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Abstract—The use of wireless sensor networks for indoor
localization application has emerged as a significant area of
interest over the last decade, primarily motivated by its low
cost and convenient deployment. The weighted centroid local-
ization algorithm is a suitable positioning technique in a wireless
sensor network due to its easy implementation. However, the
performance of this method is easily affected by outliers and
interference in the measurement of radio signal strength. In order
to overcome this limitation, a more robust ARMA filter using
generalized t-distribution noise model based on influence function
approach is proposed. A hardware prototype was implemented
to demonstrate that the ARMA filter could improve system per-
formance, especially when dealing with the case of measurement
outliers.

I. INTRODUCTION

The use of wireless sensor networks (WSNs) for indoor
localization application has emerged as a significant area of
interest over the last decade, primarily motivated by its low
cost and convenient deployment. A survey of indoor position-
ing technologies can be found in [1]. A standard positioning
technique is centroid determination and the most widely used
algorithm for fusion of the positions is the Kalman Filter [1].

By formal definition, the centroid of any n-dimensional
object is the average position of all the points along each
coordinate direction. This definition transplanted to the appli-
cation of indoor positioning involves different beacons with
known positions as reference nodes and simply locating a
target at the centroid of these nodes. The centroid localization
(CL) was first proposed by Bulusu in [2]. As an alternative,
a weighted centroid method [3] can be used to improve the
accuracy of the system, where the weights are functions of
ranges, signal strength information or uncertainty of each
beacon [1]. Actually, the centroid method is highly suitable in
WSNs because of its easy implementation without requiring
too much computing resources. However, due to the multi-
path effect and the shadow fading, which are always present in
signal propagation in an indoor environment, the performance
of centroid method is unsatisfactory [4].

The AutoRegressive-Moving-Average with eXogenous in-
puts model (ARMAX) with Gaussian noise is commonly used
to model a dynamic system. However, the Gaussian noise

assumption is an approximation to reality. The occurrence of
outliers, transient data in steady-state measurements, instru-
ment failure, human error, model nonlinearity, etc. can all
induce non-Gaussian data [5]. Indeed, whenever the central
limit theorem is invoked, the central limit theorem being a
limit theorem can at most suggest approximate normality for
real data [6]. However, even high-quality model data may not
fit the Gaussian distribution and the presence of a single outlier
can spoil the statistical analysis completely for the case of the
Kalman filter [7].

The generalized t-distribution (GT) was employed in the
data reconciliation problem to model random noise [5], [8], [9].
GT distribution was also used in econometrics [10], [11], [12],
[13] to model random noise in the parameter estimation prob-
lem. By being a superset encompassing Gaussian, uniform, t
and double exponential distributions, GT distribution has the
flexibility to characterize noise with Gaussian or non-Gaussian
statistical properties. For instance, in our case of using the
weighted centroid localization algorithm to track positions
of a target, the results are usually spoiled by outliers due
to non-line-of-sight (NLoS) conditions, high attenuation and
signal scattering or fast temporal changes caused by opening
doors. In a 1D framework, over 4600 data samples of position
coordinates computed by the weighted centroid method are
shown in Fig.1. Maximum likelihood criterion is used to fit
the distribution of these data. It can be clearly seen in Fig.1
that the GT (t3 distribution) curve in red dashed line fit the
histogram better than Gaussian curve in green solid line.

The problem of estimation with GT noise can be solved
numerically using the Newton Raphson or the Expectation
Maximization algorithm [5], [8], [9], [10], [11], [12], [13].
Unlike a recursive algorithm such as the recursive least-
squares estimator, such methods are not suitable for real-time
applications.

In this paper, influence function (IF), an analysis tool in
robust statistics [14], [6], is used to formulate a recursive algo-
rithm that gives an approximate solution, making it suitable for
real-time and on-line implementation. Specifically, the problem
is formulated as the filtering of the ARMA process with GT



Fig. 1. The weighted centroid data distribution.

noise[15]. Other well-known approaches [16], [17], [18] for
handling non-Gaussian noise include the approach of particle
filters which is based on point mass or particle representation
of probability densities. The IF was also used in [19] to analyze
parameter estimation with GT noise. Our algorithm consists of
first using the weighted centroid localization method to give
rough position results and then using the proposed ARMA
filter to refine the results.

The rest of this paper is organized as follows: Section II
gives background knowledge on a log-distance path loss mod-
el, which maps the received signal strength to the distance, and
the weighted centroid localization algorithm. Next Section III
introduces the ARMA process for indoor tracking application.
Then Section IV describes our proposed ARMA filter with
GT noise model. After that Section V establishes the test-bed
for experiments and provides the results. Finally, Section VI
concludes the whole paper.

II. BACKGROUND KNOWLEDGE

A. The Path Loss Model

In order to adopt distance as weights for the weighted
centroid localization algorithm, we need a mapping scheme
from radio signal strength indicators (RSSIs) to distance. In
this case, a log-distance path loss model (PLM) is commonly
used [20]. It provides a relation between the total path loss,
PL (dBm) and distance, D (m) as:

PL = 20 log(f) +Nlog(D) + Lf(n)− 28dB (1)

where f is the radio frequency in MHz; N is the distance power
decay index; Lf(n) is an empirical floor loss penetration factor;
and n is the number of floors between transmitter and receiver.
In our case, f is 2.4 GHz and since transmitters and receivers
are placed in the same floor, therefore, n is equal to 1.

Equation (1) is usually simplified as:

PLd = PL0 + 10α log(D) (2)

where PL0 is the reference pass loss coefficient by combining
the terms 20log(f), Lf(n) and −28dB in Equation (1),
and α is the pass loss exponent. α is typically determined
empirically, ranging from 2 to 4 depending on different indoor
environments.

B. The Weighted Centroid Localization Algorithm

We can obtain the distance between a moving transmitter
and a reference node with known position using Equation (2).
Let x, y be the xy-coordinate of the moving transmitter, and
(x1, y1), (x2, y2), . . . , (xn, yn) be the positions of n receivers.
Di, i = 1, 2, . . . , n denote the distance between the transmitter
and receiver i. Thus, the location estimation formula for x and
y are given as the following:
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Exponent g > 0 determines the weight of the contribution
of each reference node. The larger value of g makes the range
of ”attraction field” of reference nodes wrt. the mobile target
smaller, making the relative weights of the nearest reference
nodes dominate. In our case, the value of g is set to 1.8,
typically based on empirical results [21].

III. THE ARMA PROCESS

Consider the single-output double integrator ARMA model
with deg(C) = deg(A) = 2:

A(q−1)y(k) = C(q−1)ε(k) (5)

where

A(q−1) = (1− q−1)2

C(q−1) = 1 + c1q
−1 + c2q

−2

k = 1, . . . , N is the sampling instance and q−1 is the backward
shift operator, i.e., q−1y(k) = y(k − 1).

Equation (5) is equivalent to the following constant velocity
state-space model:[
x1(k + 1)
x2(k + 1)

]
=

[
1 T
0 1

] [
x1(k)
x2(k)

]
+

[
c1 + 2
c1+c2+1

T

]
ε(k)

(6)

y(k) =
[

1 0
] [ x1(k)

x2(k)

]
+ ε(k) (7)

where T is the sampling interval.
Let the noise ε(k) be modeled by the zero-mean GT

probability density function (PDF)

f(ε) =
p

2σq1/pβ(1/p, q)
(

1 + |ε|p
qσp

)q+1/p
(8)

where σ is the scale parameter, p and q are the shape
parameters. The beta function is given by β(a, b) =∫ 1

0
za−1(1− z)b−1dz. By different choices of p and q, GT



distribution can represent a wide range of distributions as
shown in Fig.2. The parameters of the PDFs in Fig.1 obtained
via the maximum likelihood criterion are summarized in Table
I.

Fig. 2. Different choices of the GT distribution shape parameters p and q
can give different well-known distributions.

TABLE I
PDF PARAMETERS OF DIFFERENT DISTRIBUTIONS VIA MAXIMUM

LIKELIHOOD CRETERION

GT (t3) Distribution Gaussian Distribution
p q σ µ σ
2 1.5 1.3156 0 1.4601

IV. ARMA FILTER WITH GT NOISE MODEL

Substituting Equation (7) into (6) gives

x(k + 1) = Φx(k) + Ωy(k) (9)
y(k) = Hx(k) + ε(k) (10)

where

Φ =

[
−(c1 + 1) T
− c1+c2+1

T 1

]
Ω =

[
c1 + 2
c1+c2+1

T

]
H =

[
1 0

]
Iterating from the initial value x(1), Equations (9) and (10)
give

x(2) = Φx(1) + Ωy(1)

x(3) = Φ2x(1) + ΦΩy(1) + Ωy(2)

...
x(N) = ΦN−1x(1) + x̄(N) (11)
y(N) = HΦN−1x(1) +Hx̄(N) + ε(N) (12)

where

x̄(N) =

N−1∑
k=1

Φk−1Ωy(N − k) (13)

TABLE II
ARMA FILTER (IN x̂(N |N)) WITH EXPONENTIAL FORGETTING

x̂(N |N) = x̂(N |N − 1) +Kf (N)[z(N) +Hx̄(N)

−Hx̂(N |N − 1)] (16)
x̂(N + 1|N) = Φx̂(N |N) + Ωy(N) (17)

P (N + 1|N) =
1

λ
[ΦP (N |N − 1)ΦT

−
ΦP (N |N − 1)HTHP (N |N − 1)ΦT

λ+HP (N |N − 1)HT
] (18)

ŷ(N |N) = Hx̂(N |N) (19)

where Kf (N) =
P (N|N−1)HT

λ+HP (N|N−1)HT

A. Maximum Likelihood Estimation

Given N measurements y(k), k = 1, . . . N , the initial
condition, x(1), can be estimated using Equation (12) in
the minimization of the following maximum likelihood cost
function

J = −
N∑
k=1

ln f(ε(k))

= −
N∑
k=1

ln f
(
y(k)−HΦk−1x(1)−Hx̄(k)

)
This can be done by differentiating wrt. x(1) and then equating
to zero giving

∂J

∂x(1)
=

N∑
k=1

ψk(ε(k)) = 0 (14)

where

ψk(ε(k)) = −(pq + 1)(HΦk−1)T
ε(k)|ε(k)|p−2

qσp + |ε(k)|p
(15)

ε(k) = y(k)−HΦk−1x̂(1)−Hx̄(k)

and p > 1. Equation (14) can be solved for x(1) numerically
using the Newton Raphson or the Expectation Maximization
algorithm. Unlike a recursive algorithm such as the recursive
least-squares estimator, Equation (14) is not suitable for real-
time applications. For example, in real-time control, the in-
formation is used by the controller to calculate the control
signal for the next sampling instance. The number of iterations
required by Equation (14) to converge to a solution can be
different for different samples and hence, there is no guarantee
that the information is available before the next sampling
instance.

The recursive ARMA filter algorithm for N = 1, 2, 3 . . .
is summarized in Table II. The derivation is given in [15] and
included in the Appendix for easy reference.

The covariance of x̂(1) and estimate ŷ(N) at sample N are
denoted by P (1|N) and ŷ(N |N) respectively. The forgetting
factor is given by λ. For initialization, P (1|0) can be set as
an identity matrix multiplied by some large number.



V. EXPERIMENT

Fig.3 shows our test-bed which is a common corridor in
a typical research building located in the University Town,
National University of Singapore. In Fig.3, red spots represent
receivers with known positions. To establish the WSN for
experiments, Zigbee 2.4 GHz transmitter and receiver (TI
CC2530) were used. A reader (TI CC2531) was connected
to a local server. The working process of the communication
system is given as follows: the transmitters first broadcast the
packets with their unique ID signal every 0.5 seconds in the
indoor environment; then the receivers pick up the the packets
of each transmitter and send them to the CC2531 reader
continuously through the WSN; after that, the reader transfers
the data packets from all transmitters to the local server;
finally, the local server decodes the packets and calculates the
estimated location of each tracking transmitter.

Fig. 3. The layout of the test-bed.

A. Calibration

Seven different positions in the test-bed were chosen to
collect data. The main purpose of this experiment was to
calibrate each receiver (estimating parameters PL0 and α in
the log-distance path loss model). A best-fit method [22] was
adopted for the use of calibration. An example of calibration
result for a particular receiver is shown in Fig.4. As can be seen
from Fig.4, the depth of the color represents the distribution of
the collected data and most of the data points were clustered
near the fitted PLM curve.

B. Tracking of A Moving Transmitter

In most indoor environments, furniture are arranged such
that there are only a small number of paths for people to walk
on. Hence, most indoor tracking problems can be reduced to
a one-dimension problem. In order to evaluate our proposed
ARMA filter, the Kalman filter was used as a comparison.
From Fig.3 we can see that the test path consists of two parts,
Path 1 and Path 2. The arrows show the moving direction.
With the forgetting factor λ = 0.5, the experimental results of
these two paths are shown in Fig.5 and Fig.6, respectively.

Fig. 4. An example of calibration result for a receiver.

Fig. 5. Tracking results of Path 1.

Fig. 6. Tracking results of Path 2.



TABLE III
LOCALIZATION ACCURACY SUMMARY

Algorithm Ave. Error (m) Max. Error (m)
Weighted Centroid 0.8726 5.0297
Karlman Filter 0.6497 3.5582
ARMA Filter 0.4773 1.9419

In Fig.5, both the ARMA filter and the Kalman filter give
similar performance because the centroid results are close to
the true positions along Path 1. This is due to the fact that
there is not much noise in the environment. However, along
Path 2 there are six lifts with metal doors. These exacerbated
the effect of multi-paths and resulted in outliers as shown in
Fig.6. In this case, the ARMA filter showed a better result than
the Kalman filter in reducing the effect of outliers.

Fig. 7. CDF of error by using the three methods.

After a tester’s walking along both the paths several times
and collecting 447 data samples, the cumulative distribution
function (CDF) of error is shown in Fig.7. The ARMA filter
is able to localize positions within 1m error 87% of the time
while the Kalman filter and the weighted centroid give the
same performance 80% and 64% of the time, respectively.
The maximum error of the ARMA filter is much less than the
Kalman filter and the weighted centroid as shown in Table III.
This is consistent with the observation that the ARMA filter
is less sensitive to outliers. From Table III, it is notable that
the ARMA filter improved the system performance for average
error by 45.30% (= 0.8726−0.4773

0.8726 × 100%) over the weighted
centroid algorithm and by 26.54% (= 0.6497−0.4773

0.6497 × 100%)
over the Kalman filter. As for the maximum error, the ARMA
filter improved the results by 61.39% (= 5.0297−1.9419

5.0297 ×
100%) over the weighted centroid algorithm and by 45.42 %
(= 3.5582−1.9419

3.5582 × 100%) over the Kalman filter. In summary,
we can say that the ARMA filter is more robust to the effect
of outliers and gives higher accuracy than the Kalman filter.

VI. CONCLUSION

In this paper, we proposed an ARMA filter using a GT dis-
tribution noise model based on IF approach. The novel ARMA
filter was used to filter the weighted centroid results for indoor
positioning and tracking. In order to evaluate our proposed
algorithm, the Kalman filter was used as a comparison. Our
experiment results showed that in a one-dimension framework,
the ARMA filter is able to localize positions within 1m error
87% of the time while the Kalman filter and the weighted
centroid give the same performance 80% and 64% of the
time, respectively. Additionally, the ARMA filter was better
at dealing with outliers.
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APPENDIX

The derivation of the ARMA Filter is given in [15] and
included here for easy reference.

We introduce the influence function to approximate and
solve Equation (15) recursively.

Consider the function x = f(h). The first-order Taylor
series expansion

x =
dx

dh

∣∣∣∣
h=0

h

makes use of the gradient dx
dh

∣∣
h=0

to give the approximate
value of x at h. Consider x̂(1), the asymptotic value of the
estimate of x(1). Let x̂(1) be associated with the PDF of (1−
h)f(ε)+hδ(ε), where δ(ε(k)) denotes the probability measure
that puts mass 1 at the point ε(k). Likewise the Taylor series
expansion

x̂(1) =
dx̂(1)

dh

∣∣∣∣
h=0

h (20)

makes use of the gradient dx̂(1)
dh

∣∣∣
h=0

, known as the influence
function, IF (ε(k)) [6][14], to give the approximate value of
x̂(1).

x̂(1|N) = IF(ε(k))

=

(
N∑
k=1

(HΦk−1)THΦk−1

)−1( N∑
k=1

(HΦk−1)T z(k)

)
(21)



TABLE IV
ARMA FILTER (IN x̂(1|N))

P (1|N) = P (1|N − 1)

−
P (1|N − 1)(HΦN−1)THΦN−1P (1|N − 1)

1 +HΦN−1P (1|N − 1)(HΦN−1)T

(24)
x̂(1|N) = x̂(1|N − 1) + P (1|N)(HΦN−1)T

×
[
z(N)−HΦN−1x̂(1|N − 1)

]
(25)

x̄(N + 1) = Φx̄(N) + Ωy(N) (26)

ŷ(N |N) = HΦN−1x̂(1|N) +Hx̄(N) (27)

where

z(k) =

(∫ +∞

−∞

[(p− 1)qσp − |ε|p]|ε|p−2

(qσ2 + |ε|p)2
f(ε)dε

)−1
×ε(k)|ε(k)|p−2

qσp + |ε(k)|p
| (22)

and x̂(1|N) denotes the estimate of x(1) at sample N . Deriva-
tion of Equation (21) is given in [19]. When h = 0, the
associated PDF of x̂(1) is f(ε) and the usual assumption of
zero initial condition for the ARMA transfer function is made
i.e. x(1) = 0.

Notice that Equation (21) gives the well known least-
squares estimates x̂(1|N) from the minimization of the least-
squares loss function

V =
1

2

N∑
k=1

(
z(k)−HΦk−1x̂(1|N)

)2
and the recursive version in Equations (24) and (25) with the
covariance matrix

P (1|N) =

(
N∑
k=1

(HΦk−1)THΦk−1

)−1
(23)

are given in many textbooks that discuss least-squares [23].
Equations (9) and (12) are then used to obtain x̄(N) and
ŷ(N |N) in Equations (26) and (27) respectively.

If we introduce a forgetting factor, λ, in the least-squares
loss function

V =
1

2

N∑
k=1

λN−k
(
z(k)−HΦk−1x̂(1|N)

)2
and estimate x̂(N |N) instead of x̂(1|N) then the derivation is
complete and the recursive ARMA filter algorithm for N = 1,
2, 3 . . . is given in Equations (16) to (19).
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