings encourage the use of
nonlinear modal regression in prediction.

3 NONLINEAR MODAL REGRESSION FOR COVID-19 DATA

The prediction advantage of modal regression illustrated in the above section provides underlying
support for building a nonlinear modal regression to predict COVID-19. We in this section develop
a nonlinear modal regression based on the general structure of the effects and process of infection
from a mode view and use it to predict COVID-19 new cases and new deaths in the US, which are
the key quantities that determine the epidemic peak. We aim to investigate how well the proposed
model could be used to guide the modelling of the dynamic of the spread.

3.1 Model framework

We first discuss the choice of a nonlinear modal function r(Xt, 𝛽) according to the transmission
characteristics of COVID-19. It has been shown that the COVID-19 spread follows an exponen-
tial distribution, and the number of new cases/deaths does not follow a standard distribution
like Gaussian or Exponential due to the large number of outliers and noise; see the related liter-
ature summarized in Tuli et al. (2020). In addition, Tuli et al. (2020) showed that the COVID-19
cases/deaths data follow the generalized inverse Weibull (GIW) distribution better than the
Gaussian, which has the following probability density function (de Gusmão et al., 2011)

f (y) = abcby−(b+1) exp

[

−a
(

c
y

)b
]

, y > 0 (8)

with three parameters a ∈ R > 0, b ∈ R > 0 and c ∈ R > 0. It can be easily proven that (8) is
a probability density function by substituting u = −acby−b. Instead of considering probability

http://wileyonlinelibrary.com
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distribution, Tuli et al. (2020) treated (8) as a regression function and used it to establish a mean
regression model of cross countries COVID-19 prediction between a dependent variable Yt and
time trend t, which is expressed as follows

Yt = abcbt−(b+1) exp
[
−a

(c
t

)b
]
, (9)

where t > 0 is the time in the number of days from the first case. Tuli et al. (2020) introduced a
machine learning-based iterative weighting strategy to fit (9) with the number of cases data and
compared the prediction performance with the Gaussian fitting by MSE, MAPE and R2, where
they showed that the proposed GIW model performs significantly better.

By coincidence, the same phenomenon, that is, the data with a large number of noise follow a
GIW-type shape, appears when we plot the new cases/deaths data against time for most states in
the US, which motivates us to develop a regression model for the COVID-19 data in the US based
on (9). This paper however does not use this mean regression model directly as it only depends
on time t and cannot capture the dynamics of COVID-19. Since previous studies have suggested
that the log of new cases/deaths is more suitable to be the dependent variable (Deb & Majumdar,
2020; Li & Linton, 2021; Schüttler et al., 2020; Wang et al., 2020), as the logarithm value can weight
more evenly values close to the maximum of the objective function and disregard other values,
we then instead take the logarithm on both sides of (9), from which we can see that log(Yt) is
linearly associated with log(t) and t𝛿 (𝛿 is a constant number). We emphasize that it is reasonable
to use log value due to the increase in the number of new cases/deaths rose by multiple orders of
magnitude in a short period of time and sensible to include t𝛿 to capture the fact that most states in
the US experience a decreasing trend after approaching the peak number of cases/deaths per day
(in the early stage of the COVID-19 epidemic, the data usually show an exponential growth trend.
After a period of time, as the number of uninfected people decreases, the growth rate starts to
decelerate and the number of cases keeps rising until reaching a peak. Subsequently, the number
of new infections begins to decline). Furthermore, to incorporate the time series structure of the
data and the fact that each infected person will create a chain of new infections, we include the
lag variable log(Yt−1) in the model. Along with the above arguments, we propose the following
nonlinear modal regression for modelling COVID-19 data by taking into consideration the effect
of progress evolving over time

log(Yt) = 𝛼 + 𝛽 log(t) + 𝜂 log(Yt−1) + 𝛾t𝛿 + 𝜖t, t = 2, … ,n, (10)

where error term {𝜖t}n
t=2 is a sequence of stochastic random variables with Mode(𝜖t |t−1) = 0

almost surely (a.s.) for model identification in which t−1 is the 𝜎-field generated by {Yt−1−s}∞s=0.
Therefore, the nonlinear modal regression line is defined as

r(Xt, 𝜃) = 𝛼 + 𝛽 log(t) + 𝜂 log(Yt−1) + 𝛾t𝛿, (11)

where Xt = (1, log(t), log(Yt−1), t) and 𝜃 = (𝛼, 𝛽, 𝜂, 𝛾, 𝛿)T . Compared to (9), the proposed nonlinear
modal regression model can better incorporate other covariates into the mode structure, such as
the lag variable or social distance variables. In addition, the new model uses the conditional mode
instead of mean or quantile to model the nonlinear relationship among variables. We also note
that, although not presented here, the model developed in (10) performs better in terms of MSE
and MAPE than using a polynomial regression for t, the model (11) without the lag variable (Yt−1),
and the model (11) with two lag variables (Yt−1 and Yt−2).
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Different from the mean or median regression, we propose estimating the modal regression
(10) using the following kernel-based objective function

Qn(𝜃) =
1

(n − 1)h

n∑

t=2
K
(

log(Yt) − 𝛼 − 𝛽 log(t) − 𝜂 log(Yt−1) − 𝛾t𝛿

h

)
, (12)

whose estimation relies on the choice of the regularization parameter—the bandwidth h. We
propose to choose the bandwidth according to Kemp and Santos Silva (2012), where we min-
imize MSE and MAPE for a grid of 50 values of h between 50MAD and 0.5MAD(n − 1)−0.143

with MAD = medt{| log(Yt) − rm(Xt, �̂�m) −medt(log(Yt) − rm(Xt, �̂�m))|} in which �̂�m(⋅) represent-
ing the corresponding NLS estimate.

With the available parameter estimate �̂� = (�̂�, 𝛽, �̂�, �̂� , 𝛿)T obtained from Algorithm 1, we can
formulate a k-step ahead prediction to capture the dynamic behaviour of COVID-19 by fitting the
nonlinear modal regression (10) recursively for the entire horizon

̂Mode(log(Ŷ t+k|t)|t + k, log(Ŷ t+k−1)) ≈ �̂� + 𝛽 log(t + k) + �̂� log(Ŷ t+k−1) + �̂�(t + k)𝛿, (13)

where log(Ŷ t+k|t) represents the estimate of log(Yt+k) based on the data log(Y1), … , log(Yt),
log(Ŷ t+1), … , log(Ŷ t+k−1). Particularly, we pretend the pre-step estimate was the true value of Yt
at the corresponding step and use it as part of the input variable for predicting the next step. To
graphically present the prediction procedure, we have the following roadmap

Yt
(Yt , t+1)
−−−−−−−→ Ŷ t+1

(Ŷ t+1, t+2)
−−−−−−−−→ Ŷ t+2

(Ŷ t+2, t+3)
−−−−−−−−→ Ŷ t+3 · · ·

(Ŷ t+k−1, t+k)
−−−−−−−−−−→ Ŷ t+k.

Remark 4 To reduce the computation time, we apply the same modal estimates with the band-
width h, which are constructed using samples {Yt}n

t=1 and the corresponding time sequence
for all predictions. However, the prediction performance can be improved if we dynam-
ically reestimate modal parameters each time to incorporate the substantial information
contained in the intermediate variables Yt+1, … ,Yt+k−1 about the conditional mode when
the pre-stage estimated forecast is added to the samples (e.g. we estimate 𝜃 with the data
{Yt, t}n

t=1 and use the corresponding estimate to predict the value of Yn+1. After that, we
use the data ({Yt, t}n

t=1, Ŷ n+1) to reestimate 𝜃 and use the corresponding estimate to pre-
dict Yn+2. Iterative this procedure until we achieve all predictions). Although the suggested
recursive prediction procedure performs well for COVID-19 data in this paper, we notice
that the accuracy of the predictions may deteriorate when k is too large, which is due to the
accumulation of errors with the predicting horizon. Therefore, compared to the long-term
prediction, the proposed model is better to be used for the short-term prediction.

Remark 5 It is noticed that there is a basic assumption for (13) such that the predicted value Ŷ t+k−1
performs almost the same as the true value Yt+k−1 with Mode(𝜖t+1 | Ŷ t+k−1) = 0, which is the
main reason we use ‘≈’ sign in (13). How to release this assumption to provide a more reli-
able prediction for modal regression needs to be researched further. However, compared to
the prediction procedure of the k-step-ahead predictions based only on the observed data, as
is standard in macro settings, our procedure should be more reliable. For instance, as mode
does not have the additive property, it is difficult to guarantee that Mode(𝜂𝜖t + 𝜖t+1 |Yt−1) = 0
with equation log(Yt+1) = 𝛼 + 𝛽 log(t + 1) + 𝜂(𝛼 + 𝛽 log(t) + 𝜂 log(Yt−1) + 𝛾t𝛿) + 𝛾(t + 1)𝛿 +
𝜂𝜖t + 𝜖t+1.
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Remark 6 We in this paper model the new cases and new deaths datasets with Equation (10),
separately, which indicates that the predicted new deaths and new cases do not appear
to be linked to each other. Such a univariate model may ignore possible comovements
with other available time series. In practice, it is extremely likely that new cases and
new deaths are collectively impactful on observable trends, that is, there is a depen-
dency nature in the series. Thus, it is possible to improve predictions and the explanatory
power of the model by jointly predicting these two through a nonlinear vector autore-
gressive modal regression by extending the results in Kemp et al. (2020), that is, Yjt =
r(Y−jt, {Yjt−l}L

l=1,Xjt, 𝛾) + ejt with finite order L for j = 1, 2 in which Y−jt collects all but the
jth observation at time t and Xjt includes all possible factors that affect both cases and
deaths. With the stationary condition and Mode(ejt|t−1) = 0 in which t−1 is the 𝜎-filed
generated by {Y−jt, {Yjt−l}L

l=1}, it can be shown that the estimator of 𝛾 is identified and
asymptotically normally distributed. In addition, due to the computation burden, we do
not compute the confidence interval for predictions. This should be easily carried out
based on the bootstrapped modal regression method introduced in Ullah et al. (2021),
where we independently draw bootstrapped pseudo samples of residuals from the estimated
regression, use the pseudo residual to minus the corresponding mode value to ensure the
mode of residual is zero, and then follow the standard procedure as in mean regression
to get the modal confidence interval. Future studies could fruitfully explore these issues
further.

3.2 Modal prediction results

We use publicly available COVID-19 data on the daily number of reported cases and deaths
to fit the proposed model (we use the case and death data from each state/region to fit the
model (11) and fully expect that the parameters vary across the states/regions, as different
states/regions are at different stages of the epidemic cycle and have taken different approaches
to managing it), and perform an out-of-sample prediction analysis for all states/regions in
the US (including the District of Columbia and Puerto Rico) to predict the number of daily
new cases and deaths. We remark that the daily data are superior for short-term/medium tac-
tical predicting and are more informative than weekly or monthly data, as they can reflect
the turning point of the curve timely and encourage policymakers and people to take flex-
ible actions at any moment. The data of aggregated US COVID-19 cases/deaths we use are
from the GitHub repository managed by The New York Times (https://github.com/nytimes/
covid-19-data), which was accessed on 24 August 2020 and used to calculate the daily new
cases and new deaths data through the differencing transformation (the last date for the data
in this paper is 23 August 2020), that is, New Cases = Casest − Casest−1 and New Deaths =
Deathst − Deathst−1. We set all negative values in the new dataset to be zero for calculation.
Due to space limitation, we do not put the results of the descriptive statistics of data here, but
they are available upon request. Note that this dataset automatically updates every day with
new information.

The accuracy and reliability of a model can be tested by comparing the actual values
with the predicted values. Following Tuli et al., 2020, we use performance metrics—MSE
and MAPE (lower values indicate better fit)—to determine the residuals between predictions
and actual values in order to compare the out-of-sample prediction validity of the proposed

https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
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nonlinear modal regression and mean and median (and robust) regressions for the last 20 days of
the samples (they are treated as validation data, while the other data are used for training)

MSE = 1
20

∑

t
(log(Yt) − log(Ŷ t))2, (14)

MAPE = 1
20

∑

t

| log(Yt) − log(Ŷ t)|
log(Yt)

× 100, t ∈ last 20 days. (15)

The model comparison results are summarized in Table 2 (and Table 7 in Online Appendix
B), with the best performing model highlighted in bold font. As we can see from Table 2 (and
Table 7 in Online Appendix B), the proposed nonlinear modal regression succeeds in predict-
ing the new cases/deaths for 20 days ahead with better accuracy compared to the nonlinear
mean and median (and robust) regressions for most states/regions. It has more precise pre-
dictions with lower MSEs and MAPEs for most states with the observed data. Overall, we can
see that the proposed nonlinear modal regression model outperforms other competing models
in terms of prediction accuracy and can give reliable guidance on the trend of the epidemic
in the future. There is no special reason for comparing model predictions in terms of MSE
and MAPE over 20 days, which was chosen arbitrarily. To show the results robust to choos-
ing alternative time horizons, we also compared the prediction performance for the last 30
days of the samples, which does not reveal the large difference in prediction or comparison
results.

We then apply the proposed nonlinear modal regression to predict the number of new cases
and new deaths for up to 130 days (24 August 2020–31 December 2020) to show how the epi-
demic has evolved over time, which has some differences from many other papers focusing on
the long-term trajectory of COVID-19 using mean regression. To conduct the prediction for the
latest 130 days, we use the same bandwidth obtained from the training data (when comparing
the model prediction performance) to reestimate nonlinear modal regression with a full sam-
ple for each state/region (training data+validation data), and then apply the suggested recursive
prediction procedure with the new parameter estimates. We remark that there exist large vari-
ations in the parameter fittings, which indicates that long-term predictions are complicated.
However, the long-term prediction in comparison with the short-term prediction can provide
the pattern of the epidemic. Also, there is an underlying assumption for the prediction results,
which is that the data used are reliable and the outbreak will continue to follow the past pat-
tern in the future (Petropoulos & Makridakis, 2020). We acknowledge that this assumption is
actually the key issue for predicting the transmission of COVID-19, and it is necessary to update
predictions by the suggested model when new information/data is available. However, one advan-
tage of modal regression is that it can cope with some forms of measurement errors. Thus,
applying modal regression to predict COVID-19 still has an advantage compared to traditional
regressions.

To clearly show the dynamic of the COVID-19 spread in the US, we divide the predic-
tion period into four stages, which are 24 August–30 September, 1 October–31 October, 1
November–31 November and 1 December–31 December. The prediction results are presented in
Table 3, from which we can observe that the COVID-19 outbreak in the US is dynamic both in
time and across different states/regions. Some states/regions are showing a clear decreasing trend
in the number of new cases and new deaths (it is tempting to speculate that this result is due to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

F I G U R E 5 Visualization of the Total Number of Modal Predicted New Cases and New Deaths across the
US. (a) Predicted new cases 24 August–30 September; (b) Predicted new deaths 24 August–30 September; (c)
Predicted new cases 1 October–31 October; (d) Predicted new deaths 1 October–31 October; (e) Predicted new
cases 1 November–30 November; (f) Predicted new deaths 1 November–30 November; (g) Predicted new cases 1
December–31 December; (h) Predicted new deaths 1 December–31 December [Colour figure can be viewed at
wileyonlinelibrary.com]

the rapid imposition of alert levels and ever tighter lockdowns for these states. The detailed anal-
ysis of the effect of lockdowns and social distancing policies on the transmission of COVID-19 is
beyond the scope of this paper; see the related discussions in Section 4), for example, Connecticut,
Illinois, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylva-
nia, Rhode Island, among others, while some other states/regions are still in the first wave of the
COVID-19 outbreak with an increase in the number of new cases and new deaths, for example,

http://wileyonlinelibrary.com
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

F I G U R E 6 Visualization of the Total Number of Modal Predicted New cases and New Deaths across the
US after Removing CA, TX and FL. (a) Predicted new cases 24 August–30 September; (b) Predicted new deaths 24
August–30 September; (c) Predicted new cases 1 October–31 October; (d) Predicted new deaths 1 October–31
October; (e) Predicted new cases 1 November–30 November; (f) Predicted new deaths 1 November–30
November; (g) Predicted new cases 1 December–31 December; (h) Predicted new deaths 1 December–31
December [Colour figure can be viewed at wileyonlinelibrary.com]

Alabama, Arkansas, California, Florida, Georgia, Mississippi, Montana, North Carolina, North
Dakota, Oregon, Texas, Utah, Washington and so on. Furthermore, as Figure 5 shows (the darker
the colour, the more severe the infection), it is clear that there are systematic differences in spread-
ing distributions among states/regions (heterogeneous across the states/regions). In particular,
for the next 130 days, California, Florida, Texas and Georgia are the most severe states in terms of
the number of predicted new cases and new deaths, which indicates the urgency for these states
to take actions to keep social distancing and necessary precautions.

http://wileyonlinelibrary.com


1450 ULLAH et al.

It should be noted that the number of predicted new cases and new deaths across different
states/regions has orders of magnitude differences, resulting in the almost uniform colour in
Figure 5 for other states/regions having small numbers. To better reveal the situations of other
states/regions from visualization, we remove the first three states with the largest numbers of
predicted new cases and new deaths from Figure 5. The new visualizing results are presented in
Figure 6 which shows a stark heterogeneity across states/regions. We find that for most western
and eastern states, the total numbers of new cases and new deaths are incredibly large for the next
130 days based on the prediction results, and these states are in fact experiencing significantly
more serious COVID-19 burdens compared to the Midwest (under the stress of economic stag-
nation, many states/regions have reopened their economies. However, based on the analysis of
modal prediction results, it is clear that the outbreak has not been sufficiently controlled in many
states up to the date of this paper).

Last but not the least, Online Appendix B contains the nonlinear modal prediction figures
(Figure 9) for each state/region (including the District of Columbia and Puerto Rico) in terms of
new cases and new deaths, which further demonstrates that the trend of daily confirmed new
cases and new deaths is being nicely captured (except for some noisy fluctuations) and the signifi-
cant new trend is detected by the proposed nonlinear modal regression. Based on these figures, we
can also observe that for some states/regions, they have already arrived at a saturation stage and
show a decreasing trend for the number of new cases and new deaths, for example, Colorado, Con-
necticut, Delaware, Maine, Massachusetts, New Hampshire and Pennsylvania, while for some
other states/regions, such as Alabama, Arkansas, California, Florida, Idaho, Nebraska, Tennessee
and Texas, they will still be at the initial phase of the epidemics and show an increase of the trend
for the number of new cases and new deaths if the control and intervention policy is not imple-
mented more effectively. We also list the prediction results for the nonlinear mean regression,
median regression, and robust regression (including performance metrics) in Online Appendix
B (Figures 10–15 and Tables 5–8), although we have shown that nonlinear modal regression is of
higher prediction quality than nonlinear mean and median regressions. The results indicate that
there are systemic prediction differences among these models.

4 CONCLUDING REMARKS

The outbreak of COVID-19 has been unprecedentedly affecting the health and safety of people all
over the world, which implies the urgency and importance of accurate prediction. In this paper,
we propose a new model, namely parametric nonlinear modal regression for dependent samples,
which is particularly useful for handling noisy, skewed, or truncated data (such as the COVID-19
data) and can complement the existing mean or quantile regression. The new model uses the
conditional mode instead of mean or quantile to model the nonlinear relationship among vari-
ables. We employ a kernel-based objective function to simplify the computation and numerically
estimate the proposed model by virtue of a modified MEM algorithm. The asymptotic theorem
and the optimal bandwidth are investigated under mild conditions. We then use the proposed
nonlinear modal regression to predict the COVID-19 outbreak in the US at the state/region level.
We compare the predictions for this novel model with the predictions for nonlinear mean and
median (and robust) regressions, and show that the proposed modal regression model can quan-
tify the observed dynamics and provide more precise predictions. Although the outbreak spreads
of COVID-19 are largely affected by the policies and social responsibilities of each state/region, we
hope that the newly proposed model can be applied to analyse and classify the characteristics of
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COVID-19 in the US to provide more timely information to help policymakers to implement fast
actions to curb the spread of the infection, avoid overburdening the health system, and understand
the development of COVID-19 from some points.

This work paves the way for a number of exciting research directions in the analysis of modal
regression and COVID-19. In this paper, we focus on parametric nonlinear modal regression. As
pointed out by a referee, the results could be extended to the nonparametric modal regression for
dependent samples under 𝛼-mixing without imposing any kind of structural assumptions on the
data generating process. Specifically, we can employ a kernel-based objective function with the
local linear approximation. For our case, as we have both discrete (time variable) and continuous
regressors in the model, we need to smooth the discrete variable using discrete kernels such that
Λ𝜆(Zi, z0) =

∏q
j=1𝜆

I{Zi,j≠z0,j}
j , where I(.) denotes the usual indicator function, Zi is a q-dimensional

discrete random vector, and 𝜆 = (𝜆1, … , 𝜆q)T , 𝜆j ∈ [0, 1] is the bandwidth for the jth discrete
covariate Zi,j. We can then make the bandwidths in the discrete kernel be a vector of zeros, and
the model will be reduced to the local linear modal regression, which splits the full sample into
several subsamples according to different values of the discrete variables. Nevertheless, such a
naive sample-splitting method may increase the estimation variance (Li & Racine, 2004). How to
derive asymptotic properties and provide asymptotic analysis on the selection of optimal band-
widths for the nonparametric modal regression with mixed discrete and continuous data would
be an interesting but challenging future research topic.

Furthermore, in the current paper, we focus on the new cases and new deaths in the US.
However, the proposed model could be easily generalized to other countries, say country-level
data, and other quantities of interest, for example, cumulative recorded cases and deaths, or the
number of people needing hospitalization in an intensive care unit (ICU) each day for a set of
regions. Different from the existing research about COVID-19 data, we can also use the proposed
model to predict the unconditionally most likely (mode) value of new cases/deaths, which is
one of the most important variables/factors when fighting the COVID-19 pandemic. When new
cases/deaths reach their mode value, the healthcare system may have the biggest pressure and the
largest chance of being overwhelmed, which could in turn affect the death rate. The importance
of the mode value can also be seen by noticing that even if the total number of cases is fixed, if we
could spread the cases over time and reduce the mode value, the healthcare system can function
much better and thus reduce the fatality rate. In addition, it is important to note that the model
for COVID-19 presented in this paper has certain limitations (we have to take such predictions
reticently, as the prediction error will accumulate over time), as it does not account for any mit-
igation measures and policy changes. To understand the factors that contribute to the spread of
COVID-19, in the future, we could include many other covariates into the model, that is, the fac-
tors that might affect new cases/deaths such as social distancing measures as well as the timing
of their implementation, the demographics and health condition of the population, the state of
the epidemic, the capacity of the healthcare system, the population density and so on. We can
then model how the number of cases/deaths depends on the above collected covariates to find
out whether there are some clusters of countries having a similar relationship between depen-
dent variable and covariates. Also, it will be interesting to study the spatiotemporal pattern in the
spread of COVID-19 by incorporating the spatial correlation into the modal regression.
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