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 Clouds strongly influence Earth’s climate by reflecting and absorbing radiation, 

transporting latent heat, and generating precipitation. Changes in cloud properties in 

response to anthropogenic greenhouse gas and aerosol particle emissions can both 

dampen and amplify climate trends. Conventional global climate models (GCMs) poorly 

represent the multi-scale nature of these processes, which range from micrometer-scale 

droplet nucleation to large-scale convective systems, and thus contribute significant 

uncertainty to future projections. A new approach called super-parameterization replaces 

conventional statistical parameterizations with embedded cloud-resolving models that 

explicitly simulate sub-grid convection. A super-parameterized version (SPCAM) of the 
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standard Community Atmosphere Model (CAM) is shown to improve the variability and 

intensity of simulated convection, and representation of aerosol-cloud interactions. 

 Natural modes of variability influence aerosol and cloud distributions such that 

isolating statistically significant aerosol indirect effects requires long simulations. 

SPCAM improves aerosol-cloud relationships compared to conventional GCMs, but the 

added computational cost of resolving convection makes long integrations prohibitively 

expensive. An alternative Newtonian relaxation approach applied here uses nudging to 

constrain simulations with pre-industrial and present-day aerosol emissions toward 

identical meteorology. This reduces differences in natural variability and dampens 

feedbacks to isolate aerosol indirect forcing estimates from short simulations. Nudging 

facilitates a meaningful evaluation of one-year SPCAM simulations, which produce a 

substantially weaker indirect effect (-0.81 Wm-2) than CAM (-1.19 Wm-2). 

 Most GCMs do not realistically represent the physical mechanisms that generate 

convection in the Central US during summer, and models disagree on the sign of future 

precipitation trends. A realistic convection signal in a climate change-capable GCM has 

recently been documented in SPCAM. A new empirical orthogonal function-based index 

developed here efficiently demonstrates that nocturnal, eastward propagating mesoscale 

convective systems are a robust effect of super-parameterization. The signal is sensitive 

to aspects of model implementation and is most realistic in the latest version. Employing 

a time-slice climate change experiment design, Central US convection is further shown to 

be sensitive to higher CO2 concentrations, which increase the intensity of precipitation 

generated by propagating storms. Changes in these storms are one manifestation of the 

general shift toward more extreme rainfall captured in SPCAM, but not in CAM. 



1 

Chapter 1 

Introduction 

 Critical uncertainties surround the representation of clouds, convection, and 

precipitation in global climate models (GCMs). These uncertainties arise from our 

incomplete understanding of the climate system, and they limit our ability to project 

future changes. This dissertation addresses some of the largest sources of this uncertainty 

in two areas: (1) the anthropogenic forcing of the climate system, in particular, aerosol 

indirect effects; and (2) the detailed long-term response to a changing climate, in 

particular, regional rainfall changes. In this dissertation, I investigate the potential for a 

new modeling approach called super-parameterization to improve our ability to model 

these processes realistically and thereby to improve confidence in our projections of 

future climate change. 

 Cloud-related processes provide the fundamental link between the hydrologic and 

energy cycles that regulate Earth’s climate system, including sensible and latent heat 

transport, precipitation, solar reflectance (cloud albedo), and infrared absorption 

(greenhouse effect). Processes occurring on scales as small as micrometer droplet 

nucleation can influence cloud reflectivity, which projects onto the planetary albedo, and 

thus the global energy balance. Interactions between local convection anomalies, 

mesoscale dynamics, and large-scale circulation determine the distribution, variability, 

and intensity of rainfall. Small changes in the properties of clouds in response to 

anthropogenic greenhouse gas and aerosol particle emissions can both dampen and 

amplify climate change trends. The multi-scale nature of these processes has been 
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difficult to capture in conventional GCMs that depend on simplified statistical 

parameterizations of unresolved cloud-scale physics. 

 As a result, poor representations of processes controlling the formation and 

evolution of clouds significantly limit confidence in both estimates of the direct 

anthropogenic forcing of the climate system and the subsequent long-term climate change 

response. Applying a super-parameterized GCM, the research reported in this dissertation 

targets uncertainties contributing to both of these issues. We focus on reducing 

uncertainties and improving model treatments in two key areas: (1) the global-scale 

impact of anthropogenic aerosol particle emissions on the top-of-atmosphere energy 

balance through influences on the radiative properties of clouds, known as aerosol 

indirect effects; and (2) the regional-scale changes in rainfall and organized convective 

storm frequency and intensity. 

 Super-parameterization improves modeling of these processes by simultaneously 

resolving the small- and large-scale physics involved in governing convection, cloud 

formation, and precipitation. In this multi-scale approach, simplified cloud-resolving 

models are embedded in each column of a conventional atmospheric GCM, thus making 

it possible to explicitly resolve cloud and boundary-layer physics, replacing idealized 

statistical parameterizations. The approach has been pioneered by the Center for 

Multiscale Modeling of Atmospheric Processes (www.cmmap.org) and is implemented in 

the National Center for Atmospheric Research’s Community Atmosphere Model (CAM). 

Innovative simulation techniques are employed here to bringing this super-parameterized 

CAM (SPCAM) to bear on several critical scientific and societally relevant problems. 
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 The research reported in this dissertation is aimed at improving our understanding 

by providing answers to several key questions.  

 (Chapter 3) Current GCMs estimate that aerosol indirect effects significantly 

offset the global mean greenhouse gas warming (by contributing a strong negative 

radiative forcing), but are these estimates altered when the GCMs are generalized to 

include an explicit representation of convection and cloud-scale aerosol-cloud 

interactions? 

 Global mean surface temperature change is driven by external forcings and 

internal feedbacks within the climate system, both of which are inadequately constrained 

due to challenges in observing and modeling the properties and distribution of clouds. On 

planetary scales, human-induced climate change is driven by anthropogenic emissions of 

greenhouse gases and aerosol particles that alter the top-of-atmosphere energy balance 

and radiatively force the climate system. The overall forcing is strongly positive, due to 

the longwave absorption properties of carbon dioxide and other greenhouse gases, but 

this heating effect is partially offset by the negative cooling effect of certain aerosol 

particles, which can both directly reflect incoming solar radiation and indirectly modify 

the radiative properties of clouds. 

 Anthropogenic aerosol pollution indirectly induces changes in the reflectivity, 

lifetime, and vertical positioning of clouds, and these changes modify the amount of solar 

radiation that the clouds reflect and the infrared radiation that they absorb. The magnitude 

of the aerosol-cloud cooling effect is smaller than that of greenhouse gas warming, but 

the uncertainties associated with these aerosol indirect effects have a 90% confidence 
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range that is more than twice that of greenhouse gases, leading to significant overall 

uncertainty in estimates of the total anthropogenic forcing. 

 Natural modes of variability on many timescales influence aerosol particle 

distributions and cloud properties. As a result, isolating statistically significant 

differences in cloud radiative forcing due to anthropogenic aerosol perturbations typically 

requires integrating over long periods of simulated time. For state-of-the-art GCMs, 

especially super-parameterized models in which embedded cloud-resolving models 

replace conventional statistical parameterizations (i.e., SPCAM), the required long 

integrations can be prohibitively expensive. 

 A new simulation technique is developed and implemented in the research 

reported here. It allows us to improve estimates of global aerosol indirect effects from 

SPCAM using Newtonian relaxation (nudging), a technique to constrain simulations with 

both pre-industrial and present-day aerosol emissions, by forcing them toward identical 

meteorological conditions. This technique reduces differences in natural variability, 

dampens feedback responses, and shortens the required simulation time in order to isolate 

the anthropogenic radiative forcing [Kooperman et al., 2012 – chapter 3]. 

 (Chapter 5) As US summer rainfall responds to higher greenhouse gas 

concentrations, will climate change project onto natural patterns of rainfall variability or 

will it shift the system to a new precipitation regime? Will convective storms become 

more or less intense in a warmer world? 

 Global mean changes in precipitation on climate timescales are well constrained 

by thermodynamic theory, and GCMs tend to agree with a 1 to 3% average precipitation 
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increase per degree C of global warming. But on regional scales, rainfall projections are 

much less certain. Wet regions are expected to get wetter and dry regions drier, but the 

different available models show very little agreement in transition zones, such as the 

Central US, where the dividing line between wet and dry varies significantly among 

models. This is especially true in summer, when the majority of rainfall in this 

agriculturally important area is generated by organized nocturnal propagating mesoscale 

convective systems (MCSs). These systems have been difficult to simulate realistically 

with conventional statistical GCM parameterizations. 

 MCSs can bring up to 60% of summer rainfall to the Central US, and thus it is a 

serious failing that they are not simulated well by conventional GCMs, which disagree 

even on the sign of future precipitation trends in the region. Changes in the pattern or 

intensity of rain associated with these storms could lead to either devastating drought 

conditions, at one end of the spectrum of possibilities, or severe flood damage at the 

other. However, progress in representing the mesoscale in GCMs has been difficult 

because the relevant processes straddle the divide in space and time between 

parameterized and resolved physics. Models that do not accurately represent the physical 

mechanisms that generate MCSs in nature cannot assess how these processes, and indeed 

rainfall in general, may respond to climate change.  

 Observations and regional climate modeling (RCM) studies demonstrate that 

GCMs are unreliable for predicting changes in extreme precipitation. Yet RCM climate 

change simulations are subject to boundary conditions provided by GCMs and do not 

interact with large-scale dynamical feedbacks that may be critical to the overall regional 

response. Limitations of both global and regional modeling approaches contribute 
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significant uncertainty to future rainfall projections. Progress requires a modeling 

framework capable of capturing the observed regional-scale variability of rainfall 

intensity without sacrificing model realism on planetary scales. 

 (Chapter 4) Can super-parameterization provide the framework necessary to 

simulate mesoscale convective storm systems, improving the simulated variability of 

Central US summer rainfall, while remaining coupled to global climate? How well do the 

important characteristics of model-simulated storms compare to the timing, magnitude, 

and spatial extent of observed storms?  

 To answer these questions, a new physically based index has been developed in 

this work to enable us to compactly isolate Central US MCS activity and to compare 

present-day storm statistics in three different conventional and super-parameterized 

versions of CAM (known as versions 3, 3.5, and 5) to observations. This new regional 

index is based on empirical orthogonal function analysis, in which the angular 

relationship between the leading pair of principle component time series denotes the 

strength, phase, and location of maximum convection. The index is applied to 

quantitatively compare the statistics of existence, frequency, and composite MCS 

structure in observations and models [Kooperman et al., 2013 – chapter 4]. 

 After validating the MCS signal in SPCAM for the present climate, we return to 

the original questions above (Chapter 5) about how Central US summer rainfall will 

respond to climate change (Kooperman et al. [2014]). 

 The added computational expense of the super-parameterization approach makes 

these questions challenging to answer because fully coupled century-long climate change 
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simulations are unaffordable with current super-computing capability. Instead, a set of 

five-year atmosphere-only simulations have been carried out, driven by prescribed sea 

surface temperature and sea ice boundary conditions from pre-industrial and abrupt four-

times CO2 coupled Community Earth System Model simulations. The mean rainfall and 

large-scale circulation response, and change in rainfall and convective storm intensity are 

evaluated in these SPCAM time-slice simulations [Kooperman et al., 2014 – chapter 5]. 

 This dissertation is organized into four main chapters followed by a summary of 

the major conclusions. Chapters 3 and 4 have recently been published in the Journal of 

Geophysical Research and Geophysical Research Letters, respectively, and chapter 5 has 

recently been submitted to the Journal of Advances in Modeling Earth Systems. These 

chapters are presented here in their complete published and submitted form, including all 

introductory and background material. Some of this material is repeated and expanded on 

in a separate literature review to provide broader scientific context for the dissertation as 

a whole. This literature review is presented in chapter 2, which gives a brief overview of 

the roles that clouds, convection, and precipitation play in the climate system, how they 

are affected by anthropogenic emissions, and recent advances in representing them in 

global models. Chapter 3 presents a new method for constraining the influence of natural 

variability to improve estimates of global aerosol indirect effects (Kooperman et al., 

[2012]). Chapter 4 investigates the robustness and sensitivities of simulated Central US 

summer convection with a new regional MCS index (Kooperman et al., [2013]). And 

chapter 5 evaluates the response of Central US summer rainfall to climate change 

(Kooperman et al., [2014]). 
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Chapter 2 

Literature review 

2.1. Global energy balance 

 Convective cloud processes are integral to planetary-scale energetics and the top-

of-atmosphere (TOA) energy balance. Convective mixing and condensational latent 

heating maintain the thermal structure of the lower atmosphere (troposphere) and help 

transport energy from the equator to the poles [Fasullo and Trenberth, 2008; Kiladis and 

Weickmann, 1997; Ramanathan and Coakley, 1978; Trenberth et al., 2009]. Clouds both 

reflect incoming solar radiation, thus cooling the planet, and also absorb outgoing 

terrestrial radiation, thus warming the planet. In equilibrium, incoming and outgoing 

radiation must be equal at the TOA [Trenberth et al., 2009]. The global distribution of 

incoming and outgoing radiation, and coupled energy cycling through the atmosphere, 

oceans, land, and cryosphere, together determine the timescales over which equilibrium is 

valid and drive the shorter-term circulation and weather of the planet [Trenberth et al., 

2009]. Perturbations to the TOA energy balance create disequilibrium and drive long-

term global-scale climate change. 

 

2.1.1. Planetary energy budget and equilibrium 

 Trenberth et al. [2009] provide an observational estimate of Earth’s energy 

budget. The dominant source of energy powering the climate system is a global-annual 
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mean solar insolation of ~341 Wm-2, mostly in the form of shortwave visible light due to 

the blackbody emission temperature of the Sun [Trenberth et al., 2009]. The constituent 

gases that make up the atmosphere (i.e., nitrogen, oxygen, argon, water vapor, carbon 

dioxide, etc.) are largely transparent to this short wavelength radiation, most of which 

passes through the atmosphere to be absorbed or reflected at the surface [Fleagle and  

Businger, 1996]. However, roughly 23% of incoming solar radiation is reflected in the 

atmosphere by suspended liquid and solid particles in the form of condensed cloud water 

and aerosols. An additional ~7% is reflected by the surface, leading to a total planetary 

albedo of ~30%. This albedo value ultimately determines how much energy enters the 

climate system, but it is not well constrained in widely used global re-analysis data sets. 

Albedo estimates range from 28% in the Japanese reanalysis to 34% in the National 

Center for Environmental Prediction reanalysis, largely due to differences and biases in 

the model representations of unresolved convection and cloud properties [Trenberth et 

al., 2009]. 

 An albedo of 30% leaves approximately 239 Wm-2 (70%) to be balanced at the 

TOA by longwave infrared emission from the Earth, which has a much lower blackbody 

temperature than the Sun [Trenberth et al., 2009]. Many gases present in small quantities 

in the atmosphere (e.g., water vapor, carbon dioxide, methane, nitrous oxide, etc.) are not 

transparent to this longer wavelength radiation, which they absorb and re-radiate both out 

to space and back toward the surface [Fleagle and Businger, 1996]. These gases are 

known as greenhouse gases, and, together with clouds, they contribute to the 

downwelling longwave radiation that produces the greenhouse effect, which maintains 
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higher surface temperatures than would be found if the Earth were a planet without an 

atmosphere [Curry and Webster, 1999; Solomon et al., 2007]. 

 Clouds also absorb infrared radiation and contribute to the greenhouse effect, but 

their contribution to downwelling longwave radiation at the surface is the most 

observationally uncertain component of the radiation budget. Longwave emission from 

clouds depends on cloud-base height and temperature, which are poorly represented in re-

analysis models with limited vertical resolution and statistical parametric representations 

of convection, and these properties are also difficult to observe from space through the 

clouds above [Trenberth et al., 2009]. Cloud radiative properties also depend on cloud 

droplet number and size as well as the total liquid and ice water content, all of which are 

challenging to observe and model on global scales [Curry and Webster, 1999]. These 

properties, as well as the seasonal and regional variations in solar insolation and outgoing 

longwave radiation, determine whether the dominant net cloud radiative effect will be 

reflective cooling or greenhouse warming [Curry and Webster, 1999]. 

 These radiative processes alone are insufficient for maintaining the observed 

energy balance within the atmosphere, and such a radiative equilibrium would produce a 

negative vertical gradient of potential temperature in the lower atmosphere that would be 

convectively unstable [Ramanathan and Coakley, 1978]. Therefore, at all but the highest 

latitudes, a radiative-convective equilibrium tends to develop within the troposphere in 

which convective cloud processes and circulation transport energy upward from the 

surface and act to vertically homogenize the thermal structure of the atmosphere. This is 

most effectively carried out by evaporation at the surface and condensation (cloud 

formation) in the atmosphere, a mechanism which transports roughly 80 Wm-2 through 
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latent heating, almost five times more than sensible heating [Trenberth et al., 2009]. The 

magnitude of latent heating also constrains global-annual mean precipitation to 

approximately 3 mm day-1 (latent heating divided by the latent heat of vaporization), 

since in equilibrium global net evaporation minus precipitation must be equal to zero. 

 

2.1.2. Radiative forcing 

 Global-scale climate change is driven by external forcings that disrupt the 

radiative balance at the TOA on sufficiently long timescales. In the historical record, the 

naturally driven climate change of one hundred thousand year ice age cycles is forced by 

oscillations in Earth’s orbit around the Sun, known as Milankovitch cycles, which alter 

the geographical and seasonal variation of solar insolation [Hays et al., 1976]. The 

present-day TOA radiative forcing (RF) due to anthropogenic influence has developed 

over a much shorter period (~250 years) and is estimated to have a mean value and 90% 

confidence range of 2.29 [1.13 to 3.33] Wm-2 from 1750 to 2011 [Stocker et al., 2013]. 

The evidence linking this forcing to human activities is presented in the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), 

which states: “It is unequivocal that anthropogenic increases in the well-mixed 

greenhouse gases have substantially enhanced the greenhouse effect, and the resulting 

forcing continues to increase” [Stocker et al., 2013]. 

 RF refers to any perturbation in the global-annual mean net radiative flux at the 

TOA resulting from instantaneous changes in the amount of incoming or outgoing 

radiation. A positive forcing means more energy enters the system than leaves, and the 
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planet then heats up until radiative balance is restored, amplifying the natural greenhouse 

effect [Solomon et al., 2007]. The amount of surface warming in response to a given RF 

is called climate sensitivity (∆Ts – ˚C, often given in terms of a RF resulting from 

doubled CO2), which is most simply expressed as a function of the external RF (Wm-2) 

and internal feedbacks (λ – Wm-2 ˚C-1) within the climate system: ∆Ts = RF/λ. Feedbacks 

are a response by the system to a temperature change caused by the RF.  Such a response 

can either dampen or enhance the initial change. For example, the water vapor feedback 

arises because higher amounts of greenhouses gases increase downwelling longwave 

radiation, thus warming the surface, which in turn increases both evaporation and the 

water-holding capacity of the atmosphere, given by the Clausius-Clapeyron relation.  

Thus, warming the atmosphere increases the amount of water vapor in the atmosphere, 

and the added amount of water vapor, which is a strong greenhouse gas, then further 

amplifies the greenhouse warming. 

 The current best estimate of the total planetary feedback including water vapor, 

lapse rate, ice-albedo, and cloud feedbacks is 1.23 [0.82 to 2.47] Wm-2 ˚C-1 [Stocker et 

al., 2013]. The large range in the 90% confidence estimate is primarily due to uncertainty 

in not only the magnitude but also the sign of the cloud feedback, and conflicting theories 

of how low clouds will response to warming [Bony et al., 2006; Stocker et al., 2013]. It 

may ultimately take thousands of years for the full temperature change to be realized, 

since most of the heating cycles through the climate system to warm the oceans and melt 

ice. To date, there has been an observed surface warming of 0.85 [0.65 to 1.06] ˚C since 

1850 [Stocker et al., 2013], but the current RF and feedback estimates suggest that the 

Earth is already committed to a long-term warming of ~1.86 ˚C. 
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 The separation of processes into forcings and feedbacks becomes blurred as 

timescales decrease, and the concept of an instantaneous forcing in many ways does not 

capture the full impact or “efficacy” of a forcing agent on Earth’s energy balance 

[Hansen et al., 2005; Stocker et al., 2013]. In the AR5 a new effective radiative forcing 

(ERF) concept is defined. The original definition of RF assumes all conditions below the 

tropopause are held fixed, and such an RF can be calculated with a simple radiative 

transfer model that does not need to account for microphysical changes in cloud 

properties or the impact of aerosol deposition on surface albedo. The ERF concept 

instead allows for rapid adjustments throughout the atmosphere and land surface, and 

ERF is thought to be a better indicator of the eventual temperature change [Stocker et al., 

2013]. The ERF is important for characterizing aerosol particle effects on clouds, which 

cannot be accounted for with an instantaneous RF. This issue is currently part of an 

ongoing discussion in the scientific community and is revisited in Chapter 3. RF and ERF 

for greenhouse gas forcings are nearly equivalent [Stocker et al., 2013]. 

 Although many human activities contribute to the IPCC AR5 total anthropogenic 

RF estimate of 2.29 Wm-2, those due to aerosol effects are particularly important. The full 

spectrum of human activities includes land-use changes that alter the surface albedo, as 

well as the emission of well-mixed greenhouse gases, short-lived gases, and aerosol 

particles into the atmosphere. Well-mixed greenhouse gases exhibit the largest positive 

forcing, for reasons described above, with a best estimate of 2.83 [2.54 to 3.12] Wm-2. In 

total, short-lived gases have a small positive forcing of 0.18 [0.01 to 0.35] Wm-2. 

Changes in the surface albedo from anthropogenic land-use, including the replacement of 

forests with cropland and urbanization, have a small negative forcing of -0.15 [-0.25 to -
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0.05] Wm-2. Aerosol particles emissions from the burning of fossil fuels, industrial 

production, and land-use changes, impact the transmission of radiation by direct 

scattering and absorption, and also by indirect modifications to cloud properties, which 

have a combined ERF of -0.9 [-1.9 to -0.1] Wm-2 (aerosol effects on clouds cannot be 

estimated with the conventional RF). Of all these forcing agents, the AR5 report 

concludes that: aerosol effects “continue to contribute the largest uncertainty to the total 

RF estimate [Stocker et al., 2013].” Accordingly, aerosol effects are one of the major 

scientific foci of this dissertation.  

 Significant work has been done since the AR4 to improve aerosol forcing 

estimates, which have radically reduced in the most recent AR5 [Solomon et al., 2007; 

Stocker et al., 2013]. In the AR4 the total aerosol RF was estimated to be -1.3 [-2.2 to -

0.5] Wm-2, with a -0.5 [-0.9 to -0.1] Wm-2 contribution from direct effects (aerosol-

radiation interactions), and -0.7 [-1.8 to -0.3] Wm-2 contribution from indirect effects 

(aerosol-cloud interactions, of which only impacts on cloud reflectivity were included in 

the AR4). The best estimate for direct effects has not changed significantly and is 

estimated in AR5 to have an ERF of -0.45 [-0.95 to +0.05] Wm-2. However, the indirect 

effects estimate has been reduced in AR5 to -0.45 [-1.2 to 0.0] Wm-2. This reduction, in 

addition to increased greenhouse gas emissions over the last six years (0.20 [0.18 to 0.22] 

Wm-2), contributes to a ~43% larger overall present-day RF estimate (its was 1.6 [0.6 to 

2.4] Wm-2 in the AR4), and implies a potentially lower climate sensitivity range than 

previously believed (1.5–4.5 ˚C instead of 2–4.5 ˚C for doubling CO2) [Solomon et al., 

2007; Stocker et al., 2013]. 
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2.1.3. Aerosol indirect effects 

 Aerosol indirect effects include aerosol-induced changes to cloud reflectivity, 

lifetime, and vertical positioning, which project onto global scales as a planetary forcing. 

While the magnitude of the forcing associated with indirect effects is more than six times 

smaller and opposite to that of greenhouse gases, these effects represent the largest source 

of uncertainty in estimates of the overall anthropogenic forcing, with a 90% confidence 

range more than twice that of greenhouse gases [Stocker et al., 2013]. Accurately 

determining the magnitude of the aerosol indirect component of the present-day 

anthropogenic RF is critical for improving projections of future climate, as well as for 

informing effective policy decisions concerning the climate impacts of human activities. 

 Aerosol particles alter clouds through their roles as cloud condensation nuclei and 

ice nuclei (CCN and IN), and also through their direct thermodynamic effects on the 

ambient environment in which clouds form. Cloud droplets form when water vapor 

condenses onto particles that already exist in liquid or solid phases in the atmosphere in a 

process described by Köhler theory [Köhler, 1936]. The surface of existing particles 

reduces the surface tension and curvature of molecular bonding (Kelvin effect) 

[Thomson, 1871], and lowers the vapor pressure needed for condensation (Raoult's Law) 

[Seinfeld and Pandis, 2006], which depends on the particle size and chemical properties 

(e.g., hygroscopicity). 

 Aerosol-influenced droplet nucleation can produce macro-scale perturbations that 

are evident in regional field observations [e.g., Leaitch et al., 1992; DeMott et al., 2003; 

Andreae et al., 2004; Kaufman et al., 2005] and from global satellite measurements [e.g., 
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Coakley et al., 1987; Bréon et al., 2002] of forest fire emissions, desert dust plumes, ship 

tracks, and industrial pollution. Increases in the concentration of nucleating particles (i.e., 

CCN) can result in a higher concentration of smaller cloud droplets, assuming no change 

in total liquid water content. Smaller droplets more efficiently backscatter solar radiation 

and thus increase cloud albedo [Twomey, 1977]. A higher cloud albedo reflects more 

solar radiation resulting in a negative forcing, and this consequence of an increase in the 

number of CCN is known as the first aerosol indirect effect. 

 Smaller cloud droplets can also result in reduced precipitation efficiency. This 

may slow the dissipation of clouds and increase their lifetime [Albrecht, 1989]. A longer 

cloud lifetime implies that each individual cloud can reflect more solar radiation, and this 

mechanism is known as the second aerosol indirect effect. However, observing this effect 

has been difficult, and recent studies suggest it depends strongly on cloud regime, and 

thus regional observations cannot be usefully extended to global estimates [Stevens and 

Feingold, 2009]. In some cases an opposite (positive) forcing may be possible, if 

precipitation is enhanced by aerosol-induced convective invigoration [Rosenfeld et al., 

2008] or if cloud top height changes due to aerosol-modified atmospheric stability 

[Wood, 2007]. 

 

2.1.4. Aerosol indirect effect estimates from global models 

 The complex nature of these microphysical processes can result in both positive 

and negative forcings [Lohmann and Feichter, 2005] and thus contributes to the large 

uncertainty shown in the 90% confidence intervals for aerosol effects given in the AR5. 
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Estimates of global aerosol effects from observations are further complicated by 

temporally intermittent emissions, inhomogeneous spatial distributions, and short 

atmospheric residence times of the aerosol particles themselves [Rosenfeld and Feingold, 

2003]. While many recent climate models now explicitly represent the physical processes 

that link aerosol to cloud formation, it can still be difficult to distinguish the statistically 

significant anthropogenic signal from the noise of natural variability and feedbacks in a 

conventional simulation approach [Stevens and Feingold, 2009]. 

 Global climate models (GCMs) vary significantly in the number of processes and 

aerosol species they include, as well as in their representation of convection and 

precipitation processes that control the transport and removal of aerosol particles. 

Furthermore, there has been little consistency in the emissions datasets used by different 

models, and a recent move toward an Earth system modeling focus that includes 

biogeochemistry models with interactive emissions, makes model evaluation and inter-

comparison difficult [Lamarque et al., 2013]. As a result, GCMs exhibit a wide range of 

estimates for the total aerosol indirect effect. Lohmann et al., [2010] present a summary 

of estimates from models, satellites, and inverse methods beginning in the early 1990s, 

which have ranged from nearly -3.5 Wm-2 to 0.0 Wm-2, but have tended to decrease over 

time. 

 In Figure 2.1, estimates of the magnitudes of the first and second indirect effects 

are compared from ten recent studies using GCMs that use schemes to approximate both 

effects. Models with a large (small) first indirect effect also tend to have a large (small) 

second indirect effect, although estimates of the first tend to be larger than the second. 

There is also a positive relationship between changes in time-average cloud cover and the 
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second indirect effect, as expected. The smallest estimates are from models that include 

the highest number of aerosol species, while the largest are from those that only include 

sulfate. In general, both effects remain largely unconstrained, and range from near zero to 

almost -1.5 Wm-2. 

 

 
Figure 2.1: The relationship between GCM estimates of the second aerosol indirect effect 
(cloud-lifetime) with the first aerosol indirect effect (cloud-albedo – left) and the cloud 
coverage change (right) from ten published studies; colors indicate the aerosol species 
included in the study, x denotes that the first indirect effect is calculated as the difference 
between the total and the second indirect effect reported, o denotes that independent 
calculations of the first and second indirect effects were reported, and + denotes the cloud 
cover change. This figure was developed as part of a UC San Diego Spring 2012 course 
(SIO209) titled Aerosol-Cloud Interactions taught by Professor Lynn M. Russell. 
 

 As increasing computational power enables modeling efforts to do more justice to 

the actual physics of cloud-aerosol interactions, the number of degrees of freedom only 

increases, and the previously mentioned signal-to-noise problem is likely to become more 

severe and thus will further increase intra-model spread. Indirect effects are part of the 

overall cloud forcing, which is influenced by natural modes of variability on many 
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timescales and by poorly understood cloud feedbacks [Bony et al., 2006; Solomon et al., 

2007; Stocker et al., 2013]. The transport, removal, and distribution of aerosol particles 

themselves are also strongly dependent on aspects of the circulation associated with 

natural variability [Gong et al., 2006]. New modeling methods are needed to control this 

influence of natural variability and bring state-of-the-art GCMs to bear on this important 

scientific problem. One such method developed and applied in this dissertation is 

presented in Chapter 3 (Kooperman et al. [2012]). 

 

2.2. Central US summer rainfall 

 Modern GCMs also struggle to realistically simulate the variability and intensity 

of regional rainfall. Global-annual mean precipitation is a direct consequence of the 

global energy balance described above, and is approximately equal to latent heating on 

long timescales. But there is no such overarching constraint on regional rainfall, and 

many local and seasonal observed mechanisms of precipitation, including long-lived 

orographic summer convective systems in the lee of mountain chains, are not captured in 

GCMs [Lee et al., 2007; Moncrieff and Liu, 2006; Solomon et al., 2007]. This is 

especially unsatisfying, given that projections of regional-scale variability and intensity 

of precipitation are increasingly needed by a society concerned with climate change 

mitigation and adaptation, because precipitation phenomena are critical to the availability 

of fresh water and the nature of extreme conditions. Chapters 4 and 5 shift the focus of 

this dissertation from global-scale energetics to a region of particular concern – the 

Central US in summer, where GCMs disagree on even the sign of future rainfall trends, 
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and where the physics of organized convection is especially complicated and difficult to 

simulate realistically [Maloney et al., 2013; Solomon et al., 2007; Stocker et al., 2013]. 

 In the Central US summer, the majority of rainfall is generated by small-local and 

large-propagating convective systems. Propagating organized storms, known as 

mesoscale convective systems (MCSs), can deliver up to half of the seasonal rainfall in 

this important agricultural area [Carbone and Tuttle, 2008]. It is difficult to represent 

these storms in GCMs, because the relevant physics includes small-scale (e.g., cold pool 

density currents) and large-scale (e.g., low-level jet moisture convergence) processes that 

straddle the divide between parameterized and explicitly resolved phenomena [Moncrieff, 

1992]. Conventional GCMs that do not capture these mechanisms realistically (or at all) 

cannot assess how they may respond to climate change [Lee et al., 2007]. As droughts, 

heat waves, forest fires, and flooding in the Central US become more prevalent, causing 

significant financial impacts and loss of lives, improved projections of future changes 

will become increasingly critical [Smith and Katz, 2013]. 

 

2.2.1. Mesoscale convective systems 

 MCSs were first clearly observed in the mid-latitudes in the 1980s over the US in 

infrared satellite images, and have since been recognized in the lee of mountains chains 

worldwide [Laing and Fritsch, 1997; Maddox, 1980]. They represent an amalgamation of 

individual storms, which evolve and propagate as a single system spanning an area larger 

and persisting longer than that of an individual storm [Houze, 2004]. In the Central US 

summer, these systems tend to form on the eastern slope of the Rocky Mountains where 
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late afternoon orographic thunderstorms sometimes organize into massive complexes that 

propagate across the Great Plains and persist throughout the night [Houze, 2004]. The 

intense precipitation generated by these systems can account for up to 60% of total 

summer rainfall, and produces an unusually nocturnal peak in the diurnal precipitation 

cycle [Carbone and Tuttle, 2008]. 

 Objective identification characteristics first proposed by Maddox [1980] for a 

subset of MCSs known as mesoscale convective complexes include a cold cloud 

horizontal region (less than -52 ˚C), at least 50,000 km2 in area, with eccentricity greater 

than 0.7, lasting for more than 6 hours [Maddox, 1980; Augustine and Howard, 1988; 

McAnelly and Cotton, 1989]. These characteristics have historically been used in 

automated algorithms for detecting and tracking MCS activity from observations based 

on the size, shape, and duration of a coherent cold cloud shield [Carvalho and Jones, 

2001; Machado et al., 1998]. More recent descriptions relax the eccentricity requirement 

to include elongated convective systems [Anderson and Arritt, 1998], or are based on 

precipitation statistics defining regions of contiguous precipitation that span at least 100 

km in one direction, propagate over 500 to 2000 km, and last for 10 to 60 hours [Carbone 

et al., 2002; Houze, 2004]. Propagation speeds are observed to range between 7 and 30 

ms-1 [Carbone et al., 2002]. 

 Several processes coincide to support the initiation and evolution of these storms 

in nature, including orographic heating and diurnal circulation over the Rockies and 

Great Plains [Wang et al., 2011c], enhanced moisture supplied by a southerly nocturnal 

low-level jet [Augustine and Caracena, 1994], and the self-organizing fluid dynamics of 

convective heating in a vertically sheared wind environment [Moncrieff, 1992]. The 
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differential heating of the mountains and plains generates daytime circulation with a 

subsiding branch that suppresses afternoon convection over the plains, while convective 

available potential energy (CAPE) builds up from solar heating [Carbone and Tuttle, 

2008; Tripoli and Cotton, 1989a; Wang et al., 2011c]. The low-level jet intensifies at 

night as the atmosphere decouples from the surface, enhancing warm-moisture advection 

from the Gulf of Mexico into the Great Plains [Higgins et al., 1997]. Late afternoon 

convective anomalies generated over the Rockies can develop large-scale structure within 

a vertically sheared environment and grow into MCSs when they encounter these 

untapped energy sources over the plains [Augustine and Caracena, 1994; Tripoli and 

Cotton, 1989a]. This process helps sustain nocturnal growth as the systems propagate east 

relative to the zonal wind with a mesoscale relative flow structure of slantwise ascent 

through the storm [Houze, 2004; Moncrieff, 1992]. 

 Observations and cloud-resolving models (CRMs) indicate that both small- and 

large-scale physics are involved in the organization and propagation of MCSs, but the 

relative importance of each scale regime is difficult to disentangle in data or mesoscale 

models. Suggested propagation mechanisms include horizontal advection of potential 

vorticity anomalies [Li and Smith, 2010], the veering of the low-level jet moisture 

convergence zone [Trier et al., 2006], and small-scale cold pool density currents 

[Carbone et al., 2002]. Studies that support the small-scale paradigm attribute 

propagation to fast gravity wave processes and cold pool dynamics that can drive leading 

convergence and regenerating propagating convection [Carbone et al., 2002; Carbone 

and Tuttle, 2008; Matsui et al., 2010]. Other studies suggest heating over the Rockies in 

the presence of background vertical wind shear generates potential vorticity anomalies 
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that provide a large-scale uplifting environment conducive to convection [Tripoli and 

Cotton, 1989a,b; Li and Smith, 2010; Moncrieff, 1992; Raymond and Jiang, 1990]. 

 These mesoscale (20-200 km) processes are neither resolved nor parameterized in 

conventional GCMs, which are typical run at 100 to 200 km horizontal resolution 

[Moncrieff, 1992]. Because there are several contributing physical mechanisms across a 

range of scales, it is unclear which are most critical to the organization and propagation 

of these storms and therefore necessary to include in the statistical parameterizations used 

in GCMs. This shortcoming contributes, in part, to the well-known problem that diurnal 

convection over land is too sun-synchronous in GCMs, and precipitation peaks too early 

in the day, falling weakly over a large region [DeMott et al., 2007; Lee et al., 2007; 

Pritchard and Somerville, 2009b; Sun et al., 2006]. As a result, conventional GCMs do 

not simulate realistic variability and timing of rainfall in the Central US and do not agree 

on the sign of future precipitation trends in projections of future climate change [Solomon 

et al., 2007; Stocker et al., 2013]. 

 

2.2.2. Rainfall climate change response 

 The consequences of anthropogenic climate change can manifest themselves as 

subtle shifts in the timing or pattern of weather events leading to changes in the 

frequency and intensity of rainfall, which may in turn increase drought conditions in 

some regions and flooding in others [Trenberth, 2011]. Future climate projections from 

modern GCMs, including global-scale changes in precipitation patterns, give rise to 

several concerns. There is a consensus projection of expansions of arid zones over most 
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continents and amplification of the present-day spatial pattern of evaporation minus 

precipitation [Held and Soden, 2006; Solomon et al., 2007; Scheff and Frierson, 2012; 

Stocker et al., 2013]. This consensus is meaningful despite cloud and aerosol 

parameterization imperfections, because at the very largest scales of the climate system, 

GCMs are strongly constrained by the global energy balance and radiative properties of 

water vapor that are well represented in all models. As a result, GCM simulations largely 

agree with predictions of thermodynamic theory that global precipitation should increase 

at a rate of 1 to 3% ˚C-1 with global warming, and near-surface water vapor should 

increase at ~7% ˚C-1 [Allen and Ingram, 2002; Pendergrass and Hartmann, 2013; Scheff 

and Frierson, 2012; Stephens and Ellis, 2008]. At regional scales, however, future 

hydrologic trends in GCM projections exhibit very low confidence. Beyond the 

consensus on global sensitivities, GCMs using conventional statistical parameterizations 

of deep convection display an inability to capture the basic modes of observed variability 

of regional rainfall across a range of time scales [Dai, 2006; Lin et al., 2006; Li and Xie, 

2013], and they produce inconsistent effects of climate change on rainfall intensity 

[O’Gorman and Schneider, 2009a]. 

 In recent years, progress has been made from both theoretical and modeling 

perspectives toward understanding changes in mean rainfall and rainfall intensity on 

global scales. Consistently, GCMs project that the increasing global mean precipitation 

trend of 1 to 3% ˚C-1 occurs in association with a “wet-get-wetter – dry-get-drier” pattern 

of change, owing largely to a significant increase in specific humidity (~7% ˚C-1 

following the Clausius-Clapeyron relation), but only small changes in wind patterns 

[Held and Soden, 2006; Trenberth, 2011]. Globally, relative humidity is projected to 
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remain fairly constant, but may vary regionally, especially over land where temperatures 

increase more and evaporation efficiency is limited by soil moisture, causing arid regions 

to become drier [Stocker et al., 2013; Trenberth et al., 2003]. While global mean rainfall 

is thermodynamically constrained, rainfall intensity in wet regions depends more on the 

available moisture and fluctuations in low-level moisture convergence rather than on 

local evaporation, and is expected to scale with the increase in specific humidity at ~7% 

˚C-1 [Allen and Ingram, 2002; Held and Soden, 2006; Trenberth et al., 2003]. This 

discrepancy between global mean rainfall and rainfall intensity implies that increases in 

heavy rain are balanced by a reduction in weak rain [Trenberth et al., 2003] and less 

frequent storms [O’Gorman and Schneider, 2009a].  

 Observations and cloud-resolving model simulations tend to agree with the 

theoretical range of convective intensity amplification centered on ~7% ˚C-1 following 

the moisture increase [Muller et al., 2011; Romps, 2011; Stocker et al., 2013], but 

conventional GCMs simulate a smaller rate of increase in extreme rain with global 

warming [Allan and Soden, 2008; O’Gorman and Schneider, 2009a]. A leading candidate 

for this shortcoming is the simplified representation of deep convection that does not 

capture organized convection and systematically rains too weakly and too often, over-

representing the contribution of local evaporative recycling to column moisture and 

under-simulating the extreme tails of observed rain rates [DeMott et al., 2007; Stephens 

et al., 2010; Sun et al., 2006]. Indeed, inter-model differences in precipitation rates from 

changes in the convective scheme can be larger than the impact of the fundamental 

forcing due to increased temperature [Wilcox and Donner, 2007]. However, it is common 

practice to apply GCMs to the problem of extreme rainfall, and they have been used to 
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develop a physical understanding of why heavy rain may not increase with moisture for 

all regions and seasons, due to buffering processes that change circulation, the moist 

adiabatic lapse rate, and temperature variability associated with when extreme rain events 

occur [O’Gorman and Schneider, 2009a,b]. 

 Some progress in estimating changes in tropical rainfall extremes has been made 

by relating its response to climate change to its response to interannual variability in 

GCMs (i.e., using interannual variability as an analog to climate change), and 

constraining the relationship with satellite observations, but the estimated scaling still has 

a large range from 6 to 14% ˚C-1 [O’Gorman, 2012; Stocker et al., 2013]. O’Gorman and 

Schneider [2009a] argue that deficiencies in parameterized convection are mostly an 

issue for tropical rainfall, and GCMs have a more consistent extratropical response, 

tending to agree on a weaker increase in heavy rain than moisture (~4 to 6% ˚C-1 from 

Stocker et al. [2013]) outside the tropics. Changes in precipitation extremes are related to 

upward mass fluxes which can exhibit sensitivities that are not well approximated by 

parameterizations of convection in the tropics, where the critical updrafts are too small-

scale to resolve, but can be better represented in the extra-tropics where larger-scale 

quasi-resolved processes such as baroclinic instability play a strong role. Consistently, 

there is a general improvement in the realism of extreme precipitation when GCMs are 

run at higher resolution, and the ratio of resolved to parameterized precipitation increases 

[Wehner et al., 2010; Kopparla et al., 2013]. However, regional scales remain 

challenging, particularly over continents during summer, where parameterized convection 

plays a dominant role. 
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2.2.3. Model projections of US summer rainfall changes 

 In the Central-Eastern US summer, even at the highest modern operational GCM 

horizontal resolution, most precipitation is generated by sub-grid scale convection. While 

GCMs show some agreement in projections on annual timescales, US summer 

projections thus remain highly uncertain [Solomon et al., 2007; Stocker et al., 2013]. 

Only general arguments are typically made. For instance, increases in convective 

available potential energy (CAPE) are expected to dominate reductions in vertical wind 

shear in the region under future climate change, producing overall conditions that could 

be viewed as more favorable to convective storms [Stocker et al., 2013; Trapp et al., 

2009; Brooks, 2013]. Enhancement of the nocturnal low-level jet is also expected to 

increase moisture transport to the Central US and could intensify convective storms 

[Patricola and Cook, 2013b]. But the sensitivities of organized convection are likely 

more complicated than this, and more research is needed to explicitly link and attribute 

the consequences of these environmental changes to storm initiation and precipitation 

intensity [Stocker et al., 2013]. 

 Current projections of North American summer rainfall changes from Coupled 

Model Intercomparison Project Phase 5 (CMIP5) GCMs include an increase in 

precipitation across Alaska and Northern Canada (north of ~55˚N) and along the US east 

coast, and a decrease in the Northwest and Central US, and south of 30˚N over Mexico, 

the Gulf of Mexico, and the Western Atlantic Ocean [Maloney et al., 2013; Stocker et al., 

2013]. Although there is some model agreement, internal variability over the Central US 

summer is large, lowering confidence in the projections [Deser et al., 2013]. Regional 
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climate models (RCMs) from the North American Regional Climate Change Assessment 

Program (NARCCAP) similarly project increases in rainfall at high latitudes and 

decreases in the Northwest and Central US, with larger regional changes than GCMs 

produce [Mearns et al., 2013]. However, in general there is limited statistically 

significant agreement in the summer in the Central US, where different RCMs can exhibit 

an opposite mean precipitation change when forced by the same GCM boundary 

conditions, and can even produce an opposite mean response to the GCM that provided 

the boundary conditions. For instance, Bukovsky and Karoly [2011] find the NARCCAP 

approach, dynamically downscaling by forcing an RCM with GCM output, projects an 

overall decrease in rainfall in the Central US, but captures the shift in intensity toward 

more extreme precipitation when the Weather Research and Forecasting (WRF) RCM is 

driven by the Community Climate System Model (CCSM) GCM. This result is supported 

by Patricola and Cook [2013a,b] who found that enhancement of the low-level jet and 

nocturnal rainfall increases precipitation intensity in the Southern Great Plains in June, 

and a reduction in daytime rainfall in the Northern Great Plains later in the summer, lead 

to overall drier summer conditions. However, they note many inconclusive results 

including monthly differences and inconsistencies between RCMs and GCMs; overall 

drying in July and August is the only conclusive trend that is consistent across all models. 

 Increasing confidence in these projections is difficult to achieve because the 

impacts of higher greenhouse gas concentrations, and the subsequent response of the 

climate system, involve processes linked across an extremely wide range of spatial-

temporal scales. GCMs that have an over-simplified representation of small-scale 

convective processes, whose macro-scale organization is incompletely understood, are 
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unable to capture the observed variability and intensity of US summer rainfall [Lee et al., 

2007; Li et al., 2012; Rosa and Collins, 2013]. Yet RCM simulations that capture 

processes relevant to rainfall extremes are subject to the boundary conditions provided to 

them by GCMs and do not interactively influence global-scale feedbacks, planetary 

circulation, and atmospheric moisture transport, all of which contribute to the regional 

response [Maloney et al., 2013; Wehner, 2013]. Improving projections thus requires a 

realistic representation of rainfall variability across a range of spatial-temporal scales, and 

a modeling framework that maintains links to both global feedbacks and changes in 

large-scale circulation. 

 

2.3. A new paradigm for global climate modeling 

 In recent years there has been a significant effort to improve the representation of 

cloud physics in GCMs. This effort has targeted uncertainties surrounding the estimates 

of aerosol indirect effects and the inability of GCMs to constrain cloud feedbacks 

highlighted by the AR4 [Solomon et al., 2007]. As a result many GCM updates now 

include an interactive representation of aerosol-cloud physics, with prescribed and 

parameterized emissions of aerosol particles and precursor gases, aerosol transport by 

vertical mass flux and resolved circulation, aerosol removal by wet and dry deposition, 

and aerosol activation linked to cloud droplet formation in prognostic two-moment 

microphysics schemes (prediction of both mass and number mixing ratios for liquid and 

ice) [Stocker et al., 2013]. There has also been improvement in the treatment of 

convection, which can include vertical entrainment within rising deep convective 
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cumulus plumes, and shallow convection coupled to moist boundary layer turbulence 

[Stocker et al., 2013]. 

 However, these processes still rely on parameterized cloud-scale physics 

including unresolved updraft velocities and convective precipitation [Ghan et al., 2011; 

Stocker et al., 2013]. Assumptions used to approximate the macro-scale (GCM grid box) 

behavior of these small-scale (e.g., convective mass flux) processes are based on local 

observations, and large eddy simulations (LESs) or CRMs (high-resolution cloud-

resolving models over a limited domain), which do not account for large-scale mixing 

processes that can buffer the system in ways that can make it less sensitive to aerosol 

perturbations [Wood, 2007]. The AR5 cites continued challenges in the representation of 

clouds, stating: 

Global climate models used in CMIP5 have improved their representation 
of cloud processes relative to CMIP3, but still face challenges and 
uncertainties, especially regarding details of small-scale variability that are 
crucial for aerosol-cloud interactions. Finer-scale LES and CRM models 
are much better able to represent this variability and are an important 
research tool, but still suffer from imperfect representations of aerosol and 
cloud microphysics and known biases. Most CRM and LES studies do not 
span the large space and time scales needed to fully determine the 
interactions among different cloud regimes and the resulting net planetary 
radiative effects [Stocker et al., 2013]. 

 

 In recent years, a new modeling approach that combines the benefits of CRM-

scale physics within a global modeling framework has begun to gain traction. This 

approach improves the representation of multi-scale cloud processes and variability 

compared to observations in the present climate by explicitly resolving small-scale cloud 

physics with CRMs embedded in each column of a GCM, which replace conventional 

statistical parameterizations. The approach is called super-parameterization and is 
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described in detail below [Khairoutdinov and Randall, 2001; 2003; Khairoutdinov et al., 

2008; Randall et al., 2003]. Recent updates now link super-parameterization to the 

aerosol-cloud physics and two-moment microphysics introduced in modern GCMs, 

described above [Wang et al., 2011a]. 

 This dissertation applies conventional and super-parameterized versions of the 

National Science Foundation (NSF) National Center for Atmospheric Research (NCAR) 

Community Atmosphere Model (CAM) to address critical uncertainties in our 

understanding of the climate system described earlier: 

(1) estimates of global aerosol indirect effects – Chapter 3, 

(2) the representation of organized convection in GCMs – Chapter 4, and 

(3) projected changes in US summer rainfall with climate change – Chapter 5. 

 

2.3.1. Community Atmosphere Model 

 CAM is the atmospheric component of the fully coupled NCAR Community 

Earth System Model (CESM), which also includes interactive ocean, sea ice, and land 

surface models. When run as a stand-alone atmospheric GCM, CAM is forced by 

prescribed monthly mean sea surface temperature and sea ice boundary conditions from 

either observations or coupled CESM output, with an interactive land surface. 

 This dissertation primarily employs the official release CAM version 5 for 

analysis presented here, but also compares to an earlier official release version 3, and a 

development version 3.5. The dynamical core was semi-Lagrangian in CAM3 and has 

been updated to finite volume in CAM3.5 and CAM5. Parameterized physics has 
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developed significantly from versions 3 and 3.5 to 5. CAM5 updates include the Zhang 

and McFarlane [1995] parameterization of deep convection based on a dilute plume 

CAPE-based closure with vertical entrainment and convective momentum transport, the 

University of Washington shallow convection scheme with moist turbulence [Park and 

Bretherton, 2009], two-moment cloud microphysics [Morrison and Gettelman, 2008], 

radiative transfer from the Rapid Radiative Transfer Model for GCMs [Neale et al., 

2010], and interactive aerosol-cloud and aerosol-radiation processes [Liu et al., 2012]. 

Details of each individual version are given in Collins et al. [2004] for 3, Neale et al. 

[2008] for 3.5, and Neale et al. [2010] for 5. The model setup and configurations are 

described for each experiment separately in Chapters 3, 4, and 5. A short overview of the 

relevant physical processes, focusing especially on CAM5, is given here. 

 

2.3.1.1. Interactive aerosol treatment 

 CAM5 includes an interactive three-mode aerosol module that separately 

transports and processes fifteen different aerosol constituents distributed as internal 

mixtures into Aitken, accumulation, and coarse modes, as described by Liu et al. [2012], 

which is based on an earlier scheme tested in the Community Climate Model [Easter et 

al., 2004] and CAM3 [Ghan and Easter, 2006]. The module not only evolves aerosol 

plumes as they are transported, but more importantly provides key linkages between 

simulated aerosol fields and microphysical cloud and radiation parameterizations that 

drive the hydrologic and energy cycles. Sulfate, black carbon, and primary organic matter 

particles are injected at various heights by direct emission inventories; sea salt and dust 
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enter the atmosphere through mechanistic surface source parameterizations; and volatile 

organic compounds and gas phase sulfur are emitted and oxidized before forming 

secondary aerosol. Gas and aqueous phase processes involving bulk sulfur and secondary 

organic precursor gases add to the overall aerosol mass through both the creation of new 

Aitken mode particles and condensation onto existing particles in all three modes [Easter 

et al., 2004]. 

 Aerosol particle evolution in the model includes nucleation, growth by 

condensation, coagulation, aqueous and gas phase production, and removal by wet and 

dry deposition [Easter et al., 2004]. Number and mass mixing ratios for particles in each 

mode transition between interstitial and cloud-borne states as droplets form, evaporate, 

collide, and fall from the atmosphere. Aerosol activation (droplet nucleation) at cloud 

base is parameterized as a function of updraft velocity and aerosol mode properties 

[Abdul-Razzak and Ghan, 2000], which convert particles from a clear-air to cloud-borne 

state and impact cloud water through microphysical calculations [Morrison and 

Gettelman, 2008]. Vertical transport of interstitial and cloud-borne particles is driven by 

mass flux calculations from the Zhang-McFarlane and University of Washington 

parameterizations of deep and shallow convection, respectively [Neale et al., 2010; Park 

and Bretherton, 2009; Zhang and McFarlane, 1995]. Particle removal by wet scavenging 

occurs both in and below clouds, and particles not re-suspended by cloud evaporation are 

removed through precipitation [Easter et al., 2004]. 

 The aerosol module directly interacts with both the microphysical and radiative 

transfer schemes, impacting cloud formation and precipitation as well as direct light 

extinction and deposition changes to the surface albedo. CAM5 uses a two-moment bulk 
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cloud microphysics scheme, which tracks mass mixing ratios and number concentrations 

of in-cloud and precipitating liquid and ice condensate. Condensate can undergo growth 

by condensation and collection, phase change due to freezing, melting, and evaporation, 

and sedimentation, all driven by sub-grid scale variability [Morrison and Gettelman, 

2008]. Cloud droplet nucleation is consistent with Köhler theory [Köhler, 1936] of 

aerosol particle activation and is based on the three-mode distribution and aerosol 

chemical properties described above, as well as temperature, water vapor content, and 

vertical velocity [Abdul-Razzak and Ghan, 2000]. Mixed-phase cloud microphysics is 

treated using the ice nucleation parameterization of Liu and Penner [2005] and the Liu et 

al. [2007] treatment of supersaturation. Dust serves as an ice nucleus in CAM5 and 

sulfate influences homogeneous nucleation, which can produce significant impacts on ice 

clouds [Ghan et al., 2012]. 

 

2.3.1.2. Convective parameterization 

 In the conventional climate modeling paradigm, atmospheric dynamics are 

explicitly resolved only above a single computationally affordable space-time scale, and 

all remaining unresolved processes are parameterized with a single set of statistical 

approximations. In this framework, the macro-scale effects of unresolved moist 

convection must be treated in terms of resolved large-scale quantities, which are used to 

diagnose the diabatic forcing. This problem was first addressed by Arakawa and Schubert 

[1974] who suggested a quasi-equilibrium solution in which a large-scale thermal 
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instability is convectively removed by a statistical ensemble of individual cumulous 

plumes. 

 The deep convection parameterization used in CAM5 applies an iterative 

numerical solution to this approach, representing vertical fluxes of mass and energy in an 

ensemble of convective updraft plumes whose heights are determined by a distribution of 

entrainment rates and are formulated to consume all convective available potential energy 

(CAPE) in the lower troposphere [Zhang and McFarlane, 1995]. Deep convection is only 

triggered when CAPE exceeds a specified threshold, and CAPE is exponentially depleted 

on a two-hour timescale [Neale et al., 2010]. In CAM5 this scheme includes the vertical 

transport of horizontal momentum by convection [Richter and Rasch, 2008] and dilution 

in the ascending parcels by entrainment mixing acting along the lateral boundaries of 

assumed sub-grid plumes [Raymond and Blyth, 1992]. Parcels rise to their own level of 

neutral buoyancy at cloud top. 

 This formulation for deep convection makes several assumptions that have 

important consequences for simulated physics. The most basic assumptions are that 

convective updrafts are a small fraction of the total grid area and that cloud fields are 

essentially driving environmental equilibrium such that CAPE is depleted over a long 

timeframe. A key issue is that these approximations are historically based on 

observations of unorganized convection in the tropics, and are less suited for organized 

mesoscale convective systems and the dynamics of the midlatitudes [Zhang, 2002]. The 

necessary assumptions are a practical solution for current climate modeling and 

computing capabilities, but the validity of the approach is limited to a relatively coarse 

GCM resolution (~200 km) and is unsatisfyingly sensitive to horizontal domain size 
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[Arakawa and Wu, 2013]. The CAPE-based closure and triggering threshold also make 

the parameterization overly sensitive to surface heating, and unable to respond 

realistically to elevated moisture and energy sources, because plume energetics depend 

largely on their cloud base properties [Kuang and Bretherton, 2006]. New closures, such 

as those based on the time rate of change of CAPE rather than CAPE itself, aim to reduce 

these unrealistic sensitivities and relax some of these assumptions, while maintaining the 

current modeling paradigm [Zhang and Mu, 2005]. 

 

2.3.2. Super-parameterized Community Atmosphere Model 

 Convective cloud processes occur on scales from micrometers to thousands of 

kilometers, and the problem of representing them all with a single set of statistical 

parameterizations has thus proven extremely difficult. A new solution to the problem of 

diagnosing the macro-scale effects of unresolved moist convection from large-scale 

quantities has recently taken form. This approach is called super-parameterization (SP) 

[Khairoutdinov and Randall, 2001; Randall et al., 2003]. The concept was first 

introduced by Grabowski and Smolarkiewicz [1999], which they called “cloud resolving 

convection parameterization.” In this approach sub-grid convection is explicitly 

represented by embedding simplified cloud resolving models (CRMs) in each grid 

column of a GCM, thereby adding a second resolved scale that removes the need to make 

the idealized approximations used in the convection parameterizations described above, 

and is depicted in the simple diagram in Figure 2.2. Khairoutdinov and Randall [2001] 

later refined this approach in CAM3 and defined the term super-parameterization to mean 
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the use of a CRM as a parameterization in a GCM. The resulting GCM is called a multi-

scale modeling framework (MMF) [Randall et al., 2003]. 

 

 
Figure 2.2: Diagram illustrating the super-parameterization technique for simulating the 
atmosphere by simultaneously resolving two scale regimes; the outer box represents one 
grid column of a GCM; a high-resolution CRM array is nested within and adjusts the 
outer resolved scale in place of conventional parameterizations. 
 

 Randall et al. [2003] ultimately led to a NSF Science and Technology Center 

(STC) proposal that was awarded in 2006. The STC is called the Center for Multiscale 

Modeling of Atmospheric Processes (CMMAP, http://www.cmmap.org). This STC is 

headquartered at Colorado State University and is led by Professor David Randall. 

CMMAP has pushed the frontiers of super-parameterized simulation for almost eight 

years and supports ongoing research conducted by more than one hundred scientists 

throughout the US and abroad. The CMMAP website states that its “research vision is to 

dramatically improve our ability to understand and predict the role of cloud processes in 

the climate system.” Super-parameterization is motivated by the challenge to improve 
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these predictions, given the reality that “we are still decades away from being able to use 

global CRMs in climate change simulations.” Super-parameterization provides a 

compromise – explicitly resolving a representative sample of convection within a GCM 

grid box, in a way that also remains computationally affordable with current 

supercomputing technology. Super-parameterization development has also been 

supported by the NSF and Department of Energy (DOE) Decadal and Regional Climate 

Prediction using Earth System Models Program, the National Aeronautics and Space 

Administration (NASA) Interdisciplinary Science Program, the DOE Pacific Northwest 

National Laboratory (PNNL), and the NSF-sponsored National Center for Atmospheric 

Research. 

 In the CAM implementation (SPCAM), independent CRMs (the System For 

Atmospheric Modeling – SAM, Khairoutdinov and Randall [2003]) simply replace 

conventional cloud and boundary layer parameterizations within every GCM grid 

column, such that CAM supplies each CRM realization with a large-scale forcing 

[Benedict and Randall, 2009], and a moist convective response is harvested from the 

CRM as a sub-grid physical tendency to CAM [Grabowski, 2001]. The independent 

CRMs are idealized in a number of ways including a typical two-dimensional CRM array 

implementation (which can be oriented either north-south or east-west) and periodic 

boundary conditions. This means CRMs do not directly interact with each except through 

their influence on the large-scale (CAM) grid. Explicitly resolving convection makes the 

approach approximately two hundred times more computationally expensive than the 

conventional version of CAM, but the idealizations in the CRM (particularly their mutual 

independence) make this model extremely scalable on current parallel computing 



39 

	
  

hardware, bypassing the processor-to-processor communication bottleneck that limits the 

number of CPUs that can be effectively used by conventional GCMs [Grabowski and 

Smolarkiewicz, 1999; Khairoutdinov et al., 2005]. This provides a computationally 

affordable approach for resolving convection in a global model on current 

supercomputers, and is approximately a thousand times less expensive than a global 

CRM would be [Khairoutdinov et al., 2005]. 

 A recent update to the super-parameterization approach has added critical links 

between resolved convection in the embedded CRM to the newly represented aerosol 

physics modules in CAM5. This provides a new opportunity to explicitly study the multi-

scale interactions between aerosol particles and clouds on global scales. Development of 

this new version has been led by PNNL, which PNNL calls the Multi-scale Aerosol 

Climate Model (MACM), also known as SPCAM5. The microphysics module for the 

CRM in SPCAM5 has been updated to include a two-moment microphysics scheme 

consistent with the scheme introduced in CAM5 [Morrison et al., 2005, Wang et al., 

2011a]. Aerosols are coupled with resolved cloud dynamics using an approach called the 

Explicit Cloud Parameterized Pollutants (ECPP) method [Gustafson et al., 2008]. ECPP 

links aerosol particles on the GCM grid to statistics of cloud properties from the CRM, 

and aerosol particle transport is explicitly represented by the vertical gradient of aerosol 

concentration and resolved CRM-scale vertical motion [Gustafson et al., 2008]. Aerosol 

humidification is calculated from CRM relative humidity, improving the representation 

of sub-grid aerosol-radiation interactions. Similarly, aerosol activation to cloud droplets 

occurs on the CRM grid, so that within every GCM grid box an explicit distribution of 

cloud droplet number concentrations is calculated. In the current version, aerosol particle 



40 

	
  

concentrations are not directly linked to ice nucleation in SPCAM5 as they are in CAM5, 

though an explicit distribution of ice crystal number concentration is still calculated on 

the CRM grid. The full details are given in Wang et al. [2011a]. 

 In addition to the explicit treatment of convection, the super-parameterization 

approach can be viewed as philosophically appealing, because it is a way to relax 

conventional assumptions about how sub-GCM-grid-scale variability behaves and links 

to other processes (e.g., radiation, vertical aerosol transport, etc.). For instance, radiative 

transfer is calculated through the CRM cloud field in super-parameterized GCMs, which 

provides explicit cloud overlap geometry, the lack of which is a long-standing source of 

uncertainty in conventional GCM cloud parameterizations [Khairoutdinov et al., 2005]. 

A major uncertainty in the parameterization of aerosol activation and cloud droplet 

nucleation is the representation of the sub-grid probability distribution of updraft velocity 

– a critical element in the estimation of supersaturation maximum in GCMs, which in 

part determines the number of new particles that should activate [Ghan et al., 2011]. This 

process occurs on the timescale of seconds in nature, which is much shorter than a GCM 

time step (~10-30 minutes), but begins to be explicitly resolved by condensation rates 

calculated on the 20-second CRM time step. Vertical transport of aerosol particles and 

other tracers is likewise driven by explicitly resolved updraft and downdraft 

classifications from the CRM array, which in combination with CRM precipitation rates 

and hydrometer mixing ratios also determine dry deposition, wet scavenging, and 

aqueous chemistry [Gustafson et al., 2008; Wang et al., 2011a]. The scales resolved on 

the CRM grid also permit the development of mesoscale organization and flow structures 

needed to represent cold pool dynamics and propagation [Benedict and Randall, 2009; 
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Pritchard et al., 2011]. In sum, the philosophical benefit is a reduction in the number of 

assumptions that need to be made about sub-grid convection.  

 A major focus of SPCAM research has been its improved representation of the 

Madden–Julian Oscillation (MJO), the leading mode of intra-seasonal tropical convective 

variability, which is not well represented in conventional GCMs [Benedict and Randall, 

2009; Khairoutdinov et al., 2005; Khairoutdinov et al., 2008; Kim et al., 2009]. This 

work has shown that SPCAM can reassuringly capture a range of observed propagating 

tropical disturbances with dynamic and thermodynamic structures similar to the observed 

MJO and other moist tropical waves appearing in the observed tropical wavenumber–

frequency spectrum, thus providing a useful tool for testing the role of many advective 

and convective processes in developing and sustaining MJO events. Recent work with 

SPCAM has also demonstrated that aspects of the diurnal timing, variability, and 

intensity of clouds and precipitation over land are improved when embedded CRMs 

explicitly resolve sub-grid convection [DeMott et al., 2007; Li et al., 2012; Ovtchinnikov 

et al., 2006; Pritchard and Somerville, 2009a; 2009b; Pritchard et al., 2011]. Aerosol 

transport and indirect effects have only begun to be analyzed in SPCAM, but there are 

preliminary indications that these may be in better agreement with observations and high 

resolutions models in the latest version SPCAM5 relative to CAM5 [Wang et al., 2011a; 

2011b; 2012; and Wang et al., 2013]. 

 Many aspects of SPCAM's climate have yet to be explored in detail, and 

limitations from idealizations made to improve computational efficiency (e.g., two-

dimensional and laterally periodic CRM arrays) may have unexpected physical 

consequences. Two known biases of the current implementation include a poor 
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representation of low clouds, which has limited its utility for evaluating low-cloud 

feedbacks [Wyant et al., 2009], and too much precipitation in the Western Pacific during 

boreal summer [Khairoutdinov et al., 2005]. There is some indication that periodic 

boundary conditions can force unrealistic compensating subsidence to balance convective 

updrafts over the CRM domain, and that convective anomalies can re-enter the far side of 

the domain and enhance the signal, but these issues have not been directly linked to large-

scale biases. Overall, there is a vast parameter space across the domain size and 

resolution of both the inner and outer scales, as well as two-dimensional versus three-

dimensional CRM configure, and north-south versus east-west CRM orientation, that has 

not yet been sufficiently tested. Some of these lingering issues are discussed in more 

detail in the chapters below. Specific studies relevant to this dissertation are described in 

more detail here, but for a complete list of SPCAM related publications see 

http://www.cmmap.org/research/pubs-mmf.html. 

 

2.3.2.1. Improved representation of aerosol-cloud interactions in SPCAM 

 To date there have only been five publications (including Chapter 3 of this 

dissertation – Kooperman et al. [2012]) evaluating cloud-aerosol interactions within the 

first and only aerosol-enabled multi-scale climate model (SPCAM5), and much is still 

unknown about the representation of these processes in the model. Yet on balance, based 

on the success of these studies, the consensus view in AR5 already suggests super-

parameterization “holds promise, with recent results supporting the notion that aerosol 

forcing is smaller than simulated by standard climate models” [Stocker et al., 2013]. 
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Wang et al. [2011a; 2011b; 2012] have shown that resolved convection and the CRM 

cloud statistics used for aerosol processing and transport in SPCAM improve simulated 

aerosol-cloud relationships in a consistent global framework that treats both stratiform 

and convective clouds. Aerosol fields in SPCAM, including their burdens and spatial 

distributions, are comparable to those in other GCM studies relative to observations 

[Wang et al., 2011a]. The black carbon concentration and season cycle in remote regions 

(i.e., north and south pole) are significantly improved in SPCAM [Wang et al., 2011a], 

which has been used to guide model development of aerosol transport in CAM5 [Wang et 

al., 2013]. The shortwave aerosol indirect effect estimate from SPCAM is less than half 

that of CAM5 (-0.77 Wm-2 vs. -1.79 Wm-2) and is in better agreement with observations 

and high-resolution models [Wang et al., 2011b]. The weaker forcing results from a much 

smaller increase in liquid water path with present-day aerosol emissions, which 

represents a smaller change in cloud lifetime, the second aerosol indirect effect [Wang et 

al., 2011b]. The weaker response of cloud liquid water to aerosol in SPCAM has been 

shown to be more consistent with satellite observations, using a new method for 

diagnosing the influence of aerosol loading on the probability of precipitation, which 

indicates that conventional parameterizations of autoconversion (precipitation formation) 

are too sensitive to aerosol perturbations [Wang et al., 2012]. Chapter 3 (Kooperman et 

al. [2012]) further supports these conclusions and presents a new method for reducing the 

signal-to-noise ratio and improving the diagnosis of aerosol-cloud relationships. 

 

2.3.2.2. Improved representation of Central US rainfall in SPCAM 
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 As outlined above, improving projections of future changes in regional rainfall in 

the Central US requires a realistic representation of present-day rainfall variability in a 

model capable of capturing global feedbacks and changes in large-scale circulation. 

Evidence of promising improvements in rainfall statistics have recently been documented 

in SPCAM compared with measurements taken at the DOE, Atmospheric Radiation 

Measurement (ARM) Program, Southern Great Plains (SGP) site. Probability density 

functions (PDFs) of summer rain rates at SGP show that SPCAM captures the observed 

contribution from heavier rain rates to accumulated seasonal precipitation (i.e. these 

PDFs in CAM drop off at ~20 mm day-1, but extend past ~40 mm day-1 in both the 

observations and SPCAM). This aspect of enhanced realism in SPCAM improves rain 

penetration through the land-surface vegetation canopy, reducing local re-evaporation 

recycling, which occurs in CAM due to weak rain rates and thus exaggerates mean 

seasonal rainfall [DeMott et al., 2007]. In addition to improvements in intensity, the 

diurnal timing of rainfall in SPCAM is also in better agreement with observations both at 

the SGP site and over all boreal summer land, shifting the peak timing to later evening 

hours and reducing the diurnal amplitude relative to CAM, whose convection is too 

tightly bound to the solar cycle [DeMott et al., 2007; Pritchard and Somerville, 2009b]. 

A broader analysis of rainfall variability over the US shows that SPCAM improves the 

representation of both light and heavy rain, especially in regions where the fraction of 

rainfall from parameterized convection is greatest [Li et al., 2012]. In general CMIP5 

GCMs trigger convection too frequently, over-simulating moderate rain, and under-

simulating weak and heavy rain compared to observations and SPCAM [Rosa and 

Collins, 2013]. 



45 

	
  

 The super-parameterization approach also gives rise to self-organized convective 

systems in the tropics and mid-latitudes, whose emergent large-scale behavior has been 

difficult to represent in parameterized GCMs with simplified physics. The first evidence 

of a promising Central US MCS signal in a climate change capable GCM has recently 

been documented in an intermediary development version of SPCAM3.5. In SPCAM3.5, 

Pritchard et al. [2011] identified nocturnal eastward propagating convection in the lee of 

the Rocky Mountains with realistic MCS propagation speed and relative flow dynamics. 

They emphasized the implications of the new way in which the scale interface is realized 

in SPCAM, which introduces memory at the CRM resolved scale. They state that 

“resolved tendencies of temperature, water, momentum, and condensate are applied as a 

forcing on a prognostic embedded explicit convection integration...rather than a 

diagnostic calculation...[such that]...the explicit cloud-system-resolving model physics is, 

in part, determined by the initial conditions” (i.e., its state at the end of the previous GCM 

time step). This means that a CRM can become “convectively susceptible to a large-scale 

perturbation,” which may be supplied by the advection of a large-scale first-baroclinic 

heating structure from an upstream CRM array, thus producing a propagating mesoscale 

convective system without direct CRM to CRM communication [Pritchard et al., 2011]. 

As described earlier, MCS propagation mechanisms include both small and large-scale 

processes, whose relative importance is an active area of scientific research. Pritchard et 

al. [2011] argue that since only large-scale processes have a long-range effect in SPCAM 

due to the use of laterally periodic CRM arrays, small-scale processes may not be critical 

for mediating MCS propagation. 
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 In the development version of SPCAM3.5 evaluated by Pritchard et al. [2011] 

MCS composite storms had unrealistically large-scale and concentrated condensate 

fields, but lacked a substantial surface precipitation signature. Important questions remain 

about the realism of simulated storms in the updated SPCAM version 5. If the SPCAM5 

MCS signal is shown to be a valid analog to nature, it may provide a path to reliable 

climate change predictions in the Central US. To answer this question, a new regional 

MCS index is developed in Chapter 4 (Kooperman et al. [2013]) and applied to 

quantitatively compare the statistics of existence, frequency, and composite MCS 

structure in observations and several conventional and super-parameterized versions of 

CAM. Following this evaluation, the Central US summer rainfall and MCS response to 

increased CO2 and climate change is investigated in Chapter 5 (Kooperman et al. [2014]). 
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Chapter 3 

Constraining the influence of natural variability to improve 

estimates of global aerosol indirect effects in a nudged version 

of the Community Atmosphere Model 5 

 Abstract. Natural modes of variability on many timescales influence aerosol 

particle distributions and cloud properties such that isolating statistically significant 

differences in cloud radiative forcing due to anthropogenic aerosol perturbations (indirect 

effects) typically requires integrating over long simulations. For state-of-the-art global 

climate models (GCM), especially those in which embedded cloud-resolving models 

replace conventional statistical parameterizations (i.e. multi-scale modeling framework, 

MMF), the required long integrations can be prohibitively expensive. Here an alternative 

approach is explored, which implements Newtonian relaxation (nudging) to constrain 

simulations with both pre-industrial and present-day aerosol emissions toward identical 

meteorological conditions, thus reducing differences in natural variability and dampening 

feedback responses in order to isolate radiative forcing. Ten-year GCM simulations with 

nudging provide a more stable estimate of the global-annual mean net aerosol indirect 

radiative forcing than do conventional free-running simulations. The estimates have mean 

values and 95% confidence intervals of -1.19 ± 0.02 Wm-2 and -1.37 ± 0.13 Wm-2 for 

nudged and free-running simulations, respectively. Nudging also substantially increases 

the fraction of the world’s area in which a statistically significant aerosol indirect effect 

can be detected (66% and 28% of the Earth's surface for nudged and free-running 

simulations, respectively). One-year MMF simulations with and without nudging provide 
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global-annual mean net aerosol indirect radiative forcing estimates of -0.81 Wm-2 and      

-0.82 Wm-2, respectively. These results compare well with previous estimates from three-

year free-running MMF simulations (-0.83 Wm-2), which showed the aerosol-cloud 

relationship to be in better agreement with observations and high-resolution models than 

in the results obtained with conventional cloud parameterizations. 

 

3.1. Introduction 

 The addition of anthropogenic aerosol particles to Earth's atmosphere, through the 

burning of fossil fuels, industrial production, and land use changes, impacts the 

transmission of radiation not only by direct scattering and absorption, but also by indirect 

modifications to cloud properties. Aerosol-induced changes to cloud reflectivity, lifetime, 

and vertical positioning are known as “aerosol indirect effects,” which project onto global 

scales as a planetary radiative forcing. Radiative forcing refers to any perturbation in the 

global-annual mean net radiative flux at the top of the atmosphere resulting from 

instantaneous changes in the amount of incoming or outgoing radiation. The 

Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) 

gave a best estimate of the radiative impact due to anthropogenic aerosol induced 

changes in cloud reflectivity as -0.70 [-1.1, +0.4] Wm-2 [Forster et al., 2007].  

 While the magnitude of the aerosol indirect effect is smaller and opposite to that 

of greenhouse gases (GHGs, 2.63 [±0.26] Wm-2), it represents the largest source of 

uncertainty in estimates of the overall anthropogenic forcing (1.6 [-1.0, +0.8] Wm-2), 

nearly four times that of GHGs [Forster et al., 2007]. Accurately determining the 
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magnitude of individual components of the present-day anthropogenic radiative forcing is 

critical for improving projections of future climate, as well as for informing effective 

policy decisions concerning the climate impacts of human activities. 

 Aerosol particles alter clouds through their role as cloud condensation and ice 

nuclei (CCN and IN) and through their thermodynamic effects on the ambient 

environment in which clouds form. Aerosol-driven droplet nucleation is evident from 

regional field observations [e.g., Leaitch et al., 1992; DeMott et al., 2003; Andreae et al., 

2004; Kaufman et al., 2005] and from global satellite measurements [e.g., Coakley et al., 

1987; Bréon et al., 2002] of forest fire emissions, desert dust plumes, ship tracks, and 

industrial pollution. Increases in the concentration of nucleating particles can result in 

smaller droplets, which more efficiently backscatter solar radiation and thus increase 

cloud albedo [Twomey, 1977]. Smaller droplets may also result in reduced precipitation 

efficiency and increased cloud lifetime [Albrecht, 1989]. Recent studies suggest that 

these effects depend strongly on cloud regime, and thus regional observations cannot be 

usefully extended to global estimates [Stevens and Feingold, 2009]. In some cases an 

opposite (positive) forcing is possible, if precipitation is enhanced by aerosol-induced 

convective invigoration [Rosenfeld et al., 2008] or if cloud top height changes due to 

aerosol-modified atmospheric stability [Wood, 2007]. 

 The complex nature of these microphysical processes can result in both positive 

and negative forcings [Lohmann and Feichter, 2005] and thus contributes importantly to 

the large uncertainty shown in the 90% inter-model confidence intervals from the IPCC 

AR4 given above. Estimates of global aerosol effects from observations are further 

complicated by temporally intermittent emissions, inhomogeneous spatial distributions, 
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and short residence times [Rosenfeld and Feingold, 2003]. While the most recent climate 

models now include physical processes that are important to many aerosol-cloud 

interactions, it can still be difficult to distinguish the statistically significant 

anthropogenic signal from the noise of natural variability and feedbacks in conventional 

simulations [Stevens and Feingold, 2009]. As increasing computational power enables 

modeling efforts to do more justice to the details of cloud-aerosol physical interactions, 

this signal-to-noise problem is likely to become more severe and thus will further 

increase uncertainty. Indirect effects are part of the overall cloud forcing, which is 

influenced by natural modes of variability on many timescales and by poorly understood 

cloud feedbacks [Bony et al., 2006]. The transport, removal, and distribution of aerosol 

particles themselves are also strongly dependent on aspects of the circulation associated 

with natural variability [Gong et al., 2006]. 

 Because the cloud lifetime effect involves changes in the cloud lifecycle it is not 

possible to estimate the effect in a single simulation. Thus, the traditional method for 

isolating the anthropogenic forcing in models is to compare two simulations with and 

without anthropogenic emissions after integrating them over the timescales of the 

dominant modes of natural variability [Forster et al., 2007; Lohmann and Feichter, 2005; 

North and Stevens, 1998]. In this case, the simulations not only have different emissions, 

but they are also unconstrained meteorologically, i.e., they produce unique weather 

patterns that affect the cloud cover and cloud liquid water content – the same properties 

involved with the cloud lifetime effect. A signal in the overall mean difference is only 

statistically significant where it is larger than a metric of internal variability (i.e. standard 

inter-annual error), and in practice the signal is often weak in those parts of the world 
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where natural variability is high or the signal of aerosol indirect effect is low [Ming et al., 

2005]. 

 By design, this approach requires long simulation times to produce the full range 

of variability governed by natural processes in the climate system. This is less a problem 

for conventionally parameterized climate models, which contain highly idealized cloud-

aerosol physics in order to remain computationally affordable for long simulations. But 

this approach is a serious problem for climate models using embedded convection-

resolving models to represent the physics of cloud-aerosol interactions more realistically 

(and whose predictions of aerosol indirect effects are therefore of special interest), 

because these more ambitious models are so computer-intensive that they require vast 

computing resources to produce long simulations. 

 In summary, current estimates of aerosol indirect effects are complicated by 

approximations of cloud-aerosol physics, unconstrained meteorology, and poorly 

understood feedbacks. The modeling approach presented here aims to improve these 

estimates by implementing Newtonian relaxation (nudging) in the National Center for 

Atmospheric Research (NCAR) Community Atmosphere Model version 5 (CAM5) to 

constrain large-scale meteorology and to reduce differences in natural variability between 

simulations with pre-industrial and present-day aerosol emissions. Nudging here refers to 

the practice of adding a term to the prognostic model equations, proportional to the 

difference between a model-computed value of a variable, and an observed or prescribed 

value of that variable at the given space and time position. In this study, nudging forces 

the simulated winds and dry static energy to follow prescribed trajectories, thus 

controlling synoptic meteorology, circulation, and large-scale feedbacks so as to isolate 
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the radiative influence of anthropogenic aerosol. 

 Similar to the method of fixing surface temperature to remove feedback responses 

[Shine et al., 2003], this nudging method effectively fixes the temperature response to the 

given forcing, but in the entire atmospheric column rather than just at the surface. This 

provides the additional benefit of more closely approximating aerosol indirect effects as 

an instantaneous or pure forcing. It also removes some of the challenges associated with 

distinguishing radiative forcing from feedbacks in conventional simulations, which 

otherwise require new metrics that account for climate sensitivity and/or “fast-feedback” 

processes, including: quasi-forcing [Rotstayn and Penner, 2001], stratospheric 

adjustment [Forster et al., 1997], temperature-regressed radiative forcing [Forster and 

Taylor, 2006], and radiative flux perturbation [Lohmann et al., 2010], in order to 

accurately compare the impact of aerosol relative to that of other anthropogenic forcing 

agents. 

 The nudging approach is also shown to be a useful strategy to bring new modeling 

technology, which would otherwise be too computationally expensive, to bear on 

estimating aerosol indirect effects. Advances in aerosol-climate modeling on global 

scales have been achieved through increased resolution and the inclusion of more 

complex physical/chemical processes, which push the limit of current computing 

hardware. One such model is the new Multi-scale Aerosol Climate Model (MACM) 

developed at Pacific Northwest National Laboratory (PNNL) [Wang et al., 2011a]. 

MACM is based on the multi-scale modeling framework (MMF) approach pioneered by 

Grabowski and Smolarkiewicz [1999] and Grabowski et al. [2001] and developed by the 

Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) in which an 
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idealized cloud-resolving model (CRM) is embedded in each grid column of global 

climate model (GCM) to replace conventional statistical parameterizations 

[Khairoutdinov and Randall, 2001]. The MACM has extended the MMF approach to 

include the enhanced aerosol physics contained in CAM5. Wang et al. [2011a; 2011b; 

2012] have shown that resolved convection in MACM improves simulated aerosol-cloud 

relationships, but at a high computational cost. Nudging not only reduces differences in 

natural variability between simulations, but also reduces the required simulation time to 

reach a stable estimate. 

 Details of the GCMs and nudging approach used in this study are provided in 

Section 3.2, including discussion of relevant physical parameterizations. The 

experimental setup and prescribed model forcings are given in Section 3.3. An overview 

of the findings is presented in the Section 3.4. A summary and future work are given in 

Section 3.5. 

 
3.2. Background 

3.2.1. Model description 

3.2.1.1. Community Atmosphere Model 

 CAM5 was run in this experiment as a stand-alone atmospheric general 

circulation model (AGCM) with an interactive land surface and prescribed sea surface 

temperatures and sea ice. The treatment of aerosol-cloud physics has undergone many 

notable updates in CAM5 relative to its predecessor, including the addition of a three-

mode two-moment aerosol module, a two-moment cloud microphysics scheme, deep 
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convection with vertical entrainment and convective momentum transport, shallow 

convection based on moist turbulent processes, and radiative transfer calculations from 

the Rapid Radiative Transfer Model for GCMs [Neale et al., 2010]. For all simulations 

CAM5 was run with a finite volume dynamical core at a standard supported horizontal 

resolution of 1.9˚ latitude by 2.5˚ longitude (~200 x 200 km) and 30 hybrid sigma-

pressure vertical levels. A short overview of physical processes relevant to this 

experiment is given here, for more details see Neale et al. [2010]. 

 CAM5 includes an interactive three-mode aerosol module that separately 

transports and processes fifteen different aerosol constituents distributed into Aitken, 

accumulation, and coarse modes, as described by Liu et al. [2012], which is based on an 

earlier scheme tested in the Community Climate Model [Easter et al., 2004] and CAM3 

[Ghan and Easter, 2006]. The module not only evolves aerosol plumes as they are 

transported, but more importantly provides key linkages between simulated aerosol fields 

and microphysical cloud and radiation parameterizations that drive the hydrologic and 

energy cycles. Sulfate, black carbon, and primary organic matter particles are injected at 

various heights by direct emission inventories; sea salt and dust enter the atmosphere 

through mechanistic surface source parameterizations; and volatile organic compounds 

and gas phase sulfur are emitted and oxidized before forming secondary aerosol. Gas and 

aqueous phase processes involving bulk sulfur and secondary organic precursor gases add 

to the overall aerosol mass through both the creation of new Aitken mode particles and 

condensation onto existing particles in all three modes [Easter et al., 2004]. 

 Aerosol particle evolution in the model includes nucleation, growth by 

condensation, coagulation, aqueous and gas phase production, and removal by wet and 
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dry deposition [Easter et al., 2004]. Number and mass mixing ratios for particles in each 

mode transition between interstitial and cloud-borne states as droplets form, evaporate, 

collide, and fall from the atmosphere. Aerosol activation (droplet nucleation) at cloud 

base is parameterized as a function of updraft velocity and aerosol mode properties 

[Abdul-Razzak and Ghan, 2000], which convert particles from a clear-air to cloud-borne 

state and impact cloud water through microphysical calculations [Morrison and 

Gettleman, 2008]. Vertical transport of interstitial and cloud-borne particles is driven by 

mass flux calculations from the Zhang-McFarlane and University of Washington 

parameterizations of deep and shallow convection, respectively [Neale et al., 2010; Park 

and Bretherton, 2009; Zhang and McFarlane, 1995]. Particle removal by wet scavenging 

occurs both in and below clouds, and particles not re-suspended by cloud evaporation are 

removed through precipitation [Easter et al., 2004]. 

 The aerosol module directly interacts with both the microphysical and radiative 

transfer schemes, impacting cloud formation and precipitation as well as direct light 

extinction and deposition changes to the surface albedo. CAM5 uses a two-moment bulk 

cloud microphysics scheme, which tracks mass mixing ratios and number concentrations 

of in-cloud and precipitating liquid and ice condensate. Condensate can undergo growth 

by condensation and collection, phase change due to freezing, melting, and evaporation, 

and sedimentation, all driven by sub-grid scale variability [Morrison and Gettleman, 

2008]. Cloud droplet nucleation is consistent with Köhler theory [Köhler, 1936] of 

aerosol particle activation and is based on the three-mode distribution and aerosol 

chemical properties described above, as well as temperature, water vapor content, and 

vertical velocity [Abdul-Razzak and Ghan, 2000]. Mixed-phase cloud microphysics is 



57 

	
  

treated using the ice nucleation parameterization of Liu and Penner [2005] and the Liu et 

al. [2007] treatment of supersaturation. Dust serves as an ice nuclei in CAM5 and sulfate 

influences homogeneous nucleation, which can produce significant impacts on ice clouds 

[Ghan et al., 2012]. 

 Decomposition of the aerosol direct, indirect, and semi-direct effects of the 

shortwave and longwave energy balance simulated by CAM5 has been described by 

Ghan et al. [2012]. The analysis was based on the last five years of six-year free-running 

simulations. 

 

3.2.1.2. Multi-scale modeling framework 

 Processes relevant to clouds occur on scales from micrometers to thousands of 

kilometers, and representing all of them with a single set of statistical parameterizations 

has proven extremely difficult [Randall et al., 2003]. Grabowski and Smolarkiewicz 

[1999] presented a new approach through which, rather than diagnose cloud-scale 

processes from large-scale dynamics, they chose instead to embed simplified two-

dimensional cloud resolving models (CRMs) in each grid column of a GCM in order to 

explicitly represent sub-grid convection. Khairoutdinov and Randall [2001] first 

introduced this approach in CAM3, which later became known as a superparameterized 

GCM, also known as a multi-scale modeling framework [Randall et al., 2003]. In every 

GCM grid volume of such a model, CAM thus supplies each realization of the embedded 

CRM with a large scale forcing [Benedict and Randall, 2009]. A moist convective 

response is harvested from the CRM as a sub-grid update to CAM [Grabowski, 2001]. 
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Radiative transfer is calculated through the CRM cloud field, which provides explicit 

sub-grid cloud overlap geometry, the lack of which introduces uncertainty in 

conventional GCM cloud parameterizations [Khairoutdinov et al., 2005]. Independent 

CRMs with periodic boundary conditions make this model extremely scalable on current 

parallel computing hardware, bypassing the processor-to-processor communication 

bottleneck that limits the resolution of conventional GCMs [Grabowski and 

Smolarkiewicz, 1999; Khairoutdinov et al., 2005]. The MMF is approximately two 

hundred times more computationally expensive than a conventionally parameterized 

GCM (such as CAM5), but it is still about a thousand times less expensive than a global 

CRM would be and is scalable with current computer architecture [Khairoutdinov et al., 

2005]. 

 The MMF approach has been promoted by a National Science Foundation (NSF) 

Science and Technology Center called CMMAP (www.cmmap.org), which has recently 

collaborated with PNNL to implement a new version of the model, based on CAM5, to 

better represent the multi-scale interactions between aerosol and clouds [Wang et al., 

2011a]. In this new model, MACM, the microphysics module for the CRM has been 

updated to include a two-moment microphysics scheme consistent with the scheme 

introduced in CAM5 [Morrison et al., 2005]. Aerosols are coupled with resolved cloud 

dynamics using an approach called the Explicit Cloud – Parameterized Pollutants (ECPP) 

method [Gustafson et al., 2008]. ECPP links aerosol particles on the GCM grid to 

statistics of cloud properties from the CRM, and aerosol particle transport is explicitly 

represented by the vertical gradient of aerosol concentration and resolved CRM scale 

subsidence [Gustafson et al., 2008]. Aerosol humidification is calculated from CRM 
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relative humidity, improving the representation of sub-grid aerosol-radiation interactions. 

Similarly, aerosol activation into cloud droplets occurs on the CRM grid, so that within 

every GCM grid box an explicit distribution of cloud droplet number concentrations is 

calculated. Unlike in CAM5, aerosol particle concentrations are not directly linked to ice 

nucleation in MACM, though an explicit distribution of ice crystal number concentration 

is still calculated on the CRM grid. Wang et al. [2011b, 2012] found a weaker influence 

of aerosol on the shortwave cloud forcing than in CAM5, which is more consistent with 

observations and high-resolution models. 

 In this experiment, MACM is configured following Wang et al. [2011a], with the 

outer GCM settings the same as CAM5 above and the inner CRM arranged in two 

dimensions with 32 vertical columns spaced at 4 km horizontal resolution. The CRM is a 

modified version of the System for Atmospheric Modeling, a detailed description of 

which is given by Wang et al. [2011a]. 

 

3.2.2. Nudging description 

 CAM5 has been modified to include nudging, a method for constraining a GCM’s 

dynamical state by adding a forcing to the prognostic equations that relaxes the model 

toward prescribed atmospheric conditions. This forcing is given in Equation 3.1, where X 

includes horizontal winds and dry static energy, XM is the model calculated field, XP is 

the prescribed field, τ is a relaxation time parameter, and ∂t is the model time step. In 

other words, the approach is a Newtonian relaxation technique, as used in early numerical 

forecast and data assimilation models [Hoke and Anthes, 1976]. It has since been put 
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forth as an evaluation technique for GCMs [Jeuken et al., 1996; Machenhauer and 

Kirchner, 2000], and has been used in chemical transport models [Feichter and 

Lohmann, 1999] and studies of the direct aerosol forcing [Ghan et al., 2001] to constrain 

gas and particle plumes. Recent studies with the ECHAM5-HAM model have employed 

this technique to reduce differences in dust and sea salt emissions between simulations in 

order to test the sensitivity of aerosol indirect effects to varied model parameters 

[Lohmann and Hoose, 2009; Lohmann and Ferrachat, 2010]. Jeuken et al. [1996] 

describe the method in detail as well as the implications of adding unphysical terms to an 

already balanced physical model. The current implementation has been adapted from 

earlier versions of CAM used to initialize forecast simulations for evaluating the growth 

of model errors on short time scales [Boyle et al., 2005]. Surface pressure nudging has 

not been included for CAM5 to be more consistent with conservation of mass 

assumptions used in the finite volume dynamical core. 

€ 

∂XM

∂t
= ...− XM − XP

τ
  (3.1) 

 Nudging has typically been used to constrain model simulations to follow 

observed conditions, where XP is obtained from analyzed observations. This approach 

has many benefits for comparing simulations to observed events and initializing realistic 

forecasts. However, in practice nudging toward conveniently gridded observations 

produced by reanalysis models can lead to unintended consequences due to systematic 

differences between the GCM and the reanalysis model, which in turn can affect 

parameterizations that may be tuned to compensate for inherent climatological model 
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biases. Lohmann and Hoose [2009] note enhanced convection and precipitation in the 

tropics when ECHAM5-HAM is nudged toward European Centre for Medium-Range 

Weather Forecasts (ECMWF) ERA40 reanalysis. Similarly, the use of ECMWF ERA-

Interim reanalysis [Dee et al., 2011] as a nudging reference was explored during the early 

stages of this research, but this approach was found to introduce uncertainties in the 

comparison between aerosol indirect effects produced in free-running and nudged modes. 

For example, the global mean precipitation rate in free-running CAM5 simulations is 

2.95 mm day-1, but is reduced to 2.65 mm day-1 when nudging toward ERA-Interim 

reanalysis is included. While both of these values are realistically within the range of 

observational estimates, this result highlights the fact that nudging can have a significant 

impact on model physics and needs to be implemented carefully. Thus, instead of 

nudging toward ERA-Interim reanalysis, a free-running simulation was first run for this 

experiment in order to generate a reference meteorology, which both pre-industrial and 

present-day simulations were then nudged toward. This procedure eliminated model-to-

model differences and significantly reduced the impact of nudging on unconstrained 

fields, altering the global mean precipitation rate by less than 0.2%. Further details are 

discussed in the Experiment design and Results and discussion sections below. 

 The value of the relaxation parameter (τ) determines how tightly the model is 

constrained to follow prescribed conditions and how much influence model physics are 

able to exert [Jeuken et al., 1996]. The main criterion for the selection of this value for 

this research is the influence of nudging on relevant physical processes and its utility in 

isolating global aerosol indirect effects. With this consideration in mind, two relevant 

questions emerge: (1) on what timescale does the aerosol indirect effect stop being a 



62 

	
  

radiative forcing and become a feedback? and (2) what is the relevant timescale for 

evaluating cloud-lifetime effects? A six-hour relaxation time was chosen, because it is 

longer than the lifetime of an individual cloud, so it does not dampen cloud-lifetime 

effects, but it also does not allow temperature perturbations and subsequent feedback 

responses persisting longer than six hours to influence the large-scale circulation. This 

choice is consistent with the assumption in CAM5 that unresolved clouds continuously 

dissipate and regenerate on a one-hour timescale [Liu et al., 2012]. Future sensitivity 

experiments with other relaxation times and coupled ocean simulations may provide 

useful insight for discriminating the role of short-term feedbacks on aerosol-cloud effects 

versus longer-term effects linked to organized convection, but this topic is left for future 

research. The focus here is reducing natural variability differences between pre-industrial 

and present-day simulations, which introduce noise in the calculation of radiative forcing. 

Humidity is not nudged in this experiment, since the conversion of water vapor to 

liquid/ice is strongly mediated by the concentration and chemical makeup of ambient 

aerosol particles. Large-scale circulation, synoptic waves, and surface pressure are well 

constrained by nudging horizontal winds and dry static energy alone. 

 

3.3. Experiment design 

 Results from four 10-year CAM5 simulations and four 1-year MACM simulations 

are evaluated in this study. Table 3.1 summarizes the external forcings for both the 

CAM5 and MACM sets of simulations. Two were conventional, unconstrained 

simulations (F - free-running) and two contained the nudging modifications described 
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above (N - nudged). For both cases the model was run with annually repeating pre-

industrial (PI – year 1850) and present-day (PD – year 2000) aerosol and precursor gas 

emissions created for IPCC AR5 experiments and described in Neale et al. [2010] and 

Liu et al. [2012]. All simulations were driven by annually repeating present-day Hadley 

Center sea surface temperatures/ice (monthly mean values representing the climatology 

for years 1981 to 2001 were interpolated to the model’s time step) and present-day 

greenhouse gas concentrations (i.e. a fixed CO2 surface concentration of 367 ppm) [Neale 

et al., 2010]. For the nudged cases, six-hourly horizontal wind and dry static energy fields 

from the PI(F) simulation provided the prescribed atmospheric conditions, which were 

cubically interpolated internally to the model's time step and forced with a six-hour 

relaxation time. 

 
Table 3.1: Summary of forcings for each simulation. All simulations used 
the same present-day (PD) climatological sea surface temperature and 
greenhouse gases representing the year 2000. Pre-industrial (PI) aerosol 
emissions are from the year 1850 and present-day are from the year 2000. 

 PI (N) PD (N) PI (F) PD (F) 

Nudging ⇐ PI (F) ⇒ X X 

SSTs ⇐ 2000 (PD Climatology) ⇒ 

GHGs ⇐ 2000 (PD Climatology) ⇒ 
Aerosol 1850 2000 1850 2000 

 

 The first year of each CAM5 simulation was excluded from the results presented 

below, in order to allow aerosol and land surface fields to spin-up to climatological 

values. For MACM, five months of spin-up were used. Comparisons between the aerosol 

indirect effect (calculated here as the difference in cloud forcing between PI and PD 

simulations) in free-running and nudged modes on a variety of time scales demonstrate 
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the role of nudging in suppressing natural variability and feedback responses to reduce 

noise and improve statistical significance. The aerosol indirect effect defined in this way 

represents the net effect of aerosol on cloud properties including both the albedo and 

lifetime effects, which differs from values reported in the IPCC AR4 that only included 

the albedo effect. To further demonstrate the utility of nudging for reducing the required 

simulation length, the free-running CAM5 simulations were extended for an additional 

ninety years, to provide a 100-year analysis for comparison with the 10-year results 

described above. 

 

3.4. Results and discussion 

3.4.1. Community Atmosphere Model nudging evaluation 

 Nudging constrains specific meteorological fields, dry static energy and 

horizontal winds in the present research, to follow prescribed atmospheric conditions, 

reducing the average rms errors shown in Table 3.2(a) by 95%, 99%, and 98% for 

temperature, zonal, and meridional winds, respectively relative to the PI(F) simulation. 

However, since nudging is not a physically based forcing, it is also important to consider 

the impact it may have on unconstrained model fields. 

 One potential concern is that the prescribed fields themselves already contain 

thermodynamic and dynamic responses to convective processes from the PI(F) simulation 

and might reduce the convective response required in the nudged simulation in order to 

remove an atmospheric instability. If this were the case, it would reduce the influence of 

model physics on the simulation result and the ability of physical parameterizations to 
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respond to atmospheric and aerosol conditions. Nudging would play a dominant role and 

would mask the phenomena of interest, in this case the aerosol indirect effect. We can 

evaluate the importance of this potential concern after the fact, by analyzing the model 

tendencies.  

 
Table 3.2: CAM5 global-annual (a) root mean square error relative to the 
pre-industrial free-running simulation and (b) mean vertically integrated 
heating tendencies (Wm-2). 

     Root Mean Square Error     (a) PD (F) PD (N) PI (N) 
Temperature (K) 0.41 0.02 0.02 
Zonal Wind (ms-1) 1.07 0.01 0.01 
Meridional Wind (ms-1) 0.59 0.01 0.01 

   Vertically Integrated Heating Tendencies    (b) 
PD (F) PD (N) N - F 

Total Dynamics -2.37 -2.42 -0.05 
Total Physics 2.39 2.44 0.06 
Shallow Convection 42.14 42.55 0.41 
Deep Convection 41.87 41.84 -0.03 
Radiation -81.45 -81.30 0.14 
Nudging 0.00 0.32 0.32 

 

 This concern does not appear to be a problem in this study, as can be seen in the 

global mean, column integrated temperature tendencies from dynamics, total physics, 

shallow/deep convention, radiation, and nudging given in Table 3.2(b). The nudging 

tendency is small compared to that due to the physical parameterizations, and it changes 

the magnitude of other tendencies by less than 1%. Since nudging is included in the total 

physics tendency, the magnitude of the total physics tendency is slightly larger in the 

nudged simulations, by about 2.5%, a relatively small increase. 

 Another potential concern is that unconstrained model fields may become more 
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unrealistic in comparison to observations under nudging. This is especially true for 

nudging experiments that use reanalyzed observations as a reference atmospheric state, 

which can introduce additional model differences and biases. As noted earlier, the use of 

the ERA-Interim reanalysis as the reference data for nudging resulted in a reduction of 

the global mean precipitation rate by 10%. It also increased the liquid and ice water paths 

by 14% and 3%, respectively. In some ways, these changes led to model results that were 

in better agreement with observations, with two examples being reducing the double 

Inter-Tropical Convergence Zone (ITCZ) problem and improving the position of 

Southern Hemisphere storm tracks. However, for the purposes of this study, these 

differences added uncertainty to the comparison between nudged and free-running 

simulations. The approach used here aimed to minimize all influences of nudging which 

are not essential to reducing natural variability differences between PI and PD 

simulations. In other words, the experimental design allows the model to behave much as 

it does in free-running mode, while constraining weather conditions (referred to here as 

“meteorology”) consistently across the two simulations. 

 Table 3.3 summarizes the effect of nudging on global-annual mean radiative and 

convective properties in the present climate. Global mean values, spatial root mean 

square errors, and pattern correlations shown in Table 3.3 are based on 10-year PD 

simulations and observations from 2001 to 2010 of top-of-atmosphere (TOA) radiative 

fluxes, cloud fraction, precipitable water, cloud water path, and precipitation. The 

inclusion of nudging led to a small decrease in the magnitude of shortwave cloud forcing, 

cloud fraction, cloud water path, and precipitation (0.60 Wm-2, 0.50%, 0.40 gm-2, and 

0.01 mm day-1, respectively), and a small increase in the magnitude of outgoing clear-sky 
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longwave radiation (0.20 Wm-2). Correlations between observations and the nudged 

simulation are nearly identical to those from the free-running simulation, and rms errors 

are within 3%. The simulated outgoing all-sky shortwave (longwave) radiation and 

cloud-forcing were higher (lower) than observed. While both simulated shortwave and 

longwave clear-sky outgoing radiation were lower than observed. Lower cloud fraction in 

the nudged simulation was the result of a decrease in liquid water path from 48.4 gm-2 in 

the free-running simulation to 47.6 gm-2. Although the simulated total cloud water paths 

are low compared to NCEP CFSR (NOAA's National Centers for Environmental 

Prediction Climate Forecast System Reanalysis; Saha et al., [2010]), there is a large 

range in estimates from satellite observations. Liquid water path from CERES (Clouds 

and the Earth's Radiant Energy System) Terra SYN1deg-lite_Ed2.6 data (Wielicki et al., 

1996) has a global mean value of 47.1 gm-2 and recent analysis of CloudSat and MODIS 

observations give a range between 30 gm-2 and 50 gm-2 [Jiang et al., 2012]. An 

evaluation of liquid and ice water paths in CAM5 and other IPCC AR5 models relative to 

satellite observations is given by Jiang et al. [2012]. The spatial patterns of the resulting 

cloud fraction and precipitation fields are in good agreement with observations. However, 

some notable discrepancies include the double ITCZ, weaker (stronger) precipitation over 

South America (the Himalayas), and lower cloud fraction between Africa and Australia 

(not shown). 

 In summary, the overall role of nudging improves the correlation between 

prescribed and modeled horizontal winds and temperature, constraining large-scale 

meteorology and circulation as intended. The above analysis demonstrates that this has 

been achieved without making unconstrained model fields any less realistic than free-
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running simulations within the uncertainty of observations. 

 
Table 3.3: CAM5 simulated and observed present-day global mean, spatial root mean 
square error, and pattern correlation between observations and simulations. 

           Global Mean                 RMSE            Correlation     
 OBS PD (N) PD (F) PD (N) PD (F) PD (N) PD (F) 
Net All-sky (Wm-2)a -339.4 -337 -337.4 11.5 11.7 0.9 0.9 
SW All-sky (Wm-2)a -99.7 -100.4 -101.0 14.0 14.0 0.8 0.8 
LW All-sky (Wm-2)a -239.8 -236.6 -236.4 7.7 8.0 1.0 1.0 
Net Cloud-forcing (Wm-2)a -21.1 -27.8 -28.4 13.5 14.2 0.7 0.7 
SW Cloud-forcing (Wm-2)a -47.3 -49.6 -50.2 15.0 15.2 0.8 0.8 
LW Cloud-forcing (Wm-2)a 26.2 21.8 21.8 7.9 7.8 0.9 0.9 
Net Clear-sky (Wm-2)a -318.4 -309.2 309.1 10.6 10.8 1.0 1.0 
SW Clear-sky (Wm-2)a -52.4 -50.8 -50.8 5.7 5.8 1.0 1.0 
LW Clear-sky (Wm-2)a -266.0 -258.4 -258.2 8.4 8.6 1.0 1.0 
Cloud fraction (%)b 61.3 62.1 62.6 10.2 10.1 0.8 0.8 
Precipitable water (kg m-2)b 24.3 25.8 25.8 2.4 2.4 1.0 1.0 
Cloud water path (gm-2)c 95.5 63.9 64.3 65.1 64.6 0.3 0.3 
Precipitation (mm day-1)d 2.68 2.95 2.95 1.08 1.10 0.9 0.9 
aObserved TOA radiative fluxes are from CERES EBAF_Ed2.6 (Energy Balanced and 
Filled) for years 2001 to 2010 [Loeb et al., 2009]. 

bObserved cloud fraction and precipitable water are from CERES Terra SYN1deg-
lite_Ed2.6 for years 2001 to 2010 [Wielicki et al., 1996]. 

cObserved cloud water path is from NCEP Climate Forecast System Reanalysis for years 
2001 to 2010 [Saha et al., 2010]. 

dObserved precipitation is from GPCP (Global Precipitation Climatology Project) for 
years 2001 to 2010 [Adler et al., 2003]. 

 

3.4.2. Community Atmosphere Model aerosol fields 

 Since the purpose of this study is to assess the role of aerosol as a climate forcing 

agent, anthropogenic contributions to aerosol emissions and concentrations are 

summarized, and the impact of nudging on the mean aerosol burden is evaluated. 

 Direct emission inventories represent the only sources for BC, POM, and SOA, 

which are identical for free-running and nudged simulations. SO4
2- sources include both 
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direct emissions from prescribed inventories and parameterized secondary production 

from SO2 and DMS. Both dust and sea salt emissions are interactively calculated online, 

and are therefore affected by differences in natural variability as well as potential aerosol 

induced changes in surface wind speeds, precipitation/soil moisture, etc. Total sources 

shown in Table 3.4(a) increased from PI to PD by 217/216% (N/F) for SO4
2-, 157% for 

BC, 61% for POM, and 12% for SOA. Dust emissions were slightly reduced in the PD 

simulation by 2/4% (N/F), while changes in sea salt emissions were negligible. For SO4
2-, 

direct emissions only contributed 2.4% (PI) and 3.3% (PD) to total sources, gas-phase 

production contributed 32.2/31.7% (PI, N/F) and 34.2/33.6% (PD, N/F), and aqueous 

production contributed 65.4/65.9% (PI, N/F) and 62.5/63.1% (PD, N/F). In the PD 

simulations, the magnitude of SO4
2- production increased significantly, but the relative 

contribution from individual sources changed by less than 3%. Differences in the 

secondary production of SO4
2- between nudged and free-running simulations are small 

and arise due to natural variability and a small reduction in cloud liquid water and 

therefore aqueous production in the nudged runs. 

 Removal of aerosol particles from the atmosphere in CAM5 occurs through both 

wet and dry deposition, the combination of which is equal to total sources in the 10-year 

average, since aerosol lifetimes are on the order of days. The percentages of aerosol mass 

removed by dry and wet deposition separately are shown in Table 3.4(b). For SO4
2-, BC, 

POM, and SOA, wet deposition is the dominant removal process and contributes over 

80% in all simulations. Since most of the mass for dust and sea salt is contained in the 

coarse mode, dry deposition plays a more significant role, removing 64% and 50%, 

respectively. The relative contributions of dry and wet deposition to total removal 
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changes little from PI to PD, less than 2% for all species. Differences between nudged 

and free-running simulations are less than 0.4%, indicating that removal processes 

important to aerosol are not affected by the inclusion of nudging. 

 
Table 3.4: CAM5 global mean aerosol (a) sources in Tg yr-1 (SO4 in Tg S yr-1), (b) sinks 
in percent dry (wet) deposition, and (c) burden (lifetime) in Tg (SO4 in Tg S) and days. 

 PI (N) PI (F) PD (N) PD (F)  

(a)        Sources in Tg yr-1 (SO4 in Tg S yr-1)       
Sulfate 15.69 15.85 49.76 50.15 

Emission 0.38 0.38 1.66 1.66 
Gas-phase 5.05 5.03 17.02 16.86 
Aqueous-phase 10.26 10.44 31.08 31.63 

Black Carbon 3.02 3.02 7.76 7.76 
Primary Organic Matter 31.20 31.20 50.25 50.25 
Secondary Organic Aerosol 91.51 91.51 102.19 102.19 
Dust 3031.29 3061.59 2972.74 2928.25 
Sea Salt 4749.19 4781.21 4749.57 4768.04 
     

(b)      Sinks in Percent Dry (Wet) Deposition     
Sulfate 12.5 (87.5) 12.3 (87.7) 12.8 (87.2) 12.8 (87.2)  
Black Carbon 17.8 (82.2) 17.7 (82.3) 17.6 (82.4) 17.6 (82.4)  
Primary Organic Matter 17.1 (82.9) 17.0 (83.0) 16.4 (83.6) 16.4 (83.6)  
Secondary Organic Aerosol 10.9 (89.1) 10.8 (89.2) 12.5 (87.5) 12.7 (87.3)  
Dust 64.1 (35.9) 63.9 (36.1) 64.7 (35.3) 64.3 (35.7)  
Sea Salt 50.1 (49.9) 49.8 (50.2) 50.3 (49.7) 50.1 (49.9)  
     

(c)    Burden (Lifetime) in Tg (SO4 in Tg S) and Days   
Sulfate 0.19 (4.4) 0.19 (4.4) 0.63 (4.6) 0.62 (4.5)  
Black Carbon 0.04 (5.2) 0.04 (5.1) 0.10 (4.9) 0.10 (4.8)  
Primary Organic Matter 0.45 (5.3) 0.45 (5.2) 0.75 (5.4) 0.74 (5.4)  
Secondary Organic Aerosol 1.19 (4.8) 1.17 (4.6) 1.39 (5.0) 1.36 (4.9)  
Dust 22.86 (2.8) 22.95 (2.7) 22.70 (2.8) 22.02 (2.7)  
Sea Salt 11.46 (0.9) 11.23 (0.9) 11.61 (0.9) 11.32 (0.9)  
 

 As expected, nudging did not strongly impact the effect of industrialization on 

mean aerosol burdens. Aerosol burdens and lifetimes resulting from the sources and sinks 

above are given in Table 3.4(c) for both nudged and free-running simulations. Similar to 
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production rates, aerosol burdens increased in the PD simulations by 232/226% (N/F) for 

SO4
2-, 150% for BC, 67/64% (N/F) for POM, and 17/16% (N/F) for SOA. Dust burdens 

decreased slightly in the PD simulation by 1/4% (N/F) and sea salt increased by 1%. 

Lifetimes increased by 0.1 to 0.3 days for SO4
2-, POM, and SOA, decreased by 0.3 days 

for BC, and showed no change for dust and sea salt. Sea salt and dust have the largest 

burdens and shortest lifetimes because most of their total mass is in the coarse mode, 

which is removed quickly by dry deposition. In general, burdens and lifetimes are slightly 

smaller in the nudged simulations. However, these differences are small, less than 0.03 

Tg (Tg S) for SO4
2-, BC, POM, and SOA, less than 0.68 Tg for dust and sea salt, and less 

than 0.1 days for all lifetimes. 

 The total global mean aerosol burden changed from PI to PD by 0.03 mg m-2, 

3.52/3.33 mg m-2 (N/F), and -0.12/-1.53 mg m-2 (N/F) for Aitken, accumulation, and 

coarse modes, respectively. The Aitken mode burden increased across the northern 

hemisphere, most significantly over China, the United States, and Europe. The 

accumulation mode burden increased over all landmasses and across northern hemisphere 

oceans. The coarse mode burden decreased slightly over northern Africa and Asia in 

association with decreased dust emissions in discrete regions. BC and POM contributed 

increased emissions and burden over Asia, central Africa, Amazonia, and eastern Europe, 

and decreased in the eastern United States. SO4
2- sources and burden increased across the 

northern hemisphere, most significantly in the eastern United States, Europe, India, and 

China. SOA emissions increased over eastern North America, Europe, and parts of Asia. 

Regional changes in the sea salt burden in the free-running simulation were noisy, but the 

nudged simulation showed an increase over the northern hemisphere Pacific Ocean and 
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along the western coast of subtropical landmasses. 

 In summary, the effect of industrialization on aerosol burden in the nudged 

version of the model is quite comparable to the free-running version. The above analysis 

affirms the nudging technique as an appropriate tool to reduce internal variability in order 

to isolate aerosol indirect effects.  

 

3.4.3. Community Atmosphere Model forcings and indirect effects 

 Anthropogenic aerosol indirect effects, when treated as a quasi-forcing, are 

estimated as the difference in annual cloud forcing between simulations with pre-

industrial and present-day aerosol emissions, in which both simulations have the same 

sea surface temperatures [Rotstayn and Penner, 2001]. Estimates of the shortwave 

contribution to the aerosol indirect effect from the 10-year nudged, 10-year free-running, 

and 100-year free-running simulations have global mean and 95% confidence interval 

values of -1.54 ± 0.02 Wm-2 and -1.63 ± 0.17 Wm-2, and -1.61 ± 0.04 Wm-2, respectively. 

When longwave effects are also included, the mean net (shortwave plus longwave) flux 

change and 95% confidence interval values from the three simulations are -1.19 ± 0.02 

Wm-2, -1.37 ± 0.13 Wm-2, and -1.35 ± 0.04 Wm-2, respectively. These values are about 

three times larger than clear-sky shortwave effects (direct aerosol effects and changes to 

the surface albedo), which have mean and 95% confidence interval values from the three 

simulations of -0.44 ± 0.01 Wm-2, -0.49 ± 0.05 Wm-2, and -0.48 ± 0.02 Wm-2, 

respectively. Nudging reduces the width of the net confidence interval by seven times 

relative to 10-year free-running simulations and by two times relative to 100-year free-
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running simulations. 

 
Table 3.5: CAM5 global mean, annual standard deviation, and pattern correlation of the 
difference between present-day and pre-industrial simulations. 

    Global Mean    Standard Deviation     Correlationa     
 N-10 F-10 F-100 N-10 F-10 F-100 N-10 F-10 F-100 
Net All-sky (Wm-2) -1.54 -1.65 -1.69 0.02 0.19 0.24 0.96 0.62 0.91 
SW All-sky (Wm-2) -1.98 -2.13 -2.09 0.02 0.21 0.20 0.96 0.55 0.87 
LW All-sky (Wm-2) 0.44 0.48 0.41 0.02 0.28 0.20 0.94 0.42 0.74 
Net Cloud-forcing (Wm-2) -1.19 -1.37 -1.35 0.02 0.18 0.2 0.95 0.59 0.89 
SW Cloud-forcing (Wm-2) -1.54 -1.63 -1.61 0.02 0.23 0.21 0.95 0.52 0.85 
LW Cloud-forcing (Wm-2) 0.35 0.27 0.26 0.02 0.13 0.10 0.94 0.44 0.78 
Net Clear-sky (Wm-2) -0.36 -0.29 -0.33 0.01 0.19 0.16 0.91 0.46 0.7 
SW Clear-sky (Wm-2) -0.44 -0.49 -0.48 0.01 0.07 0.10 0.91 0.50 0.73 
LW Clear-sky (Wm-2) 0.08 0.21 0.15 0.00 0.16 0.14 0.92 0.38 0.58 
Liquid water path (gm-2) 3.84 3.88 3.80 0.05 0.38 0.39 0.98 0.76 0.96 
Column droplet # (109 m-2) 4.10 4.41 4.33 0.06 0.19 0.20 0.99 0.96 0.99 
Ice water path (gm-2) 0.10 -0.05 -0.07 0.01 0.13 0.16 0.89 0.40 0.76 
Column ice # (106 m-2) 3.78 2.41 2.32 0.37 1.12 1.21 0.95 0.56 0.89 
Precipitation (mm day-1) -0.01 -0.01 -0.01 0.00 0.01 0.01 0.92 0.37 0.67 
aPattern correlations for N-10 and F-10 compare 1-year means to the 10-year mean, F-
100 compares 10-year means to the 100-year mean. 

 

 The net indirect effect from the 10-year nudged simulation is 0.16 Wm-2 smaller 

than the 100-year free-running simulation and is separated at 95% confidence intervals by 

0.10 Wm-2. One interesting hypothesis for this statistically significant effect of nudging 

relates to the choice of a six-hour nudging timescale. It is plausible that since temperature 

perturbations in response to anthropogenic aerosol are dampened in the nudged 

simulations, these differences in mean quasi-forcing values may have been due to 

positive cloud feedbacks that enhance the forcing in free-running simulations on time 

scales longer than six hours. From this perspective, comparisons between free-running 

simulations, which include such feedbacks, and nudged simulations, which do not, may 
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offer a useful method for isolating possible aerosol induced feedbacks. Additional 

experiments are encouraged to explore this hypothesis by examining the sensitivity of the 

nudged aerosol indirect effect across a range of relaxation timescales. We anticipate that 

such experiments may have the potential to help isolate the relevant time scales important 

to different components of the aerosol-cloud feedback processes. 

 The statistics in Table 3.5 suggest that a single year of nudged integration can 

produce estimates of the aerosol indirect effect that are representative of a multi-decadal 

free-running simulation. Global mean changes from PI to PD include changes in 

liquid/ice water path, column droplet/ice number concentration, and precipitation as well 

as radiative flux changes. For each field in Table 3.5 the global mean value, annual 

standard deviation, and pattern correlation is given for 10-year nudged, 10-year free-

running, and 100-year free-running simulations. Annual standard deviations are reduced 

by 67% to nearly 100% with nudging. The pattern correlations for 10-year results 

compare estimates of the aerosol indirect effect between 1-year means and the 10-year 

mean, indicating how representative shorter time averages are of the long-term average. 

For 100-year results, the pattern correlation compares estimates of the aerosol indirect 

effect from 10-year means and the 100-year mean. In all cases, 1-year mean fields from 

the nudged simulations are more correlated (nearly double) with the 10-year mean than in 

the free-running simulations. Furthermore, 1-year mean correlations with the 10-year 

mean in the nudged simulations are higher than 10-year correlations with the 100-year 

mean in the free-running simulations. This indicates that the results obtained from 1-year 

simulations with nudging are likely to be more representative of the true mean than a set 

of 10-year free-running simulations. 
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Figure 3.1: The standard deviation of the annual net cloud forcing from (a,b) individual 
present-day and (c,d) the difference between present-day and pre-industrial (a,c) free-
running and (b,d) nudged CAM5 simulations. 
 
 Figures 3.1 and 3.2 further demonstrate how constraining meteorology with 

nudging stabilizes estimates of the aerosol indirect effect. Figure 3.1 shows the spatial 

distribution of the net cloud forcing annual standard deviation from 10-year PD 

simulations and the difference between PI and PD simulations. Individual PD simulations 

have similar variability between run types, but the standard deviation of the difference 

between PI and PD is much lower for the nudged case. This is due to the fact that both 

the PI and PD simulations have the same circulation, and meteorology varies in the same 

manner. The global-annual net, shortwave, and longwave cloud forcing change from PI 

to PD for each simulated year shown in Figure 3.2(a,b,c) are further evidence of this. In 

the nudged case, each annual value falls close to the overall mean, while the difference 
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between lowest and highest values is substantial in the free-running case (up to 0.80  

Wm-2 for the shortwave indirect effect). It is expected that, although the variability 

(standard deviation) does not decrease with simulation length, the standard error (annual 

standard deviation divided by the square root of the number of years) does, and the error 

in the free-running simulation should at some duration reduce to that of the nudged 

results. However, even after 100-years the standard error is still higher than the nudged 

results shown in Figure 3.2(d). 

 

 
Figure 3.2: The global-annual mean (a) net, (b) shortwave, and (c) longwave cloud 
forcing difference between present-day and pre-industrial (aerosol indirect effect) in 
CAM5 for (a,b,c) each simulation year and (d) the standard error as a function of the 
number of sample years; the dark solid lines in (a,b,c) indicate 10-year mean values and 
the light solid line indicates the 100-year mean value in the free-running simulation. 
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 The 10-year simulated indirect effect described above resulted from a 38.7/40.6% 

(N/F) increase in column droplet number concentration, a 0.67 µm decrease in droplet 

mean radius, and a 3.84/3.88 gm-2 (N/F) increase in liquid water path. Reduced droplet 

size and increased liquid water path contribute to higher cloud reflectivity and increase 

the average planetary albedo, reducing the amount of incoming solar radiation that 

reaches the surface. Consistent with a larger change in shortwave cloud forcing, the free-

running PD simulation had a larger increase in droplet number concentration and liquid 

water path. Liquid water path, droplet number concentration, and droplet radius all 

showed similar patterns of change, most significantly over eastern Asia, off the northwest 

coast of South America, and across the northern Pacific Ocean, coincident with regions 

that showed the largest decrease in shortwave cloud forcing (Figures 3.3c and 3.3d). 

Longwave radiation emission at the top of the atmosphere also increases with increased 

condensate, especially ice, which showed regional changes in patterns similar to 

longwave cloud forcing (Figures 3.3e and 3.3f). In general, changes in the longwave 

cloud forcing act to buffer the cooling pattern seen in the net aerosol indirect effect 

(Figures 3.3a and 3.3b), which is dominated by the shortwave forcing. 

 It is clear from Figure 3.3 that the 10-year nudged results reproduce the signal 

from the 100-year free-running results and nudging achieves higher statistical 

significance in a tenth of the simulation length. Figure 3.4 demonstrates this further, 

showing the net aerosol indirect effect averaged for the first 3-years and 10-years of the 

simulations. Stippling indicates where the signal is significant at the 95% confidence 

interval for the given number of years. The 3-year free-running result has low statistical 

significance, but with nudging, three years is long enough to evaluate the spatial pattern 
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of the signal where aerosol indirect effects are large. The 10-year free-running result 

begins to converge toward the nudged result, with less noise, and greater significance 

over Asia, the north Pacific, and off the northwest coast of South America. However, the 

10-year nudged result is significant over a much wider area (66% vs. 28% of the Earth’s 

area), including almost the entire Northern Hemisphere. 

 

 
Figure 3.3: The (a,b) net, (c,d) shortwave, and (e,f) longwave cloud forcing difference 
between present-day and pre-industrial (aerosol indirect effect) in CAM5 (a,c,e) 100-year 
free-running and (b,d,f) 10-year nudged simulations; stippling indicates where the signal 
is significant at the 95% confidence interval. 



79 

	
  

 
 Overall, these results demonstrate that constraining simulations through the use of 

nudging provides a more stable global estimate of the aerosol indirect radiative forcing 

on short time scales and increases the regional statistical significance of the signal. 

 

 
Figure 3.4: The net cloud forcing difference between present-day and pre-industrial 
(aerosol indirect effect) in CAM5 averaged for the first (a,b) 3-years and (c,d) 10-years of 
(a,c) free-running and (b,d) nudged simulations; stippling indicates where the signal is 
significant at the 95% confidence interval. 
 

3.4.4. Multi-scale Aerosol Climate Model results 

 Although MACM simulations can be scaled more efficiently on a much higher 

number of processors than CAM5, they require two hundred times more computational 

resources for a given amount of simulated time and therefore can currently be run for 

only a limited number of years. The above analysis of CAM5 has demonstrated that a 
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one-year nudged simulation is highly correlated with the long-term average. Hence, one-

year MACM simulations are analyzed in this study. 

 
Table 3.6: Same as Table 3.3, except for MACM. 

     Global Mean        RMSE      Correlation   
 OBS PD (N) PD (F) PD (N) PD (F) PD (N) PD (F) 
Net All-sky (Wm-2) -339.4 -336.3 -336.5 11.4 11.3 0.9 0.9 
SW All-sky (Wm-2) -99.7 -101.7 -101.9 13.2 13.3 0.7 0.7 
LW All-sky (Wm-2) -239.8 -234.6 -234.6 10.4 10.3 1.0 1.0 
Net Cloud-forcing (Wm-2) -21.1 -24.4 -24.6 11.5 11.7 0.7 0.7 
SW Cloud-forcing (Wm-2) -47.3 -50.2 -50.4 13.0 13.3 0.8 0.8 
LW Cloud-forcing (Wm-2) 26.2 25.8 25.9 7.6 7.6 0.8 0.8 
Net Clear-sky (Wm-2) -318.4 -311.8 -312 8.5 8.5 1.0 1.0 
SW Clear-sky (Wm-2) -52.4 -51.5 -51.5 5.6 5.6 1.0 1.0 
LW Clear-sky (Wm-2) -266.0 -260.3 -260.5 6.7 6.7 1.0 1.0 
Cloud fraction (%) 61.3 55.5 55.6 12.4 12.6 0.8 0.8 
Precipitable water (kgm-2) 24.3 25.5 25.5 2.6 2.7 1.0 1.0 
Cloud water path (gm-2) 95.5 65.5 65.9 52.3 52.1 0.5 0.5 
Precipitation (mm day-1) 2.68 2.84 2.85 1.23 1.24 0.8 0.8 
 

 Table 3.6 summarizes the differences between MACM in nudged and free-

running modes and how each compares to observations. As was the case with CAM5, the 

addition of nudging has little impact on global mean radiative fields and cloud properties. 

Pattern correlations are identical for both run types, and the spatial rms errors vary by less 

than 4%. With the exception of all-sky longwave, radiative flux errors are slightly smaller 

in MACM than CAM5. Cloud water path errors are also smaller, but cloud fraction, 

precipitable water, and precipitation errors are slightly higher. The only global mean 

values that differ by more than 4% between MACM and CAM5 are longwave cloud 

forcing and total cloud fraction. The global mean longwave cloud forcing in MACM is 

18% higher than in CAM5 and is closer to CERES observations, although the pattern 
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correlation is lower. The total cloud fraction is 6-7% lower in MACM than both CAM5 

and CERES observations. These results are consistent with the MACM and CAM5 

differences discussed and evaluated in detail by Wang et al. [2011a,b]. 

 
Table 3.7: Same as Table 3.5, except for MACM. 

 N F Wa  
Net All-sky (Wm-2) -1.27 -1.52 -1.05 
SW All-sky (Wm-2) -1.37 -1.22 -1.31 
LW All-sky (Wm-2) 0.10 -0.31 0.26 
Net Cloud-forcing (Wm-2) -0.81 -0.82 -0.83 
SW Cloud-forcing (Wm-2) -0.80 -0.56 -0.77 
LW Cloud-forcing (Wm-2) -0.01 -0.27 -0.06 
Net Clear-sky (Wm-2) -0.46 -0.7 -0.23 
SW Clear-sky (Wm-2) -0.57 -0.66 -0.54 
LW Clear-sky (Wm-2) 0.11 -0.04 0.31 
Liquid water path (gm-2) 2.12 2.16 2.11 
Column droplet # (109 m-2) 4.58 4.53 4.80 
Ice water path (gm-2) -0.03 -0.10 0.00 
Column ice # (106 m-2) -1.58 -5.38 -2.00 
Precipitation (mm day-1) -0.01 0.00 -0.01 
aW refers to values from Wang et al. [2011b]. 

 

 Results from 3-year free-running MACM simulations published by Wang et al. 

[2011b] are included as a baseline for comparison to the 1-year global mean values 

presented in Table 3.7 from the present study. For almost all fields, the 1-year nudged 

results are in better agreement with those of Wang et al. [2011b] than the 1-year free-

running results. In response to industrial aerosol loading, MACM produces a weaker 

change in the cloud forcing and a larger change in the clear-sky forcing than CAM5. The 

global mean shortwave cloud forcing in MACM is about half that of CAM5 with values 

of -0.80 Wm-2 and -0.56 Wm-2 for nudged and free-running, respectively. Changes in the 

longwave cloud forcing are even smaller, contributing to a net aerosol indirect effect of -



82 

	
  

0.81 Wm-2 and -0.82 Wm-2 for nudged and free-running simulations, respectively. 

Weaker indirect effects due to embedded explicit convection are consistent with those of 

Wang et al. [2011b, 2012] and result from a smaller increase in liquid water path of 4% 

and droplet number concentration of 25% in MACM compared to CAM5 values of 9% 

and 39/41% (N/F), respectively. Lower estimates of aerosol indirect effects such as these 

are also reported in GCM simulations in which aerosol-cloud relationships are 

constrained by satellite observations (e.g. Dufresne et al., 2005). 

 Two main factors account for the smaller changes in MACM: (1) LWP is less 

sensitive to CCN perturbations in MACM than CAM5 and (2) MACM has a smaller 

aerosol burden (and therefore CCN) perturbation with present-day emissions than CAM5, 

even though aerosol emissions are identical. Wang et al. [2011b] found that LWP 

increases by almost three times as much in CAM5 than MACM for a given change in 

CCN. Wang et al. [2012] linked this difference in LWP response to the representation of 

cloud lifetime effects using a new method for evaluating the impact of aerosol on 

precipitation called precipitation frequency susceptibility. They found that the smaller 

LWP response to aerosol perturbation in MACM can be explained by the smaller 

precipitation frequency susceptibility, which agrees better with satellite observations. 

Higher sensitivity in CAM5 results in greater changes to cloud properties that have a 

positive feedback on the production and removal rates of aerosol (e.g. cloud lifetime and 

precipitation rate) [Wang et al., 2011b]. As a result, SO4
2-, BC, POM, and SOA burdens 

in this study are 114/106% (N/F), 17%, 14/11% (N/F), 2/3% (N/F) higher in CAM5 than 

MACM, respectively. Future work will further investigate the mechanisms responsible 

for these differences, which will be more easily diagnosed with the reduction in noise 
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from natural variability gained by nudging. 

 

 
Figure 3.5: The net cloud forcing difference between present-day and pre-industrial 
(aerosol indirect effect) in (a,b) CAM5 (first year), (c,d) MACM, and (e,f) the difference 
between CAM5 and MACM (a,c,e) free-running and (b,d,f) nudged simulations. 
 

 In MACM, the impact that nudging has on global mean shortwave aerosol 

indirect effects appear to be opposite to that of CAM5; the shortwave effects from the 

nudged simulations are larger than those from both the 1-year and 3-year free-running 

simulations. The most likely reason for this is that 3-year free-running simulations under-
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sample the variability of the aerosol forcing (which is also the likely reason for 

differences in the net TOA radiation between nudged and free-running simulations shown 

in Table 3.7). As shown in the CAM5 results from 10-year simulations, the range in 

variability of shortwave indirect effects from one year to another can be up to 0.8 Wm-2. 

However, it is also possible that MACM simulates negative shortwave cloud feedbacks in 

response to the aerosol forcing, and these are damped by the inclusion of temperature 

nudging. Further investigation of aerosol-induced feedback mechanisms and their 

representation in MACM is needed to determine which explanation is correct. 

 Although the global mean aerosol indirect effect is quantitatively smaller in 

MACM, the spatial distribution shows a similar pattern to that of CAM5. The one-year 

mean net cloud forcing difference from PI to PD for CAM5 (first year) and MACM 

simulations are shown in Figure 3.5(a-d). Due to the noisiness of the free-running results, 

it is not possible to evaluate the regional structure of the forcing in a one-year simulation. 

However, in the nudged results from both models, the strongest signal occurs over the 

Northern Hemisphere Pacific Ocean and off the northwest coast of South America, where 

maxima in low-level clouds and shortwave cloud forcing are coincident with high 

anthropogenic aerosol burdens. Differences in the regional patterns between MACM and 

CAM5 can more clearly be evaluated in the nudged simulation (Figure 3.5f), which is not 

possible without nudging due to significant noise in the 1-year free-running simulation 

(Figure 3.5e). The largest regional differences between MACM and CAM5 are a weaker 

forcing over SE Asia and off the northwest coast of South America and the absence of the 

positive forcing off the eastern coast of North America in the MACM simulations. These 

net differences are dominated by the pattern of change in shortwave cloud forcing (Figure 
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3.6e) and are consistent with MACM’s lower sensitivity to large aerosol perturbations. 

Since the representation of ice nucleation in MACM does not depend on aerosol particle 

concentrations, the longwave aerosol indirect effect is much smaller than in CAM5 

(Figure 3.6f). 

 

 
Figure 3.6: The (a,c,e) shortwave and (b,d,f) longwave cloud forcing difference between 
present-day and pre-industrial (aerosol indirect effect) in (a,b) CAM5 (first year), (c,d) 
MACM, and (e,f) the difference between CAM5 and MACM nudged simulations. 
 

3.5. Conclusions 
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 In this study, nudging has been implemented to constrain simulations with pre-

industrial and present-day aerosol emissions toward identical circulation and 

meteorology. This method effectively reduces differences in natural variability and 

dampens feedback responses, to isolate radiative forcing. The global-annual mean net 

aerosol indirect radiative forcing is estimated to be -1.19, -1.37, and -1.35 Wm-2 in 10-

year nudged, 10-year free-running, and 100-year free-running CAM5 simulations, 

respectively. A more stable global estimate of the aerosol indirect effect on short time 

scales is obtained with nudging, which increases the pattern correlation between 1-year 

and 10-year averages from 0.59 to 0.95. The area of the Earth that has a statistically 

significant aerosol indirect forcing signal at the 95% confidence interval is increased 

from 28% in the 10-year free-running simulations to 66% in the nudged simulations. 

 A beneficial consequence of reducing differences in natural variability is that it 

also reduces the required simulation duration for estimating aerosol indirect effects, 

enabling computationally expensive next-generation aerosol-climate models to be 

brought to bear on the problem. MACM, a new Multi-scale Aerosol Climate Model, 

simulated a smaller aerosol indirect effect than CAM5, with 1-year global mean values of 

-0.81 and -0.82 Wm-2 for nudged and free-running, respectively. The MACM value is 

significantly lower than the value from CAM5, which results from both smaller changes 

in the aerosol burden and a weaker relationship between CCN and LWP. The regional 

patterns of the aerosol indirect forcing in 1-year MACM and CAM5 free-running 

simulations are too noisy to evaluate. However, a clear increase in the magnitude of the 

net/shortwave cloud forcing in PD simulations can be seen across the North Pacific 

Ocean and near the northwestern coast of South America in the nudged simulations. A 
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larger forcing in CAM5 relative to MACM is coincident with regions of the highest 

aerosol burdens (not shown). 

 The fact that one-year nudged simulations show such a clear signal and are 

strongly correlated with longer time averages opens the opportunity for many future 

studies. The nudging approach presented here may be useful for isolating aerosol 

feedback responses on a variety of time scales, evaluating the regional structure of 

indirect effects in MACM and other computationally expensive models that explicitly 

resolve clouds, and comparing model simulations directly to field campaigns and satellite 

measurements by nudging toward reanalyzed observations. 
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Chapter 4 

Robustness and sensitivities of Central US summer convection 

in the super-parameterized Community Atmosphere Model: 

Multi-model intercomparison with a new regional EOF index 

 Abstract. Mesoscale convective systems (MCSs) can bring up to 60% of 

summer rainfall to the Central United States, but are not simulated by most global climate 

models. In this study, a new empirical orthogonal function based index is developed to 

isolate MCS activity, similar to that developed by Wheeler and Hendon [2004] for the 

Madden-Julian Oscillation. The index is applied to compactly compare three 

conventional- and super-parameterized (SP) versions (3.0, 3.5, and 5.0) of the NCAR 

Community Atmosphere Model (CAM). Results show that nocturnal, eastward 

propagating convection is a robust effect of super-parameterization, but is sensitive to its 

specific implementation. MCS composites based on the index show that in SPCAM3.5, 

convective MCS anomalies are unrealistically large-scale and concentrated, while surface 

precipitation is too weak. These aspects of the MCS signal are improved in the latest 

version (SPCAM5.0), which uses high-order microphysics. 

 

4.1. Introduction 

 Organized propagating storms, or mesoscale convective systems (MCSs), bring 

up to 60% of summer rainfall to the Central US, which water this sensitive agricultural 

region [Carbone and Tuttle, 2008]. Changes in the patterns and intensity of rainfall 
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associated with these storms can lead to devastating drought conditions at one end of the 

spectrum and severe flood damage at the other. To understand how MCS activity may 

respond to climate change, a realistic representation of the physical mechanisms that 

generate MCSs in nature is needed in models that also capture the global scale physics of 

climate change. 

 Unfortunately, most conventional global climate models (GCMs) are unable to 

simulate mid-latitude MCSs and disagree on the sign of future precipitation trends in the 

Central US [Lee et al., 2007; Solomon et al., 2007]. Representing the mesoscale in GCMs 

is difficult because the relevant physics straddle the divide between parameterized and 

resolved scales [Moncrieff, 1992]. Other issues include poorly resolved topography and 

convective parameterization too closely locked to the solar insolation cycle. 

 The first evidence of a promising MCS signal in a climate change capable GCM 

has recently been documented in an intermediary development version of the super-

parameterized (SP) Community Atmosphere Model (CAM) (SPCAM, version 3.5). In 

SPCAM3.5, Pritchard et al. [2011] identified nocturnal eastward propagating convection 

in the Central US with realistic MCS propagation speed and relative flow dynamics. This 

SP MCS signal is scientifically interesting for two reasons. First, if it is shown to be a 

valid analog to nature, it may provide a path to reliable climate change predictions in the 

Central US. Second, it adds to the debate about what physics govern MCS propagation. 

 Observations and cloud resolving models (CRM) indicate that both large- and 

small-scale physics are involved in the organization and propagation of MCSs in nature. 

Propagation mechanisms include horizontal advection of potential vorticity anomalies [Li 

and Smith, 2010], the veering of the low-level jet moisture convergence zone [Trier et al., 
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2006], and small-scale cold pool density currents [Carbone et al., 2002]. The relative 

importance of each scale regime can be hard to disentangle in data or mesoscale models. 

However, in SPCAM only large-scale processes have a long-range effect due to the use 

of laterally periodic CRM arrays. Thus a realistic MCS in SPCAM argues against the 

criticality of small-scale processes in mediating MCS propagation. 

 To date the MCS signal has only been qualitatively assessed in a single version of 

SPCAM. The signal in SPCAM3.5 was apparent in atmospheric heating, but was absent 

in surface precipitation. Is MCS activity a robust effect of SP or a fluke of one model 

version? Do simulated storms compare to the observed areal extent, magnitude of 

precipitation and liquid/ice condensate, and frequency of occurrence? Is SP critical, or 

can modern versions of the conventionally parameterized CAM capture the signal? 

 To answer these questions, a new regional MCS index has been developed based 

on empirical orthogonal functions (EOF), similar to the Wheeler and Hendon [2004] 

Madden-Julian Oscillation (MJO) index. Following this method, the angular relationship 

between principle component (PC) time series defines an index that denotes the strength, 

phase, and location of maximum convection. This new index is applied to quantitatively 

compare the statistics of existence, frequency, and composite MCS structure in 

observations and several conventional- and super-parameterized versions of CAM. 

 

4.2. Observations and models 

4.2.1. Observations 
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 The MCS index was developed using twenty-three years (1984-2006) of May, 

June, July, and August (MJJA) longwave cloud forcing (LWCF) from the NASA Global 

Energy and Water Cycle Experiment, Surface Radiation Budget (SRB) version 3.1 

[Stackhouse et al., 2011]. SRB provides 1˚ resolution, three-hourly, top of the atmosphere 

instantaneous fluxes. SRB is a combined product of satellite observations, reanalysis 

data, and a radiative transfer model that has been evaluated against direct satellite and 

ground based observations [Allan, 2011; Stackhouse et al., 2011; Zhang et al., 2012]. 

 Composite precipitation statistics based on index-phase criteria are also compared 

between observations and models. Hourly accumulated precipitation from the NCEP 

Climate Prediction Center (CPC) is based on rain gauge data objectively analyzed to a 2 

by 2.5˚ grid [Higgins et al., 1996]. The CPC composite has been used to analyze the 

representation of precipitation in several reanalysis models and diurnal summer 

precipitation over the US [Bukovsky and Karoly, 2007; Higgins et al., 1997]. 

 

4.2.2. Community Atmosphere Model 

 Two official releases (3.0, 5.0) and one development (3.5) version of the NCAR 

CAM were run as stand-alone atmospheric GCMs for this study. All used present-day sea 

surface temperatures and sea ice, and an interactive land surface. The dynamical core was 

semi-Lagrangian in CAM3.0 at a standard spectral resolution of T42 (~250 km at 36˚N) 

with 26 vertical levels, and was finite volume in CAM3.5 and CAM5.0 at a standard 

resolution of 1.9 by 2.5˚ (~225 km at 36˚N) and 30 vertical levels. Parameterized physics 

has developed significantly from versions 3.0 and 3.5 to 5.0, including the addition of 



93 

	
  

two-moment cloud microphysics, vertical entrainment and momentum transport in the 

deep convection scheme, moist turbulence in the shallow convection scheme, and aerosol 

interactions with the microphysical and radiative transfer schemes. Two-moment 

microphysics based on Morrison and Gettelman [2008] was developed from earlier CRM 

schemes and improves both shallow and deep precipitation regimes. For details see 

Collins et al. [2004] for 3.0, Neale et al. [2008] for 3.5, and Neale et al. [2010] for 5.0. 

 

4.2.3. Super-parameterization 

 Khairoutdinov and Randall [2001] implemented SP in CAM3.0 by embedding 

two-dimensional CRMs in each grid column of CAM to explicitly simulate cloud-scale 

processes rather than rely on statistical parameterization. CAM supplies each embedded 

CRM with a large scale forcing and the CRM returns a convective tendency [Grabowski 

and Smolarkiewicz, 1999]. Recently updated by Wang et al. [2011], the CRM in SP-

CAM5.0 includes aerosol-radiation/cloud interactions and two-moment microphysics. All 

versions of SPCAM have the same outer configuration as their CAM counterparts and 

CRM levels co-located with CAM. The CRM resolutions, horizontal domain sizes, and 

orientations were 4 km, 1x32, and east-west in 3.0; 1 km, 1x64, and east-west in 3.5; and 

4 km, 1x32, and north-south in 5.0 following configurations described in Khairoutdinov 

and Randall [2001], Pritchard et al. [2011], and Wang et al. [2011], respectively. 

 

4.3. Filtering and EOF method 
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 An EOF-pair based index has been developed for evaluating Central US MCSs 

following techniques that have proved useful for compactly assessing quasi-periodic, 

pulse-like, intermittent convection on larger space and time scales [Wheeler and Hendon, 

2004]. As pre-processing, all observational and model data were interpolated to a 1.9 by 

2.5˚ grid (native to (SP)-CAM versions 3.5 and 5.0) and averaged to three-hourly time 

resolution. The MCS index was computed from three-hourly SRB LWCF from 23 boreal 

summers, band-pass filtered for 12 to 48 hour timescales using a Lanczos digital filter. 

LWCF was deemed more suitable than OLR, which has a strong diurnal temperature 

component. 

 The nocturnal (00-06 CST) variance of the filtered signal shown in Figure 4.1(a) 

clearly delineates the well-known MCS activity zone in the Central US [Anderson and 

Arritt, 1998]. The white box encloses the analysis region from 256 to 276˚ longitude and 

36 to 45˚N latitude, extending from the eastern slope of the Rocky Mountains across the 

Great Plains. In this domain, 12 to 48 hour filtered signals traveling through 75% of the 

zonal extent (~1300 km) correspond with zonal phase speeds roughly between 7 and 30 

ms-1, which is the radar based estimated range of MCS travel rates [Carbone et al., 2002]. 

 EOF analysis was applied on anomalies of meridionally averaged LWCF in this 

region after removing the background spatial mean at each time, which successfully 

targets the MCS signal of interest. The leading EOF pair explains approximately 65% of 

the filtered variance with 35% and 30% from the first (EOF1) and second (EOF2) 

members, respectively (17% for EOF3). EOFs 1 and 2 have spatial patterns in zonal 

phase quadrature relationship over most of the domain and the highest time-lag 
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correlation, peaking at a lag of -6 hours. Taken together, these attributes represent the 

expected eastward propagating signal where EOF2 leads EOF1 by 6 hours and ~430 km. 

 

 
Figure 4.1: (a) Standard deviation of 12 to 48 hour band-pass filtered nocturnal (00-06 
CST) longwave cloud forcing (Wm-2), the black line is average topography from 36 to 
45˚N latitude and the white box is the EOF analysis region, (b) spatial patterns of EOFs, 
and (c) time-lag correlations between PC time series. 
 
 Three-hourly LWCF from each model for a single summer were pre-processed as 

in the observations. The SP models reproduce native EOF-pairs similar to SRB (Figure 

4.2 – supplementary from Kooperman et al. [2013]), but all models were regressed onto 

the observed spatial patterns for EOFs 1 and 2 for consistency. The “MCS index” 
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amplitude and angular phase come from collapsing the time series into polar coordinates, 

as is the convention in MJO analysis [Wheeler and Hendon, 2004]. Amplitudes were 

normalized by the maximum observed. Eight discrete phases are defined with an angular 

width of π/4 starting with phase 1 located near –π (at the west) with travel to the east (+π) 

corresponding to counterclockwise rotation. 

 

 
Figure 4.2: (a) Percent variance, (b) spatial patterns, and (c) PC time series time-lag 
correlations for EOFs from a single summer of observations (2001) and model output 
(supplementary from Kooperman et al. [2013]). 
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4.4. Results and discussion 

 
Figure 4.3: (a) Phase diagram of EOF PC time series 1 and 2 colored by percent index 
value occurrence in radial increments of 0.1 across all phases, (b) longwave cloud forcing 
(colors, Wm-2) and precipitation (contours, mm day-1) diurnal cycles for index values 
greater than 0.25, and (c) phase diagram of EOF PC time series 1 and 2 tracing MCS 
events based on event selection criteria explained in text, for observations and models. 
 

 Joint histograms of the MCS index amplitude and phase relationship for models 

and SRB are depicted in Figure 4.3(a) for a single MJJA season. The highest percent of 

amplitude values occur consistently between 0.1 and 0.2. The MCS signal is weakest in 

CAM3.5 and CAM5.0, which have less than 50(25)% of values greater than 0.15(0.25), 

relative to 64(38)% in the observations. From the amplitude PDF view, CAM3.0 appears 

to be in the best agreement with 64(39)%, followed by SPCAM5.0 with 56(29)%, 

SPCAM3.0 with 52(26)%, and SPCAM3.5 with 76(56)%. SPCAM3.5 has the strongest 
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signal with 17% of occurrences greater than 0.5, followed by SRB with 6%. SRB and all 

versions of SPCAM have high amplitudes, with at least one value greater than 0.8. 

 Unfiltered LWCF and precipitation composited above an index threshold of 0.25 

and binned by local diurnal time in Figure 4.3(b) suggests that nocturnal convection is a 

robust effect of SP. An eastward slanted maximum across the observed domain shows the 

well-known nocturnal eastward MCS propagation. All versions of SPCAM capture this 

nocturnal feature to some extent, which is not seen in any versions of CAM. SPCAM5.0 

has the best agreement with the observed width and co-located precipitation, but under 

simulates LWCF. SPCAM3.5 over simulates the magnitude and width of LWCF. Despite 

having realistic index amplitudes, CAM3.0 does not capture nocturnal activity. 

 Several features in the observed panels of Figure 4.3(a,b) suggest a set of 

objective criteria for isolating MCS events based on an index amplitude threshold, 

duration, distance, and diurnal timing. Combined with the known span (500 to 2000 km) 

and duration (10 to 60 hours) of MCS events reported by Carbone et al. [2002], this leads 

to the following event selection criteria: (1) at least three (9 hours) consecutive index 

amplitudes greater than 0.15 propagating forward (east) in phase space, (2) spanning at 

least 70% of the domain (~1200 km), and (3) starting between 18 and 03 CST. The first 

criterion determines when high cloud continuously moves east, and the additional 

criterion help to discriminate active nocturnal convection from clouds that are simply 

advected with the wind. 

 SRB, SPCAM3.5, and SPCAM5.0 produce significantly more events than any 

other model. The above criteria identified an annual average and standard deviation of 24 

± 8 events in SRB, 13, 20, and 22 in SPCAM, and 12, 3, and 9 in CAM for versions 3.0, 
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3.5, and 5.0, respectively. Although the number of events identified is sensitive to the 

specific threshold values chosen, the general result is robust across a range of choices. 

When the amplitude was restricted to values greater than 0.25, 12 events were identified 

in SRB, 14 in SPCAM3.5, 10 in SPCAM5.0, and no more than 4 in any other model. 

 Objectively identified MCS events traced out in phase space are shown in Figure 

4.3(c). Observed event initiation strongly clusters in phase 1 and terminates in phase 8, 

with high amplitude values traced throughout. The best agreement with observations is 

seen in high amplitude values in SPCAM3.5 and distance spanned in SPCAM5.0. 

 To assess the quality of simulated storms, event-composites of precipitation and 

LWCF are depicted in Figure 4.4 for observations and all models, except CAM3.5, which 

had too few events to analyze. Each composite is an average of all times an event phase 

occurs, weighted by the amplitude value. Significance is determined at 95% confidence 

relative to 1000 randomly sampled averages the same size as the composite. As a proxy 

for convective heating, the vertical standard deviation of free tropospheric heating (850 to 

250 mb) from the physics package is also shown for models, as in Pritchard et al. [2011]. 

 In the observations and all versions of SPCAM, statistically significant LWCF 

anomalies travel east with increasing phase. The signal in CAM3.0 appears to be a 

remnant of afternoon convection that diminishes with increasing phase, and shows no 

active signal in the heating tendency or precipitation. LWCF in CAM5.0 is limited to half 

of the domain and does not represent propagation. Figure 4.4 provides further evidence 

that propagating nocturnal convection is a robust effect of SP, and that SPCAM5.0 is 

capturing it most realistically. Strong convective heating anomalies overlapping LWCF 

are detected in all versions of SPCAM. Surface precipitation co-located with LWCF in 
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the observations is also seen in SPCAM5.0 and in some phases of SPCAM3.0 and 

SPCAM3.5. 

 

 
Figure 4.4: Composite event phase average of precipitation (colors, mm day-1), longwave 
cloud forcing (green, increments of 25 Wm-2), and vertical standard deviation of model 
heating tendency (orange, increments of 2.5 K day-1) for phases (a) 1 and 2, (b) 3 and 4, 
(c) 5 and 6, and (d) 7 and 8, in observations and models; right/45˚ (left/-45˚) slashes 
indicate precipitation (longwave cloud forcing) is significant at 95% confidence interval, 
the gray box is the EOF analysis region, and the numbers are mean local diurnal time 
(CST). 
 

 Although all versions of SPCAM show MCS activity, distortions of the observed 

signal are evident. SPCAM3.0 and SPCAM3.5 under-simulate surface precipitation in 

phases 1 through 4, and over-simulate it in phases 7 and 8. The LWCF anomalies in these 

models are larger and broader than observed, as a result of unrealistically large-scale and 

concentrated cloud ice. The timing of precipitation improves in SPCAM5.0, coincident 
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with more realistic LWCF values. SPCAM5.0 has a tighter areal structure of LWCF in 

agreement with observations. A remaining deficiency in SPCAM5.0 is visible in phases 

7/8 where composite precipitation persists for too long and propagates too far. Offline 

tests (not shown) varying the event section criteria thresholds, with and without weighted 

composites, verify these conclusions are robust. 

 It is noteworthy that SPCAM5.0 improvements include both reducing LWCF and 

increasing precipitation. This implies the result is more than just a decrease in convective 

activity, which would impact both LWCF and precipitation in a similar manner. It may be 

an improvement in the partitioning between liquid and ice and suspended and falling 

condensate that resulted from the CRM update to two-moment microphysics by Wang et 

al. [2011]. Further work is needed to clarify this encouraging result. 

 

4.5. Conclusions 

 Mesoscale convection in the Central US is not simulated in conventional versions 

of CAM, but is known to exist in one super-parameterized version. Analysis here shows 

it is furthermore a robust effect of SP spanning several versions. The strength of observed 

and simulated MCS activity is assessed using a new EOF index based on filtered regional 

LWCF. This index provides an efficient metric to isolate strong eastward propagating 

convection and, together with a simple set of criteria, identify MCS events and composite 

their propagation by phase. The newest version of SPCAM5.0 is shown to have the best 

representation of composite MCS events. The magnitude and spatial extent of LWCF is 

in better agreement with observations, as is the co-located timing of surface precipitation. 
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 Future work will apply this MCS index to study mechanisms responsible for the 

improvement in SPCAM5.0. What physics introduced by super-parameterization (i.e. 

sub-grid scale wind shear, memory, and non-CAPE based convection) favor MCS 

development and propagation? Based on its demonstrated utility as a compact evaluation 

metric, sensitivity tests examining the index-composite structure of MCS dynamics, 

convective heating, moisture transport, and microphysics may provide some answers. 

Furthermore, realistically simulated convection in a GCM that also includes greenhouse 

gases and aerosols may enable research on how US precipitation will respond to climate 

change. 
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Chapter 5 

The response of US summer rainfall to quadrupled CO2 

climate change in conventional and super-parameterized 

versions of the NCAR Community Atmosphere Model 

 Abstract. Observations and regional climate modeling (RCM) studies 

demonstrate that global climate models (GCMs) are unreliable for predicting changes in 

extreme precipitation. Yet RCM climate change simulations are subject to boundary 

conditions provided by GCMs and do not interact with large-scale dynamical feedbacks 

that may be critical to the overall regional response. Limitations of both global and 

regional modeling approaches contribute significant uncertainty to future rainfall 

projections. Progress requires a modeling framework capable of capturing the observed 

regional-scale variability of rainfall intensity without sacrificing planetary scales. Here 

the US summer rainfall response to quadrupled CO2 climate change is investigated using 

conventional (CAM) and super-parameterized (SPCAM) versions of the NCAR 

Community Atmosphere Model. The super-parameterization approach, in which cloud-

resolving model arrays are embedded in GCM grid columns, improves rainfall statistics 

and convective variability in global simulations. A set of five-year time-slice simulations, 

with prescribed sea surface temperature and sea ice boundary conditions harvested from 

pre-industrial and abrupt four-times CO2 coupled Community Earth System Model 

(CESM/CAM) simulations, are compared for CAM and SPCAM. The two models 

produce very different changes in mean precipitation patterns, which develop from 

differences in large-scale circulation anomalies associated with the planetary-scale 
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response to warming. CAM shows a small decrease in overall rainfall intensity, with an 

increased contribution from the weaker parameterized convection and a decrease from 

large-scale precipitation. SPCAM has the opposite response, a significant shift in rainfall 

occurrence towards higher precipitation rates including more intense propagating Central 

US mesoscale convective systems in a four-times CO2 climate. 

 

5.1. Introduction 

 The consequences of anthropogenic climate change can manifest themselves as 

subtle shifts in the timing or pattern of weather events leading to changes in the 

frequency and intensity of rainfall, which may increase drought conditions in some 

regions and flooding in others [Trenberth, 2011]. Future climate projections, including 

global-scale changes in precipitation patterns, from modern global climate models 

(GCMs) are cause for concern. There is a consensus projection of expansions of arid 

zones over most continents and amplification of the present-day spatial pattern of 

evaporation minus precipitation [Held and Soden, 2006; Solomon et al., 2007; Scheff and 

Frierson, 2012; Stocker et al., 2013]. This consensus is meaningful despite 

parameterization imperfections because at the very largest scales of the climate system 

GCMs are strongly constrained by the global energy balance and radiative properties of 

water vapor that are well represented across models. As a result, GCM simulations 

largely agree with predictions of thermodynamic theory that global precipitation should 

increase at a rate of 1 to 3% ˚C-1 with global warming and near-surface water vapor 

should increase at ~7% ˚C-1 [Allen and Ingram, 2002, Pendergrass and Hartmann, 2013; 
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Scheff and Frierson, 2012; Stephens and Ellis, 2008]. At regional scales, however, future 

hydrologic trends in GCM projections exhibit very low confidence. Beyond the 

consensus on global sensitivities, GCMs using conventional statistical parameterizations 

of deep convection display an inability to capture the basic modes of observed variability 

of regional rainfall across a range of timescales [Dai, 2006; Lin et al., 2006; Li and Xie, 

2013], and they produce inconsistent effects of climate change on rainfall intensity 

[O’Gorman and Schneider, 2009a]. 

 In many ways, changes in regional-scale variability and intensity of precipitation 

are most critical to climate change mitigation and adaptation, affecting both the 

availability of fresh water and the nature of extreme conditions. A region of particular 

concern is the Central-Eastern US, where GCMs disagree on even the sign of future 

rainfall trends [Maloney et al., 2013; Solomon et al., 2007; Stocker et al., 2013]. Over this 

region, small-local and large-propagating convective systems generate the majority of 

summer rainfall. Propagating organized storms, known as mesoscale convective systems 

(MCSs), can deliver up to half of the seasonal rainfall in this important agricultural area 

[Carbone and Tuttle, 2008]. It is difficult to represent these storms in GCMs because the 

relevant physics includes small-scale (e.g., cold pool density currents) and large-scale 

(e.g., low-level jet moisture convergence) processes that straddle the divide between 

parameterized and explicitly resolved phenomena [Moncrieff, 1992]. Conventional 

GCMs that do not capture these mechanisms realistically (or at all) cannot assess how 

they may respond to climate change [Lee et al., 2007]. As droughts, heat waves, forest 

fires, and flooding in the Central US become more prevalent, causing significant financial 

impacts and loss of lives, improved projections of future changes will become 
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increasingly critical. For example, losses in 2012 alone from droughts and heat waves 

were ~$30 billion and 123 deaths, from wildfires were ~$1 billion and 8 deaths, from 

severe weather events were ~$11 billion and 30 deaths, and from tornadoes were ~$5 

billion and 48 deaths [Smith and Katz, 2013; NOAA NCDC, 

http://www.ncdc.noaa.gov/billions/events]. 

 In recent years, progress has been made from both theoretical and modeling 

perspectives to understand changes in mean rainfall and rainfall intensity on global 

scales. Consistently, GCMs project that the increasing global mean precipitation trend of 

1 to 3% ˚C-1 occurs in association with a “wet-get-wetter – dry-get-drier” pattern of 

change, owing largely to a significant increase in specific humidity (~7% ˚C-1 following 

the Clausius-Clapeyron relation), but only small changes in wind patterns [Held and 

Soden, 2006; Trenberth, 2011]. Globally, relative humidity is projected to remain fairly 

constant, but may vary regionally, especially over land where temperatures increase more 

and evaporation efficiency is limited by soil moisture, causing arid regions to become 

drier [Stocker et al., 2013; Trenberth, 2003]. While global mean rainfall is 

thermodynamically constrained, rainfall intensity in wet regions depends more on 

available moisture and fluctuations in low-level moisture convergence rather than on 

local evaporation, and is expected to scale with the increase in specific humidity at ~7% 

˚C-1 [Allen and Ingram, 2002; Held and Soden, 2006; Trenberth, 2003]. This discrepancy 

between global mean rainfall and rainfall intensity implies that increases in heavy rain are 

balanced by a reduction in weak rain [Trenberth, 2003] and less frequent storms 

[O’Gorman and Schneider, 2009a].  
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 Observations and cloud-resolving model simulations tend to agree with the 

theoretical range centered on ~7% ˚C-1 following the moisture increase [Muller et al., 

2011; Romps, 2011; Stocker et al., 2013], but conventional GCMs simulate a smaller rate 

of increase in extreme rain with global warming [Allan and Soden, 2008; O’Gorman and 

Schneider, 2009a]. One reason for this shortcoming is the simplified representation of 

deep convection that does not capture organized convection and systematically rains too 

weakly and too often, over-representing the contribution of local evaporative recycling to 

column moisture and under-simulating the extreme tails of observed rain rates [DeMott et 

al., 2008; Stephens et al., 2010, Sun et al., 2006]. Differences in precipitation rates from 

changes in the convective scheme can be larger than the impact of increased temperature 

[Wilcox and Donner, 2007]. However, it is common practice to apply GCMs to the 

problem of extreme rainfall and they have been used to develop a physical understanding 

of why heavy rain may not increase with moisture for all regions and seasons, due to 

changes in circulation, the moist adiabatic lapse rate, and temperature variability 

associated with when extreme rain events occur [O’Gorman and Schneider, 2009a,b]. 

 Some progress in estimating changes in tropical rainfall extremes has been made 

by relating its response to climate change to its response to interannual variability in 

GCMs, and constraining the relationship with satellite observations, but the estimated 

scaling still has a large range from 6 to 14% ˚C-1 [O’Gorman, 2012; Stocker et al., 2013]. 

O’Gorman and Schneider [2009a] argue that deficiencies in parameterized convection 

are mostly an issue for tropical rainfall and GCMs have a more consistent extratropical 

response, exhibiting a weaker increase in heavy rain than moisture (~4 to 6% ˚C-1 from 

Stocker et al. [2013]) outside the tropics. Changes in precipitation extremes are related to 
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upward mass fluxes that are not well represented by parameterizations of convection in 

the tropics where the critical updrafts are too small-scale to resolve, but are better 

represented in the extratropics where controlled by larger-scale quasi-resolved processes 

such as baroclinic instability. Indeed, there is a general improvement in the realism of 

extreme precipitation when GCMs are run at higher resolution and the ratio of resolved to 

parameterized precipitation increases [Wehner et al., 2010; Kopparla et al., 2013]. 

However, in the Central-Eastern US summer, even at higher GCM resolution, most 

precipitation is generated by sub-grid scale convection. While GCMs show some 

agreement on annual timescales, US summer projections remain highly uncertain 

[Solomon et al., 2007; Stocker et al., 2013]. Increases in convective available potential 

energy (CAPE) are expected to dominate reductions in vertical wind shear in the region 

under future climate change, producing overall conditions that could be more favorable to 

convective storms [Stocker et al., 2013; Trapp et al., 2009; Brooks, 2013]. Enhancement 

of the nocturnal low-level jet is also expected to increase moisture transport to the Central 

US and intensify convective storms [Patricola and Cook, 2013b]. But the sensitivities of 

organized convection are likely more complicated than this, and more research is needed 

to explicitly link and attribute the consequences of these environmental changes to storm 

initiation and precipitation intensity [Stocker et al., 2013]. 

 During the North American summer the majority of Coupled Model 

Intercomparison Project Phase 5 (CMIP5) GCMs project an increase in precipitation 

across Alaska and Northern Canada (north of ~55˚N) and along the US east coast, and a 

decrease in the Northwest and Central US, and south of 30˚N over Mexico, the Gulf of 

Mexico, and the Western Atlantic Ocean [Maloney et al., 2013; Stocker et al., 2013]. 
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Although there is some model agreement, internal variability over the Central US 

summer is large, lowering confidence in the projections [Deser et al., 2013]. Regional 

climate models (RCMs) from the North American Regional Climate Change Assessment 

Program (NARCCAP) similarly project increases in rainfall at high latitudes and 

decreases in the Northwest and Central US, with larger regional changes than GCMs 

produce [Mearns et al., 2013]. However, in general there is limited statistically 

significant agreement in the summer in the Central US, where different RCMs can exhibit 

an opposite mean precipitation change when forced by the same GCM boundary 

conditions, and can even produce an opposite mean response to the GCM that provided 

the boundary conditions. For instance, Bukovsky and Karoly [2011] find the NARCCAP 

approach, dynamically downscaling by forcing an RCM with GCM output, projects an 

overall decrease in rainfall in the Central US, but captures the shift in intensity toward 

more extreme precipitation when the Weather Research and Forecasting (WRF) RCM is 

driven by the Community Climate System Model (CCSM) GCM. This result is supported 

by Patricola and Cook [2013a,b] who found that enhancement of the low-level jet and 

nocturnal rainfall increases precipitation intensity in the Southern Great Plains in June, 

and a reduction in daytime rainfall in the Northern Great Plains later in the summer, lead 

to overall drier summer conditions. However, they note many inconclusive results 

including monthly differences and inconsistencies between RCMs and GCMs; overall 

drying in July and August is the only conclusive trend that is consistent across all models. 

 Increasing confidence in these projections is difficult to achieve because the 

impacts of higher greenhouse gas concentrations, and the subsequent response of the 

climate system, involve processes linked across an extremely wide range of spatial-
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temporal scales. GCMs that have an over-simplified representation of small-scale 

convective processes, whose macro-scale organization is incompletely understood, are 

unable to capture the observed variability and intensity of US summer rainfall [Lee et al., 

2007; Li et al., 2012; Rosa and Collins, 2013]. Yet RCM simulations that capture 

processes relevant rainfall extremes are subject to the boundary conditions provided to 

them by GCMs and do not interactively influence global-scale feedbacks, planetary 

circulation, and atmospheric moisture transport, all of which contribute to the regional 

response [Maloney et al., 2013; Wehner, 2013]. Improving projections thus requires a 

realistic representation of rainfall variability across a range of spatial-temporal scales, and 

a modeling framework that maintains links to global feedbacks and changes in large-scale 

circulation. 

 A new type of climate model is gaining traction, which addresses both of these 

issues by explicitly resolving small-scale cloud physics with cloud resolving models 

(CRMs) embedded in a GCM, improving the representation of multi-scale cloud 

processes and rainfall variability compared to observations in the present climate. This 

approach, called super-parameterization (SP), was first implemented in the National 

Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) 

version 3.0 [Khairoutdinov and Randall 2001, 2003; Khairoutdinov et al., 2008] and 

through collaboration between the Center for Multiscale Modeling of Atmospheric 

Processes (CMMAP) and the Pacific Northwest National Laboratory (PNNL), has 

recently been implemented in CAM version 5.0 (CAM5) [Randall et al., 2003; Wang et 

al., 2011a]. Early work has shown significant improvement in the representation of 

rainfall statistics with super-parameterization when model results are compared with 
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measurements taken at the US Department of Energy, Atmospheric Radiation 

Measurement Program, Southern Great Plains (SGP) site. Probability density functions 

(PDFs) of summer rain rates at SGP show that SPCAM captures the observed 

contribution from heavier rain rates to accumulated seasonal precipitation (i.e. these 

PDFs in CAM drop off at ~20 mm day-1, but extend past ~40 mm day-1 in both the 

observations and SPCAM). This improves rain penetration through the land-surface 

vegetation canopy, reducing local re-evaporation recycling, which occurs in CAM due to 

weak rain rates and thus exaggerates mean seasonal rainfall [DeMott et al., 2007]. In 

addition to improvements in intensity, the diurnal timing of rainfall in SPCAM is also in 

better agreement with observations both at the SGP site and over all boreal summer land, 

shifting the peak timing to later evening hours and reducing the diurnal amplitude relative 

to CAM, whose convection is too tightly bound to the solar cycle [DeMott et al., 2007; 

Pritchard and Somerville, 2009]. A broader analysis of rainfall variability over the US 

shows that SPCAM improves the representation of both light and heavy rain, especially 

in regions where the fraction of rainfall from parameterized convection is greatest [Li et 

al., 2012]. In general CMIP5 GCMs trigger convection too frequently, over-simulating 

moderate rain, and under-simulating weak and heavy rain compared to observations and 

SPCAM [Rosa and Collins, 2013]. 

 The super-parameterization approach also gives rise to self-organized convective 

systems in the tropics and mid-latitudes, whose emergent large-scale behavior has been 

difficult to represent in parameterized GCMs with simplified physics. A strong mesoscale 

convective system (MCS) signal has been found in several versions of SPCAM 

[Pritchard et al., 2011; Kooperman et al., 2013]. Kooperman et al. [2013] show this 
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signal is most realistic in the newest SPCAM version based on CAM5, using a new 

physically based index to composite MCS statistics in the Central US. The index isolates 

strong eastward propagating convection, and with a simple set of criteria, identifies MCS 

events and composites their propagation by phase. In an early version of SPCAM (3.5), 

MCS anomalies were unrealistically large-scale and concentrated, while surface rainfall 

was too weak. SPCAM version 5, with high-order microphysics, improves the signal, 

producing a composite storm in which the spatial extent, the magnitude of longwave 

cloud forcing, and the co-located timing of rainfall, are all in better agreement with 

observations. 

 To date, the super-parameterized model MCS signal and US summer rainfall have 

only been evaluated in present-day climate. The computational expense of explicitly 

resolved convection adds an additional challenge for century-long climate change 

integrations. In the present study, a time-slice experiment design is implemented, 

employing atmosphere-only SPCAM climate change simulations driven by sea surface 

temperature and sea ice boundary conditions from the fully coupled Community Earth 

Systems Model (CESM, with CAM as the atmospheric component), to address several 

unanswered questions: How will precipitation in the Central-Eastern US respond to 

higher greenhouse gas concentrations? Will the climate change perturbation project onto 

natural patterns of rainfall or will it shift the system to a new precipitation regime? Will 

organized convective storms become more or less intense in a warmer world? How does 

the representation of convection influence changes in rainfall intensity as well as the 

mean precipitation response? 
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 The remainder of this paper is separated into four main sections. Section 5.2 gives 

a brief description of the models used in the experiment, their configurations, and the 

simulation design. The results and discussion are divided into Section 5.3 presenting the 

mean rainfall response and associated large-scale circulation, and Section 5.4 evaluating 

changes in rainfall and convective storm intensity. The main conclusions and future work 

are summarized and discussed in Section 5.5. 

 

5.2. Models and experiment setup 

5.2.1. Community Atmosphere Model 

 Conventional and super-parameterized versions of the NCAR Community 

Atmosphere Model (CAM) are evaluated for this experiment. CAM is the atmospheric 

component of the fully coupled Community Earth System Model (CESM), which also 

includes interactive ocean, sea ice, and land surface models. When run as a stand-alone 

atmospheric GCM, CAM is forced by prescribed monthly mean sea surface temperature 

and sea ice boundary conditions from either observations or coupled CESM output, with 

an interactive land surface. CAM version 5 is used in this study, which includes an 

updated Zhang and McFarlane [1995] parameterization of deep convection based on a 

dilute plume CAPE closure with convective momentum transport, the University of 

Washington shallow convection scheme with moist turbulence [Park and Bretherton, 

2009], two-moment cloud microphysics [Morrison and Gettelman, 2008], and interactive 

aerosol-cloud and aerosol-radiation processes [Liu et al., 2012]. In this study CAM was 

run with a finite volume dynamical core, at a standard 1.9˚ (latitude) by 2.5˚ (longitude) 
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horizontal resolution with thirty vertical levels. Climatological monthly mean boundary 

conditions were generated from CESM output and are described in the experiment setup 

section below. For more details see the official CAM scientific description by Neale et al. 

[2010]. 

 

5.2.2. Super-parameterization 

 In SPCAM the conventional statistical parameterizations for clouds and boundary 

layer processes are replaced with simplified (two-dimensional and periodic boundary 

conditions) cloud resolving models (CRMs) [Randall et al., 2003]. An independent CRM 

is embedded in each column of CAM to explicitly resolve cloud processes. The CRM is 

linked to large-scale GCM-resolved dynamics following a similar implementation as 

conventional parameterizations, i.e. CAM supplies the CRM with large-scale heating, 

moistening, and circulation tendencies, and the CRM returns a sub-grid convective 

response [Grabowski, 2001; Benedict and Randall 2009]. This aspect of SPCAM 

explicitly accounts for sub-grid variability and introduces memory in aerosol, cloud, 

radiation, and precipitation processes [Khairoutdinov et al., 2005; Pritchard et al., 2011; 

Wang et al., 2011a]. Independent CRMs with periodic boundary conditions make 

SPCAM vastly more scalable on current supercomputers, but add two hundred times 

more computational expense relative to CAM [Khairoutdinov et al., 2005]. In SPCAM 

version 5 used here, GCM-scale aerosol fields are evolved by CRM-scale statistics of 

cloud processes including vertical updraft velocity, humidity, and precipitation; and each 

CRM produces an independent realization of cloud droplet activation and aerosol 
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humidification [Wang et al., 2011a]. The GCM configuration for SPCAM is the same as 

described for CAM above (1.9˚ by 2.5˚ with thirty vertical levels), and the CRM is 

aligned in north-south orientation with thirty two columns at four kilometer horizontal 

resolution and twenty eight vertical levels co-located with the bottom twenty eight levels 

in CAM. For additional details see Wang et al. [2011a]. 

 

5.2.3. Experiment setup 

 The added computational expense of resolved convection, two-moment cloud 

microphysics, and interactive aerosol in SPCAM version 5 makes fully coupled 

(interactive ocean and sea ice) century-long climate simulations impractical on current 

supercomputing hardware. However, the shared large-scale atmospheric (dynamics), 

land, ocean, and sea ice components with CESM/CAM, provide a framework where 

much can be learned from short (multi-year) atmosphere-only time-slice experiments 

driven by initial (atmosphere and land) and boundary (sea surface temperature and sea 

ice) conditions from CESM/CAM simulations. For this study, initial and boundary 

conditions for CAM and SPCAM were created from a pair of pre-industrial (PI) and 

abrupt four-times (4x) CO2 simulations run as part of CMIP5. Climatological monthly 

mean sea surface temperature and sea ice boundary conditions are based on the last 

twenty-five years of each CESM simulation, years 26-50 for PI and 126-150 for 4x, as 

shown by blue and red lines in Figure 5.1(a), respectively. 
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Figure 5.1: CESM results for (a) global mean surface temperature and linear regression of 
global-annual mean surface temperature on top-of-atmosphere flux imbalance (small 
plot); 25-year PI mean (contours) and difference between 4x and PI (colors) for (b) sea 
surface temperature, (c) sea ice percent area, (d) seasonal (MJJA) mean surface 
temperature, and (e) seasonal (MJJA) mean precipitation rate; blue and red lines in (a) 
show 25-year averaging periods used in (b-e); vertical black line in (a) shows abrupt 
transition to 4xCO2; and solid black line shows Rocky Mountain ridgeline and stippling 
indicates statistical significance at 90% confidence in (d,e). 
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 By the end of the abrupt 4xCO2 simulation, global-annual mean surface 

temperature has increased by more than 5 ˚C as seen in Figure 5.1(a) and global-annual 

mean precipitation has increased by 7.6%. The coupled climate system is nearly 80% 

adjusted to the 4xCO2 forcing and will ultimately reach an equilibrium increase of ~7 ˚C, 

estimated following a linear regression approach [Andrews et al., 2012; Gregory et al., 

2004]. Regional annual sea surface warming anomalies (4x – PI) are as large as 8.4 ˚C 

and there is an annual reduction of up to 50% of sea ice over the entire Arctic (less only 

near the edges where annual sea ice is already less than 50%) shown in Figure 5.1(b,c). 

Regional sea surface temperature anomalies are even larger on a seasonal timeframe, 

reaching as high as 12.0 ˚C for boreal summer (May, June, July, August – MJJA), with a 

60% loss of total Arctic seasonal sea ice coverage. The only region that shows a 

reduction in sea surface temperature is off the southeast coast of Greenland, due to 

increased fresh melt water input and a slowdown of deepwater formation and Atlantic 

meridional overturning circulation [Stocker et al., 2013; Stouffer et al., 2006]. Warming 

is considerably higher over land than ocean and is amplified at higher latitudes [Solomon 

et al., 2007; Stocker et al., 2013], as seen for the boreal summer over North America in 

Figure 5.1(d). 

 Seasonal mean precipitation changes over North America projected by the 

coupled CESM simulations show significant regional variability. Rainfall is enhanced 

over Alaska and Northwest Canada and the Eastern US consistent with CMIP5 ensemble 

projections [Maloney et al., 2013; Stocker et al., 2013]. There is a weak increase in 

rainfall west of the Rockies and a decrease in the Central US, across Northeast Canada, 

and the Gulf of Mexico, regions where CMIP5 models do not have statistically 
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significant agreement of future precipitation changes [Stocker et al., 2013]. Although not 

statistically significant, the ensemble mean changes and the majority of models also 

indicate a reduction in precipitation in the Central US consistent with CESM, but show a 

decrease in the west opposite to that of CESM [Maloney et al., 2013; Stocker et al., 

2013]. 

 The question naturally arises as to what extent these rainfall projections may have 

been an artifact of conventional convection parameterization, and whether they are robust 

to an explicit representation of convection. To address this, our experiment setup follows 

a straightforward time-slice design. A set of four five-year boreal summer (MJJA) 

simulations with CAM and SPCAM were run with PI (284.7 ppm) and 4x (1138.8 ppm) 

CO2 concentrations and climatological sea surface temperature and sea ice boundary 

conditions, as described above. To minimize computational expense and divergence in 

the land component of the models (sea surface temperature and sea ice are constrained by 

prescribed conditions), only the summer season was run for SPCAM, which was 

initialized from the same spring conditions as CAM. This was achieved by running a set 

of six-year simulations with CAM initialized from land and atmosphere conditions taken 

from the end of CESM PI and 4xCO2 runs. Neglecting the first year, CAM and SPCAM 

were reinitialized from these base simulations each April for the subsequent five years 

and integrated through August; three-hourly average output for May through August 

were analyzed for this experiment. 

 Driving CAM and SPCAM simulations in this fashion controls for key sources of 

internal variability, helping to isolate the effect of explicitly resolved convection. But it 

also introduces some limitations worth mentioning. For instance, it inherently masks 
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potential long-term differences that may develop between the models. These differences 

can make it difficult to disentangle the role of convection on seasonal and regional scales. 

The approach used here is aimed at isolating the impact of resolved versus parameterized 

convection on US boreal summer climate. Much like the RCM climate change simulation 

paradigm, in this experiment design SPCAM is subject to the initial and boundary 

conditions provided by an independent model – CAM. But unlike RCM climate 

projections, global-scale circulation and feedbacks are not constrained on seasonal 

timescales, and planetary energetics can play an important role in producing the overall 

regional response. 

 

5.3. Influence of large-scale dynamics on mean US rainfall response 

5.3.1. Changes in mean summer rainfall 

 Reassuringly, the main features of the mean US rainfall response in the fully 

coupled CESM reference run, discussed above, are replicated in our CAM boundary-

driven time-slice simulation shown in Figure 5.2(a). These include an increase in rainfall 

over Alaska and Northwest Canada and the Eastern US, and a decrease in the Central US, 

Northeast Canada, south of Florida, east of the Gulf Stream, and off the Northeast US 

coast. These anomalies are statistically significant at 90% confidence with respect to both 

twenty-five year monthly mean variability in CESM (Figure 5.1) and five-year three-

hourly variability in CAM (Figure 5.2). 
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Figure 5.2: Five-year seasonal (MJJA) mean PI (contours) and the difference between 4x 
and PI (colors) (a,b) precipitation rate and (c,d) surface temperature from (a,c) CAM and 
(b,d) SPCAM simulations; black line shows Rocky Mountain ridgeline; stippling 
indicates statistical significance at 90% confidence. 
 

 Super-parameterization produces an interesting effect on the summer rainfall 

climate change signal over the US. Figure 5.2(b) shows that SPCAM captures a similar, 

but weaker, rainfall increase over Alaska and the Northwest US, decrease over Northeast 

Canada, and little overall change in the Southwest. However, opposite to CAM, SPCAM 

predicts a rainfall decrease over the entire Eastern US, which is most pronounced over 

the Gulf Stream and southern Gulf states. And unlike CAM, SPCAM projects a small 

increase in rainfall extending from Texas into the Central US through Missouri. Even 

though this is a noisy region for detecting shifts in convective variability (due to inter-
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annual and seasonal variations in the preferred zone of summer storm propagation) a 

statistically significant change is evident in the five-year simulation sample. 

Understanding inter-model differences in these climate change anomalies requires 

understanding the effect of super-parameterization on both the baseline (PI) and 4xCO2 

end-members. The large reduction in precipitation over the Gulf Stream in SPCAM 

coincides with a strong regional maximum there in the PI simulations, which is reduced 

by nearly half in the 4xCO2 simulation. The Central US rainfall reduction in CAM also 

coincides with a local modulation of a regional PI maximum in that model, whereas the 

east coast response appears to be linked to an onshore shift in a local maximum of 

offshore rainfall. 

 These differences in the mean precipitation response between the two models 

develop despite the fact that they produce similar large-scale surface (two-meter) 

temperature changes shown in Figure 5.2(c,d). As expected, temperature over the sea 

surface is well constrained by the prescribed boundary conditions and is nearly identical 

in both models. Both models also show greater warming over land and at higher latitudes 

consistent with CMIP5 projections [Stocker et al., 2013]. There are regional differences 

in the patterns of warming over land, especial over Canada, but the magnitudes are 

comparable, reaching as high as 8 ˚C in northern Canada. The temperature change in the 

time-slice simulations is slightly lower over land than in CESM, which has greater 

warming at high latitudes and extending south along the Rocky Mountain ridgeline, but 

the general patterns are represented in both models. 
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Figure 5.3: Five-year seasonal (MJJA) mean PI (contours) and the difference between 4x 
and PI (colors) (a,b) precipitable water, (c,d) liquid water path, and (e,f) ice water path 
from (a,c,e) CAM and (b,d,f) SPCAM simulations; black line shows Rocky Mountain 
ridgeline; stippling indicates statistical significance at 90% confidence. 
 

 Changes in column water also highlight differences in the seasonal mean 

responses of CAM and SPCAM. Both project an overall increase in precipitable water, 
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ridgeline, off the northeast coast of Canada, and in the Western Atlantic Ocean south of 

25˚N seen in Figure 5.3(a,b). Some key regional nodes of rainfall modulation are coupled 

to supportive local vapor tendencies. For instance, water vapor in CAM is enhanced in 

the region of maximum increase in precipitation along the Eastern US coast. A weaker 

local increase in water vapor in SPCAM occurs in the Central US, coincident with a 

small increase in precipitation there.  Both models have a significant reduction in liquid 

water path in the Central-Eastern US and little change west of the Rockies (Figure 

5.3c,d). Reductions in seasonal mean liquid water path extend north of 70˚N in SPCAM, 

but begin to increase significantly in CAM north of 60˚N. Ice water path (Figure 5.3e,f) 

in CAM is reduced everywhere except the Central-Eastern US and exhibits a similar 

increase over the Eastern US and decrease off the northeast coast as precipitation. In 

SPCAM changes in ice water path also show similar patterns as precipitation, with a 

large decrease over the Gulf Stream and Gulf states, and increase from Texas up through 

the Central US and Northwest US. In both models increased rainfall over Alaska 

coincides with reduced ice water path and increased liquid water path. 

 

5.3.2. Regional and planetary circulation anomalies 

 It is logical to expect that some of the changes in mean precipitation and column 

water described above are associated with dynamical differences in the response to 

boundary forcing between the two models, both on planetary and regional scales. 

Consistent with this view, although mean surface temperature changes over the US are 

similar (Figure 5.2c,d), higher in the atmosphere the thermal state between the models 
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diverges, resulting in substantial differences in the placement and magnitude of regional 

circulation and moisture convergence anomalies. Geopotential height anomalies at 500 

mb (Z500), shown in Figure 5.4(a,b), extend almost all the way down to the surface. 

Increased atmospheric temperature and thermal expansion cause the geopotential height 

field to rise over the entire domain, but changes in the meridional temperature gradient 

(baroclinicity), topographic heating, and land-sea contrast can create regional anomalies 

of enhanced ridging. Both models have minima over the Northeast Pacific Ocean and east 

of Greenland, and maxima over Alaska and Eastern North America. 

 A particularly interesting effect of super-parameterization is the weaker localized 

ridging downstream (east) of the Rockies in response to the 4xCO2 forcing. Although 

both models predict strong localized ridging just east of the Rockies, this effect is much 

greater in CAM than SPCAM, and extends further off the continent over the Northwest 

Atlantic Ocean. This discrepant sensitivity may in turn be linked to different degrees of 

mountain-wave coupling in the models’ mean state. An effect of super-parameterization 

not noted previously is a muting of the baseline stationary wave jet streak in the lee of the 

Rockies relative to CAM, in both the PI and 4xCO2 simulation end members (not shown). 

CAM’s exaggerated ridging response to 4xCO2 is co-located with its exaggerated mean 

state jet streak. In turn, associated circulation anomalies over the US east coast promote 

onshore southeasterly flow (warm moist marine air) in CAM, but northerly flow (cold dry 

continental air) in SPCAM. In both models there is anomalous southerly flow (low-level 

jet – warm moist air) from the Gulf of Mexico into the Central US, but it is greater in 

SPCAM than CAM. Differences in moisture convergence as a result of these circulation 

patterns contribute to the patterns of precipitable water anomalies in Figure 5.3(a,b) and 
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their connection to mean precipitation changes in Figure 5.2(a,b) as discussed above: an 

increase in the Eastern US and decrease in the Central US in CAM; and the opposite 

increase in the Central US and decrease in the Eastern US in SPCAM. 

 
Figure 5.4: Five-year seasonal (MJJA) mean PI (contours) and the difference between 4x 
and PI (colors) (a,b) 500 mb geopotential height and horizontal wind vectors, and 
meridional (35-45˚N) mean (c,d) meridional wind (colors, blue-negative and yellow-
positive contours) and zonal wind difference between 4x and PI (black contours), and 
(e,f) specific humidity from (a,c,e) CAM and (b,d,f) SPCAM simulations; left and right 
brackets in (a,b) show meridional averaging region for (c-f), blacked out area (black line 
in a,b) indicates topography (Rocky Mountains). 
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Figure 5.5: Five-year seasonal (MJJA) zonal (a) mean (PI-solid, 4x-dash) and (b) the 
difference between 4x and PI 500 mb geopotential height, and (c,d) PI (contours) and the 
difference between 4x and PI (colors) temperature for (c, blue) CAM and (d, red) 
SPCAM simulations; vertical black lines show the meridional range of Figures 5.2 and 
5.3; horizontal lines in (c,d) are 500 mb. 
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 Geopotential height anomalies due to the 4xCO2 forcing tend to tilt toward the 

northwest with height, and changes are even greater in CAM than SPCAM higher in the 

atmosphere, in association with a larger temperature increase at lower pressure levels. In 

general, 500 mb circulation changes in the Central-Eastern US are similar to near surface 

changes, which also show southeasterly flow in CAM and northerly flow in SPCAM 

along the US east coast, and stronger southerly flow into the Central US in SPCAM; 

although the magnitude is larger and has a stronger easterly component in both models at 

500 mb. Anomalous easterly flow is part of an overall weakening of the zonal jet, 

depicted in the black contours in Figure 5.4(c,d), which is regionally more striking, and 

weakens more significantly in CAM than SPCAM, reducing vertical wind shear over the 

Central US. As mentioned earlier, the zonal jet is much stronger in the baseline (PI) 

CAM simulation and undergoes significant local modulation due to warming, whereas in 

SPCAM it shifts to the east rather than weakening. The impact of super-parameterization 

on mountain-stationary wave dynamics has not been explored in detail, but may have 

important consequences for baseline regional circulation and differences in the response 

to climate change seen here. These differences are also seen in the weakening of the 

stationary meridional wind field (which results from topographic anticyclonic circulation 

generated by the Rocky Mountains) in CAM as the 4xCO2 anomalies project onto the PI 

patterns, also reducing vertical wind shear. However, in SPCAM the meridional wind 

anomalies appear to be less phase-locked to PI patterns than in CAM and tend to shift the 

position rather than weaken meridional flow with 4xCO2. Also in SPCAM, stronger 

meridional wind anomalies extend down to the surface east of the Rocky Mountains, in 
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association with enhanced near surface southerly flow (low-level jet) into the Central US 

and northerly flow along the east coast (Figure 5.4d). This is linked to the elevated 

humidity pattern that lifts up from the eastern slope of the Rockies to reach levels above 

700 mb in the Central US seen in Figure 5.4(f). In CAM, enhancement of the Central US 

low-level jet is weaker and a broader southerly flow below 600 mb extends over the east 

coast, leading to a larger increase in humidity further east (Figure 5.4e) than in SPCAM. 

 On larger spatial scales, another interesting effect of super-parameterization is a 

reduction in the magnitude of polar amplified warming. The above regional circulation 

changes over North America are connected to a larger planetary response to the 4xCO2 

forcing. For example, the regional peak in the Z500 anomaly over North America shown 

in Figure 5.4(a,b) between 50˚ and 60˚N is also seen in the zonal mean Z500 field (Figure 

5.5b). Both models increase Z500 by more than 100 m globally due to significant 

atmospheric warming, but the increase in CAM is much larger north of 30˚N, reaching a 

maximum difference of 50 m at the north pole relative to SPCAM. The large Z500 

anomaly north of 70˚N in CAM results from a much greater increase in Arctic 

temperature throughout the atmospheric column (Figure 5.5c,d).  

 It is natural to wonder how super-parameterization could result in such a striking 

difference in polar amplification, and how this might impact the Central US region. 

While surface temperature over the ocean is well constrained by prescribed sea surface 

temperatures in both models, differences in the warming over land, sea ice, and higher in 

the atmosphere result in higher total (land, ocean, and ice) Arctic warming in CAM (up to 

1.5 ˚C greater than SPCAM). In turn, atmospheric warming causes changes in the 

geopotential height field, which impacts local and non-local (including Central US) 
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circulation. For instance, higher Z500 over the pole is associated with a southward 

pressure gradient force anomaly, which in combination with a strong Coriolis force, 

maintains increased westward flow in the Arctic, not seen in SPCAM (Figure 5.6a,b). 

Similarly, on the southern side of the mid-latitude geopotential height anomaly (50-60˚N) 

there is a stronger increase in easterly flow (slow down of the zonal jet) in CAM 

throughout the atmospheric column, consistent with reduced zonal flow across North 

America seen in Figure 5.4(c,d). These changes in the Z500 field and zonal mean 

circulation affect the strength, shift the center (maximum), and broaden the extent of the 

PI zonal jet structure. In general CAM exhibits a greater expansion and weakening of 

zonal mean flow, while SPCAM exhibits a greater shift in the meridional position. Both 

models show an upward and southward shift and broadening of the northern hemisphere 

zonal mean jet, seen as a reduction in eastward flow between 40˚ and 55˚N below 200 

mb, and an increase to the north and south. In CAM the jet weakens and broadens more, 

with an increase in eastward wind reaching as far south as 15˚N. 

 Anomalous counterclockwise meridional flow (negative stream function) also 

stretches further south in CAM, reducing southward surface wind associated with the 

summer mean PI Hadley circulation and the export of extra-tropical moisture between 

15˚ and 30˚N, shown in Figure 5.6(c,d). Although less broad, the circulation anomalies 

south of 20˚N (westward-zonal and clockwise-meridional flow) and from 20˚ to 40˚N 

(eastward-zonal and counterclockwise-meridional flow) are larger in SPCAM than CAM, 

indicating a stronger shift and less weakening of the circulation. Overall, these changes 

represent a widening and weakening of the Ferrel circulation and reduction in the 

northward extent of the Northern Hemisphere summer Hadley circulation. Hadley 
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circulation also weakens, rises, and expands further south in the Southern Hemisphere. 

These planetary-scale changes including weakening of the jet, reduction of the meridional 

temperature gradient (polar amplification), and a shift in the position of the mid-latitude 

baroclinicity maximum, are consistent with the regional changes and the differences 

between CAM and SPCAM over North America described earlier. 

 In summary, changes in mean rainfall are linked to regional circulation anomalies 

affecting moisture transport, which manifest differently in CAM and SPCAM, despite the 

constrained boundary condition forcing across PI versus 4xCO2 simulation end members. 

CAM is much more dynamically sensitive to 4xCO2 in the vicinity of the jet streak east 

of the Rockies than SPCAM, with a response promoting onshore southeasterly flow that 

helps supply moisture for Eastern US rainfall. A weaker dynamical anomaly in SPCAM 

is more regionally confined, and does not extend over the Atlantic Ocean, such that 

northerly flow along the east coast instead brings cold dry air to the Eastern US region. 

Both models predict an intensification of the Central US southerly low-level jet, but it is 

stronger in SPCAM than CAM, enhancing regional meridional moisture transport. 

Vertical wind shear across North America reduces more in CAM in association with 

greater high latitude warming (polar amplification) and larger geopotential height 

anomalies, causing a significant change in the planetary thermal wind balance, with 

linked changes in large-scale circulation such as a broadening and weakening of the zonal 

mean circulation pattern. 
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Figure 5.6: Five-year seasonal (MJJA) zonal mean PI (blue-negative and yellow-positive 
contours) and the difference between 4x and PI (colors) (a,b) zonal wind in ms-1 and (c, 
d) meridional stream function in x1010 kgs-1 for (a,c) CAM and (b,d) SPCAM 
simulations; vertical black lines show the meridional range of Figures 5.2 and 5.3; 
horizontal lines are 500 mb. 
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5.4.1. Changes in rainfall rates 

 
Figure 5.7: Five-year seasonal (MJJA) PI (contours) and the difference between 4x and 
PI (colors) (a,b) total accumulated precipitation, (c,d) accumulated precipitation from 
rates less than 50 mm day-1, and (e,f) accumulated precipitation from rates greater than 50 
mm day-1 from (a,c,e) CAM and (b,d,f) SPCAM simulations; black line shows Rocky 
Mountain ridgeline. 
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Figure 5.8: Five-year seasonal (MJJA) PI (contours) and the difference between 4x and 
PI (colors) (a,b) 50th, (c,d) 75th, and (e,f) 99th percentile precipitation rates from (a,c,e) 
CAM and (b,d,f) SPCAM simulations; black line shows Rocky Mountain ridgeline. 
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described above, as well as increases in CAPE and low-level moisture, can impact the 

intensity and timing of precipitation. And although differences in the mean precipitation 

response to climate change between CAM and SPCAM revealed complex patterns of 

change associated with circulation, the projected changes in rainfall intensity are more 

straightforward to interpret. The analysis in this section shows a consistent effect of 

super-parameterization, regardless of the mean changes. 

 Figures 5.7 and 5.8 compare two metrics of the response of rainfall variability – 

the contribution to seasonal accumulated rainfall from rain rates above versus below a 

threshold (Figure 5.7; 50 mm day-1) and changes in percentile precipitation rates (Figure 

5.8; 50th, 75th, and 99th). Heavy rain rates do not play a major role in mediating seasonal 

mean rainfall in CAM, but do have a nontrivial effect in SPCAM. The CAM simulations 

do not produce a significant amount of rain over the US from rates above 50 mm day-1. 

Nowhere over the domain does the PI seasonal accumulated contribution reach more than 

5 cm, and therefore not much change is shown in Figure 5.7(e). The total accumulated 

change in CAM results almost entirely from changes in lower precipitation rates, which 

show the same pattern as the mean change (Figure 5.7a,c). The same result is depicted in 

changes in the 75th percentile precipitation rates, which have a similar pattern as the mean 

change (Figure 5.8c). Changes at lower (50th) percentile precipitation rates capture the 

onshore shift in Gulf Stream rainfall and reduction in the Central US maximum. Changes 

in higher (99th) percentiles show a small reduction across the entire Central-Eastern US in 

CAM. While SPCAM produces the opposite response with a substantial increase 

(decrease) in the contribution of seasonal rain from rates above (below) 50 mm day-1 and 

higher (lower) percentile precipitation rates. The most significant increases in 
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precipitation rates in SPCAM occur over Texas and extend into the Central US, where 

moisture convergence and humidity increases, as discussed above. Decreased rain from 

lower precipitation rates is seen over most of the Eastern US, and most significantly over 

the Southeast US and the Gulf Stream. 

 

 
Figure 5.9: Five-year seasonal (MJJA) Central-Eastern US (a) probability density 
function (%) and (b-d) accumulated precipitation (cm) as a function of (a,b) precipitation 
rate, (c) liquid water path, and (d) ice water path from CAM and SPCAM PI (blue and 
red) and 4x (aqua and orange) CO2 simulations; with exponential bin spacing in 
increments of 100.1 mm day-1 and gm-2; for the region shown in Figures 5.7 and 5.8, only 
including land points; shading indicates annual standard deviation of the five-year 
seasonal (MJJA) member ensemble. 



137 

	
  

 

 Focusing on the especially interesting region of discrepant model predictions of 

convective variability in the Central-Eastern US land (orange box in Figures 5.7 and 5.8) 

and collapsing Figure 5.8 into a single probability density function (PDF) of precipitation 

rate (Figure 5.9a) shows a robust shift toward more intense precipitation in SPCAM with 

quadrupled CO2. This shift in the tail of the PDFs is brought out clearly with exponential 

bin spacing (100.1 mm day-1) and is greater than the overlapping range of the inter-annual 

five-year standard deviation, and thus seems statistically robust. In this region, SPCAM 

has an overall reduction in total seasonal rainfall of 4.1 cm (Table 5.1), but an increase in 

the accumulated amount of rain from rates above 40 mm day-1 (Figure 5.9b). CAM shows 

very little change in both the total seasonal rainfall and the PDF of rain rates. Although 

not outside the range of inter-annual variability, CAM has a small reduction in 

accumulated rain from the highest rain rates and an increase from weaker rates in the 

five-year periods. 

 The shift toward higher rates with warmer climate in SPCAM is accompanied by 

an increase in the amount of rain from more extreme liquid and ice water path values 

(Figure 5.9c,d), which have a small shift toward higher values, but decrease overall by     

-8.1 and -0.7 gm-2, respectively. CAM has an even larger overall reduction in liquid water 

path of -13.1 gm-2, but results in a decrease (increase) in the amount of rain from higher 

(lower) values (Figure 5.9c). Yet curiously, CAM shows more rain from higher ice water 

path values similar to SPCAM (Figure 5.9d). This conflicting response in CAM, more 

rain from lower liquid water paths and higher ice water paths, is explained by a change in 

the partitioning between parameterized deep convection and resolved large-scale 
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precipitation. Although the total precipitation only changes by a small amount in CAM, 

convective precipitation increases by 3.0 cm balancing a -2.9 cm decrease in large-scale 

precipitation (Table 5.1). The higher ice water path values are associated with deep 

convection and higher liquid water path values are associated with large-scale 

precipitation. 

 

 
Figure 5.10: Same as Figure 5.9, but for CAM only (one MJJA season rerun for 
additional output) separating the contribution to total precipitation (T-blue) from 
parameterized convection (C-green) and large-scale (L-purple) precipitation for PI (dark) 
and 4x (light) simulations. 
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Table 5.1: PI and the difference between 4x and PI simulations for area-weighted mean 
surface temperature, surface humidity, precipitable water, liquid water path, ice water 
path, evaporation, and precipitation (total, convective, and large-scale) for CAM and 
SPCAM in the region shown in Figures 5.7 and 5.8, including all land and ocean points 
(left), and land points only (right). 

         Total              Land Only      
     CAM      SPCAM      CAM      SPCAM  
 PI 4x–PI PI 4x–PI PI 4x–PI PI 4x–PI 
Surface temperature (˚C) 21.4 6.0 22.8 6.0 20.5 6.6 22.1 6.6 
Near surface humidity (g kg-1) 11.0 3.0 10.7 2.4 10.2 2.8 9.7 2.1 
Precipitable water (kg m-2) 27.8 9.7 30.0 8.9 25.9 9.5 28.0 9.1 
Liquid water path (g m-2) 43.4 -10.9 44.6 -9.6 47.1 -13.1 43.2 -8.1 
Ice water path (g m-2) 5.6 0.0 10.4 -1.2 5.4 0.1 11.1 -0.7 
Evaporation (cm) 44.1 -0.4 40.7 -1.9 41.8 -0.1 38.3 -2.2 
Total precipitation (cm) 43.1 -0.6 36.3 -7.4 41.6 0.0 33.8 -4.1 
Convective precipitation (cm) 38.0 1.8 N.A. N.A. 35.6 3.0 N.A. N.A. 
Large-scale precipitation (cm) 5.1 -2.5 N.A. N.A. 5.9 -2.9 N.A. N.A. 
 

 This pattern can be seen in PDFs of the accumulated precipitation as a function of 

precipitation rate, and liquid and ice water paths, separating convective and large-scale 

contributions, shown in Figure 5.10. In the Central-Eastern US summer, where smaller-

local and mesoscale-propagating convective systems are the dominant source of rain in 

nature, large-scale precipitation in CAM generates the most intense rainfall and is 

associated with extreme values in liquid water path (this is also true for global-annual 

PDFs, not shown). This may be expected for other regions or seasons when the majority 

of rainfall is generated by synoptic frontal systems, providing a large-scale saturated 

environment and resolved-scale moist overturning, but is counterintuitive for Central-

Eastern US land in summer. It appears the opposite response in CAM is related to the fact 

that large-scale precipitation controls the tails of its rainfall PDFs (extreme rain), and the 

artificial separation between large-scale and deep convective precipitation in CAM (at 

least at this coarse resolution) may decouple rainfall extremes from important climate 



140 

	
  

change drivers (e.g. sub-grid scale moisture convergence and CAPE). Counter-

intuitively, an increase in extreme rain would occur in CAM only if the conditions that 

generate large-scale resolved saturated uplift increase; increases in factors affecting the 

deep convection parameterization do not impact the heaviest rain rates. The reduced 

equator-to-pole temperature gradient, baroclinicity, vertical wind shear, and overall liquid 

water path, described above, may instead contribute to a reduction in large-scale 

(extreme) rainfall. 

 

5.4.2. Mesoscale convective storms 

 Propagating mesoscale convective systems (MCSs) are a major source of not only 

total rainfall for the Central US, but also the most intense rainfall rates [Schumacher and 

Johnson, 2005]. One of the novel features of SPCAM is its ability to capture MCSs 

[Kooperman et al., 2013; Pritchard et al. 2011]. It is logical to suspect they play a role in 

mediating convective variability sensitivity to climate change, as the Central US is also 

where the two models disagree most drastically in their 99th percentile precipitation rate 

response to 4xCO2 (Figure 5.9e,f), which shows a reduction from Texas stretching across 

the Central US and over the Great Lakes in CAM and an opposite increase across the 

same region in SPCAM.  

 The change in mesoscale convective storm activity from PI to 4xCO2 climates is 

thus evaluated in this section following the MCS index method described in Kooperman 

et al. [2013]. In this approach, an empirical orthogonal function (EOF) based index, 

similar to that developed by Wheeler and Hendon [2004] for the Madden-Julian 
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Oscillation, is used to identify MCS events and composite their propagation by phase. 

Kooperman et al. [2013] show that the MCS signal is not captured in conventional 

versions of CAM, but exists in several versions of SPCAM, and is most realistic in 

version 5 used here. 

 The index is based on 23 years of longwave cloud forcing observations from the 

NASA Global Energy and Water Cycle Experiment, Surface Radiation Budget (SRB) 

version 3.1 [Stackhouse et al., 2011], which is band-pass filtered for 12 to 48 hour 

timescales and meridionally averaged in the Central US (orange box in Figure 5.11 e-l). 

EOF analysis is applied to the filtered signal from observations and the model results are 

regressed onto the spatial patterns of the first and second leading EOF pair. The MCS 

index is calculated by transforming the principal component time series into polar 

coordinates as depicted in the phase diagrams shown in Figure 5.11 (a-d), where the 

amplitude is the distance from the center (  

€ 

PC1
2

+ PC2
2 ) and phase (1-8) is the angular 

relationship. Events are determined by three criteria: (1) at least three (9 hours) 

consecutive index amplitudes greater than 0.15 propagating forward (east) in phase 

space, (2) spanning at least 70% of the domain, and (3) starting between 6 p.m. and 3 

a.m. local (CST) time. Applying these rules 84, 79, 20, and 19 events are identified in 

SPCAM:PI, SPCAM:4x, CAM:PI, and CAM:4x, respectively over the five MJJA 

seasons, which trace events starting in phases 1 and 2 (green) and ending in phases 7 and 

8 (red) in Figure 5.11 (a-d). Composite analysis by phase reveals that the events 

identified in CAM do not represent active convective and precipitating systems, but are 

rather advected condensate (not shown, see Kooperman et al. [2013]). 
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Figure 5.11: Phase diagram of EOF PC time series 1 and 2 tracing MCS events for (a,b) 
SPCAM and (c,d) CAM (a,c) PI and (b,d) 4x simulations, and composite event phase 
average of precipitation (colors) and longwave cloud forcing (contours) for phases (e,i) 1 
and 2, (f,j) 3 and 4, (g,k) 5 and 6, and (h,l) 7 and 8 in SPCAM (e-h) PI and (i-l) 4x 
simulations; right/45˚ (left/-45˚) slashes indicate that precipitation (longwave cloud 
forcing) is significant at 95% confidence interval; depicted as in Figures 2 and 3 from 
Kooperman et al. [2013] (Figures 4.3 and 4.4 in Chapter 4). 
 

 The composite results for SPCAM in Figure 5.11 (e-l) show an eastward 

propagating system with increasing phase in both the PI and 4xCO2 simulations. In both 
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simulations the composite system enters the western boundary in phases 1/2 and reaches 

the eastern side in phases 7/8, with rain beginning in phases 1/2 and intensifying during 

the middle (nocturnal) phases. Rainfall appears to extend to the Southeast US in phases 

7/8, but is due to a projection of the diurnal timing of rainfall over the Southeast onto the 

composite timing of phases 7/8, and is not part of the Central US propagating system. A 

clear amplification of the composite storm can be seen with the addition of 4xCO2. The 

system is much broader in all phases and increases the magnitude (~15 Wm-2) of 

longwave cloud forcing in phases 5 through 8. Likewise, precipitation increases during 

all phases, with a maximum in phases 5/6, increasing significantly from ~11 mm day-1 in 

the PI simulation to ~15 mm day-1 in the 4xCO2 simulation. This result is consistent with 

the intensification of the low-level jet and Central US moisture convergence discussed 

above, but a full composite analysis of the processes contributing to amplified MCS 

activity will be the focus of future work. 

 Changes in MCS storm intensity are one manifestation of a more general shift 

toward higher rain rates in SPCAM, at all times of day. Focusing on the Central US 

region (left side of the orange box in Figure 5.11e-l), rain rate PDFs are recreated in 

Figure 5.12 unfolding the diurnal signature of rainfall intensity changes. Reduced rain in 

CAM occurs almost entirely during its overly dramatic afternoon rainfall peak, with little 

change at other times of day. SPCAM has a more realistically bimodal diurnal rainfall 

PDF, and although it also projects the largest reduction in afternoon rainfall at moderate 

rain rates, it also captures a projection of increased heavy rain at all times of day, 

including the nocturnal component consistent with the MCS amplification noted above. 
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The shift in intensity in the afternoon component in this region is consistent with results 

for the larger Central-Eastern US region, toward higher rates in SPCAM. 

 

 
Figure 5.12: Five-year seasonal (MJJA) Central US accumulated precipitation (mm) as a 
joint function of precipitation rate and local time of day for (a, d) PI, (b, e) 4x, and (c, f) 
the difference between 4x and PI from (a-c) CAM and (d-f) SPCAM simulations; with 
exponential bin spacing in increments of 100.1 mm day-1; for the left hand side of the 
region in Figure 5.11(e-l). 
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 In summary, two state of the art climate models – one including a radically 

updated explicit representation of deep convection – have been analyzed to assess the fast 

effect of dramatic climate change (4xCO2) on Central US rainfall and its variability. 

CAM and SPCAM show similar seasonal mean patterns of change in Alaska and west of 

the Rockies – regions associated with more large-scale stratiform precipitation, but 

project a very different hydroclimate response in the Central-Eastern US – regions where 

summer rainfall is mostly generated by deeper local and propagating mesoscale 

convection. The mean precipitation response in this region depends critically on changes 

in regional circulation patterns that impact the supply of moisture and energy, and 

respond very differently in the two simulations, suggesting an important role of super-

parameterization on the dynamic sensitivity of regional circulations. Conventionally 

parameterized CAM is more dynamically sensitive to climate change in the vicinity of 

the jet streak downstream of the Rockies, including a widespread increase of 

southeasterly winds along the US east coast providing a moisture source for increased 

rainfall there. However, in SPCAM, somewhat more muted dynamical sensitivities are 

observed, less phase-locked to orography and including an increase in mean rainfall in 

the Central US linked to an intensification of the low-level jet, with a decrease in rainfall 

over the east coast resulting from anomalous northerly flow. 

 The inter-model differences in large-scale circulation anomalies over the US are 

linked to a larger planetary response that also exhibits interesting sensitivities to super-

parameterization. Even when constrained by prescribed sea surface temperatures and sea 

ice, and springtime initial conditions, the representation of convection can generate non-

local and global circulation changes that contribute to differences in regional 
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precipitation patterns – an effect that cannot be captured in RCM climate change 

simulations. In this experiment, CAM has a larger increase in high-latitude temperature 

(polar amplified warming) with associated geopotential height modulations and a greater 

expansion and weakening of the Ferrel circulation than SPCAM. This weakens the 

Northern Hemisphere zonal jet and reduces vertical wind shear across North America 

more in CAM. 

 The projected response of rainfall variability and the intensity of extremes to 

climate change are regionally consistent for each model, despite discrepant predictions of 

regional mean changes. SPCAM simulations indicate a significant increase in convective 

storm activity with 4xCO2, projecting greater longwave cloud forcing, precipitation, and 

storm duration in association with a general increase in overall rainfall intensity 

throughout the Central-Eastern US, in line with current theory. On the other hand, CAM 

does not simulate propagating convective storms and shows an opposite, unexpected 

effect – a small reduction in rainfall intensity. It is well known that conventionally 

parameterized GCMs do not simulate extreme precipitation; they rain too weakly and too 

often compared to observations. Here this is confirmed and it is further illustrated how 

changes in the extremes in these conventional models can become unrealistically 

controlled by the physics that affect large-scale (resolved-scale) precipitation, rather than 

environmental parameters affecting sub-grid-scale parameterized deep convection. PDF 

decomposition emphasizes that this factor contributes to the opposite response between 

the two models and provides some cautionary evidence that even the direction of the 

change in “what is extreme precipitation for conventional GCMs” may not be reliable in 

some regions and during some seasons. 
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 One limitation of our experimental design, driving SPCAM with CESM/CAM 

boundary conditions, is that it leaves open an important question of whether SPCAM 

would have arrived at a similar climate state had it been allowed to evolve freely in a 

coupled SPCESM simulation. Such a simulation would be computationally very 

expensive and is outside the scope of this experiment, but is planned as part of a larger 

CMMAP initiative. Future work will analyze differences between such a fully coupled 

SPCESM simulation and the SPCAM results presented here, which will help elucidate 

the role of differences in long-term planetary feedbacks on US summer climate from the 

fast, boundary-driven component analyzed here. Future work will also provide a detailed 

analysis of MCS composite statistics to identify climate change drivers contributing to 

storm intensification in SPCAM, and their links to the generation of rainfall extremes in 

both conventional and super-parameterized climate models. 
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Conclusions 

 The present conventional climate modeling paradigm – resolve atmospheric 

dynamics above a single computationally affordable scale and parameterize all remaining 

unresolved processes with a single set of statistical approximations – has led to 

significant distortions of clouds in current GCMs. Many important processes are poorly 

represented, including the sensitivity of cloud radiative properties to aerosol particle 

perturbations – aerosol indirect effects, organized mesoscale convection and propagating 

storm systems, and the timing, intensity, and variability of regional rainfall. As a result, 

the anthropogenic radiative forcing of the climate system, and long-term climate 

projections of changes in regional rainfall patterns and convective storm intensity, remain 

uncertain. 

 This dissertation has aimed to make progress on some sources of uncertainty, 

exploring a new method for global modeling that challenges the existing paradigm. 

Rather than resolve a single scale, explicitly treat two scales – global-scale dynamics and 

cloud-scale convection – simultaneously with an approach called super-parameterization. 

This is a computationally expensive approach, but it is appealing because it is extremely 

scalable on current super-computing architecture, and it circumvents the need to make 

unrealistic assumptions about the macro-scale behavior of sub-grid-scale physics. 

Previous work has demonstrated that this is a promising method for improving the 

representation of aerosol-cloud interactions and rainfall variability, but to date many 

important issues raised by the super-parameterization approach remain largely 
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unexplored. Here new SPCAM experiments target several critical unanswered scientific 

questions. 

 We began in Chapter 1 with a statement of questions and we now return to them, 

first focusing on the impacts of anthropogenic aerosol pollution on the radiative 

properties of clouds and Earth’s energy balance – aerosol indirect effects. 

 (Chapter 3) Current GCMs estimate that aerosol indirect effects significantly 

offset the global mean greenhouse gas warming (thus contributing a strong negative 

radiative forcing), but are these estimates altered when the GCMs are generalized to 

include an explicit representation of convection and cloud-scale aerosol-cloud 

interactions? 

 In Chapter 3, Newtonian relaxation (nudging) is used for the first time to 

constrain global aerosol indirect effects. Current estimates from GCMs exhibit a wide 

range of sensitivity to aerosol emissions for both the radiative properties and lifetime of 

clouds, which limits our understanding of anthropogenic influences on the global energy 

balance (radiative forcing). Unconstrained meteorology, difficulty observing cloud and 

aerosol fields simultaneously, and a relatively short global satellite record have made it 

challenging to isolate statistically significant indirect effects using observations. Even for 

models, the influence of natural variability complicates the detection of a meaningful 

signal, which typically requires long integrations that are prohibitively expensive for 

state-of-the-art GCMs. Nudging is shown to reduce differences in natural variability and 

shorten required simulation time in order to bring SPCAM to bear on this important 

problem. 
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 Ten-year CAM simulations with nudging provide a more stable estimate of the 

global-annual mean net aerosol indirect radiative forcing than do conventional free-

running simulations. The estimates have mean values and 95% confidence intervals of     

-1.19 ± 0.02 Wm-2 and -1.37 ± 0.13 Wm-2 for nudged and free-running simulations, 

respectively. Nudging also substantially increases the pattern correlation between one-

year and ten-year averages from 0.59 to 0.95, and the fraction of the world’s area in 

which a statistically significant aerosol indirect effect can be detected from 28% to 66%. 

The regional patterns of the aerosol indirect forcing are captured in just one-year nudged 

simulations, which show a clear increase in the magnitude of the cloud forcing across the 

North Pacific Ocean and near the northwestern coast of South America. 

 One-year SPCAM simulations with and without nudging provide global-annual 

mean net aerosol indirect radiative forcing estimates of -0.81 Wm-2 and -0.82 Wm-2, 

respectively.  These values are substantially lower than the values from CAM, which 

results from both smaller changes in the aerosol burden and a weaker relationship 

between cloud condensation nuclei and liquid water path. These results compare well 

with previous estimates from three-year free-running SPCAM simulations (-0.83 Wm-2), 

which showed the aerosol-cloud relationship to be in better agreement with observations 

and high-resolution models than in the results obtained with conventional cloud 

parameterizations. The general forcing pattern is similar to CAM, but is weaker overall, 

especially in regions with the highest aerosol burdens. 

 In Chapter 4 the focus shifts to the regional climate of the Central US during 

summer and an evaluation of the organized mesoscale convective systems (MCSs) that 

bring the majority of seasonal rainfall to the region. 
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 (Chapter 4) Can super-parameterization provide the framework necessary to 

simulate mesoscale convective storm systems, improving the simulated variability of 

Central US summer rainfall, while remaining coupled to global climate? How well do the 

important characteristics of model-simulated storms compare to the timing, magnitude, 

and spatial extent of observed storms?  

 Propagating MCSs are not captured in conventional GCMs with parameterized 

convection. As a result, models disagree on even the sign of future rainfall trends. 

Previous work with an early version of SPCAM identified the existence of propagating 

convection and improvement in the diurnal timing and intensity of Central US 

precipitation. Building on these results, a new regional index has been developed to 

quantitatively compare the representation of MCSs in the most recent versions of CAM 

and SPCAM to earlier versions and observations. 

 The index is shown to provide an efficient metric to isolate strong eastward 

propagating convection, and with a simple set of criteria, identify MCS events and 

composite their propagation by phase. Results show that nocturnal, eastward propagating 

convection is a robust effect of super-parameterization, but is sensitive to the details of its 

specific implementation. Composite statistics based on the MCS index indicate that in 

earlier versions of SPCAM (3.0 and 3.5), convective MCS anomalies are unrealistically 

large-scale and concentrated, while surface precipitation is too weak. These aspects of the 

MCS signal are improved in the latest version (5.0), which includes high-order 

microphysics and interactive aerosol-cloud physics. SPCAM version 5.0 is shown to have 

the best tested representation of composite MCS events, with the magnitude and spatial 
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extent of modeled longwave cloud forcing and co-located precipitation in good 

agreement with observations. 

 This work demonstrates that Central US propagating mesoscale convection 

captured by super-parameterization provides a promising new avenue to study convective 

rainfall in the context of global change, which is further explored in Chapter 5. 

 (Chapter 5) As US summer rainfall responds to higher greenhouse gas 

concentrations, will climate change project onto natural patterns of rainfall variability or 

will it shift the system to a new precipitation regime? Will convective storms become 

more or less intense in a warmer world? 

 In Chapter 5, CAM and SPCAM are driven by boundary conditions created from 

fully coupled CESM pre-industrial and quadrupled CO2 simulation output, in a time-slice 

experiment design that helps bring SPCAM to bear on these critical scientific questions. 

The two models produce very different changes in mean precipitation patterns in the 

Central-Eastern US, which develop from differences in large-scale circulation anomalies 

associated with the planetary-scale response to warming. CAM is more dynamically 

sensitive to climate change, producing a large geopotential height anomaly over North 

America that extends east over the Atlantic Ocean. This is linked to a reduction in zonal 

wind and vertical wind shear downstream of the Rocky Mountains, and an increase of 

southeasterly winds along the US east coast providing a moisture source for increased 

rainfall there. In SPCAM, the dynamical sensitivities are more muted and less phase-

locked to orography, which result in anomalous northerly flow and decreased rainfall 
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over the east coast, and an intensification of the low-level jet and a small increase in 

mean rainfall in the Central US. 

 The projected response of rainfall intensity to climate change is regionally 

consistent for each model, despite discrepant predictions of regional mean changes. CAM 

has a small decrease in overall rainfall intensity in the Central-Eastern US, with an 

increased contribution from weak parameterized convection and a decrease from large-

scale precipitation. SPCAM has the opposite response, a significant shift in rainfall 

occurrence towards higher precipitation rates including more intense propagating Central 

US MCSs in a four-times CO2 climate, which is more consistent with current theory. This 

work provides evidence that the extreme rainfall produced in conventional GCMs may be 

unrealistically controlled by physical mechanisms that are unable to respond to important 

drivers of climate change. The increased degrees of freedom and explicit treatment of 

convection in SPCAM holds promise for improving regional projections while remaining 

sensitive to global-scale feedbacks. 

 Limitations of current convective parameterizations undermine confidence in 

projections of future climate change and suggest a growing need for an alternative 

approach. In this dissertation one such alternative is explored – super-parameterization, 

which indicates that aerosol indirect effects may be over-estimated in GCMs that do not 

explicitly resolve convection, and important shifts in the intensity of extreme rainfall on 

regional scales cannot be captured without a realistic representation of organized 

convection in global models. As such, the research presented in this dissertation has led 

to several ongoing experiments and has suggested possible future work. 
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 The nudging approach presented in chapter 3 provides a quantitative control on 

the timescales over which aerosol effects are allowed to develop, and may be useful for 

isolating aerosol responses ranging from instantaneous albedo effects to long-term shifts 

in cloud distributions. It may also help evaluate the regional structure and regime-

dependence of aerosol indirect effects, where natural variability can play an even larger 

role in masking the anthropogenic influence than at global scales. The method could also 

be useful for evaluating new model development, such as the ice nucleation scheme now 

being added to SPCAM at Scripps Institution of Oceanography. Furthermore, nudging 

facilitates direct model-observation (fixed observing sites, field campaigns, and satellite 

measurements) and model-model intercomparisons when constrained toward reanalyzed 

wind fields, which, based on our work, has become the preferred method of the current 

Aerosol Comparisons between Observations and Models (AeroCom) Indirect Forcing 

Experiment (https://wiki.met.no/aerocom/indirect). 

 Many components of SPCAM have been updated from versions 3 and 3.5 to 

version 5, both at the inner CRM-scale and outer GCM-scale. In chapter 4 we have 

attributed the improved representation of MCSs in SPCAM5, including a reduction in 

previously over-simulated ice condensate and an increase in surface precipitation, to a 

higher-order representation of cloud microphysics. However, more work is needed to 

clarify this encouraging result, and evaluate the importance of other model updates, as 

well as the role of model configuration and resolution. A set of simulations isolating 

individual changes that have been made between versions 3.5 and 5, could help evaluate 

the impact of each change on Central US mesoscale convection using the new MCS 

index presented here. The MCS index could also be applied it analyze the inter-annual 
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variability of MCS statistics, and the vertical structure of composite MCS storms by their 

phase of propagation. 

 Future work will also analyze the role of land-atmosphere coupling for Central 

US hydroclimate and its importance for MCS initiation and propagation. Land-

atmosphere coupling in this transition region between the arid west and the wet east is 

believed to play an especially critical role in mediating local weather and climate. Since 

SPCAM improves the critical (yet poorly represented by GCMs) rainwater input to the 

land surface, it may be a useful tool for evaluating how the hydrological cycle will 

respond to the anthropogenic influences of irrigation and climate change, and for 

isolating which of the complex set of land-surface energy exchange mechanisms play the 

most critical roles. Finally, repeating the analysis presented in chapter 5 with a fully 

coupled SPCESM climate change simulation would provide an opportunity to investigate 

the impacts of long-term planetary feedbacks on US summer climate that may develop 

differently in SPCAM and CAM, and compare these results to the boundary-driven 

SPCAM climate change simulations evaluated here. 

 Taken together the results presented in this dissertation strongly suggest that 

super-parameterization is a promising approach to improve global climate modeling. 

Super-parameterization improves model realism in important ways, deepens our 

understanding of key physical processes, and may supply more realistic and trustworthy 

projections of future climate change on global and regional scales. 
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