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Abstract Philosophers and social scientists have recently turned to Lewis sender–

receiver games to provide an account of how lexical terms can acquire meaning

through an evolutionary process. However, the evolution of meaning is contingent on

both the particular sender–receiver game played and the choice of evolutionary

dynamic. In this paper I explore some differences between models that presume an

infinitely large and randomly mixed population and models in which a finite number

of agents communicate with their neighbors in a social network. My results show that

communication with neighbors is more conducive to the evolution of meaning than

communication with strangers. Additionally, I show that the behavior of the system

is highly dependent on the topological structure of the social network. I argue that a

specific class of networks—small world graphs—is especially conducive to the

evolution of meaning. This is because small world graphs have a short characteristic

path length while still maintaining a high degree of correlation between neighbors.

Since many actual social networks, such as friendship networks and nervous systems,

are conjectured to be small world structures, these results indicate that these net-

works are quite hospitable to the efficient evolution of meaning.

Keywords Evolution � Meaning � Dynamics � Game theory � Signaling �
Small world � Network � Graph � Communication � Correlation

1 Introduction

Evolutionary game theory has become a useful tool for scholars attempting to

explain the emergence and persistence of social phenomena such as cooperation,
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fairness, and communication. It is common for this sort of model to presume an

infinitely large, well-mixed population of agents interacting at random. In fact, this

is an assumption of the replicator dynamic, which is one of the most frequently used

evolutionary rules in the philosophical literature. Many other influential models of

social behavior rely on a dynamical framework known as either Herrnstein or Roth

and Erev Reinforcement Learning. Although reinforcement learning does not

directly assume an infinite population, it has been proved that its long-run behavior

approximates that of the replicator dynamic (Beggs 2005).

Unfortunately, these results do not always transfer to models using other

plausible evolutionary rules. Indeed, it is sometimes the case that results obtained in

large population models do not apply to arguably more realistic models in which

agents are embedded in a network and only interact with their neighbors. For

example, defection in the prisoner’s dilemma always takes over the entire

population under the replicator dynamic, but cooperation can persist when played

on a network (Pollock 1989; Nowak and May 1992). Cooperation in the stag hunt is

also more prevalent when the players are embedded in a network. Skyrms (2004)

has found that over 99% of spatial stag hunts ended in stag hunting compared to far

fewer with the replicator dynamic. Alexander and Skyrms (1999) have likewise

shown that although fair division in the Nash bargaining game arises in a mere 60%

of trials using the replicator dynamic, it is the virtually unique solution when the

game is played with neighbors on a lattice. Similarly, Zollman (2005) has

demonstrated that the behavior of agents playing a sender–receiver game with their

neighbors on a lattice differs substantially from large population models of the same

game. Under the replicator dynamic the entire population converges to the same

strategy, but on a lattice many stable regions of agents adopt their own

communication conventions.

In many ways this paper continues Zollman’s (2005) analysis of the evolution of

communication on a lattice. I expand on his work by investigating variations of the

standard sender–receiver game that do not always converge to perfect communi-

cation in replicator dynamic models. As will be shown, interaction with neighbors in

a social network is more conducive to the emergence of perfect communication than

the replicator dynamic. I also consider a wide class of network topologies. It turns

out that the behavior of the system is highly contingent upon the structure of the

network. Even slight modifications to the connections in a two dimensional lattice

can cause large changes in the population’s collective behavior. In particular, if a

small number of edges are rewired, then regions of agents playing certain

undesirable strategies can persist on the network. Random rewiring of edges can

also drastically affect the number of regions that form.

2 Sender–Receiver Games

Sender–receiver games were originally introduced by David Lewis in Convention
(1969) to explain how linguistic terms can acquire meaning through nothing but the

coordination of speakers and hearers. The framework for sender–receiver games is

remarkably simple. The most austere variety consists of two players, two states,
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called s1 and s2, two messages, called m1 and m2, and two actions, called a1 and a2.

Before play begins, the state of the world is chosen at random by nature. The first

player, called the sender, observes the state that nature chose and sends one of the

two messages to the second player, called the receiver. The receiver, who is ignorant

of the state, observes the message and then chooses an action. Each action is the

correct response to exactly one of the states. If the receiver performs the correct

action for the state of the world that obtained, then both players receive a payoff of

1. Otherwise, both players receive no payoff.

For this sort of game, a pure strategy for the sender is a function that maps each

state to a message. Similarly, a strategy for the receiver is a function that maps each

message to an action. In this two state, two message, two act game, there are six

strategy profiles that constitute pure Nash equilibria. Two of these profiles are

perfectly communicative. If the players adopt one of these two profiles, then they

are guaranteed to receive a positive payoff regardless of the state that obtains. These

two equilibria are called signaling systems. The other four Nash equilibria are less

desirable. These babbling equilibria convey no information. A babbling equilibrium

is one in which the sender always sends the same message regardless of the state and

the receiver always performs the same action regardless of the message. Agents

playing a babbling equilibrium perform no better than chance.

In Convention, Lewis implied that the messages in a sender–receiver game gain

meaning when the players adopt a signaling system strategy. Therefore, if we can

explain how the use of signaling system strategies can emerge and persist in an

evolutionary setting, we can explain how messages can acquire meaning. To be

sure, this framework is quite simple—perhaps too simple to apply to human

communication. Nevertheless it is appropriate for modeling less complex commu-

nication systems, such as those employed by social bacteria, neurons, or non-human

animals. Domestic chickens (Gallus gallus domesticus), for instance, identify aerial

and terrestrial predators with two distinct alarm calls (Searcy and Nowicki 2005).

There is a correct response to each type of predator. The optimal response to an

aerial predator is to run for cover while crouching, but the optimal response to a

terrestrial predator is to stand tall and scan the horizontal plane. This interaction

between chicken senders and receivers mirrors the form of a Lewis sender–receiver

game.

Much is known about the evolution of populations playing this sort of two state

game in which the states are equiprobable. Skyrms (1996) has shown that under the

replicator dynamic, which is meant to simulate a large, well-mixed population of

players that interact in pairs chosen at random, the population always converges to a

signaling system equilibrium. Huttegger (2007) has recently proved this result

analytically. Additionally, Zollman (2005) has shown that agents playing this game

on a grid lattice and updating their strategies by imitating their best neighbor will

always converge to regional signaling systems. Each agent adopts a signaling

system strategy, but the entire lattice does not necessarily adopt the same strategy.

In Zollman’s setup agents within each stable region perfectly communicate with

each other, but they completely miscommunicate with agents inhabiting another

region using a different signaling system.

Communication and Structured Correlation 379

123



However, it has only lately become known that such nice results do not

necessarily hold for even slight modifications of this very simple game. Huttegger

(2007) has proven that if the states are not equiprobable, then there is a chance that

the population will converge to a non-communicative babbling equilibrium. Using

computer simulations, I found approximately 41% of runs using the discrete-time

replicator dynamic ended with the population playing a babbling equilibrium when

p(s1) = .9 and p(s2) = .1.

Additionally, another sort of Nash equilibrium exists in sender–receiver games

with n states, n messages, and n actions when n [ 2. This type of equilibrium, called

partial pooling, conveys some information about the state, but is not perfectly

communicative like a signaling system. Huttegger (2007) proved that if n [ 2, then

a population evolving according to the replicator dynamics has a chance to converge

to a partial pooling equilibrium. Using computer simulations of the discrete time

replicator dynamic, it has been estimated that approximately 4.7% of initial

populations converge to partial pooling (Huttegger et al. 2009).

3 Communication About More Than Two States

3.1 Simulation Results

Since network interaction aids the emergence of fair bargaining and cooperation, a

natural question to ask is whether interaction with neighbors also aids the evolution

of perfect communication under these unfavorable circumstances (non-equiprobable

states and more than two states). The short answer is yes. Interaction with neighbors

increases the likelihood of perfect communication. But the full story is rather subtle.

Following Alexander and Skyrms (1999) and Zollman (2005) the first model I

consider will be 10,000 agents arranged on a 100 by 100 two dimensional lattice

mapped to a torus. Each agent’s neighbors are given by the Moore-8 neighborhood

(an agent’s neighbors are those vertices directly to her NW, N, NE, E, SE, S, SW,

W), although the qualitative behavior of this system is identical to the case in which

the agents only interact with their four von Neumann neighbors (N, E, S, W). Before

play begins each agent is randomly assigned both a sending strategy and a receiving

strategy. An iteration of the dynamic consists of two steps. First, each agent plays

with each of her neighbors twice—once as sender and once as receiver. Summing

the payoffs from these 16 encounters and then dividing this sum by the number of

games played gives the agent’s average payoff for the round. Each agent observes

the average payoff of each of her neighbors and then adopts both the sending and

receiving strategies of her most successful neighbor, so long as her most successful

neighbor received a higher payoff than herself. Otherwise the agent does not switch

strategies. Ties are broken by coin flips. This evolutionary rule is known as the

imitate-the-best dynamic.

Consider the case in which there are more than two possible states of nature.

Recall that with the replicator dynamic 4.7% of trials fell into partial pooling

equilibria when there were three possible states. For the network interaction model
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described above, all simulations (out of ten thousand total) converged to regional

signaling systems. Inefficient partial pooling strategies were driven to extinction.

The impact of network interaction is even more pronounced as the number of

states increases. When there are four states, approximately 24% of trials converge to

a signaling system using the replicator dynamics. However, 200 out of 200 trials of

1,000,000 agents arranged on a 1,000 by 1,000 two dimensional lattice converged to

regional signaling systems. For an n state sender–receiver game, there are n2n

possible strategy profiles, but only n! of these profiles are signaling systems. So, in

the random starting configuration of the network, each agent will be using a

signaling strategy with probability n!
n2n : Therefore, the number of agents on the

network must grow exponentially in n for it to be even modestly likely that some

agent will begin the simulation by playing a signaling system strategy. However,

these simulation results indicate that for any n, the lattice can be made sufficiently

large so that the system is virtually guaranteed to converge to regional signaling

systems. Although, as is true of any theoretical system with exponential growth,

such a lattice will be unrealistically large for even moderately sized n. For example,

with n = 10, a 107 by 107 lattice is expected only to contain about 3.6 agents using

signaling system strategies.

3.2 Analysis

All observed simulations of the three state, three message, three act sender–receiver

game played on the Moore-8 toroidal lattice ended with partial pooling strategies

driven to extinction. But is it ever possible for a region of agents playing partial

pooling strategies to stably coexist with signaling systems on the network? Since an

agent on the interior of a region can only imitate its own strategy, the key to a

region’s stability is interaction along its frontiers. A partial pooling region will be

stable just in case each partial pooler on the frontier imitates an interior partial

pooler instead of a frontier signaling system. As shown in Fig. 1, there are three

relevant shapes that a frontier between regions can take. In order to investigate the

potential stability of partial pooling it is necessary to consider the stability of each

frontier structures in turn.

In the first case a frontier partial pooler is adjacent to three fellow partial poolers

and five signalers. At least one of these partial poolers is on the interior of the region

and interacts solely with other partial poolers to earn an average payoff of 2
3
: The

frontier partial pooler is also adjacent to a frontier signaler that interacts with seven

Fig. 1 The three relevant shapes that the border between two regions can take. Agents using a signaling
system strategy are denoted with the letter S. Agents using a partial pooling strategy are denoted with the
letter P
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other signaling systems and only a single partial pooler. Suppose this signaling

system completely miscommunicates with the partial pooling strategy (Fig. 2).

Then the frontier signaler earns nothing when interacting with a partial pooler, but

earns the maximum payoff of one when either sending to or receiving from another

signaler. This gives the frontier signaler an average payoff of 7
8

which is greater than

the 2
3

that an interior partial pooler earns. Consequently the frontier partial pooler

will imitate the frontier signaler and the region of partial pooling will not be stable.

In the second case a frontier partial pooler is adjacent to five fellow partial

poolers and three signalers. The region is stable if an interior partial pooler earns a

greater payoff than a frontier signaler. In this case each frontier signaler is adjacent

to three partial poolers and five other signalers, so each frontier signaler earns an

average payoff of 5
8
: This is less than the 2

3
earned by an interior partial pooler.

Therefore, the frontier partial pooler will imitate the interior partial pooler and the

region will be stable.

In the third case a frontier partial pooler is adjacent to seven fellow partial

poolers and a single frontier signaler. This frontier signaler performs quite poorly

since she interacts with only three other signalers. She earns an average payoff of 3
8

which is less than the 2
3

earned by an interior partial pooler. Thus the frontier partial

pooler will imitate an interior partial pooler and the corner between regions will be

stable.

Notice, however, that the stability of the frontier in case two, and hence the

persistence of partial pooling on the lattice, relies on total miscommunication

between agents in the two regions. For example, suppose that some information is

exchanged between the boundary agents. If an agent playing a signaling system

strategy and an agent playing a partial pooling strategy communicate correctly

about just one of the three states, then the frontier signaler’s payoff becomes 6
8
: This

payoff is greater than the 2
3

that the interior partial pooler earns, so the partial pooler

on the frontier will imitate the frontier signaling system. This imitation destabilizes

the region of partial poolers. So regions of partial pooling strategies can persist on

the network provided that they only share borders with the signaling system that

they completely miscommunicate with.

This analysis shows that partial pooling can coexist stably with signaling systems

on a network only if two rather unlikely conditions are fulfilled. No partial pooler

can be adjacent to a signaling system with which it partially communicates. And the

region of partial poolers cannot include a corner surrounded by signaling systems on

five out of eight sides. The second condition can be satisfied if the region of partial

poolers either occupies a slice of the toroidal lattice or entirely surrounds a

rectangular region of signalers. Although a theoretic possibility, the likelihood of

Fig. 2 A signaling system and a partial pooling equilibrium that exchange no information
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these two conditions being simultaneously fulfilled for a region of partial poolers is

quite small. This explains the fact that partial pooling equilibria are never seen in

simulations executed on a sufficiently large lattice.

4 Communication When Nature is Biased

4.1 Simulation Results

The situation is more complicated for two-state sender–receiver games in which

nature flips a biased coin to determine the state. As Fig. 3 shows, as p(s1) increases

from .55 to .95, the number of discrete-time replicator dynamic simulations that

don’t converge to signaling systems grows in a uniform manner. On the other hand,

all observed imitate-the-best simulations on a 100 9 100 Moore-8 toroidal lattice

converged to regional signaling systems unless p(s1) C .9. When p(s1) = .95, 156

out of 300 simulations ended in a stable state in which a region of agents using a

babbling strategy was surrounded by a region of agents using a signaling system.

But, these babbling regions were always small. Of the 156 trials that ended with

babblers, an average of 99.311% of agents were using signaling system strategies.

Similarly, when p(s1) = .9, 123 of 300 simulations ended in a stable state in

which not all agents had adopted signaling system strategies, but here the non-

signaling system being played was not a babbling equilibrium. Instead it was a non-

Nash equilibrium strategy of the form shown in Fig. 4. This half babbling strategy

sends the same message regardless of the state, but discriminates between messages

Fig. 3 Proportion of simulations that did not converge to signaling systems under the replicator and
imitate-the-best dynamics. Imitate-the-best simulations were performed on a 100 9 100 Moore-8 toroidal
lattice
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when choosing an action. The regions of half babblers seen in simulations always

perfectly miscommunicate when receiving messages from the surrounding signaling

systems. That is, they earn absolutely no payoff when receiving a message from an

adjacent signaling system. It is, perhaps, surprising to see the emergence of non-

Nash play in the sender–receiver game. The replicator dynamics, for example, never

converge to half babbling strategies because they are not Nash equilibria of the

sender–receiver game. But it has been shown that the imitate-the-best dynamic can

lead to cooperation in the prisoner’s dilemma persisting on the Moore-8 lattice

(Nowak and May 1992), so this is not the sole instance of imitate-the-best leading to

non-Nash equilibrium behavior.

These simulation results suggest that the interaction environment of the Moore-8

toroidal lattice is more hospitable to the emergence of perfect communication than

the well-mixed environment presumed by the replicator dynamic in two ways. First,

unless the disparity between p(s1) and p(s2) is quite large, babbling equilibria and

half babbling strategies are driven to extinction on the lattice. Second, even when

non-signaling system strategies persist on the lattice, they are only seen in small

regions. The lattice overwhelmingly adopts signaling systems, and only small

regions maintain inefficient communication strategies.

4.2 Analysis

The fact that non-signaling system strategies are never observed in simulations on a

lattice until the disparity between state probabilities becomes quite large indicates

that there may be a particular threshold of p(s1) such that babbling and half babbling

strategies are unstable below the threshold but become stable above. This is indeed

the case. Just like in the analysis of the three state sender receiver game, interaction

along the frontiers between regions determines the stability of the regions. The three

relevant frontier structures to consider are the same as in Fig. 1, except here the role

of partial pooling is played by a half babbling strategy.

Suppose that p(s1) = a and p(s2) = 1 - a. Let the signaling system and half

babbling strategies shown in Fig. 4 be the particular ones played. Then a frontier

signaler will earn 1 when sending to or receiving from another signaler, 0 when

sending to a half babbler, and 1 - a when receiving from a half babbler. An interior

half babbler interacts only with fellow half babblers and hence receives an average

payoff of a. In the first case (as shown in Fig. 1), the frontier signaler interacts with

seven signalers and one half babbler to earn an average payoff of 15�a
16

:
Consequently, the frontier half babbler will imitate the interior half babbler only

if a[ 15
17
� :8824: This explains why stable rectangles of half babblers were seen in

simulations when p(s1) = .9.

Fig. 4 A signaling system and the babbling and half babbling strategies that miscommunicate with it

384 E. Wagner

123



In the second case, a frontier half babbler is adjacent to five fellow half babblers

and three signaling systems. Each frontier signaler interacts with five other signaling

systems and three half babblers to earn an average payoff of 13�3a
16

: Therefore, the

frontier half babbler will imitate an interior babbler instead of a frontier signaler just

in case a[ 13
19
� :6842:

In the third case, a frontier half babbler is adjacent to seven fellow half babblers

and a single signaler. This frontier signaler interacts with three signalers and five

half babblers to earn an average payoff of 11�6a
16

: So this frontier half babbler in the

corner between regions will imitate an interior half babbler if a[ 1
2
: But this case is

rather redundant because a region that includes this sort of corner and is large

enough to contain an interior half babbler must also include a frontier in the shape of

case two. So for a convex region of half babblers with a case two shaped corner to

be stable, it must be the case that a[ 13
19
:

This analysis can be carried out in a similar fashion to determine the conditions

under which babbling equilibria become stable. A frontier signaler earns 1 - a
when receiving from a babbler and earns a when sending to a babbler. It turns out

that a case one corner of babblers is stable if a[ 15
16
: A case two edge is stable if

a[ 13
16
: And a region of babblers with a case three corner is also stable if a[ 13

16
:

Now it is possible to completely characterize the conditions under which regions

playing non-signaling system strategies can be stable on the Moore-8 lattice. When

pðs1Þ[ 13
19
� :6842; regions of half babblers that do not include a case one style

corner become stable. This sort of region is either an entire slice of the toroidal

lattice or completely surrounds a rectangular region of signalers. No stable regions

of this sort were ever seen in simulations. When pðs1Þ[ 13
16
¼ :8125; regions of the

same shape populated by babblers becomes stable. This type of region was also

never seen in simulations. When pðs1Þ[ 15
17
� :8824; regions of half babblers that

include a case one corner become stable. Regions of this sort were often seen in

simulations when p(s1) = .9. When pðs1Þ[ 15
16
¼ :9375; the same type of region

populated by babblers becomes stable. This sort of region was often seen in

simulations when p(s2) = .95.

It is worth noting that this sort of analysis can be extended beyond models of

agents arranged on a lattice playing with their Moore-8 neighbors. It can be applied

to any sort of graph structure in which each agent has the same number of

neighbors. For example, on a lattice with the von Neumann neighborhood (4

neighbors), babbling becomes stable when pðs1Þ[ 7
8
: But, as the following pair of

theorems illustrates, not all graph structures provide such a favorable environment

for the emergence of perfect communication.

Theorem 1 If agents that update their strategies according to the imitate-the-best
dynamic play a sender–receiver game with their neighbors on a regular graph of
degree k, then regions of agents using babbling equilibria can be stable only if
either pðs1Þ[ kþ1

2k or pðs2Þ[ kþ1
2k :

Proof Without loss of generality, suppose p(s1) [ p(s2). Let p(s1) = a and

p(s2) = 1 - a. For a region of babblers to be resistant to invasion by signaling

systems, each frontier babbler must imitate an interior babbler instead of a frontier

signaler. This requires that interior babblers perform better than each frontier
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signaler. An interior babbler earns an average payoff of a in each round. A frontier

signaler performs worst when adjacent to k - 1 babblers and a single other signaler.

In this case the frontier signaler earns an average payoff of a when sending to a

babbler, 1 - a when receiving from a babbler, and 1 when either sending or

receiving from a signaler. This gives an average payoff of
aðk�1Þþð1�aÞðk�1Þþ2

2k ¼ kþ1
2k :

Therefore regions of babbling can stably coexist with regions of signaling only if

either pðs1Þ[ kþ1
2k or pðs2Þ[ kþ1

2k : h

This theorem shows that there are some regular graph structures on which a

region of babblers can be stable even if nature is only slightly biased. Furthermore,

as the degree of the graph increases, and hence the number of interactions each

agent participates in increases, the disparity between p(s1) and p(s2) required for the

stability of babbling decreases. But the good news here for the emergence perfect

communication is that, regardless of the network structure, babbling regions are

never stable when the states are equiprobable. However, as the next theorem shows,

this pleasant result does not hold for regions of half babblers.

Theorem 2 When the states of nature are equiprobable, regions of half babbling
agents can be stable on some regular graphs of degree k when k [ 3.

Proof Suppose the states of nature are equiprobable so that p(s1) = p(s2) = .5.

Then an interior half babbler will communicate only with other half babblers to earn

an average payoff of .5. A frontier signaler earns 0 with sending to a half babbler, .5

when receiving from a half babbler, and 1 when either sending to or receiving from

a signaler. In the worst case for the frontier signaler, she may be adjacent to k - 1

half babblers and only a single other signaler. In this case she earns an average

payoff of
2þ:5ðk�1Þ

2k : The region of half babblers will be stable only if each frontier

half babbler imitates the interior babbler instead of a frontier signaler. This will

occur if :5 [ 2þ:5ðk�1Þ
2k : Therefore the region will be stable if k [ 3. h

So not only can some regular graphs sustain babbling agents when nature is only

slightly biased, but some regular graphs, such as the one shown in Fig. 5, can

sustain half babbling agents even when the states are equiprobable. Graph structures

that are extremely inhospitable towards signalers, like the one in Fig. 5 or the ones

invoked in the proofs of the above theorems, all have the peculiar property that

agents on the frontier of a region of signalers are perfectly anti-correlated. That is,

agents on the frontier of the signaling region never interact with each other. Instead

of interacting with each other, these agents are fated to interact with many

uncommunicative babblers or half babblers. In contrast to this situation, agents on

the frontiers of regions on the Moore-8 lattice often interact with each other. And,

not so coincidentally, the Moore-8 lattice provides a favorable environment for the

emergence of perfect communication.

The observation that correlation of encounters between agents along the frontiers

aids the emergence of perfect communication can be seen as an instance of the more

general moral from game theoretic analysis that positive correlation of encounters

between agents playing the same strategy increases the likelihood of cooperation

and coordination. This lesson was perhaps first pointed out by Hamilton (1971) who

observed that cooperation can emerge and persist in a population playing a
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prisoner’s dilemma provided that encounters are non-random in such a way as to

make individuals more likely to pair with others who use the same strategy. In the

prisoner’s dilemma this non-random assortment of strategy types causes the

expected fitness of cooperators to increase and the fitness of defectors to decrease.

Although the game being played here is not the prisoner’s dilemma, the graph

structure imposed by agents interacting with their Moore-8 lattice neighbors

generates just this sort of positive correlation along the frontiers between regions.

The Moore-8 lattice structure guarantees that a signaler on the boundary between a

region of signalers and a region of babblers plays at least six of her sixteen games

with other signalers.

This correlation of strategy types along the frontiers is caused by correlation

between neighbors. A signaler on the frontier must be adjacent to an interior

signaler. Each agent adjacent to this interior signaler must also be a signaler.

Consequently, since on the Moore-8 lattice the frontier signaler and the interior

signaler share at least four of the same neighbors, the frontier signaler will often be

found interacting with other signalers. On the Moore-8 lattice the neighbors of any

particular agent are often neighbors of each other, and this correlation between

neighbors causes a corresponding correlation of strategy types along the frontiers

between regions.

On the other hand, in an arbitrary graph a signaler on the frontier between a

group of signalers and a group of babblers may be adjacent to only a single other

signaler. If this is the case, then the frontier signaler will always imitate the interior

signaler despite the fact that the frontier signaler will herself perform poorly

because she may be adjacent to many uncommunicative babblers. And because the

frontier signaler performs so poorly, her uncommunicative neighbors will have less

incentive to imitate her perfectly communicative signaling system strategy.

Lack of correlation between neighbors in a social network means that there is less

positive correlation between agents playing signaling systems on the frontiers. This

lack of correlation between frontier signalers depresses the value of p(s1) for which

babbling and half babbling can stabilize. Graph structures that impose a high degree

Fig. 5 A regular graph of
degree 4 inhabited by a region of
half babblers and a region of
signalers. These regions are
stable even when
p(s1) = p(s2) = .5. Agents
using half babbling strategies are
represented by the letter H.
Signalers are represented by the
letter S
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of correlation between neighbors will therefore be more conducive to the emergence

of signaling systems than graph structures that only weakly correlate neighbors.

5 Communication in Small Worlds

Correlation between neighbors is the feature of network structure that is responsible

for destabilizing regions of inefficient communication. However, different graph

topologies provide different amounts of correlation. A natural next step in this

investigation is to systematically analyze how slight alterations of the graph

topology, and hence small changes to the correlation between neighbors, impacts

the emergence and stability of signaling systems. But before this can be done it is

necessary to chose both a method of measuring correlation between neighbors and a

method of generating graphs that exhibit a controlled amount of correlation.

A graph’s clustering coefficient is one way to measure correlation between

neighbors in a network. The clustering coefficient cv of a vertex v in a graph is the

fraction of possible edges in the neighborhood of v that actually occur in the

neighborhood of v. More precisely, cv ¼ jEðCvÞj=ð
kv

2
Þwhere |E(Cv)| is the number of

edges in the neighborhood of v and kv is the number of vertices adjacent to v. So cv

measures the probability that vertices adjacent to v are also adjacent to each other. The

clustering coefficient c of an entire graph is cv averaged over all vertices in the graph.

Another useful metric for studying graph structures is characteristic path length,

denoted L. Following Watts (1999) I’ll define L as the median of the means of the

shortest path lengths connecting each vertex in the graph to all other vertices.

Finding L for a large graph is quite computationally intensive. So, again following

Watts (1999) in this paper I’ll use a technique due to Huber (1996) that chooses an

appropriately sized random sample of vertices to compute L within an acceptable

margin of error.

Both these metrics have proven useful to mathematicians and sociologists

investigating so-called small-world graphs. If a graph represents a social network in

which edges connect acquaintances, then the clustering coefficient measures the

degree to which a person’s acquaintances are acquainted with each other. And in

this interpretation the characteristic path length of a graph approximates the average

number of acquaintances that separate any two individuals of the social network.

Small-world graphs are those graphs that have a large clustering coefficient and a

short characteristic path length. It is conjectured that many real-world interaction

networks are small-world graphs. Popular examples include the Internet Movie

Database (the Kevin Bacon Game) and co-authorship networks (Erdös numbers).

Also Watts and Strogatz (1998) have shown that the neural connections of the worm

C. elegans exhibit small-world properties, and it is believed that the same goes for

many other neural systems.

To study small-world phenomena, Watts introduced a parameterized family of

graphs called b-graphs. A b-graph is generated by starting with a ring in which each

vertex is connected to its k nearest neighbors. Then, for every vertex v, each of the k
2

leftmost edges is rewired to a random vertex u with probability b. The vertex u is
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chosen uniformly at random from the whole graph omitting redundant connections

and self-loops. For low values of b, b-graphs are highly structured, but as b
increases, the resulting graphs become more and more random. Watts studied b-

graphs because there is a range of b values for which the resulting graphs are highly

clustered and yet have short characteristic path lengths. That is, some b-graphs

exhibit small-world properties, as shown by Fig. 6.

Since b-graphs transition from highly structured (much correlation between

neighbors) to completely random (very little correlation between neighbors) they

provide an excellent way to systematically study how the amount of correlation

between neighbors impacts the emergence of communication in sender–receiver

games. On a ring in which each vertex is connected to its 8 nearest neighbors, half

babbling becomes stable when pðs1Þ[ 15
17
: Thus, if a sender–receiver game with

p(s1) = .88 and p(s2) = .12 is played by 10,000 agents on a b-graph with k = 8, all

agents will adopt signaling system strategies when b = 0. As b increases, however,

the graph becomes less structured. Therefore, as the analysis in the last section

suggests, half babbling should become stable and not all simulations will converge

to perfect communication. Furthermore, if it is truly correlation between neighbors

that is responsible for destabilizing non-signaling system regions, then the

proportion of agents on the network playing signaling systems should follow the

clustering coefficient of the graph as b ranges from 0 to 1. This is indeed what is

seen in simulations. As Fig. 7 shows, the proportion of agents playing signaling

systems closely follows c as b increases.

One might wonder if something about this result is particular to starting with a

ring in which every vertex is connected to its k nearest neighbors. After all, I began

this paper by pointing out that all too often evolutionary game theory results are

dependent on a specific interaction dynamic or on a specific graph topology. For

high b, b-graphs are largely random, but for low b, the properties of b-graphs are
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dominated by the properties of the ring. So, one might also consider performing the

b-graph random rewiring process on the most frequently looked at topology: a two

dimensional toroidal lattice with edges given by the Moore-8 neighborhood.

Remember that non-signaling system strategies were only seen on the Moore-8

lattice when p(s1) C .9. Hence, for sender–receiver games with p(s1) = .88 and

p(s2) = .12, when b = 0, the entire network should adopt signaling system

strategies. As b increases, however, regions of babbling and half babbling should

become stable. Just like on the ring, this is actually what is seen in simulations

(Fig. 8). As b increases, the proportion of agents playing perfectly communicative

signaling systems very closely follows the clustering coefficient of the graph. These

results strongly indicate that it is indeed correlation between neighbors that aids the

emergence of communication when the states are not equiprobable.

As mentioned earlier, one of the most surprising results from Zollman (2005) is

that when sender–receiver games are played on a two dimensional toroidal lattice,

multiple stable regions of communication emerge. Within each region all agents

play the same signaling system. But, at least in the two state sender–receiver game,

agents from a region playing one signaling system utterly miscommunicate with

agents from another region playing a different signaling system. So there is

complete communication within regions, but no communication between regions. In

general, this result holds as network topology is altered. However, different

structures with the same number of vertices can lead to remarkably different

numbers of regions evolving. For example, out of 1,000 simulations on a Moore-8

toroidal lattice with 10,000 agents playing the two state sender–receiver game with

equiprobable states, an average of 9 stable regions existed when the evolution

stabilized. But, on a 10,000 node cycle, an average of 462 stable regions were

observed. And on a 10,000 node wheel, the entire networked evolved to play the
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same signaling system on each of 1,000 out of 1,000 simulations. These results

clearly show that in addition to the network topology influencing the likelihood of

arriving at perfect communication, it can also drastically affect the number of

regions that exist when the evolution stabilizes.

It turns out that the characteristic path length of the graph controls the number of

stable regions that emerge. As b increases, the number of stable regions closely

follows L (Fig. 9). Remember that the characteristic path length is a measure of the

average distance between agents on the graph. So, if L is short, like in the wheel or

the Moore-8 toroidal lattice, then the first signaling system to establish itself will

rapidly spread and take over the entire network. However, if L is long, like in the

ring, it can take many steps of the imitate-the-best dynamic for the signaling system

strategy to spread. During this time, other clusters of different signaling systems are

likely to form.

So, the clustering coefficient of the graph influences the likelihood that agents

will play signaling system strategies when the evolution stabilizes. And the

characteristic path length of the graph influences the number of stable regions of

agents all playing the same strategy. An interesting ramification of these two

observations is that there exists a class of graphs in which very few regions emerge

and that these regions are all perfectly communicative—even when the states are

not equiprobable. This is the class of graphs that are highly clustered and have short

characteristic path lengths. Namely, the class of small-world graphs. It turns out that

small-worlds, like our own social networks and the organization of neural systems,

are very conducive to highly efficient communication. Networks with longer

characteristic path lengths have more regions, and hence more miscommunication

between agents on the borders. Networks with less clustering are more prone to

being inhabited by uncommunicative babblers when evolution stabilizes. It is only
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in the small-world graphs that both babblers are eliminated and that the number of

regions is minimized.

6 Conclusion

Throughout this paper I have investigated the behavior of agents playing a simple

communication game with their neighbors in a social network. Not only do the

results in this sort of model differ greatly from those obtained through models that

presume an infinitely large, well-mixed population, but the results can also differ

greatly depending on the particular network topology that the agents inhabit.

Furthermore, slight changes in structure can cause large changes in collective

behavior. Witness the number of stable signaling system regions on b-graphs, for

example (Fig. 9). With a .2% chance of randomly rewiring each edge, an average of

22.1 regions formed. By increasing the chance of rewiring to only 3%, the average

number of regions decreased to 2.55.

I have also identified one type of correlation present in models of networked

interaction that is not present in random interaction models. Namely, correlation

between neighbors. It is this type of correlation that is responsible for destabilizing

otherwise stable regions of inefficient communication. This is the form of

correlation that makes interaction through social networks a more hospitable

environment for the emergence of perfect communication in sender–receiver games

when nature is biased than, say, the well-mixed environment of a test tube. Due to

high correlation between neighbors and short characteristic path length, one family

of graphs—small worlds—is especially hospitable to the emergence of efficient
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signaling. Fortunately for aspiring communicators, many real-life social interactions

are conjectured to take place through small world network structures.
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