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Abstract 

Improved near-field measurements of earthquake slip and deformation patterns have the 

potential for expanding our understanding of fault behavior and the relationship of active faulting 

to topography. Current techniques for obtaining these measurements – including field 

observation, GNSS displacement estimation, and optical or radar remote sensing – have 

limitations that can be mitigated by the inclusion of results from differential airborne LiDAR 

analysis of the rupture zone. The 2005 airborne LiDAR survey of the southern San Andreas, San 

Jacinto and Banning faults (the “B4 survey”) mapped 1100 km of the most seismically active 

fault systems in southern California for the purpose of providing a baseline for determining slip 

from a future earthquake.  We used the B4 survey to develop a processing algorithm that yields 

rapid estimates of near-fault ground deformation using simultaneous cross correlation of both 

topography and backscatter intensity from pre-earthquake and simulated post-earthquake LiDAR 

datasets.  We show robust recovery of the direction and magnitude of an applied synthetic slip of 

5 m in the horizontal and 0.5 m in the vertical within our area of study, with clear discrimination 

between areas with and without applied slip.  We also successfully recovered more complex 

deformation from a modeled fault stepover in the same study area.  Our results indicate that we 

should be able to recover slip to accuracies of better than 20 cm in the horizontal and 1 cm in the 

vertical, at a spatial resolution of ≤15 m for LiDAR datasets with sample densities as low as 0.5 

points/m2. 

Introduction 

Despite the burgeoning deployment of new geodetic technologies capable of measuring 

ground displacements on a variety of spatial and temporal scales, obtaining a comprehensive 

picture of surface deformation and slip in the near-field of an earthquake remains a challenge.  
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Better near-field measurements could substantially improve our understanding of several 

outstanding problems in tectonic geophysics, including the source of the shallow slip deficit 

observed for surface-rupturing earthquakes such as Landers (Fialko, 2004), Hector Mine 

(Simons et al., 2002) and Izmit (Cakir et al., 2003). Interferometric Synthetic Aperture Radar 

(InSAR)-derived displacement fields for these surface-rupturing earthquakes typically do not 

extend close enough to the rupture zone to fully characterize displacement gradients within a few 

km of the fault.  These gradients are needed to map the extent of the compliant damage zone 

implicated in producing the shallow slip deficit (Fialko et al., 2005; Barbot et al., 2008).  

Another area of research that would benefit from synoptic-scale mapping of near-field 

deformation from large earthquakes is the correlation of the surface expression of individual 

events with pre-existing tectonic landforms.  Some studies of recent earthquakes (Pucci et al., 

2006) have demonstrated a divergence between the impacts of single and cumulative events on 

topography, providing evidence for the long-term evolution of these fault systems.  Others (Lin 

et al., 2001; Lin et al., 2011) indicate very close alignment between coseismic displacements and 

pre-existing structures.  Improving the sampling density and spatial extent of both topography 

and superimposed displacements would facilitate a more quantitative approach to this problem 

for future earthquakes. 

Global Navigation Satellite Systems (GNSS) and Global Positioning System (GPS) 

techniques are capable of sub-centimeter measurements of coseismic surface displacement over 

broad areas (Wdowinski et al., 1997; Ozawa et al., 2004), but even the 1100-station Plate 

Boundary Observatory GPS network has a spatial resolution of only 10~20 kilometers in its 

areas of densest coverage.  InSAR offers sub-decimeter accuracy, broad areal coverage and sub-

kilometer spatial resolution (Figure 1), but requires at least two pairs of images to adequately 

resolve all components of surface displacement.  The need for multiple image pairs exacerbates 

InSAR's problem with decorrelation in the near-field of a rupture (Fialko et al., 2001), since the 
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combined interferogram is only valid in areas where all of its constituents yield valid 

displacement estimates.  Attempts to address this problem have led to the use of cross-correlation 

of SAR amplitude images to yield estimates of coseismic displacements (Michel et al., 1999; 

Yun et al., 2007).  A similar approach has been successfully used on aerial (Michel and Avouac, 

2006) and satellite (Michel and Avouac, 2002) pan-chromatic images.  Although image cross-

correlation yields near-fault measurements at a resolution of hundreds of meters, it is limited to 

horizontal ground displacement and suffers from reduced performance in areas where the images 

are of nearly uniform brightness (i.e. are flat). 

Even in this era of widely available geodetic remote sensing data, field measurements are 

still used for measuring slip in the near field of an earthquake.  Both vertical and horizontal 

relative slip can be measured and the methods employed are time-tested, although the resources 

required for surveying long ruptures and the need to locate unambiguously-offset features limit 

the sampling density.  Intensive fieldwork following the 1999 M 7.1 Hector Mine earthquake 

resulted in 400 observations over 48 km (Treiman et al., 2002), implying an average sampling 

interval of about 100 meters along-strike.  The 2002 M 7.9 Denali earthquake, which ruptured 

remote terrain in central Alaska, was characterized by 127 field measurements over 300 km 

(Haeussler et al., 2004), implying a much lower average sampling resolution of 2 km.   And 

since only the slip directly across identified rupture traces is measured, areas of broad 

deformation or locations where the fault splays or steps over are likely to be poorly 

characterized.  Field measurements may therefore underestimate total slip across the rupture 

zone, as was observed in the comparison of field-based slip estimates for the Hector Mine 

earthquake with extrapolated slip from InSAR measurements in the far-field (Sandwell et al., 

2002). 

Airborne Light Detection And Ranging (LiDAR) has the capacity to address many of the 

shortcomings of other methods of measuring earthquake surface deformation.  Also known as 
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airborne laser swath mapping (ALSM), airborne LiDAR techniques use the time of flight of 

ground-reflected energy from an aircraft-mounted scanning laser to map sub-decimeter surface 

topography at a spatial resolution of better than 50 cm (Rabine et al., 1996; Slatton et al., 2007).  

The intensity of backscattered energy is also recorded for each ground return and provides 

independent information that can be used to characterize surface features.  Spatial coverage off 

the fault is determined by the width of the survey corridor, which typically spans no more than a 

few kilometers on either side of the fault.  LiDAR makes up for its narrow fault-targeted 

coverage with a combination of superior spatial resolution and its potential for unambiguous 

determination of all components of surface deformation. 

Earthquake slip estimation using LiDAR has been limited to date to the analysis of post-

event data acquired months to decades or longer after an earthquake (Hudnut et al., 2002; Zielke 

et al., 2010).  With no pre-event data to provide an absolute reference for subsequent 

measurements, these studies have focused on measuring localized slip at recognizable rupture 

traces, where the signal is large and opposing relative motion across the fault results in easy-to-

identify offsets in topography.  This focus on slip associated with surface-expressed faulting is 

the same limitation that restricts the effectiveness of field measurements, although post-event 

LiDAR analysis has an advantage in that it can be used to generate nearly continuous slip 

estimates along the entire length of the rupture. 

The real potential of LiDAR data for earthquake studies can only be realized when pre-

event and post-event data are compared to give a synoptic view of coseismic deformation over 

the entire rupture zone.  While this comparison is often referred to as "differencing" the pre- and 

post-event datasets, it in fact involves finding the 3D displacement field that optimally maps one 

to the other.  In this paper, we present a comparison algorithm that requires no a priori 

specification of fault locations; robustly identifies surface deformation, even in the presence of 

noise; allows advance processing of the pre-event dataset to speed up execution time when the 
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post-event dataset becomes available; and supports partitioning of the datasets for parallel 

processing, which is required for rapid processing of LiDAR datasets that can reach hundreds of 

millions of points for even a few tens of kilometers of mapped surface rupture. With the 

probability of a large earthquake occurring on a previously-mapped fault increasing as a result of 

ongoing airborne LiDAR acquisitions, there is an immediate need to develop and assess such 

algorithms in anticipation of a rapid post-event LiDAR survey and the opportunity such a dataset 

would provide for new scientific investigations. 

LiDAR Dataset 

Over the past decade, there has been extensive collection of airborne LiDAR data along 

major active faults in California and elsewhere (Prentice et al., 2003; Bevis et al., 2005; Phillips 

et al., 2008), with several acquisitions occurring after significant earthquakes (e.g. Hector Mine, 

Denali, El-Major Cucapah).  To date, only the El-Mayor Cucapah fault zone has been mapped by 

airborne LiDAR both before and after a surface-rupturing earthquake, however this dataset is not 

publicly available.  In the absence of pre-event observational data for testing and validating 

comparison algorithms such as ours, we use data from the "B4" airborne LiDAR survey of the 

southern San Andreas Fault (Bevis et al., 2005), synthetically slipped to simulate offsets that 

might result from a surface-rupturing earthquake.  The B4 dataset was acquired in 2005 for the 

express purpose of providing a baseline for post-earthquake slip determination and is thus an 

ideal testbed for the development of the algorithm we present here. 

Our study area lies within an alluvial fan that spans the San Andreas Fault (SAF) about 7 

km northwest of Desert Hot Springs, CA (Figure 2).  Total topographic relief is 37 m over a 

distance of about 800 m, three-quarters of which is due to the planar trend of surface from SE to 

NW.  The habitat is desert scrub with canopy cover of less than 50% (estimated from field 

observations).  The generally shallow slopes and sparse vegetation of the study area represent a 
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near-best-case scenario for the interpretation of LiDAR data, but similar conditions prevail for 

most of the LiDAR-surveyed faults in Southern California. 

For our pre-event dataset, we use the LiDAR point cloud from a single aircraft pass 

(designated "Str_63" in the survey metadata) over the study area.  This point cloud consists of 

600,000 individual measurements of topography and infrared backscatter intensity over an area 

of 320,000 m2, implying an average sample density of ~2 points per square meter.  Because 

topographic features such as bushes and trees are useful for tracking surface displacements, we 

use the unclassified "first-return" point cloud associated with the highest reflecting surface in 

each laser footprint.  This point cloud primarily samples the top of all natural and anthropogenic 

features and does not involve the classification (and, typically, removal) of non-surface returns.  

 For our post-event dataset, we took the pre-event point cloud and applied a homogeneous 

synthetic 5 m right-lateral horizontal slip and 0.5 m positive vertical slip on a vertical fault plane 

roughly aligned with the trace of the SAF, representing a simple case of primary slip 

concentrated on a single linear fault trace.  All of the displacement is confined to the northeast 

side of the fault (i.e. on the North American Plate), which allows us to use the unslipped 

southwest portion of the data as an experimental control.   

Figure 3a illustrates the detrended elevation and Figure 3b the intensity patterns of this 

synthetically slipped point cloud, with  topography shown relative to the lowest point in the 

scene and intensity given in arbitrary units scaled from 0 to 255.  The line bisecting the image 

marks the division between slipped points to the NE and unslipped points to the SW, and the 

wavy boundary of the data region is due to aircraft roll motion shifting the pointing direction of 

laser in the across-track direction.  Channels in the alluvial fan are apparent in the topography, as 

are the shallow valley containing the main N-S trending stream channels, a SE-NW trending 

paved road and an E-W trending dirt road.  The intensity image is much "flatter" overall, but it 

emphasizes some smaller-scale details that are not as obvious in the topography. 
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LiDAR Cross-Correlation Technique 

Spatial cross-correlation techniques have been successfully adapted to problems that 

involve comparing before and after topography datasets similar to those we are examining in this 

study.  Duffy and Hughes-Clarke (2005) used cross-correlation to map the horizontal migration 

of seafloor dunes using bathymetry data, as did Kääb and Vollmer (2000) to estimate the 

horizontal and vertical motion of a rock glacier using photogrammetry data.  Both studies 

investigated surface changes without invoking a priori assumptions about the nature of those 

changes, as we wish to do here.  Although a priori information about the localization of 

earthquake slip along surface ruptures is often available from aerial photography soon after an 

event, we do not want our algorithm to rely on this information but rather to quickly generate it 

for use by other researchers.  This is particularly important where surface deformation may not 

be accompanied by visible faulting, such as at blind thrust faults, near the ends of a strike-slip 

rupture, at fault step-over locations, or where slip is distributed across multiple fault strands. 

In this study, we employ a local cross-correlation technique that maximizes correlation 

between small overlapping areas of two datasets to generate the displacement vector between 

them, conceptually similar to the techniques used in the studies cited above.  One difference in 

our approach is that we do not rely on a regular search of the parameter space to determine 

displacements, but instead employ an iterative least-squares inversion to increase execution 

speed.  Each correlation calculation is performed independently, so displacements that are 

consistent across multiple adjacent areas are less likely to be artifacts of the calculation than 

would be the case if external constraints were applied.  We do not estimate rotations or strain 

between the pre and post-event data, assuming that any slip or deformation can be described by 

rigid translations at the scale of our analysis. This assumption did not appear to impact algorithm 
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performance except where deformation gradients were high, such as directly across the fault 

rupture plane. 

We note that the Iterative Closest Point (ICP) technique, originally developed to solve 

problems of surface and point registration in the field of machine controls (Besl, and McKay, 

1992; Trucco et al., 1999), is an alternative to cross-correlation for solving the problem posed 

here.  One limitation of ICP-style algorithms is that since they require full-resolution point 

clouds or similar-resolution derivative products as inputs, pre-processing to simplify the pre-

event point cloud for later analysis is not an option for reducing processing times.  In addition, 

our experience using one variant of the ICP algorithm (icp.m, written by Per Bergstrom) is that it 

was about an order of magnitude slower than our algorithm (even without pre-processing) and 

that it yielded noisy results that tended to underestimate imposed slip.  Our naïve implementation 

of ICP is probably underestimating its true potential for this application, however. 

Step 1: Modeling the LiDAR Point Cloud 

While the problem of cross-correlating two LiDAR point clouds is analogous to that of 

cross-correlating images or digital elevation models (DEMs), point clouds consist of arbitrarily-

distributed point measurements that typically do not overlie each other and thus cannot be 

directly differenced to calculate a correlation metric.  A common way to simplify the cross-

correlation calculation is to grid the point cloud data and run the cross-correlation algorithm 

directly on the resulting DEMs.  But even if the DEM resolution is properly chosen and a 

reasonable autocorrelation relationship is assumed when filtering the data, the drawback to this 

approach is that the DEM (which is missing information contained in the original point cloud) 

must be reinterpreted to provide topographic gradient and curvature information that could more 

accurately be extracted from the point cloud itself.  In addition, if the underlying surface 
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represented by a point cloud can be simply modeled as we do below, a DEM is an inefficient 

way to characterize that surface. 

Instead of creating a DEM from the point cloud, we generate a smoothed surface model 

H (Figure 4, top) by fitting point elevations with a set of basis functions that can be analytically 

differentiated and whose coefficients provide quick access to the underlying topography and 

topographic gradients.  In our implementation, we fit the pre-event point cloud with the 2-D 

harmonic basis set described by (James, 1966) 

H x, y( ) = ak , ll=0

n∑k=0

m∑ sin 2πx
Lx

k
⎛
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⎞
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          (1) 

where x and y are the UTM coordinates of the data, L is the size of the fitting region in the x and 

y coordinate directions, the number of terms in the basis set is set by m and n, and the complex-

valued coefficients ak,l are found via least squares fitting.  To ensure that the fit resolution is 

identical in both coordinate directions, we set Lx = Ly and m = n.  We always take L to be twice 

the span of the data in order to handle edge effects related to the periodic extension of the fitting 

window in the plane.  Since the autocorrelation assumed by harmonic fitting is sinusoidal, this 

choice of L also means that the autocorrelation function for the order-1 harmonics is that of a 

cosine window over the extent of the data, which adequately captures the long-wavelength 

topography in the point cloud. 

LiDAR point clouds also contain information about the intensity of ground-reflected 

energy from the laser footprint (Figure 3b).  Although intensity measurements are somewhat 

noisy, they are spatially coherent and can complement elevations in the determination of slip, 

especially in areas where the topography is flat.  We fit point cloud intensities exactly as we do 

elevations in Equation (1), yielding the intensity model B(x, y).  Both B(x, y) and H(x, y) can be 
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calculated for pre-event datasets in advance of collection of the post-event dataset, reducing the 

time required for differential analysis when the second point cloud finally becomes available. 

Step 2: Cross-Correlating Pre- and Post-Event Datasets 

To perform the cross-correlation step of our algorithm, we subdivide the area covered by 

the post-event point cloud into individual square pixels of edge length S and step pixel-by-pixel 

through the entire region for which we have overlapping pre- and post-event data.  It is not 

necessary to model the post-event point cloud to cross-correlate it with the pre-event dataset.  

Instead, the N points (xi, yi, zi, bi) within each pixel of the post-event dataset (b denotes the 

intensity/brightness measurement) are compared directly to the continuous functions B(x, y) and 

H(x, y) to estimate the displacement vector x = <Δx, Δy, Δz> that simultaneously minimizes the 

chi-square elevation and intensity misfits between them (Figure 4, bottom).   

Written as a generalized least squares problem, we are trying to find the x that minimizes 

the functional 

f Δx,Δy,Δz( ) =
H xi + Δx, yi + Δy( ) + Δz⎡⎣ ⎤⎦ − zi

σ zi

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

N

∑
2

topography( )

+ λ
B xi + Δx, yi + Δy( )⎡⎣ ⎤⎦ − bi

σ bi

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪i=1

N

∑
2

intensity( )
 (2) 

where λ is a user-selected parameter that determines the relative weights of topography and 

intensity in the inversion and the σ are the standard errors on elevation and intensity for each 

point i.  x is determined independently for each pixel, which means the algorithm is not guided 

by an a priori slip model.  While this may increase variability in the recovered displacement 

field between the pre- and post-event datasets, it also makes the algorithm much more useful in 

situations where slip or deformation is unknown.  We also note that because of the typical 
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variability in intensity values between airborne LiDAR surveys due to aircraft flying height and 

other effects, the post-event point intensities bi in Equation (2) are normalized to have the same 

mean as that of the pre-event intensity model B within each comparison pixel. 

Because B and H are functions of the solution x, Equation (2) is non-linear and must be 

solved iteratively.  For each comparison pixel in our region of interest, we solve for x using the 

Gauss-Newton algorithm described by 

J xk( )T J xk( )⎡
⎣

⎤
⎦x = − J xk( )T F xk( )

xk+1 = xk + x
k = k +1

  (3) 

where F(x) is the matrix of pre- and post-event data misfits 
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 (4) 

J(x) is the Jacobian matrix of the first partial derivatives of F(x) 

J x( ) =
∂F x( )
∂Δx

∂F x( )
∂Δy

∂F x( )
∂Δz

⎡
⎣⎢

⎤
⎦⎥
	   (5) 

and we allow the algorithm to fully update xk+1 in each step (the incremental increase in xk+1 can 

be damped by a factor α < 1 where xk+1 = xk + αx, but we did not find this to be necessary to 

ensure convergence).  Empirically, we found the Gauss-Newton solution to be 2+ orders of 

magnitude faster than an incremental search of the likely parameter space at a resolution of 10 
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cm in the horizontal and 1 cm in the vertical, which makes the grid search approach prohibitively 

expensive in most cases.  

We can vary three parameters to tune the performance of the algorithm: the size S of the 

comparison pixel, the relative weighting λ between topography and intensity in the inversion, 

and the resolution length scale of pre-event data models B(x, y) and H(x, y) as determined by L, 

m and n.  In order to understand the impact of these choices on processing speed and the fidelity 

of the recovered displacement vector field x(x, y) relative to the known applied synthetic slip 

model, we ran multiple realizations of the algorithm for the same input data.  We describe our 

findings in the Results and Discussion section below. 

One caveat to this study is that we did not attempt to model the effect of data error on the 

accuracy of the cross-correlation.  Point-cloud data are the output of a multi-step geolocation 

process, which is subject to calibration error that can obscure or mimic the topographic change 

signal of interest (Borsa et al., 2007).  In addition to geolocation errors, different reference 

frames between two surveys would introduce a systematic offset that could be mistaken for 

coseismic displacements, especially if only a small area is being investigated.  While the 

differences between recent versions of the ITRF (International Terrestrial Reference Frame) are 

only at the cm level, the magnitude of reference frame error exceeds 1 meter between NAD83 

and the ITRF, underscoring the need for maintaining and paying attention to reference frame 

metadata for LiDAR data collections.  Our results should therefore be considered to be best-case, 

with further work needed to determine the potential impact of geolocation accuracy.  

We also note that the Gauss-Newton inversion method requires that the initial value of 

the solution be located where the downhill gradient of the misfit manifold leads to the global 

minimum defined by the actual solution.  In cases where the amplitudes of shorter-wavelength 

constituents in the topography/intensity models rival those of longer-wavelength constituents, it 

is likely that our correlation method would not work unless the initial solution was close to the 
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correct solution.  Other approaches such as simulated annealing would be much more likely to 

succeed in these cases, albeit at the cost of much longer execution times. 

Results and Discussion 

An Initial Displacement Solution for Synthetically Slipped Data  

Figure 5a shows the horizontal and Figure 5b the vertical components of the 

displacement field x(x, y) we obtained by applying our algorithm to the synthetically slipped data 

in Figure 3.  Total processing time for our 2.5 km2 study area was 8 minutes on a single-

processor computer.  We did not try to optimize the solution for speed or accuracy, but used 

nominal values for the three user-selectable parameters (a pixel size S of 15.0 m, a 

topography/intensity weighting factor λ of 1.0, and a model fit resolution of 12.5 m) and 

assumed zero initial slip in each pixel, which meant that the solution vector started off quite far 

from its true value within the slipped region.  Even without tuning any parameters, the algorithm 

was successful in recovering most of the imposed synthetic slip, while indicating little or no slip 

in the control region.  Qualitatively, 1.) there is a clear delineation between the control region 

below the slip plane and the slipped region above, 2.) recovered vectors in the slip region exhibit 

strong correlation in both magnitude and direction, and 3.) anomalous vectors do not impact the 

overall interpretation of where slip has and has not occurred.   

Although the fidelity of the solution is particularly good in the zero-slip control region, 

the displacement field in the slipped region is less accurate, with a number of horizontal vectors 

pointing in the wrong direction and inconsistency in the magnitudes of the vertical vectors.  The 

fact that the algorithm's poorer performance was confined to the slipped region suggests that the 

zero initial value of the slip vector can lead to sub-optimal solutions for pixels with large offsets 

between pre-event and post-event surfaces.  This is in fact what we found when we investigated 
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the convergence of the solution in pixels with large misfits between expected and recovered 

offsets: while the misfit manifold exhibited a deep minimum around the value of the true slip, 

there was also a local (erroneous) secondary minimum in the "downhill" direction from zero to 

which the inversion was converging. 

Improving the Displacement Solution  

In order to improve the fidelity of the recovered slip field, albeit at the cost of roughly 

doubling processing time, we reran the algorithm using the solution from Figure 5 to initialize 

the displacement field.  Specifically, we averaged the displacement solution within a radius of 4S 

to provide a starting vector for each pixel and ran the inversion exactly as before.  Figure 6 

shows the recovered displacement field from this second run of the algorithm, and Figure 7 

summarizes the misfit between this recovered field and the known synthetic field we are trying 

to reproduce.  While the result in the control area is little changed, the recovery of the 

displacement field in the slipped region is noticeably improved.  The spatial plots at the left of 

Figure 7 show equally small misfits in both the control and slipped regions, with a few larger-

magnitude misfits apparent along the data discontinuities represented by the boundary between 

slipped/unslipped data and to a lesser extent by the road running through the control region (the 

dark blue line in the Figure 3b intensity plot).  This result is mirrored in the histograms of 

horizontal and vertical magnitude misfits at the right of Figure 7 and in the statistics of the misfit 

distributions (first column of Table 1), both of which reveal similarly accurate results in the 

slipped and control regions.  Specifically, the magnitude misfit between the imposed and 

recovered displacement vectors in the slipped region is 17.1 ± 17.7 cm (median ± IQR) for the 

horizontal and 0.5 ± 0.7 cm for the vertical, which is comparable to the control region values of 

18.5 ± 17.9 cm and 0.6 ± 0.9 cm, respectively. 
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The recovery of the azimuth of the imposed synthetic slip is also very good.  In the 

slipped region, the azimuth misfit histogram is zero-mean and narrow (0.0 ± 1.9 degrees), 

reflecting a high degree of fidelity in the recovery of the imposed slip.  In the control region, the 

flat control-region histogram (-1.5 ± 181 degrees) is consistent with zero-slip conditions: since 

the azimuth of a zero-length vector is undefined, the algorithm correctly returns directions that 

are uniformly distributed across 360 degrees.  This accounts for the large azimuthal IQR, relative 

to which the slightly negative mean misfit is insignificant.  We note that we achieved almost 

identical azimuth/magnitude accuracy when we ran the algorithm on data with half the imposed 

slip (2.5 m horizontal and 0.25 m vertical), indicating that algorithm accuracy is independent of 

the magnitude of ground displacements, at least within the range of values of interest. 

Overall, these results show that 1.) misfits in the slipped region exhibit minimal bias and 

variance relative to the imposed a priori displacement, and 2.) misfits in the control region are 

consistent with low-level random noise in the fitting algorithm and no systematic effects.  For the 

purpose of constraining earthquake slip inversions or providing near-field control on fault slip 

for moderate-to-large magnitude earthquakes, this level of performance is more than sufficient. 

Resolution and Accuracy Limits of the Algorithm 

In order to understand how the choice of algorithm parameters impacts solution accuracy, 

we examined the effects of varying the comparison pixel size, model resolution and 

topography/intensity weighting over a range of plausible values.  Figure 8 summarizes these 

results, showing the median misfit of the estimated displacement field in the slipped (top) and 

control (bottom) regions of the dataset for 120 different combinations of these parameters.  

Specifically, we varied pixel size in 2.5 m increments from 7.5 m and 15.0 m, grouping the 

misfit results for each value of S from left to right in Figure 8.  The different shades within each 

pixel-size group represent stepwise changes in the resolution of the pre-event point cloud model, 
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from 50.0 m (leftmost circles) to 25.0 m, 16.7 m, 12.5 m and 10.0 m (rightmost circles).  Finally, 

within each resolution grouping, the plotted points from left to right correspond to λ values of 

0.0, 0.5, 1.0, 1.5, 2.0 and 2.5.   

The results of this analysis show that the relative weighting of topography and intensity 

in the algorithm has an impact on solution accuracy only when intensity is ignored (λ = 0.0 ) or 

underweighted (λ = 0.5).  Equal weighting of topography and intensity (λ = 1.0), while not 

always yielding the absolute lowest misfit, gives nearly the lowest misfit for the entire range of 

other parameters and represents a good default value to use for this dataset.  Higher values of λ 

neither improve nor degrade the solutions significantly for our test dataset. 

Increasing the fit resolution of the harmonic model increases variability in the model, 

which improves the precision of the pixel-by-pixel inversions while also raising the likelihood of 

local minima in the solution manifold.  The result is generally improved solution accuracy as 

resolution steps from 50.0 m to 10.0 m, with the caveat that this relationship can break down for 

higher values of fit resolution unless the algorithm is run twice (like we do in our second 

example above).  Improved accuracy comes at the price of execution speed.  Each increase of fit 

resolution – achieved by incrementing the values of m and n in the harmonic fit to the pre-event 

point cloud data – yields a 30~60% reduction in horizontal/vertical magnitude misfit while 

doubling the time required to run the algorithm. 

Finally, the effect of increasing pixel size is improved accuracy for solutions calculated 

using any combination of values of the other parameters.  The improvement in misfit for each 2.5 

m increase in pixel size is about 20~40%, with less impact as the pixel size approaches 15.0 m.  

In addition, algorithm execution time varies by the inverse square of pixel edge length S, which 

results in a fourfold increase of speed going from 7.5 m to 15 m pixels. The first two columns of 

Table 1 show how the misfit statistics for the example in Figure 6 are impacted by reducing pixel 

size from 15 m to 10 m.  While the median misfit of the recovered azimuths is still zero, the 
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median horizontal and vertical magnitude misfits have roughly doubled, to 1 cm and 40 cm 

respectively.  Nevertheless, in cases where recovering the greatest possible spatial detail in the 

slip field is paramount, smaller values of S can be used despite the loss of accuracy and speed.   

We also experimented with decimating the dataset at various levels to see how lower 

point cloud densities might affect the solution.  Our original dataset had a mean spatial density of 

2 points/m2.  We successively decimated the dataset by factors of 2 and reran the solution for the 

example shown in Figure 6 each time.  Columns 1, 4 and 5 of Table 1 show that the solution is 

negligibly impacted by decimating the input data down to 0.5 points/m2.  Beyond this limit, 

decimation begins to impact the quality of the solution, as expected given the fact that the 

increasing Nyquist wavelength of the sampling introduces commensurately greater aliasing of 

short-wavelength topography and intensity.  While our assumption of spatially homogeneous slip 

within each comparison pixel allows us to leverage all intra-pixel data toward a single robust 

estimate of slip, for best performance we require that LiDAR datasets be collected at sufficient 

shot density to characterize all but a few percent of surface variance.  This is true even though 

we use low-order (and thus long-wavelength) harmonic basis functions to model the pre-event 

data: the point cloud has to sufficiently sample the underlying topography/intensity to avoid 

biasing the harmonic model. 

The best overall solution we obtained in this experiment (see Table 1, column 3) had a 

pixel size of 15.0 m, model fit resolution of 10.0 m and a λ of 1.5.  While this is consistent with 

the general patterns we discuss above, what is important to note is that the difference between 

this solution and others with smaller pixel size (increased spatial resolution), lower model 

resolutions (faster execution time) and/or different values of λ may not be significant for many 

applications.  Most importantly, the algorithm is robust relative to its operational parameters, 

yielding good results even when the parameter choices are not optimal. 
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Testing the Algorithm Against a More Complex Displacement Field  

To test the ability of the algorithm to recover more complicated deformation patterns, we 

prepared a second post-event dataset reflecting deformation from a stepover between two 

successive fault segments. For this second example, we used the Coulomb 3.2 software package 

(Toda et al., 2005; Lin, and Stein, 2004) to model the 3D displacement resulting from a 150-

meter stepover between two strike-slip faults extending from the surface to 10 km depth in an 

infinite elastic half-space, each subject to 1 m right-lateral slip equally distributed on both sides 

of the rupture plane.  We translated each point in the pre-event point cloud by the Coulomb-

modeled displacements to generate the post-event dataset, whose topography and intensity 

appears similar to that shown in Figure 3 at this level of magnification. 

To obtain our solution, we ran the algorithm using parameters from in the third column of 

Table 1 and achieved comparable results to those obtained for the slipped region in the simple 

uniform-slip case: an azimuth misfit of -0.1 ± 7.2 degrees, horizontal magnitude misfit of 11.1 ± 

10.5 cm, and vertical magnitude misfit of 0.0 ± 0.7 cm.  As shown in Figure 9, we do not have a 

control region in this example since the entire study area is deformed in some way by the fault 

stepover.  The recovered slip shows the expected pattern of greatest horizontal slip at the north 

and south of the study area (where the movement on both fault strands is oriented in the same 

direction) and clearly resolves the horizontal slip gradients associated with the ends of the fault 

segments.  The least horizontal slip occurs in the stepover region, which is where the greatest 

vertical movement is seen.  The slumping in this region is only a few decimeters in magnitude 

and is the same effect that creates sag ponds between fault stepovers on actual faults.  To be able 

to resolve slip gradients and vertical signals of these magnitudes indicates that differential 

LiDAR has the potential to identify a broad range of subtle features related to faulting, not just 

large-magnitude offsets on the main fault strand. 
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Conclusions 

The development of the algorithm we have just discussed was originally motivated by the 

wish to quickly provide to first responders (in both the emergency services and research 

communities) the approximate spatial distribution and magnitude of ground deformation from a 

large earthquake following the expected collection of airborne LiDAR data along a previously 

mapped fault.  Speed was our primary concern, and we planned to realize significant time 

savings by performing in advance the expensive step of modeling the pre-event point cloud.  For 

the example we showed in Figure 6, this would reduce processing time on a single-processor 

desktop computer from 8 minutes to 1 minute, which would then make it feasible to run the 

algorithm for a 100-km long rupture zone in a matter of hours. 

Until we carried out this study, we were unaware that the accuracy and spatial resolution 

of this algorithm could also make it a useful tool for detailed study of coseismic deformation in 

the near-field of an earthquake.  Our results indicate that slip recovery is independent of the 

imposed slip and suggest that the lower limit of slip detection using this algorithm is 0.1 m in the 

horizontal and 0.5 cm in the vertical.  Even when algorithm parameters are not optimized, which 

will almost certainly be the case when the a priori slip/deformation is unknown, we have 

identified generally optimal parameter choices for maximizing solution accuracy that should 

yield robust identification of ground displacements on the order of 0.2~0.3 m in the horizontal 

and 1~2 cm in the vertical.  This sensitivity approaches that of techniques such as InSAR, but at 

far greater spatial resolution and with less risk of decorrelation. 

Finally, while we have discussed the application of this algorithm to the problem of 

identifying surface deformation imaged by two successive LiDAR surveys of the same terrain, 

the algorithm is also suitable for performing quality control of data collected during a single 

survey.  All airborne LiDAR surveys are designed to incorporate overlap of up to 50% between 
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the ground returns from successive flightlines.  Any errors in geolocating the survey data will 

result in inconsistent elevation estimates for these overlapping areas.  A comparison of 

overlapping ground returns for the B4 project data used in this paper revealed that the spatial 

pattern of the misfit is correlated over long distances and varies with surface topography, aircraft 

attitude and other variables (Borsa, Bevis et al. 2007).  Our algorithm can identify the spatial 

pattern of the geolocation misfit for all overlapping data in a survey, giving a synoptic view of 

survey quality that is impossible to achieve with point comparisons between the survey data and 

arbitrarily distributed ground reference locations.  A future paper will examine the potential of 

our algorithm for improving LiDAR calibration and validation. 
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Data and Resources 

The LiDAR data used in this research are available online from the NSF's 

OpenTopography Facility (http://www.opentopography.org/).  We used ascii-format point cloud 

data requested via the "B4 Project" link on the Point Cloud page of the OpenTopo website in 

April 2011.  The processing algorithms were coded in IDL and are the authors' own work.  They 

are available upon request. 
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Tables 

Table 1.  Misfit statistics for selected displacement field solutions discussed in the text.   

Pixel Size 15 meters 15 meters 15 meters 15 meters 15 meters
Model Resolution 12.5 meters 12.5 meters 12.5 meters 12.5 meters 12.5 meters

Topography/Intensity Weighting λ = 1.0 λ = 1.0 λ = 1.0 λ = 1.0 λ = 1.0
Point Density 2 / m^2 2 / m^2 2 / m^2 2 / m^2 2 / m^2

Azimuth (Control Region)
median misfit [deg] -1.5 -0.5 7.7 11.4 0.8

misfit IQR (Interquartile Range) [deg] 181.5 176.4 171.9 175.5 178.9
Azimuth (Slipped Region)

median misfit [deg] 0.0 0.0 0.1 0.0 0.1
misfit IQR [deg] 1.9 4.3 1.4 2.2 1.8

Horizontal Displacement (Control)
median misfit [cm] 18.5 39.3 10.1 18.0 17.7

misfit IQR [cm] 17.9 36.7 9.6 18.0 16.6
Horizontal Displacement (Slipped)

median misfit [cm] 17.1 35.0 11.2 18.4 14.6
misfit IQR [cm] 17.7 36.7 12.9 18.2 15.7

Vertical Displacement (Control)
median misfit [cm] 0.6 1.3 0.4 0.6 0.7

misfit IQR [cm] 0.9 1.8 0.5 0.9 0.8
Vertical Displacement (Slipped)

median misfit [cm] 0.5 1.2 0.4 0.6 0.6
misfit IQR [cm] 0.7 1.7 0.6 0.8 0.7

Note: the third column (in bold italic) shows results for the solution with the lowest overall misfit relative to the a priori imposed slip.
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Figure Captions 

Figure 1.  Spatial resolution and spatial coverage of estimates of coseismic surface 

deformation/slip obtained using various techniques.  Spatial resolution refers to the average 

distance between individual measurements, and spatial coverage indicates the areal extent of the 

measurements expressed as perpendicular distance from the fault trace (the ideal technique 

would yield high-resolution estimates from directly on the fault into the far-field).  The airborne 

LiDAR correlation technique discussed in this paper offers higher resolution than alternative 

methods, with excellent coverage in the near-field of the fault. 

Figure 2.  (top) Aerial photo of our study area on the San Andreas Fault, 7 km northwest of 

Desert Hot Springs, CA.  The thick rectangle shows the extent of the B4 Survey LiDAR data 

used in this study. Numerous erosion gullies and two roads are apparent, and vegetation is a 

sparse desert scrub.  (bottom) Same as above, but showing shaded topographic relief generated 

from the LiDAR elevations.  Not all the features in the photo are apparent in the topography, and 

vice versa. 

Figure 3.  (a) First-return LiDAR point cloud from the B4 Survey for a single pass over the study 

area in Figure 2, shaded for elevation.  Topography is detrended to highlight surface features 

such as the N-S trending valley containing the main drainage channel, an E-W trending dirt road, 

and a SE-NW trending paved road. The line bisecting the point cloud separates synthetically-

slipped points to the upper right from unslipped points to the lower left.  (b) Same as (a), but 

with points shaded for LiDAR infrared backscatter intensity.  The most obvious feature in the 

intensity image is the paved road, but other short-wavelength features are apparent as well. 

Figure 4.  Illustration of cross-correlation technique used in this paper.  In Step A (top), the pre-

event elevation point cloud is fit with a surface model H(x, y) consisting of 2-D harmonic basis 



Borsa	  and	  Minster	   	   	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  Page	  31	  

functions.  In Step B (bottom), the post-event elevation point cloud within a pixel of size S is 

directly compared with H(x, y) and an iterative inversion is performed to solve for the single 

three-dimensional displacement vector x that minimizes the misfit between the point cloud and 

model for that pixel.  In practice, point cloud intensities are also fit with a surface model and 

both topography and intensity are simultaneously inverted to yield x. 

Figure 5.  (a) The horizontal component of the 3D slip vectors obtained by applying the slip 

recovery algorithm to the data shown in Figure 3 using a pixel size of 15 m, fit resolution to 

"before" data of 12.5 m and equal weight between topography and intensity.  Even without 

parameter tuning, the algorithm is generally successful at recovering the correct orientation and 

magnitude of the imposed synthetic slip, while indicating little or no slip in the control region. 

(b)  Same as (a), but showing the vertical component of the recovered 3D slip. Vector 

magnitudes on the recovered slip plots are normalized to their maximum value, so the horizontal 

and vertical slip magnitudes cannot be compared directly between plots. 

Figure 6.  Horizontal slip recovered using the same inversion parameters and method as in Figure 

5a, but initializing the algorithm with the magnitudes and orientations from the Figure 5a 

solution.  The displacement field in the slipped region is much more uniform, reflecting the 

improvement due to starting the inversion for each pixel closer to the position of the misfit 

minimum.  (b) Same as (a), but showing vertical slip recovered after initializing the algorithm 

with the slip from the Figure 5b solution. 

Figure 7.  Spatial plots (left) and summary histograms (right) of the misfit of the displacement 

solution shown in Figure 6.  The spatial plots show that the recovered solution is faithful to the 

actual imposed slip, except directly on the boundary of the slipped and control regions.  There 

are separate histograms for results from the control and slipped regions, which show that the 
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distribution of misfits clusters tightly around zero, except for the expected random distribution of 

azimuth misfit in the control region. 

Figure 8.   Median misfit of the displacement solutions for the slipped (top) and control (bottom) 

regions of the dataset.  Dashed vertical lines group the misfit results by pixel size S, from 7.5 m 

to 15.0 m.  The different shades within each pixel-size group represent stepwise changes in the 

resolution of the pre-event point cloud model, from 50.0 m (leftmost circles) to 25.0 m, 16.7 m, 

12.5 m and 10.0 m (rightmost circles).  Within each resolution grouping, the plotted points from 

left to right correspond to λ values of 0.0, 0.5, 1.0, 1.5, 2.0 and 2.5.  The best overall solution we 

obtained in this experiment (see Table 1, column 3) had a pixel size of 15.0 m, model fit 

resolution of 10.0 m, and a λ of 1.5.     

Figure 9.   [Left] Recovered synthetic slip corresponding to modeled deformation from a 150-

meter stepover between two right-lateral fault segments in our study area, each with 1 m total 

slip equally partitioned across the fault.  The dashed lines in the vertical slip plot (bottom) 

indicate the locations of the faults.  [Right] Histograms showing the misfit between the imposed 

synthetic slip and the estimated slip.  The algorithm performed almost as well with this complex 

deformation pattern as it did with the simple uniform-slip case shown in Figure 6. 
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Figures 

Figure 1.  
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Figure 2.   
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Figure 3a.   

  
Figure 3b.   
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Figure 4. 

We fit the pre-event elevation 
point cloud (x, y, z) with 2-D 
harmonic basis functions…�

… to give the pre-event 
elevation model H(x, y, z)�

We then minimize the misfit 
between the post-event point cloud 
and pre-event model H(x, y, z)…�

…to obtain a single pre-to-post-event 
3D displacement vector x for each 
“pixel” S within the surveyed area�

Step A�

Step B�

S�S�



Borsa	  and	  Minster	   	   	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  Page	  37	  

Figure 5a. 

 
Figure 5b. 
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Figure 6a. 

 
Figure 6b.  



Borsa	  and	  Minster	   	   	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  Page	  39	  

Figure 7. 
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Figure 8.  



Borsa	  and	  Minster	   	   	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  Page	  41	  

Figure 9.    

  




