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Abstract

Combinatorial Phylogenetics of Reconstruction Algorithms

by

Aaron Douglas Kleinman

Doctor of Philosophy in Mathematics

Designated Emphasis in Computational and Genomic Biology

University of California, Berkeley

Professor Lior Pachter, Chair

Phylogenetics is the study of the evolutionary history of different organisms. A reconstruction
algorithm is a technique for producing a tree from molecular or morphological data that is
believed to have evolved in a tree-like fashion. In this thesis, we present a number of new
combinatorial results that have implications for the accuracy and significance of some of
these methods.

We begin by exploring generalizations of phylogenetic trees known as PQ- and PC-trees.
In Chapter 2, we show how these objects, which have appeared repeatedly throughout com-
puter science literature, arise naturally by relaxing the combinatorial condition in the splits
equivalence theorem for regular trees. We determine the appropriate analog of the four-point
condition and precisely characterize the metrics that come from these trees. One of our main
results is an algorithm to constructively produce the PQ- or PC-tree that best describes a
certain class of metrics. Throughout, we describe a single framework that unites a number
of different known combinatorial objects, many for the first time.

In Chapter 3, we study the robustness of a class of distance-based reconstruction algo-
rithms known as minimum evolution. We focus on those methods that are linear in the
elements of the dissimilarity. Our main result is that one such method, known as balanced
minimum evolution, is the unique method with a certain accuracy guarantee. Although this
is a significant result in its own right, it is especially important because balanced minimum
evolution is the theoretical underpinning of neighbor-joining, the gold standard of distance-
based reconstruction algorithms. Our theorem is the last in a long line of results, stretching
back over 20 years, that “explain” neighbor-joining, and it completes our understanding of
the algorithm. We next compute the robustness of the traveling salesman linear form as a
reconstruction method for Kalmanson dissimilarities. Lastly, we define families of balanced
minimum evolution- and traveling salesman-like forms parameterized by real functions on
the set of X-splits and investigate their robustness.
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In Chapter 4, we examine the problem of bounding the size of maximum agreement
subtrees between pairs of trees. Several polynomial-time algorithms already exist for this,
but the extremal problem of how large the agreement subtree must be remains open. In
1992, Kubicka, Kubicki and McMorris conjectured that there exists a constant c such that
a pair of trees on cn leaves has a maximum agreement subtree on n leaves. We make
substantial progress toward this conjecture and show cn logn leaves suffice. This represents a
large improvement over the previous best bound, cc

n
. We also adapt a proof of the Erdös-

Szekeres theorem to give an interval of length 2 containing the minimum size |X| such that
two caterpillar X-trees must have an agreement subtree of size n.
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Chapter 1

Introduction

1.1 Preliminaries

In his “Notebook B: Transmutation of species” [16], Charles Darwin drew a single figure to
illustrate the shared ancestry of extant species (Figure 1.1). That figure is a depiction of a
graph known as a rooted X-tree [63].

Definition 1.1.1. Let X be a finite set. A tree is a connected acyclic graph. A phylogenetic
X-tree is a pair (T, φ), where T is an unrooted tree T = (V,E), and φ is a map φ : X → V
such that φ(X) contains every vertex of degree at most 2. Two X-trees (T1, φ1), (T2, φ2) are
isomorphic if there exists a graph isomorphism Φ : T1 → T2 such that φ2 = Φ ◦ φ1. A rooted
X-tree is an X-tree with a special vertex, denoted r, of degree at least 2. Two rooted X-trees
T1, T2 with roots r1, r2 are isomorphic if there exists a graph isomorphism Φ : T1 → T2 such
that φ2 = Φ ◦ φ1 and r2 = Φ(r1).

Rooted X-trees are useful because they graphically describe how evolution occurs. Extant
species are represented by the leaves of the tree, while internal vertices represent speciation
events. The root represents a shared ancestor of the extant species, and vertices on a
path from a vertex v to the root correspond to ancestors of v. Such trees are useful in
other classification problems as well. For example, they have been used when X is a set of
individuals in a population, or a set of languages [24]. In most cases the vertices of primary
interest are the leaves.

Definition 1.1.2. An X-tree (T, φ) is a phylogenetic X-tree if φ is a bijection from X to
the leaves of T . We call a phylogenetic X-tree trivalent if, in addition, each internal vertex
is of degree 3. A rooted binary X-tree is a rooted X-tree whose leaves are in bijection with
the elements of X, and with every internal vertex of degree 3 except for the root, which is
of degree 2.

The fundamental question of phylogenetics is: Given data D on X that arose from a
phylogenetic X-tree T , is it possible to reconstruct T? The kind of data at our disposal can
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Figure 1.1: The first recorded phylogenetic tree, as seen in one of Darwin’s notebooks.

take many forms. In biology, one often obtains D by sequencing the genomes of the extant
species and computing a multiple alignment of homologous regions. Each column of this
alignment gives us a single nucleotide at each leaf, and the whole alignment is considered
as many independent samples from the same underlying distribution. We assume these
nucleotides evolved according to some Markov process running on the hidden tree T with
rates parameterized by the branch lengths of the tree; with a suitable prior, the problem
then becomes that of computing the maximum likelihood tree. Bayesian approaches to tree
reconstruction have been very effective in practice, but they can also be computationally
expensive.

Another popular approach uses character data. A character consists of a discrete set
S of states and a map χ : X → S that assigns one of these states to each taxon. These
characters can correspond to a nucleotide at a particular genomic site, a morphological
feature or some other inheritable trait. The data D is a collection of characters, and the
method of maximum parsimony seeks to reconstruct the tree which explains these characters
with minimal mutations. This can be effective, but maximum parsimony is known to not
be statistically consistent [31] – that is, even as the amount of data tends to infinity, a
character-based approach may not return the correct tree topology.

Our main focus will be on distance-based methods. Here, the data takes the form of
a matrix of pairwise distances between the taxa. This can be computed from a multiple
alignment; one simple method would be to assign two taxa a distance equal to the number
of sites where their alignment differs. There are ways of computing genomic distances directly
without aligning sequences; also, the distances can come from other characteristics of the
taxa and not be genetic at all. Trees are fundamentally combinatorial objects, and in this
thesis we will study how their combinatorics both inform and are informed by distance-based
methods in phylogenetics.
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1.2 Combinatorics of X-trees

We begin with an introduction to some of the fundamental combinatorics that will serve as
background to the upcoming chapters. General references include [23, 63].

Definition 1.2.1. A split of X is a partition of X into two nonempty pieces A|B. A split is
trivial if |A| or |B| is 1. A set of splits containing all the trivial splits called a split system.
Two X-splits A1|B1, A2|B2 are compatible if A1 ⊆ A2, A1 ⊆ B2, B1 ⊆ A2 or B1 ⊆ B2, and
are incompatible otherwise.

Removing an edge e of a phylogenetic X-tree T disconnects the tree and partitions the
vertices into two pieces V1, V2, and thus gives rise to an X-split Se = φ−1(V1)|φ−1(V2). Doing
this for each edge of T = (V,E) allows us to associate a split system S(T ) = {Se}e∈E to T .
If S ∈ S(T ) we say T contains the split S. It is easy to check that each pair of splits in such
a system is compatible. A classic result says that the converse also holds [10]:

Theorem 1.2.2 (Splits equivalence theorem). A split system is of the form S(T ) if and only
if the elements of the split system are pairwise compatible.

Horizontal gene transfers, hybridization and reticulation mean real-world biological data
does not always arise from a tree-like topology. And even when it does, noise might inject
conflicting signals into the data; coercing the data to fit a tree might require throwing away
valuable information. Theorem 1.2.2 suggests a convenient way of generalizing trees by
relaxing the compatibility condition. In Chapter 2 we will show precisely how PQ- and PC-
trees, combinatorial objects that have arisen in a number of different contexts in computer
science, are derived in this way.

We can use splits to define a distance between trees. Given two binary X-trees T1, T2,
let d(T1, T2) = |∆(S(T1),S(T2))|, where ∆(A,B) is the symmetric difference. Two trees are
said to be separated by a nearest-neighbor interchange (NNI) if d(T1, T2) = 2, the smallest
possible nonzero value. This means one tree can be obtained from the other by transposing
two subtrees that are precisely three edges apart. We can then represent the set TX of
trivalent X-trees as a graph whose vertices correspond to trees, and whose edges correspond
to pairs of trees separated by an NNI. This graph gives a convenient way of exploring tree
space, and in Chapter 3, we will prove our main theorem by comparing a tree to each of its
NNIs.

Definition 1.2.3. A clade of X is a subset A ⊂ X such that A|X \ A is a split of X

In Figure 1.2, and in other figures throughout, circles represent vertices while triangles
represent subtrees or clades.

Definition 1.2.4. A quartet is a 4-tuple of distinct taxa (ij : kl) partitioned into two sets
of size two. We say a tree T contains (ij : kl) if there exists a split S = A|B of T such that
i, j ∈ A, k, l ∈ B.
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Figure 1.2: Three trees T, T ′, T ′′ that are nearest-neighbor interchanges of each other.

Let T ∈ Tn and let Q(T ) denote the set of
(
n
4

)
quartets of T . Then Q(T1) = Q(T2) if and

only if T1 and T2 are isomorphic [23].

1.3 Distances on trees

While leaf-labeled trees are topologically interesting objects in and of themselves, in phy-
logenetics it is desirable to associate lengths with the edges of trees. Such lengths may
correspond to time (in years), or to the number of mutations (usually an estimate based on
a statistical model). This gives rise to a matrix of pairwise distances on X.

We now make this more precise.

Definition 1.3.1. A dissimilarity on X is a map D : X ×X → R such that Dij = Dji and
Dii = 0 for all i ∈ X.

For notational convenience, we will occasionally write D(i, j) to mean Dij. Let w :
E(T )→ R≥0 be a function that assigns a non-negative weight to each edge of T , and let P T

ij

denote the path between i and j. (We occasionally write PT (i, j) to mean the same thing).
Then w naturally gives rise to the dissimilarity values

Dij =
∑

e∈PT
ij

we.

Such a dissimilarity is said to be T -additive. If it is T -additive for some T , we say it is



CHAPTER 1. INTRODUCTION 5

A

B

C

D

2

5

4
6

2
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A 0 7 12 8

B 7 0 15 11

C 12 15 0 8

D 8 11 8 0




Figure 1.3: A weighted X-tree on 4 taxa and its corresponding tree-additive dissimilarity.

tree-additive. More succinctly, let ST be the
(
n
2

)
× |E| matrix given by

(ST )ij,e =

{
1 e ∈ P T

ij ,

0 otherwise.
(1.1)

Consider w = (we) as a vector of length |E|. Then D is tree-additive if D = STw for some
non-negative w.

Here’s still another way. Given a split A|B, let the split pseudometric σA|B be the
dissimilarity given by

σA|B(i, j) =

{
1 |{i, j} ∩ A| = 1

0, otherwise.

(We can extend this in the natural way to the case when A,B are disjoint clades). Given an
edge e ∈ E(T ), let σe denote σA|B where A|B is the split corresponding to e. Then D is T -
additive if and only if D =

∑
e∈E(T ) weσe for some non-negative weighting w : E(T )→ R≥0.

Although real-world data is expected to arise from a rooted tree, distance-based recon-
struction methods cannot detect the location of the root. This is because the distances are
assumed to arise from a time-reversible process, so the location of the root does not affect the
resulting dissimilarity. Such reconstruction methods thus attempt to determine the unrooted
tree topology.

A classic theorem [56] gives a precise combinatorial characterization of the space of tree-
additive dissimilarities.

Theorem 1.3.2 (Four-point condition). A positive dissimilarity D is tree-additive for a tree
with nonnegative edge weights if and only if, for all i, j, k, l ∈ X,

Dij +Dkl ≤ max{Dik +Djl, Dil +Djk}. (1.2)

One can check that D is tree-additive and, if it is, reconstruct the underlying tree in
O(n2) time. Real world data is never this nice, however. One reason is that evolution –
particularly at the microbial level – does not always proceed in a purely tree-like fashion.
Instead, horizontal gene transfers, hybridization and reticulation cause conflicting signals in
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the underlying data and are thus better modeled by a more general structure known as a
splits network [51]. Several techniques have been developed for recovering an underlying
network from a dissimilarity [8, 43] but they have been slow to be adopted by biologists,
perhaps because their visualization does not look very tree-like. In Chapter 2 we generalize
Theorem 1.3.2 to metrics arising from PQ- and PC-trees, combinatorial objects that inter-
polate between traditional trees and split networks. It is our hope that these objects, which
can be used to model non-treelike data while still looking visually like a tree, will prove more
useful to biologists.

Another reason metrics are rarely tree-additive is because the space of tree-additive dis-

similarities has measure zero in R(n
2), so the presence of noise almost surely perturbs the

dissimilarity to be non-tree-additive. So Theorem 1.3.2 also motivates the development of
algorithms that, given a dissimilarity D, return the tree topology T such that T “best”
explains D. Broadly speaking, there are two distinct challenges to this problem. The first is
theoretical: How should we define “best-fit tree”? Typically, one defines a scoring function

φ : TX × R(n
2) → R such that φ(T,D) measures how good the tree topology T explains the

data D. We then choose arg maxT φ(T,D), the tree with the best score. For example, we
might assume that the data evolved according to a probabilistic model. In this setting φ
could be the likelihood function, and arg maxT φ(T,D) is the maximum likelihood estimate
of the tree topology. In minimum evolution (ME) methods, which we study in Chapter 3,
φ(T,D) represents the sum of the branch lengths of the tree topology, assuming D came
from T ; in this case we wish to choose the tree that minimizes φ(·, D).

Let Tn = T[n] be the set of trivalent X-trees on n leaves. A classic result [56] states

|Tn| = (2n−4)!
2n−2(n−2)!

= (2n − 5)(2n − 7)(2n − 9) · · · 3 · 1, which grows super exponentially in
n. Hence on sets of taxa of meaningful size it is not usually feasible to consider every
possible tree topology. This leads to the second principle difficulty: once we have chosen a
function φ, how can we rapidly compute the maximizing tree? Answering this algorithmic
question is essential if the theory is to be applied to real-world data. In practice it is usually
impossible to find the maximizing tree in polynomial time, so we often satisfy ourselves with
approximation algorithms. Such algorithms in turn require their own theoretical results
guaranteeing their accuracy and effectiveness, and in Chapter 3 we discuss the implications
of our theoretical results for the accuracy of approximating algorithms.

To quantify their accuracy, we need a few definitions. A distance-based reconstruction
algorithm is an algorithm that takes a dissimilarity as input and produces an unrooted tree
topology as output. Throughout, we use the word “algorithm” and “method” interchange-
ably.

Definition 1.3.3. A reconstruction method is consistent if, when given a T -additive dis-
similarity as input, it returns T .

The term consistent refers to statistical consistency: As more data is gathered, we expect
the observed pairwise distances D to converge to the true distances D̂. The statement that
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φ is consistent is precisely the claim that we recover the correct tree topology T in the limit
when D = D̂ is T -additive.

Consistency is a weak guarantee, and we would like to know how effective our reconstruc-
tion method is when our data is not tree-additive. The l∞ distance between two dissimilarities
D, D̂ is defined to be

||D − D̂||∞ = max
i,j
|Dij − D̂ij|.

Definition 1.3.4. A tree reconstruction method has l∞ radius α if, for each T -additive dis-
similarity D̂ =

∑
e∈PT

ij
weσe with minimum branch length wmin = minewe, and dissimilarity

D with ||D − D̂||∞ < αwmin, the method returns T when given D as input.

In the literature, this is also known as the method’s safety radius [1]. For example, let

D =




0 6.4 12.8 8
6.4 0 14.3 11.3
12.8 14.3 0 8.5

8 11.3 8.5 0




Then ||D − D̂||∞ = 0.8, where D̂ is the dissimilarity from Figure 1.3. Since the minimum
branch length of the tree underlying D̂ is 2, a reconstruction algorithm with l∞ radius greater
than 0.8

2
will return T when given D as input.

Any method with positive l∞ radius is necessarily statistically consistent. No reconstruc-
tion method can have l∞ radius greater than 1

2
. This is because there is a dissimilarity D

and distinct trees T1, T2 with corresponding tree-additive dissimilarities D̂1, D̂2 and identical
minimum branch length wmin such that ||D − D̂1||∞ = ||D − D̂2||∞ = 1

2
wmin. For example,

D̂1 =




0 4 6 6
4 0 6 6
6 6 0 4
6 6 4 0


 , D̂2 =




0 6 4 6
6 0 6 4
4 6 0 6
6 4 6 0


 , D =




0 5 5 6
5 0 6 5
5 6 0 5
6 5 5 0


 .

If a reconstruction algorithm had l∞ radius > 1
2
, upon receiving D as input it would have to

return both T1 and T2, a contradiction.
In Chapter 3, we will examine a class of reconstruction methods known as minimum

evolution methods which are linear in the elements of D. Our main theorem is that there
is a unique method with l∞ radius 1

2
. This maximally robust method, known as balanced

minimum evolution (BME), was discovered by Pauplin 2000 [58]. It is now known [36] to
be the theoretical underpinning behind the neighbor-joining algorithm [62], one of the most
widely-used distance-based reconstruction algorithms of all time. Although the relationship
between accuracy guarantees made by a greedy algorithm and its theoretical counterpart are
not well understood, our result strongly suggests that any greedy distance-based algorithm
should be based upon BME.
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In the final part of Chapter 3, we investigate the minimum evolution reconstruction
problem for Kalmanson metrics. We show that the traveling salesman linear form is the only
consistent method, and prove it has l∞ radius n−3

2
on n taxa. We also define generalizations

of the BME and traveling salesman linear form and investigate their robustness.
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Chapter 2

Affine and Projective Tree Metric
Theorems

This chapter is based on joint work with Lior Pachter and Matan Harel that is scheduled
to appear in [48].

2.1 Introduction

As discussed in the introduction, dissimilarity maps derived from data are rarely exact tree
metrics for two reasons. First, some evolutionary mechanisms may not be realizable on
trees. Second, even when evolution occurs in a tree-like fashion, noise and high variance can
produce signals that conflict with those from the underlying topology. In these cases, fitting
the data to a tree might result in losing valuable information.

Trees can be defined by pairwise compatible split systems, so it is natural to generalize
them by considering other collections of splits. One natural class to consider is the following.

Definition 2.1.1. A circular ordering C = {x1, . . . , xn} is a bijection between X and the
vertices of a convex n-gon Pn such that xi and xi+1 map to adjacent vertices of Pn (where
xn+1 := x1). Let Si,j denote the split {xi, xi+1, . . . , xj−1}|{xj, xj+1, . . . , xi−1} and let S(C) =
{Si,j|i < j}. We say a split S is circular with respect to a circular ordering C if S ∈ S(C),
and a split system S is circular if S ⊆ S(C) for some circular ordering C.

Consider a planar embedding of an X-tree. Reading the taxa clockwise gives a circular
ordering C, and every split S ∈ S(T ) is compatible with C. The splits of T are thus
compatible with each of the 2n−2 circular orderings of T . Given a set E of circular orderings,
let S(E) = ∩C∈ES(C) be the system of splits that are circular with respect to each ordering
in E . The split system associated with a trivalent X-tree arises in this way from a family
E of 2n−2 circular orderings [63], and a tree metric is obtained by associating non-negative
weights to each split in the system. Kalmanson metrics, which were first introduced in the
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study of traveling salesmen problems where they provide a class of metrics for which the
optimal tour can be identified in polynomial time [45], correspond to the case when |E| = 1.

Kalmanson metrics can be visualized using split networks [43]. We do not provide a
definition, but show an example in Figure 2.1 (drawn using the software SplitsTree4). The




A B C D E F G

A 0 32 17 77 39 86 39
B 32 0 34 77 21 86 39
C 17 34 0 66 46 75 46
D 77 77 66 0 84 13 50
E 39 21 46 84 0 93 46
F 86 86 75 13 93 0 59
G 39 39 46 50 46 59 0
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F

D

G

B

E10.0

Figure 2.1: A Kalmanson metric (left) visualized as a split network (right).

neighbor-net [8] and MC-net [28] algorithms provide a way to construct circular split systems
from dissimilarity maps, but despite having a number of useful properties [9, 52], they
have not been widely adopted in the phylogenetics community. This is likely because split
networks (such as in Figure 2.1) fail to reveal the “treeness” of the data. More specifically,
the internal nodes of the split network do not correspond to meaningful “ancestors” as do
the internal nodes in X-trees. Other approaches to visualizing “treeness,” e.g. [72], do reveal
the extent of signal conflicting with a tree in data, but do not produce the splits underlying
the discordance.

We propose that PQ- and PC-trees, first developed in the context of the consecutive
ones problem [5, 41] and for graph planarity testing [40, 65], are convenient structures that
interpolate between X-trees and circular split systems. The main result of this chapter is
Theorem 2.4.4. Given a Kalmanson metric, the theorem shows how to construct a “best fit”
PC-tree which realizes the metric and captures the“treeness” of it.

Another (expository) goal of this chapter is to organize, for the first time, existing re-
sults on PC-trees, their cousins PQ-trees, and corresponding metrics (Theorem 2.4.16 in
Section 2.4) into a single unified framework. As a prelude, we illustrate the types of results
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we derive using a classic theorem relating rooted X-trees to special set systems that encode
information about shared ancestry.

Definition 2.1.2. A hierarchy H over a set X is a collection of subsets of X such that:

(i) X ∈ H, and {x} ∈ H for all x ∈ X,

(ii) A ∩B ∈ {∅, A,B} for all A,B ∈ H.

The requirement that each {x} ∈ H is not part of the usual definition of hierarchy but
its inclusion here will simplify the statements of later results.

Proposition 2.1.3. There is a natural bijection between hierarchies over X and rooted
phylogenetic X-trees.

Proposition 2.1.3, which we will prove constructively in Section 2, is an elementary but
classic result and has been discovered repeatedly in a variety of contexts [25, 38]. For
example, in computer science, hierarchies are known as laminar families where they play an
important role in the development of recursive algorithms represented by rooted trees [29].
Hierarchies are also important because they are the combinatorial structures that underlie
ultrametrics.

Definition 2.1.4. An ultrametric is a symmetric function D : X ×X → R such that

D(x, y) ≤ max{D(x, z), D(y, z)} ∀x, y, z ∈ X.

Definition 2.1.5. An indexed hierarchy is a hierarchy H with a non-negative function
f : H → R≥0 such that for all A,B ∈ H, A ⊂ B ⇒ f(A) ≤ f(B).

The extension of Proposition 2.1.3 to metrics, proved in [44], exhibits a bijection between
ultrametrics and inexed hierarchies. The proposition is an instance of a tree metric theorem
that associates a class of combinatorial objects (in this case, rooted X-trees) with a class
of metrics (in this case, ultrametrics). Our results organize other tree metric theorems that
have been discovered (in some cases independently and multiple times) in the contexts of
biology, mathematics and computer science.

In particular, we investigate relaxations of Definitions 1.1.1 and 2.1.2 for which there
exist analogies of Theorem 1.3.2 and Proposition 2.1.3. For example, hierarchies are special
cases of pyramids [20], which can be indexed to produce strong Robinsonian matrices [59].
Proposition 2.4.10 (originally proved in [20]) states that these objects correspond to each
other mimicking the correspondence between hierarchies and ultrametrics.

In discussing tree metric theorems we adopt the nomenclature of Andreas Dress who
distinguishes two types of objects and theorems: the affine and the projective [21]. Roughly
speaking, these correspond to “rooted” and “unrooted” statements respectively, and we use
these terms interchangeably. At every step we provide maps for transitioning between the two
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worlds. For example, a hierarchy is an affine concept whose projective analog is a pairwise
compatible split system. Similarly, unrooted X-trees are the projective equivalents of rooted
X-trees, and tree metrics are the projective equivalents of ultrametrics. We’ll see that
Kalmanson metrics are to tree metrics as Robinsonian matrices [59] are to ultrametrics, and
circular split systems are to pairwise compatible split systems as pyramids are to hierarchies.
We use PQ-trees [5] and their projective analogs PC-trees [65] to link all of these results.
This will also illustrate the general fact (which will show up again in Chapter 4) that when
considering a question about unrooted trees, it is often fruitful to examine a rooted version.

We begin by proving Proposition 2.1.3, both for completeness and to introduce some of
the notation that we use. A rooted X-tree T = (V,E) has a natural partial ordering on its
vertices: For u, v ∈ V , we say u 4 v if u = v or if v lies on the unique path from u to the
root. Given v ∈ V , let Hv = {x ∈ X|x 4 v} and α(T ) = {Hv|v ∈ V }.

Proposition 2.1.6. The map α is a bijection from rooted phylogenetic X-trees to hierarchies
over X.

Proof. Let (T, φ) be a rooted phylogenetic X-tree with root r. Hr = X and Hφ(x) = {x} for
all x ∈ X, so H satisfies (1) of Definition 2.1.2. Consider any two Hu, Hv ∈ α(T ). If u 4 v
then Hu ∩Hv = Hu, if v 4 u then Hu ∩Hv = Hv, and otherwise Hu ∩Hv = ∅. So each pair
of elements in α(T ) satisfies (2) of Definition 2.1.2, and α(T ) is a hierarchy.

For the reverse direction, let H be a hierarchy over X. Let T = (V,E) be the digraph
with V = {vA|A ∈ H} and with edges denoting minimal inclusion: T has an edge from vB
to vA if and only if A ⊂ B and there does not exist C ∈ H such that A ( C ( B. We will
show that T is a tree. First note that by downward induction on |C| each vertex vC with
C 6= X is connected to vX and has at least one parent. Now suppose vA, vB are distinct
parents of vC . Then A ∩ B 6= ∅, so without loss of generality by the hierarchy condition
A ⊂ B. But then C ⊂ A ⊂ B, a contradiction. Thus T is connected and has one fewer edge
than vertices, so T is a tree with root vX . Define the map φ : X → V by φ(x) = vx. This is
a bijection from X to the leaves, so T = (T, φ) is a rooted X-tree with α(T ) = H.

The above proposition gives a characterization of rooted X-trees in terms of collections
of subsets of X. We turn now to the projective analogue of rooted X-trees. Recall removing
an edge e from a projective X-tree gives an X-split Se, and let β(T ) = {Se|e ∈ E(T )}. Then
Theorem 1.2.2 shows β is a bijection from the set of projective X-trees to the set of pairwise
compatible split systems over X.

Finally we show that pairwise compatible split systems and hierarchies are in bijection.
Fix r ∈ X and let S be a set of pairwise compatible splits of X. The unrooting map γr sends
a split S to the component of S that does not contain r. The rooting map δr sends a set
A ⊆ X \ {r} to the split δr(A) = A|X \A. If S is a split system, let γr(S) = {γr(S)|S ∈ S}.

Proposition 2.1.7. S is a pairwise compatible split system over X if and only if γr(S) is a
hierarchy over X \ {r}.
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Proof. Choose S1, S2 ∈ S, with Si = Ai|Bi. If S1, S2 are compatible, then without loss of
generality A1 ∩ A2 = ∅. If r ∈ B1, B2, then γr(Si) = Ai, so γr(S1) ∩ γr(S2) = ∅. If r ∈ A1,
then r 6∈ A2 since A1 ∩ A2 = ∅, and therefore r ∈ B2. In this case γr(S1) = X \ A1 and
γr(S2) = A2, so γr(S1)∩γr(S2) = A2 = γr(S2), again satisfying the hierarchy condition. The
final case follows by symmetry. Conversely, suppose γr(S) is a hierarchy. Then for any two
S1, S2 ∈ S, we have γr(S1)∩ γr(S2) ∈ {∅, γr(S1), γr(S2)}. Checking the cases as above shows
that S1 and S2 must then be compatible splits.

Define the map κr to take an affine X \ {r}-tree T to the projective X-tree obtained
by attaching a vertex with label r to the root of T . The inverse map λr takes a projective
X-tree T to the affine X-tree as follows: Let v be the vertex of T labeled r. Then λr(T ) is
obtained by rooting at the neighbor of v, and then deleting v.

Proposition 2.1.8. If AT and H are the sets of all affine trees and hierarchies over X \{r},
respectively, and PT and PSS are the sets of all projective trees and pairwise compatible splits
systems over X, respectively, then the following diagram commutes:

AT

α
��

κr // PT

β
��

λr
oo

H
δr //

OO

PSS
γr

oo

OO

Each arrow is a bijection; the unlabeled arrows are the inverses of the maps going in the
other direction.

2.2 PQ-trees

We start our generalization of Proposition 2.1.8 with a generalization of rooted X-trees.

Definition 2.2.1. A PQ-tree over X is a rooted phylogenetic X-tree in which every vertex
comes equipped with a linear ordering on its children. Every internal vertex of degree 3 or
less is labeled a P-vertex, and every internal vertex of degree 4 or more is labeled either as a
P-vertex or a Q-vertex. We say two PQ-trees T1, T2 are equivalent (we write T1 ∼ T2) if one
can be obtained from the other by a series of moves consisting of:

(i) Permuting the ordering on the children of a P-vertex,

(ii) Reversing the ordering on the children of a Q-vertex.

We draw a PQ-tree by representing P-vertices as circles and Q-vertices as squares, and
ordering the children of a vertex from left to right as per the corresponding linear order (see
Figure 2.2). For any PQ-tree T over X, define the frontier of the tree as the linear ordering on
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Figure 2.2: Four PQ trees. T1, T2 and T3 are equivalent to each other but T4 is different from
the other three.

X derived from reading the leaves of T from left to right. Let con(T ) = {frontier(T ′)|T ′ ∼
T } be the set of all linear orderings ≺ that are consistent with the PQ structure of T . We
say I is an interval with respect to ≺ if there exist a, b ∈ X such that I = {t|a � t � b}.
Define α to be the map that sends the PQ-tree T to the set of all I ⊆ X such that I is an
interval with respect to every linear ordering in con(T ).

Lemma 2.2.2. α(T ) is a hierarchy if and only if every vertex of T is a P-vertex. If so,
let T ′ be the corresponding normal affine X-tree. Then α(T ) = α(T ′), where α(T ′) is the
hierarchy constructed in Proposition 2.1.6.

Proof. Let v be an internal vertex of T , {c1, c2, . . . , cn} the set of its children, and recall
Hv = {x ∈ X|vx � v} is the set of all the elements x such that the path from vx to the
root includes v. Now Hc1 ∪ · · · ∪Hcn is in α(T ), and if every vertex of T is a P -vertex then
every element of α(T ) will be of this form. In this case α(T ) is identical to the hierarchy
constructed in Proposition 2.1.6. Now suppose T has a Q-vertex v. Then n ≥ 3 and both
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A = Hc1 ∪ Hc2 and B = Hc2 ∪ Hc3 are in α(T ), but A ∩ B = Hc2 is nonempty, so α(T ) is
not a hierarchy.

This shows that the map α on PQ-trees agrees with the α in Proposition 2.1.8. It also
shows that usual affine X-trees are precisely PQ-trees with all P-vertices. Since PQ-trees do
not necessarily give rise to hierarchies, we seek a different combinatorial characterization of
them.

Definition 2.2.3. A collection of subsets P of X is a prepyramid if

(i) X ∈ P and {x} ∈ P for all x ∈ X,

(ii) There exists a linear ordering ≺ on X such that every A ∈ P is an interval with respect
to ≺.

P is a pyramid if, in addition, it is closed under intersection.

If T is a PQ-tree then α(T ) is a prepyramid with respect to any ≺∈ frontier(T ).

Definition 2.2.4. Two subsets A,B of X are compatible if A ∩ B ∈ {∅, A,B}. Otherwise
they are incompatible. A rooted family over X is a collection of sets F such that if A,B ∈ F
are incompatible, then A ∩B,A \B,B \ A and A ∪B are in F .

We are now ready to state the main result of this section.

Proposition 2.2.5. The map α is a bijection from PQ-trees to prepyramids that are rooted
families.

Proof. If T is a PQ-tree, α(T ) is obviously a prepyramid. We now show it is also a rooted
family. Trivially X ∈ α(T ) and {x} ∈ α(T ) for all x ∈ X. Let A,B be incompatible sets
in F := α(T ) and ≺∈ con(A) a linear ordering. We can write A = {t|xA � t � yA} and
B = {t|xB � t � yB} for some xA, xB, yA, yB ∈ X, and by incompatibility we can assume
xA ≺ xB � yA ≺ yB. Then A ∩ B = {t|xB � t � yA}, A ∪ B = {t|xA � t � yB},
A \ B = {t|xA � t ≺ xB} and B \ A = {t|yA ≺ t � yB}. Since each of these four sets is an
interval with respect to ≺ for every ≺∈ con(T ) they are each in α(T ).

It remains to show that if F is a collection of subsets of X which is a prepyramid and
a rooted family, then there exists a unique PQ-tree T such that α(T ) = F . Let F ′ ⊆ F
consist of the sets in F that are compatible with all of F . Then the elements of F ′ are
pairwise compatible, so F ′ is a hierarchy and corresponds to a tree T ′, as in Proposition
2.1.6. Consider the vertices vC in T ′ corresponding to subsets of the form C = A ∪ B with
A,B ∈ F incompatible, and mark those vertices as Q-vertices. For each such vC there is
a natural ordering on its children vC1 , vC2 , . . . , vCn as follows: vCi

< vCj
if the labels of the

leaves in the subtree rooted at vCi
are all ≺ the labels of the leaves of the subtree rooted

at vCj
, where ≺ is the order from the prepyramid condition. Ordering the children of the

Q-vertices of T ′ in this way, we obtain a PQ-tree T .
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We will use induction on |F| to show α(T ) = F and that T is the only such PQ-
tree for which this is true. First, suppose F ′ contains a set A 6= X, |A| > 1. Define
F1 = {C ∈ F|A ⊆ C or A ∩ C = ∅} and F2 = {C ∈ F|A ⊇ C}. F1 ∩ F2 = A, and because
A is compatible with everything, F1 ∪F2 = F . Now F1 is a prepyramid over (X \A)∪ {A}
and F2 is a prepyramid over A, and both are rooted families with |Fi| < |F|. Then the
inductive hypothesis shows there are PQ-trees T1, T2 such that α(Ti) = Fi for i = 1, 2.
Now T1 has a leaf corresponding to A, and the root of T2 also corresponds to A. Graft T2

onto T1 by identifying the root of T2 with the leaf A in T1; this gives a PQ-tree T with
α(T ) = α(T1) ∪ α(T2) = F . Conversely, if T is a PQ-tree with α(T ) = F , T must have a
node v such that the subtree T1 with root v satisfies α(T1) = F1, and the tree T2 obtained
by replacing the subtree T1 with the vertex v and label A gives α(T2) = F2. The inductive
hypothesis gives the uniqueness of T1 and T2, which in turn implies the uniqueness of T .

Now suppose no such set A exists, so F ′ = {{x1}, . . . , {xn}, X}. If F = F ′ then F is
a hierarchy, and the PQ-tree of depth one whose root is a P -vertex is the unique tree such
that α(T ) = F . We now consider the final case, where F contains sets other than X and
the {xi}, and every element in F except for these is incompatible with another element of
F . Without loss of generality assume x1 ≺ x2 ≺ · · · ≺ xn, where ≺ is the ordering under
which F is a prepyramid. Then every element of F is of the form x[i:j] := {xi, xi+1, · · · , xj}
for 1 ≤ i ≤ j ≤ n. Let T be the PQ-tree of depth 1 with a Q-vertex root and children xi.
Since α(T ) = {x[i:j]|1 ≤ i ≤ j ≤ n} it is clear α(T ) ⊇ F .

We must show F = α(T ), or equivalently, that x[i:j] ∈ F for all i < j. We will prove this
by induction on n. It’s obvious for n = 3, so suppose n ≥ 4. Let A 6= X be a set in F that is
maximal under inclusion. By assumption |A| > 1 and A is incompatible with some B ∈ F .
By the rooted family condition A ∪ B ∈ F so we must have A ∪ B = X by the maximality
of A. Without loss of generality we may write A = x[1:j], B = x[i:n] with i ≤ j. We claim
j = n− 1. For by the rooted family condition, F contains A \B = x[1:i−1], A∩B = x[i:j] and
B \ A = x[j+1:n]. If j 6= n − 1, B \ A is incompatible with some other set C ∈ F . C must
be of the form C = x[k1:k2] with k1 < j + 1 ≤ k2 < n. If k1 = 1 then C ⊃ A contradicting
the maximality of A. Then k1 6= 1, so A and C are incompatible and A ∪ C = x[1:k2] ∈ F ,
contradicting the maximality of A. Thus j = n−1 and x[1:n−1] ∈ F . By the same reasoning,
x[2:n] ∈ F .

Now let G = {A ∈ F|A ⊆ x[1:n−1]}. Since x[1:n−1] ∈ G, G is a prepyramid over X \ {xn}.
It is also a rooted family. We claim that every element A ∈ G with A 6= {xi}, A 6= X \ {xn}
is incompatible with some other element of G. To see this, write A = x[i:j], j ≤ n − 1 and
suppose j 6= n−1. By our initial assumption, A is incompatible with some setB = x[i′:j′] ∈ F .
If j′ 6= n then B ∈ G gives the incompatible set. Otherwise B and x[1:n−1] are incompatible,
so B∩x[1:n−1] = x[i′:n−1] is in G and is incompatible with A. Finally, suppose j = n−1. Then
A is incompatible with x[n−1:n], so A ∪ x[n−1:n] = x[i:n] ∈ F . This must be incompatible with
some other set B ∈ F . We can write B = x[i′:j′], i ≤ j′ ≤ n − 1, so B ∈ G is incompatible
with A and the claim is proved.

It follows that G is a rooted prepyramid over X \ {xn}, and every element in G other
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Figure 2.3: Four PC-trees. T1, T2 and T3 are equivalent to each other but T4 is different from
the other three.

than X and the {xi} is incompatible with some other element of G. By our inductive
hypothesis, x[i:j] ∈ G for each 1 ≤ i ≤ j ≤ n − 1. We showed that x[n−1:n] ∈ F , and
for each i the sets x[i:n−1] and x[n−1:n] are incompatible, so their union x[i:n] is in F . Thus
F = {x[i:j]|1 ≤ i ≤ j ≤ n}.

2.3 PC-trees

In this section we develop the theory behind the projective equivalent of PQ-trees, charac-
terizing them both geometrically and combinatorially.

Definition 2.3.1. A PC-tree over X is a phylogenetic X-tree where each internal vertex
comes equipped with a circular ordering of its neighbors. Each internal vertex of degree less
than 4 is labeled a P-vertex, and each other vertex is labeled either a P-vertex or a C-vertex
(Figure 2.3). Two PC-trees T1, T2 are said to be equivalent (we write T1 ∼ T2) if one can be
obtained from the other by a series of the following moves:

(i) Permuting the circular ordering of the neighbors of a P-vertex,

(ii) Reversing the circular ordering on the neighbors of a C-vertex.
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For a PC-tree T , let frontier(T ) be the circular ordering given by reading the taxa in
either a clockwise or counterclockwise direction. Let con(T ) = {frontier(T ′)|T ′ ∼ T } and
let β(T ) = ∩C∈con(T )S(C) be the set of splits compatible with every circular ordering of T .

Definition 2.3.2. A split system S is an unrooted split family over X if, for each pair of
incompatible splits S1 = A1|B1, S2 = A2|B2 in S, the splits A1 ∩ A2|B1 ∪ B2, A1 ∩ B2|A2 ∪
B1, A2 ∩B1|A1 ∪B2, and B1 ∩B2|A1 ∪ A2 are all in S as well.

This is just the projective analog of a rooted split family (Definition 2.2.4), and trivially
γr(S) is a rooted family if and only if S is an unrooted split family.

Following the proof in Proposition 2.2.5 that α(T ) is a rooted family for every PQ-tree
T , one can show β(T ) is an unrooted family for every PC-tree T . We now generalize the
map γr to PQ- and PC-trees.

Definition 2.3.3. The unrooting map κr sends a PQ-tree T over X \ {r} to the PC-tree
κr(T ) as follows: Attach a vertex labeled r to the root of T . If vertex v in T has children
{v1, v2, . . . , vk} with linear ordering v1 ≺ v2 ≺ . . . ≺ vk and parent w, in κr(T ) the vertex
has the same neighbors with circular ordering {v1, . . . , vk, w}.

The rooting map λr sends a PC-tree T over X to the PQ-tree over X \ {r} obtained by
rooting at the vertex adjacent to r, deleting r, and replacing each C vertex with a Q vertex.
Let v be such a vertex with a circular ordering C = {v1, . . . , vm}; we may assume the path
from v to the root passes through vm. Then in λr(T ), vertex v has parent vm and children
v1, . . . , vm−1 with linear ordering v1 ≺ v2 ≺ . . . ≺ vm−1.

Since κr and λr are inverses, this immediately gives the following:

Proposition 2.3.4. κr is a bijection from PQ-trees over X \ {r} to PC-trees over X.

Recall that if S is a split of X, the map γr takes S to the component of S not containing r.

Proposition 2.3.5. Let CUF be the set of circular split systems that are unrooted families
over X, and let PRF be the set of prepyramids that are rooted families over X \ {r}. Then
the map γr is a bijection from CUF to PRF .

Proof. δr and γr are inverses, so it suffices to show that γr(CUF ) ⊆ PRF and δr(PRF ) ⊆
CUF . Let S be a circular unrooted split family with circular ordering {x1, . . . , xn} and
suppose r = xi. Then γr(S) is a prepyramid with respect to the linear ordering on X \ {r}
given by xi+1 ≺ xi+2 ≺ · · · ≺ xi−1.

Next, consider S ∈ CUF and two incompatible sets G,H ∈ γr(S), with G = γr(S1) and
H = γr(S2). Assume S1 = A1|B1, S2 = A2|B2 are compatible with A1 ∩ A2 = ∅. If r ∈ A1,
then r ∈ B2 and G ∩H = (X \ A1) ∩ A2 = A2 = H, contradicting the incompatibility of G
and H. The other cases produce similar contradictions, so S1 and S2 must be incompatible.
Thus the splits A1∩A2|B1∪B2, A1∩B2|A2∪B1, A2∩B1|A1∪B2 and B1∩B2|A1∪A2 are all in
S. Assume without loss of generality that G = A1, H = A2. Then γr({A1 ∩A2|B1 ∪B2}) =
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A1 ∩ A2 = G ∩H ∈ γr(S), and similarly G ∪H,G \H,H \G are all in γr(S), so γr(S) is a
rooted family.

Conversely, let F be a prepyramidal rooted family over X \ {r} with linear ordering
≺. δr(F) is circular and contains all the trivial splits, as {x}|X \ {x} = γr({x}) and
{r}|X \ {r} = γr(X \ {r}). The above argument reverses to show δr(G), δr(H) ∈ δr(F)
are incompatible as split systems only if G and H are incompatible as sets. In this case
δr(G ∩H), δr(G ∪H), δr(G \H) and δr(H \G) are in δr(F) so δr(F) is an unrooted family.
Thus, δr(PRF ) = CUF and γr(CUF ) = PRF as required.

The above propositions combine to show that the map κr ◦ α−1 ◦ γr is a bijection from
circular split systems that are unrooted families to PC-trees, and that in fact for a PC-tree
T , κr ◦ α−1 ◦ γr(T ) is precisely the split system arising from T in the natural way. An
example is shown in Figure 2.4. This gives:

Proposition 2.3.6. The following diagram commutes:

PQ

α
��

κr // PC

β
��

λr
oo

PRF
δr //

OO

CUF
γr
oo

OO

where PQ is the set of PQ-trees over X \ {r}, PRF is the set of prepyramids that are rooted
families over X \ {r}, PC is the set of PC-trees over X, and CUF is the set of circular
unrooted families over X.

We next give a geometric characterization of those split systems that come from PC-
trees. We can represent a circular ordering C by an n-gon P whose sides are labeled with
the elements of X. Each diagonal of P divides the set X into two nonempty pieces and
thus gives rise to an X-split. This split lies in C, and every split in C arises in this way; the
edges of P correspond to the trivial splits. Hence the set of C-compatible split systems is
in bijection with the power set of diagonals of P . Two splits S1, S2 in C are incompatible if
and only if the corresponding diagonals of P intersect, and S is a rooted family if and only
if, for each such pair of splits, S also contains the four splits corresponding to the edges of
the quadrilateral whose diagonals are S1, S2.

Definition 2.3.7. A dissection of an n-gon P is a (possibly empty) set of nonintersecting
diagonals of P .

A dissection divides P into smaller regions that are also convex polygons. If our dissection
has n− 3 diagonals then it is just a triangulation of P .

Proposition 2.3.8. Let P be the n-gon corresponding to C. Let D be a dissection of P
into subpolygons P1, . . . , Pm and let χ be a red-blue coloring of the set of Pi that paints each
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A|BCDEFGH AC|BDEFGH
B|ACDEFGH CD|ABEFGH
C|ABDEFGH EF |ABCDGH
D|ACBEFGH ACD|BEFGH
E|ABCDFGH BGH|ACDEF
F |ABCDEGH DEF |ABCGH
G|ABCDEFH ABGH|CDEF
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{BGH} {EF} {DC}

{BDEFGH}
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{CDEF}
{BDEFGH}

{BCDEFGH}

α β

γA

κA

Figure 2.4: An instance of Proposition 2.3.6.

triangle blue. Let ζ be the map that sends a pair (D,χ) to the split system S of diagonals
of P that arise either in the dissection D, or that are a diagonal of any of the red Pi. Then
ζ ◦ β−1 is a bijection onto the set of PC-trees.

Proof. Given a dissection D of P , let T be the graph dual of D. Then T has a leaf for
each edge of P and an internal vertex for each Pi in D. Two vertices of T are neighbors if
and only if the corresponding subpolygons Pi, Pj share an edge in D. Label a vertex in T a
C-vertex if it corresponds to a red Pi; otherwise, label it a P -vertex.

Let S ∈ S. If S is the boundary between two subpolygons, by construction the edge
in T that joins the interior vertices corresponding to these subpolygons induces S. Oth-
erwise S is a diagonal of some red Pi. Suppose Pi is an m-gon whose sides determine the
intervals A1, A2, . . . , Am of X, in clockwise order. Then S corresponds to a split of the form
AiAi+1 . . . Aj−1|AjAj+1 . . . Ai−1. The C-vertex of P corresponding to Pi has edges that give
rise to the splits Ai|X \ Ai, in clockwise order. Then S ∈ β(T ).

This shows S ⊆ β(T ). Conversely, every split arising from a C-vertex appears as a diag-
onal in the corresponding Pi, and by construction every other split of T is in the dissection
D, so β(T ) = S. This argument is reversible, completing the proposition.

The number of dissections of an n-gon is equal to sn+1, where sn is the nth Schröder
number [66]. These numbers also count bracketings of strings and rooted planar trees [67].
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Figure 2.5: The PC-tree from Figure 2.4 (in blue) and its split system, represented as a
polygon with diagonals.

Let sn+1(k) denote the number of dissections of an n-gon containing precisely k subpolygons
with ≥ 4 edges. Then we have shown that the number of PC-trees compatible with a given
circular ordering is the q-analog

∑
k≥0 sn+1(k)qk, evaluated at q = 2. (Note this is different

from the q-analog defined in [4]).

Example 2.3.9. Figure 2.5 depicts the PC-tree T from Figure 2.4, in blue, overlaid atop
the polygon and diagonals corresponding to its split system. The subpolygon isomorphic to
K5 corresponds to the C-vertex. �

2.4 Metrics Realized by PC-trees

In this section we extend the tree metric theorem (Theorem 1.3.2) to classify metrics on PQ-
and PC-trees. Recall the connection between trees and their representations as hierarchies
and split systems:

AT

α
��

κr // PT

β
��

λr
oo

H
δr //

OO

PSS
γr

oo

OO
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This correspondence can be extended to metrics [63]:

AT

α
��

κr // PT

β
��

λr
oo

H
δr //

OO

PSS
γr

oo

OO

U

OO

// TM

OO

oo

Here U are ultrametrics and TM are tree metrics. The tree metric theorem is proved by
diagram chasing: Starting with a tree metric, the Gromov product is applied (see Definition
2.4.5 below), resulting in an ultrametric. A (unique) hierarchy representing the ultrametric
can be obtained and then the PSS corresponding to the hierarchy is derived by the unrooting
map δr. This weighted PSS represents the tree metric.

We construct a PC-tree that best realizes a Kalmanson metric by a similar approach,
constructing an analog of the above diagram with suitable PQ- and PC-tree counterparts
(Theorem 2.4.16). The extension requires some care, because the weighted PC-trees repre-
senting a Kalmanson metric may require extra zero splits. A key result (Theorem 2.4.4) is
that there is a unique PC-tree that minimally represents any Kalmanson metric.

Definition 2.4.1. A dissimilarity map D is Kalmanson if there is a circular ordering
{x1, . . . , xn} such that for for all i < j < k < l,

max{D(xi, xj) +D(xk, xl), D(xl, xi) +D(xj, xk)} ≤ D(xi, xk) +D(xj, xl). (2.1)

Let T be a projective X-tree and C a circular ordering obtained by reading the taxa of T
clockwise. If D is T -additive then D is Kalmanson with respect to C. Additionally, in this
case one actually has equality in (2.1) for each i < j < k < l. Kalmanson metrics are thus
generalizations of tree metrics obtained by relaxing the equality conditions of the four-point
theorem. The following theorem, proved in [12], gives the Kalmanson metric equivalent of
the four-point condition. We now make this precise.

Definition 2.4.2. Let A,B be disjoint nonempty subsets ofX. Then σA|B is the dissimilarity
given by

σA|B(i, j) =

{
1 |{i, j} ∩ A| = 1

0 otherwise

When A|B is an X-split, we call this a split pseudometric.

In this context, if T is an X-tree with an edge e, then σe is the split pseudometric
corresponding to the split induced by e.
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Theorem 2.4.3. A metric D satisfies the Kalmanson condition if and only if there exists a

circular split system S and weight function w : S → R+ such that D =
∑

S∈S

wSσS. If it does,

the decomposition is unique.

Proof. Suppose D =
∑

S∈S

wSσS for some split system S that is compatible with respect to a

circular ordering C = {x1, x2, . . . , xn}. Choose i < j < k < l and S = A|B ∈ S. One can
check that

DS(xi, xk) +DS(xj, xl)−DS(xi, xj)−DS(xk, xl) =

{
2 xi, xj ∈ A, xk, xl ∈ B,
0 otherwise.

(2.2)

so D satisfies the Kalmanson condition.
Conversely, assume D is Kalmanson with respect to the circular ordering {x1, . . . , xn}.

Define
2α(i, j) = D(xi, xj) +D(xi−1, xj−1)−D(xi, xj−1)−D(xi−1, xj).

The Kalmanson condition shows this is non-negative.
Recall that Si,j := {xi, xi+1, . . . , xj−1}|{xj, xj+1, . . . , xi−1}. The system S = {Si,j}i<j is

clearly circular. We claim

D =
∑

i<j

α(i, j)σSi,j
. (2.3)

To see this, rewrite the right hand side of (2.3), expanding the α(i, j) and grouping together
the coefficients of each D(xi, xj). This gives D =

∑
i<j D(xi, xj)ci,j with

2ci,j = σSi,j
+ σSi+1,j+1

− σSi+1,j
− σSi,j+1

. (2.4)

Now ci,j(xk, xl) = δikδjl. This proves the correctness of (2.3) and thus shows that D comes
from a weighted circular split system.

For a circular ordering C there are
(
n
2

)
splits in S and by (2.4) the dimension of metrics

that are Kalmanson with respect to C is also
(
n
2

)
, so for a fixed circular ordering the weighting

is unique. Now suppose D is Kalmanson with respect to two distinct circular orderings C1, C2.

Let Si be the split system given by Ci, and consider the decomposition D =
∑

k<l

α(k, l)σSk,l

with respect to C1. If Si,j is circular with respect to C1 but not with respect to C2, then
without loss of generality there exists some k, l with i < k < j < l such that {xi, xk, xj, xl}
is cyclic with respect to C1 and {xi, xj, xk, xl} is cyclic with respect to C2. This implies

D(xi, xj) +D(xk, xl) ≥ D(xi, xk) +D(xj, xl) ≥ D(xi, xj) +D(xk, xl),

where the first inequality comes from the Kalmanson condition on C1 and the second comes
from the Kalmanson condition on C2. So we have equality, and by (2.2),

0 = D(xi, xj) +D(xk, xl)−D(xi, xk)−D(xk, xl) = 2
∑

S=A|B∈S
ik∈A,jl∈B

wS ≥ w(Si,j),
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where the inequality follows since Si,j is in the summand. So α(i, j) = w(Si,j) = 0, and the
only nonzero terms in the decomposition of D with respect to C1 correspond to splits in S1

which are also splits in S2. This shows the decomposition of D is unique, and thus the map
ν from weighted circular split systems to Kalmanson metrics given by

ν(S, w)(x, y) =
∑

S∈S

wSDS(x, y)

is a bijection.

Let ξ = ν−1 be the map that takes a Kalmanson metric to the weighted circular split
system that describes it, and let D be Kalmanson with ξ(D) = (S, w). We want to find a
PC-tree T such that β(T ) = S as this would provide a nice encapsulation of the “treeness”
of our metric, but by Proposition 2.3.6 such a tree exists if and only if S is an unrooted
family, which is not necessarily the case. There is, however, a canonical best choice.

Theorem 2.4.4. Let D be a Kalmanson metric. There is a unique PC-tree T and weighting
function w : β(T )→ R≥0 such that the weighted circular split system (β(T ), w) gives rise to
D, and such that the number of zero weights |{S ∈ β(T )|wS = 0}| is minimal.

Proof. Let the closure of a pair of splits A1|B1, A2|B2 be the set {A1 ∩ A2|B1 ∪ B2, A1 ∩
B2|A2 ∪ B1, A2 ∩ B1|A1 ∪ B2, B1 ∩ B2|A1 ∪ A2}. A split system is said to be closed if it
contains the closure of each pair of its splits. Define

S̄ =
⋂

S∗ closed, circular
S∗⊇S

S∗. (2.5)

Note the set of all splits is closed and contains S, so the intersection is over a nonzero
number of sets. An easy lemma shows that the intersection of two closed split systems is
another closed split system, so S̄ is a closed split system containing S. By construction
S̄ is a circular split system and an unrooted family, and if S ′ is an unrooted family with
S ′ ⊇ S, then S ′ appears in the intersection (2.5) so S ′ ⊇ S̄. By Proposition 2.3.6 there
is a unique PC-tree T with β(T ) = S̄. We have shown that if T ′ is another PC-tree with
β(T ′) ⊇ S, then β(T ′) ⊃ β(T ), so in a well-defined sense T is the “best-fit” PC-tree for D.
Let ξ(D) = (S, w) be the weighted circular split system corresponding to D and let w̄ be a
weighting on S̄ given by extending w as

w̄(S) =

{
wS S ∈ S,
0 S ∈ S̄ \ S.

Then ν(S̄, w̄) = D, so if (S ′, w′) is a weighted circular split system with ξ((S ′, w′)) = D,
then S ′ ⊃ S̄ and w′ = w on S, w′ = 0 on S ′ \ S.
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Algorithm 2.1 Construction of the unrooted closure

Input: A circularly compatible split system S
Output: The closure S̄ of S
S̄ ← S
while S̄ contains a pair of incompatible splits A1|B1, A2|B2 but not their closure do

Add the closure of A1|B1, A2|B2 to S̄
end while

We can construct S̄ via Algorithm 2.1. Because X is finite this algorithm must eventually
terminate. Let S ′ denote its output. Clearly S ′ is a closed split system containing S, so
S ′ ⊇ S̄. Now if S ′ 6= S̄, let S be the first split in S ′ \ S that is added during the algorithm,
and suppose S is added as the closure of a pair of incompatible splits A1|B1, A2|B2. Then S̄
contains this pair of splits but not their closure, a contradiction. So the algorithm is correct,
and its output does not depend on the order in which it adds splits.

In the geometry of Proposition 2.3.8, a pair of splits S1, S2 is incompatible if, as diagonals
of P , they intersect. Adding in their closure to S̄ corresponds to adding the sides of the
quadrilateral with diagonals S1, S2. So incompatible splits make the splits graph non-planar.
PC-trees can be thought of as a way to somehow present the data in a planar fashion.

We now explore how this construction looks on the affine side.

Definition 2.4.5. Let D be a metric on X and choose r ∈ X. The Gromov product based
at r is defined by

2φr (D) (x, y) = D(x, y)−D(x, r)−D(y, r) ∀x, y ∈ X \ {r}. (2.6)

The Gromov product is also known as the Farris transform [22, 30] in phylogenetics. Let

ψr(R)(x, y) = 2R(x, y)−R(x, x)−R(y, y).

It is easy to check ψr ◦ φr(D) = D.

Definition 2.4.6. A matrix R is Robinsonian over X if there exists a linear ordering ≺ of
X such that

max{R(x, y), R(y, z)} ≤ R(x, z) ∀x � y � z.

R is a strong Robinsonian matrix if, in addition, for all w � x � y � z,

R(x, y) = R(w, y) =⇒ R(x, z) = R(w, z), (2.7)

R(x, y) = R(x, z) =⇒ R(w, y) = R(w, z). (2.8)

In [13] it is shown that if D is Kalmanson then φr(D) is a strong Robinsonian matrix.
We give a slightly more precise characterization of the image.
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Lemma 2.4.7. Let D be a Kalmanson dissimilarity map and R = φr(D). Then R is a
strong Robinsonian matrix with the following properties:

(i) R(x, y) ≤ 0 for all x, y ∈ X,

(ii) For every w � x � y � z,

R(x, y) +R(w, z) ≤ R(x, z) +R(w, y). (2.9)

Furthermore, φr is a bijection from Kalmanson dissimilarities to the space of these matrices.

Proof. Suppose D is Kalmanson with respect to the order {x1, x2, . . . , xn, r} and let R =
φr(D). From the definition of the Gromov product (2.6) and the Kalmanson condition (2.1),
it is immediate that φr(D) satisfies the above conditions with linear ordering x1 ≺ x2 ≺
. . . ≺ xn. We claim that this implies R is a strong Robinsonian matrix. For w � x � y � z,

2(R(x, z)−R(x, y)) = D(x, z) +D(y, r)−D(x, y)−D(z, r) ≥ 0,

2(R(w, y)−R(w, z)) = D(w, y) +D(z, r)−D(w, z)−D(y, r) ≥ 0,

so R(x, z) ≥ R(x, y) and R(x, z) ≥ R(y, z), which shows R is Robinsonian. Now assume
R(x, y) = R(x, z). Then (2.9) gives R(w, z) ≤ R(w, y), and since R is Robinsonian we
also have the reverse inequality, so R(w, z) = R(w, y). Similarly if R(x, y) = R(w, y) then
R(x, z) = R(w, z), so R is strong.

Conversely, let R be a strong Robinsonian matrix satisfying (2.9). Then ψr(R) clearly
satisfies the Kalmanson conditions. Also,

ψr(x, y) = (R(x, y)−R(x, x)) + (R(x, y)−R(y, y)) ≥ 0,

and ψr(x, x) = 0 for all x, y ∈ X. So ψr(R) is a Kalmanson dissimilarity. The maps φr and
ψr are inverses, completing the proof.

Therefore the image of φr consists of negative strong Robinsonian matrices satisfying a
kind of four-point condition (2.9).

Next we define the affine analogue of weighted circular split systems.

Definition 2.4.8. Let P be a pyramid or a prepyramid. A function f : P → R is an
indexing function if A ⊂ B =⇒ f(A) < f(B) for all A,B ∈ P . We call (P , f) an indexed
pyramid or an indexed prepyramid respectively.

Definition 2.4.9. A subset A ⊆ X is maximally linked [3] with respect to a Robinsonian
matrix R if there exists d ∈ R such that R(x, y) ≤ d for all x, y ∈ A, and A is maximal in
this way. If A is such a set, define the diameter of A to be diam(A) = maxx,y∈AR(x, y).

Let M(R) denote the set of maximally linked sets with respect to Robinsonian matrix
R and define the function f :M(R)→ R by f(A) = diam(A).
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Proposition 2.4.10. The map τ : R → (M(R), f) is a bijection from Robinsonian matrices
to indexed prepyramids, and from strong Robinsonian matrices to indexed pyramids.

Proof. Suppose A ∈M(R) forR Robinsonian and let a, b ∈ A be the leftmost and rightmost
points in A. Then for every a � x ≺ y � b, R(x, y) ≤ R(a, b), so diam(A) = R(a, b).
This shows x ∈ A for all a � x � b, so every set in M(R) is an interval. Now suppose
A,B ∈M(R) with A ⊂ B. Let A = [x1, y1], B = [x2, y2]. Then x2 � x1 � y1 � y2, and

f(A) = diam(A) = R(x1, y1) < R(x2, y2) = diam(B) = f(B),

where the inequality follows from the fact that A is a maximally-linked set. So f is an index
and τ(R) is an indexed prepyramid.

Conversely, consider the map µ from indexed prepyramids to matrices given by

µ(P , f)(x, y) = min
A∈P
x,y∈A

f(A).

Let R = µ(P , f). Given x � y � z, let E = {A ∈ P|x, y ∈ A}, F = {A ∈ P|x, z ∈ A}.
Then F ⊆ E, so

R(x, y) = min
A∈E

f(A) ≤ min
A∈F

f(A) = R(x, z).

SimilarlyR(y, z) ≤ R(x, z), soR is Robinsonian. It is easy to check that P consists precisely
of the sets that are maximally linked with respect to R, so τ and µ are inverses.

Now suppose R is a strong Robinsonian matrix. We must show τ(R) is closed under
intersection. Let A = [a1, b1], B = [a2, b2] be sets in P , suppose a1 ≺ a2 � b1 ≺ b2 and let
C = A ∩ B = [a2, b1]. We will show C is a maximally linked set with diameter R(a2, b1). If
x � b1, the Robinsonian condition gives R(a2, x) ≥ R(a2, b1). If there was equality then by
the strong Robinsonian condition R(a1, x) = R(a1, b1) and x ∈ A, a contradiction. Similarly,
there is no x ≺ a2 with R(x, b1) = R(y, a1), so C ∈ P and P is closed under intersection.

Conversely, suppose (P , f) is an indexed pyramid and let R = µ((P , f)). Because P is
closed under intersection, for each A ⊆ X there is a unique Ā ∈ P such that A ⊆ Ā, and
Ā ⊆ B for all A ⊆ B ∈ P . This follows immediately from taking Ā =

⋂
A⊆B∈P B. So now,

suppose w ≺ x ≺ y ≺ z and R(x, y) = R(x, z). The set A := {x, y} ∩ {w, y} is in P since P
is closed under intersection. f({x, y}) = f({x, z}) which implies z ∈ {x, y}. Now x, y ∈ A
implies {x, y} ∈ A, so z ∈ A. But then z ∈ {w, y} which gives R(w, z) = R(w, y). A similar
argument shows R(x, y) = R(w, y) =⇒ R(x, z) = R(w, z), so R is a strong Robinsonian
matrix.

Given two elements A,B ∈ P we say B is a predecessor of A if A ⊂ B and there does
not exist C ∈ P such that A ( C ( B.

Lemma 2.4.11. Let P be a pyramid. Then each set in P has at most two predecessors.
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Proof. Suppose there is an A = [a, b] ∈ P with three distinct predecessors Bi = [ai, bi],
i = 1, 2, 3. Because P is closed under intersection Bi ∩ Bj = A so either ai = a or bi = b.
By the pigeonhole principle, two of the Bis must share an endpoint, so assume a1 = a2 = a.
Then either B1 ⊂ B2 or B2 ⊂ B1 contradicting the fact that each Bi is a predecessor of
A.

For a set A ∈ P , let PA = {Pi} denote the predecessors of A. If (P , f) is an indexed
pyramid, we define the map w : P → R as the unique function satisfying

w(A) =





−f(A) if |PA| = 0,

−f(A) + f(P1) if |PA| = 1,

−f(A) + f(P1) + f(P2)− f(P1 ∪ P2) if |PA| = 2.

(2.10)

By Lemma 2.4.11 this is well-defined.

Proposition 2.4.12. Let R be a negative strong Robinsonian matrix satisfying the Robin-
sonian four-point condition, and take τ(R) = (P , f). Then f is negative, and w(A) ≥ 0 for
all A ∈ P. Furthermore, every such indexed pyramid lies in the image of τ .

Proof. Let R be a negative Robinsonian matrix satisfying (2.9). Clearly (2.10) holds for
|PA| = 0 because f is negative, and holds for |PA| = 1 because P1 ⊃ A =⇒ f(P1) > f(A).
So now assume A = [x, y] has two predecessors. By the argument in Lemma 2.4.11 these
must be of the form B1 = [w, y] and Bw = [x, z] for some w ≺ x ≺ y ≺ z, so

w(A) = −f([x, y]) + f([w, y]) + f([w, z])− f({w, z})
= −R(x, y) +R(w, y) +R(w, z)−R(w, z)

≥ 0,

because R satisfies the Robinsonian four-point condition. This argument is reversible, so we
see τ really is a bijection.

The requirement that w(A) ≥ 0 for A with two predecessors (2.10) is thus a kind of
four-point property for pyramids, and we will refer to it as such later.

Let ηr be the map sending (P , f) to the weighted circular split system (S, w′) given by
S = {δr(A)|A ∈ P}, w′(δr(A)) = w(A).

Proposition 2.4.13. If D is a Kalmanson metric, then ν ◦ ηr ◦ τ ◦ φr is the identity map.

Proof. Let D′ = ν ◦ ηr ◦ τ ◦ φr(D) and for A ∈ P , let OA = {B ∈ P|A ⊆ B} be the sets
over A. A split δr(A) separates x, y ∈ X \ {r} if x ∈ A or y ∈ A but not both. So the split
pseudometric Dδr(A)(x, y) is 1 if and only if A ∈ O{x} \O{x,y} or A ∈ O{y} \O{x,y}. Then

D′(x, y) =
∑

A∈O{x}

w(A)−
∑

A∈O{x,y}

w(A) +
∑

A∈O{y}

w(A)−
∑

A∈O{x,y}

w(A). (2.11)
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Now OA = OĀ, so by an easy induction

∑

B∈OA

w(B) =
∑

B∈OĀ

w(B) = −f(Ā),

and D′(x, y) = 2f
(
{x, y}

)
− f({x})− f({y}). Since f(Ā) = diam(A), by the definition of

the Gromov transform,

D′(x, y) = D(x, y)−D(x, r)−D(y, r) +D(x, r) +D(y, r) = D(x, y).

To compute D′(x, r) we note x and r are separated by a split δr(A) if and only if x ∈ A, so

D′(x, r) =
∑

A∈O{x}

w(A) = −f({x}) = −φr(D)(x, x) = D(x, r).

LetR be a Robinsonian matrix overX. If the prepyramid P in τ(R) is a rooted set family,
Proposition 2.2.5 shows there exists a PQ-tree T such that α(T ) = P . Unfortunately this is
usually not the case, so we seek instead to find a “best fit” tree. Analogous to the projective
case, we define the closure of a pair of sets A,B as the set {A∪B,A∩B,A \B,B \A} and
call a collection of sets closed if it contains the pairwise closure of all its elements. We define
the rooted closure P̄ of P via

P̄ =
⋂

P ∗ closed
P ∗⊇P

P ∗.

Then P̄ is closed and contains P , and lies inside any other closed P∗ containing P .Let θ be
the closure map sending P to P̄ . We then have the affine analog of Theorem 2.4.4:

Lemma 2.4.14. The PQ-tree T with α(T ) = θ(P) is the unique tree with α(T ) ⊇ P that
minimizes |α(T )|.

Analog 2.2 can be considered the affine analog of Algorithm 2.1. It remains to show that θ

Algorithm 2.2 Construction of the rooted closure

Input: A prepyramid P
Output: The closure P̄ of P
P̄ ← P
while P̄ contains a pair of incompatible sets A,B do
P̄ ← H̄ ∪ {A ∪B,A ∩B,A \B,B \ A}

end while

commutes with the rest of the diagram. Let D be a Kalmanson metric, S the corresponding
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split system and P the associated indexed pyramid. There is not necessarily a bijection
between the intervals in P and the splits in S; this can be seen, for example, because P
is closed under intersection while S need not be. The sets in P that are not in S will get
assigned weight zero by the map ηr, which is why the lower rectangle commutes, but the
maps θ and ι forget about the weights so it is not clear that θ ◦ δr = ι ◦ ηr. Fortunately, for
pyramids that arise from Kalmanson metrics this bijection holds.

Lemma 2.4.15. δr ◦ θ ◦ τ ◦ φr(D) = ι ◦ ξ(D) for all Kalmanson metrics D.

Proof. Let (P , f) = τ ◦ φr(D) and let (S, w) the corresponding weighted split system. Sup-
pose A ∈ P but δr(A) /∈ S, or equivalently f(A) = 0. A = [a, b] is an interval with respect
to the Robinsonian metric. If c � b then M(a, c) > M(a, b) because c /∈ A, so

0 < M(a, c)−M(a, b) = f(a, c)− f(a, b) = −
∑

B∈P
a,c∈B

w(B) +
∑

B∈P
a,b∈B

w(B).

The first summand is a subset of the second, so there exists B ∈ P with a, b ∈ B, c /∈ B
and w(B) > 0. Letting c be the smallest element with c � b shows there exists a set
B = [x, b] ∈ P with w(B) > 0 and x ≺ a. Similarly there exists a set C = [a, y] ∈ P with
w(C) > 0 and y � b. So A = B ∩ C for sets B,C ∈ P that correspond to splits of positive
weight in S, and thus δr(A) ∈ ι ◦ η(S). This completes the proof.

We are now ready to state our final result that summarizes the bijections described above.
Let PC be the set of all PC-trees, CUF the set of all circular, unrooted split families, WCSS
the set of all weighted circular split systems, and K the set of all Kalmanson metrics, all over
X. Let PQ be the set of all PQ-trees, PRF the set of pyramidal rooted families, IP the set
of negative indexed pyramids satisfying the pyramidal four-point condition, and SR the set
of negative strong Robinsonian matrices satisfying the Robinsonian four-point condition, all
over X \ {r}.

Theorem 2.4.16. The following diagram commutes:

PQ

α
��

κr // PC

β
��

λr
oo

PRF
δr //

OO

CUF
γr

oo

OO

IP

θ

OO

ηr //

µ
��

WCSS

ι

OO

oo

ν
��

SR

τ

OO

ψr // K

ξ

OO

φr
oo
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B

F

E

A

C

D
C DB E A F

{C} {D} {F}{B} {E} {A}

{BE} {DF}

{ABE} {CDF}

{ABCE}

{ABCDEF}

G

{ACDF}

{AC}

-46
{C}

-50
{D}

-59
{F}

-39
{B}

-46
{E}

-39
{A}

-32{BE} -48{DF}

-15{CDF}

-23{ABCE}

-6{ABCDEF}

-34{AC}




A B C D E F G

A 0 32 17 77 39 86 39
B 32 0 34 77 21 86 39
C 17 34 0 66 46 75 46
D 77 77 66 0 84 13 50
E 39 21 46 84 0 93 46
F 86 86 75 13 93 0 59
G 39 39 46 50 46 59 0







A B C D E F

A −39 −23 −34 −6 −23 −6
B −23 −39 −23 −6 −32 −6
C −34 −23 −46 −15 −23 −15
D −6 −6 −15 −50 −6 −48
E −23 −32 −23 −6 −46 −6
F −6 −6 −15 −48 −6 −59








5 A|BCDEFG 11 F |ABCDEG
7 B|ACDEFG 6 G|ABCDEF
11 AC|BDEFG 3 C|ABDEFG
2 D|ABCEFG 9 BE|ACDFG
14 E|ABCDFG 33 DF |ABCEG
9 CDF |ABEF 17 DFG|ABCG









A|BCDEFG F |ABCDEG
B|ACDEFG G|ABCDEF
ABE|CDFG C|ABDEFG
AC|BDEFG BEG|ACDF
D|ABCEFG BE|ACDFG
E|ABCDFG DF |ABCEG
CDF |ABEF DFG|ABCG





α
β

κG

θ ι

τ

ν

ηG

φG

δG

Figure 2.6: An example illustrating Theorem 2.4.16.

This gives a way of constructing the best-fit PC-tree for a given Kalmanson metric D:

T = κr ◦ α−1 ◦ θ ◦ τ ◦ φr(D).

An example illustrating Theorem 2.4.16 is shown in Figure 2.6. The PC-tree in the upper
right reveals the tree structure in the Kalmanson metric (see also Figure 2.1).
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Chapter 3

Robustness of Linear Reconstruction
Methods

3.1 Introduction

The fundamental challenge in distance-based phylogenetics is: Given a dissimilarity D on
X, how can we reconstruct the ancestral history of X? As discussed in Chapter 1, such
data can arise from a number of places including multiple alignment of homologous regions
of the genomes of the taxa. Theorem 1.3.2 provides a starting point by recognizing tree-
additive dissimilarities, but data is almost always noisy, and as the space of tree-additive
dissimilarities has measure zero in the space of dissimilarities, almost all perturbations will
result in D being not tree-additive. If this noise is sufficiently small, however, we may still
maintain hope of recovering T .

In this chapter we will investigate distance-based methods that are linear in the entries of
D, and will give several robustness and uniqueness results. We will outline the relevance to
neighbor joining, a popular distance-based phylogenetic reconstruction algorithm, and will
conclude by giving a similar robustness result for algorithms that attempt to reconstruct full
circular split systems from Kalmanson metrics.

The minimum evolution (ME) approach to phylogenetic reconstruction is based on the
following idea: Given a matrix D of pairwise distances between a set of n taxa, find the tree
that explains D with as little evolution as possible [47, 60]. Traditionally, it employs the
following general procedure:

(i) For each tree topology T , find the branch lengths of T assuming D comes from T .

(ii) Use the branch lengths to compute the length lT of the tree T .

(iii) Choose the tree T̂ = arg minT lT with minimum length.

There is some ambiguity in how to use negative branch lengths to compute the length of
the tree. Kidd and Sgaramella-Zonta [47] proposed summing the absolute value of the edge
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lengths, while Swofford et. al. [71] suggested summing only positive edge lengths. For
reasons that will become clear later, we will generalize the approach of Rzhetsky and Nei
[61] in calculating the length of the tree by summing all the edges, with sign.

The effectiveness of this method then depends crucially on how we select the branch
lengths for a given tree T . If w : E(T ) → R is an edge weighting on T , let D̂ be the
corresponding T -additive dissimilarity given by D̂ij =

∑
e∈PT

ij
we. One classic approach, first

proposed by Cavalli-Sforza and Edwards [11] and Fitch and Margoliash [34], chooses the
edge lengths that minimize the sum of squares

∑

i<j

(Dij − D̂ij)
2.

This is known as ordinary least squares (OLS), and we refer to the corresponding ME method
as OLS+ME. If we know the variances Vij of the Dij, then the variance-minimizing estimate

of the edge lengths is given by the T -additive D̂ that minimizes the weighted least squares
(WLS) ∑

i<j

V −1
ij (Dij − D̂ij)

2. (3.1)

WLS assumes the Dij are uncorrelated. Generalized least squares (GLS) gets rid of this
assumption and seeks to minimize

∑

ij,kl

V −1
ij,kl(Dij − D̂ij)(Dkl − D̂kl),

where V −1 is the inverse of the variance-covariance matrix of the Dij. In GLS, computing
the optimal edge weights is equivalent to minimizing a quadratic form, and the solution is
then linear in the elements of D. The formula is

l̂T = (StTV
−1ST )−1StTV

−1D, (3.2)

where V is the
(
n
2

)
×
(
n
2

)
variance-covariance matrix and ST is the

(
n
2

)
× |E| matrix given

in (1.1).
We briefly mention that GLS has the following statistical interpretation. Suppose Dij =

D̂ij + εij, where D is the observed dissimilarity, D̂ij is the true dissimilarity and the εij are

error terms that are normally distributed with mean zero and covariance matrix V . Then l̂e
is the linear unbiased estimator for the length of edge e with minimal variance [55]. Under
GLS, the total length of the tree is a linear form in the coefficients of D given by lT = 1tl̂T ,
where 1 is the vector of ones of length |E|. If D actually is T -additive, D = STET for some
positive vector ET , and then by (3.2) a GLS+ME method on T will estimate the length of
D to be 1ET , which is the correct length.

In 2000, Pauplin proposed a certain linear form that computed the length of the tree
directly, bypassing the need to calculate WLS-predicted edge lengths [58]. This suggests the
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following definition. Given a T -additive dissimilarity D =
∑

e∈E(T ) weσe, let len(D) =
∑

ewe
be the length of the underlying tree. Consider the space of all dissimilarity maps on X as a

subset of R(n
2), and let L be the space of linear forms on R(n

2). Unless otherwise specified,
throughout the rest of the chapter we will assume our trees are trivalent.

Definition 3.1.1. A minimum evolution (ME) method is a reconstruction method that
sends a dissimilarity D to arg minT φ(T,D), where φ is a map φ : TX → L such that if D is
T -additive,

(φ(T ))(D) = len(D) (3.3)

(For notational convenience, in what follows we frequently write φ(T,D) to mean (φ(T ))(D).
We also use the phrase “minimum evolution method” to refer to the function φ itself).

Note that an ME method doesn’t attempt to calculate the edge lengths; it cares only
about the total length of the tree. Thus, unlike GLS, there is no good statistical interpreta-
tion for it. We are interested in determining which φ have the best performance. To analyze
this, we will use concepts defined in Definitions 1.3.3 and 1.3.4.

Recall that a reconstruction method is statistically consistent if, when given a T -additive
dissimilarity as input, it always returns the underlying tree T . For ME methods, this means
arg minT ∗ φ(T ∗, D) = T for all T ∈ TX and T -additive D. OLS+ME is consistent [61], and
while this property does hold for WLS methods other than OLS [17], it does not hold for all
WLS (and therefore all GLS) ME methods [35].

3.2 Balanced Minimum Evolution

Let T ∈ TX , and let i be a leaf, e the adjacent pendant edge and A|B the X \ {i} split such
that P T

ab is adjacent to e for each a ∈ A, b ∈ B. Let nA = |A|, nB = |B|. Then OLS+ME
assigns edge e the length

1

2

(
1

nA

∑

a∈A

Dai +
1

nB

∑

b∈B

Dbi −
1

nAnB

∑

a∈A

∑

b∈B

Dab

)
.

This weights the clades A,B unequally. To remedy this, Pauplin proposed [58] calculating
the length of a pendant edge by the formula

1

2

(∑

a∈A

Dai +
∑

b∈B

Dbi −
∑

a∈A

∑

b∈B

Dab

)
.

Similarly, if e is an interior edge with clades A,B,C,D positioned as in T in Figure 1.2,
Pauplin suggested the length of e be

1

2

(∑

a,c

Dac +
∑

a,d

Dad +
∑

b,c

Dbc +
∑

b,d

Db,d −
∑

a,b

Dab −
∑

c,d

Dcd

)
.
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Summing these edge weight formulas over all edges gives a simple formula for the length of
the tree:

Definition 3.2.1. Balanced Minimum Evolution (BME) is the minimum evolution method
given by

φBME(T,D) =
∑

i,j

21−|PT
ij |Dij. (3.4)

Pauplin’s original motivation for BME was that it permits direct calculation of the length
of the tree without computing individual edge lengths. In 2008, Mihaescu and Pachter dis-
covered that BME is actually a WLS+ME method with diagonal variance matrix Vij = 2−|P

T
ij |

[55]. In that paper the authors also show that these variances, which grow exponentially in
the number of edges between a pair of taxa, do in fact roughly model the relationship be-
tween variance and the distance that arises from a Markov model of nucleotide substitution
on a tree.

It is natural to ask about the robustness of BME. Like OLS+ME, BME is consistent [18].
It also satisfies something much stronger.

Definition 3.2.2. A dissimilarity D is quartet consistent with T if, for all quartets (ij : kl)
induced by T ,

Dij +Dkl < min{Dik +Djl, Dil +Djk}.
In this language, the four-point condition (Theorem 1.3.2) says that if D is T -additive,

then D is quartet consistent with T . It is thus natural to make the following definition:

Definition 3.2.3. A reconstruction method is quartet consistent if it returns T when given
an input that is quartet consistent with T .

In an unpublished work in 2009 [53], Mihaescu showed

Theorem 3.2.4. BME is quartet consistent.

We present his proof for completeness.

Proof. The statement holds trivially for |X| = 4. Let D be a dissimilarity on a set X of
minimum size such that D is quartet consistent with T , but φBME(T,D) > φBME(T ′, D) for
some T ′. Let D/a denote the restriction of D to the set X \ {a}, and let T/a denote the
topology obtained by removing the pendant edge corresponding to a in T and contracting
the resulting degree 2 node.

Let a, b form a cherry in T ′. Then

2φBME(T ′, D) = φBME(T ′/a,D/a, ) + φBME(T ′/b,D/b) +Dab.

If D, T are quartet consistent, then so are D/a and T/a. Since D,T, T ′ form a minimum
counterexample, we also have that

φBME(T/a,D/a) < φBME(T ′/a,D/a), φBME(T/b,D/b) < φBME(T ′/b,D/b).

Thus the theorem is an immediate consequence of the following:
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a

a' T2 b'

b----

T1 Tk

Figure 3.1: Tree used in the proof of Theorem 3.2.4.

Lemma 3.2.5. Given a T quartet consistent D, the following holds for any pair a, b ∈ X:

2φBME(T,D) ≤ φBME(T/a,D/a) + φBME(T/b,D/b) +Dab. (3.5)

Suppose a, b are positioned according to the configuration in Figure 3.2, where a′, b′,
T1, . . . , Tk are subtrees of T . We extend the definition of D to disjoint clades as DAB =∑

a∈A,b∈BDab. Then (3.5) is equivalent to

Daa′/2 +Dbb′/2 +
∑

i

DaTi2
−i−1 +

∑

i

DbTi2
i−k−2

≤ Dab(1− 2−k−1) +Da′b′2
−k−1 +

∑

i

Da′Ti2
−i−1 +

∑

i

Db′Ti2
i−k−2.

Taking δxy(z) = Dxz +Dyz −Dxy, the above inequality is equivalent to

Daa′ +Dbb′

2k+1
+
∑

i

δa′Ti(a)

2i+1
+
∑

i

δb′Ti(b)

2k+2−i ≤ Dab(1− 2−k−1) +
Da′b′

2k+1
.

By quartet consistency Daa′ +Dbb′ ≤ Dab +Da′b′ , so it suffices to prove

∑

i

δa′Ti(a)

2i+1
+
∑

i

δb′Ti(b)

2k+2−i ≤ Dab(1− 2−k).

Split the left hand side as

∑

i

δa′Ti(a)

2i+1
+
∑

i

δb′Ti(b)

2k+2−i =
∑

i≤k/2

δa′Ti(a) + δb′Ti(b)

2k+2−i +
∑

i>k/2

δa′Ti(a) + δb′Ti(b)

2i+1

+
∑

i≤k/2

(δa′Ti(a) + δb′Tk+1−i
(b))

(
1

2i+1
− 1

2k+2−i

)
.

It thus suffices to prove the two inequalities

δa′Ti(a) + δb′Ti(b) ≤ 2Dab,

δa′Ti(a) + δb′Tk+1−i
(b) ≤ 2Dab for i ≤ k/2



CHAPTER 3. ROBUSTNESS OF LINEAR RECONSTRUCTION METHODS 37

The first inequality is equivalent to

Da′a +Db′b +DaTi +DbTi ≤ 2Dab +Db′Ti +Da′Ti ,

which itself follows from

Db′b +DaTi ≤ Dab +Db′Ti ,

Da′a +DbTi ≤ Dab +Da′Ti .

The second inequality is equivalent to

Da′a +Db′b +DaTi +DbTk+1−i
≤ 2Dab +Db′Tk+1−i

+Da′Ti .

This follows from

Db′b +DaTk+1−i
≤ Dab +Db′Tk+1−i

,

Da′a +DbTi ≤ Dab +Da′Ti ,

DbTk+1−i
+DaTi ≤ DaTk+1−i

+DbTi .

The set of dissimilarities that are quartet consistent with T is generally strictly greater
than the set of dissimilarities that are within l∞ radius 1

2
of D. Thus Theorem 3.2.4 imme-

diately implies BME has l∞ radius 1
2
. This was also discovered independently in 2010 by

Pardi, Guillemot and Gascuel [57].
Other ME methods besides OLS have been shown to be consistent [17], but quantitative

calculations of their robustness are otherwise lacking. In 2005 Willson showed OLS+ME
has l∞ radius < 1

4
[73], and this was improved to 0 by Pardi, Guillemot and Gascuel [57].

To our knowledge, aside from the aforementioned results on BME, these are the only such
computations in the literature. Such calculations seem somewhat ad hoc, and the possibility
remained of there being many other ME methods with optimal l∞ radius. Our main result
in this section is that this is not the case.

Theorem 3.2.6. BME is the only ME method with l∞ radius 1
2
.

Thus, by at least one measure of robustness, BME is strictly better than any other
distance-based reconstruction method that is linear in the elements of D. This theorem also
gives an alternate definition of BME – it is the unique form with optimal l∞ radius.

Theorem 3.2.6 will follow from a more general result later in the chapter, so we defer the
proof for now.
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3.3 Neighbor-Joining

Finding arg minT φBME(T,D) is NP-hard to approximate [33], so BME is seldom used di-
rectly in practice. This raises the question: How can we rapidly compute an approximation
to the BME-minimizing tree? One natural approach is to construct a greedy implementation.

First introduced in [62], the neighbor-joining algorithm has historically been very im-
portant in phylogenetic reconstruction, and currently has over 28,000 citations on Google
Scholar. It constructs a tree in the following agglomerative way:

(1) Given a distance matrix D : X ×X → R, compute the Q-criterion

QD(i, j) = (n− 2)Dij −
∑

k 6=i

Dik −
∑

k 6=j

Djk.

(2) Select a pair (a, b) of taxa that minimize QD. If there are more than three taxa, replace
this pair by a leaf ab and construct a new dissimilarity given by D′i,ab = 1

2
(Dia+Dib−Dab)

and D′ij = Dij for i, j 6= ab.

(3) Repeat until there are three taxa remaining.

Although it was discovered in the 1980s, theoretical questions about the effectiveness of
neighbor-joining and what the Q-criterion is actually measuring have taken several decades
to play out. The algorithm was originally motivated by the result [62, 70] that if D is a
T -additive tree metric, then a pair (a, b) minimizing QD is a cherry in T . This shows that
neighbor-joining is consistent. The next major robustness result came in a celebrated 1999
paper, where Atteson settled a long-standing conjecture and showed neighbor-joining has l∞
radius 1

2
[1].

A method with a large l∞ radius may still perform poorly in practice, since if the un-
derlying tree has but one single short edge, small perturbations in the data can lead to an
incorrect reconstruction. A stronger measure of robustness is a method’s edge radius.

Definition 3.3.1. Let D̂ =
∑

e∈E(T ) weσe be a T -additive dissimilarity and chose an edge
e. A reconstruction method has edge radius α if, when given as input a dissimilarity D
satisfying ||D − D̂||∞ < αwe, it always returns a tree containing the split induced by e.

In 2009 Mihaescu, Levy and Pachter answered a long-standing conjecture of Atteson and
showed neighbor-joining has edge radius 1

4
[54]. This means that even if the underlying tree

has short edges, small noise will still allow it to successfully reconstruct the larger edges of
the tree.

Despite these results in understanding the accuracy of neighbor-joining, the question
“what is neighbor-joining actually doing?” remain unanswered until 2005. That year Desper
and Gascuel provided, for the first time, an explanation of the Q-criterion [19]. Before giving
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it, we need to define the BME form for non-trivalent trees [64]. Let T be such an X-tree,
and define

cTij =
∏

v∈PT
ij

(deg(v)− 1)−1. (3.6)

Then
φBME(T,D) =

∑

i<j

cTijDij.

This agrees with Pauplin’s definition when T is binary.

Theorem 3.3.2. Consider the star tree on X, and let Tab be the tree obtained by fusing a and
b together into a cherry. At each step, neighbor-joining selects the taxa a, b that minimize
φBME(Tab, D).

In other words, neighbor-joining is a greedy implementation of BME. This was surprising
because neighbor-joining and BME were discovered independently of each other; in fact,
Pauplin did not publish his paper on BME until 13 years after neighbor-joining!

In 2005, Bryant [7] showed that the Q-criterion is the only criterion that is:

• linear in the coefficients of D,

• consistent (i.e. that given tree-like data the criterion will select a cherry at each step),

• indifferent to the order of the taxa.

For σ a permutation on X, let σD denote the dissimilarity given by (σD)ij = Dσ(i)σ(j). The
condition that Q is indifferent to the order of the taxa means that QσD(σ(i), σ(j)) = QD(i, j).

Thus, one can consider neighbor-joining as the unique algorithm satisfying a certain set
of desirable properties. Theorem 3.2.6 can then be considered an analogous result for BME.
So while the relationship between the robustness of an ME method and the robustness of
an algorithm may be complex, Theorem 3.2.6 suggests that if such an algorithm is going
to be based on a ME method, it’s best to choose BME. Indeed, while some distance-based
algorithms are known to have a better edge radius than neighbor-joining, they are themselves
based on BME [6].

3.4 Generalized Balanced Minimum Evolution

In Definition 3.1.1, we required that a ME method satisfy φ(T,D) = len(D) when D is a
T -additive dissimilarity. Although this normalization requirement holds for all GLS+ME
methods, it seems unnatural in the broader context of linear forms. We now drop this
requirement, so in what follows a general ME method is just a map φ : TX → L.
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Definition 3.4.1. Let f be a real function on the set of X-splits. For each X-tree T , let
Uf (T ) be the set of linear forms l in the entries of D such that l(σS) = fS for all splits S of
T , and f(σS) > fS for all splits S /∈ T . We say φ : TX → L is f -consistent if φ(T ) ∈ Uf (T )
for all T ∈ TX .

This is a strict generalization of Definition 3.1.1, as the following lemma shows.

Lemma 3.4.2. A general ME method satisfies Equation (3.3) if and only if it is f -consistent
for the constant function f = 1.

Proof. Suppose φ is f -consistent for f = 1. Then φ(T, σS) = 1 if S ∈ S(T ), so for D =∑
eweσe T -additive, φ(T,D) =

∑
ewe = len(D). Conversely, if φ satisfies Equation (3.3)

then for each S ∈ S(T ), taking D = σS gives φ(T, σS) = 1.

The following lemma illustrates why this definition is useful.

Lemma 3.4.3. A general ME method is statistically consistent if and only if it is f -consistent
for some real-valued function f on the set of X-splits.

Proof. Suppose φ is f -consistent and D =
∑

eweσe is T -additive, we > 0. If T ′ is a different
tree, then

φ(T,D) =
∑

e∈E(T )

wefSe <
∑

e∈E(T )

weφ(T ′, σe),

where Se is the split corresponding to e. The strict inequality arises from the fact at least one
split in T is not in T ′. So T = arg minT̂ φ(T̂ , D), and φ is statistically consistent. Conversely,

let φ be a statistically consistent general ME method, so arg minT̂ φ(T̂ , D) = T whenever D
is T -additive. For any split S, arg minT φ(T, σS) must be the set of trees that contain the
split S. Let fS = minT φ(T, σS). Then φ(T, σS) ≥ fS with equality if and only if T contains
S, and φ(T ) ∈ Uf (T ) for all T ∈ TX .

There are some values f for which no f -consistent ME methods exist. For example, let
X = {a, b, c, d}. We have

σa|bcd + σb|acd + σc|abd + σd|abc = σab|cd + σac|bd + σad|bc. (3.7)

Every X-tree contains the four splits on the left hand side and only one of the splits on the
right hand. So for φ ∈ Uf (T ), applying φ(T ) to both sides of (3.7) gives

γf := fa|bcd + fb|cda + fc|dab + fd|abc − fab|cd − fac|bd − fad|bc ≥ 0. (3.8)

If this inequality is not satisfied then Uf (T ) is empty.
We now give an analog of Theorem 3.2.6 for the more general case of f -consistent linear

forms.
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Theorem 3.4.4. Let f be a real-valued function on the set of X-splits. Given T ∈ TX and
disjoint clades a, b, consider the path P T

ab from a to b, and let T1, . . . , Tm be the clades hanging
off the path in order. For I ⊂ [m], let TI :=

⋃
i∈I Ti. Define cTab by

cTab =
1

2m

∑

I⊂[m]

(
f
(
aTI |bT[m]\I

)
− f(abTI |T[m]\I)

)
, (3.9)

where f(X|) is defined to be 0. If there exists an f -consistent ME method φ with l∞ radius
1
2
, then φ(T, σa|b) = cTab. In particular, φ(T,D) =

∑
i<j c

T
ijDij.

Proof of Theorem 3.2.6. The sum in (3.9) consists of 2m terms with positive sign and 2m−1

terms with negative sign. So when f = f0 is constant, cTij = 21−|PT
ij |f0 and φ = f0 ·φBME is a

scalar multiple of BME. We know BME has l∞ radius 1
2
, and taking f = 1 shows immediately

that it is the only such ME method. This proves Theorem 3.2.6.

Proof of Theorem 3.4.4. We will induct on m. Let φ be f -consistent, let T be a tree and
let l be the linear form associated to T . Suppose T has an internal vertex v such that
removing v partitions X into the three pieces A,B,C. Applying l to the equality 2σA|B =
σA|BC + σB|AC − σC|AB gives

2l(σA|B) = fA|BC + fB|AC − fC|AB.
Now let A,B,C,D be clades such that T has the split AB|CD, and let T ′ be the NNI of T
with the split AC|BD, as in Figure 1.2. Let D̂ =

∑
e∈E(T ) weσe be a T -additive dissimilarity

and let l (respectively l′) be the linear form associated to T (respectively T ′). We have

l′(D̂)− l(D̂) =
∑

e∈E(T )

we(l
′(σe)− l(σe)) = wAB|CD(l′(σAB|CD)− fAB|CD), (3.10)

since l′(σS) = l(σS) for all splits S ∈ T , S 6= AB|CD. Applying l′ to both sides of the
identity

σAB|CD = σB|ACD + σC|ABD − σAC|BD + 2σA|D

gives
l′(σAB|CD) = fB|ACD + fC|ABD − fAC|BD + 2l′(σA|D),

and combining with (3.10) yields

l′(D̂)− l(D̂) = wAB|CD(2γ + 2l′(σAB|CD)),

where we have defined γ := 1
2
(fB|ACD + fC|ABD− fAC|BD− fAB|CD). Let D be a dissimilarity

with ||D − D̂||∞ ≤ αwmin. Then

l′(D)− l(D) = (l′(D)− l′(D̂))− (l(D)− l(D̂)) + (l′(D̂)− l(D̂))

=
∑

i<j

cT
′

ij (D − D̂)ij −
∑

i<j

cTij(D − D̂)ij + wAB|CD(2γ + 2l′(σAB|CD)).
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Since l′(D)− l(D) ≥ 0, taking (D − D̂)ij = −αwminsgn(cT
′

ij − cTij) and wAB|CD = wmin gives

2γ + 2l′(σA|D) ≥ α
∑

i<j

∣∣∣cT ′ij − cTij
∣∣∣ (3.11)

We compute

∑

i∈A
j∈B

|cT ′ij − cTij| ≥
∑

i∈A
j∈B

|cT ′ij − cTij|+
∑

i∈A
j∈C

|cT ′ij − cTij|+
∑

i∈B
j∈D

|cT ′ij − cTij|+
∑

i∈C
j∈D

|cT ′ij − cTij|. (3.12)

Now

∑

i∈A
j∈B

|cT ′ij − cTij| ≥ |
∑

i∈A
j∈B

cT
′

ij − cTij|

≥ |l(σA|B)− l′(σA|B)|

≥ 1

2
(fA|BCD + fB|ACD − fAB|CD)− (l′(σA|BD)− l′(σA|D))

≥ 1

2
(fA|BCD + fB|ACD − fAB|CD)− 1

2
(fA|BCD + fAC|BD − fC|ABD) + l′(σA|D)

≥ γ + l′(σA|D),

Similar calculations show

∑

i∈A
j∈C

|cT ′ij − cTij| ≥ l(σA|D) + γ,

∑

i∈B
j∈D

|cT ′ij − cTij| ≥ l(σA|D) + γ,

∑

i∈C
j∈D

|cT ′ij − cTij| ≥ l′(σA|D) + γ.

Combining these with (3.11) and (3.12) yields

2γ + 2l′(σA|D) ≥ 2α(2γ + l′(σA|D) + l(σA|D)).

Taking α = 1
2

then gives l′(σA|D) ≥ l(σA|D). Repeating these steps with a T ′-additive
dissimilarity gives the reverse inequality l(σA|D) ≥ l′(σA|D), so we must have equality. This
implies that we have equality at every step, so

cTij = cT
′

ij ∀i, j s.t. σA∪D|B∪C(i, j) = 0. (3.13)
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Tk----

T2 bT1

T''

Figure 3.2: Three trees T, T ′, T ′′ used in the proof of Theorem 3.4.4.

Now let l, l′, l′′ be the forms associated to the trees T, T ′, T ′′ in Figure 3.2. These trees
are NNIs of each other, so by Equation (3.13) we know l(σa|b) = l′(σa|b), and similarly
l′(σa|Tk−1

) = l′′(σa|Tk−1
), l′′(σa|Tk) = l(σa|Tk). Hence

l(σa|b)− l(σa|Tk) = l′(σa|Tk−1b)− l′′(σa|Tk−1Tk).

Adding this to the equation l(σa|b) + l(σa|Tk) = l(σa|bTk) gives

2l(σa|b) = l(σa|bTk)− l′′(σa|Tk−1Tk) + l′(σa|Tk−1b). (3.14)

Let I|J be a partition of [m], and suppose k − 1, k ∈ I. By the inductive hypothesis, the
coefficient of faTI |bTJ is 2−(m−1) in each of the terms on the right hand side of (3.14), so it
has coefficient 2−m in l(σa|b). Now suppose k − 1 ∈ I, k ∈ J . Then faTI |bTJ has coefficient
2−(m−1) in l(σa|Tk−1b) and coefficient 0 in l′(σa|Tk−1b) and l(σa|Tk−1Tk), so it has coefficient 2−m

in l(σa|b). Checking the other cases proves the induction.

Remark 3.4.5. Our proof did not use the full strength of the hypothesis that φ has l∞
radius 1

2
. Indeed we only used the fact that if D̂ is T -additive and ||D− D̂||∞ < 1

2
wmin, then

φ(T,D) < φ(T ′, D) for T, T ′ separated by an NNI. This means we have shown a slightly
stronger statement than that given in Theorem 3.4.4.
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Example 3.4.6. Let X = {a, b, c, d} and let T be the trivalent tree with split ab|cd. Then

φf (T,D) =
1

2
(fa|bcd + fb|acd − fab|cd)Dab

+
1

2
(fc|abd + fd|abc − fcd|ab)Dcd

+
1

4
(fa|bcd − fb|acd + fc|abd − fd|abc + fab|cd − fac|bd + fad|bc)Dac

+
1

4
(fa|bcd − fb|acd − fc|abd + fd|abc + fab|cd + fac|bd − fad|bc)Dad

+
1

4
(−fa|bcd + fb|acd + fc|abd − fd|abc + fab|cd + fac|bd − fad|bc)Dbc

+
1

4
(−fa|bcd + fb|acd − fc|abd + fd|abc + fab|cd − fac|bd + fad|bc)Dbd

�

For a fixed f let φf be the ME method given by the coefficients in (3.9). We call φf
BME-like. Let n = 4, X = {a, b, c, d}, T the X-tree with split ab|cd in Example 3.4.6, T ′

the tree with split ac|bd and T ′′ the tree with split ad|bc. Then

φf (T
′, D)− φf (T,D) =

γf
4

(−Dab +Dac +Dbd −Dcd) ,

φf (T
′′, D)− φf (T,D) =

γf
4

(−Dab +Dad +Dbc −Dcd) ,

where γf is the quantity defined in (3.8). If γ ≤ 0 then φf is not even statistically consistent.
When γf > 0, these expressions are positive when D is T quartet consistent, and φf is quartet
consistent and has l∞ radius 1

2
. For n = 4 every dissimilarity is T quartet consistent for one of

the three tree topologies, so specifying how a method acts on quartet consistent dissimilarities
defines the method over all space. Thus arg minT φBME(T,D) = arg minT φf (T,D) and,
while the methods return different scores for the same dissimilarity, they are identical in
their reconstruction topology. We conjecture that this is always true.

Conjecture 3.4.7. If φf has l∞ radius 1
2
, then arg minT φf (T,D) = arg minT φBME(T,D)

for all T,D.

Assume X = [n] and let τ ∈ Sn be a permutation on X. Define τ(T ) to be the tree
obtained by permuting the leaves of T according to τ , and τ(D) the dissimilarity given by
(τ(D))ij = Dτ(i)τ(j). We say φ is permutation-invariant if φ(T,D) = φ(τ(T ), τ(D)) for all
τ ∈ Sn.

Lemma 3.4.8. A BME-like method φf is permutation invariant if and only there are num-
bers c1, c2, . . . , cn−1 such that ck = cn−k for all k, and fA|B = c|A| for every split A|B.
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Proof. Fix f throughout. Let T, T ′ be the trees in Figure 1.2 where A,B,C,D are clades
with |B| = |C| and T ′ = σ(T ) with τ ∈ Sn satisfying τ(B) = C, τ(C) = B and τ(i) = i for
all i /∈ B,C. Recall that for two clades A,B, σA|B =

∑
a∈A,b∈B σab. Because φ is permutation

invariant φf (T, σA|B) = φf (T
′, σA|C), so by Theorem 3.4.4,

fA|BCD + fB|ACD − fAB|CD = fA|BCD + fC|ABD − fAC|BD,

and
fB|ACD − fC|ABD = fAB|CD − fAC|BD. (3.15)

The same argument with D = σB|D gives fB|ACD − fC|ABD = fAC|BD − fAB|CD, which
contradicts (3.15) unless fB|ACD = fC|ABD.

This shows there are numbers c1, c2, . . . , cbn/2c such that fA|B = ck for |A| = k. Conversely,
suppose such numbers exist and let a, b ∈ X. Let T1, . . . , Tk be the subtrees hanging off the
path from a to b, in order. Then from the form of φf the value φf (T, σab) depends only on
the sequence |T1|, |T2|, . . . , |Tk|; let us call this sequence STab. We can then talk about φf (S)
where S is any sequence of positive integers that sums to |X| − 2.

To show φ is invariant under permutations, it suffices to show φf (T,D) = φf (τ(T ), τ(D))
when D is of the form D = σab for a, b ∈ X and τ a transposition. This follows from addi-
tivity, and from the fact that transpositions generate Sn. Suppose τ = (i j). By examining

the three cases of |{i, j}∩{a, b}|, we see STab = S
τ(T )
τ(a)τ(b), so φf (T,D) = φf (τ(T ), τ(D)). Thus

φf is permutation invariant.

3.5 A Geometric Interpretation

We can interpret ME methods geometrically. Let Pf be the polytope in R(n
2) given by

Pf = {x|x · σS ≥ fS ∀ splits S, with equality if S is trivial}. (3.16)

Pf is cut out by n equations and 2n−1−n−1 inequalities. We show first that Pf is bounded.
Let x ∈ Pf . For every split S = A|B of X,

fA|B ≤
∑

i∈A

∑

j∈B

xij =
∑

i∈A

∑

j∈X

xij − 2
∑

{i,j}∈(A
2)

xij =
∑

i∈A

fi|X\{i} − 2
∑

{i,j}∈(A
2)

xij,

so
2
∑

{i,j}∈(A
2)

xij ≤
∑

i∈A

fi|X\{i} − fA|B.

Taking A = {i, j} gives

2xij ≤ fi|X\{i} + fj|X\{j} − f{i,j}|X\{i,j},
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bounding xij from above. Since

xij = f{i,j}|X\{i,j} −
∑

k 6=i,j

xik,

xij is bounded from below, so Pf is bounded. This justifies our use of the word “polytope.”
Note Uf (T ) is a face of Pf for each T ∈ TX , and thus is itself a polytope. A statistically

consistent ME method corresponds to picking a point φ(T ) ∈ Uf (T ) on each of these faces.
We then construct the subpolytope P ′ = conv{φ(T )|T ∈ TX} of Pf and let F be the normal
fan of P ′. The maximal cones of F partition the space; each one corresponds to a vertex of P ′
and thus to an X-tree. Let CT denote the cone corresponding to tree T . Given a dissimilarity
D, our method then returns the T such that D ∈ CT . In this geometric framework, φ is
statistically consistent if and only if the space of T -additive dissimilarities lies inside CT for
each T . It is quartet consistent if and only if the polyhedral cone of T quartet consistent
dissimilarities lies inside CT for each T . When f = 1, Pf is known as the BME polytope. The
BME polytope has been studied [39], but open questions remain. It would be interesting to
study Pf for nonconstant f .

The BME-like form φf is only statistically consistent if

φf (T, σS) > fS ∀(T, S) s.t. T ∈ TX , S /∈ T. (3.17)

Let N = 2n−1− 1. The set of all X-splits has cardinality N , so we may think of f as a point
in RN . Each φf (T, σS) is an linear combination of the coordinates of this point, so for each
T and S /∈ T , (3.17) describes a hyperplane in this space. The set of all such hyperplanes
cuts out a polyhedral cone in RN , and φf is statistically consistent if and only if it lies in
this cone.

3.6 Robustness of Traveling Salesman for Kalmanson

Metrics

In previous sections we’ve discussed minimum evolution methods for reconstructing the tree
underlying a dissimilarity. We now suppose that our dissimilarity D is Kalmanson and arises
from a full circular split system. So D =

∑
S∈C wSσS, where C is a circular ordering and S ∈ C

means S is a split compatible with C. We define the length of D to be len(D) =
∑

S∈C wS.

Definition 3.6.1. Let CX denote the space of circular orderings on X. A general minimum
evolution method is a map φ : CX → L. A minimum evolution method is a map φ : CX → L
such that if D is C-additive, φ(C, D) = len(D).

As before, we often write φ(C, D) to represent (φ(C))(D). We say φ is consistent if
arg minC∗ φ(C∗, D) = C whenever D is C-additive. Let f be a real-valued function on the set
of X-splits. Define Uf (C) = {l ∈ L|l(σS) ≥ fS} with equality if and only if S ∈ C. The
following is analogous to Lemma 3.4.3:
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Lemma 3.6.2. φ is consistent if and only if φ(C) ∈ Uf (C) for all C.

The space Uf (C) consists of at most a single point.

Proposition 3.6.3. Let C be a circular ordering. For each pair A,B of disjoint intervals
of C, let C,D be the (possibly empty) intervals such that {A,C,B,D} partitions X and is
cyclic with respect to C. Let

2cCAB = fAC|BD + fAD|BC − fB|ACD − fD|ABC , (3.18)

where we take f∅|X = 0. Then Uf (C) is either empty or consists of the single linear form l
such that l(σA|B) = cCAB. In particular, l(D) =

∑
i<j c

C
ijDij.

We call this form φTSPf or sometimes just φf when there is no chance of confusion with
the form φBME

f .

Proof. Let l ∈ Uf (C). Apply l to the equality

2σA|B = σAC|BD + σAD|BC − σB|ACD − σD|ABC .

The fact that dimUf (C) = 0 is not surprising, since the condition l(σS) = fS for all S ∈ C
imposes

(
n
2

)
linear conditions on the coordinates of the point l ∈ R(n

2). If it is nonempty, Uf
is a vertex of the polytope Pf defined in (3.16).

Note that the requirement φ(C, D) = len(D) is equivalent to f = 1. In this case φ(C, D) =
1
2

∑n
i=1 σC(i)C(i+1). We denote this by φTSP and call it the traveling salesman linear form,

since for a fixed D, finding arg minC φ(C, D) is the traveling salesman problem. Finding the
TSP-minimizing tour is NP-hard [46].

There is a relationship between circular ME methods and tree ME methods. In [64],
Semple and Steel show that if C(T ) denotes the set of circular orderings of T , then

φBME(T ) =
1

|C(T )|
∑

C∈C(T )

φTSP (C, D). (3.19)

Thus the BME form is the average of the circularly compatible traveling salesmen forms.
Let φBME

f be the form defined in Theorem 3.4.4. The same relationship holds between
TSP- and BME-like forms.

Theorem 3.6.4.

φBME
f (T ) =

1

|C(T )|
∑

C∈C(T )

φTSPf (C, D).
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We do not give a proof here, but note that Equation 3.19 is the special case of this when
f = 1.

We will now calculate the l∞ radius of the TSP form. The following are analogous to
Definition 3.2.2 and Definition 3.2.3.

Definition 3.6.5. A dissimilarity D is quartet consistent with C if, for each (i, j, k, l) cyclic
with respect to C,

Dik +Djl > max{Dij +Dkl, Dil +Djk}.
A circular ordering reconstruction method is quartet consistent if it returns C when the input
is C quartet consistent.

Theorem 3.6.6. φTSP is quartet consistent.

Proof. Suppose not. Then there are circular orderings C, C ′ and a C quartet consistent
dissimilarity D such that φTSP (C ′, D) < φTSP (Ĉ, D) for all Ĉ 6= C ′. Suppose C = (1, 2, . . . , n)
and consider the vertices {1, 2, . . . , n} arranged in order around a circle. Connect two vertices
by an edge if they are adjacent in C ′. Since C ′ 6= C there must be a pair of intersecting chords
ik and jl. This means there are i < j < k < l and a, b such that i = C ′(a), k = C ′(a+ 1), j =
C ′(b), l = C ′(b+ 1). Let C ′′ be the circular ordering obtained by inverting the elements in C ′
between k and j,

C ′′ = {C ′(1), C ′(2), . . . , C ′(a), C ′(b), C ′(b− 1), . . . , C ′(a+ 1), C ′(b+ 1), C ′(b+ 2), . . . , C ′(n)}.

Then
2(f(C ′)− f(C ′′)) = Dik +Djl −Dil −Djk > 0

since D is quartet consistent, a contradiction.

As with BME, here quartet consistency immediately implies that if D̂ is C-additive, our
method will return C when ||D − D̂||∞ < 1

2
wmin. Unlike BME, however, this isn’t optimal.

In fact:

Theorem 3.6.7. φTSP has l∞ radius n−3
2

, and this is the best possible.

Proof. For notational simplicity suppose X = {1, . . . , n}, C = {1, . . . , n} and S is the corre-
sponding split system. Let ηS(i, j) be the number of splits in S separating i and j. For any
circular ordering C ′ define

f(C ′) =
n∑

i=1

ηS(C ′(i), C ′(i+ 1)). (3.20)

Let l(C ′, D) = 1
2

∑
iD(C ′(i), C ′(i+1)) be the consistent linear form corresponding to the split

system associated with C ′.
Lemma 3.6.8.

l(C ′, D̂)− l(C, D̂) ≥ wmin
2

(f(C ′)− f(C)). (3.21)
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Note ηS(i, i+ 1) = n− 1, so f(C) = n(n− 1).
We’ll prove this by induction on f(C ′). For fixed i the expression ηS(i, j) is minimized

for j 6= i when j = i± 1, so f(C ′) is minimized when C ′ = C in which case (3.21) obviously
holds.

Now suppose C ′ 6= C. Consider the vertices {1, 2, . . . , n} arranged in order around a circle
(as per C), and connect two vertices if they are adjacent in C ′. Since C ′ 6= C there must be a
pair of intersecting chords ik and jl. This means there are i < j < k < l and a, b such that
i = C ′(a), k = C ′(a+ 1), j = C ′(b), l = C ′(b+ 1). Let C ′′ be the circular ordering obtained by
inverting the elements in C ′ between k and j, i.e.

C ′′ = {C ′(1), C ′(2), . . . , C ′(a), C ′(b), C ′(b− 1), . . . , C ′(a+ 1), C ′(b+ 1), C ′(b+ 2), . . . , C ′(n)}.
Note

f(C ′)− f(C ′′) = ηS(i, k) + ηS(j, l)− ηS(i, j)− ηS(k, l) = 2ηS(ij, kl) > 0

where by abuse of notation ηS(ij, kl) is the number of splits A|B ∈ S with i, j ∈ A, k, l ∈ B.
This shows we can assume the inductive hypothesis for C ′′. Now

l(C ′′, D)− l(C ′, D) =
1

2
(D(i, k) +D(j, l)−D(i, j)−D(k, l)) ,

so

l(C ′, D̂)− l(C, D̂) = (l(C ′, D̂)− l(C ′′, D̂)) + (l(C ′′, D̂)− l(C, D̂))

≥ 1

2

(
D̂(i, k) + D̂(j, l)− D̂(i, j)− D̂(k, l)

)
+
wmin

2
(f(C ′′)− f(C))

≥
∑

A|B∈S
i,j∈A,k,l∈B

wS −
wmin

2
(f(C ′)− f(C ′′)) +

wmin
2

(f(C ′)− f(C))

≥ wminηS(ij, kl)− wminηS(ij, kl) +
wmin

2
(f(C ′)− f(C))

≥ wmin
2

(f(C ′)− f(C)),
and the claim is proved.

Now take α = n−3
2

and let D be a dissimilarity map with |||D − D̂||∞ ≤ αwmin. There
are 2a terms in l(C ′, D) − l(C, D), where a is the number of adjacencies in C ′ that are not
in C. Now for any i, by definition C ′(i) and C ′(i + 1) are adjacent in C ′. If they’re adjacent
in C as well then η(C ′(i), C ′(i + 1)) − η(i, i + 1) = 0. If they’re not adjacent in C then
η(C ′(i), C ′(i+ 1))− η(i, i+ 1) ≥ 2(n− 2)− (n− 1) = n− 3, so

f(C ′)− f(C) =
∑

1≤i≤n

ηC(C ′(i), C ′(i+ 1))− ηC(i, i+ 1)

≥ (n− 3)
∑

1≤i≤n

C′(i),C′(i+1) not adjacent in C

1

≥ (n− 3)a.
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Thus

l(C ′, D)− l(C, D) ≥ l(C ′, D̂)− l(C, D̂)− αwmina

≥ wmin
2

(f(C ′)− f(C))− n− 3

2
wmina

≥ 0,

and the proof is complete.

For f = 1, the faces of the polytope Uf (C) for circular split systems is of dimension 1

while the polytope Uf (T ) is of dimension (n−2)(n−3)
2

, so we might naively expect that the
optimal l∞ radius of TSP-like forms would be < 1

2
. But each T has an NNI T ′ such that

|S(T ) \ S(T ′)| = 1. However, if S and S ′ are sets of splits consistent with distinct circular
orderings C and C ′, then |S \ S ′| ≥ n− 3.

Conjecture 3.6.9. Let E = {Si} be a collection of circular split systems closed under per-
mutation (that is, σSi ∈ E for all σ ∈ Sn), and let φ : {Si} → L be a corresponding minimum
evolution method. Then the l∞ radius of φ is 1

2
mini 6=j |Si \ Sj|.
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Chapter 4

The Maximum Agreement Subtree
Conjecture

4.1 Introduction

Suppose we have some set of host taxa and a set of corresponding parasites with a bijection
between the two sets. We would like to determine if some of the parasites and hosts evolved
together, and if so, which ones. One obvious thing to look for is for subtrees that are common
to the two trees, as we expect such a shared structure to be a strong indicator of coevolution.
This leads to the following definition.

Definition 4.1.1. Given an X-tree T and and a subset Y ⊆ X, let T |Y denote the phy-
logenetic Y -tree obtained by restricting T to the leaves of Y , and then contracting every
edge whose vertices are both of degree 2. Throughout, the size of the tree will refer to the
number of its leaves. Given two X-trees T1, T2, a subset Y ⊆ X and a Y -tree T , we say T
is an agreement subtree of T1, T2 if T1|Y = T2|Y = T . We say T is a maximum agreement
subtree if there is no agreement subtree of larger size.

Given two phylogenetic X-trees T1, T2, can we find a maximum agreement subtree? This
problem was first posed in the mid 1980s [32, 37] and a number of polynomial-time algorithms
have since been developed that do precisely this [69]. In this chapter we consider the following
combinatorial question. Let MAST (T1, T2) be the size of a maximum agreement subtree,
and let f(n) denote the smallest number such that if |X| ≥ f(n), MAST (T1, T2) ≥ n
for any T1, T2 ∈ TX . What is the growth rate of f(n)? Knowing a lower bound for the
size of a maximum agreement subtree has implications for determining the significance of
large common subtrees in coevolution. In particular, if we expect two trees to have a large
agreement subtree, we will consider the appearance of such a tree as much less convincing
evidence for coevolution than we otherwise might.

We start by investigating f(n) for small values of n. We trivially have f(3) = 3. A case
analysis [42, 68] shows:
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Figure 4.1: Two trees T1, T2 and a maximum agreement subtree T .

Lemma 4.1.2. f(4) = 6.

Proof. First, note that if T1 and T2 have disjoint cherries, these four taxa make up a shared
quartet. So T1 and T2 must each have precisely two cherries and are thus caterpillar. Each
Ti then has a split Ai|Bi with |Ai| = |Bi| = 3. WLOG A1 ∩A2 ≥ 2, so B1 ∩B2 ≥ 2 and the
trees share a quartet.

With a more involved case analysis, one can show f(5) = 13 [42]. Larger values of f(n)
are unknown, and it is not even obvious that f(n) is finite for all n. However, the following
Ramsey-theoretic argument in [68] shows it is.

Proposition 4.1.3. f(n) exists for all n ≥ 3.

Proof. Ramsey theory states that there exists a minimum number rk(m,n) such that if
|X| ≥ rk(m,n), every red-blue coloring of the unordered k-tuples of X contains either a red
set of size m or a blue set of size n, where a set is red if all its k-tuples are red, and blue if all
its k-tuples are blue. So given an |X| ≥ r4(6, n), color each 4-tuple Z ⊂ X red if T1|Z = T2|Z
and blue otherwise. If Y ⊂ X is a blue set of size 6 then T1|Y and T2|Y have no quartets in
common, contradicting Lemma 4.1.2. So X contains a red set Y of size n. Then T1|Y and
T2|Y agree on every quartet, which implies that the trees are equal [2, 14].

This proof shows f(n) ≤ r4(6, n). Bounds in [15, 26] show that for some constant c,

f(n) ≤ 22cn
4 log n

.
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In fact, we can do much better. In [49], Kubicki, Kubicka and McMorris showed there are
constants c1, c2 such that

cn1 < f(n) < c
cn

2

2
2 . (4.1)

These were the first quantitative bounds for f(n). We will sketch their arguments here. Both
require the following easy lemma.

Lemma 4.1.4. Let T ∈ TX and let Y ⊂ X be a subset of maximum size such that T |Y is
caterpillar. Then |Y | = diam(T ) + 1.

Proof. Let d = diam(T ). Choose x, y ∈ X such that |PT (x, y)| = d and let A1, A2, . . . , Ad−1

be the clades hanging off the path P T
xy in order. For each i, select ai ∈ Ai and let Y =

{x, y, a1, . . . , ad−1}. Then T |Y is a caterpillar with |Y | = diam(T ) + 1. Conversely, suppose
T |Y is caterpillar and choose x, y ∈ Y such that |PT |Y (x, y)| = |Y | − 1 is maximal. Then

diam(T ) ≥ |PT (x, y)| ≥ |PT |Y (x, y)| = |Y | − 1.

The following theorem, proved by Erdös and Szekeres [27], can be thought of as the first
investigation of f(n).

Theorem 4.1.5 (Erdös-Szekeres). Let S be a permutation of [N ], where N ≥ (n− 1)(m−
1) + 1. Then S either has an increasing subsequence of length n or a decreasing subsequence
of length m.

Proof. Let S = (a1, a2, . . . , aN) and for each i, let (li, gi) be the ordered pair such that gi
is the length of the maximum increasing subsequence and li the length of the maximum
decreasing subsequence that ends in ai. Now for i < j, if ai < aj then gi < gj, else ai > aj
and lj > li. So (li, gi) 6= (lj, gj) for i 6= j. Since the pairs (li, gi) are distinct and there
are (n − 1)(m − 1) + 1 of them, there must be some pair with either gi > n − 1, in which
case there is an increasing subsequence of length n, or li > m − 1, in which case there is a
decreasing subsequence of length m.

We now give the proof of (4.1). Let T be a caterpillar tree on X = [N ]. We associate
to T a permutation of N by choosing two taxa x, y ∈ X with |PT (x, y)| = N + 1. The path
from x to y then gives a linear ordering (and hence a permutation) on X, where we take
c1 = x, cN = y and ci is the leaf 2i edges away from x. (There are actually four permutations
we can get in this way, depending on our choice of x and y). Suppose T1, T2 are caterpillars,
and assume a permutation associated to T1 is the identity. By Theorem 4.1.5, T2 has either
an increasing or decreasing subsequence Y of length >

√
N . Then T1|Y = T2|Y . This shows

that when T1, T2 are both caterpillar, MAST (T1, T2) >
√
N .
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So for T1, T2 ∈ TX , we can find a Y1 ⊂ X, |Y | = log |X| such that T1|Y1 is caterpil-
lar. We can then find a Y2 ⊂ Y1, |Y2| = log |Y1| such that (T2|Y1)|Y2 = T2|Y2 is caterpil-
lar. By Theorem 4.1.5 there exists Y3 ⊂ Y2, |Y3| >

√
Y2 such that T1|Y3 = T2|Y3 . Thus

MAST (T1, T2) >
√

log log |X| and

f(n) < 22n
2

. (4.2)

For the lower bound, let |X| = 2n and let T1, T2 ∈ TX with T1 caterpillar, T2 a balanced
binary tree. Any maximum agreement subtree of T1, T2 is caterpillar, so by Lemma 4.1.4 we
must have MAST (T1, T2) ≤ diam(T2) + 1 = 2n. Thus 2n/2 ≤ f(n).

The upper and lower bounds in (4.1) are far apart. Kubicka, Kubicki and McMorris
conjectured the lower bound was the correct one [50]:

Conjecture 4.1.6. There exists a constant c such that f(n) < cn.

The upper bound (4.2) was improved in [68] to f(n) < cc
n
, but until now this was the

previously best-known result. As in [50], the proof in [68] proceeds by using Theorem 4.1.5
to find a caterpillar subtree common to both trees. In this paper we will take a different
approach that will result in the first-known bound less than a double exponential. We will
show

Theorem 4.1.7. If |X| ≥ (3n)n, there exists a Y ⊂ X, |Y | = n such that T1|Y , T2|Y are
caterpillar and T1|Y = T2|Y .

Define fC(n) to be the smallest number such that if |X| ≥ fC(n) and T1, T2 are caterpillar
X-trees, then MAST (T1, T2) ≥ n. As fC(n) is used in the derivation of both the upper
and lower bound of (4.1), it is of some interest to obtain as exact a value for fC(n) as
possible. Theorem 4.1.5 immediately gives fC(n) ≤ n2− 2n+ 2, and Humphries [42] showed
fC(n) ≥ n2 − 2n − 2. We modify the proof of Theorem 4.1.5 to improve the upper bound
and obtain

Theorem 4.1.8.
n2 − 2n− 2 ≤ fC(n) ≤ n2 − 2n− 1.

4.2 Proof

In this section we prove Theorem 4.1.7. Recall RX is the set of rooted binary trees. Given
a tree T ∈ RX and a subset Y ⊂ X, we define T |Y to be the binary rooted Y -tree obtained
by restricting T to the elements in Y as well as the root. We say a pair T1, T2 ∈ RX is
(m,n)-similar if either of the following is true:

(i) T1 and T2 have a common caterpillar subtree of size n,

(ii) T1 and T2 have a common rooted subtree of size m.
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Let g(m,n) be the smallest number such that if |X| ≥ g(m,n), T1 and T2 are (m,n)-similar.
Note that for Y ⊂ X, if T1|Y , T2|Y are (m,n)-similar, then so are T1, T2. Also, f(n) ≤ g(n, n).

Lemma 4.2.1. Suppose there are disjoint subsets Y, Z ⊂ X such that for i = 1, 2, the root
of Ti|Y ∪Z induces a split Ai|Bi with Y ⊆ Ai, Z ⊆ Bi. Suppose further that |Y | ≥ g(m1, n),
|Z| ≥ g(m2, n) for some m1,m2. Then T1, T2 are (m1 +m2, n)-similar. In particular, if there
exists Y ⊂ X, z ∈ X with |Y | ≥ g(m− 1, n) such that the roots of both trees split Y and z,
then T1, T2 are (m,n)-similar.

Proof. If T1|Y , T2|Y have a common unrooted n-element subtree then so do T1, T2. Otherwise,
because T1|Y and T2|Y are (m1, n)-similar, there exists a Y ′ ⊆ Y of size m1 such that
T1|Y ′ = T2|Y ′ . Similarly, if T1|Z and T2|Z have a common unrooted subtree of size n, there is
a Z ′ ⊆ Z of size m2 such that T1|Z′ = T2|Z′ . Then T1|Y ′∪Z′ = T2|Y ′∪Z , since the root induces
the split Y ′|Z ′ in both subtrees. Thus T1, T2 either have an unrooted agreement subtree of
size n or a rooted agreement subtree of size |Y ′ ∪ Z ′| = m1 +m2.

The second half of the lemma follows immediately.

Lemma 4.2.1 will allow us to bound g(m,n) by induction on m. In particular, we will
show

Proposition 4.2.2.
g(m,n) < 3ng(m− 1, n). (4.3)

Proof. Given T1, T2 ∈ RX , let |X| = N and suppose T1, T2 are not (m,n)-similar. We will
find N large enough to get a contradiction. Let Ai|Bi be the split given by removing the
root of Ti. Suppose first that A1 ∩ A2, A1 ∩ B2, A2 ∩ B1, A2 ∩ B2 are all nonempty. Then
WLOG A1∩A2 ≥ N

4
. If N ≥ 4g(m− 1, n) then T1|A1∩A2 and T2|A1∩A2 are (m− 1, n)-similar.

Since B1 ∩B2 is nonempty, by Lemma 4.2.1, T1, T2 are (m,n)-similar.
So now suppose one of the intersections A1 ∩ A2, A1 ∩ B2, B1 ∩ A2, B1 ∩ B2 is empty.

Then there is a partition of X into three nonempty pieces A,B,C such that the split in T1

induced by the root is AC|B and the split in T2 induced by the root is AB|C. We must
have |B|, |C| < g(m,n) or else by Lemma 4.2.1, T1, T2 are (m,n)-similar. Choose b ∈ B
and c ∈ C and consider the path in T1 from r to c. Suppose this path contains k internal
vertices and let B1, B2, . . . , Bk = B denote the clades hanging off this path, in order. Note
|Bi| < g(m − 1, n) for all i. For if not, then taking Y = Bi, Z = {c} and applying Lemma
4.2.1 to T1|Y ∪Z , T2|Y ∪Z shows T1, T2 are (m,n)-similar. Similarly, consider the path in T2

from the root to b and let C = C1, C2, · · · , Cl be the clades hanging off in order. Then each
|Ci| < g(m− 1, n).

We now choose taxa y1, y2, · · · , yn inductively as follows. Let y1 = c, r1 = k + 1, si = 1.
Given ri, si, yi, let Xi+1 = C[si+1:l] ∩ B[1:ri−1]. If Xi+1 is nonempty let si+1 be the smallest
number such that si+1 > si and Csi+1

∩ B[1:ri−1] 6= ∅, and let ri+1 be the index such that
yi+1 ∈ Bri+1

. So yi+1 ∈ Bri+1
∩ Csi+1

, and ri+1 < ri.
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Figure 4.2: An illustration of the construction of the agreement subtree in the proof of
Proposition 4.2.2

When is Xi nonempty? Xi \ Xi+1 ⊆ (B[ri+1:ri+1−1] ∩ C[si+1+1:l]) ∪ Bri+1
∪ Csi+1

. Now
|B[ri+1:ri+1−1] ∩ C[si+1:l]| < g(m − 1, n), by applying Lemma 4.2.1 to this set and yi+1. We
already know |Csi+1

|, |Bri+1
| < g(m−1, n), so |Xi\Xi+1| < 3g(m−1, n). Thus Xi is nonempty

if |X| ≥ 3ig(m−1, n). So if |X| ≥ 3ng(m−1, n) we get a sequence of taxa y1, · · · , yn, where
yi ∈ Bri ∩Csi , (ri) is strictly decreasing and (si) is strictly increasing. Let Y = {y1, · · · , yn}.
Then T1|Y , T2|Y are n-leaf caterpillar trees with T1|Y = T2|Y . This proves (4.3).

Figure 4.2 shows this construction through i = 3. Here y1, y2, y3 have already been
computed. r3 = k − 2, s3 = 4 and X4 is the set of taxa that lies in both ovals.

Proof of Theorem 4.1.7. Since g(2, n) = 2, Proposition 4.2.2 gives the inductive bound
f(n) ≤ g(n, n) < (3n)n.

Remark 4.2.3. With a little care we can obtain the improved bound f(n) ≤ 6g(n/2, n)
which gives f(n) < c(3n)n/2 for a computable constant c. This can likely be improved with
a more delicate analysis.
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4.3 The Caterpillar Case

We now prove Theorem 4.1.8. Humphries showed [42] that fC(n) ≥ n2−2n−3, so it remains
to compute the upper bound.

Proof. Let |X| = N and assume WLOG that when read left to right, T1 has leaves 1, 2, . . . , N .
The leaves of T2, when read left to right, are some permutation a1, a2, . . . , aN of [N ]. The size
of the maximum agreement subtree is then the length of the longest subsequence t1, t2, . . . , tm
of (ai) such that either

(a) t1, t2 < t3 < . . . < tm−2 < tm−1, tm, or

(b) t1, t2 > t3 > . . . > tm−2 > tm−1, tm.

Let us call such subsequences good. Let N = (n − 1)(m − 1) − 3 = nm − n −m − 2. For
each i, let li denote the length of longest decreasing subsequence that ends with ai, and let
gi denote the length of the longest increasing subsequence that ends with ai. As in the proof
of the Erdös-Szekeres theorem, (li, gi) 6= (lj, gj) for i 6= j.

So first, assume that there are m− 2 indices i1 < i2 < . . . < im−2 such that gik = n− 1
for 1 ≤ k ≤ m − 2. Each aik is then the last element in an n − 1 increasing subsequence
bk1, b

k
2, . . . , b

k
n−1 = aik . We can assume that for each k, bkn−2 > ak+1. For if not, then

bk1, b
k
2, . . . , b

k
n−1, aik+1

is a good subsequence, and we’re done. In particular, this implies b1
n−2 >

ai2 . We may also assume that bkn−2 appears after aik−1
in the sequence, for if not, then

bk1, . . . , b
k
n−2, aik−1

, aik is a good sequence. This implies ain−2 appears before bn−1
n−2 in the

sequence. But then the subsequence

b1
n−2, ai1 , ai2 , . . . , ain−2 , b

k
n−2, ain−1

is good. By a similar argument, if there exist n− 2 elements ai with li = m− 1, we’re done.
Otherwise there are only (m − 3) values of i with gi = n − 1, and n − 3 values of i with
li = m−1. This implies f(n) ≤ (n−2)(m−2)+(n−3)+(m−3)+1 = mn−n−m−1.



58

Appendix A

Nomenclature and Abbreviations

Table A.1: Nomenclature and abbreviations.

AT Affine (rooted) X-trees with root r
PT Projective (unrooted) X-trees
H Hierarchies over X \ {r}
PSS Pairwise compatible split systems over X
U Ultrametrics
TM Tree metrics
PQ PQ-trees over X \ {r}
PC PC-trees over X
PRF Pyramids that are rooted families over X \ {r}
CUF Circular split systems that are unrooted families over X
IP Negative indexed pyramids satisfying

the pyramidal four-point condition over X \ {r}
WCSS Weighted circular compatible split systems over X
SR Negative strong Robinsonian matrices satisfying

the Robinsonian four-point condition over X \ {r}
K Kalmanson metrics over X
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