
UC Davis
UC Davis Previously Published Works

Title
Markov decision process (MDP) framework for software power
optimization using call profiles on mobile phones

Permalink
https://escholarship.org/uc/item/6c07v4th

Journal
Design Automation for Embedded Systems: An International Journal,
14(2)

ISSN
1572-8080

Authors
Jung, Eric
Maker, Frank
Cheung, Tang Lung
et al.

Publication Date
2010-06-01

DOI
10.1007/s10617-010-9054-2

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6c07v4th
https://escholarship.org/uc/item/6c07v4th#author
https://escholarship.org
http://www.cdlib.org/

Des Autom Embed Syst (2010) 14: 131–159
DOI 10.1007/s10617-010-9054-2

Markov decision process (MDP) framework for software
power optimization using call profiles on mobile phones

Eric Jung · Frank Maker · Tang Lung Cheung ·
Xin Liu · Venkatesh Akella

Received: 22 January 2010 / Accepted: 12 May 2010 / Published online: 25 June 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We present an optimization framework for delay-tolerant data applications on
mobile phones based on the Markov decision process (MDP). This process maximizes an
application specific reward or utility metric, specified by the user, while still meeting a talk-
time constraint, under limited resources such as battery life. This approach is novel for two
reasons. First, it is user profile driven, which means that the user’s history is an input to help
predict and reserve resources for future talk-time. It is also dynamic: an application will
adapt its behavior to current phone conditions such as battery level or time before the next
recharge period. We propose efficient techniques to solve the optimization problem based on
dynamic programming and illustrate how it can be used to optimize realistic applications.
We also present a heuristic based on the MDP framework that performs well and is highly
scalable for multiple applications. This approach is demonstrated using two applications:
Email and Twitter synchronization with different priorities. We present experimental re-
sults based on Google’s Android platform running on an Android Develepor Phone 1 (HTC
Dream) mobile phone.

Keywords User-profile driven · Power optimization · Talk time extension ·
Markov-decision process · Android · Mobile phones

E. Jung · F. Maker (�) · V. Akella
Dept. of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA
e-mail: flmaker@ucdavis.edu

E. Jung
e-mail: eajung@ucdavis.edu

V. Akella
e-mail: akella@ucdavis.edu

T.L. Cheung · X. Liu
Dept. of Computer Science, University of California, Davis, CA 95616, USA

T.L. Cheung
e-mail: ctlcheung@ucdavis.edu

X. Liu
e-mail: liu@ucdavis.edu

mailto:flmaker@ucdavis.edu
mailto:eajung@ucdavis.edu
mailto:akella@ucdavis.edu
mailto:ctlcheung@ucdavis.edu
mailto:liu@ucdavis.edu

132 E. Jung et al.

1 Introduction

Mobile phones are ubiquitous embedded systems. With every generation their user base and
computing capability is growing. On September 28, 2009, Apple reported that over three
billion iPhone applications were downloaded in just over a year [5]. Recently, Google in-
troduced the Nexus One Android smartphone which has a 1 GHz processor and 512 MB
of RAM [11]; Blackberry, Nokia and others are responding in kind with their own appli-
cation stores and competitive hardware. The larger narrative of these developments recalls
the 80’s and 90’s when we saw the rise of the desktop personal computer, whereas now
we are entering the age of the smartphone which will last for the next decade and beyond.
Consequently, there is a growing demand for software design and optimization techniques
to support this burgeoning platform. Many of the most exciting applications for these de-
vices combine location and web services, and require regular communication with internet
services.

A mobile phone has key differences when compared to a desktop or a notebook computer.
First, a mobile phone is an embedded system as opposed to a general-purpose computer;
its primary function (to most users) is voice communication. Secondly, mobile phones are
more size and weight-constrained than PCs (including notebooks, netbooks, etc.) and conse-
quently have more limited computing resources than their larger PC counterparts. Therefore,
applications have to be more conscious of their resource consumption, especially with re-
spect to main memory usage and battery life. Also, mobile phone systems are event-driven
or reactive, which means the same application is often launched many times and may only
be active for a short duration (e.g. minutes instead of hours or days). Cellphones also typi-
cally have one user, unlike a PC which might be shared. Lastly, cell phones are often carried
at all times with the user, meaning that it is a far more personal device than even highly
mobile laptops. All these differences mean that there is a great opportunity to customize the
application to an individual’s usage patterns, which could be very diverse from one user to
another. Users may have different preferences of when they charge their cellphones, their
access and availability to Wi-Fi and cellular networks, and usage patterns (for example:
heavy call load, internet usage or SMS messages), etc. So, a one-size-fits-all approach to
application development, which is prevalent in the personal computer environment, is not
necessarily appropriate for developing embedded software on mobile phones.

We present a technique for developing and optimizing applications to address these con-
cerns. This approach is novel for two reasons. First, it is user profile driven, which means
that the user’s history is an input to help predict and reserve resources for future talk-time.
It is also dynamic: an application will adapt its behavior to current phone conditions such
as battery level or time before the next recharge period. Specifically, we propose a Markov
Decision Process (MDP) based framework for dynamic optimization of applications run-
ning on a mobile phone. This framework allows applications to incorporate user preference
and user profiles into decision making at run time. Decisions are then made about when
resources are used in order to optimize a developer-specified utility or reward function.

In this paper we focus on the energy consumption of an individual application, which in
turn affects the battery life and hence the overall talk-time of the mobile phone. We argue
that this energy consumption is critically important because (as noted above) the primary
purpose of a mobile phone is to provide voice communication. Therefore, it is important
that other applications such as email clients and browsers do not consume too much energy,
thereby undermining the primary function of the phone. This is a key difference between
optimizing energy for applications running on mobile phones versus more general software
energy optimization. This is explicitly taken into account by our problem formulation, where

Markov decision process (MDP) framework for software power 133

the desired talk time is used as an input parameter. We model this by setting a discharge time
T that we expect the battery to last, with the underlying assumption that the phone will be
recharged after that time. The optimizer attempts to maximize the utility (reward) of different
applications while assuring that the battery lasts until at least time T .

There is a subtle but important difference between the proposed work and the traditional
problem of optimizing energy on embedded systems, which maximizes battery life by reduc-
ing performance via dynamic voltage and frequency scaling to meet a real-time constraint.
For example in [14, 15, 19, 20] researchers present a cross-layer optimization methodol-
ogy for video decoding by dynamically scaling the voltage and frequency of the underlying
processor, such that the task of decoding a given video frame finishes just in time to meet
the time requirement. This time constraint can be predicted based on the time required to
process a frame derived on the previous history. Although there is a time constraint in both
cases, in our work it is a macro-level (i.e. global) constraint that applies to all tasks and appli-
cations that run between now and the user specified time T. Parameter T, which is assumed
to be given in this paper, is user-profile driven and can be estimated with good accuracy as
shown in [17].

In summary, the key contributions of this paper are:

1. A methodology for dynamic power optimization of applications to prolong the battery
life time of a mobile phone until a user specified time while maximizing a user defined
reward function.

2. A mathematical formulation of the problem via Markov decision processes (MDPs) and
techniques to reduce the size of the decision tables.

3. A formulation that optimizes over multiple applications, including a scalable heuristic.
4. An implementation of this technique in two applications based on the Android software

development platform.

The rest of the paper is organized as follows. In Sect. 2 we present the problem formu-
lation. First, we introduce the general concept of MDP, develop mathematical formulations
using two case studies, and present techniques to solve the mathematical formulations effi-
ciently. We also introduce the concept of an energy threshold, and present a heuristic based
on this threshold that performs similarly to the MDP framework, and is highly scalable for
multiple applications. In Sect. 3 we present the experimental setup employed and show how
key parameters are estimated directly from the mobile phone hardware running the An-
droid mobile OS. In Sect. 4 we present results from two case studies that use the proposed
optimization framework, as well as results using the heuristic policy. These sections also
describe how the user profile data is generated and used within the framework and how the
optimization procedure is performed in conjunction with other applications. In Sect. 5 we
review related work from the literature, and finally in Sect. 6 we summarize the key ideas of
the paper.

2 Problem formulation

We first present the general framework of MDP and then present two case studies. In both
cases, we consider voice communication as a high priority service and other delay-tolerant
data applications as low priority services. Other high priority applications, particularly user-
initiated ones such as browsing or gaming, could also be included relatively easily, but are
left out here for simplicity. Our objective is to minimize the disruption to voice communi-
cation due to energy depletion from other lower priority applications. When the battery has

134 E. Jung et al.

sufficient remaining energy with respect to the expected time until the next recharging cy-
cle, other applications can run with higher quality and/or less delay, which consumes more
battery. On the other hand, if the remaining battery is low with respect to expected charg-
ing time, the system should conserve energy for voice communication at the expense of
lower priority services. All the information related to charging time, voice communication
patterns, etc. are user profile driven.

We study two generic tasks that are useful to a wide variety of applications on mobile
phones: Email data synchronization and combined Twitter and Email synchronization. Data
synchronization ensures that local content (i.e. data) is consistent with content from a remote
server, such as email messages or Twitter feeds.

2.1 Markov decision process

The Markov decision process (MDP) is a widely used mathematical framework for modeling
decision-making in situations where the outcomes are partly random and partly controllable.
A MDP is a discrete time stochastic control process represented by a tuple of four objects
(S,A,Pa,Ra).

S is the state space, where s ∈ S is the current state, known to users. In this paper, the
state includes the current time, remaining battery energy, time since last synchronization,
etc.

A is the action space, where a ∈ A is the action taken based on the current state. For
example, in this paper, the action could be whether to synchronize email or remain idle.

Pa(s) is the probability that action a in state s at time t will lead to state s ′ at time t + 1.
Note that this transition is partly random (e.g. due to the random arrival of voice calls) and
partly under control since it is based on action a.

Ra is the immediate reward of action a. For example, if the action is to synchronize
email, we receive an immediate reward. If the action is to not synchronize email, then the
immediate reward is zero.

Our objective in this paper is to maximize the cumulative reward until the expected bat-
tery charging time. We note that these rewards are meant to achieve a desired performance
on the phone, and are therefore tunable to achieve desired behaviors. For example, if calls
are less valuable than data synchronization, the reward for calls can be lowered with respect
to data reward. We propose to use the MDP approach to better handle the dynamics of the
system because phone calls are stochastic.

In this formulation, an optimal action depends on the current state, the immediate reward
and the future reward. For instance, the decision of whether to synchronize email depends
on the current state (time, remaining battery and the time since last synchronization). The
decision to synchronize email will yield an immediate reward, at the cost of energy con-
sumption which may reduce a future reward. All these factors must be considered in this
decision problem.

The main challenge of MDP modeling is to manage its complexity in terms of the number
of states, the number of actions and the time horizon. This is important because ultimately
the optimal decision procedure, typically in the form of a precomputed decision table, will
itself be running on a resource-constrained device (i.e. a mobile phone). The MDP model
will not be feasible if it requires too much memory, computation time or energy.

There is typically a tradeoff between the number of states (i.e. granularity) and the com-
putational complexity. We show that in some cases the structure of the problem can be
exploited to represent the optimal policy with a reduced state space, e.g. using a threshold-
based format.

Markov decision process (MDP) framework for software power 135

In our case, the number of actions is limited and the time horizon is finite. Time is slotted
and each slot is a time unit. At the beginning of the time slot a decision is made based on the
current state information. For example, in our email synchronization application, each time
slot is set to one minute. We can also use a coarser granularity of time to reduce the state
space.

2.2 MDP model for data synchronization

We consider data synchronization applications that are delay tolerant (e.g. email, calendar,
contacts, Facebook pages, RSS feeds, etc.). If the phone is close to its expected charging time
and has abundant energy left, we can perform data synchronization more often. However,
if the charging time is too far in the future, we should conserve energy by reducing the
frequency of data synchronization. Using email as an example, we study how to control
the synchronization frequency to maximize user experience. Our objective is to synchronize
email as often as possible, while conserving sufficient energy for voice communication. We
employ the following notations:

t current time
T phone recharge time
Er remaining energy at the current time
τ time elapsed since last synchronization
ec energy consumption per unit time of voice call
Lc length of a voice call, a random variable
Rc reward of one unit of voice call
pc(t) Pr[voice call arrives in a time unit]
Rs(τ) reward of mail synchronization, subadditive
es energy consumed for data synchronization
ELc expectation over Lc

fr(Er) reward for the remaining energy at charging time T

In addition, 1{·} is an indicator function,

1{x} =
{

1 if x is true,
0 otherwise.

Last, we denote x+ = max(0, x).
We assume that Rs(·) is an increasing subadditive function. It is increasing because the

need to synchronize is larger if there has been a longer delay. It is subadditive so that the
following property is satisfied:

Rs(x) + Rs(y) ≥ Rs(x + y), x, y ≥ 0.

The property indicates the value of timeliness. Synchronizing twice (left-hand side), which
brings information in a more timely manner, is more valuable than once (right-hand side)
during the same time interval. Examples of such increasing subadditive functions include
log(1+x) and

√
1 + x. Note that T , the (re)charging time, is assumed to be fixed and known

in this paper (e.g. 10 pm). It could also be dynamic, obtained based on user profiling [17].
For the MDP framework used for the email application, t , Er and τ are the input of MDP.

The action is whether or not to synchronize email. Our objective is to maximize the total
utility (out of the available battery). As we discussed earlier, the optimal action depends
on the current state, the immediate reward and the future reward. This is captured in the
optimality equation discussed next.

136 E. Jung et al.

2.2.1 Optimality equation

Let V (t,Er, τ) be the optimal value at state (t,Er, τ). In other words, it is the maximal total
reward at the current state optimized over all possible actions, taking into account the future
reward. We first define the following notations,

vc(t,Er, τ) = ELc

[
V (t + Lc, (Er − Lc ∗ ec)+, τ + Lc)

+ min

(⌊
Er

ec

⌋
,Lc

)
Rc

]
,

vs(t,Er, τ) = V (t + 1, (Er − es)+,1) + Rs(τ)1{Er ≥ es},
vi(t,Er, τ) = V (t + 1,Er, τ + 1).

Explanations are in order. First, vc(t,Er, τ) is the value in the case that a phone call oc-
curs, including both immediate reward and future reward. Recall that Lc is a random vari-
able, representing the length of the phone call. The immediate reward of the phone call
is min(�Er/e

c�,Lc)Rc , which is proportional to the length of the phone call supported by
the remaining battery energy. We assume that when a phone call occurs, no synchroniza-
tion activity is allowed. The terms vs(·) and vi(·) correspond to the case when no phone
call happens in this time slot. In this case, the value is vs(·) if the action is to synchronize
mail and the value is vi(·) if the action is to stay idle. When the action is to synchronize
mail, Rs(τ)1{Er ≥ es} is the immediate reward and V (t + 1, (Er − es)+,1) is the future
reward. When the action is to stay idle, the immediate reward is zero and the future reward
is V (t + 1,Er, τ + 1).

We have the following optimality equation:

V (t,Er, τ) = pc(t)vc(t,Er, τ)

+ (1 − pc(t))max
{
vs(t,Er, τ), vi(t,Er, τ)

}
. (1)

In other words, when no phone call occurs, the power optimizer can decide whether to syn-
chronize mail or to stay idle, depending on which action results in higher return, considering
both immediate and future rewards.

Based on the above formulation, we can solve the problem (i.e. find the optimal decision
for each state (t,Er, τ)) using dynamic programming through backward induction.1 We also
have the following boundary conditions,

V (T ,Er, τ) = fr(Er), (2)

V (t,0, τ) = 0. (3)

The boundary condition defines the optimal decision at time T , the end of the discharge pe-
riod, and when the phone is out of battery. The first equation sets the value of remaining en-
ergy at the charging time. For simplicity, we set fr(Er) = 0 in this paper, which implies that
the energy remaining at the charging time has no value. This may not be the case, especially

1Dynamic programming through backward induction is used to calculate the optimal results from the last
time slot, then the second last and so on. This approach is used because the optimal action in an earlier slot
depends on the action of a later slot.

Markov decision process (MDP) framework for software power 137

Table 1 Threshold-based
decision table Time Er Threshold

77 396 11

77 397 11

77 398 11

77 399 11

77 400 11

78 0 NEVER

if the charging time is not a constant. Given the boundary condition at time T , one can then
find the optimal action at time T −1. This same process can be used for each tuple (t,Er, τ)

if we have the optimal decision (and the corresponding value) at time t + 1, t + 2, . . . , T .
The solution can be represented using a three-dimensional table where there is an optimal
decision for each tuple (t,Er, τ). The size of the decision table is proportional to the number
of states, which is the product of the length of the discharging period, the number of different
energy levels, and the number of possible elapsed times from the last synchronization. This
could be very large, especially if the granularity of t and τ is small. In the following, we
will present a special property of this problem that allows a more structured and simplified
solution.

Theorem 1 Define

τ ∗(t,Er) = min
(
τ : vs(τ) ≥ vi(τ)

)
.

The following policy is optimal:

a =
{

sync τ ≥ τ ∗(t,Er),

idle τ < τ ∗(t,Er).

The proof of the theorem is presented in Appendix A. The structure is useful in reducing the
complexity/memory required for the optimal policy. Instead of a three-dimensional table,
one can represent the optimal policy using two dimensions, i.e. for each (t,Er) tuple, only
τ ∗(t,Er) is needed to represent the optimal decision.

In Table 1, we show a sample of the decision table derived using the measurement data,
discussed in detail later. We see that at time 77 (minutes) with remaining energy of 396
units, the threshold is 11. In other words, if the email has not been synchronized for 11 units
of time or more, it should synchronize in this time unit. Using the threshold-based policy,
the size of the decision table is reduced to the product of the length of the discharging period
and the number of different energy levels.

2.3 MDP model for multiple delay-tolerant applications

We now consider a scenario where two delay-tolerant applications, email and Twitter, are
to be synchronized based on the MDP framework. While the same intuition from the single
application case applies, i.e. synchronization rates should adapt based on battery power and
time to next recharge, there are two new issues to be considered, service priority and non-
additive data service energies.

The former means that an end user may value the timeliness of certain applications more
than others and therefore would want them to be refreshed more often. The latter means

138 E. Jung et al.

that, due to overhead such as wakeup or wireless radio startup energies, the energy cost
of synchronizing two services individually may be higher than synchronizing them at the
same time. Additionally, the energy costs for synchronizing each service individually may
be different. The main consequence of these new issues is that the set of possible actions
expands to include synching either application alone or both applications at the same time,
each of which may lead to different utilities for the end user.

We present a high-level overview of the MDP formulation here, leaving the detailed
derivations to Appendix B. As in the previous section, our objective is to synchronize data
services as often as possible while conserving energy for voice communication, with the
added condition that one application may be more valuable than the other. We first number
the services (1: Email, 2: Twitter) and extend the previous notation to differentiate these
services:

τi time since last synchronization of service i

Rs
i (τi) sync reward for service i, subadditive

es
i energy consumed synchronizing service i

es
b energy consumed synchronizing both services

From the notation, we see that the service priority can be defined mathematically by defining
their reward functions Rs

i (τi) separately. The energy costs for each action are also defined
separately.

The MDP framework also must be extended to consider the time since the last synchro-
nization for each service, as well as the new actions possible. Therefore, a state is defined by
the tuple (t,Er, τ1, τ2) and the optimal value at the state is denoted V (t,Er, τ1, τ2). We de-
note the value of synchronizing services 1, 2 and both as vs

1(·), vs
2(·) and vs

b(·) respectively.
We assume that synchronizations can only occur if the user is not on a call. The value for
receiving call service and for remaining idle in the absence of call service are still denoted
vc(·) and vi(·), respectively. We leave the derivation of these functions to Appendix B.

Therefore, for the two application scenario we now have the choice of four different ac-
tions: stay idle, sync email, sync Twitter, or sync both applications together. The optimality
equation can be stated as

V (t,Er, τ1, τ2) = pc(t)vc(t,Er, τ1, τ2)

+ (1 − pc(t))max
{
vi(t,Er, τ1, τ2), v

s
1(t,Er, τ1, τ2),

vs
2(t,Er, τ1, τ2), v

s
b(t,Er, τ1, τ2)

}
. (4)

The decision is chosen that maximizes the value function V (·) and can only be made if there
is no call occurring. The initial conditions are analogous to the single service case,

V (T ,Er, τ1, τ2) = fr(Er), (5)

V (t,0, τ1, τ2) = 0. (6)

Using these sets of equations, a similar backward induction step can be used to obtain the
optimal values, and therefore actions, of each state.

2.4 Energy threshold heuristic

As the number of data synchronization services grows, the state space for the MDP formu-
lation grows exponentially, because there must be a state variable to represent the time since

Markov decision process (MDP) framework for software power 139

last synchronization for each service. Therefore, it is necessary to determine a heuristic pol-
icy that is scalable as the number of services grows. With this motivation, we now present a
heuristic policy based on an “energy threshold” concept. The policy is simple to implement
and performs well when compared to the optimal MDP-based policies.

The basic idea of the energy threshold is to determine the remaining energy level that
is required to serve the future call time after t based on the call profile for every time t .
This threshold can then be used to inform the decision of whether or not to synchronize a
low priority service at a given time. This energy threshold can be extended to include an
energy budget for other high priority applications, particularly user-initiated apps such as
web-browsing or gaming. We leave them out here for simplicity of exposition.

Intuitively, as the user approaches the recharge period, less and less energy needs to be re-
served for future calls. The basic idea of an energy threshold policy is to compare the phone’s
remaining energy to the energy threshold at any time, and make a decision to synchronize
or not based on this information. If the remaining energy exceeds the predetermined energy
threshold at some time, then the phone may choose to sync one or more services based on
some policy.

2.4.1 Calculating the energy threshold

To determine the energy threshold, we first calculate the cumulative distribution function
(cdf) of the call time received after a time t , for every t in the time horizon. We define Ct as
a Bernoulli random variable with probability pc(t) that the user will be on a call at time t .
Denoting Ct ∈ {0,1} to represent when a user is idle or on a call at time t , we can write

Pr[Ct = 1] = 1 − Pr[Ct = 0] = pc(t).

Now we define the random variable Xt as the predicted number of call minutes received
after time t ,

Xt =
T∑

i=t

Ci .

The cdf for Xt can be calculated using backward induction. Denoting FXt (·) as the cdf of Xt ,
we then set a probability threshold pth ≤ 1 and determine the time threshold Γ (t) as

Γ (t) = arg max
x

x

subject to FXt (x) ≤ pth.

Therefore, with probability pth, there will be no more than Γ (t) call minutes after time t

based on the calculated cdf. As pth increases, the time threshold will become more conser-
vative. The energy threshold Eth(t) is defined as the energy required at time t to guarantee
with probability pth that all future calls will be served,

Eth(t) = ec · Γ (t). (7)

This process can easily be extended to account for other types of high priority applica-
tions, and would be especially useful for user-initiated applications. For example, if suffi-
cient history for browsing application use exists, this process could be performed for those
applications specifically, and added to Eth(t).

140 E. Jung et al.

2.4.2 Synchronization policy for multiple applications based on the energy threshold

We now discuss the design of synchronization policies based on the energy threshold con-
cept. In particular, we define an energy threshold based policy for the Twitter/Email applica-
tion. This policy is designed to meet the requirements of the multiple application scenario,
to maximize synchronization frequency while preserving energy for future voice activity
and serving different priority services. We note that while this policy is not comprehensive,
it is easily generalized for different priority differences and energy costs, and demonstrates
the ability of energy threshold heuristic policies to perform well under the desired goals.

We assume that the user may prioritize email over the Twitter application. Therefore, we
enforce a policy in which email may be synchronized alone, but Twitter can only sync pe-
riodically with the email application. Since email may have higher priority than Twitter, we
assume that the user is willing to spend some extra energy to obtain email more frequently.
At the same time, we enforce Twitter as a “piggy-backing” service, i.e. it only synchronizes
when some other service does, because the energy of synchronizing both is potentially less
than synchronizing each service separately (i.e. es

b ≤ es
1 + es

2). This design choice is moti-
vated by our MDP performance results, which show that the lower priority service is only
synchronized jointly with the higher priority service.

We first define a synchronization period M as the period of joint synchronization. We
also define N1 as the number of times the email has synchronized in the current discharge
period. Therefore, if N1 mod M = M − 1, the next synchronization to occur is a joint syn-
chronization of both services. For a current state (t,Er, τ1, τ2), we then calculate τth(t), the
threshold at which the data synchronizations should occur,

τth(t) =
⎧⎨
⎩

T −t
(Er−Eth(t))/es

b
, if N1 mod M = M − 1,

T −t
(Er−Eth(t))/es

1
, otherwise.

(8)

Essentially, τth(t) represents the synchronization period that could be handled by the current
energy cushion, the difference between the current remaining energy and the energy thresh-
old. The divisor represents the number of synchronizations that can be handled with the
energy cushion, while the dividend is the remaining time to the end of the discharge period.
We note that τth(t) only depends on the parameters of service 1 (email) since we assume
that Twitter is lower priority and only synchronizes jointly with email. The action decision
a(t) is then defined as follows:

a(t) =
⎧⎨
⎩

Sync service 1, if τ1 ≥ τth(t), N1 mod M
= M − 1, Er > Eth(t),
Sync both services, if τ1 ≥ τth(t), N1 mod M = M − 1, Er > Eth(t),
Idle, otherwise.

(9)

The decision is dependent on the τ1 parameter, since email has priority in this case. If the
synchronization period M = 1, which means that both services have the same priority, the
services always synchronize together. Note that the decision is always idle if remaining
energy is less than the energy threshold at any given time. This means that the heuristic is
always trying to protect the high priority application (voice) to within the pth threshold. We
also note that this heuristic can easily be extended to more than two applications.

2.5 High priority applications

In the formulations presented, we have used call time as the high priority application that
we wish to protect. However, this may be a shifting paradigm as smart phones become more

Markov decision process (MDP) framework for software power 141

Fig. 1 Experimental setup

akin to personal computers than voice communication devices. To this end, our model can
be extended to include other user-initiated applications as high priority. For example, in
the MDP formulations the energy costs as well as the probability of call arrival pc(t) can
be supplemented by energy costs for different types of applications (e.g. web browsing or
gaming) as well as the probability of the user initiating those applications. Expected costs
for the use of these apps can also be added to the energy threshold equation, thus protecting
them from interference from lower priority functions.

The difficulty arises in characterizing these types of applications. Energy costs will vary
greatly depending on the type of application, and depending on frequency of use, reliable
expectations of application use may be hard to obtain. We leave the characterization and
profiling of such activity to future work.

3 Experimental setup

We use the Android Developer Phone 1 (HTC Dream [12]) to obtain the power measure-
ment data needed for this paper. The Android platform [10] was chosen due to its developer-
friendly Java development environment and open source operating system running a modi-
fied Linux kernel. In other words, the complete source code was available for modification
and inspection during our investigation.

The power consumption of the HTC Dream mobile phone was measured during our ex-
periments by using a DC power supply (Agilent E3644A [1]) to supply power to the phone
instead of the phone’s battery. Measurement communication was achieved by connecting
the power supply for the phone to a laptop computer using the IEEE-488A General Purpose
Interface Bus (GPIB). Power measurements were then sampled via a custom Python script
using the PyVISA package [7] for easy GPIB communication. We also implemented max-
imum voltage and current levels to avoid damage to the phone during experimentation. All
measurements were performed for a user-specified duration of time, with a sampling fre-
quency of 11.76 Hz, the maximum sampling frequency possible using the PyVISA package.

3.1 Power profiling

3.1.1 Android application

In order to determine the constants for the MDP equations, we ran an application called
“Tweemail” (Fig. 2). This program is capable of checking Twitter, Email or both, based

142 E. Jung et al.

Fig. 2 Tweemail application

Fig. 3 Twitter power
consumption

on user interface preferences. Twitter was synchronized using the Twitter4j library [2] and
email was updated using the javamail-android [1] port of the standard JavaMail library to
the Android platform. The Twitter client was configured to synchronize with a Twitter feed
with subscriptions to the ten most popular Twitter feeds at the time of analysis. The email
client synchronized with a Gmail account created for this experiment and fetched only the
email envelope information (which most email clients do to conserve bandwidth). A mobile
data connection was established using the AT&T EDGE network in the building that houses
our laboratories.

Figures 3, 4, 5 show power measurements of Twitter, Email, and joint Twitter and Email
synchronization using the “Tweemail” application. All tests were completed with the back-
light on during the entire test and no other user initiated processes running. All three combi-
nations of the two synchronization tasks were executed in a loop with 30 second separations
between them to facilitate the measurement of each loop’s duration. Each power measure-
ment and the time it was measured was recorded and then a discrete integral was performed
in order to determine the energy dissipated (Table 2).

These results rank as one would expect, with email requiring slightly more energy than
Twitter. This is because of the difference between interfacing with email and Twitter ser-
vices. Each Twitter message requires only a maximum of 140 characters of data to be down-
loaded and is performed using a RESTful interface over HTTP. On the other hand, email

Markov decision process (MDP) framework for software power 143

Fig. 4 Email power
consumption

Fig. 5 Twitter and email power
consumption

Table 2 Energy for
synchronized applications Application Energy (J)

Twitter 8.743

Email 11.9889

Twitter + Email 16.9704

employs its own POP3 protocol and each message envelope is significantly longer than a
Twitter message (see Appendix C). Therefore, while HTTP and POP3 are relatively similar
in terms of their burden on the phone, email requires more energy than Twitter to synchro-
nize due to the length of their messages. Furthermore, due to the inherent overhead incurred
in initializing the EDGE radio to communicate with a new server, it is also no surprise that

144 E. Jung et al.

Fig. 6 User voice communication profile

both services updated together consume less energy than the sum total of each operation
individually.

3.2 Voice activity profiling

A 66-day call log history was collected.2 The first 53 days of the history was used to generate
the user profile, while the later 13 days were used to run the simulation as 13 different test
cases. Figure 6 shows the normalized histogram of the call history of a user from the user’s
call log. The call log records the time and duration of every phone call in a given period of
time while the user profile shows the frequencies of a user making a phone call for each time
interval unit within a day. The probability of getting a phone call at a given time, pc(t), is
thus estimated by dividing the number of times a call has occurred at time interval t by the
number of days the call log recorded.

4 Results and discussion

We implemented the MDP optimization framework for both the email alone and Twit-
ter/email synchronization applications using the above power measurement data and user
profile. The key results are presented next.

4.1 Email synchronization

Experiments were performed to compare the outcomes of using the proposed MDP based
email synchronization policy with that of the traditional fixed-frequency email synchroniza-
tion policy. A piece of the decision table based on the proposed MDP framework using the
measurement data is shown in Table 1. For the latter, the phone was simulated to synchro-
nize the email every 5, 10, 20, 30, 40 and 60 minutes. The phone was simulated to discharge
from time t = 0 to time t = 960 (16 hours) and no synchronization would be initiated during
a phone call. We assumed that fr(Er) = 0; i.e. remaining energy at the phone charging time

2The usage log can also be generated in realtime and updated periodically.

Markov decision process (MDP) framework for software power 145

Table 3 A day with light voice call (20 minutes)

Metric 5 10 20 30 40 60 MDP

Nsyn 191 95 47 31 23 15 311

Mean 5.02 10.03 20.06 30 40.09 60 3.07

Dev 0.16 0.23 0.32 0 0.42 0 2.82

Mcall 20 20 20 20 20 20 20

Tout N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Er(T) 131.83 236.46 288.77 306.21 314.93 323.65 1.04

Table 4 A day with moderate voice call (55 minutes)

Metric 5 10 20 30 40 60 MDP

Nsyn 184 92 47 31 23 15 215

Mean 5.21 10.42 20.19 30.48 40.39 60.20 4.45

Dev 1.52 2.13 0.80 2.34 1.50 0.56 4.88

Mcall 55 55 55 55 55 55 55

Tout N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Er(T) 34.46 134.73 183.77 201.21 209.93 218.65 0.67

Table 5 A day with heavy voice call (121 minutes)

Metric 5 10 20 30 40 60 MDP

Nsyn 99 66 43 30 23 15 33

Mean 5.54 11.14 21.05 31.47 41.09 60.53 28.94

Dev 3.25 4.99 4.04 5.07 3.46 2.07 69.38

Mcall 97 109 117 121 121 121 121

Tout 581 746 908 N.A. N.A. N.A. N.A.

Er(T) 0 0 0 4.30 11.93 20.65 1.03

t = 960 has no value. Therefore, it is desirable to have the phone use all of its battery life by
t = 959 (which means that all energy is used for voice call and other services in the day).

In the simulation, we use the following parameters, obtained from the power measure-
ment on an HTC mobile phone running on the Android platform. The initial energy level is
400 units (i.e. Er = 400 at t = 0), which can serve around 133 minutes of talk time. Each en-
ergy unit is approximately 11 J. Energy consumption for each email synchronization es = 1.
Energy consumption for making a phone call per minute is ec = 3.

We run the simulation in the later 13 days of the user call log (profile shown in Fig. 6) as
13 different test cases. The reward function of email synchronization used was

√
τ + 1. The

entire discharge period was divided into 1-minute time intervals. We present the results in
detail for three representative days with light, moderate and heavy voice traffic in Tables 3,
4, 5. To be concise, we omit the results for the other 10 days as they follow the same trend.
In the result, Nsyn is the number of synchronizations performed, Mean is the mean of the
synchronization period, Dev is its standard deviation, Mcall is the total number of phone call

146 E. Jung et al.

minutes, Tout is the time the battery runs out of energy, and Er(T) is the remaining energy
at the end of the day when the phone recharges.

Under the MDP-based synchronization policy, the phone synchronized more frequently
when there were less phone calls, compared to that of the fixed-frequency policy. Among
those test cases when the phone did not power off due to insufficient energy before the
charging time (T = 960), the number of synchronizations made by our policy is always
higher or equal to those of any fixed-frequency policy.

Under the MDP policy, the phone only ran out of battery when the actual talk time in the
test cases is close to the maximum talk time supported by the battery. In the experiment, it
happened in only one day when there was 131 phone-call minutes. In this case, the battery
life of the MDP policy is only outlived by that of the 60-minute policy by 1 minute.

In fixed-frequency policy, the standard deviation of the synchronization period is non-
zero because no email synchronization occurs when a phone call is taking place. Using
our policy, the standard deviation of the synchronization period is much higher than that of
fixed-frequency synchronization. The phones running our policy tend to synchronize less
frequently near the beginning of the discharging period and tend to synchronize more fre-
quently near the end of the discharging period, especially when the voice usage is light
during the day. When the voice usage is (very) heavy, the opposite is observed. To reduce
the dispersion of the synchronization frequency, we can set a non-zero reward function for
remaining energy at the charging time, or change the reward function to also include the
time since the last charging period. This is also reasonable because charging time may vary.

In summary, compared to the fixed frequency synchronization policy, our scheme is
dynamic—it allows more synchronization when voice traffic volume is low and reduces
data service frequency when voice traffic is heavy. Because of this dynamic nature, it serves
the user more effectively by taking into account the priorities of services. There are various
directions that we can improve or modify the performance of the proposed MDP scheme.
First, to further reduce the chance of missing a phone call (because the phone has depleted
its battery before charging time), we can set a non-zero reward function for remaining en-
ergy at the charging time; e.g. fr(Er) = c log(1 + Er) at time T . This value would reward
remaining energy at time T and would make data synchronization more conservative.

4.2 Twitter/email synchronization

We now present simulation results for our MDP-based Tweemail synchronization appli-
cation. Our results show that both the MDP and energy threshold policy in a multiple-
application scenario outperforms simple periodic synchronization schemes while protecting
user call activity. We also show that MDP and energy threshold policies are viable for a
wide range of call arrival rates, and that policies based on real call profiles are robust to
wide ranges of call loads.

4.2.1 Real call traces

Similar to the previous section, we obtain the MDP decision table for the two-application
scenario based on the real user profile shown in Fig. 6. We then compare the performance
of this policy and simple periodic synchronization policies with periods 5, 10, 20, 30 and 60
minutes, where both services are synchronized simultaneously.

The simulation parameters are the same as the previous section, i.e. the discharge time is
from t = 0 to t = 960 and the initial energy level is 400 units, with each unit corresponding
to 11 J. We assume that fr(Er) = 0. Based on the energy measurement results from Sect. 3,

Markov decision process (MDP) framework for software power 147

Table 6 A day with light voice call (20 minutes)

Metric 5 10 20 30 60 MDP 1 MDP 2

Ns
b

191 95 47 31 15 220 103

Ns
1 0 0 0 0 0 0 165

Mean1 5.02 10.03 20.06 30.00 60 4.35 3.57

Dev1 0.16 0.23 0.32 0 0 4.18 3.54

Ns
2 0 0 0 0 0 0 0

Mean2 5.02 10.03 20.06 30 60 4.35 9.29

Dev2 0.16 0.23 0.32 0 0 4.18 7.14

Mcall 20 20 20 20 20 20 20

Tout N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Er(T) 45.33 193.44 267.49 292.17 316.86 0.58 1.26

Table 7 A day with moderate voice call (55 minutes)

Metric 5 10 20 30 60 MDP 1 MDP 2

Ns
b

153 92 47 31 15 152 71

Ns
1 0 0 0 0 0 0 114

Mean1 5.23 10.42 20.19 30.48 60.20 6.30 5.17

Dev1 1.64 2.13 0.80 2.34 0.56 7.22 6.07

Ns
2 0 0 0 0 0 0 0

Mean2 5.23 10.42 20.19 30.48 60.20 6.30 13.48

Dev2 1.64 2.13 0.80 2.34 0.56 7.22 12.23

Mcall 54 55 55 55 55 55 55

Tout 809 N.A. N.A. N.A. N.A. N.A. N.A.

Er(T) 0 93.06 162.49 187.17 211.86 0.49 1.21

the energy cost for syncing email and Twitter alone is es
1 = 1 and es

2 = 0.8 respectively,
syncing both together is es

b = 1.5, and the call energy cost remains ec = 3. Note that es
b ,

the cost to synchronize both services at the same time, is less than es
1 + es

2, the cost to
synchronize both individually, due to the overhead to perform a data synchronization.

For the synchronization reward functions, we use Rs
1(τ1) = C1

√
τ1 + 1 and Rs

2(τ2) =
C2

√
τ2 + 1, where C1 and C2 are constants. These constants can be tuned to reflect the

different priority levels for different services. For our simulations, we assume that C1 +C2 =
1 and obtain MDP policies for different C1/C2 ratios to prioritize services.

Tables 6, 7, 8 show the performance of two MDP policies and the periodic policies over
the same three representative call days presented in the previous section. In the tables, Ns

1 /Ns
2

are the number of times email/Twitter are synched alone, and Ns
b is the number of simulta-

neous syncs. Meani/Devi is the average time and standard deviation for the refresh period
of service i. Mcall is the number of call minutes achieved, Tout is the time when the energy
is depleted, and Er(T) is the remaining energy at the end of the discharge period. “MDP 1”
corresponds to a policy where C1/C2 = 2 and “MDP 2” to a policy where C1/C2 = 3. These
ratios are chosen specifically to cause the MDP decision table to treat the two synchroniza-
tion services with different priorities.

148 E. Jung et al.

Table 8 A day with heavy voice call (121 minutes)

Metric 5 10 20 30 60 MDP 1 MDP 2

Ns
b

99 59 42 29 15 23 14

Ns
1 0 0 0 0 0 1 14

Mean1 5.54 11.25 21.07 31.52 60.53 39.88 34.18

Dev1 3.25 5.27 4.08 5.15 2.07 116.48 111.04

Ns
2 0 0 0 0 0 0 0

Mean2 5.54 11.25 21.07 31.52 60.53 41.61 68.36

Dev(s2) 3.25 5.27 4.08 5.15 2.07 118.82 163.48

Mcall 82 102 111 118 121 121 121

Tout 566 668 892 933 N.A. N.A. N.A.

Er(T) 0 0 0 0 13.86 0.43 0.14

First, we notice that in all periodic cases and the first MDP case, almost all synchroniza-
tions of the two services occur simultaneously. This is by design in the periodic cases, but
in the “MDP 1” case this reflects the extra energy cost associated with synchronizing each
service separately. Although C1/C2 = 2 in the “MDP 1” case, implying that the user values
email more than Twitter, this effect is mitigated by both the lower energy cost of synchroniz-
ing Twitter generally, and the lower total energy cost of synchronizing both simultaneously.

However, the “MDP 2” policy (C1/C2 = 3) shows several instances of email synching
alone. This is because for a C1/C2 factor this large, reward is maximized by dedicating more
energy explicitly to the email service. This effectively prioritizes email service over Twitter.
We also note that the mean refresh time for email is shorter for the “MDP 2” case than the
“MDP 1” case, which would be expected given its higher priority in the former case. We
also notice that for either MDP policy, the Twitter service never syncs alone. This again
reflects the lower energy cost of synching simultaneously; because Twitter is valued less
and synching it together with other services is more cost effective, the MDP policy always
chooses this action.

Aside from the Twitter synchronizing behavior, the results here follow the same trends as
the email service in Sect. 4.1. We see that in all cases, both MDP policies are able to adapt
to the different call volumes better than any of the periodic cases, synching more often
when voice activity is light and visa versa when voice activity is heavy. This is reflected
in both policies’ ability to reach the full call time and deplete the battery to nearly zero
at the end of the day. In fact, for all 13 call days, both MDP policies protect voice call at
least as well as the conservative 60 minute period policy, while achieving significantly more
synchronizations for lighter call days. We also notice that this holds true even if the user
prioritizes one service over the other—call time is protected and energy is used effectively.

Therefore, we see that for two applications, the desired goals of the MDP policy are still
achieved—call time is protected while synchronization period is adjusted to compliment the
call loads. We also show that reward functions can be structured to prioritize one service
over another, and the MDP is able to choose which service to synchronize based on this pri-
ority and the remaining energy. Further study is needed to determine the effects of non-zero
functions for fr(Er) and to experiment with different sync reward functions. For example,
synchronization reward functions that depend on time t may be able to weight the MDP
to synchronize more during certain times, while our current scheme tends to decrease the
refresh period as the day goes on.

Markov decision process (MDP) framework for software power 149

Table 9 A day with light voice call (20 minutes)

Metric MDP 1 MDP 2 85%, M = 1 85%, M = 2

Ns
b

220 103 220 129

Ns
1 0 165 0 129

Mean1 4.35 3.57 4.35 3.71

Dev1 4.18 3.54 4.66 4.07

Ns
2 0 0 0 0

Mean2 4.35 9.29 4.35 7.42

Dev2 4.18 7.14 4.66 7.94

Mcall 20 20 20 20

Tout N.A. N.A. N.A. N.A.

Er(T) 0.58 1.26 0.58 0.38

Table 10 A day with moderate voice call (55 minutes)

Metric MDP 1 MDP 2 85%, M = 1 85%, M = 2

Ns
b

152 71 152 89

Ns
1 0 114 0 89

Mean1 6.3 5.17 6.3 5.38

Dev1 7.22 6.07 7.76 6.71

Ns
2 0 0 0 0

Mean2 6.30 13.48 6.3 10.75

Dev2 7.22 12.23 7.76 12.93

Mcall 55 55 55 55

Tout N.A. N.A. N.A. N.A.

Er(T) 0.49 1.21 0.49 0.69

4.2.2 Performance of energy threshold heuristic

We now compare the performance of the energy threshold heuristic policy defined in 2.4.2
to our MDP results. All simulation parameters are the same as in the previous case. In the
simulations, we choose a threshold of pth = .85 for the energy threshold. This threshold
is chosen because it is highly protective of call time while not being overly conservative,
and was shown to perform well for this particular user. This parameter could be tuned to
suit different types of user profiles. We also simulate over different M , the periods for joint
synchronizations.

In Tables 9, 10, 11, we compare the performance of the threshold policies on the three
representative phone calls. “MDP 1” and “MDP 2” correspond to the policies from Ta-
bles 6, 7, 8, and “85%, M = i” corresponds to a heuristic energy threshold policy with pth

in terms of percentage and period of joint synchronization M = i. We see from the tables
that the 85% threshold policy with M = 1 gives results that are very close to the “MDP 1”
case, with slight degradation in the average sync period and deviation. For all three call
cases, the number of joint synchronizations is the same for these two policies, although the
“MDP 1” case does experience one solo email synchronization.

150 E. Jung et al.

Table 11 A day with heavy voice call (121 minutes)

Metric MDP 1 MDP 2 85%, M = 1 85%, M = 2

Ns
b

23 14 23 14

Ns
1 1 14 0 14

Mean1 39.88 34.18 41.43 34.11

Dev1 116.48 111.04 119.5 110.27

Ns
2 0 0 0 0

Mean2 41.61 68.36 41.43 68.21

Dev2 118.82 163.48 119.5 156.56

Mcall 121 121 121 121

Tout N.A. N.A. N.A. N.A.

Er(T) 0.43 0.14 1.52 0.14

The 85% case with prioritization performs quite well in terms of protection of call
minutes. Since the joint synchronization period M = 2 is imposed, it is expected that the
number of times service 1 is synchronized (Ns

1 + Ns
b) is approximately twice that of the

service 2 syncs (Ns
2 + Ns

b). In all three call cases we see that there is no loss of call minutes,
and the energy lasts until the recharge time. For all 13 cases there were negligible differ-
ences between the performance of the MDP policies and the threshold policies in terms of
call minutes served or energy outage times.

4.2.3 Synthetic call traces

To extensively evaluate the performance of the MDP and energy threshold policy, we gen-
erate synthetic traces based on different arrival rates. We generate MDP policies and energy
threshold functions based on these synthetic traces, and also observe the robustness of the
real call profile based policies in these synthetic call environments. These simulations are
primarily meant to test the robustness of these methods to various call loads.

In the simulations, synthetic user call profiles are generated corresponding to a constant
probability of call arrival p in each time slot, i.e. for t ≤ T ,

pc(t) = p.

We assume that all call lengths are equal to 1.
When generating the MDP policies the simulation parameters are the same as in the

previous section. The reward parameters used correspond to the “MDP 1” entry of Tables
6–8. The call reward is Rc = 20 and the synchronization reward functions Rs

1(τ1),R
s
2(τ2)

are as stated before with C1/C2 = 2, C1 + C2 = 1. For each p, a distinct MDP policy
is generated using the same call reward Rc and synchronization reward functions Rs

i (τi)

as described above. Distinct energy threshold functions are also generated from the same
synthetic profiles, all with a joint synchronization period M = 1, so that both services refresh
simultaneously.

Each policy’s average performance is observed over 1000 instantiations of call days gen-
erated from its corresponding synthetic call profile. Figures 7–9 show the performance of
these simulations for various metrics. In each figure, the MDP policy is generated for values
ranging from .02 to .13. This value is chosen as the maximum because p = .14 corresponds
to an average greater than 133 minutes in a day, which is the maximum number of call

Markov decision process (MDP) framework for software power 151

Fig. 7 Average call time vs.
probability of call arrival

Fig. 8 Average battery depletion
time vs. probability of call arrival

minutes achievable with 400 energy units. The performance of the MDP policies generated
from the p values is labeled “MDP”, and the threshold policies “Th pth”, corresponding to
different probability threshold values.

Along with the synthetic MDP policies, we show the performance of two fixed-frequency
policies. We also take the “MDP 1” policy and the pth = .85, M = 1 energy threshold pol-
icy obtained from the real call traces in the previous sections, and show their performance
over the synthetic call days (labeled “MDP real” and “Th .85 Real” respectively). In the
“Real” curves, a single policy that is generated based on the real trace is run over the entire
range of pc(t). The purpose of this comparison is to evaluate the robustness of the proposed
policies against inaccurate information on call arrival distributions. Finally, each figure also
shows these metrics when no synchronization occurs (labeled “No Sync”), which serves as
the baseline for the performance metrics.

152 E. Jung et al.

Fig. 9 Average remaining
energy at T vs. probability of call
arrival

Figure 7 shows the average number of call minutes achieved by the policies listed for
various call arrival rates. For this metric, a strong performing MDP policy is one where the
average call minutes achieved under the MDP policy approaches the No Sync case. The
MDP policies generated from the synthetic call profiles, represented by the “MDP” curve,
track the No Sync call load closely for the entire range of pc(t). In fact, these MDP policies
on average achieve within 1 minute of the No Sync case, except for pc(t) = .13, where the
gap is roughly 1.5 minutes. This gap is due to the fact that in this probability range, the
number of call minutes in a day is more likely to approach or surpass the maximum call
time that can be served by the initial energy (133 minutes). The threshold policy (labeled
“Th .85”) likewise performs well in terms of the number of call minutes achieved. This
result closely mirrors our real case result, where we saw that the energy threshold performed
very similarly to the MDP results, with small deviations in the refresh period and standard
deviation.

We also see that the MDP and energy threshold policies from real call data (labeled
“real”) also adapt quite well to these different call profiles. In these curves, the “MDP 1”
and “85%, M = 1” policies from the previous section are run over the entire range of pc(t).
This shows that the MDP and threshold policies are robust to different call loads, refreshing
more frequently when call load is lower. The fixed-frequency policies all diverge from the
No Sync case earlier than the MDP, with the shorter synchronization periods diverging in
lower p values. From this figure we conclude that the MDP and energy threshold policies
generated sufficiently protect call time over the entire range of p.

Figure 8 shows the time of energy depletion as a function of the arrival probability. In
this case, again, the MDP policy performance tracks the No Sync time horizon line closely.
Given that the call time is well protected by both the MDP and energy threshold cases, it
follows that the average battery lifetime should be close to the time horizon. There is a slight
drop for p > .11, which occurs because the number of call minutes is more likely to go over
the maximum call time achievable at higher p values, resulting in battery depletion before
the recharge time for even the No Sync case. The real trace MDP and energy threshold
policies also follow the same trend, achieving slightly lower energy depletion times on av-
erage. The fixed-frequency policies follow the same trends as before, with higher frequency
policies depleting the battery earlier.

Markov decision process (MDP) framework for software power 153

Finally, Fig. 9 shows the energy remaining for each policy. The dynamic policies, on
average, achieve near-zero remaining energy, and from Fig. 8 it is clear that these policies
are not prematurely draining the battery. The fixed-frequency policies do not deplete their
energy for lower call arrival values, but deplete the battery prematurely in heavy load cases.

These results show that both the MDP and energy threshold policies result in strong
performance over a wide range of call loads. This means that on days with wide-ranging
call loads, the same policies can adapt synchronizations in a way that will still protect voice
activity. However, this study does not necessarily indicate strong performance in the face of
more bursty call profiles. For example, if a user has extremely sparse call arrival but tends to
talk for long periods when calls do arrive, MDP may not be sensitive enough to protect these
unlikely events. Further study should be done to see how MDP policies can be modified to
perform well in these situations.

4.3 Discussion

Next we discuss the computational complexity and scalability of the proposed approaches.
First, we have the option of implementing the computationally expensive algorithm on the
phone or on a more powerful server through an Internet connection. For instance, to generate
the decision table used in email synchronization, it takes less than a second on a desktop
computer and one hour on the G1 phone we used. The delay is mainly due to the memory
constraint on the cellular phone. The decision table does not have to be computed frequently
(once every few weeks) since call profiles do not change significantly over small time scales.
As was shown in Sect. 4.2.3, a single MDP-based policy can be robust for various call arrival
rates.

Theorem 1 allows us to reduce the decision table size by utilizing the structure of the
solution. For the case presented in the paper, the table size is reduced from 480 (# of time
units) ∗ 100 (power level) ∗ 480 (max sync delay) ∗ 1 bit to 480 (# of time units) ∗ 100
(power level) ∗ 1 bit. In other words, the size is reduced from 2.88 MB to 48 KB.

Another method to improve scalability is to reduce granularity. In earlier discussions, we
consider the case where each time slot is 2 minutes. We also evaluate the cases where the
time slots are 4, 6, 8 and 16 minutes, where the table sizes are 1/2, 1/3, 1/4 and 1/8 of
the original. Energy granularity reductions are also possible. Although the MDP formula-
tion assumes integral values for all state variables, non-integral values can be used through
simple modification of the MDP state transition probabilities. The performance degradation
is minor and graceful.

For several data synchronization services, scalability becomes difficult in the MDP for-
mulation, even with special structure and granularity reductions. The energy threshold
heuristic has also been shown to perform well in our results, and is easily scalable to multiple
applications.

Non-zero reward for remaining energy could be explored also. We considered a non-zero
reward function, f (Er) = c log(1+Er), where c is a constant. The main benefit is to reduce
the variance of data synchronization, especially when the time is close to the charging time.
We also considered different reward functions, including various logarithm and square-root
functions. The impact is somewhat minor.

5 Related work

The work described in this paper is broadly related to the general problem of adapting
and managing resources at the system level. As a result, there is work related to this in many

154 E. Jung et al.

disciplines such as operating systems, real-time systems, computer architecture, networking,
and more recently in sensor networks and mobile computing.

Stanford researchers [6] were among the first to use Markov decision processes to ad-
dress power optimization policies for notebook or other battery-operated systems. This work
is primarily concerned with maximizing battery life. Our work differs because it is more dy-
namic in nature, since our goal is to maximize user experience until the expected charging
time. For example, in [6], the optimal action to turn on/off a disk does not change over time,
but in this work optimal decisions depend explicitly on the current time and remaining en-
ergy. Quality versus resource utilization trade-offs have also been studied extensively in the
area of video streaming [3, 9, 14, 15, 18–20]. This is somewhat orthogonal to our work,
since most streaming applications would be user-initiated and therefore not delay tolerant.

In [17] researchers from Intel and Microsoft propose the idea of context-aware battery
management and the notion of treating the next recharge time explicitly. However, the pa-
per does not address the issue of controlling applications to preserve battery life until an
expected recharge time, which is the focus of this paper.

CMU researchers studied OS support for resource scalable computation and energy
aware adaptive computation [9, 16, 18]. In particular, in [9] the authors demonstrate a 30%
extension in battery life through collaborative optimization of the operating systems and the
application. Duke researchers [21] extend this approach to the system level by formulat-
ing a general framework to manage energy as a first class operating system resource. They
propose a currency model to account for energy consumed by different components and
develop techniques for fair allocation of available energy to all active applications. In [8],
the authors propose a dynamic software management framework to improve battery life that
is based on quality-of-service (QoS) adaptation and user-defined priority. The goal of their
works is to extend the battery lifetime by limiting the average discharge rate. All of their
works focus on a general purpose notebook computer with no particular priority for differ-
ent functions, whereas our work is specifically concerned with mobile phones with different
priority services.

In the area of sensor networks, UCLA researchers [13] discuss scheduling tasks to ac-
commodate the constraints of energy harvested from the environment such as solar panels.
In [4], an alternative approach to reactive optimization is discussed. The main difference
between these works and our own is in the MDP formulation of the talk-time optimization
problem in the context of mobile phones and its implementation on the Android powered
mobile phone.

6 Conclusions

In this paper we proposed a general mathematical framework to optimize energy consump-
tion on mobile phones using the Markov decision process. We argued that on a mobile
phone, certain functions have priority to the user, and the optimization’s primary goal should
be to protect these functions. Therefore, the usage profile of these functions should be an
input to the optimization framework, since the optimization would depend on the usage pat-
terns of these high priority functions. This made the optimization user profile driven and
adaptive, as the user profile is essentially a user-defined parameter that varies from one in-
dividual to another.

In our formulations, we used talk-time as the primary function to be preserved, and used
call histories as an input to the optimization problem, with the caveat that other functions
could be similarly modeled and input as primary phone functions. We first demonstrated

Markov decision process (MDP) framework for software power 155

the MDP framework on a single delay tolerant function, email, and developed techniques to
reduce the table size of the MDP decision table for this application. To address the problem
of multiple data synchronization functions, we designed an energy threshold heuristic that
performs well and is highly scalable as the number of applications climbs. We tested the
MDP framework on both a single data synchronization function and multiple data synchro-
nization functions, and showed through real trace simulations that the framework was robust
enough to handle both situations while sufficiently protecting call-time and battery life. We
also tested the heuristic for a multiple data synchronization function, and showed that the
results were similar to the MDP framework approach. Finally, we simulated over several
synthetic call profiles to show the robustness of our methodology for various types of user
profiles.

Acknowledgement This work supported in part by NSF CNS-0435531, CNS-0448613 and CNS-0520126
and by Intel through a gift grant.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix A: Proof of Theorem 1

Property 1 Given t and Er , the following property is true:

V (t,Er, τ + ε) − V (t,Er, τ) ≤ Rs(τ + ε) − Rs(ε), (10)

for ε ≥ 0.

Proof The property can proved using backward induction. Because of the boundary condi-
tion in (2), we have

V (T ,Er, τ + ε) − V (T ,Er, τ)

= fr(Er) − fr(Er)

= 0

≤ Rs(τ + ε) − Rs(ε).

Therefore, (10) holds for t = T . We next use backward induction. Assume (10) holds for
t + 1, t + 2, . . . , T . We now prove it holds for t .

Consider V (t,Er, τ + ε) − V (t,Er, τ). We have

V (t,Er, τ + ε) − V (t,Er, τ)

= pc(t) (vc(t,Er, τ + ε) − vc(t,Er, τ))

+ (1 − pc(t))max
(
vs(t,Er, τ + ε), vi(t,Er, τ + ε)

)
− (1 − pc(t))max

(
vs(t,Er, τ), vi(t,Er, τ)

)
(1)≤ pc(t) (vc(t,Er, τ + ε) − vc(t,Er, τ))

+ (1 − pc(t))max{vs(t,Er, τ + ε) − vs(t,Er, τ), vi(t,Er, τ + ε) − vi(t,Er, τ)},

156 E. Jung et al.

where (1) holds because

max(a, b) − max(c, d)

= max (a − max(c, d), b − max(c, d))

≤ max(a − c, b − d).

We consider the first term next.

vc(t,Er, τ + ε) − vc(t,Er, τ)

= ELc

[
V (t + Lc, (Er − Lc ∗ ec)+, τ + ε + Lc)

− V (t + Lc, (Er − Lc ∗ ec)+, τ + Lc)
]

(2)≤ ELc

[
Rs(τ + ε + Lc) − Rs(τ + Lc)

]
(3)≤ ELc

[
Rs(τ + ε) − Rs(τ)

]
= Rs(τ + ε) − Rs(τ)

where (2) holds by the hypothesis and (3) holds because Rs(·) is a subadditive increasing
function. Consider the second term.

max
{
vc(t,Er, τ + ε) − vc(t,Er, τ), vi(t,Er, τ + ε) − vi(t,Er, τ)

}
≤ max

{
V (t + 1, (Er − es)+,1) + Rs(τ + ε)1{Er ≥ es}

− V (t + 1, (Er − es)+,1) + Rs(τ)1{Er ≥ es},
V (t + 1,Er, τ + ε + 1) − V (t + 1,Er, τ + 1)

}
≤ max {Rs(τ + ε) − Rs(τ),Rs(τ + ε + 1) − Rs(τ + 1)}
≤ Rs(τ + ε) − Rs(τ).

Combining the above two results, we have

V (t,Er, τ + ε) − V (t,Er, τ) ≤ Rs(τ + ε) − Rs(τ). �

Based on the above property, we prove Theorem 1 next.

Proof of Theorem 1 Given (t,Er), we need to prove that ∀ τ ≥ τ ∗(t,Er), we have

vs(t,Er, τ) ≥ vi(t,Er, τ). (11)

If Er < es , then

vs(τ) = V (t + 1, (Er − es)+,1) + Rs(τ)1{Er ≥ es} = 0.

Therefore, the optimal action is to stay idle. In this case, set τ ∗ = ∞. The result is trivial. So
we only consider the case Er ≥ es in the following

Markov decision process (MDP) framework for software power 157

vs(t,Er, τ) = V (t + 1,Er − es,1) + Rs(τ)

= V (t + 1,Er − es,1) + Rs(τ ∗) + Rs(τ) − Rs(τ ∗)

= vs(τ ∗) + Rs(τ) − Rs(τ ∗)
(4)≥ vi(τ ∗) + Rs(τ) − Rs(τ ∗).

In the above, (4) holds by the definition of τ ∗

vs(t,Er, τ) = V (t + 1,Er, τ + 1)

(6)≤ V (t + 1,Er, τ
∗ + 1) + Rs(τ + 1) − Rs(τ ∗ + 1)

= vi(τ) + Rs(τ + 1) − Rs(τ ∗ + 1)

(7)≤ vi(τ ∗) + Rs(τ) − Rs(τ ∗).

In the above, (6) holds by Property 1 and (7) holds by concavity of Rs(·). Therefore, we
have

vs(t,Er, τ) ≥ vi(t,Er, τ)

for τ ≥ τ ∗. �

Appendix B: Derivation of email/twitter application MDP

We now derive the value function in the Email/Twitter Application. Recall that the system
state in this application is represented by the tuple (t,Er, τ1, τ2). We begin by defining vc(·)
and vi(·),

vc(t,Er, τ1, τ2) = ELc

[
V (t + Lc, (Er − Lc ∗ ec)+, τ1 + Lc, τ2 + Lc)

+ min

(⌊
Er

ec

⌋
,Lc

)
Rc

]
, (12)

vi(t,Er, τ) = V (t + 1,Er, τ1 + 1, τ2 + 1), (13)

where x+ = max(0, x). These equations are similar to the single-application case. The same
goes for the equations for individual synchronization, vs

1(·) and vs
2(·),

vs
1(t,Er, τ1, τ2) = V

(
t + 1, (Er − es

1)
+,1, τ2 + 1

) + Rs
1(τ1)1{Er ≥ es

1}, (14)

vs
2(t,Er, τ1, τ2) = V

(
t + 1, (Er − es

2)
+, τ1 + 1,1

) + Rs
2(τ2)1{Er ≥ es

2}, (15)

where in each case, we see that τi is reset to 1 when that service is synched. Finally, for
synching both services together, we have vs

b(·) as

vs
b(t,Er, τ1, τ2) = V

(
t + 1, (Er − es

b)
+,1,1

) + (
Rs

1(τ1) + Rs
2(τ2)

)
1{Er ≥ es

b}. (16)

For synchronizing both services together, we receive the reward for both services. We also
note that the energy cost here is es

b , which is the energy cost for synchronizing both services
simultaneously. Using these value functions, we can now obtain (4) and (5), the optimality
equation and initial conditions for the MDP.

158 E. Jung et al.

Appendix C: Sample email envelope

Delivered-To: XXXXXX@gmail.com
Received: by 10.229.83.135 with SMTP id f7cs43124qcl;

Tue, 5 Jan 2010 14:07:02 -0800 (PST)
Received: by 10.224.98.34 with SMTP id o34mr87019qan.327.1262729222170;

Tue, 05 Jan 2010 14:07:02 -0800 (PST)
Return-Path: <sender@email.com>
Received: from mail-qy0-f184.google.com (mail-qy0-f184.google.com [209.85.221.184])

by mx.google.com with ESMTP id 16si26880281qyk.15.2010.01.05.14.07.01;
Tue, 05 Jan 2010 14:07:01 -0800 (PST)

Received-SPF: pass (google.com: domain of sender@email.com designates
209.85.221.184 as permitted sender) client-ip=209.85.221.184;
Authentication-Results: mx.google.com; spf=pass (google.com: domain of
sender@email.com designates
209.85.221.184 as permitted sender) smtp.mail=sender@email.com; dkim=pass
(test mode) header.i=@gmail.com
Received: by mail-qy0-f184.google.com with SMTP id 14so6988382qyk.11

for <ucdmcsg@gmail.com>; Tue, 05 Jan 2010 14:07:01 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;

d=gmail.com; s=gamma;
h=domainkey-signature:received:received:message-id:date:from
:user-agent:mime-version:to:subject:content-type
:content-transfer-encoding;

bh=Pg7uu0WObNWgjgx2hQHxGxsY0sy3f8gP/kBF+yYlr54=;
b=QHJf3qKn+Yq9sl76eDML2UvaQkAsFC5YHMgRWWE5q+vkX8iMu4Y+reqSSOPNyxmeMV
SxVkG8xVLWInqEa2dsSNpXUgqzxp1AEctMYrY4Gh9pk3rjHGiumWxEwAhvN5SZLi5Uyb
J3OnRes6F2afae37z9FDE1PhDGpK1+x75GVd0=

DomainKey-Signature: a=rsa-sha1; c=nofws;
d=gmail.com; s=gamma;
h=message-id:date:from:user-agent:mime-version:to:subject
:content-type:content-transfer-encoding;

b=PF/T/SanmAgXWh3KlXhoqjJxxuusD6Zk31u4MNcZTUb7bkiB/Ac0zUeUC12CXIfK22
QSiQPfcB+5X0jh4xgdOmyLIkK+fgZ8TLX+BH5hbFeF48yGiZv1AIKagT5Bnb2qBqz3A9
/+qAyShpKs9UrkXBgjT2nHbseS6tvDoJIn/z0=

Received: by 10.224.88.75 with SMTP id z11mr4826971qal.70.1262729221044;
Tue, 05 Jan 2010 14:07:01 -0800 (PST)

Return-Path: <sender@email.com>
Received: from dhcp-169-237-152-78.ece.ucdavis.edu ([169.237.152.78])

by mx.google.com with ESMTPS id 22sm17646587qyk.6.2010.01.05.14.06.59
(version=SSLv3 cipher=RC4-MD5);
Tue, 05 Jan 2010 14:07:00 -0800 (PST)

Message-ID: <4B43B802.7090206@gmail.com>
Date: Tue, 05 Jan 2010 14:06:58 -0800
From: Sender <sender@email.com>
User-Agent: Postbox 1.1.0 (Macintosh/20091201)
MIME-Version: 1.0
To: XXXXXX@gmail.com
Subject: Test #10
Content-Type: text/plain; charset=ISO-8859-1; format=flowed
Content-Transfer-Encoding: 7bit

References

1. Javamail port for the android plateform. http://code.google.com/p/javamail-android/
2. Twitter4j—a java library for the twitter api. http://yusuke.homeip.net/twitter4j/en/index.html
3. Akella V, van der Schaar M, Kao W-F (2005) Proactive energy optimization algorithms for wavelet-

based video codecs on power-aware processors. In: IEEE international conference on multimedia and
Expo, pp 566–569

4. Alur R, Kanade A, Weiss G (2008) Ranking automata and games for prioritized requirements. In: 20th
international conference on computer-aided verification

5. Apple. Apple’s app store downloads top three billion. Press Release, January 2010. http://www.
apple.com/pr/library/2010/01/05appstore.html

6. Benini L, Bogliolo A, Paleologo GA, Micheli GD (1998) Policy optimization for dynamic power man-
agement. IEEE Trans Comput Aided Des Integr Circuits Syst 18:813–833

http://code.google.com/p/javamail-android/
http://yusuke.homeip.net/twitter4j/en/index.html
http://www.apple.com/pr/library/2010/01/05appstore.html
http://www.apple.com/pr/library/2010/01/05appstore.html

Markov decision process (MDP) framework for software power 159

7. Bronger T Python gpib etc. support with pyvisa, controlling gpib, rs232, and usb instruments.
http://pyvisa.sourceforge.net/

8. Fei Y, Zhong L, Jha NK (2008) An energy-aware framework for dynamic software management in
mobile computing systems. ACM Trans Embed Comput Syst 7(3):1–31

9. Flinn J, Satyanarayanan M (2004) Managing battery lifetime with energy-aware adaptation. ACM Trans
Comput Syst 22(2):137–179

10. Google. Android, official website, April 2009. http://www.android.com/
11. Google. Google offers new model for consumers to buy a mobile phone. Press Release, January 2010.

http://www.google.com/intl/en/press/pressrel/20100105_phone.html
12. HTC. Htc g1 overview. http://www.htc.com/www/product/g1/overview.html
13. Kansal A, Potter D, Srivastava M (2004) Performance aware tasking for environmentally powered sensor

networks. SIGMETRICS Perform Eval Rev 32(1):223–234
14. Mohapatra S, Cornea R, Dutt N, Nicolau A, Venkatasubramanian N (2003) Integrated power manage-

ment for video streaming to mobile handheld devices. In: MULTIMEDIA’03: proceedings of the eleventh
ACM international conference on multimedia. ACM, New York, pp 582–591

15. Mohapatra S, Cornea R, Oh H, Lee K, Kim M, Dutt N, Gupta R, Nicolau A, Shukla S, Venkatasub-
ramanian N (2005) A cross-layer approach for power-performance optimization in distributed mobile
systems. In: IPDPS’05: proceedings of the 19th IEEE international parallel and distributed processing
symposium (IPDPS’05)—workshop 10. IEEE Comput Soc, Los Alamitos, p 218.1

16. Narayanan D, Satyanarayanan M (2003) Predictive resource management for wearable computing. In:
MobiSys’03: Proceedings of the 1st international conference on mobile systems, applications and ser-
vices. ACM, New York, pp 113–128

17. Ravi N, Scott J, Han L, Iftode L (2008) Context-aware battery management for mobile phones. In: Sixth
annual IEEE international conference on pervasive computing and communications, pp 224–233

18. Satyanarayanan M, Narayanan D (2001) Multi-fidelity algorithms for interactive mobile applications.
Wirel Netw 7(6):601–607

19. van der Schaar M, Turaga D, Akella V (2004) Rate-distortion-complexity adaptive video compression
and streaming. In: International conference on image processing, ICIP’04, vol 3, pp 2051–2054

20. Wanghong Y, Nahrstedt K, Sarita Adve DJ, Kravets RK (2006) Grace-1: Cross-layer adaptation for
multimedia quality and battery energy. IEEE Trans Mob Comput 5(7):799–815

21. Zeng H, Ellis CS, Lebeck AR, Vahdat A (2002) Ecosystem: managing energy as a first class operating
system resource. ASPLOS 37(10):123–132

http://pyvisa.sourceforge.net/
http://www.android.com/
http://www.google.com/intl/en/press/pressrel/20100105_phone.html
http://www.htc.com/www/product/g1/overview.html

	Markov decision process (MDP) framework for software power optimization using call profiles on mobile phones
	Abstract
	Introduction
	Problem formulation
	Markov decision process
	MDP model for data synchronization
	Optimality equation

	MDP model for multiple delay-tolerant applications
	Energy threshold heuristic
	Calculating the energy threshold
	Synchronization policy for multiple applications based on the energy threshold

	High priority applications

	Experimental setup
	Power profiling
	Android application

	Voice activity profiling

	Results and discussion
	Email synchronization
	Twitter/email synchronization
	Real call traces
	Performance of energy threshold heuristic
	Synthetic call traces

	Discussion

	Related work
	Conclusions
	Acknowledgement
	Open Access
	Appendix A: Proof of Theorem 1
	Appendix B: Derivation of email/twitter application MDP
	Appendix C: Sample email envelope
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

