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Abstract

Background and aims: Higher truncated-to-native proteoform ratios of apolipoproteins (apo) 

C-I (C-I’/C-I) and C-II (C-II’/C-II) are associated with less atherogenic lipid profiles. We 

examined prospective relationships of C-I’/C-II and C-II’/C-II with coronary heart disease (CHD) 

and coronary artery calcium (CAC).

Methods: ApoC-I and apoC-II proteoforms were measured by mass spectrometry immunoassay 

in 5790 MESA baseline plasma samples. CHD events (myocardial infarction, resuscitated cardiac 
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arrest, fatal CHD, n = 434) were evaluated for up to 17 years. CAC was measured 1–4 times over 

10 years for incident CAC (if baseline CAC = 0), and changes (follow-up adjusted for baseline) in 

CAC score and density (if baseline CAC>0).

Results: C-II’/C-II was inversely associated with CHD (n = 434 events) after adjusting for 

non-lipid cardiovascular risk factors (Hazard ratio: 0.89 [95% CI: 0.81–0.98] per SD), however, 

the association was attenuated after further adjustment for HDL levels (0.93 [0.83–1.03]). There 

was no association between C-I’/C-I and CHD (0.98 [0.88–1.08]). C-II’/C-II was positively 

associated with changes in CAC score (3.4% [95%CI: 0.6, 6.3]) and density (6.3% [0.3, 4.2]), 

while C-I’/C-I was inversely associated with incident CAC (Risk ratio: 0.89 [95% CI: 0.81, 0.98]) 

in fully adjusted models that included plasma lipids. Total apoC-I and apoC-II concentrations were 

not associated with CHD, incident CAC or change in CAC score.

Conclusions: Increased apoC-II truncation was associated with reduced CHD, possibly 

explained by differences in lipid metabolism. Increased apoC-I and apoC-II truncations were also 

associated with less CAC progression and/or development of denser coronary plaques.

Keywords

Apolipoproteins; Lipids; Posttranslational proteoforms; Coronary artery calcium; Coronary heart 
disease

1. Introduction

Increased risk of atherosclerosis is linked to alterations in plasma lipid levels, including 

increased plasma triglycerides, and higher LDL and lower HDL cholesterol levels [1]. 

The changes in lipid levels are in turn related to perturbations in multiple apolipoproteins 

(apo) that influence lipoprotein metabolism and vascular biology [2]. Among those, apoC-

I and apoC-II directly regulate triglyceride clearance and HDL metabolism [3–7]. In 

preclinical studies, higher total apoC-I and apoC-II were associated with the development 

of atherosclerosis and vulnerable atherosclerotic plaque [8–11]. In humans, several cross-

sectional studies described positive associations between apoC-I content on triglyceride-rich 

lipoproteins and carotid atherosclerosis [12–14].

Both apoC-I and C-II appear in the circulation predominantly as full-length native proteins 

along with minor truncated proteoforms [15,16]. In our recent analysis from the Multi-

Ethnic Study of Atherosclerosis (MESA), we found a strong relationship of apoC-I and 

apoC-II proteoform composition with plasma lipids that were independent of total apoC-I 

and apoC-II concentrations. Greater amounts of truncated apoC-I (C-I′) and apoC-II (C-II’) 

were associated with lower triglycerides levels and higher HDL levels while higher total 

apoC-I and apoC-II concentrations were associated with higher triglycerides levels [17].

To test whether distribution of apoC-I and apoC-II proteoforms among individuals may have 

implications for vascular disease, we examined the association of proteoform composition 

with CHD risk. We also explored whether apoC-I and apoC-II proteoforms are associated 

with progression of subclinical coronary atherosclerosis measured by coronary artery 

calcium (CAC). CAC score, reflecting both volume and density of calcified plaque, has been 

closely associated with atherosclerotic burden and future CHD events [18–20]. Increases 
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in CAC scores over time are directly related to future clinical CHD [21]. However, higher 

levels of plaque density -possibly indicating more mature and stable plaques- have been 

linked with reduced cardiovascular risk, especially in those with lower plaque volume 

[22,23]. Thus, analyses of calcific atherosclerosis must consider effects both on plaque 

volume and plaque density.

2. Patients and methods

2.1. Study population

Data used in this study were obtained from the Multi-Ethnic Study of Atherosclerosis 

(MESA) (https://www.mesa-nhlbi.org) in accordance with their published data access 

policies, including an approved written proposal. The MESA is a multicenter longitudinal 

study examining factors associated with subclinical CVD and the progression from 

subclinical to clinical CVD [24]. In total, MESA enrolled 6814 participants, all free of 

CVD at recruitment. Institutional review boards at each MESA study site approved the study 

protocol and informed consent was obtained from all study participants. The present study 

included 5790 participants with available plasma samples from Exam 1 (characteristics in 

Supplement Table 1).

2.2. Clinical and demographic characteristics

Information about participant demographics, medical history, and medication usage was 

obtained by standardized questionnaires. Resting blood pressure was measured three times, 

with the average of the last two measurements recorded in the database. Blood samples 

were obtained after a 12-h fast. Diabetes was defined as fasting glucose >6.99 mmol/l or 

use of hypoglycemic medications. Blood samples were obtained after a 12-h fast. Blood 

biomarkers were measured at the MESA central laboratory at the University of Minnesota.

2.3. CHD follow-up

The primary outcome for this study was “hard” coronary heart disease (CHD), which 

included definite myocardial infarction, resuscitated cardiac arrest and fatal CHD. The 

present analysis includes events reported through end of 2017, i.e., for up to 17 years of 

follow-up. Details on surveillance of cardiovascular events have been previously reported 

[25]. Additional details on MESA follow-up methods and event adjudication are available at 

http://www.mesa-nhlbi.org.

2.4. CAC measurement

All participants had a CT scan of the chest for CAC during Exam 1 (2000–2002). 

Approximately half of the participants were then randomly selected to undergo a CT scan 

during Exam 2 (2002–2004), and the other half during Exam 3 (2004–2006). Exam 4 scans 

(2005–2007) were preferentially taken in participants without Exam 3 scans while Exam 5 

(2010–2012) scans were preferentially performed in participants with scans from Exam 3 

and/or Exam 4 [20]. CAC was measured by electron-beam (3 sites), or multi-detector (3 

sites) CT [25]. The methodology for acquisition and interpretation of the scans has been 

published [26]. Briefly, calcified lesions of at least 4 adjacent voxels above a threshold 

of 130 Hounsfield units (HU) were identified; below this, scans were assigned a zero 
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value. Each discrete plaque area was then multiplied according to the Agatston’s method 

[27], depending on the highest voxel density value anywhere in the plaque, i.e., 130–199 

HU by 1, 200–299 HU by 2, 300–399 by 3, and ≥400 HU by 4. The CAC (Agatston) 

score was calculated as the sum of the within-plane scores across all calcified lesions. As 

noted previously [22], CAC density data was back-calculated from CAC scores using the 

appropriate slice thickness and plaque volume information and reflect the average CAC 

density for all CT slices from that participant. Scans obtained subsequent to coronary 

revascularization procedures that were performed after Exam 1 were excluded from this 

analysis.

2.5. Measurement of apoC-I and apoC-II proteoforms and total plasma concentrations

ApoC-I and apoC-II proteoform composition was measured in Exam 1 plasma samples from 

5790 participants by mass-spectrometry immunoassay (MSIA) as described previously [17]. 

Relative abundance of apoC-I and apoC-II proteoforms was obtained by division of their 

peak area by the sum of peak areas of both truncated and native proteoform. Samples were 

run in batches of 96; each batch contained 90 analytical samples and 6 quality control 

samples (two different pooled plasma samples each aliquoted in triplicate). Mean intra-assay 

coefficients of variation were 4.6% and 1.5% for truncated and native apoC-I, and 7.3% 

and 0.5% for truncated and native apoC-II, respectively. Mean between-assay coefficients 

of variation were 5.5% and 1.8% for truncated and native apoC-I, and 9.1% and 0.6% for 

truncated and native apoC-II, respectively.

Total apoC-I and apoC-II concentrations were determined by sandwich ELISAs in a subset 

of 3851 participants who had paired Exam 1 and Exam 5 plasma samples as part of an 

ancillary study on cognitive function (characteristics in Supplement Table 1). Replicates 

with a coefficient of variation >15% were repeated. Mean intra-assay coefficients of 

variation were 6% for apoC-I, and 4% for apoC-II. Mean between-assay coefficients of 

variation were 7% for both apoC-I and apoC-II.

Both MSIA and ELISA used identical apoC-I and apoC-II detection antibodies (Academy 

Biomedical Co, Houston, TX) and are described in detail in the Supplemental Methods.

2.6. Statistical analyses

Statistical analyses were conducted using SAS v9.4 (SAS Institute, Cary, NC). The data 

are presented as mean ± standard deviation for normally distributed continuous variables, 

median (interquartile range) for non-normally distributed continuous variables, and numbers 

(percentages) for categorical variables. ApoC-I and apoC-II proteoform composition was 

expressed as truncated-to-native proteoform ratios (C-I’/C-I and C-II’/C-II, respectively). 

All apoC-I and apoC-II measures were natural log transformed to approximate normal 

distribution and scaled to a mean equal to zero and an SD equal to one to allow direct 

comparison of effects.

For MESA, and the current analysis, Exam 1 data was considered baseline. Baseline 

characteristics between the groups who did and did not develop CHD were compared using 

Student’s t-test for continuous variables and by χ2 or Fisher’s tests for categorical variables.
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The associations between baseline apoC-I and apoC-II continuous measures and incident 

CHD were tested by Cox proportional hazard regression models. Proportional hazard 

assumptions were assessed by inspecting Kaplan-Meier curves (above vs. below the 

median) and formally tested by cumulative sums of Martingale residuals with p-values 

of Kolmogorov-type supremum test. Proportional hazard models were adjusted for age, 

sex, and race/ethnicity (Model 1), and then adjusted for baseline smoking status, BMI, 

diabetes, hypertension medications, systolic blood pressure, eGFR and use of statins (Model 

2), and then for baseline plasma triglycerides, and non-HDL and HDL cholesterol (Model 

3). Associations that were attenuated in Model 3 (after additional adjustment for multiple 

lipid measures) were additionally tested with separate inclusion of triglycerides, and HDL 

and non-HDL cholesterol in the model to ascertain which of these lipids accounted for 

this attenuation. In additional analyses, we explored the interactions of apoCs measures 

with age (by median), sex, race/ethnicity, and prevalent nonzero CAC. In the subset with 

available total apoC-I and apoC-II concentrations, we also tested the relationship of CHD 

with apoC-I and apoC-II proteoform concentrations combined in the same model for 

each apolipoprotein. To account for potential selection bias of requiring availability of a 

matching Exam 5 sample, all analyses assessing total apoC-I and apoC-II measures were 

weighed by inverse probability of attrition by Exam 5 calculated from the propensity scores 

derived from multivariate logistic regression models that included study site, age, race, 

sex, urine albumin-creatinine ratio, tobacco smoking status, presence of diabetes, primary 

language, education level and income category. Missing covariate values were imputed by 

multiple imputation using a chained equation approach with a set of 20 plausible substitutes 

consistent with the observed values [28]. Balance of propensity scores in “exposed” versus 
“unexposed” participants was inspected using histograms of propensity scores stratified by 

quartiles of baseline apoC-I and apoC-II concentrations (Supplement Fig. 1A and B).

Because a large proportion of participants had CAC values of zero (about half), the 

association between apoC measures and follow-up CAC progression was tested in two 

parts depending on baseline CAC, as previously suggested in MESA [29]. In those with 

zero CAC, the association between apoC-I and apoC-II measures and incident CAC was 

tested by log-binomial regression models with robust standard errors. In those with nonzero 

baseline CAC, the changes in continuous CAC score and CAC density, modeled as their 

follow-up values adjusted for baseline value, were analyzed by mixed linear regression for 

repeated measures. CAC density was additionally adjusted for CAC volume [22]. CAC 

scores were log-2 transformed to approximate normal distribution. All regression models 

were initially adjusted for age, sex, race/ethnicity, and follow-up time (Model 1), then 

adjusted for baseline body-mass index (BMI), diabetes, use of antihypertensive medications, 

systolic blood pressure, tobacco smoking and use of statins (Model 2), and additionally 

adjusted for baseline plasma triglycerides, and HDL and non-HDL cholesterol levels (Model 

3). Covariates in Model 2 were chosen based on their known prior associations with 

CAC and retained (those noted above) if they remained associated with CAC progression. 

Covariates subsequently excluded were eGFR, physical activity level, and sedentary lifestyle 

estimates. All models for CAC outcomes were weighted by inverse probability scores for 

study attrition derived for each follow-up visit from multivariate logistic regression models 

as described above. Histograms of propensity scores for each follow-up visit by quartiles of 
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baseline C-I’/C-I and C-II/C-II were plotted to confirm the balance of probability weights 

between exposed and unexposed individuals (Supplement Fig. 1C–J). Beta-estimates for 

CAC score and CAC density were also present as percent difference to ease interpretation of 

results. To account for a recently observed interaction of CAC density with CAC volume in 

predicting CHD risk in MESA [23], the association between apoC-I and apoC-II measures 

and changes in CAC score and CAC density was stratified by baseline CAC volume of 130 

mm3.

3. Results

3.1. Baseline characteristics of study participants

Measurement of apoC-I and apoC-II proteoforms via MSIA was completed for 5790 MESA 

participants, including 5766 participants with available data for CHD assessment (and 

3847 with total apoC-I and apoC-II concentrations) (Fig. 1). The baseline characteristics 

of all participants with baseline apoC-I and apoC-II proteoform measures, and of the 

subgroup with baseline total apoC-I and apoC-II concentration measurements, are shown 

in Supplement Table 1. The average age was lower and some of the cardiovascular risk 

factors were more favorable in the subset with total apoC-I and apoC-II concentrations.

3.2. Association of apoC-I and apoC-II proteoforms with CHD risk

A total of 434 CHD events occurred over a median time to an event of 9 years, including 

217 events in those with measurements of total apoCs (median time to an event of 12 

years). Those who developed CHD were on average older, more likely men, and had higher 

blood pressure and use of antihypertensive medications, higher fasting glucose levels and 

prevalence of diabetes, higher use of statins, higher triglycerides and lower HDL cholesterol 

levels, worse kidney function and greater prevalence of nonzero CAC (Table 1).

Those with higher C-II’/C-II (above the median) had reduced time to a CHD event (Fig. 2A, 

right panel). This inverse association between C-II’/C-I and CHD persisted after adjustment 

for clinical and demographic covariates (Fig. 2B, Hazard ratio: 0.89 [95% CI: 0.81–0.98] 

per 1 SD, Model 2), but was attenuated after adjustment for baseline plasma lipids (0.91 

[0.81–1.02], Model 3). After examining each lipid measure separately, the association of 

C-II’/C-II with CHD was not independent of baseline HDL cholesterol (0.93 [0.83–1.03]). 

In subgroup analyses, the results did not appear to differ (p-values for interaction >0.05) by 

sex, age, or prevalent CAC, however, the inverse association between C-II’/C-II was present 

in White, Black and Hispanic persons, but not in Chinese Americans (p for interaction 0.02) 

(Fig. 2C).

No associations were noted between the C-I’/C-I ratio or total apoC-I and apoC-II 

concentrations and CHD events (Fig. 2B). As there was a violation of the proportional 

hazard assumption over 17 years for the CI’/CI (Fig. 2A, left panel), the association between 

C-I’/C-I and CHD was also reassessed for the initial 10 years of follow-up. Again, the 

10-year CHD risk was not related to baseline C-I’/C-I (Hazard ratio: 1.07 [95% CI: 0.94–

1.21], Model 1, n = 247 events).
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In analyses of apoC-II proteoform concentrations, CHD risk was inversely associated with 

truncated apoC-II in Models 1 and 2, and positively associated with native apoC-II in 

Models 1 and 2. CHD risk was inversely associated with truncated apoC-I and positively 

associated with native apoC-I concentration in Model 1 only (Supplement Figure 2).

3.3. Association of apoC-I and apoC-II proteoforms with CAC outcomes

A total of 5063 participants had at least one follow-up CAC measurement with a median 

follow-up time of 8.4 years. In those with CAC score of zero at baseline (n = 2580), incident 

CAC (n = 902 events) was inversely associated with C-I’/C-I in Model 1 (Risk ratio 0.87 

[95% CI: 0.80, 0.95] per 1 SD) and Model 3 (0.91 [0.82, 1.00]) (Table 2). In those with 

non-zero CAC at baseline, change in CAC score was inversely associated with C-I’/C-I in 

Model 1 only (−2.7% [−5.2, −0.2]) and positively associated with C-II’/C-II in all models 

(3.4% [0.6, 6.3] in Model 3) (percent changes calculated from the β-estimates for log2 

CAC scores as indicated in Table 2). Change in CAC density was positively associated with 

C-I’/C-I in Model 1 only (a difference of 8.4% [2.1, 14.7] on the density scale from 1 to 

4) and with C-II’/C-II in all models (6.3% [0.3, 12.6] in Model 3) (Table 2). The positive 

associations between C-II’/C-II and changes in CAC score and CAC density were present 

in those with CAC volume ≤130 mm3 (n = 1449; 10.7% [4.1, 17.9] and 11.1% [3.6, 18.6], 

respectively, Model 3), but not in those with CAC volume >130 mm3.

Total apoC-I was not associated with incident CAC or change in CAC score; however, it was 

positively associated with change in CAC density in all models (6.3% [0.3, 12.6], Model 3) 

(Table 2). Total apoC-II was positively associated with change in CAC density in Model 3 

only (8.4% [1.5, 15]) (Table 2).

4. Discussion

In the present study, apoC-I and apoC-II truncations showed prospective relationships with 

CHD risk and several measures of coronary calcific atherosclerosis (Fig. 3). Increased apoC-

II truncation was associated with reduced CHD risk; however, the association was attenuated 

after adjustment for plasma HDL cholesterol. It was also associated with greater increases 

in CAC score, but also in CAC density in those with prevalent CAC. While higher apoC-I 

truncation was not associated with development of CHD, it was associated with reduced 

risk of incident CAC. Importantly, total concentrations of apoC-I and apoC-II showed no 

consistent association with CHD risk or changes in CAC measures.

Understanding how these truncations may differ from native proteins in their effects on 

cardiovascular risk is limited in part by a paucity of relevant clinical data on apoC-I 

and apoC-II. In vitro, total apoC-I and apoC-II were shown to induce proinflammatory 

and proapoptotic responses in vascular smooth muscle cells and macrophages [8, 9]. In 

murine models of atherosclerosis, overexpression of apoC-I facilitated development of 

atherosclerosis and atherosclerotic plaque inflammation [10,11]. In humans, higher total 

apoC-I concentrations on VLDL particles were present in those with greater carotid intima-

media thickness [12–14]. The lack of association between total apoC-I and apoC-II and 

future coronary events or changes in CAC score upon adjustment for cardiovascular risk 

factors in the current study suggests the few preclinical studies may have been misleading. 
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The cross-sectional studies in humans may have reflected, and been confounded by, high-

risk phenotypes already present in those with advanced atherosclerosis.

In contrast, ratios of truncated-to-native proteoforms for both apolipoproteins showed 

relationships with CHD risk and/or different measures of CAC progression. Higher C-II’/

C-II was associated with lower CHD risk in Models 1 and 2. Weakening of this association 

in Model 3, particularly after adjusting for HDL cholesterol levels, suggests that HDL 

metabolism may be a partial link between increased apoC-II truncation and cardiovascular 

risk. The latter notion is further supported by our recent report of strong cross-sectional 

and longitudinal inverse associations between C-II’/C-II and plasma HDL cholesterol 

levels in this same cohort [17]. On the other hand, higher C-II’/C-II was also associated 

with greater increases in CAC score in those with prevalent CAC at baseline. These 

seemingly contradictory findings, i.e., an increase in CAC score in tandem with reduction in 

cardiovascular risk, are similar to those observed with statins therapy [30]. Importantly, as 

with statin therapy [31], higher C-II’/C-II was also associated with increases in CAC density. 

This pattern of plaque change is consistent with generation of a more diffusely calcified 

and less vulnerable plaque [32]. Previous analyses in MESA demonstrated that increases 

in plaque density were associated with reduced cardiovascular risk [22]. Recent analysis in 

MESA showed that the inverse association between CAC density and CHD risk was present 

only in participants with low plaque volume only [23]. In agreement with these findings, 

the positive association between C-II’/C-II and changes in CAC density in the present study 

was confined to those with low CAC volume. Importantly, the positive association between 

C-II’/C-II and changes in CAC score was also limited to those with low baseline plaque 

volume, further supporting the density component of CAC score as primary driver of this 

relationship.

In our previous analysis in this cohort, higher C-I’/C-I was associated with a less 

atherogenic lipid profile, including lower triglycerides and higher HDL cholesterol [17]. 

In the present study, however, the inverse relationship between C-I’/C-I and incident CAC 

persisted after adjustment for plasma lipids. It is plausible that these traditional lipid 

measures do not fully reflect the complexity of apoC-I proteoforms action on proatherogenic 

lipoproteins. Besides activation of lipoprotein lipase (LPL), apoC-I inhibits hepatic 

lipase and cholesteryl ester transferase protein (CETP), and activates lecithin-cholesterol 

acyl transferase (LCAT) [33–35]. These pathways may contribute to atherosclerosis via 

remodeling of HDL and LDL particles in the absence of apparent changes in their overall 

cholesterol content [36,37]. Nonetheless, the inverse association between C-I’/C-I and 

incident CAC was not corroborated by a reduction in clinical coronary events. Consistent 

with this, in those with prevalent CAC at baseline, i.e., those with greater CHD risk 

[21], C-I’/C-I was not associated with changes in CAC measures upon adjustment for 

clinical covariates. Thus, our data suggest that apoC-I truncation may be more important 

in the initial development of atherosclerosis but less prominent in progression of existing 

atherosclerotic plaque and development of cardiovascular events.

A major strength of the study is the unique ability to concurrently assess the relationships 

of apoC-I and apoC-II total concentrations and relative proteoform composition measures 

with repeated CT scans of coronary arteries over 10 years of follow-up and with clinical 
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cardiovascular events for up to 17 years. This approach allowed us to demonstrate their 

distinct associations with changes in CHD risk and coronary atherosclerosis after adjustment 

for relevant covariates. The ability to calculate plasma concentrations of individual 

proteoforms helped to demonstrate more favorable associations of truncated proteoforms 

(versus native) with both clinical and subclinical coronary atherosclerosis.

A major limitation was the observational nature of the study, which limits conclusions 

regarding underlying causality. The prerequisite of having a paired follow-up sample 

available approximately 10-years after baseline for the subset with total apoC-I and apoC-II 

concentrations measurement might have favored selection of relatively healthier sub-cohort 

with less advanced atherosclerosis. Nevertheless, even in this “healthier” subset, the patterns 

of the associations of individual apoC proteoforms concentrations with CHD risk and 

CAC measures was very similar to that shown in the complete cohort. As pointed out 

previously [22], the use of an arbitrary 4-point scale curtailed CAC densities greater than 

400 Hounsfield units. On the other hand, the presence of less dense plaques might have been 

underestimated by recording only the maximum density for each scan per study protocol. 

These potential shortcomings might have increased the variation and therefore weakened 

the relationships between apoC-I and apoC-II measures and CAC density. Although the 

findings are relatively consistent and biologically plausible, we acknowledge a chance of 

false positive results, i.e., type I error, from use of multiple exposure variables. Thus, 

confirmation in another cohort may be needed to draw more definite conclusions.

The current results suggest that posttranslational truncations of apoC-I and apoC-II provide 

additional information beyond that indicated by total apoC-I and apoC-II concentrations 

in predicting coronary events and calcified coronary atherosclerotic progression. Of 

particular importance, increased apoC-II truncation, possibly through its favorable effect 

on HDL cholesterol levels, was associated with reduced CHD risk and development of 

more dense coronary plaque. Greater understanding of the factors regulating apoC-I and 

apoC-II truncations and mechanisms underlying their associations with vascular disease 

may facilitate development of new therapeutic strategies for prevention and treatment of 

atherosclerosis and reducing cardiovascular risk.
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Fig. 1. 
Study flow.

All enrolled participants had a CT scan performed for CAC during Exam 1 (2000–2002), 

with about half of these participants randomly selected for CT scan during Exam 2 (2002–

2004), and the other half during Exam 3 (2004–2006). Exam 4 scans (2005–2007) were 

preferentially taken in participants without Exam 3 scans while Exam 5 (2010–2012) scans 

were preferentially performed in participants with scans from Exam 3 and/or Exam 4. CT 

scans with valid data and performed prior to coronary revascularization procedures were 

included in the present analyses.
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Fig. 2. 
Association between baseline truncated-to-native proteoform ratios and total apoC-I and 

apoC-II concentrations with incident coronary heart disease (CHD). (A) Kaplan-Meier 

curves for high and low strata (defined by median) of apoC-I and apoC-II proteoform ratios. 

(B) Cox proportional hazard regression models adjusted for age, sex, and race/ethnicity 

(Model 1), then adjusted for baseline BMI, diabetes, systolic BP, antihypertensives, tobacco 

smoking, eGFR and statin use (Model 2) and further adjusted for baseline triglycerides and 

HDL cholesterol (Model 3). (C) Relationship between C-II’/C-II and CHD risk stratified 
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by age, race/ethnicity, sex, and baseline CAC prevalence (unadjusted Hazard ratios). The 

significant supremum test indicated violation of proportional hazard assumptions.
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Fig. 3. 
Graphical abstract.
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