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Abstract—This paper proposes a cooperative demand response
program for distributed price-anticipating buildings in smart
grid. The cooperative demand response program is formulated
as a constrained social optimization problem. We develop a
cooperative strategy and obtain a Pareto optimal solution from
the constrained social optimization problem. Comparing with the
Nash equilibrium obtained from the one-stage demand manage-
ment game, the Pareto optimal solution reduces the electricity
costs to all the building managers. We further align this Pareto
optimal solution with the subgame perfect Nash equilibrium of
a repeated demand management game and develop an incentive-
compatible trigger-and-punishment mechanism to avoid the non-
cooperative behaviors of the building managers. Numerical results
demonstrate that the cooperative demand response program can
reduce the electricity costs, lower the electricity prices, and cut
down the total energy consumption.

I. INTRODUCTION

Matching supply with demand has been an active topic
in operating electricity markets [1]. Traditionally, we need
enough generation capacity to meet the peak load, which
requires substantial infrastructure to be idle for all but a few
hours a year. Recently, demand response has been proposed
to control the load instead of providing enough generation
capacity. In practice, demand response can be implemented
by direct load control or market-based pricing. For the direct
load control, energy providers have the ability to remotely
shut down consumer equipments on a short notice when
needed [2], [3]. For the market-based pricing, energy providers
can adjust the load by flexible pricing, such as critical peak
pricing (CPP) and real-time pricing (RTP) [4]. An advanced
metering infrastructure (AMI) is used for collecting the energy
consumption and announcing the electricity price [5].

There are two types of consumers in the literature of
price-based demand response program: price-taking consumers
[6]–[8] and price-anticipating consumers [9]–[15]. The price-
taking consumers assumes that their energy consumption can-
not effect the electricity price, whereas the price-anticipating
consumers believe that their energy consumption can change
the electricity price. In fact, the price anticipating consumers
are usually referred to the large energy consumers such as
commercial buildings. It was reported that the commercial
buildings have large potential to provide demand response to
the smart grid [16], [17].

Recently, game theory has been applied to study the demand
response with price-anticipating consumers. For example, the
noncooperative game was utilized to study the cost minimiza-
tion of interactive consumers [9], [10], the charging control of
plug-in electric vehicles (PEV) [11]–[13]. Stackelberg game
was employed to model the interactions between the consumers
and the utility companies [14], [15]. However, neither the
Nash equilibrium nor the Stackelberg equilibrium of the these
game models are Pareto optimal solutions. Generally, Pareto
optimality is an important criterion for evaluating economic
systems and public policies. If economic allocation in any
system is not Pareto efficient, there is potential for a Pareto
improvement–an increase in Pareto efficiency. Nevertheless,
few papers are devoted to the Pareto improvement for the
demand management system. In this study, we study the
cooperative demand response program with price-anticipating
commercial buildings and give a Pareto optimal solution for
the demand management system such that all the building
managers have lower electricity costs at this solution compared
with that at the Nash equilibrium.

The novelties of this work are twofold. First, we formulate
the cooperative demand response as a social optimization
problem and prove that the solution in this optimization
problem is a subgame perfect Nash equilibrium of a repeated
demand management game. Second, we develop a incentive-
compatible trigger-and-punishment mechanism to avoid the
noncooperative behaviors of the building managers and es-
tablish the conditions on the durations of the punishment. To
the best of our knowledge, there is no work in the literature
providing rigorous analysis of Pareto improvement in the
demand response program.

The rest of the paper is organized as follows. The system
model are built in Section II. In Section III, the cooperative de-
mand response strategy is developed, and the social optimal so-
lution is proved to be a subgame perfect Nash equilibrium of a
repeated game. A incentive-compatible trigger-and-punishment
mechanism is developed to avoid the noncooperative behaviors
of the building managers. Numerical results are shown in
Section IV, and conclusions are summarized in Section V.

II. SYSTEM MODEL

We consider a demand management system composed of
a control center and several buildings, as shown in Fig. 1.



The control center can adjust the energy consumption of the
buildings by periodically announcing the prices to the building
managers. We assume that the building managers are price-
anticipating consumers, i.e., the building managers know that
the pricing curve is effected by their energy consumption. Ac-
cording to the updated electricity price, the building managers
can adjust the temperature settings of the heating ventilation air
conditioning (HVAC) system to reduce their electricity costs.
The electricity cost is composed of two aspects: the costs
caused by the discomforts and the payments. Next, we will
give the formulations for these two costs.

A. Discomfort costs

For buildings with HVAC systems, changing the temper-
ature settings will cause discomfort to the occupants. The
discomfort costs are defined as the following Taguchi loss
function [18]:

V l
i (T

in
i (t)) = θi(T

in
i (t)− T̂ in

i (t))2, i ∈ N , (1)

where N = {1, 2, . . . , N} denotes the set of building man-
agers, i denotes the index of building managers, t denotes
the index of time slots, and θi is the cost coefficient. T̂ in

i (t)
and T in

i (t) denote the target indoor temperature and the actual
indoor temperature in time slot t, respectively. The indoor
temperature of building i evolves according to the following
linear dynamics [8]:

T in
i (t) = T in

i (t− 1) + βi(T
out
i (t)− T in

i (t− 1)) + γili(t), (2)

where βi and γi specify the thermal characteristics of the
operating environment and the HVAC system, T out

i denotes
the outdoor temperature, β(T out

i (t) − T in
i (t − 1)) models the

heat transfer, γli(t) models the energy-heat transformation of
the HVAC: γi > 0 if the HVAC is a heater and γi < 0 if
the HVAC is a cooler. Assuming building i requires l̂i(t) kWh
energy to maintain the target indoor temperature, we have

T̂ in
i (t) = T in

i (t− 1) + βi(T
out
i (t)− T in

i (t− 1)) + γi l̂i(t). (3)

Substituting (2) and (3) into (1) and omit the time slot t,
we obtain the discomfort costs:

V l
i = θiγ

2
i (li − l̂i)

2, i ∈ N . (4)

B. Electricity payments

The electricity payments of building manager i are denoted
as

V p
i = p(l)li, i ∈ N , (5)

where l = {l1, l2, . . . , lN}. According to the technical report
from U. S. Department of Energy, the electricity price can
be approximated to a linear function of the total energy
consumption [19].

p(l) = λ(
∑
i∈N

li − L) + p0. (6)

where L is the forecast demand, λ is the pricing parameter to
implement elastic pricing, and p0 is the base price when the
actual total energy consumption is equal to L.
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Fig. 1. Demand response with price-anticipating buildings.

C. Electricity Costs

The electricity cost to building manager i is defined as

Vi = V l
i + V p

i

= θiγ
2
i (li − l̂i)

2 + (λ(
∑
i∈N

li − L) + p0)li. (7)

The discomfort costs and the electricity payments are usu-
ally conflict with each other, and the building managers need
to make a tradeoff between them.

III. MAIN RESULTS

A. Game Formulation and Cooperative Strategy

From the cost formulation (7), the energy consumption
of the building managers will change the electricity price
and further effect the electricity costs to the other building
managers. Thus, the demand management can be formulated
as the following noncooperative game:

Definition 1. (One-stage demand management game) A
demand management game is defined as a triple G =
{N , (Si)i∈N , (Ui)i∈N }, where N = {1, 2, · · · , N} is the set
of active building managers participating in the game, Si is
the set of possible strategies that building manager i can take,
and

Ui = −Vi = −θiγ
2
i (li − l̂i)

2 − (λ(
∑
i∈N

li − L) + p0)li

is the payoff function.

The solution in the one-stage demand management game is
the Nash equilibrium, which can be obtained from ∂Ui/∂li =
0, i ∈ N , yields

−2θiγ
2
i (li − l̂i)− λ(

∑
i∈N

li − L)− p0 − λli = 0, i ∈ N . (8)

The coefficient matrix of the above equations is denoted as

A =


−2θ1γ

2
1 − 2λ −λ . . . −λ

−λ −2θ2γ
2
2 − λ . . . −λ

...
...

. . .
...

−λ −λ . . . −2θNγ2
N − 2λ

 .

(9)



Following the Gerschgorin theorem [20], the coefficient
matrix is nonsingular if

λ ≤ 2θiγ
2
i

N − 3
, for i ∈ N , (10)

with which, the Nash equilibrium is unique and can be denoted
as

lNE = A−1C , (11)

where C is defined as

C =


p0 − λL− 2θ1γ

2
1 l̂1

p0 − λL− 2θ2γ
2
2 l̂2

...
p0 − λL− 2θNγ2

N l̂N

 . (12)

Generally, the Nash equilibrium is not a Pareto optimal
solution, and there exist possibilities to increase the payoffs
of all the building managers simultaneously. Next, we develop
a cooperative strategy to improve the Pareto efficiency. Specif-
ically, the building managers negotiate their energy consump-
tion according to the following social optimization problem:

(P1) maximize
∑
i∈N

Ui

subject to Ui > UNE
i , i ∈ N ,

where UNE
i denotes the payoff of building manager i obtained

from the noncooperative game. Let lc = {lc1, . . . , lcN} denote
the social optimal energy consumption obtained from (P1) and
U c
i denote the cooperative payoff of building manager i. It is

easy to see that lc is a Pareto optimal solution and U c
i is larger

than Ue
i for all i ∈ N . However, the social optimal energy

consumption is not achievable in one-stage demand response
because all the building managers can improve their payoffs
by taking the noncooperative strategy and the noncooperative
behaviors will not affect their future payoffs. To make the
social optimal energy consumption achievable, we need to give
some punishments to the building managers in the future if they
adopt the noncooperative strategy. In that case, the building
managers will play the one-stage demand management game
repeatedly and care more about the long-term electricity costs.
The average electricity cost to building manager i over multiple
stages is defined as

V̄i = (1− δ)

∞∑
k=1

δk−1Vi(k), (13)

where k is the index of the stages and δ ∈ (0, 1) is the
discount factor, which represents how the building managers
discount their future costs. In that case, the building managers
not only value the current electricity costs but also the future
electricity costs. Therefore, each building manager will keep a
good reputation to avoid the increased cost in the future. Next,
we give the definition of the repeated demand management
game.

Definition 2. (Repeated demand management game) Suppose
the one-stage demand game G is repeated infinitely and all the
building managers can observe the strategies and the payoffs

of the others, an infinite repeated demand management game
is defined as G(∞, δ) = {N , (Si)i∈N , (Ūi)i∈N }, where

Ūi = −V̄i

= −(1− δ)
∞∑
k=1

δk−1(θiγ
2
i (li − l̂i)

2

−(λ(
∑
i∈N

li − L) + p0)li)

is the average payoff function.

According to the Folk theorem [21], there exits a subgame
perfect Nash equilibrium of the repeated demand management
game such that the average payoff Ūi is equal to the coopera-
tive payoff U c

i for all i ∈ N when δ > δ̂, where δ̂ is a threshold
to ensure the existence of subgame perfect Nash equilibrium.

B. Trigger-and-Punishment Mechanism

In this section, we will develop a trigger-and-punishment
mechanism to avoid the noncooperative behaviors and prove
that the social optimal energy consumption is a subgame
perfect Nash equilibrium of the repeated demand management
game. Before that, we first characterize the impact of the
noncooperative behaviors on the demand management system.

1) Impact of the noncooperative behaviors: We assume
only one building manager i takes the noncooperative strategy
when the other building managers adopt the cooperative strat-
egy. In that case, the energy consumption of building manager
i is denoted as

ldi = argmaxUi(l
c
1, . . . , l

c
i−1, l

c
i+1, . . . , l

c
N ), (14)

from which, we obtain

ldi =
p0 − λL− 2θiγ

2
i l̂i + λ

∑
j∈N ,j ̸=i l

c
j

−2θiγ2
i

. (15)

The payoff of building manager i obtained from the non-
cooperative strategy is denoted as

Ud
i = −θiγ

2
i (l

d
i − l̂i)

2 − pd(lcj , l
d
i )l

d
i , (16)

and the payoff of the other building managers are denoted as

Ud
j = −θjγ

2
j (l

c
j − l̂j)

2 − pd(lcj , l
d
i )l

c
j , j ∈ N , j ̸= i,(17)

where pd(lcj , l
d
i ) denotes the price in the case of noncooperative

behaviors and is defined as

pd(lcj , l
d
i ) = λ(

∑
j∈N ,j ̸=i

lcj + ldi − L) + p0. (18)

It is straightforward to see that each building manager
can improve its payoff by taking the noncooperative strategy,
i.e., Ud

i ≥ U c
i for all i ∈ N . In the cooperative demand

response program, the noncooperative behavior of one building
manager will change the electricity price, the total energy
consumption, and the payoff of the other building managers.
Next, we will study the impacts of the nonlinear behaviors on
the performances of demand response program.



Proposition 1. Suppose one building manager takes the non-
cooperative strategy while the other building managers keep
cooperative, we have the following conclusions:

• The electricity price is increased.

• The payoffs of all the building managers that keep
cooperative are decreased.

• The energy consumption of the noncooperative build-
ing manager and the total energy consumption are
both increased.

Proof: Following the social optimality of the cooperative
payoff in (P1), we have

∑
i∈N Ud

i <
∑

i∈N U c
i . Since there

is Ud
i > U c

i , at least one building manager will have the
payoff decrease. Suppose the payoff of building manager j
(j ∈ N , j ̸= i) is decreased. Since the energy consumption
of the building manager j are not changed, the decrease of
the payoff function (17) only comes from the increase of the
payments and thus the increase of the electricity price. Given
the increased electricity price and the unchanged energy con-
sumption, the other building managers that keep cooperative
will also have the payoff decrease. From the pricing function
(6), we see that the increase of the price only comes from the
increase of the total energy consumption and thus the increase
of the energy consumption of the noncooperative building
manager.

In practice, the the amount of changes in the price, the
payoffs, and the total energy consumption is effected the
scale of the demand management system (e.g., the number
of buildings). In the simulations, we will discuss it in detail.
To avoid the noncooperative behaviors of the selfish building
managers, we develop the following trigger-and-punishment
mechanism: All of the building managers are assumed to adopt
the cooperative strategy in the first stage. In the subsequent
stages (i.e., k ≥ 2), the building manager will maintain the
cooperative strategy if all the other building managers adopt
the cooperative strategy in the last stage. If any building
manager see a noncooperative behavior in the last stage, all of
the building managers will enter into the period of punishment
and choose the noncooperative strategy for the subsequent
T stages. There are two questions to be answered in the
trigger-and-punishment mechanism: How to identify the non-
cooperative behaviors in the demand management system and
what is the punishment strength to avoid the noncooperative
behaviors?

2) Noncooperative Behavior Detection: The changes of
total energy consumption, the electricity price, and the payoffs
can be used for detecting the nonlinear behaviors of the
building managers. Next, we choose the change of the total
energy consumption from the cooperative energy consumption
as the indicator for noncooperative behavior detection. The
change of the total energy consumption are defined as

∆L =
∑
i∈N

li −
∑
i∈N

lci (19)

To detect the noncooperative behaviors of any building
manager, the detection threshold is chosen as

η = min{∆ld1 ,∆ld2 , . . . ,∆ldN}. (20)

where
∆ldi = ldi − lci , i ∈ N , (21)

where ldi is the energy consumption of the building manager
that adopts the noncooperative strategy and lci is the energy
consumption of the building manager that adopts the coop-
erative strategy, given the other the building managers keep
cooperative. The detection rule is denoted as

q̂ =

{
1, if ∆L ≥ η,

0, if ∆L < η
(22)

where q̂ = 1 denotes that the control center detects nonco-
operative behavior in the demand management system and
q̂ = 0 denotes that the control center does not detect the
noncooperative behavior.

3) Punishment Strategy: Assuming all the building man-
agers adopt the social optimal energy consumption, the average
payoff of the building manager i without noncooperative
behaviors is denoted as

Ū c
i = (1− δ)

∞∑
k=1

δk−1U c
i , (23)

and the average payoff of the building manager i with nonco-
operative behaviors at stage T0 is denoted as

Ūd
i = (1− δ)(

T0−1∑
k=1

δk−1U c
i + δT0−1Ud

i

+

T0+T∑
k=T0+1

δk−1UNE
i +

∞∑
k=T0+T+1

δk−1U c
i ). (24)

Next, we give the conditions to achieve the social optimal
energy consumption in the following proposition:

Proposition 2. The social optimal energy consumption lc is
a subgame perfect Nash equilibrium of the repeated demand
management game, and the trigger-and-punishment mecha-
nism is incentive compatible if

T >
log(1 + (1−δ)(Uc

i −Ud
i )

δ(Uc
i −UNE

i )
)

logδ
, (25)

where δ should satisfy

δ >
Ud
i − U c

i

Ud
i − UNE

i

. (26)

Proof: To align the social optimal energy consumption
with the subgame perfect Nash equilibrium and achieve the
incentive compatibility of the trigger-and-punishment mecha-
nism, there should be Ū c

i > Ūd
i for all i ∈ N , from which,

we have
T0+T∑
k=T0

δk−1U c
i > δT0−1Ud

i +

T0+T∑
k=T0+1

δk−1UNE
i . (27)

Since U c
i , Ud

i , and UNE
i are assumed to be constant within

different stages, (27) can be transformed to

δT0−1 1− δT+1

1− δ
U c
i > δT0−1Ud

i + δT0 1− δT

1− δ
UNE
i . (28)



TABLE I. COOPERATIVE AND NONCOOPERATIVE DEMAND RESPONSE
PROGRAM.

Electricity price Total cost Average cost Total energy consumption
(cents/kWh) ($) ($) (kWh)

Cooperation 19.07 1.04 × 104 51.78 1.81 × 104

Noncooperation 65.27 1.56 × 104 77.85 2.27 × 104

Then, we obtain the condition (25). The lower bound of δ is
obtained from

1 +
(1− δ)(U c

i − Ud
i )

δ(U c
i − UNE

i )
> 0, (29)

from which, we obtain the condition (26). From (25), we see
that the conditions on the duration of punishment is not related
to the stage at which the noncooperative behaviors occur. No
matter which stages the game start from, the social optimal
energy consumption is still a equilibrium for the subgame
and thus a subgame perfect Nash equilibrium of the repeated
demand management game.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the co-
operative demand response program by using Monte Carlo
method. We assume that the target energy consumption of the
buildings are uniformly distributed in [100kW, 150kW], the
cost coefficients γiθ

2
i are uniformly distributed in [2, 4]. The

base price p0 is set to 5 cents/kWh, the forecast demand is
estimated by L =

∑
i∈N l̂i/1.5, and the pricing parameter a

is calculated by a = 2/N . Before giving the numerical results,
we first define the performance indexes as follows.

To evaluate the cost decrease of the building managers
obtained from the cooperative demand response program, we
define the average cost decrease (ACD) as

ACD =

∑
i∈N (Ue

i − U c
i )∑

i∈N Ue
i

× 100%, (30)

To evaluate the cost increase of the building managers j
(j ∈ N , j ̸= i) when some building manager i takes the
noncooperative strategy, we define the average cost increase
(ACI) as

ACI =

∑
j∈N ,j ̸=i(U

d
j − U c

j )/(N − 1)∑
i∈N U c

i /N
× 100%, (31)

We compare the cooperative and noncooperative demand
response program in Table 1. It is shown that the cooperation
reduces the electricity price, the total cost, the average cost,
and the total energy consumption effectively. Next, we study
the impact of the number of the buildings on the performance
of the demand response program. As shown in Fig. 2, both
the electricity prices under the noncooperative and cooperative
demand response program are almost constant with the number
of the buildings. As shown in Fig. 3, the average cost decrease
obtained from the cooperation is increased with the number
of the buildings and starts to saturate when the number of
buildings is larger than 100. Assuming one building man-
ager has the noncooperative behavior and the other building
managers adopt the strategy of cooperation, the average cost
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Fig. 2. Electricity prices under the case of cooperation and noncooperation
v.s. Number of building managers.
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cooperation v.s. Number of building managers.

decrease of the noncooperative building manager is increased
with the number of the buildings (Fig. 4) and the average
cost increase of the other cooperative building managers are
decreased with the number of the buildings (Fig. 5). Both of
them saturates when there are more than 100 buildings. It
is also shown that the noncooperative building manager has
relatively large cost decrease and thus strong motivations to
take the noncooperative strategy.

V. CONCLUSION

In this study, we formulate the cooperative demand response
program as a constrained social optimization problem. It is
shown that the cooperative demand response program lowers
the electricity price, the total cost, the average cost, and the
total energy consumption comparing with the noncooperative
demand response program. We use the repeated game to keep
cooperative among selfish price-anticipating building managers
and develop the trigger-and-punishment mechanism to avoid
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the noncooperative behaviors. We establish the conditions on
the durations of punishment to ensure a subgame perfect Nash
equilibrium and incentive compatibility.
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