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Abstract Market segmentation studies in travel behavior research are ordinarily based on

socioeconomic characteristics and personality traits. This study explores the usefulness of a

different approach, where the actual overall mobility levels across different ground

transportation modes, along with desired changes in the use of cars and transit, are used as

clustering variables. Using a given mode can in fact influence the personal representation

of that mode, which in turn has been proven to be a key element in transport behaviours.

We form such multimodality-based clusters from two field studies, one involving

employees of the French transportation research institute INRETS and the other a repre-

sentative sample of residents of the US San Francisco Bay Area. We find that strong users

of a given mode would like to bring more balance to their ‘‘modal consumptions’’ by

decreasing the use of this mode more than the average, and increasing the use of the

alternative mode. However, concerning ground transport travel budgets, the desire to travel

more (or less) overall seems less strongly related to the composition of the modal balance.

The US dataset shows also a greater latent demand for travel than the French one.

Socioeconomic characteristics of the clusters could not explain the patterns that were

found, confirming the importance of taking into account multimodality issues in travel

behavior research. Some policy implications from these findings are finally reported.

Keywords Cluster analysis � Desired mobility � Market segmentation �
Multimodality
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Introduction

Helping stakeholders to set up transport policies effective in making travel behaviors more

sustainable is one of the central issues of current research agendas. In this endeavour,

researchers often rely on methods from disciplines where the study of the determinants of

individual behaviors, and of the most effective ways to influence them, has been under-

taken for a long time.

One analytical technique that is increasingly gaining attention is market segmentation,

or customer classification, where subsets of people that share some common characteristics

are identified within a larger sample, in general through multivariate analysis techniques.

The researcher has to select the characteristics that define the groups on the basis of the

objectives of the study. In the transport field, the key policy interest of such marketing

studies is in general to understand which people could be more inclined to shift from

individual motorized transport modes to transit or non-motorized ones. Segments are

subsequently defined on the basis of various socioeconomic characteristics on one hand, or

personality traits on the other (e.g., Transportation Research Board 1977; Dobson and

Tischer 1978; Tardiff 1979; Gensch and Torres 1980; Jensen 1999; Outwater et al. 2003;

Elgar and Bekhor 2004; Anable 2005). However, if the final research goal is to cluster

travellers in order to maximize the differences between groups concerning the responses to

policy actions aimed at modal diversion, one might wonder if also other clustering vari-

ables could be relevant.

The present study considers the role that the degree of acquaintance with different

transportation modes could have in influencing modal choices. Our perspective is related to

previous research dealing with the role of habit on mode choice, yet a conceptual differ-

ence is detectable. Habit can be seen as a behavioural mechanism that goes against the

rational decision-making process as depicted in standard microeconomics theory, since it

tends to make consumer choices less deliberate. Specifically, the sufficient degree of

acquaintance with all the modes in a choice set can be seen as a basic element of one of the

assumptions of that theory, namely the complete knowledge of all the alternatives by the

decision maker. By contrast, it is in fact well known that, for example, exclusive car users

tend to overestimate travel times by public transport, and in general to have a biased

knowledge of the potential transit alternatives for their trips (O’Farrell and Markham 1974;

Fujii et al. 2001; Beale and Bonsall 2007).

To the best of our knowledge, very few works in the published literature have inves-

tigated the importance that being familiar with different transport means can have in

shaping desires and ultimately influencing behaviors. Related previous research findings

have nevertheless shown the decisive role of the predictability (Anable and Gatersleben

2005) and of individual representations (Guiver 2007) of a transport means as key elements

to understand mode choice. We can argue that both of these are strongly influenced by the

relative familiarity with a means, i.e., the degree of acquaintance with a given mode

compared to the degree of acquaintance with the alternative modes. This multimodal

perspective is essential but it is seldom considered, even though, for example, a strong car

user who travels also by transit is likely to develop car and transit attitudes that are

different from those of a strong and exclusive car user. This paper focuses exclusively on

these elements, not considering several other factors regarding mobility behaviors whose

importance is well illustrated by previous research, such as individual attitudes, socio-

economic status, situational variables (availability of personal vehicles, accessibility to

public transport systems, land use and activity patterns) and instrumental ones (perfor-

mances of the different means in terms of costs, travel times, service quality). We only
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look at some of the most influential of the above elements, namely car ownership and

availability, education and income, in the socioeconomic characterization of the clusters

that we later present.

In the following we present a segmentation study that seeks to operationalize such a

multimodal perspective by considering the actual intensity of use of different modes as

clustering variables. Then we look at the perceived levels of use of such modes and at the

desire to change them, within each cluster. Consistently with previous research in the field

(Choo et al. 2005), we will name these three different mobility measures Objective

Mobility (OM), Subjective Mobility (SM) and Relative Desired Mobility (RDM). Hence

we define the groups solely on the basis of OM, a measure that can be found in any

mobility survey, so that our clustering procedure can be more easily applied in different

contexts. In doing that, we assume that the degree of acquaintance with a mode can be

measured by its actual level of use, but then we assess whether the segments that we

defined are relevant from a policy point of view by looking at the SM and RDM means.

These three variables are of course subject to measurement errors and potential bias. We

preliminarily notice that in our research framework SM is not a proxy for OM, since it is

actually measuring a different construct. SM deals with the personal evaluation of the

amount of travel that has been consumed; as such, it is obviously related to OM. However,

different individuals could be differently ‘‘fed up’’ with the same mobility level, and SM is

aimed at investigating such difference. OM in turn is based on self-reporting, as we detail

in the following section, so that a more accurate measurement method for this variable

would involve the use of mechanical devices such as odometers or GPS receivers, which

were not used in the present research.

Our methodology should give us insights into a number of questions of interest. For

example, if the groups show different desires concerning their future levels of use of a set

of modes, then such different desires can be traced back to the actual modal consumptions.

This would allow us to better understand how mode use habits are associated with desires,

which in turn can be seen as one of the determinants of behaviors. On the other hand, the

OM-SM relationship could be differentiated across the groups, thus pointing to a per-

ception of the actual modal use that is differently distorted according to the ‘‘modal mix’’.

It would then be possible to check if the intensity of use of some modes is systematically

over- or understated for some specific level of use, thus giving interesting insights into

potential mode-specific biases that should be accounted for in modelling practices.

Datasets and clustering variables

Cluster analysis is an exploratory statistical technique that allows for grouping observa-

tions in a dataset, and it is often used in segmentation studies. However, the distilled

solutions are not unique for a given dataset, nor is there a commonly-accepted goodness of

fit measure to discriminate among them, so that the generalizability of the results is always

a critical matter. To have a richer perspective, we consider two datasets coming from

radically different experimental settings. The older study was conducted in 1998 with a

postal survey sent to 8,000 residents in three different communities in the San Francisco

Bay Area—Concord and Pleasant Hill, representing two different kinds of suburban

neighborhoods comprising about half the sample, and an area defined as North San

Francisco representing an urban neighborhood—which resulted in 1904 useful observa-

tions (Mokhtarian and Salomon 2001). Then we consider a dataset from an Internet survey

that was administered in 2004 to people working at the French National Institute for

Transportation (2009) 36:455–467 457
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Transport and Safety Research (INRETS), with two larger premises in the Paris and Lyon

metropolitan areas and two smaller branches near Lille and Marseille. 164 completed

surveys were thus gathered out of about 550 workers and students who were contacted

(Diana 2005).

Both datasets investigated the previously defined actual (OM), perceived (SM) and

desired (RDM) mobility levels of the respondents by different transport modes, among

other things. The variables that we enter in our cluster analysis are then derived from the

variables of both datasets as follows.

Considering first OM measures, people were asked in the US survey for their typical

weekly mileage by each of the following four transport modes: (1) driver or passenger in

any personal vehicle, (2) bus, (3) rail and (4) walking, jogging, cycling. Only trips up to

100 miles one way were examined in this way, since longer ones were measured differently

and are not considered here. Then we use these data to estimate the number of weekly

hours spent in each mode through a best guess of their typical speeds. This is because a

time-based OM measure is probably a better proxy of the familiarity of the respondent with

a transport mode than a distance-based one. We would say that, for example, a person

using a bike 2 h per day is more acquainted with bikes than a car driver using a car 2 h a

week is with his car, although the weekly mileage could be comparable given the different

mean speeds of the two modes.

The French survey asked for the mean frequency of use of a larger set of transport

modes over the previous 12 months through 5-point ordinal variables (never, sporadically,

1–3 times a month, 1–2 times a week, 3 times a week or more). We take the following five

modes among those considered in the survey: car driver, car passenger, bus, tram and

metro, and we compute for each of these the number of monthly trips.

For the sake of simplicity, in the following we focus on the relative levels of use of cars

and public transport modes; so that we need to condense the above described more dis-

aggregate information regarding the objective mobility levels of different modes. Con-

sidering a larger set of modes would be interesting, but it is advisable to keep the number

of variables that we consider in cluster analysis as low as possible in order to ease the

interpretation of the results in this exploratory research. Extensions of the present work,

which we further discuss in the conclusions, will be aimed at setting up a method that

allows for taking into account a larger number of transport means. Hence we consider in

the French dataset the sum of the frequency of driving a car and traveling by car as a

passenger as a measure of the mobility level of the respondent with cars, and we name the

new variable OM_CAR. We similarly consider the sum of the mobility levels by bus, trams

and metro and we name it OM_PT. In doing that, reported frequencies on ordinal scales

have been transformed to monthly frequencies by assuming that ‘‘3 times a week or more’’

can be considered as 15 trips a month, ‘‘1–2 times a week’’ 8 times a month, ‘‘1–3 times a

month’’ 2 times a month and ‘‘sporadically’’ 0.5 times a month. For the US dataset we

already have a single variable for car use (OM_CAR) and we define OM_PT as the sum of

the number of hours spent traveling by bus and by train, keeping in mind that long-distance

trips were not considered. Finally, OM_GLOB is the sum of the number of weekly hours

(for the US case) or of monthly trips (for the French case) spent in each ground transport

mode that was investigated in the survey (i.e., four modes for the US dataset and ten modes

for the French one).

Turning now our attention to SM and RDM measures, we preliminarily notice that they

were measured in both datasets through rating scales. SM scales range from ‘‘I feel I do not

travel at all’’ to ‘‘I feel I travel a lot’’ (by that particular mode), whereas RDM scales go

from ‘‘I would like to travel much less’’ to ‘‘I would like to travel much more’’, passing
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through the neutral point ‘‘I would like to travel the same amount as now’’ (with that

particular mode). The considered modes were obviously the same as for OM. The US

scales have 5 points, whereas the French ones have 10 points when SM is measured and 11

points when RDM is measured.

Also in this case, the SM and RDM variables that we use in the analysis are then derived

by aggregating the information available for each of the considered modes. However, one

important difference is given by the fact that we cannot simply sum the observations

coming from different modes, as done in the OM case, since we are now dealing with

ordinal variables. Hence we adopt an aggregation method for ordinal measures, based on

their ranks, that is available in the published literature (Wittkowski et al. 2004) and is now

being applied also in the transport sector (Diana et al. 2009). In this approach, the com-

bined ordinal measure for an observation A is a score given by the number of observations

in the sample that are smaller than A minus the number of observations that are greater

than A. According to this method, observation A is greater than B if A has measures at

least as high as B on all categories (in our case, the transport modes), and strictly higher on

at least one. For the sake of brevity, we refer the reader to the above-mentioned two

references for more explanation. We can thus build for the French dataset a new variable,

namely SM_CAR, by combining the two measures relative to driving a car and being a

passenger in a car. Analogously, SM_PT is defined through the combination of the SM

measures for bus, trams and metros, and similarly for RDM_CAR and RDM_PT. In the US

dataset we already have unique SM and RDM measures for cars and we will define SM_PT

and RDM_PT just considering the bus and the rail modes.

We show in Table 1 the nine variables that we defined and that we will use in the

subsequent analysis. The table also shows how they are derived from the original variables

of the datasets and their measurement units. Note that OM measures are already available

from any travel diary survey. SM and RDM questions similar to the ones we used could

Table 1 Variables derived from the two datasets

Objective evaluation of
the travel amount

Subjective
estimation of the
travel amount

Desired change in the travel amount

Car OM_CAR SM_CAR RDM_CAR

Public transport OM_PT SM_PT RDM_PT

Composite over all
modes

OM_GLOB SM_GLOB RDM_GLOB

Method applied to
the original
measures

Summing the original
measures

Combining the
original
measures
according to
ranks

Combining the original measures
according to ranks

Original mode-
specific
measures in the
French dataset

Metric variables:
estimated number of
monthly trips

‘‘I feel I don’t
travel’’ (1)… ‘‘I
feel I travel a
lot’’ (10)

‘‘I’d like to travel much less’’ (-5)…
‘‘I’d like to travel the same’’ (0)…
‘‘I’d like to travel much more’’
(?5)

Original mode-
specific
measures in the
US dataset

Metric variables:
estimated number of
weekly hours spent in
that mode

‘‘I feel I travel
none’’ (1)… ‘‘I
feel I travel a
lot’’ (5)

‘‘I’d like to travel much less’’ (-2)…
‘‘I’d like to travel about the same
amount’’ (0) … ‘‘I’d like to travel
much more’’ (?2)

Transportation (2009) 36:455–467 459

123



easily be added to a background or other module accompanying such a survey, to

implement our study on a larger scale.

Cluster analysis

On the basis of the methodological framework sketched in the Introduction, we define

groups of travelers from the three OM variables listed in the first column of Table 1. Then,

in order to enrich the interpretation of the results, we assess the group means for each of the

other six variables, related to SM and RDM. In doing that we focus on the general balance

between car and transit within the actual level of use of different modes, as well as

respondents’ perceptions and desired direction and magnitude of change in their actual

‘‘modal portfolio’’.

Clusters interpretation in the two samples

Tables 2 and 3 present the resulting cluster centroids for the French and the US datasets,

respectively. Solutions with four clusters are provided here since they are the most

informative for our research problem. We label the resulting segments on the basis of

the three objective mobility variables around which the clusters were formed, whereas the

other values are group means that were computed a posteriori. Turning first to the French

dataset, we have a large first group of strong car users, a second group of strong public

transport users, a small third group of weak users of both modes and a fourth group of

strong users of both modes. We recall that for the French dataset the reported OM measures

are the sum of the number of monthly trips taken by all the considered modes. Hence it is

not meaningful to make ‘‘vertical’’ comparisons between, say, OM_CAR and OM_PT,

since the former is the sum of the number of trips taken by two modes and the latter the

sum of three. For the same reason, French and US OM measures are also not directly

Table 2 Cluster solution and group means for the French dataset

Variable Group 1
Car-oriented

Group 2
Transit-oriented

Group 3
Neither-oriented

Group 4
Both-oriented

OM_GLOB 25 40 19 55

OM_CAR 18 4 3 16

OM_PT 3 30 10 30

SM_GLOB -5 10 -39 24

SM_CAR 31 -60 -82 13

SM_PT -44 66 -6 62

RDM_GLOB 0 2 17 -10

RDM_CAR -18 22 43 8

RDM_PT 26 -30 -1 -45

Number of cases (164) 88 33 14 29

The first three rows report the group means of the total number of monthly trips taken with the considered
modes; the remaining rows the group means of the scores obtained combining SM and RDM ordinal
measures
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comparable, given the different number of considered modes and the different measure-

ment units for OM in the two samples, as shown in Table 1.

OM measures in Table 2 seem to be unreasonably low, but those averages are biased

downward by the fact that the underlying variables are composites of ordinal OM measures

whose highest grade is ‘‘more than 3 times a week’’ (see the previous section) so that

higher mobility levels are flattened around that value. However, we believe that this is not

a big concern, since for our research purposes OM variables need not measure the exact

mobility levels of individuals, but rather represent the degree of acquaintance with a given

mode, as stated in the introduction. In that sense, we believe that above a certain threshold

utilization level for a given mode, the corresponding familiarity with that mode does not

increase proportionally, so that underestimations of higher mobility levels are not so

relevant in our case.

In Tables 2 and 3, subjective mobility and relative desired mobility measures are the

cluster means of the individual SM and RDM scores that were computed according to the

procedure detailed by Diana et al. (2009). According to this method, the individual scores

can theoretically range from -(n - 1) to (n – 1) if we have n observations in the sample,

lower scores indicating lower SM and RDM levels of that individual in comparison with

the whole sample. Thus, in interpreting those scores one must remember that their scale

differs with the sample size, and only their relative values matter. It is also important to

understand that, for example, an individual RDM score of zero does not mean that the

individual does not wish to alter his/her mean mobility level across the considered modes.

It simply means that an equal number of cases are greater than this one as are smaller than

this one. Moreover, the SM and RDM means that are shown in the tables are to be

interpreted in relative terms across the different clusters: specifically, comparisons can only

meaningfully be done among numbers in the same row, i.e., horizontally reading the data.

With that in mind, it is interesting to compare the following results with those reported

in Diana and Mokhtarian (2007) under the name of ‘‘A-type analysis’’, where the same

cluster definition is adopted but with a different method to combine SM and RDM mea-

sures, which hence leads to a different cluster interpretation. That method was based on

heuristic approximations that keep the information on a case’s position relative to the

Table 3 Cluster solution and group means for the US dataset

Variable Group 1
Heavily car-oriented

Group 2
Rather car-oriented

Group 3
More transit-oriented

Group 4
Light travellers

OM_GLOB 17 9 15 4

OM_CAR 13 7 3 3

OM_PT 1 0 9 1

SM_GLOB 267 -26 321 -118

SM_CAR 615 270 -589 -221

SM_PT -79 -328 1,242 -15

RDM_GLOB -2 95 -236 -21

RDM_CAR -289 -49 28 100

RDM_PT 188 156 -530 -43

Number of cases (1904) 185 696 205 818

The first three rows report the group means of the total estimated weekly hours spent using the considered
modes, the remainder the group means of the scores obtained combining SM and RDM ordinal measures
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neutral point in a bipolar scale such as the RDM one. In other words, in that paper it was

possible to understand if the respondents within a given cluster tended to actually like to

travel more or less than what they actually do. The cluster interpretations that can be found

in that paper hence give information that is complementary with what is reported in the

following, since here the focus of the analysis is on the above-mentioned horizontal

comparisons.

Table 2 shows a strong correlation by mode between OM and SM measures, confirming

previous findings (Collantes and Mokhtarian 2007). Different perceptions concerning

mobility levels on the basis of the actual mode use, a relationship we postulated in the

introduction, was not observed in our clusters. RDM group means show instead interesting

patterns among clusters in the French dataset. Those who intensively use a given mode

(i.e., car for groups 1 and 4 and public transport for groups 2 and 4) would like to travel

less than the general average across the four groups by such a mode and (except for group

4) would like to travel more by the other mode. Group 3 seldom uses both modes and is

thus willing to increase their use more than the average. The four groups appear to be less

distinct in terms of global RDM levels, so that the desire to travel more (or less) overall

seems less strongly related to the composition of the modal balance.

Repeating the same kind of analysis on the US dataset gives us partly different results.

This is not surprising, given the nature of the cluster analysis technique and the radically

different experimental settings. Three out of four groups predominantly use cars, com-

prising 89% of the sample, compared to the 54% of respondents belonging to group 1 in the

French dataset. People who predominantly use public transit fall from 29% in the French

sample (groups 2 and 3) to 11% in the US sample (group 3). The latter group is much less

monomodal toward transit than the French group 2 and has OM patterns rather similar to

the French group 3. However, a cautionary note must be considered when comparing OM

measures across datasets, since these measures are different, as explained in the preceding

section. Another interesting disparity between the two samples is that the US analysis did

not distill a group that intensively uses both means.

SM measures have slightly lower correlations with OM measures compared to the

French sample. This is probably due to the coarser SM scale used by the US sample, and to

behavioral differences as well. In particular, the US group 1 travels slightly more than

group 3 but it ‘‘feels’’ it travels less. However, we do not observe this discrepancy when

looking at the French groups 1 and 3, where group 1 also travels more than group 3, but

subjective mobility is congruent with objective mobility. This could be ascribed to dif-

ferent attitudes regarding cars and perhaps even more so, public transport in the two

samples, since the same differences between the datasets can be detected when comparing

OM_GLOB and RDM_GLOB for groups 1 and 3. Mode-specific measurement errors in

our OM measures (for example, an overestimation of public transport speeds when com-

puting the hours spent traveling by that mode, which would in turn lower OM_GLOB for

the US group 3) could also play a role in weakening these correlations.

As explained above, RDM scores do not allow us to determine if people belonging to a

group desire to travel more or less on average. Hence we had a closer look at the RDM

measures of the two considered transit modes in the US dataset, namely the bus and the

train. Only 4% wanted to use both transit modes less. In fact, however, the majority of the

sample (55%) wanted to travel either by bus or by train the same amount as now, and 80%

of those were currently traveling little or not at all by transit. Only 27% of the sample

actually wanted more travel by train, and 11% wanted more by bus. Overall though, lower

OM-SM and OM-RDM correlations in the US datasets could be indications that the latent

demand for travel is greater in this case, a result that is probably linked to the more diverse
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socioeconomic composition of the sample. This could also be due to the lower levels of use

of transit, so that the desired modal balances of the two samples are probably closer to each

other than is the actual use of different means.

Socioeconomic characteristics of the US clusters

Characterizing the traveler groups that we found by looking at some key socioeconomic

variables is useful to assess the added value of our methodology compared to other market

segmentation studies that do not consider multimodality measures. The French sample is,

however, not representative of a general population and we have a small number of obser-

vations for three out of the four clusters, so that such analysis is not so insightful. In contrast,

characterizing the clusters of the US dataset is an effective way to understand how personal

traits relate to multimodality attitudes and behaviors. Concerning US clusters, it is particu-

larly interesting to study the differences between the first two clusters on one hand (heavily

versus rather car-oriented) and between car-oriented and transit-oriented clusters on the

other. Light travelers would presumably have greater within-group variability in terms of

socioeconomic characteristics than the other clusters, since very different situations are

probably represented there (e.g., retired, unemployed, poor or sick persons, partners of

affluent persons that do not work, parents caring for their children at home…). On the other

hand, they offer less insight concerning multimodality behaviors, because of the low mobility

levels which make them less easily observable with an acceptable relative measurement error.

We performed Kruskal-Wallis tests to ascertain that the group differences that we found

were not simply due to random variation. The corresponding p-values are always well

below .01, so that we can safely reject the null hypothesis of no difference among the group

populations. We used a non-parametric test because three out of these four socioeconomic

variables are ordinal rather than continuous, and (more importantly) are not always

approximately normally-distributed, so that a standard analysis of variance (ANOVA)

would not necessarily be appropriate.

The socioeconomic variables that we consider, together with the Kruskal-Wallis test

statistics and their corresponding p-values assuming a Chi-square distribution with three

degrees of freedom, are the following:

• CAR_NO represents the number of available cars in the household (108.3, p \ .001).

• CAR_AVAIL is the percentage of time a personal vehicle is available to the

respondent. Respondents could choose among six pre-defined values (143.8, p \ .001).

• EDUCAT represents the educational level of the respondent. Six different levels were

indicated in the questionnaire (11.7, p = .008).

• INCOME indicates the income of the household. Six income brackets were specified

(86.3, p \ .001).

Categories for each of the above variables are listed in the first column of Table 4. The

remainder of the table shows the number of cases for each category by group and for the

whole sample and the corresponding row percentages. Concerning CAR_NO, respondents

who indicated more than four cars have been grouped into one category.

Concerning CAR_NO and CAR_AVAIL, both values are not surprisingly lower for

transit-oriented than for car-oriented people. However, it is interesting to note that there is

almost no difference between the two car-oriented clusters in these two aspects, so that

their distinction is not due to the ‘‘car availability’’ instrumental factor. A detectable

difference is instead related to sex, since 65% of the heavily car-oriented people are male,

whereas for group 2 this figure is lowered to 53%, roughly the same as for the transit-
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oriented cluster. It would be interesting to explore whether the greater symbolic value of

cars for males (Steg 2005) can explain part of this difference. Another interesting extension

of this study related to modal availability could focus on public transport accessibility for

the sample, which surely plays a role in shaping attitudes and the degree of familiarity with

the different means. However, such a study would require more detailed data analyses as

well as geocoding, which was not available for the datasets we used.

Considering EDUCAT, the share of persons who did not attend graduate school is

roughly equal to 35% across the four clusters, but transit-oriented persons are much more

likely to have completed a 4-year degree. On the other hand, these latter have a lower

income than the average; the well-known positive relationship between income and edu-

cational level is thus not reflected in our multimodality-based clusters. Strong car users are

more likely to be full-time workers, but other socioeconomic characteristics do not display

much difference between the two car-oriented groups, as shown in Table 4. To sum up, the

use of a multimodality-based clustering technique can give results not easily reproduced by

segmentations based on socioeconomic characteristics, since patterns of modal usage are

generated from both instrumental and affective factors. In fact, cluster analyses must be

based on a limited number of variables in order to give interpretable results, so that a

socioeconomic segmentation based on all the relevant factors (including land use, activity

patterns etc.,) would be in any case rather difficult to manage. In such situations, our

method of looking just at multimodality patterns can give results otherwise not easily

obtainable in a different way.

Policy implications and conclusions

We believe that the findings of this study are rather insightful concerning some relevant

policy questions. For example, concerning the issue of the existence of individual travel

time budgets (Mokhtarian and Chen 2004), the OM-SM-RDM patterns of values across

groups in Tables 2 and 3 suggest to us that people have different ideal levels of use of the

different modes. We can see this by separately considering the clusters that show strong

monomodal behavior (groups 1 and 2 of the two datasets) and then some clusters with

comparable global mobility levels (namely, groups 1 and 3). As a general rule, strong users

of a given mode would like to bring more balance to their ‘‘modal consumptions’’ by

decreasing the use of this mode more than the average, and increasing the use of the

alternative mode. Subsequent research should be aimed at clarifying if this is exclusively

due to situational variables (for example, limited accessibility to public transport for strong

car users and limited availability of a private means for transit users), or if attitudes and

self-related factors also play a role. In more general terms, it seems in any case important

to jointly look at the use of the different modes to understand people’s desires. For

example, French groups 2 and 4 have the same level of use of public transport, and US

groups 3 and 4 are the same for cars, but the corresponding RDM levels are quite different.

Turning our attention to objective and relative desired global mobility levels, other

interesting patterns emerge. Restricting our analysis to multimodality behaviors and setting

aside the underlying possible explanations that we mentioned in the preceding paragraph,

we note for example that the US group 3 desires to travel dramatically less than the US

group 1, even if the two OM_GLOB values are comparable. The decisive difference is that

group 3 uses more transit than cars, so that the ideal level of use of the two modes is clearly

different. We do not observe the same phenomenon when considering the French groups 1

and 3, so that ideal levels are clearly different also for the two samples.
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Our methodology does not allow us to quantify the above two gaps in the ideal levels of

use (between different modes and between different datasets); nevertheless we can infer

that (1) the ideal levels of use of the different transport means may be linked more with the

modal balance than with one’s global mobility levels and that (2) when the modal balance

is equilibrated, a comparison of the two samples shows differences in the relative attrac-

tiveness of the modes, that are probably due to the different experimental contexts. For

example, the French sample, comprising employees of a transportation research institute,

would be more sensitive to the negative externalities imposed by the automobile, and

perhaps ideologically more inclined toward environmentally-benign travel modes, than

would the more general sample of the US dataset (although the northern Californians

comprising the US sample would in turn be expected to be more environmentally aware

and proactive than the country as a whole).

The analysis that we presented shows the importance of considering multimodality

behaviors to understand how the use of different transport modes impacts desires and

ultimately transport trends and scenarios, in addition to the more conventionally-studied

socioeconomic impacts. The general policy target of maximizing modal diversion to transit

and non motorized modes can be probably best reached by adapting strategies on the basis

of actual modal balances, thus completing the indications that come from car-use reduction

theories where the stress is on the levels of use of cars. In other words, modal diversion

strategies are more effective if they combine car use reduction targets with alternative

modes promotion, thus better supporting the aforementioned observed tendency to equil-

ibrate modal baskets. This finding can be related to the well-known ‘‘carrot and stick’’

approach that has been long recommended over more partial interventions. On the other

hand, differences in the ideal mobility levels need to be taken into account and call for

policy actions possibly differentiated according to the different segments that we found.

Future research efforts in this direction will be aimed at better defining which policy

interventions are best suited for each market segment. It would also be interesting to broaden

the range of modes, including nonmotorized means and perhaps separately considering

different kinds of public transport. This would require a method to synthetically express the

levels of use of different transport means with a single index, in order to keep the number of

variables to be considered in cluster analysis at an acceptable level (Diana and Mokhtarian

2007). The authors have started applying such a method in a related paper (Diana and

Mokhtarian 2009), which is a follow-up to the present one. Finally, seminal work is trying to

assess the relative importance of multimodality behaviors and of other factors, such as

attitudes and performances of competing modes, in determining modal choices (Diana

2009). This extension could be useful among other things to adjust cross elasticities between

modes by taking into account a wider range of factors, beyond travel costs and times.
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