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Abstract

A preliminary design of a health monitoring system for automated vehicles is developed

and tests in a high-fldelity nonlinear simulation are very encouraging. A new detailed

nonlinear vehicle simulation which extends the current simulation is documented and will

be used as a future testbed for evaluating the performance of the health monitoring system.

A health monitoring system has been constructed for the lateral and longitudinal modes that

monitors twelve sensors and three actuators. The approach is to fuse data from dissimilar

instruments using modeled dynamic relationships and fault detection and identiflcation

fllters. The fllters are constructed so that the residual process has directional characteristics

associated with the presence of a fault, that is, static patterns. Sensor noise, process

disturbances, system parameter variations, unmodeled dynamics and nonlinearities can

distort these static patterns. Two candidate residual processing schemes are developed

and tested. A Bayesian neural network is trained to announce a fault and the probability

of fault occurrence by recognizing fault patterns embedded in the residual. A new multiple

hypothesis Shiryayev probability ratio test is also developed. Finally, development of a

v



time-varying fault detection fllter, applicable to maneuvering vehicles with time-varying

dynamics, is described.

Keywords. Automated Highway Systems, Automatic Vehicle Monitoring, Fault Detection

and Fault Tolerant Control, Neural Networks, Reliability, Sensors, Vehicle Monitoring.
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Executive Summary

A preliminary design of a health monitoring system for automated vehicles is developed

and tests in a high-fldelity nonlinear simulation are very encouraging. A new detailed

nonlinear vehicle simulation which extends the current simulation is documented and will

be used as a future testbed for evaluating the performance of the health monitoring system.

A health monitoring system has been constructed for the lateral and longitudinal modes that

monitors twelve sensors and three actuators. The approach is to fuse data from dissimilar

instruments using modeled dynamic relationships and fault detection and identiflcation

fllters. The fllters are constructed so that the residual process has directional characteristics

associated with the presence of a fault, that is, static patterns. Sensor noise, process

disturbances, system parameter variations, unmodeled dynamics and nonlinearities can

distort these static patterns. Two candidate residual processing schemes are developed

and tested. A Bayesian neural network is trained to announce a fault and the probability

of fault occurrence by recognizing fault patterns embedded in the residual. A new multiple

hypothesis Shiryayev probability ratio test is also developed. Finally, development of a

time-varying fault detection fllter, applicable to maneuvering vehicles with time-varying

dynamics, is described.
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Chapter 1

Introduction

A proposed transportation system with vehicles traveling at high speed, in close

formation and under automatic control demands a high degree of system reliability. This

requires a health monitoring and maintenance system capable of detecting a fault as it

occurs, identifying the faulty component and determining a course of action that restores

safe operation of the system. This report is concerned with vehicle fault detection and

identiflcation and describes a vehicle health monitoring system approach based on analytic

redundancy.

Analytic redundancy methods for fault detection and isolation use a modeled dynamic

relationship between system inputs and measured system outputs to form a residual process.

Nominally, the residual process is nonzero only when a fault has occurred and is zero at other

times. For an observable system, this simple deflnition is met by the innovations process of

any stable linear observer. A detection fllter is a linear observer with the gain constructed

so that when a fault occurs, the residual responds in a known and flxed direction. Thus,

when a nonzero residual is detected, a fault can be announced and identifled.

1
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A complication arises when there are many possible faults because a fault detection fllter

can only be designed to detect a limited number of faults. This is related to the order of

the vehicle dynamics. When more faults need to be identifled, several fault detection fllters

have to be used with each fllter designed to detect and identify some but not all possible

faults. The vehicle fault detection system described in this report has four fault detection

fllters. This raises two di–cult design issues. First, some and probably all faults will not

be included in the design of one or more fault detection fllters. When such a fault occurs,

the residual of all fllters will respond, even the residuals of the fllters that do not have the

fault included in their design. If a fault is not included in a fault detection fllter design, the

directional characteristics of the residual will be undeflned and the fault cannot be properly

identifled. The challenge is to build a mechanism that recognizes when a fault detection

fllter is responding to a fault for which it has not been designed and then to exclude the

residual of all such fllters from the fault identiflcation process. If it can be assumed that

only one fault occurs at a time, then the residual processor can exclude the residual of any

fault detection fllters that point to two or more faults.

A second design issue is how the faults should be grouped and identiflcation delegated

among the fault detection fllters. Several approaches are taken in the design described in

this report. In one, the functional form of a given sensor is restricted. In particular, it is

assumed that the sensor fault is a bias of unknown magnitude. The assumption allows this

sensor and a certain actuator to be isolated by a single fault detection fllter. This point

is signiflcant because the conventional approach to fault detection fllter design would not

allow a single fllter to isolate these two faults and would require this task to be passed on

to the residual processing module.

A second fault grouping design consideration is a newly apparent tradeofi between

fllter parameter robustness, as determined by the eigenvector conditioning, and fault input

observability. Using an eigenstructure assignment algorithm, a design objective is to place

well-conditioned eigenvectors. However, it has been found recently that for some fault

groups, a fault might have only one highly observable direction. This means that while a
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fault might be large and dynamically active, the residual is small most of the time. The

residual would always be large if all associated eigenvectors were placed close to being

collinear with the most observable direction. Hence a tradeofi exists. An objective in

assigning faults to fault groups is to minimize the impact of this tradeofi.

A third fault grouping design consideration is discussed in (Douglas et al. 1995). In

a fault detection system that consists of a bank of fault detection fllters and a residual

processor such as a neural network, fault isolation is done through the combined efiort of

both system elements. The fault detection fllter is a carefully tuned device that uses known

dynamic relationships to isolate a fault. The neural network residual processor combines

the residuals from several fllters and resolves any ambiguity. It is suggested that identifying

a fault among a group of dynamically similar faults requires the precision of and is best

delegated to the fault detection fllters. Furthermore, it is suggested that the reliability of

the neural network training would be improved if the fault groups associated with each of

the fault detection fllters are dynamically dissimilar.

In applications it is unrealistic to expect that a residual process would be nonzero only

when a fault has occurred. Sensor noise, process disturbances, system parameter variations,

unmodeled dynamics and nonlinearities all contribute to the magnitude of a residual. There

are many methods to reduce the impact of these efiects on the residual but none reduce

their efiect to zero. This means that some threshold detection mechanism must be built.

A simple threshold detection mechanism announces a fault when the size of a residual

exceeds some prescribed value. This prescribed value could be determined from empirical

studies which balance a rate of false alarm against a rate of miss alarm. A more complicated

residual processor might take into account the thresholds of all other residuals as well.

Reasoning that if the probability of simultaneous failures is very small, no fault is announced

when more than one residual exceeds a threshold. It is more likely that the nonzero residuals

are caused by noise or nonlinearities or some cause other than multiple faults.

Two residual processing systems are described in this report. In the flrst, a Bayesian

neural network considers the residuals from all fault detection fllters as constituting a
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pattern, a pattern which contains information about the presence or absence of a fault.

Hence, residual processing is treated as a pattern recognition problem.

The objective of a neural network as a feature classifler is to associate a given feature

vector with a pattern class taken from a set of pattern classes deflned apriori. In an

application to residual processing, the feature vector is a fault detection fllter residual and

the pattern classes are a partitioning of the residual space into fault directions which include

the null fault. A Bayesian neural network also provides probabilities of feature classiflcation

conditioned on an observation history. A stochastic training algorithm enhances robustness

by treating training sets as as sample sets providing information about the entire population.

A second approach to residual processing described in this report is a modifled Shiryayev

sequential probability ratio test extended to include multiple hypotheses. The algorithm,

which is derived as a dynamic programming problem, detects and isolates the occurrence

of a failure in a conditionally independent measurement sequence in minimum time. The

test has been further extended to the detection and identiflcation of changes with unknown

parameters.

This report is organized as follows. Section 2 describes the car models used for fault

detection fllter design and evaluation. A nonlinear model is derived directly from one

provided by the Berkeley PATH research team (Peng 1992). Low-dimensional linear models

that include coupled longitudinal and lateral vehicle dynamics are used for fault detection

fllter design. The high fldelity nonlinear model is used for evaluation and to obtain the

linear models used for design. Section 3 describes the faults to be identifled by the fault

detection system. Section 4 describes the design of the fault detection fllters. This includes

how the faults are grouped for each fault detection fllter design and how the fault detection

fllter eigenstructure placement is done. Section 5 presents an evaluation of the performance

of the fault detection fllters in a nonlinear simulation.

Sections 6 and 7 describe two candidate fault detection fllter residual processing systems.

In Section 6 a Bayesian neural network is developed and in Section 7 a multiple hypothesis

Shiryayev sequential probability ratio test is described. Both are used to process residuals
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from all fault detection fllters to detect and identify which if any fault has occurred.

In section 8 a six degree of freedom nonlinear vehicle model is developed independently

of the model used for the Berkeley simulation of Section 2. This work is done to provide

a model that better accommodates a nonplanar, rough road surface, one where the road

gradient is difierent for all four wheels. The model will be used to evaluate the robustness

of the health monitoring system to road excitation. This efiort is a continuation of the work

reported in (Douglas et al. 1995).

In section 9 describes a new, disturbance attenuation approach to fault detection fllter

design. Here, a difierential game is deflned where one player is the state estimate and the

adversaries are all the exogenous signals except for the fault to be detected. By treating

faults as disturbances to be attenuated, the usual invariant subspace structure associated

with fault detection fllters is not present except in the limit. By treating model uncertainty

as another element in the difierential game, sensitivity to parameter variations can be

reduced.

Section 9 also introduces the notion of a fault detection fllter for time-varying systems.

This is especially important in applications where a vehicle follows a maneuver such as a

merge or a split. While flrst considered in the game theoretic fllter derivation, it is expected

that the Beard-Jones fault detection fllter deflnition will be extended to time-varying

systems in the same way.

Appendix A provides a theoretical review of the Beard-Jones detection fllter problem.

This appendix also includes some early work in extending the Beard-Jones fault detection

fllter deflnition to time-varying systems.

Appendix B provides a review of a fault detection fllter left eigenvector assignment

design algorithm (Douglas and Speyer 1996). The algorithm gives the user eigenvector

conditioning information and provides a direct method for achieving maximally achievable

eigenvector conditioning. This algorithm is used for the designs in this report.

Appendix C describes a stabilizing fault detection fllter gain that bounds the H∞ norm

of the transfer matrix from system disturbances and sensor noise to the residual. For
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multi-dimensional faults, a residual direction is identifled that enhances the fault signal to

noise ratio while maintaining the H∞ norm bound.



    

Chapter 2

Vehicle Model and Simulation Development

In this section, vehicle models are developed for the design and evaluation of fault

detection fllters. The starting point is a model obtained from the Berkeley PATH research

team and derived in (Peng 1992). A version of this model coded in C also is available from

Berkeley.

Two variations of the Berkeley model are considered in this section. First, modiflcations

are made to allow for variations in road slope and road noise. The slope is restricted to a

constant because of assumptions made in the original derivation of the equations of motion.

After modiflcations, the nonlinear model has 32 states, 3 control inputs and 3 noise inputs.

Second, reduced-order linearized models used for detection fllter design are developed for a

vehicle in a constant radius turn. Linearized models developed for a vehicle operating with

zero steering angle are described in (Douglas et al. 1995).

An independent derivation of a six degree of freedom nonlinear vehicle model is also

developed to be sure that we understand all the assumptions, deflnitions and issues which

7



     

8 Chapter 2: Vehicle Model and Simulation Development

underlie the Berkeley model. This model allows for arbitrary variations in road slope and

road noise. Since this model represents a signiflcant efiort that was not completed in time

to be used in the fault detection fllter development, it is described later in Section 8.

2.1 Modiflcation of Berkeley’s Model

Primary sources of vehicle dynamic disturbances are road roughness and variations in the

road slope. First, allowing for a road roughness disturbance requires a modiflcation to the

suspension system of the Berkeley nonlinear model. A simple tire model is introduced so

that high bandwidth road noise generates physically realistic suspension damping forces.

Next a road noise model is described. Finally, the nonlinear model is modifled to allow

for nonzero road slope. It is important to note that because of assumptions made in the

original derivation of the equations of motion, the slope is still a constant although now not

necessarily zero.

2.1.1 Suspension System

In the Berkeley nonlinear model, the suspension system is modeled as a spring and damper

and the tire is stifi. The stifi tire causes road displacements to pass directly to the suspension

system resulting in unreasonably large damping forces. Modeling the tire as a mass and

linear spring allows the tire to act as a low pass fllter with respect to road displacements

and eliminates the unrealistic suspension damping forces. Since the mass of the tire is

very small relative to the car, the tire model is simplifled to a linear spring as shown in

Figure 2.1. The vehicle equations are modifled by adding four states, the suspension force

of each wheel, which are derived as follows. The suspension force Fs acting on each wheel

is given by

Fs = −C1(x2 − x1 − x30)[1 + C2(x2 − x1 − x30)4]−D1( _x2 − _x1) +mg (2.1)

where x30 is the length of the suspension system when a nominal load mg is applied. The

force Ft transmitted to the suspension by the tire spring is given by

Ft = −Kt(x1 − r − x10) (2.2)
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C1 D1

Kt

mg

r

x1

x2

Figure 2.1: Simplifled suspension and tire model.

where Kt is the tire spring stifiness and x10 is the nominal tire radius. Since the tire is

massless, the tire spring force is equal to the suspension force.

Ft = Fs (2.3)

The tire spring force Ft is eliminated by rearranging (2.2) to get

x1 = r + x10 −
Ft
Kt

(2.4a)

_x1 = _r −
_Ft
Kt

(2.4b)

and then combining (2.1), (2.3) and (2.4) as

_F =
Kt

D1
{−F+mg−C1(x2−r−x10−x30+

F

Kt
)[1+C2(x2−r−x10−x30+

F

Kt
)4]−D1( _x2− _r)}

where F ≡ Fs. Adding a suspension force state for each wheel to the nonlinear equations

of motion brings the number of states to thirty.
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2.1.2 Road Roughness

A road roughness model is derived from Robson (Robson 1980). Empirical data shows that

the road displacement r can be modeled as a random process with power spectral density

given by

P (λ) =

{
Rc
λ2.5

0
, λ ≤ λ0

Rc
λ2.5 , λ ≥ λ0

(2.5)

where, for a typical freeway, λ0 = 0.01cycles/m and Rc = 10−7m2. Rc depends on the road

roughness.

The model (2.5) is di–cult to apply because P (λ) is not a rational function of λ. An

obvious simpliflcation is to take the exponent of the denominator to be 2 and write the

power spectral density as

P (λ) =
Rc

λ2 + λ0
2 (2.6)

Using (2.6), random road displacements r are given by a flrst-order difierential equation

_r = −ω0r +
√

2πV Rc ω

where ω0 = 2πV λ0, V is the nominal velocity of the car and ω is white noise with power

spectral density one.

For simplicity, road roughness for the right and left tires is the same. Also, road

roughness for the front tires is applied to the rear tires but after a time delay. The delay is

given by the speed of the car and the distance between the front and rear tires. Thus, only

two road roughness noise states are added to the vehicle nonlinear equations of motion.

This brings the number of states to thirty two.

2.1.3 Slope

Because of assumptions made in the original derivation of the vehicle equations of motion,

allowing for non-zero road slope or superelevation can only be done by rotating the gravity

vector. As shown in Figure 2.2, the forces acting on a car where the road slope is γ degrees

are equivalent to the forces acting on a car where the road has zero slope and the gravity

vector has been rotated γ degrees. Of course, this is only true if the road slope is constant.
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Because of assumptions made in the original derivation of the vehicle equations of motion,

allowing for time varying road slope or superelevation requires rederivation of the vehicle

equations of motion. The equations of motion are derived from flrst principles in Section 8.

mg

mg

Figure 2.2: Constant non-zero road slope is simulated by rotating the gravity vector.

2.1.4 Evaluation

In this section, the modifled tire, suspension system and rough road models are evaluated

using the Berkeley nonlinear vehicle simulation. The car is put in a constant radius turn

with a steering angle of 0.005 deg. and constant speed of 24.87 m
sec which is about 56mph.

In the next section, this nominal operating point is used to derive a linear model for fault

detection fllter design. Figures 2.3, 2.4 and 2.5 illustrate some of the more relevant vehicle

states and outputs. All variables but one appear to take on reasonable and expected values.

An explanation for the large longitudinal acceleration values, which are between -0.05g

and 0.05g as shown in Figure 2.4, is that the tire and suspension system is modeled as rigid

along the longitudinal direction. This rigid connection allows variations in the tractive force

due to the rough road to directly afiect the longitudinal acceleration of the car. Since the

road noise model is only used for fault detection system robustness testing, large variations

in the longitudinal acceleration only imply a more conservative testing environment.
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Figure 2.3: Rough road simulation.

2.2 Linear Model

In this section, a linearized model for a car making a constant radius turn is developed using

the modifled Berkeley nonlinear model. Linearized models developed for a vehicle operating

with zero steering angle are described in (Douglas et al. 1995). Linearized models are found

numerically rather than analytically. An analytical approach taking partial derivatives is

impractical because the nonlinear model is too complicated. The procedure is as follows.

First, a computer run is made in which the car makes a turn at a constant speed of

24.87 m
sec ' 56mph to obtain steady state values for each state. The tire steering angle is

0.005 rad which produces about 0.1g lateral acceleration and a 638.73 meter radius turn.

The nonlinear model is then linearized about this nominal operating point using the central

difierence method.

The nonlinear model has the form:

_x = f(x, u) (2.7a)

y = Cx+D _x (2.7b)
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Figure 2.4: Rough road simulation.

Suppose the nominal operating point is (x0, u0) where f(x0, u0) = 0. Take perturbations

~x, ~u about the nominal point, that is, let

x = x0 + ~x

u = u0 + ~u

Also approximate ∂f
∂x and ∂f

∂u as

∂f

∂x
≈ ¢f

¢x
=
f(x+ ~x, u)− f(x− ~x, u)

2~x

∣∣∣∣
x=x0,u=u0

∂f

∂u
≈ ¢f

¢u
=
f(x, u+ ~u)− f(x, u− ~u)

2~u

∣∣∣∣
x=x0,u=u0

Equation (2.7a) may now be approximated as

_x0 + _~x = f(x0, u0) +
∂f

∂x

∣∣∣∣
x=x0,u=u0

~x+
∂f

∂u

∣∣∣∣
x=x0,u=u0

~u+ · · ·

Truncating the higher order terms and using the approximations given above for the partial

derivatives, produces the following linear equations in the perturbed state ~x, input ~u and
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Figure 2.5: Rough road simulation.

output ~y

_~x = A~x+B~u (2.8a)

~y = C~x+D _~x

= (C +DA)~x+DB~u (2.8b)

where

~x = [ma we vx x vy y vz z φ _φ θ _θ ε _ε wfl wfr wrl

wrr X Y yr _yr εdes α τb β Ffl Ffr Frl Frr rr rf ]T

~y = [ma we _vx _vy _vz _φ _θ _ε wfl wfr wrl wrr ]T

~u = [αc τbc βc rrc rfc γ ]T

A =
[

¢f
¢x

]∣∣∣∣
x=x0,u=u0

B =
[

¢f
¢u

]∣∣∣∣
x=x0,u=u0

and where A is a 32 × 32 real matrix, B is a 32 × 6 real matrix and DB is a zero matrix.
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Symbols in ~x, ~y and ~u are deflned in the list of symbols.

Several sizes of perturbations must be taken to flnd one that gives the best approximation

of the partial derivatives. If the perturbation is too small, there is a truncation error in

computing the difierence f(x+ ~x, u)−f(x−~x, u). If the perturbation is too large, a roundofi

error occurs in computing f(x+ ~x, u) and f(x− ~x, u); also nonlinearities become important.

According to our experience, x̃
x and ũ

u ≈ 10−4 is a good rule for selecting the size of the

perturbation when using the central difierences method.

The resulting linear model is tested in a simulation to see how well it describes the

nonlinear model by comparing the states of the linear and nonlinear models when various

control inputs are applied. Over the speed range of 23 m
sec to 27 m

sec , errors in the states are

less than 10% except for yaw rate where the error is less than 15%.

The linear model generated as described above was intended for use in designing the

fault detection fllters. Since the model dimension is large with 32 states, before the model

is used for design, it is simplifled to the extent possible without signiflcant loss of accuracy.

The model simpliflcation is accomplished in three steps, the flrst two of which result in no

loss of accuracy.

First, since the present fault detection fllter designs do not explicitly include either road

roughness or road slope, these three noise inputs and two associated states are truncated

from the model (2.8). The model (2.8) becomes

_~xr = Ar~xr +Br~ur

~y = Cr~xr

where

~xr = [ma we vx x vy y vz z φ _φ θ _θ ε _ε wfl wfr wrl

wrr X Y yr _yr εdes α τb β Ffl Ffr Frl Frr ]T

~ur = [αc τbc βc ]T

Next, by inspection of the equations, it is possible to rearrange the sequence of states such
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that the linearized equations assume the following partitioned form:

_~xr =

[
_~x1
_~x2

]
=

[
A1 0
A21 A2

] [
~x1

~x2

]
+

[
B1

B2

]
~ur

~y =
[
C1 0

] [ ~x1

~x2

]
where

~x1 = [ma we vx vy vz z φ _φ θ _θ _ε wfl wfr wrl wrr

α τb β Ffl Ffr Frl Frr ]T

~x2 = [x y ε X Y yr _yr εdes ]T

In this form, both ~x1 and ~y are independent of ~x2. Thus ~x2 can be deleted from the model

without afiecting the transfer function from ~u to ~y. Based on this observation, ~x2 is removed

from the model, which then becomes

_~x1 = A1~x1 +B1~ur

~y = C~x1

where A1 is an 22× 22 matrix, B1 is an 22× 3 matrix and C1 is a 12× 22 matrix.

As shown in (Douglas et al. 1995), when the nominal operating point associated with

the linearized system is one where the car is not making a turn, the longitudinal and

lateral dynamics decouple exactly. However, the case considered here has a nonzero nominal

steering angle so the longitudinal and lateral dynamics do not decouple. All 22 states are

included in the linear model order reduction process explained in the next section.

2.3 Reduced-Order Model

Previous manipulation involved no approximation. For further model simpliflcation, some

approximation must occur. After the linear model is derived, the flrst thing one should

do is check the eigenvalues. Then, two approaches are presented to get reduced-order

models. The flrst approach is to set the derivatives of certain fast states to zero. Using this

philosophy, states with large negative eigenvalues can be dropped. However, a correction
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should be made using the deleted states to remove the steady state error. Consider a linear

system modeled as:

_x = Ax+Bu

y = Cx+Du

Suppose this model is written in a partitioned form[
_x1

_x2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [ x1

x2

]
+Du

where x2 contains the fast states. Set the derivative of x2 to zero and solve the resulting

equations for x2 as a function of x1 and u. This leads to

x2 = −A−1
22 A21x1 −A−1

22 B2u

Substitute this result into the expressions for _x1 and y to obtain the reduced order model:

_x1 =
[
A11 −A12A

−1
22 A21

]
x1 +

[
B1 −A12A

−1
22 B2

]
u

y =
[
C1 − C2A

−1
22 A21

]
x1 +

[
D − C2A

−1
22 B2

]
u

this model preserves the static input-output relationships.

A second approach is to use balanced realization. Balancing refers to an algorithm which

flnds a realization that has equal and diagonal controllability and observability grammians.

The diagonal of the joint grammian can be used to reduce the order of the model. Since the

diagonal elements of the grammian, the Hankel singular values g(i), re°ect the combined

controllability and observability of each state, it is reasonable to remove those states from

the model for which g(i) is small. Elimination of these states retains the most important

input-output characteristics of the original system. After balanced realization has been

done, a truncation is used to obtain a reduced-order model. For example, if the full-order
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model is [
_x1

_x2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
B1

B2

]
u

y =
[
C1 C2

] [ x1

x2

]
+Du

then, the reduced-order model is

_x1 = A11x1 +B1u

This is the approach originally proposed by Moore (Moore 1981). Using this approach it is

possible to calculate a bound on the error introduced by deleting states.

At the end of the previous section, Section 2.2, a linear model is developed. Its

eigenvalues are −227.45, −193.79, −159.51, −132.21 ± 2.62i, −135.35 ± 1.85i, −138.68,

−26.16± 4.47i, −1.99± 6.63i, −3.10± 6.07i, −1.31± 5.60i, −0.046, −7.09± 2.48i, −90.91,

−1.25 and −80. Observe that ten of these eigenvalues are signiflcantly larger than the rest.

Two of the fast eigenvalues, −90.91 and −80, happen to be associated with the actuator

dynamics. These modes should be retained if the linear model is to be used to design fault

detection fllters for actuator faults. From this we conclude that at least eight state variables

can be dropped.

In method one, by looking at the eigenvectors corresponding to the large eigenvalues, the

eight fast mode states are the four wheel speeds wfl, wfr, wrl, wrr and the four suspension

forces Ffl, Ffr, Frl, Frr. Truncating these eight states produces a fourteenth-order model.

In method two, the eight states with the smallest Hankel singular values are dropped.

These methods combine the states in such a way that they lose their physical signiflcance,

so explicit identiflcation of the deleted states is not possible. Table 2.1 summarizes a

comparison of the two methods for model reduction.

The eigenvalues given in Table 2.1 show that the flrst method produces better results

because the eigenvalues are closer to the full-order model eigenvalues. The second method

truncates some slow states which results in a large change in the eigenvalues.
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Eigenvalues

Method 1 -26.46 ± 4.32i -7.53 ± 2.94i -0.049 -2.07 ± 6.54i
-1.44 ± 5.50i -2.82 ± 5.60i -90.91 -80 -1.25

Method 2 -108.98 ± 37.67i -0.046 -18.33 ± 13.19i 7.10 ± 2.49i
-79.27 -3.07 ± 6.10i -2.39 ± 6.30i -1.31 ± 5.62i

Table 2.1: Eigenvalues for the vehicle dynamics using two model reduction methods.

Another test, based on frequency response, can also be performed to see which method

is best. Singular values of the multivariable input to output frequency response are plotted

from frequencies of 10−1 to 102 rad
sec . The reason for choosing this frequency range is that it

roughly corresponds to that of the control inputs to a car. As shown in Figure 2.6, the error

of largest singular value of the reduced-order model derived from method two is slightly

better than the error of method one. However, the errors of the other two singular values

of method two are much worse than the errors of method one.

An interpretation of this result is that the flrst order reduction method tends to preserve

model fldelity with respect to each input while the second method tends to preserve model

fldelity for only the most important input and output pair. For the purpose of fault detection

fllter design, the flrst method is more appropriate because fault detection fllters are built

for each control input.

A fourteen-state model is obtained using the flrst model order reduction method and is

used subsequently to design fault detection fllters for actuators faults. The system matrices

A, B, C and D are given in Appendix D. The measured outputs are

yma Engine manifold air mass (kg).

yωe Engine speed ( rad
sec ).

yẍ longitudinal acceleration ( m
sec2 ).

yÿ lateral acceleration ( m
sec2 ).

yz̈ heave acceleration ( m
sec2 ).

yφ̇ roll rate ( rad
sec ).
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Figure 2.6: Singular value frequency response of full-order and fourteen state reduced-order
models.

yθ̇ pitch rate ( rad
sec ).

yε̇ yaw rate ( rad
sec ).

yωfl front left wheel speed ( rad
sec ).

yωfr front right wheel speed ( rad
sec ).

yωrl rear left wheel speed ( rad
sec ).

yωrr rear right wheel speed ( rad
sec ).

and the control inputs are

α Throttle angle (deg).

τb Brake torque (Nm).
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β Steering angle (rad).

While a fourteen-state linear model is used for the design of actuator fault detection

fllters, a twelveth-order model is used to design sensor fault detection fllters. Recall that

two fast modes retained in the fourteen-state reduced-order model are associated with the

actuator dynamics. The eigenvalue −90.91 is associated with the throttle actuator and −80

with the steering actuator. For the design of sensor fault detection fllters, these modes

may also be deleted. Note that since the actuator dynamics are in series with the other

dynamics, the reduced-order eigenvalues do not change. Singular values of the multivariable

input to output frequency response are illustrated in Figure 2.7. The model reduction error

is seen to be very slightly worse than for the fourteenth-order model. The system matrices
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Figure 2.7: Singular value frequency response of full-order and twelve state reduced-order
models.

A, B, C and D for the twelve-state reduced-order model are given in Appendix D.
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Fault Selection

Analytic redundancy is an approach to health monitoring that compares dissimilar

instruments using a detailed model of the system dynamics. Therefore, to detect a fault in

a given sensor, there must be a dynamic relationship between the sensor and other sensors

or actuators. That is, the information provided by a monitored sensor must, in some form,

also be provided by other sensors. Analytic redundancy also can be used to efiectively

monitor the health of system actuators and even the dynamic behavior of the system itself.

But, as with sensors, if some part of the vehicle is to be monitored for proper operation,

then that part has to produce some observable dynamic efiect.

In automated vehicles, these requirements preclude monitoring nonredundant sensors

such as obstacle detection or lane position sensors. The information provided by a radar or

infrared sensor designed to detect objects in the vehicle’s path has no dynamic correlation

with other sensors on the vehicle. A sensor that detects the vehicle’s position in a lane is

the only sensor that can provide this information. Actuators that do no observable action

23
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are also di–cult to monitor. For example, the health of a power window actuator is easily

monitored by the driver. But, unless specialized sensors are installed, no other part of the

car is afiected by the operation of this actuator and there is no analytic redundancy.

Before describing how faults are modeled, it is necessary to describe how a fault detection

fllter works. Most of the details are left to Appendix A. For a thorough background, several

references are available, a few of which are (Douglas 1993), (White and Speyer 1987) and

(Massoumnia 1986). Consider a linear time-invariant system with q failure modes and no

disturbances or sensor noise

_x = Ax+Bu+
q∑
i=1

Fimi (3.1a)

y = Cx+Du (3.1b)

The system variables x, u, y and the mi belong to real vector spaces and the system maps

A, B, C, D and the Fi are of compatible dimensions. Assume that the input u and the

output y both are known. The Fi are the failure signatures. They are known and flxed and

model the directional characteristics of the faults. The mi are the failure modes and model

the unknown time-varying amplitude of faults. The mi do not have to be scalar values.

A fault detection fllter is a linear observer that, like any other linear observer, forms a

residual process sensitive to unknown inputs. Consider a full-order observer with dynamics

and residual

_̂x = (A+ LC)x̂+Bu− Ly (3.2a)

r = Cx̂+Du− y (3.2b)

Form the state estimation error e = x̂− x and the dynamics and residual are

_e = (A+ LC)e−
q∑
i=1

Fimi

r = Ce

In steady-state, the residual is driven by the faults when they are present. If the system

is (C,A) observable, and the observer dynamics are stable, then in steady-state and in the
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absence of disturbances and modeling errors, the residual r is nonzero only if a fault has

occurred, that is, if some mi is nonzero. Furthermore, when a fault does occur, the residual

is nonzero except in certain theoretically relevant but physically unrealistic situations. This

means that any stable observer can detect the presence of a fault. Simply monitor the

residual and when it is nonzero a fault has occurred.

In addition to detecting a fault, a fault detection fllter provides information to determine

which fault has occurred. An observer such as (3.2) becomes a fault detection fllter when

the observer gain L is chosen so that the residual has certain directional properties that

immediately identify the fault. The gain is chosen to partition the residual space where each

partition is uniquely associated with one of the design fault directions Fi. A fault is identifled

by projecting the residual onto each of the residual subspaces and then determining which

projections are nonzero.

Before the fault detection fllter design (3.2) can begin, a system model with faults has

to be found with the form (3.1). Twelve sensors and three actuators are associated with

the linearized vehicle dynamics described in Section 2.3. The sensors measure the engine

manifold air°ow and engine speed, the vehicle forward, lateral and heave accelerations, the

roll, pitch and yaw rate and the angular speed of each of the four wheels. The actuators

control the engine throttle, the brake torque and the steering angle.

3.1 Sensor Fault Models

Sensor faults can be modeled as an additive term in the measurement equation

y = Cx+ Eiµi (3.3)

where Ei is a column vector of zeros except for a one in the ith position and where µi

is an arbitrary time-varying real scalar. Since, for fault detection fllter design, faults are

expressed as additive terms to the system dynamics, a way must be found to convert the

Ei sensor fault form of (3.3) to an equivalent Fi form as in (3.1). Let Fi satisfy

CFi = Ei
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and deflne a state estimation error e as

e = x− x̂+ Fiµi

Using (3.2), the error dynamics are

_e = (A+ LC)e+ Fi _µi −AFiµi (3.4)

and a sensor fault Ei in (3.3) is equivalent to a two-dimensional fault Fi

_x = Ax+Bu+ Fimi with Fi =
[
F 1
i , F

2
i

]
where the directions F 1

i and F 2
i are given by

Ei = CF 1
i (3.5a)

F 2
i = AF 1

i (3.5b)

An interpretation of the efiect of a sensor fault on observer error dynamics follows from

(3.4) where F 1
i is the sensor fault rate _µi direction and F 2

i is the sensor fault magnitude

µi direction. This interpretation suggests a possible simpliflcation when information about

the spectral content of the sensor fault is available. If it is known that a sensor fault has

persistent and signiflcant high frequency components, such as in the case of a noisy sensor,

the fault direction could be approximated by the F 1
i direction alone. Or, if it is known

that a sensor fault has only low frequency components, such as in the case of a bias, the

fault direction could be approximated by the F 2
i direction alone. For example, if a sensor

were to develop a bias, a transient would be likely to appear in all fault directions but, in

steady-state, only the residual associated with the faulty sensor should be nonzero.

Using the linearized dynamics of Section 2.3, an engine manifold air°ow measurement

is given by the flrst element of the system output (d.1). Therefore, any fault in the engine

manifold air°ow sensor can be modeled as an additive term in the measurement equation

as in (3.3)

y = Cx+ Eymaµyma
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where

Eyma =
[

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
]T

and where µyma is an arbitrary time-varying real scalar. An equivalent two-dimensional

fault Fyma found by solving (3.5) is

Fyma =

[
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

−22.42, 306.69, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]T
Other vehicle sensor fault directions are found in the same way.

3.2 Actuator Fault Models

A linear model partitioned to isolate flrst-order actuator dynamics can be expressed as[
_x
_xa

]
=

[
A B
0 −ω

] [
x
xa

]
+

[
0
ω

]
u

where xa is a vector of actuator states. A fault in a control input is modeled as an additive

term in the system dynamics. In the case of a fault appearing at the input of an actuator,

that is the actuator command, the fault has the same direction as the associated column of

the [0, ω]T matrix. A fault appearing at the output of an actuator, the actuator position,

has the same direction as the associated column of the [BT , 0]T matrix. In the Berkeley

nonlinear vehicle model, the actuator dynamics are relatively fast and, in an approximation

made here, are removed from the system model. Thus, the control inputs are applied

directly to the system through a column of the B matrix.

The engine throttle control is the flrst element of the system input so the direction of

an engine throttle control fault is the flrst column of the B matrix from (d.1)

Fuα =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 90.91, 0, 0
]T

(3.6)

Fault directions for the brake torque and steering angle are developed in the same way and

are given by

Fuτb =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.25, 0
]T

Fuβ =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80.0
]T
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Fault Detection Filter Design

The fault detection filter design process consists of two steps. First, determine

how many fault detection fllters are needed and, if more than one, which fllters will detect

and identify which faults. In a detection fllter, the state estimation error in response to

a fault in the direction Fi remains in a state subspace T ∗i , an unobservability subspace or

detection space. See Appendix A for details. The ability to identify a fault, to distinguish

one fault from another, requires for an observable system that the detection spaces be

independent. Therefore, the number of faults that can be detected and identifled by a

fault detection fllter is limited by the size of the state space and the sizes of the detection

spaces associated with each of the faults. If the problem considered has more faults than

can be accommodated by one fault detection fllter, then a bank of fllters will have to be

constructed. The health monitoring system described in this section for a vehicle in a

steady-state constant radius turn, considers flfteen system faults: twelve sensor faults and

three actuator faults. Since the linearized vehicle models have either fourteen or twelve

29
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states, clearly more than one fault detection fllter is needed. As with the longitudinal mode

system of (Douglas et al. 1995), a bank of four fault detection fllters is built.

The second design step is to design the fault detection fllters using eigenstructure

assignment while making sure that the eigenvectors are not ill-conditioned. The essential

feature of a fault detection fllter is the detection space structure embedded in the fllter

dynamics. An eigenvector assignment design algorithm explicitly places eigenvectors to

span these subspaces. An eigenvector assignment design algorithm also has to balance the

objective of having well-conditioned eigenvectors for robustness against the objective of each

fault being highly input observable for fault detection performance. System disturbances,

sensor noise and system parameter variations are not considered in the fault detection fllter

designs described in this report. Note that they are considered in performance evaluation.

For such a benign environment, the fllter designs are based on spectral considerations only;

there is little else that can be used to distinguish a good design from a bad design.

4.1 Fault Detection Filter Conflguration

To determine how many and which faults may be included in a fault detection fllter

design, the detection spaces for each of the faults, also called unobservability subspaces,

are formed. A detection space for a fault Fi is denoted by T ∗i . First, the dimensions of

the detection spaces are needed. Since the detection spaces are independent subspaces, the

sum of their dimensions for any given fault detection fllter cannot exceed the dimension

of the state-space. Second, the detection spaces for any given fault detection fllter are

usually output separable and mutually detectable. These concepts are described in detail

in Appendix A but brie°y, output separability means that the output subspaces CT ∗i are

independent. Mutual detectability means that the sum of the detection spaces
∑ T ∗i is an

unobservability subspace. This condition ensures that the spectrum of the detection fllter

can be assigned arbitrarily.

In practice it is just as easy to flnd a basis for the detection space as it is to flnd only the

dimension. The method used here is suggested for numerical stability in (Wonham 1985)
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and is described in Appendix A. Brie°y, for a fault Fi, the approach is to flnd the minimal

(C,A)-invariant subspaceW∗i that contains Fi and then to flnd the invariant zero directions

of the triple (C,A, Fi), if any. With the invariant zero directions are denoted by V i, the

minimal unobservability subspace T ∗i is given by

T ∗i =W∗i + V i

The linear model of Section 2.3 has either fourteen or twelve states, twelve sensors and

three controls. As explained in Section 3, each sensor and each actuator is to be monitored

for a fault. It turns out that for all twelve sensor faults and for the steering actuator fault

described in Section 3, the detection spaces are given by the fault directions themselves,

that is,

T ∗i = ImFi

For the throttle actuator fault, CFuα = 0, so the detection space for this fault is

T ∗uα = Im [Fuα , AFuα ]

For the brake actuator fault, CFuτb 6= 0 in the reduced-order model used for fllter design.

However, CFuτb = 0 in the full-order model so Fuτb is considered to be a very weakly

observable direction. The detection space for brake actuator fault is taken to be second-order

as for the throttle fault

T ∗uτb = Im
[
Fuτb , AFuτb

]
Before designing any fault detection fllters, it is useful to determine which faults are

output separable. A detection fllter designed with faults that are not output separable

will generate co-linear residuals and the faults cannot be isolated. Such faults are also

considered detection equivalent (Beard 1971). Output separability of two faults Fi and

Fj is determined by checking for column independence of realizations for CT i and CT j .

Performing this check reveals that the throttle actuator and air mass sensor faults are not
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output separable because

CT ∗uα =



1
0
0
0
0
0
0
0
0
0
0
0



CT ∗yma =



1 0
0 0.9968
0 0.0597
0 −0.0001
0 −0.0016
0 0
0 0
0 0
0 0
0 0
0 0.0404
0 0.0340


Since CFyma = CAFuα , the throttle actuator and air mass sensor faults would not normally

be part of a single fault detection fllter design. However, it is possible to include both in

one fllter if the sensor fault is approximated as a one-dimensional fault. As explained in

Section 3.1, the direction of the sensor fault magnitude is AFyma while the direction of the

fault rate is Fyma . The throttle actuator and air mass sensor faults become output separable

if only the sensor fault magnitude direction is used. This design decision could allow a noisy

but zero mean sensor fault to remain undetected. However, a throttle actuator fault could

never stimulate the air mass sensor fault residual. Also, since the throttle fault detection

space is spanned by Fuα and AFuα , an air mass sensor fault rate will stimulate the throttle

fault residual. Finally, as long as an air mass sensor fault spectral components are low

frequency, the two faults should be detectable and isolated.

Another consideration in grouping the faults among the fault detection fllters is to group

faults which are robust to system nonlinearities. Note that an actuator fault changes the

vehicle operating point possibly introducing nonlinear efiects into all measurements. The

nonlinear efiect is small if the residual response is small compared to that for some nominal

fault. Also, sensor faults that are open-loop are easily isolated since they do not stimulate

any dynamics. One approach to fault grouping is to always group actuator and sensor faults

with difierent fault detection fllters.

Finally, usually an attempt is made to group as many faults as possible in each fllter.
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When full-order fllters are used, this approach minimizes the number of fllters needed. When

reduced-order fllters are used, this approach minimizes the order of each complementary

space and, therefore, the order of each reduced-order fllter. Note that each fault included in

a fault detection fllter design imposes more constraints on the fllter eigenvectors. Sometimes,

the objective of obtaining well-conditioned fllter eigenvectors imposes a tradeofi between

robustness and the reduced-order fllter size.

Given the above considerations, fault detection fllters are designed for the following

groups of faults:

Fault detection fllter 1.

Fyωe : Engine speed sensor.

Fyÿ : Lateral acceleration sensor.

Fyz̈ : Vertical acceleration sensor.

Fyθ̇ : Pitch rate sensor.

Fault detection fllter 2.

Fyẍ : Longitudinal acceleration sensor.

Fyφ̇ : Roll rate sensor.

Fyε̇ : Yaw rate sensor.

Fyωe : Engine speed sensor.

Fault detection fllter 3.

Fyωfl : Front left wheel speed sensor.

Fyωfr : Front right wheel speed sensor.

Fyωrl : Rear left wheel speed sensor.

Fyωrr : Rear right wheel speed sensor.
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Fault detection fllter 4.

Fuα : Throttle angle actuator.

Fuτb : Brake torque actuator.

Fuβ : Steering angle actuator.

Fyma : Manifold air mass sensor.

Showing that the fault sets are mutually detectable involves calculating invariant zeros

of each triple (C,A, F1), . . . , (C,A, Fq) and then showing that these are the same invariant

zeros as of the triple (C,A, [F1, . . . , Fq]). For example, for the flrst fault detection fllter,

deflne the sets of invariant zeros

›yωe = ›(C,A, Fyωe )

›yÿ = ›(C,A, Fyÿ)

›yz̈ = ›(C,A, Fyz̈)

›yθ̇
= ›(C,A, Fyθ̇)

›y = ›(C,A, [Fyωe , Fyÿ , Fyz̈ , Fyθ̇ ])

where ›(C,A, Fi) means the set of invariant zeros of the triple (C,A, Fi). The flrst fault

detection fllter is mutually detectable because

›y = ›yωe + ›yÿ + ›yz̈ + ›yθ̇

4.2 Eigenstructure Placement

The fault detection fllters are found using a left eigenvector assignment algorithm described

in Appendix B. Since the calculations are somewhat long and they are the same for each

detection fllter, the calculation details are given for only the actuator fault detection fllter

and one of the sensor fault detection fllters. Algorithm B.1 is applied to the design of

fault detection fllters for the third fault group, which has the four wheel speed sensors, and

the fourth fault group, which has the throttle actuator, the brake actuator, the steering

actuator and the manifold air mass sensor.
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4.2.1 Sensor Fault Design

This section presents the details of a fault detection fllter design for fault group three, the

four wheel speed sensors. The twelve state reduced-order linear model derived in Section 2.3

is used. The flrst step is to flnd the dimension of each detection space. This was discussed

in Section 4.1 where it was shown that the detection spaces are given by the fault directions

themselves, that is, T ∗i = ImFi. The fault directions assigned to the third fault detection

fllter are all sensor faults and all have dimension two

νywfl = dim T ∗ywfl = 2

νywfr = dim T ∗ywfr = 2

νywrl = dim T ∗ywrl = 2

νywrr = dim T ∗ywrr = 2

The dimension of the fault detection fllter complementary space T 0 is also needed. The

complementary space is any subspace independent of the detection spaces that completes

the state-space. Thus, for the flrst fault detection fllter

X = T ∗ywfl ⊕ T
∗
ywfr
⊕ T ∗ywrl ⊕ T

∗
ywrr
⊕ T 0

and the dimension of T 0 is four

ν0 = n− νywfl − νywfr − νywrl − νywrr
= 12− 2− 2− 2− 2

= 4

Next deflne the complementary fault sets. There are four faults Fywfl , Fywfr , Fywrl and

Fywrr so there are flve complementary fault sets which are:

F̂ywfl =
[
Fywfr , Fywrl , Fywrr

]
(4.1a)

F̂ywfr =
[
Fywfl , Fywrl , Fywrr

]
(4.1b)

F̂ywrl =
[
Fywfl , Fywfr , Fywrr

]
(4.1c)
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F̂ywrr =
[
Fywfl , Fywfr , Fywrl

]
(4.1d)

F̂0 =
[
Fywfl , Fywfr , Fywrl , Fywrr

]
(4.1e)

Now choose the fault detection fllter closed-loop eigenvalues. Since the system model

includes no sensor noise, no disturbances and no parameter variations, there is little basis

for preferring one set of detection fllter closed-loop eigenvalues over another. The poles are

chosen here to give a reasonable response time but are not unrealistically fast. The assigned

eigenvalues are

⁄ywfl = {−3,−10}

⁄ywfr = {−4,−9}

⁄ywrl = {−5,−8}

⁄ywrr = {−6,−7}

⁄0 = {−11,−12,−13,−14}

The next step is to flnd the closed-loop fault detection fllter left eigenvectors. For each

eigenvalue λij ∈ ⁄i, the left eigenvectors vij generally are not unique and must be chosen

from a subspace as vij ∈ Vij where Vij and another space Wij are found by solving[
AT − λijI CT

F̂ Ti 0

] [
Vij
Wij

]
=

[
0
0

]
(4.2)

There are twelve Vij associated with twelve eigenvalues. Only two Vij , the two associated

with the front left wheel speed sensor fault, are shown here because this intermediate

result is easily reproduced. They are shown in Appendix E. As explained in Appendix B

and (Douglas and Speyer 1995b), to help desensitize the fault detection fllter to parameter

variations, the left eigenvectors are chosen from vij ∈ Vij as the set with the greatest degree

of linear independence. The degree of linear independence is indicated by the smallest

singular value of the matrix formed by the left eigenvectors. Upper bounds on the singular

values of the left eigenvectors are given by the singular values of

V = [V01 , V02 , V03 , V04 , Vywfl1 , Vywfl2 , Vywfr1 , Vywfr2 , Vywrl1 , Vywrl2 , Vywrr1 , Vywrr2 ]

These singular values are
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σ(V ) = {3.4641, 3.4641, 3.4641, 3.4641, 2.5763, 2.0626,

1.9404, 1.1563, 0.0627, 0.0431, 0.0099, 0.0014} (4.3)

If the left eigenvector singular value upper bounds were small, then all possible combinations

of detection fllter left eigenvectors would be ill-conditioned and the fllter eigenstructure

would be sensitive to small parameter variations. Since (4.3) indicates that the upper

bounds are not small, continue by looking for a set of fault detection fllter left eigenvectors

that are reasonably well-conditioned. For this case, one possible set of left eigenvectors from

the set V nearly meets the upper bound, is well-conditioned and is given in Appendix E.

The singular values of this set of detection fllter left eigenvectors are

σ( ~V ) = {1.82, 1.46, 1.37, 1.00, 1.00, 1.00, 1.00, 0.818, 0.0443, 0.0305, 0.0070, 0.0010}

Since the difierence between the largest and the smallest singular values is only three orders

of magnitude, the detection fllter gain will be reasonably small and the fllter eigenstructure

should not be sensitive to small parameter variations.

The fault detection fllter gain L is found by solving

~V TL = ~W T (4.4)

where ~V is the matrix of left eigenvectors as found above, and ~W is a matrix of vectors wij

which satisfy (b.10) [
AT − λijI CT

F̂ Ti 0

] [
vij
wij

]
=

[
0
0

]
If the left eigenvector vij is a linear combination of the columns of Vij , wij is the same

linear combination of the columns of Wij where Vij and Wij are from (4.2). The ~W matrix

is given in Appendix E. The detection fllter gain is found from (4.4) and is also given in

Appendix E.

To complete the detection fllter design, output projection matrices Ĥywfl
, Ĥywfr

, Ĥywrl

and Ĥywrr are needed to project the residual along the respective output subspaces CT̂ ∗ywfl ,

CT̂ ∗ywfr , CT̂ ∗ywrl and CT̂ ∗ywrr . What this means is that, for example, T̂ ∗ywfl becomes the

unobservable subspace of the pair (Ĥywfl
C,A + LC). Remember that by the deflnition of
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the complementary faults (4.1), faults Fywfr , Fywrl and Fywrr lie in T̂ ∗ywfl and fault Fywfl
does not. The efiect is that the projected residual is driven by fault Fywfl and only fault

Fywfl as shown in Figure 4.3.

A projection Ĥi is computed by flrst flnding a basis for the range space of CT̂ ∗i where

again, T̂ ∗i is any basis for the detection space T̂ ∗i . This is done by flnding the left singular

vectors of CT̂ ∗i . Denote this basis for now as hi. Then Ĥi is given by

Ĥi = I − hihTi

An output projection for the front left wheel speed sensor is given in (e.2) of Appendix E.

In summary, a fault detection fllter for the system with sensor faults Eywfl , Eywfr , Eywrl
and Eywrr as in (3.3)

_x = Ax+Bu

y = Cx+Du+ Eywflµywfl + Eywfrµywfr + Eywrlµywrl + Eywrrµywrr

is equivalent to a fault detection fllter for the system with faults Fywfl , Fywfr , Fywrl and

Fywrr as in (3.5)

_x = Ax+Bu+ Fyyflmywfl
+ Fywfrmywfr

+ Fywrlmywrl
+ Fywrrmywrr

y = Cx+Du

and has the form

_̂x = (A+ LC)x̂+ (B + LD)u− Ly

zywfl = Ĥywfl
(Cx̂+Du− y)

zywfr = Ĥywfr
(Cx̂+Du− y)

zywrl = Ĥywrl
(Cx̂+Du− y)

zywrr = Ĥywrr (Cx̂+Du− y)

with L and the Ĥywfl
, Ĥywfr

, Ĥywrl
and Ĥywrr given by (e.1) and (e.2). Calculations for the

detection fllters for the other two sensor fault groups 1 and 2 are carried out in the same

way and are not shown here.
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Figures 4.1, 4.2 and 4.3 show the singular value frequency responses of fault detection

fllters for fault groups one, two and three, the sensor fault groups. The frequency responses

are from all faults for which the fllter has been designed to each of the fllter residuals. The

singular values show that each residual only responds to the fault it was designed to detect

when no noise or parametric uncertainties are present.
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Figure 4.1: Singular value frequency response from all faults to residuals of fault detection
fllter one.

4.2.2 Actuator Fault Design

This section presents the details of a fault detection fllter design for fault group four. The

fault directions assigned to fault group four are the throttle actuator, the brake actuator, the

steering actuator and the manifold air mass sensor faults. The fourteen state reduced-order

linear model derived in Section 2.3 is used.

The design procedure is similar to the previous section but does have a twist. As

discussed in Section 4.1, a reduced-order air mass sensor fault is used to achieve output

separability with the throttle actuator fault. The dimension of each detection space was
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Figure 4.2: Singular value frequency response from all faults to residuals of fault detection
fllter two.

found in Section 4.1 as

νuα = dim T ∗uα = 2

νuτb = dim T ∗uτb = 2

νubeta = dim T ∗uβ = 1

νyma = dim T ∗yma = 1

and the dimension of the fault detection fllter complementary space T 0 where

X = T ∗uα ⊕ T
∗
uτb
⊕ T ∗uβ ⊕ T

∗
yma
⊕ T 0

is eight

ν0 = n− νuα − νuτb − νuβ − νyma
= 14− 2− 2− 1− 1

= 8
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Figure 4.3: Singular value frequency response from all faults to residuals of fault detection
fllter three.

Next deflne the complementary faults sets. There are four faults Fuα , Fuτb , Fuβ and

Fyma so there are flve complementary fault sets which are:

F̂uα =
[
Fuτb , Fuβ , Fyma

]
(4.5a)

F̂uτb =
[
Fuα , Fuβ , Fyma

]
(4.5b)

F̂uβ =
[
Fuα , Fuτb , Fyma

]
(4.5c)

F̂yma =
[
Fuα , Fuτb , Fuβ

]
(4.5d)

F̂0 =
[
Fuα , Fuτb , Fuβ , Fyma

]
(4.5e)

Now choose the fault detection fllter closed-loop eigenvalues.

⁄uα = {−4,−9}

⁄uτb = {−5,−8}

⁄uβ = {−6}

⁄yma = {−7}
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⁄0 = {−10,−11,−12,−13,−14,−15,−16,−17}

The next step is to flnd the closed-loop fault detection fllter left eigenvectors. As in

Section 4.2.1, the left eigenvectors vij for each eigenvalue λij ∈ ⁄i generally are not unique

and must be chosen from a subspace as vij ∈ Vij where Vij is found by solving[
AT − λijI CT

F̂ Ti 0

] [
Vij
Wij

]
=

[
0
0

]
(4.6)

There are fourteen Vij associated with fourteen eigenvalues. Upper bounds on the singular

values of the left eigenvectors are given by the singular values of

V = [Vuτb1 , Vuτb2 , V01 , V02 , V03 , V04 , V05 , V06 , V07 , V08 , Vuα1
, Vuα2

, Vuβ , Vyma ] (4.7)

These singular values are

σ(V ) = {3.74, 3.74, 3.74, 3.74, 3.74, 3.74, 3.71,

2.19, 1.65, 0.734, 0.466, 0.0918, 0.0272, 0.0005} (4.8)

Since (4.8) indicates that the upper bounds are not small, continue by looking for a set of

fault detection fllter left eigenvectors that are reasonably well-conditioned. One possible

choice is, given in Appendix E, has the following singular values

σ( ~V ) = {1.73, 1.47, 1.39, 1.34, 1.02, 1.00, 1.00,

1.00, 0.955, 0.350, 0.117, 0.0073, 0.0026, 0.0005}

Since these singular values are quite close to their respective upper bounds, the detection

fllter gain should not be large and the fllter eigenstructure should not be sensitive to small

parameter variations. As in Section 4.2.1, the fault detection fllter gain L is found by solving

~V TL = ~W T (4.9)

where the columns of ~V and ~W are found from (4.6). Both ~W and L are given in Appendix E.

Output projection matrices Ĥuα , Ĥuτb
, Ĥuβ and Ĥyma are needed to complete the fault
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detection fllter design These are found in the same way as for the sensor fault example of

Section 4.2.1 and are given in Appendix E.

A note should be made regarding the throttle actuator fault residual. By the deflnition

of the complementary faults (4.5), Fuτb , Fuβ and Fyma lie in T̂ ∗uα while Fuα does not. The

efiect is that the projected residual is not driven by fault Fuτb , Fuβ or Fyma . Now recall that

Fyma is a reduced-order approximation for Eyma so the throttle actuator residual is not only

driven by Fuα , but also the part of Eyma not modeled by Fyma . As shown in Figure 4.4, the

throttle actuator residual can only isolate faults well at low frequency while other residuals

isolate all faults.
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Figure 4.4: Singular value frequency response from all faults to residuals of fault detection
fllter four.





      

Chapter 5

Fault Detection Filter Evaluation

Fault detection filter performance is evaluated using the nonlinear simulation

discussed in Section 2.1. The fault detection fllters designed in Sections 4.2.1 and 4.2.2

are tested on smooth and rough roads. Performance is evaluated with respect to robustness

to model nonlinearities and road noise. The performance of a longitudinal mode fault

detection fllter described in (Douglas et al. 1995) is also evaluated.

5.1 Fault Detection Filter Evaluation On A Curved Road

Fault detection fllter performance is evaluated using the nonlinear vehicle simulation of

Section 2.1. Sensor fault detection performance is evaluated by introducing a sensor bias

into the data provided by the nonlinear simulation. In the most benign test, the nonlinear

vehicle simulation is run in a steady state turn with 24.87 m
sec forward speed while a bias is

added to one of the sensor outputs. The turn is achieved using a 0.005 rad. steering angle.

In this test, the operating point is the same as that used to derive the linearized dynamics

45
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for the fault detection fllter design. Furthermore, the vehicle dynamics are not stimulated

resulting in data that is essentially linear. Thus, the fault detection fllter is operating in a

nominal environment and the test does not provide much useful information. The results

of these tests are not shown here.

In a more useful test, the fllters operate at an ofi-nominal condition, that is, the vehicle

operates in a steady state condition but not the same one used to generate the linearized

dynamics. These tests are discussed in Section 5.1.1. Dynamic disturbances are introduced

by simulating a rough road surface as in Section 2.1.2. Fault detection fllter testing in the

presence of dynamic disturbances is discussed in Section 5.1.2.

5.1.1 Evaluation On Smooth Road

In this section, the fault detection fllters of Section 4.2 are tested at an ofi-nominal operating

point, that is, the vehicle operates in a steady state condition but not the same one used to

generate the linearized dynamics. This is achieved by increasing the throttle two degrees

from the nominal value causing the steady state vehicle speed to be about two meters per

second faster than the nominal. The road is °at and smooth so only vehicle nonlinearities

corrupt the fllter residuals. If the vehicle dynamics were linear, the increased throttle setting

would have only a transient efiect, if any, on the linear fault detection fllter state estimates.

The state estimate errors and the fllter residuals would asymptotically go to zero. Since

the vehicle dynamics are not linear and the vehicle operating condition is not the same as

it would be if the dynamics were linear, the fllter state estimates and the residuals are not

zero.

Since most residuals are not zero, as is to be expected, the natural question to ask is

what magnitude residual should be considered small. The answer lies in comparing the size

of a nonzero residual due to non-linearities and the size of a nonzero residual due to a fault.

A residual scaling factor is chosen such that when a fault is introduced into the linearized

dynamics the magnitude of the corresponding reduced-order fault detection fllter residual

is one. Since all residuals generated by the ofi-nominal operating condition have magnitude

less than 0.25, they should not be easily mistaken for residuals generated by a fault.
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Of course, the size of the residual is proportional to the size of the fault. The size of the

fault used for flnding the residual scaling factors is determined as follows. For most sensors,

the size of the fault is given by the difierence in magnitude between the sensor output at the

nominal and ofi-nominal steady state operating conditions. For some sensors, such as the

accelerometers and the angular rate sensors, the output is zero in any steady state condition

and another method has to be used. For the longitudinal accelerometer, the size of the fault

is given as the largest transient value of the sensor output while a two-degree step throttle

command takes the vehicle from the nominal to ofi-nominal condition. For the lateral and

vertical accelerometers, even the transient is small during an acceleration maneuver. Thus

the same nominal fault value used for longitudinal acceleration fault is also used for the

lateral and heave accelerometers. The pitch, roll and yaw rate sensors are treated the same

way as the lateral and heave accelerometers. The value 0.02 rad
sec is chosen as a value for

vehicle rotation rates reasonably encountered during normal vehicle operation.

Figure 5.1 shows the magnitudes of the residuals for the four fault detection fllters

derived from the flrst fault design group: the engine speed sensor, lateral and vertical

accelerometers and pitch rate sensor. A sensor bias fault is added after two seconds

when fllter initialization errors have died out. Only one sensor fault is added at a time;

simultaneous faults are not allowed. It is important to note that when any of the sensor

faults from the flrst fault design group occur, the residuals associated with a fault detection

fllter designed for other faults have no meaning. This is why only four residuals are shown

in each plot of Figures 5.1, 5.2, 5.3, 5.4 and 5.5 while sixteen residuals are generated by the

entire fault detection system. Distinguishing a meaningful residual from a non-meaningful

residual is left to the residual processing system described in sections 6 and 7. The residual

associated with the fault quickly approaches one and other residuals in the fault group

remain unafiected.

Figures 5.2 and 5.3 show the residuals for the four fault detection fllters derived from the

second and third sensor fault design groups. Residual scaling factors are chosen in the same

way as for the flrst fault design group. The fault detection fllter performance indicated by
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Figures 5.2 and 5.3 is the same as that indicated by Figure 5.1.

The performance of the fllter for the fourth fault group which includes actuator faults

is shown in Figure 5.4. A throttle fault is simulated by sending a two-degree step throttle

command to the nonlinear simulation but not to the fault detection fllter. Even though a

throttle fault stimulates the vehicle nonlinear dynamics and the residual associated with

other faults, Figure 5.4 shows that both positive and negative throttle faults are clearly

identiflable from other faults. A brake fault is simulated by applying a brake torque just

large enough to slow the vehicle from 25 m
sec to 21 m

sec . This changes the vehicle steady state

operating point by the same amount as a minus four degree throttle fault. Figure 5.4

shows that the brake fault is clearly identifled. A steering fault is simulated by a 0.001 rad.

steering angle bias. Recall that the nominal turn is achieved with a 0.005 rad. steering

angle. Figure 5.4 shows that the steering fault is clearly identifled.

An interesting observation of the throttle actuator residual behavior follows from the

discussion of Section 4.1 and is illustrated in Figure 5.5. Since one direction of the throttle

actuator fault corresponds to the air mass sensor fault rate, a bias fault in the air mass sensor

causes a response in the throttle actuator residual. Since the throttle actuator residual only

responds to air mass sensor fault rate, the residual response is transient and dies out quickly.

There should be no problem distinguishing throttle actuator and air mass sensor faults as

long as the air mass sensor fault only has low frequency components.

5.1.2 Evaluation On Rough Road

Tests performed on the fault detection fllters in this section closely follow those of the last

section except that the road is no longer smooth. The same types and sizes of faults are

used here as in Section 5.1.1

It has already been demonstrated that when no road noise is present, fllter residuals not

associated with a given sensor fault do not respond when that fault occurs. Therefore, only

residuals associated with a fault are shown in the plots. For comparison, the residuals for

the no fault case are also given.
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Figure 5.1: Residuals for fault detection fllter one.
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Figure 5.2: Residuals for fault detection fllter two.
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Figure 5.3: Residuals for fault detection fllter three.
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Figure 5.4: Residuals for fault detection fllter four.
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Figure 5.5: Residuals for fault detection fllter four.

Figures 5.6 and 5.7 show the residuals for the four fault detection fllters derived from

the flrst fault group. Figure 5.6 illustrates a visually obvious contrast between cases where

no fault occurs and where a step fault does occur in the engine speed sensor and lateral

accelerometer residuals. In Figure 5.7, bias faults in either the pitch rate sensor or the

vertical accelerometer are only barely visually detectable. The reason is the the nominal

bias fault size is dominated by the noise produced by the rough road model. In the case of

the vertical accelerometer, the noise standard deviation is about 0.3 m
sec2 while the nominal

bias fault size is 0.1 m
sec2 . While the fault may not be visually detectable, both residual

processing systems, the Bayesian neural network of Section 6 and the Shiryayev sequential

probability ratio test of Section 7, quickly and unambiguously detect the fault.

Figures 5.8 and 5.9 show the the residuals for the four fault detection fllters derived

from the second sensor fault group. Figures 5.10 and 5.11 show the the residuals for the

four reduced-order fault detection fllters derived from the third sensor fault group.

Analysis is more di–cult for the residuals produced by the fault group four detection

fllter. The actuator faults in this group stimulate the nonlinear vehicle dynamics, alter the
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operating point and cause all residuals to respond, not just the residual associated with given

fault. Thus all residuals are examined as an actuator fault occurs. Figures 5.12 through

5.18 show that all faults are clearly identiflable and distinguishable from one another.
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Figure 5.6: Residuals for fault detection fllter one.

5.2 Fault Detection Filter Evaluation On A Straight Rough Road

In this section, the performance of a longitudinal mode fault detection fllter described

in (Douglas et al. 1995) is evaluated for robustness to noise caused by rough roads. The

same types and sizes of faults are used here as in (Douglas et al. 1995). Figures 5.19, 5.20

and 5.21 illustrate detection fllter performance for the flrst, second and third fault groups

Because the rough road noise dominates the nominal vertical accelerometer bias fault, this

fault is hard to detect by inspection of the residual. However, both residual processing

systems, the Bayesian neural network of Section 6 and the Shiryayev sequential probability

ratio test of Section 7, quickly and unambiguously detect the fault.
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Figure 5.7: Residuals for fault detection fllter one.
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Figure 5.8: Residuals for fault detection fllter two.
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Figure 5.9: Residuals for fault detection fllter two.
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Figure 5.10: Residuals for fault detection fllter three.
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Figure 5.11: Residuals for fault detection fllter three.
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Figure 5.12: Residuals for fault detection fllter four, no fault.
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Figure 5.13: Residuals for fault detection fllter four, throttle actuator fault +2 deg.
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Figure 5.14: Residuals for fault detection fllter four, throttle actuator fault -2 deg.
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Figure 5.15: Residuals for fault detection fllter four, brake actuator fault +100 Nm.
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Figure 5.16: Residuals for fault detection fllter four, steering actuator fault +0.001 rad.
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Figure 5.17: Residuals for fault detection fllter four, steering actuator fault -0.001 rad.
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Figure 5.18: Residuals for fault detection fllter four, air mass sensor fault 0.07 kg.
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Figure 5.19: Residuals for fault detection fllter one: air mass sensor, engine speed sensor
and forward accelerometer.
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Figure 5.20: Residuals for fault detection fllter two: pitch rate sensor, forward wheel speed
sensor and rear wheel speed sensor.
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Figure 5.21: Residuals for fault detection fllter three: vertical accelerometer, pitch rate
sensor and rear wheel speed sensor.
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Figure 5.22: Residuals for fault detection fllter four: throttle actuator and brake actuator.



    

Chapter 6

Bayesian Neural Networks

The essential feature of a residual processor is to analyze the residual process generated

by all fault detection fllters and announce whether or not a fault has occurred and with what

probability. This requires higher level decision making and creation of rejection thresholds.

Nominally, the residual process is zero in the absence of a fault and non-zero otherwise.

However, when driven by sensor noise, dynamic disturbances and nonlinearities, the residual

process fails to go to zero even in the absence of faults. This is noted in the simulation

studies of the detection fllters. Furthermore, the residual process may be nonzero when

a fault occurs for which the detection fllter is not designed. In this case, the detection

fllter detects but cannot isolate the fault because the residual directional properties are not

deflned.

The approach taken in this section is to consider that the residuals from all fault

detection fllters constitute a pattern, a pattern which contains information about the

presence or absence of a fault. Hence, residual processing is treated as a pattern recognition

problem. This class of problems is ideally suited for application to a neural network.

61
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The objective of a neural network as a feature classifler is to associate a given feature

vector with a pattern class taken from a set of pattern classes deflned apriori. In an

application to residual processing, the feature vector is a fault detection fllter residual

and the pattern classes are a partitioning of the residual space into fault directions which

include the null fault.

Three types of neural network classiflers are considered for the pattern recognition

problem: a single layer perceptron, a multilayer perceptron and a Bayesian neural network.

The single layer perceptron is the simplest continuous input neural network classifler and

has the ability to recognize only simple patterns. It decides whether an input belongs to

one of the classes by forming decision regions separated by hyperplanes. It is shown later

that the decision regions formed by the single layer perceptron are similar to those formed

by a maximum likelihood gaussian classifler if the inputs are gaussian, uncorrelated and the

distributions for difierent classes difier only in the mean values. Note that the perceptron

training procedure may lead to oscillating decision boundaries if the underlying distributions

of the input intersect, that is, if the classes are not mutually exclusive.

The multilayer perceptron is a feedforward network with input, output and, possibly,

hidden layers. Unlike the single layer perceptron, which partitions the decision space with

hyperplanes, the multilayer perceptron forms arbitrarily complex convex decision regions.

Furthermore, since no assumptions are required about the shapes of the underlying input

probability distributions, the multilayer perceptron is a robust classifler that may be used

to classify strongly non-gaussian inputs driven by nonlinear processes.

The Bayesian neural network is a multilayer perceptron with output feedback and

is modifled to include a sigmoidal activation function at each ouput node. The output

activation functions take values between zero and one. It is shown later, in Section 6.2.2, that

the output activation functions of a Bayesian neural network provide posterior probabilities

of classiflcation conditioned on the applied input history. A stochastic training algorithm

further enhances robustness in that training sets are considered as sample sets providing

information about the entire population. This is explained in Section 6.3.
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6.1 Notation

Notation for a q-layer multilayer perceptron is as follows.

ni number of nodes in layer i.

uk ∈ Rn1 network input at time k.

xik ∈ Rni input to layer i at time k where i ∈ {2, . . . , q}.

yik ∈ Rni output of layer i at time k where i ∈ {1, 2, . . . , q}.

S(x) activation function.

'i ∈ Rni bias vector of layer i where i ∈ {2, . . . , q − 1}.

W i ∈ Rni×ni−1 weighting matrix of layer i where i ∈ {2, . . . , q}.

Connections for a q-layer multilayer perceptron with one step delayed output feedback are

deflned in (6.1). The connections are illustrated in Figure 6.1 for a flve layer network.

x1
k = uk + yk−1 (6.1a)

xik = W iyi−1
k + 'i, where i ∈ {2, . . . , q} (6.1b)

yik = S(xik), where i ∈ {1, . . . , q} (6.1c)

S(x) =
ex

ex + 1
(6.1d)

6.2 Bayesian Feature Classiflcation and Neural Networks

A Bayesian feature classifler is optimal in the sense that it assigns a feature to the pattern

class with the highest posterior probability, that is, a feature vector x is associated with a

pattern class Ai if

P (Ai/x) > P (Aj/x) ∀j 6= i

Most classiflers use probabilities conditioned on the class P (x/Ai) and use Bayes’ rule to

generate posterior probabilities, that is,

P (Ai/x) =
p(x/Ai)p(Ai)

p(x)
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Figure 6.1: Bayesian neural network with feedback.

P (x) =
m∑
j=1

p(x/Aj)p(Aj)

This indirect way of calculating posterior probabilities makes assumptions about the form of

the parametric models P (x/Ai) and the apriori probabilities (Morgan and Bourlard 1995).

Multilayer perceptrons do not require any assumptions about the pattern distributions

and can form complex decision surfaces. Several authors (Richard and Lippmann 1991,

Bourlard and Wellekens 1994) show that the outputs of multilayer perceptron classiflers can

be interpreted as estimates of posterior probabilities of output classiflcation conditioned on

the input. Blaydon (Blaydon 1967) proved the same for a two-class linear classifler.

The following subsections provide two results that establish the utility of multilayer

perceptrons as Bayesian feature classiflers. Section 6.2.1 shows that the decision regions

created by a maximum likelihood gaussian classiflcation algorithm can be generated using
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a multilayer perceptron with sigmoidal node functions. Section 6.2.2 shows that the output

of a Bayesian neural network can be interpreted as an estimate, conditioned on the input

history, of the posterior probabilities of feature classiflcation.

6.2.1 A Maximum Likelihood Gaussian Classifler as a Multilayer Perceptron

In this section, it is shown that the decision regions created by a maximum likelihood

gaussian classiflcation algorithm can be implemented using a multilayer perceptron with

sigmoidal node functions. First, consider a binary hypothesis case, that is, one where the

input is assumed to be associated with one of two classes.

Let the input of a maximum likelihood gaussian classiflcation algorithm be x ∈ Rn, the

output y ∈ R2 and the two classes Hi and Hj . For simplicity, assume that the underlying

conditional probability density functions of x have identical covariances but difierent means

as in

Hi : x ∼ N (mi,⁄)

Hj : x ∼ N (mj ,⁄)

where

f(x/Hi) =
1

(2π)n/2| ⁄|1/2
exp

{
−1

2
‖x−mi‖2Λ−1

}

Now deflne a log likelihood function Li as:

Li ∆= 2 ln
[
(2π)n/2|⁄|1/2f(x/Hi)

]
= −(x−mi)

T⁄−1(x−mi)

Then, the difierence between the two likelihood functions Li − Lj has the form

Lij ∆= Li − Lj

= 2(mi −mj)
T⁄−1x+ (mT

j ⁄−1mj −mT
i ⁄−1mi)

= Wx+ '
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An input classiflcation decision function follows as

Lij > 0 ⇒ Declare Hi

Lij < 0 ⇒ Declare Hj

The same decision region could be obtained using a single layer perceptron in which the

weighting matrix is W , the bias vector is ' and the output is a sigmoidal function of the

form S(Lij). An easy extension to the multiple hypothesis case follows from a decision

function based on Li −maxj 6=i Lj .

The similarity in form between a maximum likelihood gaussian classifler, as above,

and a perceptron is obvious. However, note that traditional statistical classiflers require

prior knowledge of the stochastic properties of the inputs. This is not so for perceptrons.

Furthermore, it can be shown that multilayer perceptrons with hidden layers and sigmoidal

nodal functions behave as universal approximators, that is, they have the capability of

approximating any function to any degree of accuracy given a su–cient number hidden

nodes. Refer to (Funahashi 1989, Hornik et al. 1989) for details.

6.2.2 A Bayesian Neural Network Provides Feature Classiflcation Probabilities

This section shows that the output of a Bayesian neural network can be interpreted as

an estimate of the posterior probabilities of feature classiflcation conditioned on the input

history. Let xk ∈ Rn be a feature vector and X k = {x1, . . . , xk} be a history of feature

vectors. Let

A = {A1, . . . ,Aq}

be a set of q pattern classes Ai into which a feature vector may be classifled and let

y(w, x) ∈ Rm be the output of a multilayer perceptron. The parameter w is a vector

containing the perceptron weights and bias vectors. Let zk ∈ Rm be a vector deflned

as:

zTk ∆=

{
[0, . . . , 1, . . . , 0] , X k ∈ Ai
[0, . . . , 0, . . . , 0] , X k 6∈ Ai, i ∈ {1, . . . ,m}
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From the deflnition of the Bayesian neural network connections, (6.1), the conditional

expectation of zk is

E[zk/xk] = P (A/X k)

where E[·] is the expectation operator and where P (A) is a vector of probabilities

P (A/X k) =

 P (A1/X k)
...

P (Aq/X k)


Note that if the Ai are mutually exclusive and exhaustive events, then ‖P (A/X k)‖1 = 1.

Consider the regression function

J(w) = Ex,z
[
‖z − y(w, x)‖2

]
(6.2)

An expansion of the norm and the expectation operator lead to

J(w) = Ex
[
Ez
[
‖z − y(w, x)‖2/x

]]
= Ex

[
Ez
[
‖z‖2 − 2yT (w, x)z + ‖y(w, x)‖2/x

]]
= Ex

[∑
P (Ai/X )− 2yT (w, x)P (A/X ) + ‖y(w, x)‖2

]
= Ex

[∑
P (Ai/X )− ‖P (A/X )‖2

]
+ Ex

[
‖P (A/X )− y(w, x)‖2

]
Since the flrst expectation term is independent of the multilayer perceptron parameters,

minimization of J is the same as minimization of F where

J(w) = Ex
[∑

P (Ai/X )− ‖P (A/X )‖2
]

+ F (w)

and

F (w) ∆= Ex
[
‖P (A/X )− y(w, x)‖2

]
Thus, when the network parameters are chosen to minimize a mean-squared error cost

function, the outputs are estimates of the Bayesian posterior probabilities.
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6.3 Learning Algorithms for Neural Networks

The learning phase of a neural network involves the determination of the synaptic weights

and bias vectors of the network. The backpropagation algorithm, the most widely used

learning algorithm in neural network applications, consists of two passes through the layers

of the network: a forward pass and a backward pass. In the forward pass, an input is

applied to the input layer and allowed to propagate through the network to produce an

output. During this pass, the synaptic weights and bias vectors are held flxed. In the

backward pass, the network output is compared to a desired output and an error vector is

formed. As the error vector propagates backward through the network, the synaptic weights

and bias vectors are adjusted with an error correction rule to minimize the error. Together,

the applied input and desired output form a neural network training set.

The learning phase may be viewed as a nonlinear unconstrained parameter optimization

problem. Depending upon the nature of the input, two types of algorithms are considered:

deterministic and stochastic learning algorithms. With deterministic algorithms, the cost

function is speciflc to the given training set. Networks trained this way tend to produce

unexpected results when inputs are given that were not part of the training set. With

stochastic algorithms, the cost function is the expected error for a given training set.

Networks trained this way tend to be more robust to unknown inputs.

6.3.1 Deterministic Learning Algorithms

Deflne a learning cost function J as the mean squared error between the actual and desired

output

J(w) =
N∑
k=1

ek
N

where

ek = (zk − yk)T (zk − yk)

and where yk is the network output for training set k, zk is the desired output from training

set k and N is the number of training sets. Recall that J depends on the network weight
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and bias vectors.

A Davidon-Fletcher-Powell algorithm may be used to solve the unconstrained parameter

optimization problem. For a quadratic cost with n parameters, the Davidon-Fletcher-Powell

algorithm converges in n iterations. A rank two update for the Hessian matrix will ensure

that the Hession is positive deflnite at the end of each iteration. A suitable test for

convergence is to check whether the change in the Hessian matrix is small.

6.3.2 Stochastic Learning Algorithms

From Section 6.2.2, the problem of training a Bayesian neural network may be viewed as

a nonlinear regression function minimization. Consider the cost J(w), a function of the

network weights and bias vectors, given by (6.2)

J(w) = Ex,z
[
‖z − y(w, x)‖2

]
Let

φ(w) ∆= ‖z − y(w, x)‖2

g(w) ∆= −2[z − y(w, x)]T
∂y(w, x)
∂w

For the minimization problem minw J(w), a necessary condition for a parameter vector w

to be minimizing is that

∇J(w) = Ex,z[g(w)] = 0

Since both z and x are random variables, g(w) is a noisy gradient of the cost. Samples of

φ(w) and g(w) are available for the minimization process.

The stochastic minimization minw J(w), may be implemented with a Robbins-Munro

algorithm. The algorithm is a variation of the steepest descent algorithm

wk+1 = wk − ρkg(wk)

where ρk > 0,
∑
ρ2
k <∞ and

∑
ρk =∞.
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It can be shown that under the following three assumptions, the algorithm converges in

the mean square sense, that is,

E[‖wk − w0‖2] = 0 k →∞

1. φ(w) has a unique zero w0, which is bounded.

2. g(w) is linear near w0.

3. The variance of g(w) is bounded above by a quadratic function of w as in

E[‖g(w)‖2] ≤ h[1 + ‖w − w0‖2] h > 0

Of course, from Chebyshev’s inequality, the algorithm also converges with probability one.

An initial solution to the problem is found by removing the expectation operator and

using the Davidon-Fletcher-Powell deterministic algorithm. This validates the flrst two

assumptions for the multilayer perceptrons. By taking partial derivatives and exploiting

the fact that multilayer perceptrons have sigmoidal activation functions, it is seen that

the variance of g(w) is always bounded. Thus all three assumptions hold for multilayer

perceptrons and the stochastic training algorithm converges with probability one.

6.4 Bayesian Neural Networks as Residual Processors

The objective of a residual processor is not just to announce a fault but to provide an

associated probability of false alarm. While, multilayer perceptrons have proved to be very

successful in static pattern recognition problems (Haykin 1994), a recurrent Bayesian neural

network can be shown to approximate the posterior probability of feature classiflcation

conditioned on an input history.

The residual processor designs described in this section are applied to the fault detection

fllters of (Douglas et al. 1995). These fllters are used when the vehicle is operating at a

nominal 27 m
sec on a straight road so vehicle lateral dynamics are not considered. Four

Bayesian neural network residual processors are designed, one for each fault detection fllter.
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A schematic of one network is provided in Figure 6.1. Each network has the following

properties.

• Each has flve layers: one input layer, three hidden layers and one output layer.

• A feedback loop is included where a one step delayed output is summed with the

current input at the input layer.

• The activation function S(·) is a sigmoidal function. This function has a smooth

nonlinearity which is useful for gradient calculations.

• Network connections are deflned in (6.1) and are illustrated in Figure 6.1. All vectors

are in R3 except for the network associated with fault group four where the vectors

are in R2.

Figure 6.2 shows the residual processing scheme using Bayesian neural networks and the

fault detection fllters for the longitudinal simulation.

6.5 Simulation Results

Each Bayesian neural network is trained to announce the probability of a fault in a particular

sensor conditioned on the residual process. The training data for each network is obtained

by simulating bias faults of some nominal size in the vehicle nonlinear simulation.

Two types of faults are considered for residual processor testing: step faults and ramp

faults. Step faults are an abrupt change from a no fault situation to a nominally sized fault

in a particular sensor. Step faults are considered in the pitch rate and air mass sensors.

Since the Bayesian neural networks are tested on the training set, no efiort to generalize

responses to unknown faults is made here.

Ramp faults correspond to a gradual, linear change from a no fault situation to a fault in

a particular sensor. In contrast with the step faults, ramp faults necessarily represent fault

sizes that have not been encountered by the Bayesian neural networks in their respective

training sets. These kinds of faults illustrate the generalization capability of the Bayesian

neural networks.
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6.5.1 Step Faults

Figures 6.3, 6.4 and 6.5 each show one of the outputs of the Bayesian neural network for

fault group three. This network analyzes the residuals from the fault detection fllter which

considers sensor faults for the pitch rate, forward symmetric wheel speed and the rear

symmetric wheel speed sensors.

In each flgure, no fault occurs from t = 0 to t = 4 sec. From t = 4 sec. onwards, step

faults in difierent sensors and actuators are applied one at a time and in the following order:

• pitch rate sensor (T)

• front wheel speed sensor (FS)

• rear wheel speed sensor (RS)

• air mass sensor (M)

• engine speed sensor (W)

• longitudinal accelerometer (X)

• throttle actuator (A)

• brake torque actuator (Tb)

Note in the flgures that there are two cases for the throttle fault. Figure 6.3 shows

the posterior probability of a pitch rate sensor fault conditioned on the residual process.

Figure 6.4 shows the posterior probability of a front wheel speed fault conditioned on the

residual process. Figure 6.5 shows the posterior probability of a rear wheel speed sensor

fault conditioned on the residual process.

Each flgure shows that the Bayesian neural network gives a high probability of a fault

when a fault occurs in the corresponding sensor or actuator and a low probability of a fault

otherwise. Note that the residual process is nonzero when a fault occurs in any sensor apart

from the sensors for which the fllter is designed. Even though the residual is nonzero, the

network correctly does not announce a fault.
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6.5.2 Ramp Faults

In this section, ramp faults are considered in the pitch rate sensor, vertical accelerometer,

longitudinal accelerometer and the air mass sensor.

Figures 6.6 and 6.7 show fault detection fllter residuals and outputs of a Bayesian neural

network for fault group three. In these flgures, Z, T and RS denote the magnitudes of the

vertical accelerometer, pitch rate and real wheel speed residuals and P(Z), P(T) and P(RS)

denote the posterior probability of the corresponding fault conditioned on the residual

process. Figures 6.8 and 6.9 show the same results but for fault group one. In these

flgures, M, W and X denote the magnitudes of the air mass sensor, engine speed sensor

and longitudinal accelerometer residuals and P(M), P(W) and P(X) denote the posterior

probability of the corresponding fault conditioned on the residual process. In each flgure,

no fault occurs from t = 0 to t = 1 sec. and from t = 1 sec. onwards, a ramp fault occurs.

• Figure 6.6 shows results when a ramp fault of size 0 to 0.5 rad
sec occurs in the pitch rate

sensor. Note that the Bayesian neural network has been trained with a nominal pitch

rate sensor step fault of 0.05 rad
sec .

• Figure 6.7 shows results when a ramp fault of size 0 to 5 m
sec2 occurs in the vertical

accelerometer. The network has been trained with a nominal vertical accelerometer

step fault of 0.5 m
sec2 .

• Figure 6.8 shows results when a ramp fault of size 0 to 1 m
sec2 occurs in the longitudinal

accelerometer. Training has been done with a nominal longitudinal accelerometer step

fault of 0.1 m
sec2 .

• Figure 6.9 shows results when a ramp fault of size 0 to 0.14 kg. occurs in the air mass

sensor. The network has been trained with a nominal air mass sensor step fault of

0.07 kg.
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6.6 Discussion

At this stage, an interesting comparison may be made of the stochastic and deterministic

training approaches. In the stochastic approach, the training sets are considered as sample

sets which provide information about the entire population. In the deterministic approach,

the training sets are the entire population hence no efiort is made to generalize. The

classes may intersect in the pattern space for the stochastic problem, while the deterministic

approach theoretically considers mutually exclusive classes only.

From a theoretical perspective, when Bayesian neural networks are trained for pattern

classiflcation using the mean square criterion, their outputs are estimates of classiflcation

probabilities conditioned on the input. This conclusion is valid for any approach based

on the minimization of the mean-squared error criterion. However, in theory, multilayer

perceptrons can approximate any non-linear mapping (Lippmann 1987), hence, they are

more likely to flt the posterior probabilities. The simulation studies conducted demonstrate

the above assertion.
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Figure 6.2: Residual processing scheme for the longitudinal simulation.
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Figure 6.3: Posterior probability of a fault in the pitch rate sensor.

0 5 10 15 20 25 30
0

5

10

15

20

Front Wheel Speed Residual − FS

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Probability of fault in FS

Time (sec.)

No fault T

FS

RS M

W

X
Z A1 A2

Tb

Figure 6.4: Posterior probability of a fault in the front wheel speed sensor.
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Figure 6.5: Posterior probability of a fault in the rear wheel speed sensor.
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Figure 6.6: Ramp fault in pitch rate sensor.
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Figure 6.7: Ramp fault in vertical accelerometer.
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Figure 6.8: Ramp fault in longitudinal accelerometer.
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Figure 6.9: Ramp fault in air mass sensor.





    

Chapter 7

Sequential Probability Ratio Tests

The residual processing problem is considered in this section as a hypothesis detection

and identiflcation problem. Both Bayesian (Shiryayev 1977) and non-Bayesian approaches

(Nikiforov 1995, Basseville and Nikiforov 1995) to the classical change detection problem

have been developed. A binary hypothesis Shiryayev test, which is a Bayesian approach,

is formulated by Speyer and White (Speyer and White 1984) as a dynamic programming

problem. A similar approach, one also using a dynamic programming formulation, is taken

here to derive an online multiple hypothesis Shiryayev Sequential Probability Ratio Test

(SPRT).

It is shown that for a certain criterion of optimality, this extended Shiryayev SPRT

detects and isolates the occurrence of a failure in a conditionally independent measurement

sequence in minimum time. The algorithm is shown to be optimal even in the asymptotic

sense and the theoretical results have been extended to the detection and identiflcation

of changes with unknown parameters. The dynamic programming analysis includes the

measurement cost, the cost of a false alarm and the cost of a miss-alarm.

81
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Note that with the Shiryayev SPRT, a change in the residual hypothesis is detected in

minimum time. In contrast, the Wald SPRT detects the presence or absence of a failure in

the entire measurement sequence. Here, the residual hypothesis is unknown but is assumed

to be constant through the measurement sequence.

A non-Bayesian approach to the classical change detection problem is the Generalized

CUMulative SUM (CUSUM) algorithm (Nikiforov 1995, Basseville and Nikiforov 1995). It

has been shown that there exists a lower bound for the worst mean detection delay and

that the CUSUM algorithm reaches this lower bound. This establishes the algorithms worst

mean detection time minimax optimality.

Recently, the algorithm has been extended to solve the change detection and isolation

problem (Nikiforov 1995). This extension is based on the log likelihood ratio between two

hypotheses Hi and Hj . When the difierence between the log likelihood ratio and its current

minimum value for a given hypotheses Hi and other hypotheses exceeds a chosen threshold,

hypothesis Hi is announced. This implies that a hypothesis announcement requires that

the recent measurements be signiflcant enough to support the announcement.

Several important observations are made regarding the extended CUSUM algorithm.

• The algorithm is computationally intensive and is not recursive. If the number of

hypotheses is m, the number of computations is of the order of m2. This problem

can be avoided by modifying the algorithm to compare all the hypotheses to the null

hypothesis H0 while doing the computations. This modiflcation would reduce the

number of computations from the order of m2 to m.

• No assumption is made about the apriori probability of change from hypothesis H0

to Hi from one measurement to the next. This probability is embedded explicitly in

the Shiryayev SPRT.

• Unlike the Shiryayev SPRT, the posterior probability of a hypothesis change is not

calculated in the CUSUM algorithm.
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• Thresholds for hypothesis change announcements must be made apriori whereas in

the Shiryayev SPRT, a methodology for interpreting the choice of the threshold is

explicit.

• The CUSUM algorithm is similar to the Wald SPRT in that a flnite size, sliding

data window allows for changes in hypothesis to be detected but that the hypothesis

essentially is assumed to be constant throughout the window.

This chapter is organized as follows. Notation is deflned in Section 7.1. Section 7.2

has the main development of a multiple hypothesis Shiryayev sequential probability ratio

test. First, a conditional probability propagation equation is developed. Next, a dynamic

programming problem is deflned and some of the asymptotic properties of the cost function

are demonstrated. Next, a decision rule is deflned by building thresholds. Finally, the

test is generalized to the detection and isolation of changes with unknown parameters.

In Section 7.3 a few illustrative examples are given and in Section 7.4, the algorithm is

applied to a health monitoring system for automated vehicles using a high-fldelity nonlinear

simulation. The performance of the algorithm is evaluated by implementing it in a fault

detection and identiflcation scheme in the longitudinal nonlinear vehicle simulation. Finally,

in Section 7.5, a few comments are made about assumptions underlying the MHSSPRT.

7.1 Preliminaries and Notation

Let xk be a measurement vector at time tk and Xk
∆= {xk} be a conditionally independent

measurement sequence. A fault is said to occur when there exists a discrete jump in the

probabilistic description of Xk. The probabilistic description of Xk is assumed to be known

both before and after a fault occurs. The fault hypotheses are enumerated as faults of type

i with the total number of faults m + 1 being flxed. The fault type 0 is also called the

no-fault or null-fault hypothesis.

The probability density function of xk in the no-fault or type i fault state is denoted

f0(·) or fi(·). These probability density functions are constant so no subscript k is indicated.
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However, note that in the following development, the density functions are not required to

be constant.

During any time interval tk < t ≤ tk+1, the probability that the measurement sequence

Xk will switch from a no-fault state to a type i fault state is known apriori and is denoted

pi. The time that the measurement sequence switches from a no-fault state to a type i fault

state is not known and is denoted θi.

The probability that a type i fault has occurred before time t0 is πi ∆= P (θi ≤ t0). The

probability, conditioned on the measurement sequence Xk, that a type i fault has occurred

before time tk is Fk,i = P (θi ≤ tk/Xk). The above notation and deflnitions are summarized

as follows.

xk ∆= Measurement vector at time tk.

Xk
∆= Measurement history through tk.

m ∆= Number of fault types.

f0(·) ∆= Probability density function of xk under no-fault hypothesis.

fi(·) ∆= Probability density function of xk under type i fault hypothesis.

pi ∆= Apriori probability of change from no-fault to type i fault for tk < t ≤ tk+1.

θi ∆= Time of type i fault.

πi ∆= P (θi ≤ t0).

Fk,i ∆= P (θi ≤ tk/Xk)

7.2 Development of a Multiple Hypothesis Shiryayev SPRT

An extension of the Shiryayev sequential probability ratio test to allow multiple hypotheses

is as follows. First, a conditional probability propagation equation is developed. Next, a

dynamic programming problem is deflned and some of the asymptotic properties of the cost

function are demonstrated. Next, a decision rule is deflned by building thresholds. Finally,

the test is generalized to the detection and isolation of changes with unknown parameters.
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7.2.1 Recursive Relation for the Posteriori Probability

The results of this section are encapsulated in two propositions. The flrst proposition

provides a recursive update for Fk,i, the conditional probability that a type i fault has

occurred. The second proposition shows that Fk,i, as given by the recursion, is consistent

with the deflnition of a probability.

Proposition 7.1. A recursive update formula for Fk,i is

F0,i = πi (7.1a)

Fk+1,i =
Mk,ifi(xk+1)

(
∑m
i=1Mk,i) fi(xk+1) + (1−∑m

i=1Mk,i) f0(xk+1)
(7.1b)

where

Mk,i = Fk,i + pi(1− Fk,i) (7.1c)

Proof. The proof is done by induction. The probability F1,i that a type i fault has

occurred before t1 given a measurement x1 is given by Bayes’ rule as

P (θi ≤ t1/x1) =
P (x1/θi ≤ t1)P (θi ≤ t1)

P (x1)
(7.2)

where

P (x1) =
m∑
i=1

[P (x1/θi ≤ t1)P (θi ≤ t1) + P (x1/θi > t1)P (θi > t1)] (7.3a)

P (θi ≤ t1) = P (θi ≤ t0) + P (t0 < θi ≤ t1)

= πi + pi(1− πi) (7.3b)

P (x1/θi > t1) = f0(x1)dx1 (7.3c)

P (x1/θi ≤ t1) = fi(x1)dx1 (7.3d)
m∑
i=1

P (θi > t1) = 1−
m∑
i=1

P (θi ≤ t1) (7.3e)

Strictly, (7.3d) denotes the probability that the measurement lies between x1 and x1 + dx1

given the occurrence of a type i fault at or before t1. Expanding (7.2) with the identities
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of (7.3) produces the fault probability F1,i.

F1,i =
[πi + pi(1− πi)]fi(x1)∑m

i=1[πi + pi(1− πi)]fi(x1) + (1−∑m
i=1[πi + pi(1− πi)])f0(x1)

(7.4)

The probability Fk,i, conditioned on a measurement sequence mathrmXk, that a type

i fault has occurred before tk is given by Bayes’ rule as

P (θi ≤ tk+1/Xk+1) =
P (Xk+1/θi ≤ tk+1)P (θi ≤ tk+1)

Xk+1

Since the measurement sequence is conditionally independent, this expands to

P (θi ≤ tk+1/Xk+1) =
P (xk+1/θi ≤ tk+1)P (Xk/θi ≤ tk+1)P (θi ≤ tk+1)

P (Xk+1)

and flnally to

P (θi ≤ tk+1/Xk+1) =
P (xk+1/θi ≤ tk+1)P (θi ≤ tk+1/Xk)

P (xk+1/Xk)
(7.5)

which follows from the identity

P (Xk+1) = P (xk+1/Xk)P (Xk)

Now, consider the following identities

P (xk+1/Xk) =
m∑
i=1

[P (xk+1/θi ≤ tk+1)P (θi ≤ tk+1/Xk)+

P (xk+1/θi > tk+1)P (θi > tk+1/Xk)] (7.6a)

P (θi ≤ tk+1/Xk) = P (θi ≤ tk/Xk) + P (tk < θi <= tk+1/Xk) (7.6b)

= Fk,i + pi(1− Fk,i) (7.6c)

P (xk+1/θi > tk+1) = f0(xk+1)dxk+1 (7.6d)

P (xk+1/θi ≤ tk+1) = fi(xk+1)dxk+1 (7.6e)
m∑
i=1

P (θi > tk+1/Xk) = 1−
m∑
i=1

P (θi ≤ tk+1/Xk) (7.6f)

Expanding (7.5) with the identities of (7.6) produces the fault probability Fk+1,i.

Fk+1,i =
Mk,ifi(xk+1)

(
∑m
i=1Mk,i) fi(xk+1) + (1−∑m

i=1Mk,i) f0(xk+1)
(7.7)

where Mk,i is deflned in (7.1c) Relations (7.4) and (7.7) together prove the induction.
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The following proposition states that a simple requirement on the initial conditions

ensures that the Fk,i are consistent with the deflnition of a probability

Proposition 7.2. The condition
∑m
i=1 πi ≤ 1 implies that

0 ≤ Fk,i ≤ 1 ∀ k

and

m∑
i=1

Fk,i ≤ 1 ∀ k

Proof. The proof follows as a direct application of the recursion (7.1).

Note that Fk,0 = 1 −∑m
i=1 Fk,i. Finally, note that (7.1) reduces to a multiple hypothesis

Wald SPRT if pi = 0 ∀i.

7.2.2 Dynamic Programming Formulation

At each time tk one of two actions are possible:

1. Terminate the measurement sequence and announce a fault of type i. The cost of

making a correct announcement is zero while the cost of a false alarm of type i is Qi.

2. Take another measurement. The cost of the measurement is C and the cost of a

miss-alarm of type i is Si.

An optimal decision algorithm is derived by minimizing the expected cost at a time tN .

Suppose N measurements are taken and that at time tN , a type i fault is announced.

Assuming further that only one fault may have occurred, the cost is

JN,i = (1− FN,i)Qi

so the optimal cost at tN is

J∗N = min
i

(1− FN,i)Qi (7.8)
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The expected cost at time tN−1 is

JN−1,i = min [(1− FN−1,i)Qi, C + SiFN−1,i + ExN [J∗N/XN−1]]

and the optimal cost at tN−1 is

J∗N−1 = min
i

min [(1− FN−1,i)Qi, C + SiFN−1,i + ExN [J∗N/XN−1]]

In general, the optimal expected cost at time tk is

J∗k = min
i

min [(1− Fk,i)Qi, C + SiFk,i +Ak(Fk)]

where

Ak(Fk) ∆= Exk+1

[
J∗k+1/Xk

]
(7.9a)

Fk ∆= [Fk,1, Fk,2, . . . , Fk,m]T (7.9b)

The expectation is taken with respect to the conditional probability density functions

fi(xk+1/Xk).

The optimal policy, one that minimizes the expected cost at each time tk, is stated with

respect to a threshold probability FTk,i:

• If Fk,i ≥ FTk,i, announce a type i fault.

• If Fk,i < FTk,i for each i ∈ {1, . . . ,m}, take another measurement.

The threshold probability FTk,i is determined at each time tk as the value at which the

expected cost of terminating the test by announcing a fault, and possibly a false alarm, is

the same as the expected cost of continuing the test by taking another measurement.

(1− FTk,i)Qi = C +Ak(FTk) + SiFTk,i (7.10a)

with

Qi > C +Ak(0) (7.10b)
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Unfortunately, determining the threshold probabilities FTk,i is a numerically intractable

problem, even in the scalar case where m = 1. This is because the Ak(FTk) expectations

are evaluated with respect to the conditional probability density functions fi(xk+1/Xk) or

(7.6a) in the proof of Proposition 7.1,

P (xk+1/Xk) =
m∑
i=1

[P (xk+1/θi ≤ tk+1)P (θi ≤ tk+1/Xk) + P (xk+1/θi > tk+1)P (θi > tk+1/Xk)]

The following lemma establishes properties of Ak(FTk) which allow for a tractable policy,

one which is optimal in the limit as (N − k)→∞.

Lemma 7.3. The functions Ak(Fk) satisfy the following properties ∀k ∈ {1, . . . ,m}

1. If πi = 1 for any 1 ≤ i ≤ m, then Ak(Fk) = 0

2. Ak(Fk) ≤ Ak−1(Fk−1)

3. Ak(Fk) is concave

Proof.

Property 1: Note that by the recursion relation (7.1) of Proposition 7.1, πi = 1 ⇒

F1,i = 1 and Fk,i = 1 ⇒ Fk+1,i = 1. By induction, πi = 1 ⇒ Fk,i = 1, ∀k ∈

{1, . . . , N}. Also, note that by Proposition 7.2, πi = 1 ⇒ Fk,j = 0 for j 6= i and

∀k ∈ {1, . . . , N}.

Suppose πi = 1 for some i. By the deflnition of Ak(Fk)

AN−1(FN−1) = ExN [J∗N/XN−1] (7.11a)

= ExN [min
i

(1− FN,i)Qi/XN−1] (7.11b)

= 0 (7.11c)

since πi = 1 ⇒ FN−1,i = 1. Now, suppose Ak(Fk) = 0 where again πi = 1. Then

Ak−1(Fk−1) = Exk [J∗k/Xk−1] (7.12a)

= Exk

[
min
i

min [(1− Fk,i)Qi, C + SiFk,i +Ak(Fk)] /Xk−1

]
(7.12b)

= 0 (7.12c)
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Relations (7.11) and (7.12) prove property 1 by induction.

Property 2: By the deflnition of Ak−1(Fk−1),

Ak−1(Fk−1) = Exk [J∗k/Xk−1]

= Exk

[
min
i

min [(1− Fk,i)Qi, C + SiFk,i +Ak(Fk)] /Xk−1

]
Since the test terminates at time tN , it must happen that for the minimizing i,

min [(1− Fk,i)Qi, C + SiFk,i +Ak(Fk)] = C + SiFk,i +Ak(Fk)

So,

Ak−1(Fk−1) = Exk

[
min
i

(C + SiFk,i +Ak(Fk)) /Xk−1

]
= C + min

i
SiFk,i + Exk [Ak(Fk)/Xk−1]

Therefore,

Ak−1(Fk−1) ≥ Ak(Fk)

Property 3: Now show that Ak(·) is concave. By inspection of (7.8) and (7.9), J∗N is

concave. Since the test ends at tN :

J∗N−1 = C +AN−1 + min
i
SiFN−1,i (7.13)

Clearly, J∗N−1 is concave if AN−1 is concave. Let the elements of the countably inflnite

measurement space be denoted by xjk where j = 1, 2, . . . ,∞ and k = 1, 2, . . . , N . From (7.9)

and (7.6a) :

Ak =
∞∑
j=1

[(
m∑
i=1

Mk,i

)
fi(x

j
k+1) +

(
1−

m∑
i=1

Mk,i

)
f0(xjk+1)

]
J∗k+1(Fk+1)

=
∞∑
j=1

m∑
i=1

hji (Fk)

=
∞∑
j=1

hj(Fk) (7.14)

where



   

7.2 Development of a Multiple Hypothesis Shiryayev SPRT 91

hji =
(
Mk,i

[
fi(x

j
k+1)− f0(xjk+1)

]
+

1
m
f0(xjk+1)

)
J∗k+1(Fk+1)

and where

Mk,i = Fk,i + pi(1− Fk,i)

If each of the hji is concave, the summation is concave. Therefore, it remains to show that

hj
(
λF 1

k + (1− λ)F 2
k

)
≥ λhj(F 1

k ) + (1− λ)hj(F 2
k ) (7.15)

where λ, F 1
k , F

2
k ∈ [0, 1]. Deflne

ξrk,i ∆=
[
F rk,i + pi(1− F rk,i)

] [
fi(x

j
k+1)− f0(xjk+1)

]
+

1
m
f0(xjk+1) for r = 1, 2.

so that the convexity inequality (7.15) becomes[
λξ1

k,i + (1− λ)ξ2
k,i

]
J∗k+1(F̂k+1) ≥ λξ1

k,iJ
∗
k+1(F 1

k+1) + (1− λ)ξ2
k,iJ

∗
k+1(F 2

k+1) (7.16)

where F̂k+1 = F̂k+1(λ, F 1
k , F

2
k ). Now,

F 1,2
k+1,i =

M1,2
k,i fi(xk+1)∑m
s=1 ξ

1,2
k,s

(7.17)

F̂k+1,i =

[
λM1

k,i + (1− λ)M2
k,i

]
fi(xk+1)∑m

s=1 λξ
1
k,s + (1− λ)ξ2

k,s

(7.18)

Let ~ξ1,2
k =

∑m
s=1 ξ

1,2
k,s . Then, from (7.17) and (7.18)

F̂k+1,i =
λF 1

k+1,i
~ξ1
k + (1− λ)F 2

k+1,i
~ξ2
k

λ~ξ1
k + (1− λ)~ξ2

k

Take a summation from i = 1, . . . ,m in (7.16) to get

J∗k+1

[
λ~ξ1

kF
1
k+1 + (1− λ)~ξ2

kF
2
k+1

λ~ξ1
k + (1− λ)~ξ2

k

]
≥

λ~ξ1
k

λ~ξ1
k + (1− λ)~ξ2

k

J∗k+1(F 1
k+1) +

(1− λ)~ξ2
k

λ~ξ1
k + (1− λ)~ξ2

k

J∗k+1(F 2
k+1) (7.19)

From (7.8) and (7.9), J∗N is concave and hence satisfles (7.19). This implies that AN−1 is

concave. But from (7.13), J∗N−1 is concave if AN−1 is concave. Hence, by induction, Ak(·)

are concave ∀k.
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7.2.3 Thresholds for the Optimal policy

Lemma 7.3 showed that the Ak(Fk) are monotonically decreasing in k and bounded because

of the concavity property in F . This implies that for an inflnite number of stages, that is,

(N−k)→∞, each threshold probability FTk,i also approaches a limit. To see this, rearrange

(7.10) as

FTk,i =
Qi − C −Ak(FTk)

Qi + Si

Then,

FTk,i ≤ FTk−1,i ≤ . . . ≤ FT,i ≤
Qi − C
Qi + Si

The dynamic programming algorithm for inflnite time reduces to

J∗(F ) = min
i

min[(1− FT,i)Qi, C + SiFT,i +A(FT )] (7.20)

where

A(F ) =

and the threshold probabilities FT,i are determined by

(1− FT,i)Qi = C + SiFT,i +A(FT ) (7.21)

Since A(FT ) is still hard to evaluate, a workaround is proposed. The idea is to choose

the FT,i where

αi ∆= 1− FT,i

are interpreted as false alarm rates and imply unknown Qi, Si and C through (7.21). In

the context of (Qi, Si, C), the Shiryayev SPRT, extended here to multiple hypotheses, gives

the minimum stopping time out of the set of stopping times {τi}. This comes from an

interpretation of the dynamic programming algorithm for inflnite time (7.20) as a Bayes’

risk minimizing cost (Shiryayev 1977)

J∗(F ) = min
i

inf
τi
E [(1− Fτi,i)Qi + Fτi,iSi + C max{τi − θi, 0}]
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Here, E[1 − Fτi,i] is the expected type i false alarm probability and E [max{τi − θi, 0}] is

the expected delay of detecting a type i fault correctly.

The optimization problem is to minimize the mean time of delay in announcing a type

i fault subject to the constraint that the probability of false alarm αi = 1− Fτ,i is flxed at

αi = 1− FT,i. The quantity (Si−QiC ) becomes the Lagrange multiplier.

In the binary hypothesis case, m = 1, the Shiryayev SPRT policy is often expressed in

a likelihood ratio form (Speyer and White 1984). This allows for an easy comparison with

the Generalized Likelihood Ratio Test of (Nikiforov 1995),(Basseville and Nikiforov 1995).

Deflne the likelihood ratio Lk, where the i subscript is dropped because there are only two

hypotheses,

Lk =
Fk

1− Fk
and use (7.1) of Proposition 7.1 to develop a recursion relation

L0 =
π

1− π

Lk+1 =
[
f1(xk+1)
f0(xk+1)

](
Lk + p

1− p

)
Given a threshold likelihood ratio,

LT =
FT

1− FT
the fault announcement policy becomes

• If Lk ≥ LT , announce that a fault has occurred.

• If Lk < LT , take another measurement.

Likelihood ratios can be deflned in the obvious way for the multiple hypotheses case

m > 1

L0,i =
πi

1− πi
Lk,i =

Fk,i
1− Fk,i

but no simple recursion relation can be developed from (7.1) to propagate the likelihood

ratios.
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7.2.4 Detection of Unknown Changes

The Shiryayev SPRT and the multiple hypotheses generalization, as described above, are

developed for measurement sequences with known probability density functions, known

both before and after a fault. It is an easy extension to allow the density functions to

depend on a scalar unknown parameter α. Assume that the unknown parameter is also a

random variable deflned over a set › and has probability density function ψα(›). Then,

the conditional density function of the measurement sequence becomes

~fi(x) ∆= f(x/Hi)

=
∫
Ω

f(x/Hi, η) ψα(η)dη (7.22)

Now, replace fi(·) with the new density function ~fi(·) in the recursive relation (7.1). The

rest of the analysis remains the same.

7.3 Examples

Before considering the development of a residual processing module for Advanced Vehicle

Control Systems, two examples are considered to illustrate the application of a multiple

hypothesis Shiryayev SPRT. In the flrst example, the measurement sequence is taken

as a white noise sequence with one of flve possible means. In the second example, the

measurement sequence is modeled as a scalar white noise sequence with unit power spectral

density however, the mean is unknown.

7.3.1 Example 1

Here, the measurement sequence is modeled as a scalar white noise sequence with unit

power spectral density and one of flve possible means. The flve hypotheses including the

null hypothesis are summarized as

Hi : x ∼ N (0.5i, 1) where i ∈ {0, 1, 2, 3, 4}
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For example, introduction of a bias with unit magnitude means the measurement sequence

switches from the state H0 to H2. Extension to the case of vector valued measurements is

trivial.

A simulated white noise measurement sequence is illustrated in Figure 7.1. Each

measurement has a Gaussian distribution with unit variance and is uncorrelated with other

measurements. During the interval 0 ≤ t < 1 the measurements have zero mean. This is

hypothesis H0. During the interval 1 ≤ t ≤ 5 a unit bias is introduced so at t = 1, the

measurement sequence switches from H0 to H2. The posteriori probabilities found from

the recursion relation (7.1) and illustrated in Figure 7.1 very clearly show the measurement

hypothesis switch. The apriori probabilities πi are taken as 0.001 for i ∈ {1, 2, 3, 4}.
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Figure 7.1: Change from H0to H2at time t = 1 sec.

7.3.2 Example 2

Again, the measurement sequence is modeled as a scalar white noise sequence with unit

power spectral density. However, here the mean is also taken as random variable with one
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of flve possible uniform distributions. The flve hypotheses including the null hypothesis are

summarized as

Hi : x ∼ N (mi , 1)

where

m0 = 0

m1 ∼ Unif [0, 1]

m2 ∼ Unif [0.5, 1.5]

m3 ∼ Unif [1, 2]

m4 ∼ Unif [1.5, 2.5]

Following are two propositions that provide relations for normally distributed random

variables with unknown means. The flrst proposition shows that if the measurement means

have a Gaussian distribution, the problem reduces to one in which the measurement means

are known and the covariances take on a larger value.

Proposition 7.4. Consider a vector valued random variable x ∈ Rn where both the mean

and the distribution about the mean are Gaussian

x ∼ N (m,⁄x) mathrmwherem ∈ Rn, ⁄x ∈ Rn×n

m ∼ N (m∗,⁄m) wherem∗ ∈ Rn, ⁄m ∈ Rn×n

Then

x ∼ N (m∗,⁄x + ⁄m)

Proof. A proof is provided at the end of this section.

The second proposition provides a probability density function for a Gaussian random

variable where the mean has a uniform distribution.
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Proposition 7.5. Consider a vector valued random variable x ∈ Rn where the mean has

a uniform distribution and where the distribution about the mean is Gaussian

x ∼ N (m,⁄x) wherem ∈ Rn, ⁄x ∈ Rn×n

m ∼ Unif[b, b+ 2m∗] whereb, m∗ ∈ Rn

Then the probability density function f(x) is

f(x) =
1

4nƒjm∗j

[
erf{ 1√

2
⁄−0.5
x (x− b)} − erf{ 1√

2
⁄−0.5
x (x− b− 2m∗)}

]
where

m∗j = [m∗1, . . . ,m
∗
n]T

Note that a property of the error function erf(x) is that for x ∈ Rn

erf(x) = erf(x1) erf(x2) · · · erf(xn)

Proof. A proof is provided at the end of this section.

A simulated measurement sequence is illustrated in Figure 7.2. Each measurement has

a Gaussian distribution with unit variance and is uncorrelated with other measurements.

During the interval 0 ≤ t < 1 the measurements have zero mean. This is hypothesis H0.

During the interval 1 ≤ t ≤ 5 a constant but unknown bias with uniform distribution

Unif[0.5, 1.5] is introduced. Thus, at t = 1, the measurement sequence switches from H0

to H2. The measurements were generated as

x = n+ s

where

n ∼ N (0, 1)

s =

{
0 0 ≤ t < 1
Unif[0.5, 1.5] 1 ≤ t ≤ 5

As in the previous example, the posteriori probabilities found from the recursion relation

(7.1) and illustrated in Figure 7.2 very clearly show the measurement hypothesis switch.

Again, the apriori probabilities πi are taken as 0.001 for i ∈ {1, 2, 3, 4}.



     

98 Chapter 7: Sequential Probability Ratio Tests

0 1 2 3 4
−4

−2

0

2
M

ea
su

re
m

en
t

0 1 2 3 4
0

0.5

1

P
ro

b 
  o

f  
 H

 0

0 1 2 3 4
0

0.5

1

P
ro

b 
  o

f  
 H

 1

0 1 2 3 4
0

0.5

1

P
ro

b 
  o

f  
 H

 2

0 1 2 3 4
0

0.5

1

P
ro

b 
  o

f  
 H

 3

0 1 2 3 4
0

0.5

1
P

ro
b 

  o
f  

 H
 4

Figure 7.2: Change from H0to H2at time t = 1 sec.

Proof. (Of Proposition 7.4) From (7.22)

f(x/Hi) =
∫

Rn

f(x/Hi,mi)ψ(mi)dmi

=
∞∫
−∞

. . .

∞∫
−∞

1

2πn|⁄xi⁄mi |
1
2

exp
{
−1

2
‖x−mi‖2Λ−1

xi

+
1
2
‖mi −m∗i ‖2Λ−1

mi

}
|dmi|

=
∞∫
−∞

. . .

∞∫
−∞

1

2πn|⁄xi⁄mi |
1
2

exp
{
−1

2
D

}
|dmi| (7.23)

Deflne

C1 = ⁄−1
xi + ⁄−1

mi (7.24a)

C2 = ⁄−1
xi x+ ⁄−1

mim
∗
i (7.24b)

C3 = xT⁄−1
xi x+mi⁄−1

mimi (7.24c)

D = mT
i C1mi − 2mT

i C2 + C3 (7.24d)
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Then

D = ‖mi − C−1
1 C2‖2C1

+
[
C3 − ‖C2‖2C−1

1

]
We note that since ⁄xi and ⁄mi are covariance matrices, they are invertible and so is C1.

Now, from (7.23)

f(x/Hi) =
exp

{
−1

2(C3 − ‖C2‖2C−1
1

)
}

2πn|⁄xi⁄mi |
1
2

∫
Rn

exp
{
−1

2
‖mi − C−1

1 C2‖2C1

}
|dmi|

Now change the variable mi. Let

~mi =
1√
2
C0.5

1 [mi − C−1
1 C2]

so that

f(x/Hi) =
1

2π
n
2 |C1⁄xi⁄mi |

1
2

exp
{
−1

2
(C3 − ‖C2‖2C−1

1
)
}

Now from (7.24) it follows that

C1⁄xi⁄mi = ⁄xi + ⁄mi

C3 − ‖C2‖2C−1
1

= xTAx+m∗Ti Bm∗i − 2xTC ·m∗i

where

C = ⁄−1
xi (⁄−1

xi + ⁄−1
mi)
−1⁄−1

mi

=
[
⁄mi(⁄

−1
mi + ⁄−1

xi )⁄xi
]−1

= (⁄xi + ⁄mi)
−1

A = ⁄−1
xi − ⁄−1

xi (⁄−1
xi + ⁄−1

mi)
−1⁄−1

xi

= ⁄−1
xi − ⁄−1

xi ⁄mi⁄
−1
mi(⁄

−1
xi + ⁄−1

mi)
−1⁄−1

xi

Therefore,

⁄xiA = I − ⁄mi(⁄xi + ⁄mi)
−1

= [(⁄xi + ⁄mi)− ⁄mi ] (⁄xi + ⁄mi)
−1

so that
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A = (⁄xi + ⁄mi)
−1

B = ⁄−1
mi − ⁄−1

mi(⁄
−1
xi + ⁄−1

mi)
−1⁄−1

mi

= (⁄xi + ⁄mi)
−1

This implies

f(x/Hi) =
1

2π
n
2 |⁄xi + ⁄mi |

1
2

exp
{
−1

2
‖x−m∗i ‖2(Λxi+Λmi )

−1

}
and flnally that

x ∼ N (m∗i ,⁄xi + ⁄mi)

Proof. (Of Proposition 7.5) From (7.22)

f(x/Hi) =
∫

Rn

f(x/Hi,mi)ψ(mi)dmi

If the mean mi has a uniform distribution, then

ψ(mi) =
1

2nƒn
j=1m

∗
ij

bi ≤ mi ≤ bi + 2m∗i where m∗i = [m∗i1, . . . ,m
∗
in]T (7.25)

From (7.22) and (7.25)

f(x/Hi) =
1

2πn|⁄xi |
1
2

bi+2m∗i∫
bi

exp
{
−1

2
‖xi −mi‖2Λ−1

xi

}
|dmi|

Now change the variable mi

~mi =
1√
2

⁄−0.5
xi (mi − xi)

f(x/Hi) =
1

4nƒjm∗ij

2n

π
n
2

1√
2

Λ−0.5
xi

(bi+2m∗i−xi)∫
1√
2

Λ−0.5
xi

(bi−xi)

exp
{
−‖ ~mi‖2

}
|dmi|

The desired result follows as

f(x/Hi) =
1

4nƒjm∗ij

[
erf
{

1√
2

⁄−0.5
xi (x− bi)

}
− erf

{
1√
2

⁄−0.5
xi (x− bi − 2m∗i )

}]
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7.4 Application to Advanced Vehicle Control Systems

In this section, a multiple hypothesis Shiryayev SPRT residual processor is applied to

the same fault detection fllters as the Bayesian neural networks of Section 6.4. These

fault detection fllters are designed with the Berkeley nonlinear vehicle simulation operating

at 27 m
sec on a straight road. Vehicle lateral dynamics are not considered. A complete

description of the fault detection fllter design is in (Douglas et al. 1995). Figure 7.3 shows

the residual processing scheme using the multiple hypothesis Shiryayev SPRT and the fault

detection fllters for the longitudinal simulation.

A detailed description of the modeled sensor and actuator faults can be found in

(Douglas et al. 1995). Recall that the vehicle longitudinal model has seven two-dimensional

sensor faults and two three-dimensional actuator faults. These are combined in output

separable and mutually detectable groups with seven or fewer directions. The following list

shows the fault groups with fault notation as indicated in Figure 7.3.

Fault detection fllter 1.

(M) : Manifold air mass sensor.

(W ) : Engine speed sensor.

(X) : Forward acceleration sensor.

Fault detection fllter 2.

(T ) : Heave acceleration sensor.

(Fs) : Rear symmetric wheel speed sensor.

(Rs) : Forward symmetric wheel speed sensor.

Fault detection fllter 3.

(T ) : Pitch rate sensor.

(Z) : Heave acceleration sensor.

(Rs) : Rear symmetric wheel speed sensor.
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Fault detection fllter 4.

(alfa) : Throttle angle actuator.

(Tb) : Brake torque actuator.

Vehicle Model

Filter 1

Filter 2

Filter 3

Filter 4

SSPRT

Residual Processor

M

W

X

T

Fs

Rs

Z

alfa 1

alfa 2

Tb

y

y

y

y

Inputs

Inputs

Inputs

Inputs

Meas

M

W

X

T

Fs

Rs

Z

T

Rs

alfa

Tb

Inputs

Faults

Noise
Road

M : Air Mass sensor                     W : Engine Speed                       X : Longitudinal Accelerometer 

T : Pitch Rate gyro                    Fs : Front Wheel Symmetric Speed       Rs : Rear Wheel Symmetric Speed

Z : Vertical Acceleromter            alfa : Throttle Angle                    Tb : Brake Torque

The outputs of the Filters are the corresponding residuals.
The outputs of the SSPRT Residual Processor are the posteriori probabilities of a fault in the correspoding sensor
or actuator, conditioned on the residual process. alfa 1 corresponds to an increase in the throttle angle while 
alfa 2 corresponds to a decrease in the throttle angle.

Figure 7.3: Fault detection scheme for AVCS.

A residual processor design should focus on resolving two issues. First, when residuals

are driven by model uncertainties, nonlinearities, sensor noise and dynamic disturbances

such as road noise, a nonzero residual need not indicate that a fault has occurred. The
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residual processor should distinguish between a nonzero residual driven by a fault and a

nonzero residual driven by something else.

Second, when a fault occurs and the fault is not one included in the fault detection

fllter design, the directional properties of the residual are undeflned. The residual processor

should recognize the pattern of a design fault and ignore all other patterns.

Both issues are addressed by a multiple hypothesis SSPRT residual processor. Consider

each fault direction as corresponding to a particular hypothesis. Thus, in the present

application, there are ten hypotheses {H0, . . . ,H9}. Now consider the fault detection fllter

residual sequence as the measurement sequence for the SPRT. In the present application, the

measurement sequence {xk ∈ R11} is assumed to be conditionally independent and gaussian.

The density functions for all hypotheses are constructed by computing the sample means

and covariance matrices. Finally consider that a step fault models a sudden increase in the

mean of the residual process while a ramp fault models a gradual increase in the mean. For

the detection and identiflcation of an unknown fault size, the mean of the residual process

was assumed to be uniformly distributed.

As an example, step faults are considered in the pitch rate gyro, vertical accelerometer

and longitudinal accelerometer. For simplicity, only the residuals corresponding to the

particular fault direction are shown in the flgures. Figure 7.4 shows a step fault of size

0.05 rad
sec in the pitch rate sensor occurring at 8 seconds. Note that the posteriori probability

of a fault in the pitch rate sensor jumps to one almost immediately after the fault occurs.

The posteriori probabilities of faults in other sensors and actuators are zero and are not

shown.

Figure 7.5 shows a step fault of size 0.5 ft
sec2 in the vertical accelerometer occurring at 8

seconds. Again, the posteriori probability of a fault in the vertical accelerometer jumps to

one almost immediately after the fault occurs.

Figure 7.6 shows a step fault of size 0.1 ft
sec2 in the longitudinal accelerometer occurring at

8 seconds. Once again, the posteriori probability of a fault in the longitudinal accelerometer

jumps to one almost immediately after the fault occurs.
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Figure 7.4: Pitch rate sensor fault occurs at 8 sec.
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Figure 7.5: Vertical accelerometer fault occurs at 8 sec.
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Figure 7.6: Longitudinal accelerometer fault occurs at 8 sec.

7.5 Summary of SPRT Development and Application

A multiple hypothesis SSPRT is derived for the detection and isolation of changes in a

conditionally independent measurement sequence. The recursive relation which propagates

the posteriori probabilities of all hypotheses requires an approximate knowledge of their

apriori probabilities πi and the probability of change of state pi from H0 to Hi. This is

not considered as an impediment as the test is found to be insensitive to both parameters

as long as they assume reasonable values. The derivation makes no assumption about

the structure of the density functions corresponding to all hypotheses and hence, the

measurement sequence can be quite general. The generalized Shiryayev SPRT is found

to be extremely sensitive to changes even when the underlying density functions for the

hypotheses overlap to a large extent. This enhances applicability to practical situations

where the fault sizes are typically unknown.





    

Chapter 8

Vehicle Nonlinear Equations of Motion

A six degree of freedom nonlinear vehicle model is developed independently of

the model used for the Berkeley simulation of Section 2 and described in (Peng 1992).

This efiort is a continuation of the work reported in (Douglas et al. 1995). The original

motivation for an independent derivation was to be sure that all assumptions, deflnitions

and issues which underlie the Berkeley simulation model were well understood. This exercise

proved worthwhile in that some difierences between the model described here and the

Berkeley model were uncovered. The most notable difierence relates to assumptions made

in the Berkeley model that make it di–cult to modify to allow for changes in road slope

and superelevation. These assumptions include small angle approximations, a planar road

surface and that the road gradient is the same for all four wheels. These modiflcations are

needed, for example, in the design and robustness evaluation of the health monitoring

system described in Sections 3 through 7. Various other vehicle models are available,

for example, in (Hedrick et al. 1993, Lukowski et al. 1990, Lukowski and Medeksza 1992,

107
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Peng 1992, Smith and Starkey 1992, Willumeit et al. 1992). But in each, some feature is

missing that is important to health monitoring applications.

A common and economical approach to vehicle dynamics model development is to make

simplifying assumptions and to neglect various features of the vehicle system when the

loss in fldelity does not signiflcantly afiect the application of the model. For example,

vehicle models developed by Smith et al. (Smith and Starkey 1992) use the load transfer

method to model the suspension characteristics. The load transfer method models a load

redistribution at the four suspension supports when the vehicle accelerates or corners. When

the vehicle accelerates, the load shifts between the front and the rear suspension supports.

When the vehicle corners, there is a lateral acceleration and the load shifts between the

left and right suspension supports. With the load transfer approach, development of the

governing equations is simplifled because the suspension characteristics are not modeled

directly. Model fldelity is adequate when the road is smooth and °at and when a model of

the vertical motion is not important.

In the following model development, the approach is to derive the full equations of

motion while making as few approximations as possible. Simpliflcations as allowed by

speciflc applications are introduced later. Two features included here that are not part of

the Berkeley model are a steering system and a road noise model.

This section is organized as follows. Section 8.1 contains a derivation of the vehicle

longitudinal dynamics and the various subcomponents of the vehicle. In the longitudinal

model, motion is restricted to longitudinal and vertical translation and pitch rotation. The

applied forces and moments include those of the suspension model, the aerodynamics model,

the tire traction model, the brake model, and the engine model.

Section 8.2 deals with the derivation of the full six degree of freedom vehicle model.

All vehicle dynamics modes are included: longitudinal, lateral and vertical translations and

roll, pitch and yaw rotations. Including kinematic relations, the system of equations is 12th

order. In addition, subcomponents from the longitudinal model are generalized to the full

nonlinear model and a steering system and road noise model are added.
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Section 8.3 presents the simulation results of the longitudinal model and the full model.

In one simulation study, a comparison is made between the responses of the full nonlinear

model and nonlinear model modifled with small angle approximations. The study shows

that small angle approximations do not contribute signiflcant errors and are a reasonable

model simpliflcation. In another simulation study, linearized models from various operating

points are obtained. Their responses are compared to those of the nonlinear model to flnd

the size of an acceptable linear operating region. The MatLabTM computer simulation codes

used in Section 8.3 are available in (Nguyen 1996).

8.1 NonLinear Longitudinal Vehicle Model

In order to gain a better understanding of vehicle dynamics and to have a simple model

for simulation, a longitudinal vehicle dynamics model is developed flrst. In the longitudinal

model, motion is restricted to longitudinal and vertical translation and pitch rotation. These

dynamics couple with the engine, brake, suspension, and wheel rotational dynamics .

8.1.1 Reference Frames

Figure 8.1 shows the deflnition of coordinates and variables of the longitudinal model.

First an Earth-flxed frame E with origin O is deflned with unit vectors
(
ex, ey, ez

)
, where

ey points into the page. Next deflne the vehicle-flxed frame, having the origin C at the

vehicle center of mass, with unit vectors
(
cx, cy, cz

)
along the vehicle’s principal axes. This

vehicle-flxed frame is obtained by rotating the Earth-flxed frame around its axis by an

angular displacement θ, the pitch angle. Finally two sets of road axes are used to describe

the road surface at the front and the rear wheels. These axes are described by the unit

vectors
(
rxi , ryi , rzi

)
with i = 1 and 2 referring to front and rear wheels, respectively. These

road-flxed frames with unit vectors
(
rxi , ryi , rzi

)
are obtained by rotating the Earth-flxed

frame by an amount ¢iey. Hence the coordinate transformation matrices are cx
cy
cz

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 ex
ey
ez

 (8.1)
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cz

cx

l2
l1

m, Iy

x
O

x1

ez

ex

b(x)

z

h1rz2

rx2

rw1

rx1

rz1
Iw

Figure 8.1: Vehicle conflguration for the nonlinear longitudinal model.

 rxi
ryi
rzi

 =

 cos ¢i 0 − sin ¢i

0 1 0
sin ¢i 0 cos ¢i


 ex
ey
ez

 i = 1, 2 (8.2)

Note that the subscript i will be used from now on to refer to quantities that have front

and rear components.

8.1.2 Vehicle Dynamics

The dynamic equations of motion are derived from Newton’s law applied in an inertial

reference frame. The pitch dynamics are derived flrst. The longitudinal and vertical

translation dynamics follow.

Rotational Equations of Motion

The angular velocity of the vehicle relative to the Earth-flxed frame is given by

ω = _θey (8.3)

= ωyey (8.4)
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The rotational kinematic equation becomes

_θ = ωy (8.5)

The angular acceleration follows by taking the time derivative of Equation (8.3),

_ω = _ωyey (8.6)

Hence the rotational dynamic equation of motion is obtained from Euler’s equation,

_ωy =
My

Iy
(8.7)

where My, which will be derived later in Section 8.1.5, is the y-axis component of the total

moment applied about the vehicle center of mass by suspension and aerodynamic forces and

Iy is the moment of inertia of the sprung mass around the same y-axis. The sprung mass

is the portion of the vehicle that is supported by the suspension system. The remaining

portion which includes the drivetrain and the wheel assemblies is known as the unsprung

mass.

Translational Equations of Motion

Let PCM = xex + zez be the position vector from the Earth-flxed origin O to the vehicle

center of mass as seen in Figure 8.1, then the velocity of the mass center can be expressed

either in Earth-flxed or vehicle-flxed coordinates as

νCM = _xex + _zez (8.8)

= vxcx + vzcz (8.9)

Applying coordinate transformation Equation (8.1) to Equation (8.9), we obtain

νCM = (vx cos θ + vz sin θ) ex + (−vx sin θ + vz cos θ) ez (8.10)

The translational kinematic equations then follow immediately from (8.8) and (8.10)

_x = vx cos θ + vz sin θ (8.11)

_z = −vx sin θ + vz cos θ (8.12)
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The acceleration of the vehicle center of mass can be found by difierentiating (8.9).

a = _vxcx + _vzcz + ωycy × ( _vxcx + _vzcz)

= ( _vx + ωyvz) cx + ( _vz − ωyvx) cz (8.13)

If the total external force, F = Fxcx+Fzcz, applied to the vehicle is known, the translational

dynamic equations are obtained from Newton’s second law,

_vx = −ωyvz +
Fx
m

(8.14)

_vz = ωyvx +
Fz
m

(8.15)

where m is the sprung mass of the vehicle. The vehicle unsprung mass is neglected

throughout this work. If it were not, the mass term in Equation (8.15) would need to

be modifled to account for the vehicle unsprung mass. The forces Fx and Fz will be derived

later in Section 8.1.4.

8.1.3 Suspension Model

The suspension and tire assembly is modeled as shown in Figure 8.2. The spring and dashpot

in the upper portion represent the suspension, while the spring in the lower portion models

the tire stifiness. At any instant, the orientation of the tire spring Kw is assumed to be

normal to the road surface. The tire damping behavior and its mass are neglected. The

exclusion of the tire mass and its damping characteristic will allow a higher portion of

high-frequency noise to pass from the road to the sprung mass. Note that the suspension

height, hi, is deflned as the distance along the vehicle axis cz measured from the tire center

to the vehicle center of mass and not as the length of the spring.

In simulations where the road surface is a straight line, as seen on the left half of

Figure 8.3, the relationship between the tire radius rwi and the suspension height hi can

be easily found using a geometric approach by summing all the vectors in a loop. The loop

starts from the vehicle center of mass, goes to the tip of the suspension, down to the road,

follows back along the road surface, and returns to the vehicle center of mass. Following



        

8.1 NonLinear Longitudinal Vehicle Model 113

CM

Kw rw1

Road Surface
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fC(.)

Wheel Center

l1

h1

fK(.)

cz axis

Figure 8.2: Schematic view of suspension and tire models showing the front half of the
vehicle.

this path leads to:

[licx − hicz − (ξi + rwi) rz − yirx + (z − b(x)) ez] · rz = 0 i = {1, 2} (8.16)

where li is the half wheelbase from the center of mass to the ith wheel, ξi represents

road variations which can be used to model bumps, potholes, road noise and any other

road irregularities, and b(x) is a function describing the road height at any location x.

Furthermore li is positive whereas l2 is negative since l2 points in the negative cx direction.

The reason for naming the wheelbase in a vector format is that the simulation code can be

written more compactly.

Using equations (8.1) and (8.2) to transform Equation (8.16), a relationship between

tire radius and the suspension height is found

rwi + hi cos(θ −¢) = (z − b(x)) cos ¢− li sin(θ −¢)− ξi i = {1, 2} (8.17)

The relationship between the tire radius and the suspension height in situations involving

varying road surface can be found by going around a similar loop as seen on the right half of
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z-b(x)
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rw1

Flat road
CM

Road Surface
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z

l1

h1

rw1

b(x+ x1)

x1

Varying road

Road Surface

Figure 8.3: Geometric constraints involving the suspension height showing the front half of
the vehicle for planar and arbitrary road surfaces.

Figure 8.3. However, solving for the suspension height requires solving a nonlinear equation,

licx − hicz − (ξi + rwi) rzi − b(x+ ¢xi)ez −¢xiex + zez = 0 i = {1, 2} (8.18)

in which relative tire position ¢xi, the suspension height, and the wheel radius are not

independent. An additional equation is required to provide a relationship between the tire

radius and the suspension height in order to yield a unique solution in the equation above.

This additional equation comes from a single state equation using a force balance and the

assumption of a massless wheel. If the wheel is assumed to be massless, the total force

applied at the center of the wheel must vanish an any direction. Consider the all the forces

in the cx direction. The tire force in the cx direction must balance the suspension force

which is generated by the suspension spring and damper. This leads to the following state

equation involving the suspension height.

−Kw (rwi − rw0) cos(θ −¢i) = fK(hi) + fC( _hi) i = {1, 2} (8.19)

where fK(·) and fC(·) are functions describing the force response of suspension spring and
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damper, respectively. These functions will be specifled in the next section. Depending on

the damping function, we can solve for _hi in closed-form if the function fC(·) is invertible;

otherwise we will have to approximate.

With the addition of Equation (8.19), Equation (8.18) now contains two unknown but

dependent variables, which are the relative tire position and the wheel radius. There is no

closed-formed solution to Equation (8.18) if the road surface is arbitrary.

Two methods of solving this nonlinear equation have been examined. The flrst approach

uses a nonlinear equation solver routine to approximate the solution. The generality and

°exibility of the routine supplied with MatLabTM causes this application to require a

prohibitively long computation time. The second approach is to exploit some of the special

properties inherent in the system to make some approximations so that the relative tire

position and the wheel radius can be determined. Consider the most general situation

where the vehicle is traveling on an arbitrary road surface. By taking the dot product of

Equation (8.18) with unit vector ex, the relative tire position can be expressed as

¢xi = li cos θ − hi sin θ − (rwi + ξi) sin ¢i i = {1, 2} (8.20)

where rwi and ¢i are functions of xi. It is not possible to solve this equation analytically.

However, by examining the last term closely, one can make some reasonable assumptions

which permit an approximate solution. First the road variation is assumed to be zero.

Since the wheel stifiness constant is very high, it is reasonable to assume that the wheel

radius is equal to the nominal wheel radius at equilibrium. Furthermore to eliminate the

dependency of the road angle on the relative tire location, we will assume that the road

angle ¢i is approximately the same as at the position where the center of the wheel projects

down to the road surface. In the worst case scenario where the road elevation is taken to

be 15%, the deviation between the real location and the assumed location where the road

elevation is used is at most 5 cm. This is a very small distance for the road elevation to

vary signiflcantly. Hence the solution for the relative tire position can be approximated as

¢~xi = li cos θ − hi sin θ − rw0 sin ¢i i = {1, 2} (8.21)
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where the road angle ¢i is evaluated at the projection of the wheel center down to the road

surface. This point can be expressed as x+ li cos θ − hi sin θ.

Once the relative tire position is known, the approximate wheel radius can be obtained

from Equation (8.18) by taking the dot product with unit vector rzi at the point of contact

between the tire and the road surface. This leads to:

~rwi =−li sin(θ−¢i)−hi cos(θ−¢i)− ξi+ (z − b(x+ ¢~xi)) cos ¢i−¢~xi sin ¢i, i = {1, 2}

where the road angle ¢i is evaluated at the approximated tire position.

8.1.4 Forces

The forces developed in this section include the gravitational force, aerodynamic forces, and

suspension forces. The gravitational force on the vehicle is expressed as

F g = −mgez

= −Fgez (8.22)

When the vehicle longitudinal speed is large or high wind speed is present, air drag plays

a signiflcant role. The longitudinal drag is proportional to the square of the relative wind

speed, vwr = vw− vx, that is, the difierence between the wind speed and vehicle speed, and

has the same direction as the relative wind speed,

D =
1
2
CDAfρav

2
wrcx

= Dcx (8.23)

where CD is the drag coe–cient, Af is the vehicle efiective frontal area, and ρa is the air

density. The sign of the coe–cient determines the direction of the drag force based on the

direction of the relative wind speed. In addition, there is also a lift component due to the

asymmetric shape of the top and bottom of the vehicle. The lift force can be described by

the following equation,

L =
1
2
CLAfρav

2
wrcz

= Lcz (8.24)
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where CL is the lift coe–cient. These drag and lift coe–cients are speciflc to each vehicle.

However one can generalize to a class of vehicles, such as sedans, sport cars and vans. Data

for these coe–cients obtained by Yip et al. (Yip et al. 1992) for typical sedans is used in

the simulation. Both the drag and lift forces are assumed to act at the vehicle center of

mass.

Here the relative velocity is assumed to be negative. If it were not, equations (8.23)

and (8.24) would have to be modifled to account for situations where vwr is positive.

Furthermore, there is also a vertical wind speed component along the vehicle vertical

direction, but it is ignored since the relative wind speed in this direction is small resulting

in a negligible force as compared to the suspension forces.

Given the suspension height, a nonlinear function is used to model the response of the

suspension spring which is governed by the following equation,

Fsi = −Ksi(hi − h0i)− „Ksi(hi − h0i)5, i = {1, 2} (8.25)

where h0i is the uncompressed suspension height, which can be found once the vehicle height

at equilibrium is known.

The tire elastic characteristic is modeled as a linear spring having a stifiness constant

Kw,

Fwi = −Kw(rwi − rw0), i = {1, 2} (8.26)

where rw0 is the uncompressed tire radius, assuming each tire has the same properties.

The suspension damper is modeled as piecewise linear damper having discontinuous

slope at ± „w as seen in Figure 8.4,

Fdi =


Cdi _hi | _hi| < „w
Cdi „w + „Cdi( _hi − „w) _hi ≥ „w
−Cdi „w + „Cdi( _hi + „w) _hi ≤ − „w

i = {1, 2} (8.27)

where Cdi and „Cdi specify the slope in the flrst and second regions, respectively.

Let the force applied at the ground by the tire at the contact point between the road

surface and the tire be

Fwi = Fwfirx +Nirz, i = {1, 2} (8.28)
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Fd

hw

w

Figure 8.4: Damper characteristic.

then the road normal force, Ni, is simply the force exerted on the road by the tire.

Ni = −Kw(rwi − rw0), i = {1, 2} (8.29)

Furthermore the tire tractive force, Fwfi , is a function of the normal force and the tire slip

ratio. Various tire models have been formulated. The longitudinal tire model by Bakker

et al. (Bakker et al. 1987, Bakker and Pacejka 1989) is used in the simulation discussed in

Section 8.3. The tire model is described in detail in Section 8.1.8.

With the external force known, the total force acting on the vehicle is obtained by

combining equations (8.22), (8.23), (8.24), (8.28) and (8.29). This leads to:

Fx =
2∑
i=1

[Fwfi cos(θ −¢i) +Kw(rwi − rw0) sin(θ −¢i)] + Fg sin θ +D (8.30a)

Fz =
2∑
i=1

[Fwfi sin(θ −¢i)−Kw(rwi − rw0) cos(θ −¢i)]− Fg cos θ + L (8.30b)

8.1.5 Moments About the Vehicle Center of Mass

The moment about the car center of mass is generated from two sources. The flrst source

is from the suspension force and the second is from the aerodynamic efiect due to the

asymmetric shape of the vehicle. Since this section concerns pitch rotation only, only the

moment about the y-axis is needed. Knowing the forces at the suspension supports and the
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corresponding moment arms, the moment term generated by the suspension forces is given

as

M sus = (licx − hicz)× (Fwfirx +Nirz)

=
2∑
i=1

Msusicy (8.31)

where

Msusi = −hi [Fwfi cos(θ −¢i)−Ni sin(θ −¢i)] + li [Fwfi sin(θ −¢i) +Ni cos(θ −¢i)]

The aerodynamic contribution to the moment about the car center of mass has been

investigated by Yip et al. (Yip et al. 1992) and is given below

Mw =
1
2
CwyAfρaLv

2
wrcy

= Mwycy (8.32)

where L is the wheelbase length and the y-axis moment coe–cient, Cwy is determined

experimentally for each vehicle.

Hence the total moment applied about the car center of mass is the sum of the two

moment components given above in (8.31) and (8.32).

My = (Msus1 +Msus2 +Mwy) cy (8.33)

8.1.6 Brake Dynamics

The total brake torque, Tba, applied to the wheels and the commanded brake torque, Tbc,

are presumed to be related by the following flrst order lag equation,

_Tba =
Tbc − Tba

τb
(8.34)

where τb is the time delay constant which models, to the flrst order, the dynamics of the

brake actuators and hydraulics. The total brake torque is then distributed between the

front and the rear tire according to a brake biasing constant, kb.
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Tb1 = kbTba (8.35a)

Tb2 = (1− kbTba (8.35b)

Each torque Tbi is positive and is limited to a maximum value where wheel lockup occurs.

When the wheel angular velocity reaches zero, the brake torque is changed appropriately

to prevent the wheel from rotating backwards.

8.1.7 Wheel Dynamics

TdTb

w

rw
Fz

N

Fwf

d

Iw

Figure 8.5: Wheel rotation.

In this model the wheels are assumed to be massless, but they are allowed to have nonzero

moment of inertia Iw. Figure 8.5 shows the details of the wheel model which are used to

obtain the front and rear wheel rotational dynamic equations.

_ωwi =
(Tdi − rwiFwfi − diNi − Tbi)

Iw
i = {1, 2} (8.36)

The applied torques are the engine torque, Td, and the brake torque, Tb. The road normal

force, Ni, is ofiset to the front of the wheel by a distance d. Furthermore, the engine

torque applied to each wheel is a function of the total engine output torque, Te, which
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will be described in Section 8.1.9, and is distributed between the front and the rear wheels

according to a drive biasing constant, kd.

Td1 = kdTe (8.37a)

Td2 = (1− kdTe (8.37b)

For example, set kd = 1 for front-wheel drive vehicles.

8.1.8 Tire Traction Model

The longitudinal tire tractive force, Fwfi , is correlated with the tire normal force, Ni =

−Kw(rwi − rw0), and its slip ratio, λi, through the Magic Formula which was developed

by Bakker and Pacejka (Bakker et al. 1987, Bakker and Pacejka 1989). This model can

accurately flt experimental tire data through the use of twelve coe–cients and will be

described shortly.

Finding the tire slip ratio requires knowing the wheel forward velocity parallel the road

surface. Let Pwi be the position vector locating the wheel center,

Pwi = PCM + licx − hicz, i = {1, 2} (8.38)

hence the wheel velocity follows by taking the inertial time derivative of the position vector

Pwi .

_Pwi = (vx − hiωy)cx + (vz − liωy − _hi)cz, i = {1, 2} (8.39)

The wheel forward velocity can now be found by taking the dot product with the road unit

vector rxi.

vwfi = _Pwi · rxi

= (vx − hiωy) cos(θ −¢i) + (vz − liωy − _hi) sin(θ −¢i), i = {1, 2} (8.40)

The slip ratio is deflned as

λi = 1− vwfi
rwωwi

, i = {1, 2} (8.41)
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Finally the tire tractive force can be expressed as a nonlinear function of the normal force

and slip ratio.

Fwfi = f(Ni, λi), i = {1, 2} (8.42)

-S

-S

v

h

D

BCD

Tractive Force
F

Slip Ratio

x

Figure 8.6: Exaggerated plot of the Magic Formula, showing the in°uence of the coe–cients.

As mentioned above, Bakker (Bakker et al. 1987, Bakker and Pacejka 1989) proposes

the following Magic Formula to flt the tire tractive force numerically. This formula has

been shown to accurately flt experimental tire data and has the form

y(x) = D sin
(
C tan−1

(
Bx− E

[
Bx− tan−1(Bx)

]))
(8.43)
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with

x = λ+ Sh (8.44a)

f(N,λ) = y(x) + Sv (8.44b)

Figure 8.6, a plot of the tractive force versus the slip ratio, shows the physical meaning of

the coe–cients in Equations (8.43) and (8.44). Since the tractive force is also a function

of the normal force, these coe–cients may be related to the normal force with following

quantities.

D = a1N
2 + a2N (8.45a)

BCD = (a3N
2 + a4N) exp−a5N (8.45b)

C = a0 (8.45c)

E = a6N
2 + a7N + a8 (8.45d)

B = BCD/CD (8.45e)

Sh = a9N + a10 (8.45f)

Sv = a11 (8.45g)

Once the experimental data for tire tractive force of a speciflc tire is collected, the quantities

a0 to a11 can be obtained using various curve-fltting techniques.

8.1.9 Engine Model

A simple engine model taken from Smith and Starkey (Smith and Starkey 1992) is used

here. The output torque Te, is a function of the engine speed ωe, gear ratio ζ, drive train

e–ciency η, and throttle position TP. Thus,

Te = TPζη

[
c1

(
ωe
100

)2

+ c2

(
ωe
100

)
+ c3

]
(8.46)

By choosing the coe–cients c1, c2, and c3, engine torque curves can be closely approximated.

For a manual transmission, the engine speed is given by

ωe = ζωw1 front-wheel drive (8.47)

ωe = ζωw2 rear-wheel drive (8.48)
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The range of TP is between zero, for no output torque, and one, for maximum torque

output at a certain engine speed. In addition, the actual throttle position response to the

commanded throttle position is modeled as a flrst order lag,

_TP =
(TPc − TP)

τt
(8.49)

where τt is the throttle delay time constant.

8.2 Nonlinear Lateral and Longitudinal Model

The full six degree of freedom model includes longitudinal, lateral and vertical translations

and roll, pitch and yaw rotations. Including kinematic relations, the system of equations is

12th order. Development of the six degree of freedom model closely follows the derivation

where motion is restricted to the vertical plane. Subcomponents from the longitudinal

model are generalized to the full nonlinear model and a steering system and road noise

model are added.

8.2.1 Reference Frames

Using the longitudinal model as the stepping stone, we now can proceed to explore the

complex behavior of the vehicle’s lateral and longitudinal dynamics. As seen before, the

flrst step is to deflne all the reference frames, which consist of the Earth-flxed frame, the

vehicle-flxed frame, and the four road frames associated with the four tires.

First the Earth-flxed reference frame E with origin O as seen in Figure 8.7 is deflned

with unit vectors (ex, ey, ez). A second frame C flxed in the vehicle with origin at the vehicle

center of mass is deflned with unit vectors (cx, cy, cz). As seen in Figure 8.8 this frame C

may be described by three successive rotations from frame E. First rotate the Earth-flxed

frame about ez axis by an amount ε, which is known as yaw angle. This leads to frame

A with unit vectors (ax, ay, az). Next rotate frame A about ax by an amount φ to obtain

intermediate frame B with unit vectors (bx, by, bz). This angular rotation is called the roll

angle. Finally rotate frame B about by by an angular displacement θ, which is the pitch



     

8.2 Nonlinear Lateral and Longitudinal Model 125

cy cx

Fwf2

ey

ex

Fwf1

Fwf3

Fwf4

Fws3

Fws4

Fws1

Fws2

O
ez

x

y

s1

cy
cx

s2s3

s4
l3, l4 l1, l2

cx

cz

ey

ex

ez

z

b(x,y)

ey

ex

ez

cz

cy
z

O

O

Figure 8.7: Representation of nonlinear vehicle model.
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Figure 8.8: Relationship between reference frames.

angle, to obtain the vehicle-flxed frame C. The corresponding coordinate transformation

matrices are given below: ax
ay
az

 =

 cos ε sin ε 0
− sin ε cos ε 0

0 0 1


 ex
ey
ez

 (8.50)

 bx
by
bz

 =

 1 0 0
0 cosφ sinφ
0 − sinφ cosφ


 ax
ay
az

 (8.51)

 cx
cy
cz

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 bx
by
bz

 (8.52)

Now the transformation matrix from unit vectors in E to unit vectors in C reference frame

can be readily determined as: cx
cy
cz

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 1 0 0

0 cosφ sinφ
0 − sinφ cosφ


 cos ε sin ε 0
− sin ε cos ε 0

0 0 1


 ex
ey
ez

 (8.53)

In addition, the inverse of the above transformation matrix is its transpose.

The road reference frame R with unit vectors (rx, ry, rz) for each tire is deflned with

the origin located at the point of contact between the tire and the road surface. As shown

in Figure 8.9, the orientation of this frame R is such that the rz component coincides with

the road normal vector, which is specifled at each tire location (x, y) and is given as

n = nxex + nyey + nzez
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rx

ry

n

rz
rx

Road Surface

Top View Side View

Figure 8.9: Deflnition of road frame.

Using the transpose of the transformation matrix of Equation (8.53), the rz component can

be expressed in the vehicle-flxed reference frame as:

rz = rzxcx + rzycy + rzzcz (8.54)

where

rxx = nx(cos ε cos θ − sin ε sinφ sin θ) + ny(sin ε cos θ + cos ε sinφ sin θ)−

nz cosφ sin θ (8.55)

rxy = −nx sin ε cosφ+ ny cos ε cosφ+ nz sinφ (8.56)

rxz = nx(cos ε sin θ + sin ε sinφ cos θ) + ny(sin ε sin θ − cos ε sinφ cos θ) +

nz cosφ cos θ (8.57)

A second unit vector rx of frame R is chosen such that it is normal to the tire axis of

rotation and points in the direction of the tire heading.

Let rx be expressed as

rx = rxxcx + rxycy + rxzcz

the components of rx can be found by noting that

rx · (− sin δcx + cos δcy) = 0 (8.58a)

rz · rx = 0 (8.58b)

‖rx‖ = 1 (8.58c)
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We can use the flrst property in Equation (8.58) to solve for rxy in terms of rxx and the

tire steering angle.

rxy = rxx tan δ (8.59)

Invoking the second property in Equation (8.58) and Equation (8.59) to solve for rxz in

terms of rxx and the known components of rz, leads to the following equation:

rxz = −rzx + rzy tan δ
rzz

rxx (8.60)

Note that rzz can never be zero because it would mean that the road surface is vertical with

respect to the vehicle body. Finally we can use the third property in Equation (8.58), that

is, r2
xx + r2

xy + r2
xz = 1 and Equations (8.59) and (8.60) to solve for rxx as:

rxx =
1√

1 + tan2 δ +
(
rzx+rzy tan δ

rzz

)2
(8.61)

Hence the solutions for rxy and rxz follow directly from equations (8.59), (8.60) and (8.61).

rxy =
tan δ√

1 + tan2 δ +
(
rzx+rzy tan δ

rzz

)2
(8.62)

rxz =
rzx + rzy tan δ

rzz

√
1 + tan2 δ +

(
rzx+rzy tan δ

rzz

)2
(8.63)

Then reference frame R is completely specifled based on the right-handed orthogonal axis

system and the third unit vector is given by ry = rz × rx. Hence the unit vectors of the

road frame can be expressed compactly in terms of the vehicle-flxed unit vectors as: rx
ry
rz

 =

 rxx rxy rxz
ryx ryy ryz
rzx rzy rzz


 cx
cy
cz

 (8.64)

Furthermore if it may be assumed that each tire lies on an independent road surface, then

a subscript i is added. Subscripts i = {1, 2, 3, 4} refer to front right, front left, rear left, and

rear right tires respectively.



    

8.2 Nonlinear Lateral and Longitudinal Model 129

8.2.2 Vehicle Dynamics

The dynamic equations of motion are derived from Newton’s law applied in an inertial

reference frame. The rotational dynamics are derived flrst. The translational dynamics

follow.

Rotational Equations of Motion

With the angular rotations deflned above, the angular velocity of the vehicle is given by:

ω = _εez + _φax + _θby (8.65)

Use the coordinate transformation matrices in (8.50) through (8.52) to obtain the vehicle

angular velocity in the vehicle-flxed coordinate frame as

ω = ( _φ cos θ − _ε cosφ sin θ)cx + ( _θ + _ε sinφ)cy + ( _φ sin θ + _ε cosφ cos θ)cz

= ωxcx + ωycy + ωzcz (8.66)

Solving for _ε, _φ and _θ, the rotational kinematic equations of motion are:

_ε =
1

cosφ
(− sin θωx + cos θωz) (8.67a)

_φ = cos θωx + sin θωz (8.67b)

_θ = tanφ(sin θωx − cos θωz) + ωy (8.67c)

Furthermore the rotational dynamic equations are obtained from Euler’s equations.

_ωx =
Mx

Ix
+ ωyωz

Iy − Iz
Ix

(8.68a)

_ωy =
My

Iy
+ ωzωx

Iz − Ix
Iy

(8.68b)

_ωz =
Mz

Iz
+ ωxωy

Ix − Iy
Iz

(8.68c)

where Mx, My and Mz, which will be derived later in Section 8.2.5, are the total moment

applied about the (cx, cy and cz) axes resulting from the suspension and aerodynamic

interactions, and Ix, Iy and Iz are the moments of inertia of the sprung mass about the

(cx, cy, cz) axes, respectively. The unsprung mass is neglected in this work.
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Translational Equations of Motion

Let PCM = xex + yey + zez be the position vector from the Earth-flxed origin O to the

vehicle center of mass as seen in Figure 8.7. Then the velocity of the mass center can be

expressed either in Earth-flxed or vehicle-flxed coordinates as

νCM = _xex + _yey + _zez (8.69)

= vxcx + vycy + vzcz (8.70)

Applying Equation (8.53) to transform Equation (8.70) into an Earth-flxed frame leads to

νCM =

[vx(cos ε cos θ − sin ε sinφ sin θ)− vy sin ε cosφ+ vz(cos ε sin θ + sin ε sinφ cos θ)] ex +

[vx(sin ε cos θ + cos ε sinφ sin θ) + vy cos ε cosφ+ vz(sin ε sin θ − cos ε sinφ cos θ)] ey +

[−vx cosφ sin θ + vy sinφ+ vz cosφ cos θ] ez (8.71)

Hence the translational kinematic equations follow immediately from (8.69) and (8.71).

_x = vx(cos ε cos θ − sin ε sinφ sin θ)− vy sin ε cosφ+

vz(cos ε sin θ + sin ε sinφ cos θ) (8.72a)

_y = vx(sin ε cos θ + cos ε sinφ sin θ) + vy cos ε cosφ+

vz(sin ε sin θ − cos ε sinφ cos θ) (8.72b)

_z = −vx cosφ sin θ + vy sinφ+ vz cosφ cos θ (8.72c)

The acceleration of the vehicle center of mass can be found by difierentiating (8.70).

a = _vxcx + _vycy + _vzcz + (ωxcx + ωxcx + ωxcx)× (ωxcx + ωxcx + ωxcx)

= ( _vx + ωyvz − ωzvy)cx + ( _vy + ωzvx − ωxvz)cy + ( _vz + ωxvy − ωyvx)cz (8.73)

If the total external force applied to the vehicle is known,

F = Fxcx + Fycy + Fzcz
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the translational dynamic equations are obtained from Newton’s second law,

_vx = ωzvy − ωyvz +
Fx
m

(8.74a)

_vy = ωxvz − ωzvx +
Fy
m

(8.74b)

_vz = ωyvx − ωxvy +
Fz
m

(8.74c)

where m is the sprung mass of the vehicle. The forces are derived in Section 8.2.4.

8.2.3 Suspension Model

The suspension model for lateral and longitudinal vehicle motion is similar in every aspect

to the longitudinal model. The extension to the three dimensional model slightly changes

the geometric constraint equation corresponding to Equation (8.18) and is given below for

the most general case,

0 = licx − sicy − hicz − b(x+ ¢xi, y + ¢yi)ez − (rwi + ξi)rzi −¢xiex −¢yiey + zez,

i = {1, 2, 3, 4} (8.75)

where li is the half wheelbase from the vehicle center of mass to the ith wheel, si is the half

track width from the vehicle center of mass to the ith wheel, ¢xi and ¢yi are the relative

tire distances from the center of mass to the ith wheel, and the function b(x, y) describes

the road surface at location (x, y).

Solving for the relationship between rwi and hi requires solving a nonlinear equation. In

the special case where the road surface is planar, it is possible to solve for the relationship

between the tire radius and the suspension height analytically as in the longitudinal model.

rwi + hirzz = [z − b(x, y)]nz + lirzx − sirzy − ξi, i = {1, 2, 3, 4} (8.76)

In addition four state equations governing the suspension height at four wheels are needed:

−Kw(rwi − rw0) cos(θ −¢i) = fK(fi + fC( _hi), i = {1, 2, 3, 4} (8.77)

As stated in Section 8.1.3, solving for _hi depends on the damping function fC(·).
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To solve for the wheel radius and the relative tire position for an arbitrary road surface,

requires making some approximations. Using the same concept as in Section 8.1.3, flrst

approximate the relative tire position which is denoted by ¢xi and ¢yi. These two relative

tire position locators can be found by taking the dot product of Equation (8.75) with unit

vectors ex and ex respectively. This leads to:

¢xi = li(cos ε cos θ − sin ε sinφ sin θ) + si sin ε cosφ−

hi(cos ε sin θ + sin ε sinφ cos θ)− (rwi + ξi)nxi , i = {1, 2, 3, 4}

¢yi = li(sin ε cos θ + cos ε sinφ sin θ) + si cos ε cosφ−

hi(sin ε sin θ + cos ε sinφ cos θ)− (rwi + ξi)nyi , i = {1, 2, 3, 4} (8.78)

Following the same approach in Section 8.1.3, assume that the road variation is zero, the

wheel radius is constant, and the road normal vector is evaluated at the point where wheel

center projects down to the road surface. This leads to the following equations where the

relative tire position locators can be approximated as:

¢~xi = li(cos ε cos θ − sin ε sinφ sin θ) + si sin ε cosφ−

hi(cos ε sin θ + sin ε sinφ cos θ)− rw0nxi , i = {1, 2, 3, 4} (8.79)

¢~yi = li(sin ε cos θ + cos ε sinφ sin θ) + si cos ε cosφ−

hi(sin ε sin θ + cos ε sinφ cos θ)− rw0nyi , i = {1, 2, 3, 4} (8.80)

Once the tire location is approximated, the wheel radius can be found by taking the dot

product of Equation (8.75) with unit vector rzi , leading to:

~rwi = lizzxi − sirzyi − hirzzi − ξi −¢~xinxi −¢~yinyi + [z − b(x+ ¢~xi, y + ¢~yi)]nzi ,

i = {1, 2, 3, 4} (8.81)

where the quantities nxi , nyi and nzi are evaluated at the approximated tire location (x+

¢~xi, y + ¢~yi).
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8.2.4 Forces

The gravitational force on the vehicle is F g = −mgez. In addition to longitudinal wind lift

and drag forces,

L =
1
2
CLAfρav

2
wrcz

D =
1
2
CDAfρav

2
wrcx

there is now a lateral wind component which comes from crosswinds, large passing vehicles

or fast lateral maneuvers. Moreover, these wind forces may have a considerable efiect on

lateral vehicle dynamics. This side force is modeled here as:

F s =
1
2
CSAfρav

2
wrcy (8.82a)

= Fscy (8.82b)

Work by Yip et al. (Yip et al. 1992) has correlated the force coe–cients CL, CD and CY

to the relative wind speed and its angle relative to the vehicle longitudinal axis. These two

variables are shown in Figure 8.10, and the analytical expressions for β and vwr are given

as:

vwr =
√

(vwx − vx)2 + (vwy − vy)2 (8.83)

β = tan−1
(
vwy − vy
vwx − vx

)
(8.84)

Let the force applied to each tire by the road be expressed as

Fwi = Fwfirx + Fwsiry +Nirz

where the tire tractive and side force are obtained from the tire model in Section 8.2.7 and

the tire normal force is simply

Ni = −Kw(rwi − rw0)
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vwr

D

Fs

Mwz

Figure 8.10: Aerodynamic forces acting on the vehicle have three components.

Then the force components applied to the vehicle along its three principal axes (cx, cy, cz)

can be expressed as:

Fx =
4∑
i=1

[Fwfirxx + Fwsiryx −Kw(rwi − rw0)rzx] + Fg cosφ sin θ +D (8.85)

Fy =
4∑
i=1

[Fwfirxy + Fwsiryy −Kw(rwi − rw0)rzy]− Fg sinφ+ FS (8.86)

Fz =
4∑
i=1

[Fwfirxz + Fwsiryz −Kw(rwi − rw0)rzz]− Fg cosφ cos θ + L (8.87)

8.2.5 Moments About the Vehicle Center of Mass

Aerodynamics also contributes to the moment about the vehicle center of mass. Work by

Yip et al. (Yip et al. 1992) has correlated the aerodynamic moment to the relative wind

speed. The moment equation has a form similar to the aerodynamic force equation and is

given below in vector form,

Mw =
1
2
ρav

2
wrAfL(Cwxcx + Cwycy + Cwzcz) (8.88a)

= Mwxcx +Mwycy +Mwzcz (8.88b)

where L is the wheel base length, and the moment coe–cients Cwx, Cwy and Cwz can be

correlated to the relative wind speed and its angle in equations (8.83) and (8.84).
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The total moment about the center of mass, which is contributed by the suspension

forces and the aerodynamic forces, is obtained below:

M =
4∑
i=1

(licx − sicy − hicz)× (Fwfirx + Fwsiry +Nirz) +Mw (8.89)

Decomposing the moment equation into the three components about the vehicle principal

axes using Equation (8.53) leads to the following moment equations.

Mx =
4∑
i=1

Mxi +Mwx (8.90a)

My =
4∑
i=1

Myi +Mwy (8.90b)

Mz =
4∑
i=1

Mzi +Mwz (8.90c)

where

Mxi = (Fwfi(−sirxzi + hirxyi) + Fwsi(−siryzi + hiryyi)−Kw(rwi − rw0)(−sirzzi + hirzyi))

Myi = (Fwfi(−lirxzi + hirxxi) + Fwsi(liryzi + hiryxi)−Kw(rwi − rw0)(lirzzi + hirzxi))

Mzi = (Fwfi(lirxyi + sirxxi) + Fwsi(liryyi + siryxi)−Kw(rwi − rw0)(lirzyi + sirzxi))

8.2.6 Brake Dynamics

The brake dynamics are modeled as a flrst order lag similar to that used in the longitudinal

model. The total brake torque Tba is distributed between the front and the rear wheels

according to a brake biasing constant kb and is evenly divided between the left and the

right wheels.
Tb1 = Tb2 = kb

2 Tba front wheels
Tb3 = Tb4 = (1−kb)

2 Tba rear wheels
(8.91)

Again Tbi is positive and is limited to a maximum value which is where wheel lockup occurs.

8.2.7 Wheel Dynamics and Tire Traction Model

The wheel dynamics are the same as that of the longitudinal model, however the tire

traction model requires an additional variable since a lateral force and self-aligning moment
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are present. This additional variable is known as the lateral slip angle α and is deflned

below. In Bakker’s nonlinear tire model (Bakker et al. 1987, Bakker and Pacejka 1989,

Pacejka and Bakker 1991), the tire tractive force, side force and self-aligning moment are

functions of the normal force, the tire longitudinal slip ratio, and lateral slip angle. In order

to flnd the tire tractive, side force and self-aligning moment, deflne the longitudinal slip

and the slip angle. The longitudinal slip is deflned in the same way as in the longitudinal

model, that is,

λi = 1− vwfi
rwiωwi

, i = {1, 2, 3, 4} (8.92)

The wheel forward velocity vwfi can be found by flrst flnding the velocity at the center of

the tire.

_Pwi = (vx − hiωy + siωz)cx + (vy + hiωx + liωz)cy + (vz − liωy − siωx − _hi)cz,

i = {1, 2, 3, 4} (8.93)

Using Equation (8.64) we can transform Equation (8.93) to the road reference frame and

the wheel forward velocity follows directly.

vwi = (vx − hiωy + siωz)rxxi + (vy + hiωx + liωz)rxyi + (vz − liωy − siωx − _hi)rxzi ,

i = {1, 2, 3, 4} (8.94)

The tire slip angle as seen in Figure 8.11 is deflned as the angle between the wheel velocity

vector and the wheel heading vector. Thus,

αi = δi − tan
(
vwy
vwx

)
= δi − tan

(
vy + hiωx + liωz
vx − hiωy + siωz

)
, i = {1, 2, 3, 4} (8.95)

where δi is the steering angle of each wheel.

The tractive force, side force and self-aligning moment can now be expressed as nonlinear

functions of the tire normal force, slip ratio, slip angle, and other variables such as road

surface conditions, and camber angle. The camber angle is deflned as the inclination of



       

8.2 Nonlinear Lateral and Longitudinal Model 137

Fws Fwf

vwy

vw

vwx

Figure 8.11: Top view of a tire under steering maneuver.

Brake Force Side Force Self-aligning
Moment

D a1N
2 + a2N b1N

2 + b2 c1N
2 + c2N

BCD (a3N
2 + a4N) exp−a5N

[
b3 sin(b4 tan−1(b5N))

]
· (c3N

2 + c4N) exp−c5N ·
(1− b12γ) (1− c12|γ|)

C a0 b0 a0

E a6N
2 + a7N + a8 b6N

2 + b7N + b8 4a6N2+a7N+a8
1−c13|γ|

B BCD/CD BCD/CD BCD/CD
Sh a9N + a10 b9γ a9γ
Sv a11 (b10N

2 + b11N)γ (a10N
2 + a11N)γ

Table 8.1: Tire model coe–cients.

the wheel plane from a plane perpendicular to the road surface and parallel to the vehicle

longitudinal axis.

The general formulation of the tire model developed by Bakker et al. has the form:

y(x) = D sin
(
C tan−1

(
Bx− E

[
Bx− tan−1(Bx)

]))
(8.96)

with

x = X + Sh (8.97a)

Y (X) = y(x) + Sv (8.97b)

where the variable Y (X) represents either the tire tractive force, side force or self-aligning

moment, and the variable X represents the corresponding slip ratio or slip angle. The

coe–cients above may be related to the tire normal force and camber angle γ as in Table 8.1.

The above formulations are developed in cases of pure traction or pure cornering maneuvers.

When the vehicle experiences a combination of cornering and braking, equations relating the
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tractive force, side force and self-aligning moment to the slip quantities require modiflcation.

Bakker (Bakker et al. 1987, Bakker and Pacejka 1989, Pacejka and Bakker 1991) provides

the following method. First, deflne normalized slip quantities as follows:

λ∗ =
λ

λmax
(8.98)

α∗ =
α

αmax
(8.99)

where λmax and αmax are values where the tractive and side forces, respectively, reach a

maximum. Next deflne the correction factor σ∗ as:

σ∗ =
√

(λ∗)2 + (α∗)2 (8.100)

The modifled equations for the tractive force, side force and self-aligning moment can be

expressed as:

Fx =
λ

σ∗
Fx0(σ∗, N) (8.101)

Fy =
α∗

σ∗
Fy0(σ∗, N) (8.102)

Mz =
α∗

σ∗
Mz0(σ∗, N) (8.103)

where Fx0 , Fy0 and Mz0 are functions that provide the tractive force, side force and

self-aligning moment as obtained from pure traction or pure cornering.

8.2.8 Engine Model

The same engine model described in Section 8.1.9 is used to develop the full six degree of

freedom vehicle model. Since this model consists of four tires instead of two, the front and

rear torque is divided evenly between the left and the right tires, resulting in the following

equations:

Td1 = Td2 = kd
2 Te front wheels

Td3 = Td4 = (1−kd)
2 Te rear wheels

(8.104)
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8.2.9 Steering Model

The type of steering model implemented in this work is a flxed-control steering model.

With this model, the angular displacement of the steering wheel is specifled. The other

type of steering model is the free-control steering system in which the torque applied to the

steering wheel is specifled. This type of steering model is more complex since the steering

angular displacement must be solved as a function of the resultant moments and the current

angular displacement of the steering wheel. As shown in Figure 8.12, the steering system

is modeled as a lumped mass system described in Lukowski et al. (Lukowski et al. 1990).

The governing equation for the front-wheel steering system is given below,

δ̃ = − Cws
2Iws

_δ +
Kws

2Iws
(δc − δ) +

Kwp(Fwf1 − Fwf2) +Msa

2Iws
(8.105)

where δc is the commanded angular displacement of the steering wheel, Iws is the moment

of inertia of front wheels about their steering axis, Kws and Cws are the steering rotational

stifiness and damping constants, Msa is the total self-aligning moment of the front wheels,

and Kwp is the steering axis ofiset.

Kws

Cws

c

Msa

Kp

Figure 8.12: Lumped-mass representation of the steering system.



     

140 Chapter 8: Vehicle Nonlinear Equations of Motion

8.2.10 Random Road Excitation Model

One method of introducing random road excitation to the vehicle simulation is to generate

a road noise proflle at every point prior to the simulation. Such a method is developed by

Cebon et al. (Cebon and Newland 1983) using Fourier transform methods to generate a two

dimensional random road surface. However this approach is impractical, since it requires

storage of enormous amounts of data. A more e–cient and elegant method is to generate

random road excitation on-line. With this scheme, the need to store all the road noise data

is eliminated except for a small segment used to correlate the noise input between the front

and the rear wheels. The method used here uses a flrst-order shaping fllter approach and

is developed by Gill (Gill 1983).

The idea behind this approach is to shape the spectral density of flrst order processes

driven by stationary Gaussian white noise to closely approximate the measured road spectral

density. Another important road characteristic besides the spectral density of the tracks, is

the correlation between the left and right tracks. In order to achieve the above properties,

the road noise at the left and the right wheels can be expressed as functions of two

uncorrelated random processes ξM and θM .[
η1

η2

]
=

[
1 s1

1 s2

] [
ξM
θM

]
(8.106)

The variable ξM describes the random road excitation at the point coinciding with the center

of mass between the left and right tracks. The variable θM describes the noise difierence

between the left and the right tracks. The constants s1 and s2 are the half track widths

from the car center to the left and right wheels respectively. Note that the constant s1 is

negative since it points in the negative cy direction.

The random processes ξM and θM are flrst order processes driven by white noise.[
_ξM
_θM

]
= vx

[
γ1 0
0 γ2

] [
ξM
θM

]
+ vx

[
σ1 0
0 σ2

] [
w1

w2

]
(8.107)

By specifying the constants γ1, γ2, σ1 and σ2, random road excitation may be generated with

spectral density and correlation functions closely matching the experimentally measured
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data. Furthermore, the the constants σ1 and σ2 may be redeflned as functions of more

physically meaningful constants, for example,

σ1 =
√
S02π(1 + α) (8.108a)

σ2 = σ1s2

√
α (8.108b)

where S0 is the spectral intensity constant and α is the coherence constant. The values of

the coherence constant range from zero to one, where a value of zero indicates that there

is no correlation between the left and the right tracks and a value of one indicates that the

two tracks are completely correlated. For vehicles traveling straight ahead at a constant

speed vx, the random road noise at the rear wheels is that of the front wheels delayed by a

time interval td = l
vx

. The road noise at the rear wheels can be expressed as functions of

the front wheels as follows: [
η3(t)
η4(t)

]
=

[
η1(t− td)
η2(t− td)

]
(8.109)

8.3 Simulation Results

8.3.1 Longitudinal Model

Response of Vehicle to Various Inputs

In this section, the longitudinal model is subjected to various inputs and its responses

are examined. Figure 8.13 shows the vehicle speed and pitch angle in response to a step

throttle input when the vehicle is initially traveling at 10 m
sec . As expected, the vehicle should

pitch upward, translating to a negative pitch angle in the simulation, when the vehicle is

accelerating. As time passes, the vehicle pitches downward slowly as the vehicle acceleration

decreases and speed increases. The reason for this behavior is that the moment caused by

the wind about the y-axis dominates at high speed and low acceleration. This moment

tends to pitch the car downward as a consequence of the asymmetric design of the vehicle

top and bottom. The three jumps apparent in the plot of the pitch angle, occur when the

lower gear switches to higher gear. This creates a discontinuity in engine output torque,

which causes the vehicle to jerk.
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After holding half-throttle for 60 seconds, the throttle is released and a step brake input

is applied for the next 15 seconds. Figure 8.14 shows the plots of the vehicle speed and pitch

angle as a total of 1000 N of brake force is applied to the wheels. The applied torque is about

10% of the maximum torque required to lock up the wheels, assuming a skidding coe–cient

of friction of 0.7. As expected, the vehicle pitches down as it decelerates, corresponding to a

positive pitch angle. Again the small jumps in the pitch angle plot indicate the discontinuity

of engine output torque due to the gear changes before the throttle position reaches zero.

The vehicle is then simulated while traveling on an inclined road surface. There is no

throttle or brake input to the vehicle. Figure 8.15 shows the plots of the vehicle pitch angle

and speed when coasting down a 5% grade road. The vehicle speeds up as a result of the

gravitational force. The oscillations in the pitch angle plot re°ect the fact that the vehicle

is not initially at equilibrium. The pitch angle plotted is referenced to the Earth-flxed

horizontal axis. The difierence between the pitch angle and the angle of the road is known

as the relative pitch angle, a measurement of the vehicle pitch relative to the road surface.

As mentioned previously, this relative pitch angle does not vanish at steady state since there

is a wind generated moment about the vehicle center of mass when the vehicle is traveling

at high speed.

Next, a road disturbance is modeled. The vehicle is driven over a sharp sinusoidal bump

0.01 meters high and 0.3 meters wide while traveling at 27 m
sec . The responses of the vehicle

height and pitch angle are plotted in Figure 8.16. The flrst sharp corner in the pitch angle

plot indicates the point where the front wheel reaches the bump and the second sharp corner

follows when the rear wheel passes over the bump. Looking at the vehicle height, one can

conclude that this is a reasonable response of the vehicle since a well maintained vehicle

with good shocks should not oscillate more than once or twice when it is disturbed from

equilibrium.

Finally, random road excitation is added to the front and the rear wheels. Since the

vehicle is traveling along a straight path, the road noise at the rear wheel is that of the

front wheel delayed by the time interval required for the rear wheel to reach to the former
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location of the front wheel. If the vehicle is traveling at a constant speed vx, the delay

time can be expressed as td = l
vx

, where l is the distance between the front and the rear

wheels. The vehicle height, pitch angle, and random road input at the front wheels are

plotted in Figure 8.17 while the vehicle is traveling at 27 m
sec . As seen in the plot of the

vehicle height and the noise amplitude, the suspension system fllters out the high frequency

noise but passes through the low frequency components of the noise. From the plot of

the pitch angle, one can also conclude that the pitch angle is more susceptible than the

vehicle height to high frequency noise, even thought it also does some flltering out of the

high frequency components. In addition, the simulated spectral density of the random

noise process obtained by averaging 100 realizations is plotted with the theoretical spectral

density in Figure 8.18. This random road excitation is typical of rough highway roads.
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Figure 8.13: Vehicle response due to a step throttle input.
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Figure 8.14: Vehicle response due to a step brake input subsequent to a step throttle input.

Small Angle Approximation

In steady-state, the magnitude of the pitch angle relative to the road surface, that is,

θ − ¢, is at most on the order of 10−3 radian. The reason that the pitch angle does not

vanish is because there is a moment about the vehicle center of mass caused by the wind

at high speed. Furthermore, the maximum pitch angle relative to the road surface during

a transient response of the vehicle is on the order of 10−2 radian. Since the relative pitch

angle is small, we can make a flrst order approximation of the trigonometric functions

without degrading the model accuracy. For any angle x, the small angle approximation

of cos(x) is taken as one and that of sin(x) is taken as x. In the operating range of the

pitch angle whose magnitude is less than 10−2 radian, the maximum error resulted from
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Figure 8.15: Vehicle response when decending down a 5% grade road.

making small angle approximations is less than 0.1 percent. This is too small an error to

have any signiflcant efiect on the simulation accuracy. To verify this, the approximated

and non-approximated systems are simulated by initially setting the relative pitch angle

to a maximum value, which is taken to be 0.05 radian. The responses of the states of the

approximated and non-approximated systems are compared for any signiflcant deviations.

As seen in Figure 8.19, there is no notable difierence between the original model and the

one using small angle approximations.

Knowing that making a small angle approximation on the relative pitch angle does not

reduce the simulation accuracy, we would also like to investigate the consequences of making

an approximation on the absolute pitch angle, which is referenced from the Earth-flxed

horizontal axis. This might reduce the simulation accuracy if the elevation of the road is

large, since the absolute pitch angle is the sum of the road angle and the vehicle pitch

angle relative to the road. According to transportation literature, a typical road grade

limit for highways is around 10 to 15 percent. To take a worst case scenario, we will use

a maximum road grade of 15% and a maximum relative pitch angle of 0.05 radian as used

previously. This will constrain the maximum limit of the absolute pitch angle to about 0.2



   

146 Chapter 8: Vehicle Nonlinear Equations of Motion

0.0 1.0 2.0 3.0 4.0
Time (sec)

0.0008

0.0009

0.0010

0.0011

Pi
tc

h 
A

ng
le

 (
ra

d)

0.4916

0.4918

0.4920

0.4922

H
ei

gh
t (

m
)

0.000

0.002

0.004

0.006

0.008

0.010

B
um

p 
A

m
pl

itu
de

 (
m

)
0.3 m

Front wheel hits bump

Rear wheel hits bump

Figure 8.16: Vehicle response when passing over a sinusoidal bump.

radian. Setting the road elevation to the maximum allowable limit of 15% and the absolute

pitch angle to 0.2 radians, the vehicle is simulated as it is initially traveling at 27 m
sec with

the nominal throttle position of 22.555% of the maximun throttle position. Comparing the

response of the approximated system to the non-approximated system, we found that there

are no signiflcant deviations between the two models. The deviation in all states is below

two orders of magnitude. Figure 8.20 shows the vehicle pitch angle and velocity as well as

the longitudinal velocity. There are no visible difierences between the approximated and

non-approximated systems.

In conclusion, it is permissible to use a small angle approximation on the pitch angle.

By making a small angle approximation, we can save about 5 percent in computational

time. The reason that the computational gain is not signiflcant is because we only save one

multiplication operation for each cosine term. For each sine term, we still have to use one

multiplication operation regardless of whether we make a small angle approximation or not.



    

8.3 Simulation Results 147

0.0 1.0 2.0 3.0 4.0 5.0
Time (sec)

-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

N
oi

se
 A

m
pl

itu
de

 (
m

)

0.0006

0.0008

0.0010

0.0012

0.0014

Pi
tc

h 
A

ng
le

 (
ra

d)

0.489

0.490

0.491

0.492

0.493

0.494

0.495

C
ar

 H
ei

gh
t (

m
)

Noise at front wheel

Figure 8.17: Vehicle response due to random road excitation.

Linearization at a Nominal Operating Point

A linear model of the vehicle operating at some nominal point (x0, u0), where f(x0, u0) = 0,

is needed to implement the fault detection and identiflcation fllter. Due to the complexity

of the nonlinear model, it is impractical to linearize the system analytically. Therefore the

linearized system is obtained numerically. The process to linearize the system numerically

is described below.

First, a nominal operating point needs to be specifled where the linearized model is

obtained. This nominal point can be found by specifying the inputs and simulating the

system to reach steady state. It takes about 300 seconds for the system to reach steady

state. After obtaining the nominal operating point, a numerical linearization process can

be implemented to obtain the linearized model.
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Figure 8.18: Power spectral densities of simulated and theoretical random noise processes.

Starting with the nonlinear system _x = f(x, u), one would like to linearize this system

at some nominal point (x0, u0). Using Taylor’s expansion, one can expand the nonlinear

system around with x = x0 + ~x and u = u0 + ~u as

_~x = f(x0, u0) +∇xf(x, u) |
x = x0

u = u0

~x+∇uf(x, u) |
x = x0

u = u0

~u+ higher order terms

By neglecting the higher order terms and noting that f(x0, u0) vanishes, the linearized

system becomes

_~x = A~x+B~u
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Figure 8.19: Efiect of making a small angle approximation of the relative pitch angle.

A = ∇xf(x, u) |
x = x0

u = u0

B = ∇uf(x, u) |
x = x0

u = u0

As mentioned previously, analytically calculating the gradient of the nonlinear system is

impractical. Therefore an approximation scheme will be used.

Using the central difierence method, the A and B matrix coe–cients are approximated

as

aij =
∂fi
∂xj
|
x = x0

u = u0

' fi(x0 + [δx]j , u0)− fi(x0 − [δx]j , u0)
2δx

bij =
∂fi
∂uj
|
x = x0

u = u0

' fi(x0, u0 + [δu]j)− fi(x0, u0 − [δu]j)
2δx

where the notation [δx]j denotes a vector with zero elements everywhere except for the jth

element which has the value δx.
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Figure 8.20: Efiect of making a small angle approximation of the absolute pitch angle.

Care must be taken in choosing the perturbation values δx and δu. Truncation errors

due to flnite signiflcant digits in digital computers will result if perturbation size is too

small; whereas error produced by nonlinearities will result if the perturbation size is too

large. Each coe–cient should be plotted versus the perturbation size and each coe–cient

should be chosen individually within the region where the curve remains °at. Figure 8.21

shows a typical plot of one coe–cient versus perturbation size in which the curve can be

characterized by three regions. In region I, errors are induced by flnite computer word

length and indicate that the perturbation size is too small. In region III, errors are induced

by model nonlinearities and indicate that the perturbation size is too large. The most

accurate representation of each coe–cient lies in region II where the error curve is °at. In

our experience, typical values for the normalized perturbation sizes of δxx0
and δu

u0
range from

10−6 to 10−3 for the central difierences method.

The system is linearized at a highway speed of 27 m
sec or 65mph. To maintain at this
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Figure 8.21: Efiect of perturbation size on numerical derivative computation.

speed, the throttle position is set at 22.555% of the maximum throttle position. Figure 8.22

shows the transient responses of the vehicle when the throttle input is perturbed upward

by 15 percent. The responses of the linearized system match very well to those of the

nonlinear system. In addition, the vehicle steady-state responses are plotted in Figure 8.23.

However, the steady state responses of the linearized system deviate from the nonlinear

model considerably for large perturbations. By comparing all of the states of the linearized

and nonlinear systems, we found that deviation errors between the linearized and nonlinear

systems at steady state are below 10 percent for a 15 percent increase or 15 percent decrease

in throttle position input. This corresponds to a range of speed from 25.5 m
sec to 28.5 m

sec .

Furthermore the brake input is also perturbed to compare the accuracy of the linearized

model to that of the nonlinear model. Figure 8.24 shows that the maximum perturbation

size for the brake input is 34 N such that the deviation errors of the states between the

two models are less than 10 percent. As evident in the plots, the responses of the system

to a brake perturbation are much more linear than those due to a throttle perturbation.
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This is not surprising since the brake torque is related to the brake input through a linear

flrst order dynamics; whereas the engine torque is not only controlled by throttle position

but is also a nonlinear function of the wheel speed. If we eliminate the engine model and

specify the engine torque directly, the deviation errors between the two models are less than

3 percent for the same range of speed.
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Figure 8.22: Transient response of the linearized and nonlinear systems with a perturbed
throttle input (+15%).

8.3.2 Lateral and Longitudinal Model

Response of Vehicle to Various Inputs

The longitudinal response of the vehicle was analyzed in Section 8.3.1, therefore it is only

necessary to investigate the vehicle lateral modes at this point. First the vehicle is stimulated

with a step steering input of 0.01 radian while the vehicle is initially traveling at 27 m
sec

at its corresponding nominal throttle position of 22.555% of maximum throttle position.
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Figure 8.23: Efiect of perturbation size on numerical derivative computation.

Figure 8.25 shows the vehicle roll angle, yaw velocity and path. As the vehicle turns left,

the vehicle should roll to the right, for a positive roll angle, and the yaw velocity should

increase to reach a constant in steady state as seen in Figure 8.25. At this speed, a turn

of 0.01 radian is considered to be a medium cornering maneuver which generates a lateral

acceleration of about 0.2g. If the vehicle is allowed to reach steady state, a constant steering

angle of 0.01 radian will steer the vehicle around a constant radius of 310 meters.

Next, lateral response is examined as a pulse of crosswind is applied to the vehicle while

the vehicle is traveling straight ahead at 27 m
sec . The applied wind velocity is 15 m

sec with 10

seconds duration. The lateral response of the vehicle is plotted in Figure 8.26, showing the

vehicle path without any steering correction is made. Plots of the crosswind proflle and

yaw velocity are also shown. The decrease in the yaw velocity re°ects that the magnitude

of the side wind applied to the vehicle is decreasing since the vehicle is gradually turning

away from the crosswind disturbance.
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Figure 8.24: Steady-state response of the linearized and nonlinear systems with a perturbed
brake input (+34 N).

Finally, random road excitation is introduced to the vehicle model, simulating the road

condition of typical highways. The vehicle roll and pitch angle as well as its height are shown

in Figure 8.27 together with the random road excitation of the right and left tracks. The left

and right tracks are taken to have the same spectral density function and are also correlated,

with the correlation coe–cient having a value of 0.75. Averaging from 100 realizations, the

simulated spectral density of the random processes are plotted along with the theoretical

density in Figure 8.28. Similarly, the coherency functions which characterize the dependency

between the left and right tracks are also shown on lower half of Figure 8.28. Looking at

the road noise of the left and right tracks, one can see that they are highly correlated at low

frequencies. On the other hand, high frequency components of the noise do not seem to be

correlated between left and right tracks. An alternative way to look at this is by the means

of the coherency function as seen in Figure 8.28. At low wave number or spatial frequency,
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the left and right tracks are strongly correlated and the coherency function rapidly decreases

as the wave number increases.
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Figure 8.25: Vehicle response due to step steering input of 0.01 radian.

Small Angle Approximation

We would like to investigate the efiects, if any, of a small angle approximation of the

pitch and roll angles, on the accuracy of the full model simulation. We have already

established that the operating range of the pitch angle is small enough that a small pitch

angle approximation does not have a signiflcant efiect on the simulation accuracy of the

vehicle model. The operating range of the roll angle is similar to that of the pitch angle.

Therefore we should also expect that making a small angle approximation to the roll angle

does not signiflcantly reduce the model accuracy. Again we would like to flnd out under what

situations the vehicle might experience a large roll angle. During high lateral acceleration,

the maximum limit of the roll angle relative the ground surface can be at most around
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Figure 8.26: Vehicle response due to a crosswind pulse of 15 m
sec .

0.05 radians. Since roll angle in the model is the sum of the relative roll and the road

superelevation, it is also necessary to obtain the maximum limit of the road superelevation.

Usually on regular highways, road superelevations are quite small, typically under 1%.

The only sections of the highway system where the road superelevation may be large are

the ramps connecting one highway to another. Nevertheless the superelevation of these

ramps are not large either. They are at most on the order of a few percent. To be on the

conservative end, we will use a road superelevation of 10% in our simulation to test the

efiect of making a small angle approximation of the roll angle.

The roll angle of the vehicle is plotted in Figure 8.29 as the vehicle is traveling on a

planar road with a superelevation of 10% and the vehicle is initially rolled to the right by

0.05 radians relative to the road surface. This sets the initial condition of the roll angle to

approximately 0.15 radians. As shown in Figure 8.29, there is no noticeable deviation of
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the response between the approximated and the non-approximated system. The maximum

difierence of the pitch angle between the two models is below two orders of magnitude. In

addition, the maximum error during transient response for any states is 2%, and during

steady state is much lower. Therefore, we conclude that it is reasonable to make a small

angle approximation of the roll angle.

Since the yaw angle can have any value, it is incorrect to use a small angle approximation

of the yaw angle. By making small angle approximation to the pitch and the roll angle, we

can achieve a 1% reduction in computation time. The reason that this improvement is less

than that in the longitudinal model is because the sub-components are more complicated and

there are more of them. In summary, it is reasonable to use a small angle approximation of

the pitch and roll angles. While the savings in computational time is minimal it is welcome.

Linearization Around a Constant Steering Angle

At some point during a trip, the vehicle will have to travel along a curve, which can be a

curvy stretch of freeway or a transition ramp from one freeway to another. Therefore it is

necessary to have a linearized model for fault detection and identiflcation system to process

as the vehicle is traveling through a curved path. Each path can be considered as a constant

radius curve, hence we can linearize our model around a constant steering angle.

The linearization process is identical to that of the longitudinal case except that one

must be more careful in choosing the perturbation size for each coe–cient. The acceptable

range for perturbation size now becomes smaller and is difierent for each coe–cient. As

shown previously, it is best to plot each coe–cient versus the perturbation size and pick the

coe–cient at the appropriate region.

Once the linearized model is obtained at some nominal operating point, we can proceed

to measure the efiective range of the linearized model which can reproduce the response

of the nonlinear model within a 10% error in all of the states. First, a linearized model

is obtained from the nonlinear model when the vehicle is traveling straight ahead. No

further investigation of the longitudinal response is required since it was already done in
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Section 8.3.1. Figure 8.30 shows the longitudinal speed, lateral speed and yaw angle of the

vehicle when the steering angle is perturbed by 0.01 radians. Even for a relatively large

perturbation of the steering angle, the yaw rate of the linearized model matches very well

that of the nonlinear model.

On the other hand, the steering input has no efiect on the longitudinal velocity in the

linearized model. The reason is that a linear system is incapable of modeling even symmetric

responses of a nonlinear system. An even symmetric response is characterized by an output

that is afiected only by the magnitude and not by the direction of the input. Therefore all

the modes that exhibit even symmetric behavior around zero steering angle input will be

not be captured by the linearized model. The longitudinal velocity is such a mode, hence

it is unafiected by any amount of perturbation applied to the steering angle. The modes

that are not even symmetric are the lateral and yaw velocities. Thus a perturbation in the

steering angle will directly perturb these modes as shown in Figure 8.30. Also apparent in

the plot is that the yaw velocity response is much more linear than the lateral velocity in

response to a steering input. With this in mind, a system linearized around a zero steering

angle must be used with caution in situations where a perturbation in steering angle might

be present.

Next, the system is linearized around a constant steering angle of 0.005 radians which will

steer the vehicle around a constant radius curve of 620 meters at steady state. This results

in a gentle lateral acceleration of about 0.1g while the vehicle is traveling at a constant speed

around 26.5 m
sec . To achieve a maximum limit of 10% error between the nonlinear and the

linearized system in all the signiflcant states at steady state, the range of the perturbation

size for each input variable is found and tabulated in Table 8.2. In addition, some responses

of the perturbed system between the linearized and the nonlinear systems are compared.

Figure 8.31 shows the responses of the longitudinal, lateral, and yaw velocities as the throttle

position is increased by 15 percent. The most nonlinear state is the yaw velocity, since it

is not directly afiected by the throttle position but, rather, indirectly coupled with other

states which can be directly or indirectly driven by the throttle position. In addition, a
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perturbation in the brake should also produce similar results as seen in Figure 8.32. As

discussed in Section 8.3.1, the responses of the nonlinear system due to brake input are

more linear than those due to throttle input. Hence, one should expect that the response of

the linearized model due to a brake perturbation covers a wider range such that the steady

state errors between the linearized and nonlinear system can be at most 10% when a step

input is applied. Lastly, the vehicle longitudinal, lateral, and yaw velocities are plotted in

Figure 8.33. Now the yaw velocity is directly coupled with the steering angle. Therefore one

can expect that the response of the yaw angle is quite linear with respect to a perturbation

of the steering angle. This can be clearly observed in Figure 8.33.

Steering Angle Throttle Range Steering Range Braking Range

0 rad. -15% to +15% N/A 0 to 34N

0.005 rad. -14% to +14% -15% to +25% 0 to 27N

Table 8.2: Efiective range of the linearized system.

Unlike the system linearized around a zero steering angle, this system is able to capture

part of the coupled dynamics between the longitudinal and lateral motion. The reason is

that the even symmetric modes around a zero steering angle are not symmetric around

0.005 steering angle. Therefore the linearized system can model the nonlinear system more

accurately when the odd symmetric modes are dominant.

8.4 Summary of Model Development and Suggestions for Future Work

Two vehicle dynamics models have been developed using analytical mechanics. One is

a simplifled longitudinal model and the other is a full lateral and longitudinal model.

The vehicle models include all major components including the suspension, tire traction,

engine, brake and steering models. In addition, the model allows for arbitrary road gradient

variations. Random road excitation is introduced using a flrst-order shaping fllter approach.

In looking for ways to reduce computational complexity, a simulation study showed

that small angle approximations do not signiflcantly afiect the accuracy of the simulation.
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However, the same simulation study indicated no substantial reduction in computational

time is realized by this approximation. Lastly, linearized vehicle dynamic models at various

operating points, including straight and curved paths, are derived numerically.

The following suggestions are recommended for future work in order to reflne and

incorporate more features in the vehicle model. First, only a theoretical model is developed

here and unfortunately vehicle parameters from difierent sources are used. Hence it is

important to experimentally obtain all the vehicle parameters from a single test vehicle and

then validate the theoretical model using experimental data. In any development process

it is impossible to include all of the vehicle features at once. The list below covers the

important items which have been omitted and therefore require further investigation.

• Change in steering angle due to suspension geometry.

• Linear stabilizers.

• Modeling of the unsprung mass.

• Modeling of the wheel mass.

• Static camber.

• Dynamic camber induced by suspension movement.

• Static toe-in.

• Dynamic toe-in induced by suspension movement.

Since this vehicle model will be used in fault detection fllter design and evaluation, it is

important to be able to model malfunctions or total failures in critical vehicle components.

Modeled failures might include, for example, a °at tire, brake failure, engine malfunction and

out-of-alignment steering. This development is especially important to health monitoring

system evaluation applications.
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Figure 8.27: Vehicle response due to road noise.
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Chapter 9

A Game Theoretic Fault Detection Filter

The fault detection filter was introduced by Beard (Beard 1971) in his doctoral thesis

and later reflned by Jones (Jones 1973) who gave it a geometric interpretation. Since then,

the fault detection fllter has undergone many reflnements. White (White and Speyer 1987)

derived an eigenstructure assignment design algorithm. Massoumnia (Massoumnia 1986)

used advances in geometric theory to derive a complete and elegant geometric version of a

fault detection fllter and derived a reduced-order fault detector (Massoumnia et al. 1989).

Most recently, Douglas robustifled the fllter to parameter variations (Douglas 1993) and

(Douglas and Speyer 1996) and also derived a version of the fllter which bounds disturbance

transmission (Douglas and Speyer 1995a). The background of Appendix A, design methods

of Appendices B and C and the application to vehicle fault detection of Sections 2 through 5

all follow from these sources.

Common to all of these sources is an underlying structure of independent, invariant

subspaces. Most design algorithms, an exception being (Douglas and Speyer 1995a), rely

167
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on spectral methods, that is, specifying eigenvalues and eigenvectors, since these methods

lead directly to the needed fllter structure. Spectral methods, however, also limit the

applicability of fault detection fllters to linear, time-invariant systems and fllters designed

by these methods can have poor robustness to parameter variations (Lee 1994).

For these reasons, we take a difierent approach to detection fllter design. We look at the

fault detection process as a disturbance attenuation problem and convert the process into

a difierential game which leads to the flnal design. The game is one in which the player is

a state estimate and the adversaries are all of the exogenous signals, save the fault to be

detected. The player attempts to exclude the adversaries from a specifled portion of the

state-space much in the same way that the invariant subspace structure of the fault detection

fllter restricts state trajectories when driven by faults. The end result is an H∞-type fllter

which bounds disturbance transmission.

Since fault detection fllters block transmission, it would seem reasonable to expect that

in the limiting case when the H∞ transmission bound is brought to zero, the game fllter

no longer approximates, but actually becomes a fault detection fllter. We will prove that

this is indeed the case. For linear time-invariant (LTI) systems, we will show, in fact,

that the game fllter becomes a Beard-Jones fault detector in the sense of (Douglas 1993):

faults other than the one to be detected are restricted to a subspace which is invariant and

unobservable.

The method developed here has wider applicability than current techniques since time-

invariance is never assumed in the game solution. Thus, for a class of time-varying systems,

results analogous to the LTI case exist in the limit as disturbance bounds are taken to

zero. It is also possible with this method to deal with model uncertainty by treating it as

another element in the difierential game (Chichka and Speyer 1995, Mangoubi et al. 1994).

In this manner, sensitivity to parameter variations can be reduced. Finally, by using a game

theoretic approach, the designer has the freedom to choose the extent to which the game

fllter behaves as an H∞ fllter and the extent to which it behaves like a detection fllter. This

°exibility is unique to this method of fault detection fllter design.
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The development of game theoretic estimation closely followed the development of game

theoretic control theory. The most notable and the most cited (and most unreadable) work

in the latter was the paper by Doyle et al. (Doyle et al. 1989). The ascendant of the work

presented here is the paper by Rhee and Speyer (Rhee and Speyer 1991) which derived the

two Riccati solution of (Doyle et al. 1989) via the calculus of variations. It is hard to credit

the flrst derivation of the game theoretic estimator, though (Banavar and Speyer 1991) or

(Yaesh and Shaked 1993) are probable candidates.

In Sections 9.1 and 9.2, we pose a disturbance attenuation problem which models the

fault detection process for a large class of systems which includes some time-varying systems.

The solution to this problem leads to the game theoretic fault detection fllter. In Section 9.3,

we analyze su–cient conditions for our game cost to be non-positive. This will enable us

to show the existence of the fllter in the limit and analyze its structure. In Section 9.4,

we return to the LTI case and prove that the limiting detection fllter is equivalent to

the Beard-Jones fault detection fllter. In Section 9.5, we use the limiting form of the game

theoretic fllter to derive a reduced-order estimator for fault detection. Finally, in Section 9.6

we go through an example which shows that the fllter is an efiective fault detector for flnite

values of the disturbance attenuation bound and in the limit.

9.1 A Disturbance Attenuation Approach to Fault Detection

Consider a linear system in which q possible faults have been modeled:

_x(t) = A(t)x(t) +B(t)u(t) + F1(t)µ1(t) +
q∑
i=2

Fi(t)µi(t) (9.1)

y(t) = C(t)x(t) + v(t). (9.2)

It is desired to detect the appearance of µ1, the target fault, in the presence of sensor

noise, v, and the possible presence of other faults µi, i 6= 1, the nuisance faults. Following

the standard assumptions of Appendix A, we will assume that each of the Fi’s are monic

and that (C,A) is an observable pair. Also, since u is a known function of t ∈ [t0, t1], we

will drop the Bu term for convenience. We will also neglect to explicitly show the possible
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time dependence of the system matrices, though the reader should keep this possibility in

mind. For convenience, we deflne:

µ̂2 =


µ2
...
µq

 ,

and use the deflnition of F̂i (a.10) so that the state equation becomes:

_x = Ax+ F1µ1 + F̂1µ̂2

The deflnition that we propose is based upon disturbance attenuation. We use (a.11) and

deflne the corresponding residual signal z1 associated with µ1 as the output signal. A

disturbance attenuation problem would be to limit the transmission of the nuisance faults

and the sensor noise to this output. For a fault detection fllter problem we want to block

this transmission entirely.

Deflnition 9.1 (Fault Detection Filter Problem). Find an estimator such that:

‖z1‖2
‖µ̂2‖2

= 0 and
‖z1‖2
‖µ1‖2

6= 0.

Clearly, in the time-invariant case, the solution to the fault detection fllter problem

as deflned by Deflnition A.1 solves the general fault detection fllter problem that we

have deflned above. Later on, we will show that these deflnitions are equivalent in the

time-invariant case by showing that the solution to Deflnition 9.1 solves the problem deflned

by Deflnition A.1. We need this alternative deflnition to account for time-varying systems.

In such cases, we cannot talk about invariant subspaces and also observability becomes a

trickier concept. Thus instead of deflning the fllter structure, we must content ourselves

with merely describing its action.
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9.2 A Game Theoretic Filter for Fault Detection in a General Class of
Systems

We arrive at a solution to the fault detection fllter problem as deflned by Deflnition 9.1 by

flrst solving the disturbance attenuation problem. The solution to the fault detection fllter

problem then comes when we take the limit of the disturbance attenuation solution. The

results that we flnd here, however, are valuable in their own right. As we will see, the game

fllter that we get from the disturbance attenuation problem is itself a useful fllter for fault

detection.

We begin by quantifying the problem objective with a disturbance attenuation function,

the ratio of the norm of the output to the norms of the inputs. For this problem, the function

is:

Daf =

∫ t1
t0
‖Ĥ1C(x− x̂)‖2Q1

dt∫ t2
t1

[‖µ̂2‖2M2
−1 + ‖v‖2V −1 + ‖N1C(x− x̂)‖2R1

]dt+ ‖x(t0)− x̂0‖2P−1
0

where N1
∆= I − Ĥ1 and M2, V,R1, P0 are weighting matrices. The disturbance attenuation

problem is to flnd an estimator so that for all adversaries µ̂2, v ∈ L2[t1, t2], x(0) ∈ Rn:

Daf ≤ γ. (9.3)

We will refer to γ as the disturbance attenuation bound. Once again, the assumptions that

we will make are: 1) (C,A) is a an observable pair 2) Fi, i = 1 . . . q is monic 3) i, the

number of iterations of (a.9) needed to make CBi full rank is constant over the whole time

interval.

To solve (9.3), convert it into a difierential game with cost function:

J = −‖x(t0)− x̂0‖2Π0

+
∫ t1

t0

[
‖Ĥ1C(x− x̂)‖2Q1

− γ
(
‖µ̂2‖2M−1

2
+ ‖v‖2V −1 + ‖N1C(x− x̂)‖2R1

)]
dt (9.4)

Note that ƒ0
∆= γP−1

0 . We want to flnd:

min
x̂

max
v

max
µ̂2

max
x(t0)

J ≤ 0 (9.5)
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subject to:

_x = Ax+ F̂1µ̂2. (9.6)

In anticipation of the steps which will be required for the game solution, we will rewrite

the sensor noise term ‖v‖2V −1 to the equivalent ‖y − Cx‖2V −1 :

J = −‖x(t0)− x̂0‖2Π0

+
∫ t1

t0

[
‖Ĥ1C(x− x̂)‖2Q1

− γ
(
‖µ̂2‖2M−1

2
+ ‖y − Cx‖2V −1 + ‖N1C(x− x̂)‖2R1

)]
dt

This is a common step in the solution of quadratic minimization problems. The game

problem then becomes:

min
x̂

max
y

max
µ̂2

max
x(t0)

J ≤ 0.

An interpretation of the maximization of the cost with respect to y is elusive given the

measurement equation (9.2), the presence of v in (9.2), and the interplay of the difierent

players in determining the state, x. Our view is taken from (Banavar and Speyer 1991)

which looks at this extremization as incorporating a \worst-case measurement" into the

game. There are other interpretations (see for instance (Yaesh and Shaked 1993)), but

ultimately the question of proper interpretation becomes an exercise in tail-chasing since

the mechanics of the solution remains the same as does the solution itself.

An element that is missing in our problem statement (9.4), (9.5), (9.6) is the target fault,

µ1. This is not an oversight. It would seem logical to include enhancing the transmission

of µ1 as part of the game, but there is no obvious way to include such an objective in the

game cost. Moreover, extremizing the cost with respect to µ1 leads to assumptions upon the

temporal behavior of the target fault. This can be quite detrimental to fllter performance if

these assumptions are wrong (which is why fault detection fllters are designed without any

such assumptions). Thus, since µ1 is not part of the difierential game, we set it to zero for

convenience when we work through the solution. This places the burden on the designer

to make sure the set of faults that he chooses for the fllter design leads to a well-posed



     

9.2 A Game Theoretic Filter for Fault Detection in a General Class of Systems 173

problem. Well-posedness is discussed in Section 9.1 and for LTI systems is easily checked

by Equation a.7.

9.2.1 Maximization with Respect to x(t0) and µ̂2

We will solve our problem in two steps beginning with the subproblem:

max
µ̂2

max
x(t0)

J ≤ 0.

The reasoning for this order of the extremizations is given in (Banavar and Speyer 1991).

We begin by appending the dynamics of the system to the cost with a Lagrange

multiplier, λT :

J = −‖x(t0)− x̂0‖2Π0
+
∫ t1

t0

[
‖Ĥ1C(x− x̂)‖2Q1

−γ
(
‖µ̂2‖2M−1

2
+ ‖y − Cx‖2V −1 + ‖N1C(x− x̂)‖2R1

)
+ λT (Ax+ F̂1µ̂2 − _x)

]
dt (9.7)

Integrate λ _x by parts:

J = −‖x(t0)− x̂0‖2Π0
+ λ(t0)Tx(t0)− λ(t1)Tx(t1) +

∫ t1

t0

[
‖Ĥ1C(x− x̂)‖2Q1

−γ
(
‖µ̂2‖2M−1

2
+‖y − Cx‖2V −1 +‖N1C(x− x̂)‖2R1

)
+λT (Ax+ F̂1µ̂2)+ _λTx

]
dt (9.8)

and then take the variation of (9.8) with respect to µ̂2 and x(t0):

δJ = −
[
(x(t0)− x̂0)Tƒ0 + λ(t0)T

]
δx(t0)− λ(t1)T δx(t1)

+
∫ t1

t0

{[
(x− x̂)TCT ĤT

1 Q1Ĥ1C + γ(y − Cx)TV −1C − γ(x− x̂)TCTNT
1 R1N1C

+ _λT + λTA
]
δx+

[
−γµ̂T2 M−1

2 + λT F̂1

]
δµ̂2

}
dt (9.9)

The above implies that flrst-order necessary conditions for J to be maximized are:

µ̂2 =
1
γ
M2F̂

T
1 λ (9.10a)

− _λ = ATλ+ CT (ĤT
1 Q1Ĥ

T
1 − γNT

1 R1N1)C(x− x̂) + γCTV −1(y − Cx) (9.10b)

λ(t1) = 0 (9.10c)

λ(t0) = ƒ0[x(t0)− x̂0] (9.10d)
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Substituting (9.10a) into our dynamics (9.6) and using (9.10b), we obtain a two point

boundary value problem:{
_x
_λ

}
=

[
A 1

γ F̂1M2F̂
T
1

−CT (ĤT
1 Q1Ĥ

T
1 − γNT

1 R1N1 − γV −1)C −AT

]{
x
λ

}

+

{
0

CT (ĤT
1 Q1Ĥ

T
1 − γNT

1 R1N1)Cx̂− γCTV −1y

}
(9.11)

If we assume solutions x∗ and λ∗ to (9.11) and a quadratic form of the optimal return

function, then:

λ∗ = ƒ(x∗ − xp) (9.12)

where xp is a measurement dependent variable which will be shown to reduce to the estimate

of the optimal state. Using (9.12) and the flrst equation of (9.11), the second equation of

(9.11) becomes:

0 =
[

_ƒ +ATƒ + ƒA+
1
γ

ƒF̂1M2F̂
T
1 ƒ + CT

(
ĤT

1 Q1Ĥ
T
1 − γNT

1 R1N1 − γV −1
)
C

]
x∗

− _ƒxp −ƒ _xp −ATƒxp − CT (ĤT
1 Q1Ĥ

T
1 − γNT

1 R1N1)Cx̂+ γCTV −1y (9.13)

Now, add and subtract

γCTV −1Cx̂

and

[
ƒA+ CT

(
ĤT

1 Q1Ĥ
T
1 − γNT

1 R1N1 − γV −1
)
C
]
xp

to (9.13) to get:

0 =
[

_ƒ+ATƒ+ƒA+
1
γ

ƒF̂1M2F̂
T
1 ƒ+CT

(
ĤT

1 Q1Ĥ
T
1 −γNT

1 R1N1−γV −1
)
C

]
(x∗−xp)

−ƒ _xp + ƒAxp −
[
CT

(
ĤT

1 Q1Ĥ
T
1 − γNT

1 R1N1 − γCTV −1
)
C
]

(x̂− xp)

+γCTV −1(y − Cx̂) (9.14)

Thus, if we set:

− _ƒ = ATƒ + ƒA+
1
γ

ƒF̂1M2F̂
T
1 ƒ + CT

(
ĤT

1 Q1Ĥ
T
1 − γNT

1 R1N1 − γV −1
)
C (9.15)

ƒ _xp = ƒAxp−CT
(
ĤT

1 Q1Ĥ
T
1−γNT

1 R1N1−γV −1
)
C(x̂− xp)+γCTV −1(y−Cx̂) (9.16)
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(9.14) is satisfled identically. (9.15) is an estimator Riccati equation. If we set:

ƒ = γP−1,

we can convert (9.15) into a Riccati equation:

_P = PAT + PA− PCT (V −1 +NT
1 R1N1 −

1
γ
ĤT

1 Q1Ĥ
T
1 )CP + F̂1M2F̂

T
1 (9.17)

as seen in (Banavar and Speyer 1991), (Rhee and Speyer 1991) and (Doyle et al. 1989).

(9.16) looks like an estimator, but its flnal form will not become apparent until we solve

the second half of the game problem.

9.2.2 Minimization with Respect to x̂ and Maximization with Respect to y

The flrst part of our game solution led to optimal values for µ and x(t0):

µ∗ =
1
γ
F̂1M2F̂

T
1 λ

x(t0)∗ = ƒ−1
0 λ(t0) + x̂0

If we substitute these optimal values into the cost function (9.4) we obtain a new cost, „J ,

which is written as:

„J = −‖λ(t0)‖2
Π−1

0
+∫ t1

t0

[
‖x− x̂‖2

CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C
− ‖λ‖21

γ
F̂1M2F̂T1

− γ‖y − Cx‖2V −1

]
dt (9.18)

The game is then:

min
x̂

max
y

„J ≤ 0

subject to the dynamic equation (9.16). We begin towards the solution to this game by

adding the identically zero term:

‖λ(t0)‖2Π(t0)−1 − ‖λ(t1)‖2Π(t1)−1 +
∫ t1

t0

d

dt
‖λ(t)‖2Π−1dt = 0

to (9.18). After applying the boundary condition for λ at t1 (9.10c) and carrying out the

difierentiation of the ‖λ‖2Π−1 term, we get:

„J =
∫ t1

t0

[
‖(x− x̂)‖2

CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C
− ‖λ‖21

γ
F̂1M2F̂T1

− γ‖y − Cx‖2V −1

+ _λTƒ−1λT + λT _ƒ−1λ+ λTƒ−1 _λ
]
dt+ ‖λ(t0)‖2

Π−1(t0)−Π−1
0

(9.19)
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Note that (9.19) provides a boundary condition for (9.15):

ƒ(t0) = ƒ0

Applying this boundary condition and substituting the difierential equation for λ, (9.10b),

into (9.19) leads to:

„J =
∫ t1

t0

[
λT
(
−Aƒ−1 −ƒ−1AT − F̂1M2F̂

T
1 + _ƒ−1

)
λ

+ (x− x̂)TCT
(
ĤT

1 Q1Ĥ1 − γNT
1 R1N1

)
C(x− x̂)

− (x− x̂)TCT
(
ĤT

1 Q1Ĥ1 − γNT
1 R1N1

)
Cƒ−1λ

− λTƒ−1CT
(
ĤT

1 Q1Ĥ1 − γNT
1 R1N1

)
C(x− x̂)

− γ(y − Cx)TV −1(y − Cx)

+ (y − Cx)TV −1Cƒ−1λ+ λTƒ−1CTV −1(y − Cx)
]
dt (9.20)

From (9.15) the difierential equation for ƒ−1 is:

_ƒ−1 = −ƒ−1 _ƒƒ−1 (9.21a)

= ƒ−1AT+Aƒ−1+
1
γ
F̂1M2F̂

T
1 +ƒ−1CT (ĤT

1 Q1Ĥ1−γNT
1 R1N1−γV −1)Cƒ−1 (9.21b)

After we insert (9.21) into (9.20) and cancel terms, we are left with what turns out to be a

pair of quadratic terms:

„J =
∫ t1

t0

{[
ƒ−1λ− (x− x̂)

]T
CT

(
ĤT

1 Q1Ĥ1 − γNT
1 R1N1

)
C
[
ƒ−1λ−(x− x̂)

]
− γ

[
Cƒ−1λ+ (y − Cx)

]T
V −1

[
Cƒ−1λ+ (y − Cx)

]}
dt (9.22)

Now, use the solution for the optimal value of λ (9.12) and substitute into (9.22) to get:

„J =
∫ t1

t0

[
(x̂− xp)TCT

(
ĤT

1 Q1Ĥ1 − γNT
1 R1N1

)
C(x̂− xp)

− γ(y − Cxp)TV −1(y − Cxp)
]
dt (9.23)

Given the cost (9.23) and the dynamics (9.16), the solutions to this game are:

x̂∗ = xp (9.24a)

y∗ = Cxp (9.24b)
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From (9.24) we can rewrite (9.16) as:

ƒ _̂x
∗

= ƒAx̂∗ + γCTV −1(y − Cx̂∗) (9.25)

Since ƒ is positive-deflnite for γ > 0, we can rewrite (9.25):

_̂x
∗

= Ax̂∗ + γƒ−1CTV −1(y − Cx̂∗) (9.26)

Alternatively, the analyst could use (9.17) and:

_̂x
∗

= Ax̂∗ + PCTV −1(y − Cx̂∗)

This form of the fllter is equivalent to (9.26); however, experience has shown that numerical

problems are more likely to be seen when trying to flnd a solution to (9.17) than (9.15)

when γ is brought to extremely small values. For convenience, we will write x̂ instead of x̂∗

when referring to the optimal state estimate with the understanding that it is the estimate

that comes from the game solution which is being used.

9.2.3 Steady-State Results

In many cases, it is desired to extend the flnite-time solutions of game theoretic problems

to the steady-state (or inflnite horizon) condition. For linear-quadratic problems, the

detectability and stabilizablity of (C,A,B) ensures the existence of a unique, positive

semi-deflnite, stabilizing solution of the Riccati equation in steady-state. Unfortunately,

no such conditions exist for game-theoretic problems, except in special case where the A

matrix is asymptotically stable (Green and Limebeer 1995, Lemma 3.7.3).

On the other hand, when it has possible to flnd a steady-state solution to the disturbance

attenuation problem, it has been shown (Green and Limebeer 1995) that this solution will

be in the form of the estimator given by (9.26) with ƒ found via the solution of the algebraic

Riccati equation:

0 = ATƒ + ƒA+
1
γ

ƒF̂1M2F̂
T
1 ƒ + CT (ĤT

1 Q1Ĥ
T
1 − γNT

1 R1N1 − γV −1)C
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9.2.4 Finding the Limiting Solution

The solution of the fault detection fllter problem exists at the limit of the game solution

when γ is taken to zero. Finding the solution or even showing that it exists in the limit,

however, is not a straightforward matter. In both versions of the game Riccati equation,

(9.15) and (9.17), there are terms which go to inflnity as γ goes to zeroA similar limit

has been studied in the linear quadratic regulator problem (Kwakernaak and Sivan 1972)

where the cost function is always non-negative. These results are not directly applicable

here since the game cost can be either positive or negative. Furthermore, it is well known

(Doyle et al. 1989) that for game Riccati equations, γ has a greatest upper bound „gamma

at or below which the equation has no positive-deflnite solution. When γ ≤ „gamma any

number of difierent phenomena can occur, for example, eigenvalues on the imaginary axis,

which make positive-deflnite solutions impossible.

By decreasing the noise weighting V to zero along with γ, that is, V → 0 as γ → 0,

we can flnd solutions to (9.15) and (9.17) for smaller and smaller γ. While solutions are

obtainable for a range of γ ∈ (0,∞] where γ =∞ corresponds to the Kalman fllter, what

is needed is a solution for when γ = 0. The solution follows from a pair of techniques from

singular optimal control theory which are discussed in the next section.

9.3 The Limiting Case Solution via Singular Optimal Control Techniques

9.3.1 Conditions for Game Cost Non-Positivity: A Game LMI

In this section, we will flnd su–cient conditions for the non-positivity of the game cost.

These conditions fall out after we manipulate the cost function and then set x̂ to its optimal

strategy found in Section 9.1. The game cost then becomes a single quadratic form:

J(x̂, x(t0), µ̂2, v) =
∫ t1

t0
ξTWξdt

where ξ is some linear vector combination of the game players. The non-negativity of the

cost hinges on the sign deflniteness of W , giving rise to a linear matrix inequality. This
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technique was flrst seen in the singular optimal control theory (Bell and Jacobsen 1973)

and (Clements and Anderson 1978) and the derivation seen here follows in that vein.

We begin with the cost function as given by (9.7). Note that the (x − x̂) terms have

been combined:

J = −‖x(t0)− x̂0‖2Π0
+∫ t1

t0

[
‖(x− x̂)‖2

CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C
− γ‖µ̂2‖2M−1

2
− γ‖y − Cx‖2V −1

]
dt (9.27)

We now append the dynamics of the system to (9.27) through the Lagrange Multiplier

(x− x̂)Tƒ:

J = −‖x(t0)− x̂0‖2Π0
+
∫ t1

t0

[
‖(x− x̂)‖2

CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C

− γ‖µ̂2‖2M−1
2
− γ‖y − Cx‖2V −1 + (x− x̂)Tƒ(Ax+ F̂1µ̂2 − _x)

]
dt

Add and subtract to (9.8) the terms (x− x̂)TƒAx̂ and (x− x̂)Tƒ _̂x. Collect terms to get:

J = −‖x(t0)− x̂0‖2Π0
+
∫ t1

t0

{
‖(x− x̂)‖2

ΠA+CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C

−γ‖µ̂2‖2M−1
2
− γ‖y − Cx‖2V −1

+ (x− x̂)TƒF̂1µ̂2 − (x− x̂)Tƒ( _x− _̂x) + (x− x̂)T
[
ƒAx̂−ƒ _̂x

]}
dt (9.28)

Note, we have moved ƒA into the weighting of ‖(x − x̂)‖2. More terms will appear in the

weighting of ‖(x− x̂)‖2 as we manipulate the cost function. Now, integrate (x− x̂)Tƒ( _x− _̂x)

by parts:

J = −‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− x̂(t1)‖2Π(t1) +

+
∫ t1

t0

{
‖(x− x̂)‖2

Π̇+ΠA+CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C

− γ‖µ̂2‖2M−1
2
− γ‖y − Cx‖2V −1 + (x− x̂)TƒF̂1µ̂2

+ (x− x̂)T
[
ƒAx̂−ƒ _̂x

]
+ ( _x− _̂x)Tƒ(x− x̂)

}
dt (9.29)

Substitute the state equation for _x (9.6) and add and subtract x̂TATƒ(x− x̂):
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J = −‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− ^x(t1)‖2Π(t1)

+
∫ t1

t0

{
‖(x− x̂)‖2

Π̇+ΠA+ATΠ+CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1)C

− γ‖µ̂2‖2M−1
2
− γ‖y − Cx‖2V −1

+ (x− x̂)TƒF̂1µ̂2 + µ̂T2 F̂
T
1 ƒ(x− x̂)T

+(x− x̂)T
[
−ƒ _̂x+ ƒAx̂

]
+
[
−ƒ _̂x+ ƒAx̂

]T
(x− x̂)

}
dt (9.30)

We are now going to rewrite the ‖y−Cx‖2V −1 term by adding and subtracting Cx̂ inside

of the term so that it reads ‖(y−Cx̂)−C(x− x̂)‖2V −1 . Expand this quadratic term out and

collect terms so that we end up with:

J = −‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− x̂(t1)‖2Π(t1)

+
∫ t1

t0

{
‖(x− x̂)‖2

Π̇+ΠA+ATΠ+CT (ĤT
1 Q1Ĥ1−γNT

1 R1N1−γV −1)C

− γ‖µ̂2‖2M−1
2
− γ‖y − Cx̂‖2V −1 + (x− x̂)TƒF̂1µ̂2 + µ̂T2 F̂

T
1 ƒ(x− x̂)T

+ (x− x̂)T
[
−ƒ _̂x+ ƒAx̂+ γCTV −1(y − Cx̂)

]
−
[
ƒ _̂x+ ƒAx̂+ γCTV −1(y − Cx̂)

]T
(x− x̂)

}
dt (9.31)

Using (9.25) we can eliminate a pair of terms in (9.31). We are then left with a quadratric

in the form:

J =
∫ t1

t0
ξTWξdt− ‖x(t0)− x̂0‖2Π0−Π(t0) − ‖x(t1)− ^x(t1)‖2Π(t1),

where

ξ =


(x− x̂)
µ̂2

(y − Cx̂)


and

W ∆=

[
W (ƒ) 0

0 −γV −1

]
(9.32)

and where W (ƒ) is given by

W (ƒ) ∆=

[
CT
(
ĤT

1 Q1Ĥ1− γV −1− γNT
1 R1N1

)
C +ATƒ + ƒA+ _ƒ ƒF̂1

F̂ T1 ƒ −γM−1
2

]
(9.33)
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Clearly W is negative semi-deflnite for ƒ ≥ 0 such that:

W (ƒ) ≤ 0 (9.34a)

ƒ0 −ƒ(t0) ≥ 0 (9.34b)

ƒ(t1) ≥ 0 (9.34c)

Hence, we need only pay attention to the smaller LMI, W (ƒ).

For γ > 0, it is easy to see that the Riccati equation (9.15) of the previous section is

embedded in (9.33). In fact, the solution of (9.15) is the solution of W (ƒ) which minimizes

its rank (Schumacher 1983). Thus with (9.33) and (9.25), we retain the results of the

previous section, but in a form which can be easily analyzed in the limit γ → 0. If we deflne

V = limγ→0 γV , su–cient conditions for J ≤ 0 in the limit as γ → 0 are:

0 = ƒF̂1 (9.35a)

0 ≥ _ƒ +ATƒ + ƒA+ CT
(
ĤT

1 Q1Ĥ1 − V −1
)
C (9.35b)

along with the boundary conditions (9.34b) and (9.34c).

Condition (9.35a) shows that in the limit, the Riccati matrix ƒ has a non-trivial null

space which contains the image of the nuisance failure map, F̂1. Moreover, those familiar

with singular optimal control theory will recognize (9.35) as conditions seen previously for

the singular LQ regulator. See, for example, (Bell and Jacobsen 1973)). This tells us, flrst

of all, that the limiting form of this game fllter is a singular fllter. It is likely that similar

results hold for all game theoretic (H∞) fllters or controllers. Secondly, singular optimal

control provides a wealth of results and insights which we can apply to the analysis of this

fllter. This is, in fact, what we will do next.

9.3.2 A Riccati Equation for the Limiting Form of the Game Theoretic Filter

In Appendix A many components for the general fault detection flltering problem are derived

using the Goh transformation. In this section, we will again use the Goh transformation

on the nuisance fault input space to obtain a Riccati equation for the limiting case game



    

182 Chapter 9: A Game Theoretic Fault Detection Filter

fllter. The existence of the solution to this equation gives the condition for the existence

of the game solution in the limit. Because this Riccati Matrix must also have a non-trivial

null space, we will not be able to use the solution to this Riccati equation directly in a

game fllter, but this matrix will prove to be useful when we look at reduced-order detection

fllters.

We start with the game cost for the limiting case:

J∗ = lim
γ→0

J =
∫ t1

t0

(
‖x− x̂‖2

CT ĤT
1 Q1Ĥ1C

− ‖y − Cx‖2
V
−1

)
dt

where V −1 ∆= limγ→0(γV )−1. Now, deflne a new nuisance fault vector, ρ1 and a new state

vector, α1:

ρ1
∆=

∫ t

t0
µ̂2 dt (9.36)

α1
∆= x− F̂1ρ1 ≡ x−B1ρ1 (9.37)

Note that we have deflned a matrix B1
∆= F̂1. The reason for the numbered subscripts will

become apparent later. Difierentiating (9.37) produces a new state equation

_α1 = Aα1 + (AB1 − _B1)ρ1 (9.38)

and a new game cost

J∗ =
∫ t1

t0

[
‖α1 − x̂‖2CT ĤT

1 Q1H1C
+ (α1 − x̂)TCT ĤT

1 Q1Ĥ1CB1ρ1

+ρT1 B
T
1 C

T ĤT
1 Q1Ĥ1CB1ρ1 − ‖y − Cα1‖2

V
−1 − (y − Cα1)TV −1

CB1ρ1

−ρT1 BT
1 C

TV
−1(y − Cα1)− ‖ρ1‖2

BT1 C
TV
−1
CB1

]
dt (9.39)

Because Ĥ1 is a projector constructed so that Ĥ1CF̂1 = 0, the cost (9.39) is simplifled as:

J∗ =
∫ t1

t0

[
‖α1 − x̂‖2CT ĤT

1 Q1Ĥ1C
− ‖y − Cα1‖2

V
−1 − (y − Cα1)TV −1

CB1ρ1

−ρT1 BT
1 C

TV
−1(y − Cα1)− ‖ρ1‖2

BT1 C
TV
−1
CB1

]
dt.

Now, if BT
1 C

TV
−1
CB1 > 0, we can solve the following difierential game:

min
x̂

max
ρ1

J∗ ≤ 0
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subject to (9.38). Because of its similarity to the derivation given in Section 9.2, we do not

provide the solution here. A starting point is to convert y −Cα into (y −Cx̂) +C(α− x̂).

The solution leads to the Riccati equation:

− _S = SA+ATS + CT
(
ĤT

1 Q1Ĥ1 − V −1
)
C

+
[
S(AB1− _B1)−CTV −1

CB1

]
(BT

1 C
TV
−1
CB1)−1

[
(AB1− _B1)TS−BT

1 C
TV
−1
C
]

(9.40)

with the boundary condition:

S(t0) = 0. (9.41)

It may happen, however, that CB1 = 0, which would make BT
1 C

TV
−1
CB1 = 0 and

which would invalidate our Riccati equation (9.40). The remedy to this situation is to

perform the same transformation as before but on the ρ1 input space via the recursion

equations:

ρi =
∫ t

t0
ρi−1dt

Bi = ABi−1 − _Bi−1

αi = x−Biρi.

The process stops once a Bi is found such that CBi 6= 0. The game is then:

min
x̂

max
ρi

J∗ =
∫ t1

t0

[
‖αi − x̂‖2CT ĤT

1 Q1H1C
− ‖y − Cαi‖2

V
−1 − (y − Cαi)TV −1

CBiρi

−ρTi BT
i C

TV
−1(y − Cαi)− ‖ρi‖2

BTi C
TV
−1
CBi

]
dt (9.42)

subject to:

_αi = Aαi + (ABi − _Bi)ρi. (9.43)

The general form of the Goh Riccati equation is then:

− _S = SA+ATS + CT (ĤT
1 Q1Ĥ1 − V −1)C

+
[
S(ABi− _Bi)−CTV −1

CBi
]
(BT

i C
TV
−1
CBi)−1

[
(ABi− _Bi)TS−BT

i C
TV
−1
C
]

(9.44)

The following theorem shows that (9.44) is a Riccati equation for the limiting form of

the game theoretic fllter.
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Theorem 9.1. The solution S to (9.44) satisfles the su–cient conditions for non-positivity

of the game cost, that is, (9.35a) and (9.35b).

Proof. (The proof follows Bell and Jacobson (Bell and Jacobsen 1973, pg. 121). Due to

its importance, we list it here.) Clearly, (9.44) implies that:

_S + SA+ATS + CT (ĤT
1 Q1Ĥ1 − V −1)C ≤ 0, ∀t ∈ [t0, t1]. (9.45)

which is (9.35a). Now, pre-multiply (9.44) by BT
i and add − _BT

i S to both sides of the

resulting equation to get:

−BT
i

_S − _BT
i S = BT

i SA− _BT
i S +BT

i A
TS −BT

i C
TV
−1
C

+BT
i

[
S(ABi− _Bi)−CTV −1

CBi
]
(BT

i C
TV
−1
CBi)−1

[
(ABi− _Bi)TS−BT

i C
TV
−1
C
]

(9.46)

Rearranging terms leads to a difierential equation in BT
i S with (9.41) as the boundary

condition:

− d

dt
[BT

i S] = BT
i SA

+BT
i S(ABi − _Bi)(BT

i C
TV
−1
CBi)−1

[
(ABi − _Bi)TS − CTV −1

CBi
]
. (9.47)

The solution to (9.47) given (9.41) is:

BT
i (t)S(t) = 0, ∀t ∈ [t0, t1] (9.48)

The necessary condition (9.35a) actually requires that F̂ T1 S(t) = 0. However, B1 = F̂1 and

the following proposition tell us that (9.48) implies (9.35a).

Proposition 9.2. Let i ∈ N be the smallest number such that CBi 6= 0. Then, the

solution, S, to (9.81) is such that

SBj = 0, ∀j ≤ i, ∀t ∈ [t0, t1]

Proof. See (Moylan and Moore 1971). The proof given there is identical to the one just

used to show that SBi = 0. Induction is then used to show that SBj = 0 is also true for

all j < i.
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9.4 An Unobservability Subspace Structure in the Limit

In this section, we return to time-invariant case and show that for these systems the solution

to the fault detection fllter problem as stated in Deflnition 9.1 also solves the problem as

stated by Deflnition A.1. Thus, we can conclude that the limiting form of the game theoretic

fllter is a Beard-Jones fault detection fllter.

Beard-Jones fllters are constructed from invariant subspaces and so we will need to flnd

an invariant subspace that is constructed by the game fllter in order to prove our claim.

This will require that we not only restrict ourselves to the time-invariant case, but also

that we restrict our attention to the inflnite-horizon problem. Hence, _ƒ = 0 and (9.35b)

becomes:

ATƒ + ƒA+ CT (ĤT
1 Q1Ĥ1 − V −1)C ≤ 0 (9.49)

When we specialize our analysis in this manner, we flnd that the required invariant subspace

is the kernal of ƒ.

Theorem 9.3. Ker ƒ is a subspace which solves the fault detection fllter problem

Proof. The three conditions listed by Deflnition A.1 are subspace inclusion, output

separability and (C,A)-invariance. Condition (9.35a) clearly implies subspace inclusion.

Since we are trying to detect only one fault, output separability is satisfled trivially. Thus,

all that remains is to show (C,A)-invariance.

From Wonham (Wonham 1985), a necessary and su–cient condition for Ker ƒ to be

(C,A)-invariant is that:

A(Ker ƒ ∩KerC) ⊂ Ker ƒ

Therefore, let x ∈ A(Ker ƒ ∩KerC). That is, there exists a vector ς such that:

x = Aς and ƒς = Cς = 0.

Now consider (9.35b). If we post-multiply (9.35b) by ς we get:

ƒAς ≤ 0 ⇒ ςTATƒAς ≤ 0.
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Since ƒ ≥ 0, this means that:

ςTATƒAς = 0.

which implies that:

ƒAς = ƒx = 0⇒ x ∈ Ker ƒ

Therefore, A(Ker ƒ ∩KerC) ⊂ Ker ƒ and so Ker ƒ is (C,A)-invariant.

Remark 1. In practice, it is not necessary to use the limiting form of the fllter. In many

H∞ designs, γ is not taken to its smallest possible value, but left at one which results in

an acceptable compromise between all of the (usually competing) design objectives. The

virtue of a game theoretic approach to fault detection fllter design is that it provides a knob

with which to make the fllter more like a Beard-Jones fllter (small γ and small V ) or more

like a sensor noise attenuating H∞ fllter (large γ and V ).

Remark 2. It should be noted that a Beard-Jones fault detection fllter can detect all of

the µj ’s. The fllter that we propose here can detect only one fault.

Remark 3. Lee and Gibson derive a fllter for fault detection via a minimax solution

in (Lee 1994). Their results are similar to ours except that they do not investigate the

relationship between their fllter and fault detection fllters and they do not look at limiting

solutions.

In Section 9.1 we noted that unobservability subspaces are used in current fault detection

fllter design methods because they allow the designer to specify (within complex conjugate

symmetry) all of the eigenvalues of the fllter. Such design freedom exists with these

subspaces because they include any invariant zero directions which arise out of the triple

(C,A, F̂1). It remains to be seen where the game theoretic fllter places invariant zeros. If

all of the zeros are placed in Ker ƒ, then Ker ƒ would be a detection space since it would

be a (C,A)-invariant subspace containing the invariant zeros. It turns out, however, that

only the right-half plane and purely imaginary zeros are contained in Ker ƒ.
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Theorem 9.4. Let V+ be the subspace spanned by the invariant zero directions that

correspond to the invariant zeros lying in the right-half plane. Let V0 be the corresponding

subspace for purely imaginary zeros. The (C,A)-invariant subspace, Ker ƒ, created by the

game-theoretic fault detection fllter is such that

V+ ⊂ Ker ƒ.

If (A, F̂1) is stabilizable, then

V+ + V0 ⊂ Ker ƒ

Proof. Our proof is essentially the same as the one given in (Francis 1979), though

modifled to flt the particulars of our problem. The arguments that we present here rely on

geometric control theory, which means that we will have to spend a fair amount of time

deflning subspaces and mappings between these subspaces. Once this is done, however, the

actual proof comes together quickly.

We begin by deflning a new subspace, V∗, the maximal (A, F̂1)-invariant subspace

contained in KerC. V∗ is the dual of the minimal (C,A)-invariant subspace W∗ deflned

by Theorem A.1 and in a similar manner it can be found as the limit of an iteration

(Wonham 1985):

V0 = KerC

Vi+1 = KerC ∩A−1(Im F̂1 + Vi)

The notation A−1 should be understood as an inverse mapping and not an inverse of the

matrix A. That is:

A−1(Im F̂1 + Vi) ∆=
{
x ∈ X : Ax ∈ Im F̂1 + Vi

}
To be (A, F̂1)-invariant means that if µ were a control input then for any x(t0) ∈ V∗ there

exists a matrix K such that µ = Kx and:

x(t) = eA+F̂1Kx(t0) ∈ V∗ ∀t ∈ [t0, t1].
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This is not to say that we are specifying the time history of µ(t) to be a linear feedback of

the states. It is just a way of illustrating the meaning of V∗. In fact we do not need all of

the space V∗, but a portion of it. This portion, it turns out, corresponds to the invariant

zeros. We deflne the following factor spaces:

X = X/(V∗ ∩W∗)

V = V∗/(V∗ ∩W∗)

The signiflcance of these factor spaces is through the relationship between V and the

(C,A, F̂1) invariant zeros. If M is the failure input space and K : M → X is a feedback

matrix which makes V∗ an (A, F̂1)-invariant subspace, the spectrum of A+ F̂1K induced on

V is precisely the set of invariant zeros of the triple (C,A, F̂1). The invariant zero directions

span V. Given that we are trying to prove a result about the invariant zeros, the space V

will clearly play a key role in our proof.

The equivalence of V and the space spanned by the invariant zero directions follows

from a pair of results from geometric control theory. The flrst, which can be found in

(Morse 1973), is that the space V∗ ∩W∗ is equal to the maximal controllability subspace,

which we will label R∗. R∗ is the largest (A, F̂1)-invariant subspace on which the spectrum

of A + F̂1K can be arbitrarily specifled, hence R∗ ⊆ V∗. Moreover, R∗ is the dual to the

unobservability spaces, or detection spaces, which we described earlier. The second result

is that the factor space V∗/R∗, which is our space V, is the space spanned by the invariant

zero directions. This result can be found in many places, in particular (Wonham 1985).

Deflne V+ to be the subspace of V on which the restriction of A+F̂1K yields eigenvalues

with positive real parts. V0 is the corresponding space for purely imaginary eigenvalues and

V − the space for eigenvalues with negative real parts. Let M : X → X be the canonical

projection. Therefore:

V+ = MV+, V0 = MV0, V − = MV −

and

V = V+ + V0 + V −.
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Finally, let L : V → X and L : V → X be natural insertions.

To aid our understanding, we will make use of a commutative diagram. Commutative

diagrams are a common tool in abstract algebra and show, pictorily, the relationships

between the difierent subspaces and the maps which take vectors from one space to another.

For this proof the corresponding commutative diagram is given by Figure 9.1.

C

M

L

A+F1K

AK

C

AK

M

L

Figure 9.1: Commutative diagram for fault detection fllter structure.

Through the actions of M and L on the invariant subspaces X and V we can infer the

existence of a number of induced mappings. AK : X → X is the map induced by A+ F̂1K

on X . From Figure 9.1, AK is related to A+ F̂1K via:

(A+ F̂1K)M = MAK (9.50)

AK is the restriction of AK to V. Its existence is guaranteed by the AK-invariance of V

and it is related to AK by:

L AK = AKL (9.51)
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Finally, the map C is the unique solution to:

CM = C (9.52)

Its existence and uniqueness is guaranteed by the fact that (V∗ ∩W∗) ⊂ KerC.

We can now begin with the actual proof. We begin by asserting that:

(V∗ ∩W∗) ⊂ Ker ƒ. (9.53)

We know that this is true because Ker ƒ is a (C,A)-invariant subspace containing the range

of F̂1 and W∗ is the smallest of all such subspaces. Hence, W∗ ⊂ Ker ƒ, which implies

(9.53). From (9.53) we can assert that there exists a unique symmetric matrix ~ƒ such that:

ƒ = MT ~ƒM. (9.54)

Using (9.54),(9.50), and (9.52), we can rewrite (9.49) as:

MT
[
A
T
K

~ƒ + ~ƒAK + C
T (ĤT

1 Q1Ĥ1 − V −1)C
]
M ≤ 0

Because M is a canonical projector, it has a right inverse which means that we can rework

the above inequality into:

A
T
K

~ƒ + ~ƒAK + C
T (ĤT

1 Q1Ĥ1 − V −1)C ≤ 0 (9.55)

We need now need to go one step further and consider the system restricted to the

subspace V. Pre-multiply (9.55) by L
T and post-multiply by L. Since L is insertion map

of a space which lies in KerC, it follows that C L = 0. Thus, from (9.51) we can rewrite

(9.55) as:

A
T

KL
T ~ƒL+ L

T ~ƒL AK ≤ 0 (9.56)

Now, let λj be the jth eigenvalue ofAK such that Reλ > 0 and let zji0 , ji = 1 . . . ji0 . . . αj

be one of the corresponding generalized eigenvectors. Here αj is the algebraic multiplicity

of λj . Pre-multiply (9.56) by z∗ji0 , the conjugate transpose of zji0 , and post-multiply by zji0
to get:

z∗ji0

(
A
T

KL
T ~ƒL+ L

T ~ƒL AK

)
zji0 = (2 Reλ) z∗ji0L

T ~ƒLzji0 ≤ 0.
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The latter inequality implies that ~ƒLzji0 = 0 since ~ƒ is positive semi-deflnite. As stated

earlier, the eigenvalues of AK are the invariant zeros of the triple (C,A, F̂1), meaning that

Lzji0 is the invariant zero direction. We have just shown that this direction lies in the

kernal of ~ƒ which is su–cient to claim that it lies in the kernal of ƒ itself. Since zji0 was

chosen arbitrarily out of the set of generalized eigenvalues, this holds for all zji in the set.

Since λj was chosen arbitrarily out of the set of unstable eigenvalues of AK , this holds for

all such eigenvalues. This proves the flrst half of our theorem.

To prove the second half of our theorem we need to make the additional assumption

that (A, F̂1) is stabilizable. This new assumption is fairly benign and was also made by

(Banavar and Speyer 1991). (A, F̂1) stabilizable implies that (A+ F̂1K, F̂1) and (AK ,MF̂1)

are stabilizable. The latter is proven in (Wonham 1985)). Now let λk = jω be an eigenvalue

of AK and let zjk0
, jk = 1 . . . jk0 . . . αk be one of the corresponding generalized eigenvectors.

Pre-multiplying (9.55) by z∗jk0
L
T and post-multiplying by Lzjk0

leads to:

z∗jk0
L
T
(
AK ~ƒ + ~ƒAK

)
Lzjk0

= (2 Reλ) z∗jk0
L
T ~ƒLzjk0

= 0

which implies

z∗jk0
L
T
(
AK ~ƒ + ~ƒAK

)
= z∗jk0

L
T ~ƒ(−λI +AK) = 0

We also know that ~ƒF̂1M = 0 since ƒF̂1 = 0. Hence we can augment the above equation

to read:

z∗jk0
L
T ~ƒ

[
AK − λI, F̂1M

]
= 0

This implies that z∗jk0
L
T ~ƒ = 0, since the stabilizability assumption implies [AK − λI, F̂1M ]

is full rank. From this we can conclude that Lzjk0
∈ Ker ~ƒ which, by using the same

arguments as before, leads to the conclusion that the invariant zero directions corresponding

to the purely imaginary zeros lie in the kernal of ƒ.

Even though invariant zeros will not destabilize the game-theoretic fllter as was just

shown, it is still possible that a left-half plane zero could be in a location which is undesirable.

This potential shortcoming is mitigated somewhat by the fact that zeros are rare for

non-square systems.
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9.5 Fault Detection with the Limiting Form of the Game Theoretic Filter

In this section, we will show that a reduced-order fault detector can be derived from the

limiting form of the game theoretic fllter. The results from this section are more easily

applied to time-invariant systems, but we will give an overview of how to apply these

results to time-varying systems.

The reduced-order fllter falls out from the fact that positive semi-deflnite, symmetric

matrices such as ƒ always have non-singular, transformations - say ¡ - that are orthonormal

(¡T¡ = I) and that convert the matrix into the form:

¡ƒ¡T =

[
ƒ 0
0 0

]
, (9.57)

where ƒ is positive deflnite. From (9.57), we can derive transformations on system matrices

which will allow us to factor out the portion of the state-space which corresponds to Ker ƒ.

First deflne:

C¡T =
[
C1 C2

]
, ¡A¡T =

[
A11 A12

A21 A22

]
, ¡F̂1 =

[
F11

F12

]

Because ƒF̂1 = 0 implies ¡ƒF̂1 = 0, we can immediately conclude that:

¡ƒ¡T¡F̂1 =

[
ƒ 0
0 0

] [
F11

F22

]
= ƒF11 = 0.

Which, since ƒ is positive-deflnite, implies:

F11 = 0.

Now, using ¡ we can partition the state-space as:

η̂ =

{
η̂1

η̂2

}
= ¡x̂.

Pre-multiply (9.25) by ¡ and make use of the identity ¡T¡ = I to get:

(¡ƒ¡T ) _̂η = (¡ƒ¡T )(¡A¡T )η̂ + ¡CTV −1(y − C¡T η̂) (9.58)



   

9.5 Fault Detection with the Limiting Form of the Game Theoretic Filter 193

The transformed fllter equation (9.58) is seen to be:[
ƒ 0
0 0

]{
_̂η1
_̂η2

}
=

[
ƒ 0
0 0

] [
A11 A12

A21 A22

]{
η̂1

η̂2

}

+

{
CT1
CT2

}
V
−1

(
y −

[
C1 C2

]{ η̂1

η̂2

})
(9.59)

From (9.59) we get a dynamic equation for η̂1:

ƒ _̂η1 = ƒA11η̂1 + ƒA12η̂2 + CT1 V
−1(y − C1η̂1 − C2η̂2) (9.60)

and a static equation for η̂2:

η̂2 = (CT2 V
−1
C2)−1CT2 V

−1(y − C1η̂1). (9.61)

Deflne

K ∆= (CT2 V
−1
C2)−1CT2 V

−1 (9.62)

so that the substitution of (9.62) and (9.61) into (9.60) gives us an estimator for η̂1:

_̂η1 = A11η̂1 +
[
ƒ−1

CT1 V
−1(I − C2K) +A12K

]
(y − C1η̂1). (9.63)

To see that the reduced-order estimator (9.63) is unafiected by the nuisance fault µ̂2,

we will derive the error equation for the reduced-order fllter. Deflne:

η =

{
η1

η2

}
∆= ¡x, e1

∆= η̂1 − η1, e2
∆= η̂2 − η2

We begin by premultiplying the dynamic equation (9.6) by the Riccati matrix ƒ. Since

ƒF̂1 = 0, we get:

ƒ _x = ƒAx.

This can be pre-multiplied by ¡ and manipulated into:[
ƒ 0
0 0

]{
_η1

_η2

}
=

[
ƒ 0
0 0

] [
A11 A12

A21 A22

]{
η1

η2

}
. (9.64)

As with the estimator equation, (9.64) shows that only a portion of the state-space possesses

dynamics:

ƒ _η1 = ƒA11η1 + ƒA12η2 (9.65)
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Using (9.65) to get an error equation would leave terms in η2 or e2. In anticipation of this,

we transform the measurement equation:

y = Cx+ v = C¡T¡x+ v = C1η1 + C2η2 + v (9.66)

and use (9.61) to solve for e2:

e2 = (CT2 V
−1
C2)−1(CT2 V

−1
C1e1 + CT2 V

−1
v) = K(C1e1 − v) (9.67)

Subtract (9.65) from (9.60) and substitute (9.66) for y:

ƒ _e1 = ƒA11e1 + ƒA12e2 + CT1 V
−1
C1e1 + CT1 V

−1
C2e2 + CTV

−1
v

Using (9.67) and collecting terms, we can turn the previous equation into:

_e1 =
[
A11 −ƒ−1

CT1 V
−1(I − C2K)C1 −A12KC1

]
e1

+
[
ƒ−1

CT1 V
−1(I − C2K) +A12K

]
v. (9.68)

Note that the nuisance fault, µ̂2, appears nowhere in the estimator (9.63) nor in the

error equation (9.68). Thus, in the limit, we get a reduced-order estimator completely

unin°uenced by the nuisance faults. The term (CT2 V
−1
C2)−1 appears in various places in

the reduced-order estimator. This inverse will always exist since V is positive deflnite and

since the assumption of (C,A) observability guarantees that C2 will have full column rank.

Remark 4. The reduced-order fllter derived here is similar to the residual generator

derived by Massoumnia, et al. in (Massoumnia et al. 1989). An important difierence,

however, is that Massoumnia begins his design process by factoring out the reachable

space of the nuisance faults. As a result, he has the freedom to use any kind of fllter

design technique for the lower dimensional state-space. The trade-ofi, however, is that the

system reduction in Massoumnia’s fllter is sensitive to the inexactness of the plant model.

Variations in the plant will change the reachable subspace and may, as a result, degrade

the performance of the reduced-order detector. In the game fllter, the order reduction
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comes at the end of the design process. Thus, there is no design freedom left to tune the

reduced-order fllter, but the game formulation used to obtain the fllter makes it possible to

account for model uncertainties.

The Goh transformation and corresponding Riccati equation greatly extend our ability

to analyze the reduced-order estimator. In fact with the Goh Riccati equation we can show

that there always exists a stabilizing solution for the reduced order estimator. Applying the

transformation ¡ to (9.44), we get:

−¡ _S¡T = ¡S¡T¡A¡T + ¡AT¡T¡S¡T

+ ¡CT (ĤT
1 Q1Ĥ1 − V −1)C¡T + „¡

(
BT
i C

TV
−1
CBi

)−1 „¡T

where, for notational convenience, „¡ is deflned as

„¡ =
[
¡S¡T

(
¡A¡T¡Bi − ¡ _Bi

)
− ¡CTV −1

C¡T¡Bi
]

Deflne:

¡Bi =

[
B11

B12

]
.

As in section 9.4, the necessary condition SBi = 0 will lead to B11 = 0 since ¡S¡T¡Bi =

0 ⇒ SB11 = 0 and S is positive-deflnite. Also, if we carry the transformation through,

a number of terms fall out because the projector Ĥ1 has been constructed so that:

Ĥ1CBi = 0 ⇒ Ĥ1C¡T¡Bi = 0

⇒
[
Ĥ1C1 Ĥ1C2

] [ 0
B12

]
= 0

⇒ Ĥ1C2B12 = 0 (9.69)

We we show later that Bi can always be augmented so that B12 is an invertible square

matrix. Hence (9.69) implies:

Ĥ1C2 = 0. (9.70)

Using (9.70) and working through all of the transformations leads to:[
− _S 0
0 0

]
=

[
SA11 SA12

0 0

]
+

[
AT11S 0
AT12S 0

]
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+

([
SA12B12 − S _B11

0

]
−
[
CT1 V

−1
C2B12

CT2 V
−1
C2B12

])
(BT

12C
T
2 V
−1
C2B12)−1

×
([
BT

12A12S − _B11S 0
]
−
[
BT

12C
T
2 V
−1
CT1 BT

12C
T
2 V
−1
CT2

])
+

[
CT1 (ĤT

1 Q1Ĥ1 − V −1)C1 −CT1 V
−1
C2

−CT2 V
−1
C1 −CT2 V

−1
C2

]
(9.71)

From (9.71) we get three equations:

− _S = CT1 (ĤT
1 Q1Ĥ1 − V −1)C1 + SA11 +AT11S

+
(
SA12B12 − S _B11 − CT1 V

−1
C2B12

) (
BT

12C
T
2 V
−1
C2B12

)−1

×
(
SA12B12 − S _B11 − CT1 V

−1
C2B12

)T
(9.72)

0 = −CT1 V
−1
C2 + SA12 −

(
SA12B12 − S _B11 − CT1 V

−1
CT2 B12

)
×
(
BT

12C
T
2 V
−1
C2B12

)−1
BT

12C
T
2 V
−1
C2 (9.73)

0 = −CT2 V
−1
C2 + CT2 V

−1
C2B12

(
BT

12C
T
2 V
−1
C2B12

)−1
BT

12C
T
2 V
−1
C2. (9.74)

However, if we post-multiply (9.74) by B12 and cancel terms we obtain the identity 0 = 0.

If we post-multiply (9.73) by B12 we obtain:

0 = S _B11 ⇒ _B11 = 0. (9.75)

Thus, we need only (9.72), which thanks to (9.75) can be simplifled to:

− _S = CT1 (ĤT
1 Q1Ĥ1 − V −1)C1 + SA11 +AT11S +

(
SA12B12 − CT1 V

−1
C2B12

)
×
(
BT

12C
T
2 V
−1
C2B12

)−1 (
SA12B12 − CT1 V

−1
C2B12

)T
. (9.76)

Now if i=1, then Bi = F̂1 and the rank of F̂1 equals the dimension of the kernal of S.

B12 = F12 will then be square and, moreover, it will be invertible since F̂1 was assumed

monic. Given this, we can simplify (9.76) to:

− _S = CT1

(
ĤT

1 Q1Ĥ1 − V −1
)
C1 + SA11 +AT11S

+
(
SA12 − CT1 V

−1
C2

) (
CT2 V

−1
C2

)−1 (
SA12 − CT1 V

−1
C2

)T
(9.77)

S(t0) = 0 (9.78)

where the boundary condition comes from (9.41). This leads us to the key result of this

section.
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Theorem 9.5. The solution S to (9.77) gives a stabilizing solution for the reduced-order

estimator (9.63).

Proof. Using the same transformation to derive both (9.77) and (9.63) will ensure that

S is of proper dimension for (9.63). Substitute S into (9.63) directly for ƒ. The resulting

estimator is:

_̂η1 =
(
A11 −

[
S
−1
CT1 V

−1(I − C2K) +A12K
]
C1

)
η̂1 +

[
S
−1
CT1 V

−1(I − C2K) +A12K
]
y.

where K ∆= (CT2 V
−1
C2)−1CT2 V

−1. Clearly, the stability of the estimator depends upon the

closed-loop state matrix, (A11 − [S−1
CT1 V

−1(I −C2K) +A12K]C1). Now, if we go back to

(9.77), multiply out the quadratic, and use the deflnition for K, we get:

− _S = S(A11 −A12KC1) + (A11 −A12KC1)TS

+ CT1

[
ĤT

1 Q1Ĥ1 − V −1(I − C2K)
]
C1 + SA12(CT2 V

−1
C2)−1AT12S. (9.79)

If we add and subtract CT1 V
−1(I − C2K)C1 to (9.79) and rearrange terms we get:

− _S = S
[
A11 −A12KC1 − S−1

CT1 V
−1(I − C2K)C1

]
+
[
A11 −A12KC1 − S−1

CT1 V
−1(I − C2K)C1

]T
S

+ CT1

[
ĤT

1 Q1Ĥ1 + V
−1(I − C2K)

]
C1 + SA12(CT2 V

−1
C2)−1AT12S. (9.80)

Note that CT1 V
−1(I − C2K)C1 is symmetric. (9.80) implies:

_S + S
[
A11 −A12KC1 − S−1

CT1 V
−1(I − C2K)C1

]
+
[
A11 −A12KC1 − S−1

CT1 V
−1(I − C2K)C1

)T
S ≤ 0,

which by Lyapunov’s direct method (Brogan 1991) implies that

A11 −A12KC1 − S−1
CT1 V

−1(I − C2K)C1

is stable. For time-invariant systems, this implies that the closed-loop eigenvalues lie in the

open left-half plane.
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What happens, however, when i > 1 and dim(KerS) > Rank Bi? The matrix B12 will

no longer be square and the reduced-order Riccati equation will be stuck in the form of

(9.76) which is not the same as what is needed in the proof for stability (9.77). It would

seem that we cannot guarantee stability in the general case.

It turns out, however, that by augmenting the failure map in the original problem

statement, we can always convert the reduced-order Riccati equation into the desired form

(9.77). The necessary augmentation turns out to be:

F 1 =
[
Bi Bi−1 . . . B1

]
The new game problem for the limiting case is:

min
x̂

max
µ2

J∗ =
∫ t1

t0

[
‖x− x̂‖2

CT ĤT
1 Q1Ĥ1C

+ (x− x̂)TCT ĤT
1 Q1Ĥ1CF 1µ2

+ ‖µ2‖2FT1 CT ĤT
1 Q1Ĥ1CF 1

− ‖y − Cx‖2
V
−1 − (y − Cx)TV −1

CF 1µ2

− µT2 F
T
1 C

TV
−1(y − Cx)− ‖µ2‖2FT1 CTV −1

CF 1

]
dt

subject to:

_x = Ax+ F 1µ2

where µ2 is the augmented failure signal which has as many inputs as there are columns in

F 1. Note, that here we have gone back to the pre-transformed problem where the state is x,

not αi. We will show that this new problem leads to a Riccati equation which is equivalent

to (9.44). In this equation, however, the reduced-order version is easily seen to reduce to

the desired form (9.77). The equivalence of the two equations then implies that the same

reduced form holds for both.

The augmented failure map, F 1 is such that CF 1 6= 0, so the transformation process

converges after one iteration. The solution to this game leads to a Goh Riccati equation:

− _S = SA+ATS + CT (ĤT
1 Q1Ĥ1 − V −1)C

+
[
S(AF 1 − _F 1)− CTV −1

CF 1

]
(F T1 C

TV
−1
CF 1)−1

×
[
(AF 1 − _F 1)TS − F T1 CTV

−1
C
]

(9.81)
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with a boundary condition given by (9.41). The solution, S, to (9.81) is such that

dim(KerS) = RankF 1.

Hence, after the transformation and deflning:[
F 11

F 12

]
= ¡F 1,

the reduced-order Riccati equation:

− _S = CT1

(
ĤT

1 Q1Ĥ1 − V −1
)
C1 + SA11 +AT11S

+
(
SA12F 12−CT1 V

−1
C2F 12

)(
F
T
12C

T
2 V
−1
C2F 12

)−1(
SA12F 12−CT1 V

−1
C2F 12

)T
.

can be simplifled to (9.77) because F 12 is square and invertible. We know that F 12 is square

and invertible because the construction of F 1 ensures that F 1 has full column rank and that

the size of Ker S, which determines the order reduction, is equal to this column rank.

Proposition 9.6. The Goh Riccati equation of the augmented system (9.81) is equivalent

to the Goh Riccati equation of the original system (9.44).

Proof. It is immediate that

CF 1 = C
[
Bi Bi−1 . . . B1

]
= CBi (9.82)

If we examine the term SAF i − _F 1 in (9.81):

S(AF 1 − _F 1) = SA [Bi, Bi−1, . . . , B1] + S
[

_Bi, _Bi−1, . . . , _B1

]
=

[
SABi − S _Bi, SABi−1 − S _Bi, . . . , SAB1 − S _B1

]
=

[
SABi − S _Bi, SBi, SBi−1, . . . , SB2

]
.

Because of Proposition 9.2, this simplifles to

S(AF 1 − _F 1) = S(ABi − _Bi). (9.83)

Given, (9.82) and (9.83), the Goh Riccati equation for the augmented system (9.81) reduces

to (9.44).
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Remark 5. The proposed \augmentation" is simply a restatement of the problem.

Reduced-order fllters for the time-varying case are much harder to come by since the

transformation matrix, ¡, will now be a function of time. In this case, the only likely

option left to the analyst is to use the results of (Oshman and Bar-Itzhack 1985) which give

difierential equations for the eigenvectors and eigenvalues of the solution to a time-varying

Riccati equation. From here the reduced-order Riccati matrix, the transformed system

equation and flnally the reduced-order fllter can be formed through a transformation matrix

based upon the eigenvectors. Needless to say, the computation required here will be quite

intensive. The state and measurement matrices will also have to be transformed at each

time step and only then can the fllter be formed and propagated. The point here is that it

is possible to flnd a reduced fllter for the time-varying case, though the efiort may outweigh

the beneflts. Since the full-order fllter is always available, this is not a serious problem.

The analyst has many options when designing a game theoretic fllter. In the case

of the full-order fllter he has the freedom to choose the difierent weighting matrices and

γ. For reduced-order fllters, he can use either the solution to the Goh Riccati equation

(9.44) or the solution of linear matrix inequality (9.33) with γ = 0 to flnd the needed

transformation matrix and reduced-order fllter gain. He also has the reduced-order Riccati

equation (9.77). Moreover, he can mix the two approaches, for example, by using the LMI

to flnd the transformation matrix and using the reduced-order Goh Riccati equation to flnd

the gain. This °exibility is important, because the solution to the Goh equations may be

ill-conditioned when several iterations of the Goh transformation are needed to generate

the Riccati equation. The appearance of powers of A in the resulting equation may cause

problems with the numerical solution.

9.6 Application to AVCS: An Engine Air Mass Sensor Fault Detection
Filter

To demonstrate the efiectiveness of the game theoretic fllter, we will apply our results

to an example derived from (Douglas et al. 1995). In that report, a fault detection and
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identiflcation system consisting of a bank of Beard-Jones fault detection fllters was designed

a for a single automobile using the methodology of (Douglas and Speyer 1996). Since we

are only trying to provide a design example, we will not attempt to repeat the entire FDI

system construction of (Douglas et al. 1995), but will merely design a game theoretic fllter

for one of the subproblems given in (Douglas et al. 1995): the monitoring of the engine air

mass sensor.

In (Douglas et al. 1995), the nonlinear dynamics of a single vehicle was linearized about

at straight line path at the constant speed of 25 m
sec . The resulting linear dynamics were then

further reduced via spectral separation and balanced realizations until a 2-input, 7-output,

7th -order state-space model representing the longitudinal dynamics was found:

_x = Ax+Bu

y = Cx+Du+ v.

The measurements are:

y =



ym
yω
yẍ
yz̈
yq
yyfs
yyrs



Engine Manifold Air Mass (kg)
Engine Speed ( rad

sec )
longitudinal acceleration ( m

sec2 )
heave acceleration ( m

sec2 ).
Pitch Rate ( rad

sec ).
Forward Symmetric Wheel Speed ( rad

sec ).
Rear Symmetric Wheel Speed ( rad

sec ).

(9.84)

The inputs are:

u =

{
α
β

}
Throttle Angle (deg)
Brake Torque (N-m)

(9.85)

Because of the balanced realization, the states have no physical meaning.

In all, there are 9 possible actuator/sensor faults. As we discussed earlier, the sensor

faults will require detection spaces which are at least 2nd -order. Actuator faults typically

need no more than a 1st -order detection space, but because of the direct feedthrough

matrix D, the actuator faults in this example will require 3rd -order detection spaces. See

(Douglas et al. 1995) for details. Given that we have only 7 states, we will not be able to

monitor all of the sensor and actuator faults with a single fllter. In (Douglas et al. 1995),



   

202 Chapter 9: A Game Theoretic Fault Detection Filter

the 9 failures were divied up among 4 fault detection fllters with some of the failures included

in more than one fllter for dynamical reasons. To keep our example simple, we will apply

the game theoretic fllter to only one of the failure sets, which is designated \Filter 1" in

(Douglas et al. 1995). In that fllter, the following three failures were grouped together:

Fym : Air Mass Sensor Failure

Fyω : Engine Speed Sensor Failure

Fyẍ : Forward Acceleration Sensor Failure

In this example we will attempt to detect the air mass sensor failure, µym , given the

possible presence of an engine speed sensor failure, µyω , and forward acceleration sensor

failure, µyẍ . For comparison, the fllter designed in (Douglas et al. 1995) was able to detect

and identify each of the three faults. As we noted before, a limitation of the game theoretic

fllter is that, in its present form, it can only look for one fault per fllter and in this example

we see this limitation brought to the forefront. Finally, we should also note that the fllter

we design here will detect µym in the presence of any other failure that enters the system

in the same way as µyω and µyẍ or in the presence of any failure whose reachable subspace

lies in the sum of the reachable subspaces of Fyω and Fyẍ .

The failure model for this example is:

_x = Ax+ Fyωµyω + Fyẍµyẍ = Ax+ F̂ymm̂ym (9.86)

y = Cx+ v, (9.87)

where the system matrices are:

A =



−0.0521 −0.2213 0.2681 −0.0121 0.0136 0.0084 −0.0078
−0.3007 −8.0277 −19.0734 −1.1013 0.0795 0.2471 0.0378
−0.3263 −19.7571 −51.0638 −3.2675 −4.8766 −2.4258 0.0040

0.0454 2.4036 15.7922 −2.1857 6.4655 −0.2062 0.0495
0.0219 1.1136 8.6428 −7.1817 −0.6526 −0.2171 0.9316
0.0116 0.5928 3.8335 −1.0926 −0.6513 −0.9851 5.9628
0.0154 0.7868 4.8494 −1.4900 −1.0329 −6.5688 −2.5996
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C =



0.0075 0.4605 0.3710 0.1023 0.0513 0.0340 −0.0137
0.7318 2.7938 −2.8640 0.1680 −0.0415 −0.0491 −0.0029
0.0028 0.1711 −0.2654 0.0765 −0.0161 0.0093 −0.0008
0.0000 −0.0007 −0.0005 −0.0216 −0.0496 −0.0438 0.0697
−0.0000 −0.0024 0.0050 0.0111 0.0205 −0.0027 0.0009

0.4214 −0.1440 0.0371 0.2203 −0.1764 −0.0129 0.1051
0.4211 0.1318 −0.4410 −0.2741 −0.0304 −0.0734 0.0585


For simplicity, the inputs u will be disregarded.

What remains is to calculate Fyω and Fyẍ . Following the the modeling techniques

described in Section 9.1, we begin by augmenting the measurement equation to re°ect the

presence of the engine speed and accelerometer sensor failures:

_x = Ax (9.88)

y = Cx+ Eyωmyω + Eyẍmyẍ + v. (9.89)

where

Eyω =
[

0 1 0 0 0 0 0
]T

Eyẍ =
[

0 0 1 0 0 0 0
]T

We then calculate fyω as the solution of Eyω = Cfyω and fyẍ as the solution to Eyẍ = Cfyẍ .

The second column of the failure map is then obtained by multiplying fyẍ and fyẍ by the

state matrix A. We then have the following failure maps:

Fyω =
[
fyω Afyω

]
=



0.2107 −0.0681
0.2986 −1.1171
0.3791 14.0532
1.7301 −9.9008
−2.3516 −13.4314
−13.8538 −43.7274
−9.8358 118.5002


and
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Fyẍ =
[
fyẍ Afyẍ

]
=



0.0873 0.0209
0.9262 7.7252
0.2544 −99.5538
−3.0910 35.2772

4.0831 33.4690
24.1122 80.5043
17.1083 −200.5111



For the purposes of the fllter design we combine the two failure maps into a single

complementary failure map:

F̂ym =
[
Fyω Fyẍ

]

Since CF̂ym is full rank we do not need to go into a Goh iteration sequence to form the

projector Ĥ1. Thus, this projector is simply:

Ĥ1 = I − (CF̂ym)[(CF̂ym)T (CF̂ym)]−1(CF̂ym)T

=



0.9986 −0.0000 0.0000 0.0098 −0.0008 0.0165 −0.0317
−0.0000 0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000
0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000
0.0098 −0.0000 −0.0000 0.6340 0.0062 −0.4785 −0.0540
−0.0008 0.0000 −0.0000 0.0062 0.9995 0.0102 −0.0179
0.0165 −0.0000 −0.0000 −0.4785 0.0102 0.3620 0.0397
−0.0317 −0.0000 −0.0000 −0.0540 −0.0179 0.0397 0.0058


(9.90)

9.6.1 Full-Order Filter Design

Equation 9.15, the Riccati equation in terms of ƒ, was used for this example. To bring

sensor noise weighting, V (= νI), to zero with the disturbance bound, it is assumed that ν

is some multiple of γ. By trial and error, it was found that:

ν = 1× 10−8,
ν

γ
= 0.8, Q1 = R1 = M2 = I
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gave the results seen in Figure 9.2. For the parameters above, the solution of (9.15) is:

ƒ =



0.0108 −0.0001 0.0009 0.0043 −0.0035 0.0011 0.0003
−0.0001 0.0044 −0.0003 −0.0033 −0.0034 0.0005 −0.0004

0.0009 −0.0003 0.0014 0.0020 0.0011 0.0000 0.0001
0.0043 −0.0033 0.0020 0.0059 0.0025 0.0000 0.0005
−0.0035 −0.0034 0.0011 0.0025 0.0051 −0.0009 0.0003

0.0011 0.0005 0.0000 0.0000 −0.0009 0.0002 0.0000
0.0003 −0.0004 0.0001 0.0005 0.0003 0.0000 0.0000


(9.91)

resulting in a gain:

L = 106 ×



−0.0000 0.0037 −0.0344 −0.0002 0.0000 −0.0003 0.0007
0.0003 0.0218 −0.0470 0.2636 −0.0004 0.3208 0.2517
−0.0003 −0.1411 −0.1145 0.3172 −0.0007 0.3878 0.2879
−0.0006 0.1147 −0.1078 −0.3230 0.0006 −0.3935 −0.3032

0.0015 0.1110 0.3183 −0.5540 0.0012 −0.6768 −0.5083
0.0066 0.2818 1.7919 −2.4235 0.0050 −2.9591 −2.2383
0.0035 −1.2066 0.1269 6.9371 −0.0120 8.4546 6.5149


(9.92)

When applied to the 7th -order car model, the result is a stable fllter with closed-loop

poles at: −2, 128, 332.1, −458867.7, −11, 157.0, −856.2, −259.7, −9.1 and −0.31. As

Figure 9.2 shows, the fllter achieves roughly 80 db. of separation in transmission between

the target fault (an engine air mass sensor failure) and the larger of the two nuisance

faults. As a comparison, Figure 9.3 plots the results of the Beard-Jones fllter design from

(Douglas et al. 1995) for the same set of faults. The closed-loop poles for this fllter were

selected to be: −3, −4, −5, −6, −7, −8 and −9.

A comparison of the two fllters shows that they both do an adequate job of separating

the target fault and the nuisance faults. The Beard-Jones fllter has less separation, but it

also amplifles the target fault signal. For the residual processing stage of fault detection

and identiflcation, this might prove to be useful side efiect. Moreover, the game theoretic

fllter achieves its impressive transmission separation at the cost of extremely high gains.

This is due the aggressively low value of γ chosen for this design example. Higher values

of γ can be chosen which achieve less separation but also result in smaller gains. We will

also show, in the next section, how to design a reduced-order fllter which achieves our fault

detection goals and which also possesses very reasonable gains.
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Figure 9.2: Game Theoretic Filter Singular Value Plot of Air Mass Fault Signal versus
Singular Values of Engine Speed and Accelerometer Faults (solid line - output
due to µym ; dashed lines - outputs due to µyω and µyẍ).

Another factor to consider is the issue of sensor noise transmission. As (Lee 1994) points

out, Beard-Jones fllters can have fairly poor noise properties. This is demonstrated by

Figure 9.4 which shows that the largest singular value for noise transmission is consistently

larger than the singular value for the target fault transmission. On the other hand,

Figure 9.5 shows that the game theoretic fllter achieves separation between sensor noise

and target fault transmission at frequencies above 10 rad
sec for all of the the noise channels

except for the one which comes into the fllter dynamics in the same way as the target fault

itself. This noise signal is indistinguishable from the target fault and its singular value

plot is identical to the target faults over all frequencies. Separating the fault signal from

measurement noise will then have to come in the residual evaluation stage. Typically, this
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Figure 9.3: Beard-Jones Filter Singular Value Plot of Air Mass Fault Signal versus Singular
Values of Engine Speed and Accelerometer Faults (solid line - output due to
µym ; dashed lines - outputs due to µyω and µyẍ).

involves making assumptions about the failure signal and about the statistics of the sensor

noise. See for example (Douglas et al. 1995) and (Emami-Naeini et al. 1988).

9.6.2 Reduced-Order Filter Design via the Goh Riccati Equations

We now repeat the example, but now we will design a lower-order fllter using the Goh Riccati

equations. The flrst step is to derive the transformation matrix, ¡. Since the transformation

is determined via the null space of the full-order Riccati matrix, the design process begins by

flnding the solution to the full-order Goh Riccati equation (9.44). Because CF̂1 is full-rank,

we are spared the step of going through a Goh iteration to set up the correct Goh Riccati

equation.
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Figure 9.4: Beard-Jones Filter Singular Value Plot of Air Mass Fault Signal versus Singular
Values of Engine Speed and Accelerometer Faults (solid line - output due to
µym ; dashed lines - nuisance faults, dot-dashed lines - noise).

Using the same weightings as in the full-order design, we flnd that the solution to the

Goh Riccati equation (9.44) is:

S =



21.8547 −0.2217 −0.0277 −0.0358 0.0271 0.0141 0.0114
63.2776 −0.8201 −0.0969 −0.0807 0.1369 0.0093 0.0352
−21.9515 0.2891 0.0331 0.0270 −0.0496 −0.0023 −0.0122
−61.5141 0.8211 0.0953 0.0749 −0.1416 −0.0047 −0.0345
−76.2310 0.9668 0.1138 0.0996 −0.1586 −0.0148 −0.0421

10.9799 −0.1357 −0.0162 −0.0148 0.0216 0.0028 0.0060
−6.5160 0.0860 0.0101 0.0081 −0.0146 −0.0007 −0.0036
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Figure 9.5: Game Theoretic Filter Singular Value Plot of Air Mass Fault Signal versus
Nuisance Faults and Noise (solid line - output due to µym ; dashed lines - nuisance
faults, dot-dashed lines - noise).

Using the QR decomposition we flnd obtain a transformation matrix:

¡T =



−0.1801 0.8639 0.0800 −0.0329 −0.3166 0.3369 −0.0035
−0.5215 −0.0913 −0.6879 −0.4917 −0.0018 0.0687 −0.0056

0.1809 0.0982 −0.6580 0.7204 −0.0020 0.0693 −0.0312
0.5070 0.4348 −0.2304 −0.3580 0.4084 −0.4414 −0.1051
0.6283 −0.1984 −0.1801 −0.3258 −0.5190 0.3693 0.1467
−0.0905 0.0797 −0.0416 0.0575 −0.3232 −0.5328 0.7695

0.0537 0.0312 0.0166 −0.0237 0.5992 0.5118 0.6118


(9.93)

Using this transformation, we reduce our state-space to a third-order system, that is, we

flnd the matrices A11, C1 etc. From here we employ the reduced-order system matrices in
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the reduced order Goh Riccati equation, (9.81). The solution to (9.81) using (9.93) is:

S =

 −0.0417 0.0216 −0.3085
0.0216 −0.0073 0.1923
−0.3085 0.1923 −2.1336

 (9.94)
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Figure 9.6: Reduced-Order Goh Filter Residual due to step in µAz (fault to be detected).

with a corresponding gain:

L =

 −4.8971 0.0001 0.0000 −213.6617 39.9079 154.1616 30.1926
−1.4088 0.0000 0.0001 −98.3020 24.3178 73.0444 11.9234

0.2842 −0.0001 0.0002 21.6742 −3.5535 −16.2795 −1.9279

 (9.95)

The closed-loop eigenvalues are: −7.0976, −23.3114 and −35.2309. To demonstrate the

efiectiveness of the reduced-order fllter a linear simulation of the system was run for two

cases: one with a engine air mass sensor fault input (modeled as a step) the other with a

engine speed sensor fault input (also a step). Figures 9.7 and 9.6 show that the reduced-order
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Figure 9.7: Reduced-Order Goh Filter Residual due to step in µwg (nuisance fault).

fllter responds to the air mass sensor fault input and is relatively insensitive to the engine

speed sensor fault.

9.7 Discussion

By solving the fault detection problem via disturbance attenuation, we obtain a game

theoretic fllter that bounds the transmission of disturbances and nuisance faults. By going

to the limit of this solution, we get a fault detection fllter which in the time-invariant

case is equivalent to the Beard-Jones fault detection fllter. That is, the presence of the

nuisance faults is restricted to an invariant subspace that can be made unobservable through

a projection. This unobservable subspace can be factored out of total space to get a

lower-order system which is unin°uenced by the nuisance faults. The same factoring process
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can then be applied to the game fllter to get a reduced-order fault detector for the newly

reduced state-space. Extensions of this latter result exist for the time-varying case, though

the computation involved may be intensive.

The game theoretic approach to fault detection fllter design is more °exible than current

design methods. The designer can choose the degree to which the game fllter possesses the

structure of the Beard-Jones fllter. This allows him to make tradeofis between nuisance fault

blocking and sensor noise rejection. The linear quadratic game used to solve the disturbance

attenuation problem admits time-varying systems and can be used to incorporate parameter

uncertainty into the fllter design. Recent extensions of robust control such as designs which

constrain pole-placement and designs with multiple objectives, for example, the so-called

mixed H2/H∞ problems, suggest that the same can be done here. The latter is of particular

interest since it appears to be a logical way to detect and identify multiple faults with a

single game theoretic fllter.

Finally, we have shown that the limiting form of the game fllter is a singular fllter.

Since any disturbance attenuation problem can be solved in the same manner as this one,

it is likely that this result applies to all such problems. That is, the limiting form of a

disturbance attenuation problem is a singular optimization problem. This makes applicable

a wealth of results from singular control and it provides a new way to understand H∞
problems by looking at them as \almost" singular optimal control problems.
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Conclusions

Analytic redundancy is a viable approach to vehicle health monitoring. The fault

detection fllters developed here perform well in a high-fldelity nonlinear simulation. The

fllter residuals quickly and clearly respond to the introduction of faults even in the presence

of signiflcant vehicle nonlinearities from both longitudinal and lateral modes. Two candidate

residual processing systems both efiectively automate fault announcement. A Bayesian

neural network examines the fault detection fllter residual for activity characteristic of a

static pattern associated with a fault. A fault and an associated probability of occurrence are

announced by the neural network soon after the fault is introduced in the vehicle nonlinear

simulation. A modifled Shiryayev sequential probability ratio test extended to include

multiple hypotheses examines the fllter residuals and tests for a fault hypothesis change.

Both systems respond well to hard and soft failures in the presence of sensor noise, dynamic

disturbances and vehicle nonlinearities.

By directing development of the project components in parallel and seeing signiflcant

progress in all areas, we are able to identify several important areas for future work: model

213
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reflnement, robust fault detection fllter design, time-varying fault detection fllter design,

system integration and platoon health monitoring.

Model Reflnement: This year, a reflned nonlinear vehicle model and simulation was

completed. This model allows for arbitrarily changing road gradients for each of the

four wheels. Work will now continue by developing uncertainty models associated with

process disturbances such as rough and hilly roads, winds, system parameter uncertainty

and unmodeled dynamics. Through a good working relation with the Berkeley PATH

researchers, model fldelity will be improved further using empirically derived data. Fidelity

of the modeled nonlinearities and uncertainties is very important for a realistic assessment

of any health monitoring system performance.

Robust Fault Detection Filter Design: Development of robust fault detection fllters

will continue with two directions of investigation. First, the system will be examined

for the possibility of treating nonlinearities and disturbances as pseudo-fault directions.

This approach efiectively decouples the nonlinearity or disturbance from fault identifying

residuals. Second, parameter uncertainty in the linearized vehicle dynamics is modeled as an

input-output decomposition. This allows model uncertainty to be treated as a disturbance.

Time-Varying Detection Filter Design: Automated vehicles engaged in merge and

split maneuvers may follow a trajectory that induces time-varying vehicle dynamics. The

notion of a fault detection fllter for time-varying systems was introduced in the game

theoretic fault detection fllter development described in this report. It is expected that

these notions will be extended to invariant subspace fllter structures.

System Integration: Having developed preliminary fault detection and isolation system

designs for one longitudinal and one lateral mode, work will proceed by considering several

other design points and then combining all the designs into one integrated package.

Platoon Health Monitoring: Work will begin towards extending the health monitoring

system for one vehicle to include the presence of multiple vehicles in a controlled platoon
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conflguration. Sensors required for control such as distance measurements will be included

in the fault set. Transmission of vehicle sensor outputs will be transmitted to all vehicles.

Feasibility and performance of an expanded health monitoring system will be evaluated in

an extended nonlinear simulation.





     

Appendix A

Fault Detection Filter Background

A linear time-invariant system with q failure modes and no disturbances or sensor

noise can be modeled (Beard 1971), (White and Speyer 1987), (Massoumnia 1986) by

_x = Ax+Bu+
q∑
i=1

Fimi (a.1a)

y = Cx. (a.1b)

All system variables belong to real vector spaces x ∈ X , u ∈ U , y ∈ Y and mi ∈Mi

with n = dimX , p = dimU , m = dimY and qi = dimMi. The input u ∈ U is known

as is the output y ∈ Y. The failure modes mi ∈Mi are vectors that are unknown and

arbitrary functions of time and are zero when there is no failure. The failure signatures

Fi :Mi 7→ F i ⊆ X are maps that are known, flxed and unique. A failure mode mi models

the time-varying amplitude of a failure while a failure signature Fi models the directional

characteristics of a failure. Assume the Fi are monic so that mi 6= 0 implies Fimi 6= 0.

Actuator and plant faults are modeled with Fi as the appropriate direction from A or B.
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For example, a stuck actuator is modeled with Fi as the column of A associated with the

actuator dynamics and with mi(t) = −ui(t) + uic where uic is some constant.

Sensor faults are most naturally modeled as an additive term in the measurement

equation as follows where Ei is a column vector of zeros except for a one in the ith position

and where µi is an arbitrary time-varying real scalar.

y = Cx+ Eiµi (a.2)

It can be shown that the Ei sensor fault form of (a.2) may be converted to an equivalent

Fi form (a.1) with no need for appended dynamics (Beard 1971), (White and Speyer 1987),

(Douglas 1993). This is demonstrated shortly.

A.1 The Detection Filter Problem

Consider a full-order observer of the form

_̂x = (A+ LC)x̂+Bu− Ly (a.3a)

z = Cx̂− y. (a.3b)

The state estimation error e = x̂− x dynamics are

_e = (A+ LC)e−
q∑
i=1

Fimi (a.4)

If (C,A) is observable and L is chosen so that A+LC is stable, then in steady-state and in

the absence of disturbances and modeling errors, the residual r is nonzero only if a failure

mode mi is nonzero and is almost always nonzero whenever mi is nonzero. It follows that

any stable observer can detect the occurrence of a fault. Simply monitor the residual z and

when it is nonzero a fault has occurred. A more di–cult task is to determine which fault

has occurred and that is what a fault detection fllter is designed to do.

A fault detection fllter is an observer with the property that when an unknown input or

fault is nonzero, mi(t) 6= 0, the error e(t) remains in a (C,A)-invariant subspace W i which

contains the reachable subspace of (A+ LC,Fi). Thus, the residual remains in the output
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subspace CW i. Furthermore, the output subspaces CW1, . . . , CWq are independent so that

z ∈ ∑q
i=1CW i has a unique representation z = z1 + · · · + zq with zi ∈ CW i. The fault is

identifled by projecting z onto each of the output subspaces CW i. The following statement

of the detection fllter problem, sometimes called the Beard-Jones detection fllter problem,

is essentially the same as that found in (Beard 1971) and (White and Speyer 1987) but is

stated in the geometric language of (Massoumnia 1986).

Deflnition A.1 (Detection Filter Problem). Given the system (a.1), with state-space

X and measurement-space Y, the detection fllter problem is to flnd a set of subspaces

W i ⊆ X , i = 1, . . . , q such that for some map L : Y 7→ X the following conditions are met:

(A+ LC)W i ⊆ W i Subspace invariance.

F i ⊆ W i Failure inclusion.

CW i ∩ (
∑
j 6=i

CWj) = 0 Output separability.

It can be shown (Massoumnia 1986), (White and Speyer 1987) that the last condition,

output separability, implies that the subspaces W1, . . . ,Wq are independent when (C,A) is

observable

A.2 Sensor Fault Models

It is now shown how the Ei sensor fault form of (a.2) is converted to an equivalent Fi

form with no need for appended dynamics. While this is also shown in (Beard 1971),

(White and Speyer 1987) and (Douglas 1993), the following original demonstration is more

easily extended to time varying systems. Let Fi be any map that satisfles

CFi = Ei

and deflne a new state estimation error „e as

„e = e− Fiµi
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This is a Goh transformation on the error space (Jacobson 1971). The residual is then.

r = C„e

Using (a.4), the dynamics of „e are

_„e = (A+ LC)„e+AFiµi − Fi _µi (a.5)

and a sensor fault Ei in (a.2) is equivalent to a two-dimensional fault Fi

_x = Ax+Bu+ Fimi with Fi =
[
F 1
i , F

2
i

]
where the directions F 1

i and F 2
i are given by

Ei = CF 1
i (a.6a)

F 2
i = AF 1

i (a.6b)

An interpretation of the efiect of a sensor fault on observer error dynamics follows from

(a.5) where F 1
i is the sensor fault rate _µi direction and F 2

i is the sensor fault magnitude

µi direction. This interpretation suggests a possible simpliflcation when information about

the spectral content of the sensor fault is available. If it is known that a sensor fault has

persistent and signiflcant high frequency components, such as in the case of a noisy sensor,

the fault direction could be approximated by the F 1
i direction alone. Or, if it is known

that a sensor fault has only low frequency components, such as in the case of a bias, the

fault direction could be approximated by the F 2
i direction alone. For example, if a sensor

were to develop a bias, a transient would be likely to appear in all fault directions but, in

steady-state, only the residual associated with the faulty sensor should be nonzero.

In the case where the dynamics (a.1) are time varying, the error dynamics (a.5) become

_„e = (A+ LC)„e+ (AFi − _Fi)µi − Fi _µi

so that once again, a sensor fault Ei in (a.2) is equivalent to a two-dimensional fault Fi

_x = Ax+Bu+ Fimi with Fi =
[
F 1
i , F

2
i

]
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but where the directions F 1
i and F 2

i are given by

Ei = CF 1
i

F 2
i = AF 1

i − _F 1
i

A.3 Solving The Detection Filter Problem

It should be pointed out that for any subspace F i ⊆ X there is a minimal (C,A)-invariant

subspace F i ⊆ W∗i ⊆ X . A recursive algorithm, the (C,A)-invariant subspace algorithm,

for computing a minimal invariant subspace is suggested by (Wonham 1985) and restated

in the following theorem.

Theorem A.1 (CAISA). Let W(F) be a family of (C,A)-invariant subspaces where

F ⊆ W ∈ W(F). Then, there exists a minimal (C,A)-invariant subspace W∗ ∈ W(F)

where for any W ∈ W(F), W∗ ⊆ W. Furthermore, W∗ = limWk where Wk is given by

the recursive algorithm

W0 = ∅

Wk+1 = F +A
(
Wk ∩KerC

)

Proof. The proof given in (Wonham 1985) follows from the result of (Willems 1982) that

the set W(F) is closed under subspace intersection.

Note that the algorithm given in Theorem A.1 implies that for dimF i = 1, the minimal

(C,A)-invariant subspace W∗i is spanned by {Fi, AFi, . . . , AµiFi} where µi is the smallest

integer such that CAµiFi 6= 0. For one-dimensional faults, the algorithm of Theorem A.1 is

a very simple way to flnd W∗i .

Theorem A.1 also suggests a check for output separability. Let {fi1 , . . . , fiqi} be any set

of basis vectors for F i. An output separability check is that

rank
[
CAβ11f11 , . . . , CA

βij fij , . . . , CA
βqqq fqqq

]
= p (a.7)
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where p =
∑
qi is the total number of basis vectors for the q failure spaces F i and βij is the

smallest integer such that CAβ11f11 6= 0. Note that if (a.7) is not satisfled, then usually,

the designer needs to discard some failures from the design set.

In the case where the dynamics (a.1) are time varying, an output separability check is

that

rank
[
Cb

β11
11

(t), . . . , Cb
βij
ij

(t), . . . , Cb
βqqq
qqq (t)

]
= p, ∀t ∈ [t0, t1] (a.8)

where βi is the smallest integer such that the following iteration:

b1ij (t) = fij (t) (a.9a)

bk+1
ij

(t) = Abkij (t) + _bkij (t) (a.9b)

results in a vector bkij (t) such that Cbkij (t) 6= 0 for all t ∈ [t0, t1]. Note that (a.9) are the

product of a Goh transformation on the output error space.

It is assumed that the system matrices A(t), C(t) and Fi(t) are such that the number of

iterations of (a.9) needed for the full rank condition is constant over the entire interval [t0, t1],

that is, the time variations of the system do not change the dimensionality of the detection

problem. This restricts the applicability of this analysis to a subclass of time varying

systems, but it avoids pathological cases. Assumptions such as this seem to be unavoidable

when dealing with time varying systems. See, for example, (Clements and Anderson 1978).

When Cfij = 0, both output separability tests fail immediately. However, this is not

indicative of whether or not the system is output separable. As we will see in the next

section, Cfij = 0 is a sign that a fij possess a higher-order detection space, meaning that

it takes more than one vector to span this space. From Theorem A.1, one of these must lie

outside the kernal of C and is, thus, the vector which must be used in the output separability

test.

To ensure stability, the invariant subspaces W i are usually chosen as a set of mutually

detectable, minimal unobservability subspaces or detection spaces (Beard 1971) as they are

also called in the context of fault detection. An unobservability subspace T ⊆ X or UOS is a

subspace with the property that T is the unobservable subspace of the pair (HC,A+LC) for
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some L and H. This means not only that T is (C,A)-invariant but also that the spectrum

of (A+LC) induced on the factor space X/T may be placed arbitrarily within a conjugate

symmetry constraint and with respect to L such that (A+LC)T ⊆ T . Furthermore, when

(C,A) is observable, the entire spectrum of (A + LC) is arbitrary. If T (F) is the set of

(C,A)-unobservability subspaces that contain F , then it can be shown that T (F) has a

smallest element denoted T ∗ (Willems 1982). The detection space is usually found as a

minimal UOS, T ∗, because there is no known parameterization of all UOS and algorithms

exist to compute the minimal UOS (White and Speyer 1987), (Massoumnia 1986).

One method for computing T ∗ is suggested by (Wonham 1985) as a numerically stable

method for flnding supremal controllability subspaces. These are the dual of minimal

unobservability subspaces or detection spaces. There are two steps. First, for a fault Fi,

flnd the minimal (C,A)-invariant subspaceW∗i using the recursive (C,A)-invariant subspace

algorithm as explained above. Next, calculate the invariant zero directions of the triple

(C,A, Fi), if any. Denote the invariant zero directions as V i. Then

T ∗i =W∗i ⊕ V i

Detection space calculations are described in detail in (Wonham 1985) with ampliflcation

and examples given in (Douglas 1993).

Finally, a mutually detectable set of unobservability subspaces {T ∗1, . . . , T ∗q} is one which

satisfles Deflnition A.1 such that the sum
∑q
i=1 T ∗i is also an UOS. While for any one UOS

T i, the spectrum of (A+ LC) induced on X/T i may be placed arbitrarily with respect to

L, it is not necessarily true that the factor space spectrum is arbitrary when several UOS

are considered simultaneously. When a set of UOS T ∗1, . . . , T ∗q is mutually detectable, the

spectrum of (A+ LC) induced on X/∑q
i=1 T ∗i is arbitrary and, when (C,A) is observable,

the entire spectrum of (A+ LC) is arbitrary.

A.4 The Restricted Diagonal Detection Filter Problem

In (Massoumnia 1986), the Beard-Jones detection fllter problem is shown to be a special case

of the restricted diagonal detection fllter problem (RDDFP). First, deflne the complementary
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failure map F̂i as

F̂i = [F1, . . . , Fi−1, Fi+1, . . . , Fq] (a.10)

The RDDFP, which is the dual of the restricted decoupling problem (Wonham 1985), is to

flnd a set of q unobservability subspaces T̂ 1, . . . , T̂ q such that

F i ∩ T̂ i = 0

F̂ i ⊆ T̂ i

In the Beard-Jones detection fllter, the idea is to conflne each fault to an invariant subspace

and then monitor that subspace through the residual for fault activity. In the RDDFP,

the idea is to conflne all the faults but one to an unobservable subspace, then monitor the

observable factor space for activity caused by the remaining fault. By the deflnition of

an unobservability subspace, there exists a projector Hi and a gain L such that T̂ i is the

unobservable subspace of the pair (HiC,A+ LC). The signal

zi = Hi(y − Cx̂) (a.11)

is decoupled from all faults except Fi. Furthermore, F i ∩ T̂ i = 0 implies that Fi is input

observable so that Fimi 6= 0 implies that zi 6= 0. Also, by construction, Ĥi satisfles

Ker ĤiC = T̂ i + KerC

An explicit construction of Ĥi is to form CMi as in (a.7)

CMi =
[
CAβ11f11 , . . . , CA

βij fij , . . . , CA
βqqq fqqq

]
Then

Ĥi = I − (CMi)[(CMi)T (CMi)]−1(CMi)T

In the case where the dynamics (a.1) are time varying, Ĥi(t) may be constructed by

forming CMi(t) as in (a.8)

CMi =
[
Cb

β11
11

(t), . . . , Cb
βij
ij

(t), . . . , Cb
βqqq
qqq (t)

]
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where βi is the smallest integer such that the following iteration:

b1ij (t) = f̂ij (t)

bk+1
ij

(t) = Abkij (t) + _bkij (t)

results in a vector bkij (t) such that Cbkij (t) 6= 0 for all t ∈ [t0, t1]. This time, f̂ij is taken to

be vector from a basis for F̂ i.

It is easy to show that a Beard-Jones detection fllter is always a restricted diagonal

detection fllter. For example, suppose a Beard-Jones detection fllter is formed as a set of

mutually detectable unobservability subspaces T ∗1, . . . , T ∗q . Let

T̂ ∗i =
∑
j 6=i
T ∗j (a.12)

Then, by the deflnition of mutual detectability, T̂ ∗i is itself a minimal unobservability

subspace for the fault group F̂i.





    

Appendix B

Parameter Robustness By
Left Eigenvector Assignment

Once the detection spaces are found, the next step is to flnd a fault detection fllter gain. The

gain is not unique and several methods exist for flnding one. Eigenstructure assignment

algorithms, which are the most accessible, are described in (Douglas and Speyer 1995b)

and (White and Speyer 1987). An H∞ disturbance bounded fault detection fllter described

in (Douglas and Speyer 1995a) is reviewed in Appendix C. The procedure applied in this

report is a left eigenvector assignment algorithm introduced in (Douglas and Speyer 1996)

and (Douglas 1993). This procedure is used because it extends directly to one that hedges

against sensitivity to parameter uncertainty. Noise robustness algorithms such as the

H∞-bounded fault detection fllter of (Douglas and Speyer 1995a) and Appendix C are not

used here because disturbances and sensor noise are not yet included in the vehicle model.

Furthermore, later, when they are included, the reduced-order fault detection fllters provide

a natural way to accommodate noise without the need for redesigning the fllter.
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The left eigenvector assignment algorithm works by assigning an eigenstructure in the

dual space to a set of intersecting detection space annihilators. This means that left

eigenvectors, which annihilate the detection spaces, are placed instead of right eigenvectors,

which span the detection spaces, as is done in (White and Speyer 1987). Since the detection

space annihilators intersect, care must be taken to ensure that the assigned eigenvectors are

consistent.

Before proceeding, it is necessary to establish a dual relation between unobservability

and controllability subspaces. First, introduce the following notation. X ′ denotes the dual

space of X and if C : X 7→ Y, then C ′ denotes the dual map C ′Y ′ 7→ X ′. Writing CT , the

transpose of matrix C, for the dual map C ′ implies that bases have been chosen for X and

Y. Now, in (Wonham 1985) it is shown that if T ⊆ X is a (C,A)-unobservability subspace

then the annihilator of T denoted here by T ⊥ ⊆ X ′ is an (A′, C ′)-controllability subspace

in the dual system. Second, if T is a (C,A)-unobservability subspace, the observable part

of the system is characterized by the factor space X/T and the induced system maps.

Furthermore, for any subspace T ⊆ X , the annihilator of T and the factor space X/T are

isomorphic, T ⊥ ' (X/T )′.

The dual relation between unobservability and controllability subspaces is useful because

any result found for controllability subspaces can be applied easily to the unobservability

subspaces of a detection fllter. Consider the results of (Moore and Laub 1978) which are

paraphrased as follows. The flrst statement describes a set of vectors in the kernal of C

that can be assigned as closed-loop eigenvectors.

Theorem B.1. Let A : X 7→ X , B : U 7→ X and C : X 7→ Y. Then a set of linearly

independent vectors {v1, . . . , vk | vi ∈ KerC ⊆ X} satisfles (A + BK)vi = λivi for some

K : X 7→ U and distinct self-conjugate complex numbers λ1, . . . , λk if and only if vi and vj

are conjugate pairs when λi and λj are and there exists a set of vectors {w1, . . . , wk|wi ∈ U}

such that [
A− λiI B
C 0

] [
vi
wi

]
=

[
0
0

]
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It follows immediately that for a monic B, a set of vectors {v1, . . . , vk} satisfles theorem B.1

if and only if Kvi = wi.

The second result also from (Moore and Laub 1978) characterizes the set of eigenvectors

that span a supremal (A,B)-controllability subspace R∗.

Theorem B.2. Let λ1, . . . , λk be a set of distinct, self-conjugate complex numbers that

satisfy

1) k ≥ dim(R∗) where R∗ is the supremal (A,B)-controllability subspace in KerC

2) at least one λi is real

3) no λi or Re(λi) is a transmission zero of (C,A,B)

Let Vi and Wi solve [
A− λiI B
C 0

] [
Vi
Wi

]
=

[
0
0

]
Then R∗ = ImV1 + · · ·+ ImVk.

Given the dual relationship between controllability and unobservability subspaces, the

application of Theorems B.1 and B.2 to detection fllter design is immediate. First, consider

just one detection space T ∗i . Characterize the left eigenvectors that annihilate T ∗i and flnd

a detection fllter gain Li that produces T ∗i . Next establish a consistency requirement on a

detection fllter gain L that is to produce q detection spaces T ∗1, . . . , T ∗q .

If T ∗i ⊆ X with dimension νi is a detection space for fault Fi, the annihilator (T ∗i )⊥

is the supremal controllability subspace of the dual system with (T ∗i )⊥ ⊆ KerF ′i and has

dimension n− νi. Let ⁄̂i = {λi1 , . . . , λin−νi} be a set of distinct self-conjugate complex

numbers that does not include any of the invariant zeros of the triple (F ′i , A
′, C ′). By

Theorem B.2 the annihilator of T ∗i satisfles

(T ∗i )⊥ = ImVi1 + · · ·+ ImVin−νi

where the Vij are found, along with Wij , by solving[
AT − λijI CT

F Ti 0

] [
Vij
Wij

]
=

[
0
0

]
(b.1)
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where j = 1, . . . , n − νi and where λij ∈ ⁄̂i. A set of linearly independent closed-loop left

eigenvectors vi1 , . . . , vin−νi that spans (T ∗i )⊥ satisfles Theorem B.1 and is found by solving[
AT − λijI CT

F Ti 0

] [
vij
wij

]
=

[
0
0

]
(b.2)

Since vij ∈ ImVij (b.1), the left eigenvectors may not be unique but they are constrained to

be arranged in conjugate pairs when the given closed-loop eigenvalues λij are in conjugate

pairs.

Now flnd a detection fllter gain Li. By the remark following Theorem B.1, LTi satisfles

LTi vij = wij (b.3)

and (AT + CTLTi )vij = λijvij for each j = 1, . . . , n− νi. Form two matrices V̂i and Ŵi

V̂i =
[
vi1 , . . . , vin−νi

]
(b.4a)

Ŵi =
[
wi1 , . . . , win−νi

]
(b.4b)

and solve LTi V̂i = Ŵi. A real solution for LTi always exists because the vij are linearly

independent and the assigned closed-loop poles λij and eigenvectors vij when complex are

arranged in conjugate pairs. Finally, Li, the detection fllter gain found as the transpose

V̂ T
i Li = Ŵ T

i (b.5)

satisfles (A + LiC)T ∗i ⊆ T ∗i and places the spectrum of (A + LiC) induced on X/T ∗i as

σ(A+ LiC|X/T ∗i ) = ⁄̂i.

Because the detection fllter has q detection spaces T ∗1, . . . , T ∗q ⊆ X , the detection fllter

gain L has to satisfy (b.5) for i = 1, . . . , q or

LT
[
V̂1, . . . , V̂q

]
=
[
Ŵ1, . . . , Ŵq

]
(b.6)

Since the V̂i and Ŵi represent
∑q
i=1(n− νi) pairs of vectors (vij , wij ), care must be taken

to construct the V̂i and Ŵi conformably. If (b.6) is to have a solution for L, there can be

no more than n distinct pairs (vij , wij ) and of these, the vij must be linearly independent

and arranged in conjugate pairs if a solution is to be unique and real.
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Finding a set of left eigenvectors consistent with (b.6) is not di–cult but requires careful

bookkeeping. Since (T ∗i )⊥ and (X/T ∗i )′ are isomorphic, the closed-loop spectrum induced

on the factor space X/T ∗i is

σ(A+ LiC|X/T ∗i ) = σ(A′ + C ′L′i|(T ∗i )⊥) = ⁄̂i

If ⁄i is the spectrum of (A+ LiC) restricted to the invariant subspace T ∗i

⁄i = σ(A+ LC|T ∗i )

then the spectrum of (A+ LiC) is just

⁄ = σ(A+ LiC) = ⁄i ∪ ⁄̂i (b.7)

Now, the subspaces T ∗1, . . . , T ∗q are independent when the faults are output separable and

(C,A) is observable (Massoumnia 1986), (White and Speyer 1987), so

⁄ = ⁄1 ∪ · · · ∪ ⁄q ∪ ⁄0

where ⁄0 is a set of ν0 = n− ν1 − · · · − νq eigenvalues associated with the complementary

space X̂ 0 = X/∑q
i=1 T ∗i , ν0 = dim(X̂ 0),

⁄0 = σ(A+ LC|X/
q∑
i=1

T ∗i )

It follows from (b.7) that

⁄̂i =
q⋃
k=0

k 6=i

⁄k (b.8)

Since the sets of assigned closed-loop poles ⁄̂i intersect, the sets of vectors vij and wij

that solve (b.2) should also form intersecting sets compliant with (b.8). By (b.8), if λij ∈ ⁄i

for i 6= 0, then λij ∈ ⁄̂k 6=i and the vij and wij that satisfy (b.2) now must satisfy

0 = (AT − λijI)vij + CTwij

0 = F T1 vij
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...

0 = F Ti−1vij

0 = F Ti+1vij
...

0 = F Tq vij

For i = 0 and λij ∈ ⁄0, then λij ∈ ⁄̂k for k = 1, . . . , q and the vij and wij that satisfy (b.2)

now must satisfy

0 = (AT − λijI)vij + CTwij

0 = F T1 vij
...

0 = F Tq vij

The fault detection fllter gain computation algorithm suggested by (b.2)-(b.6) and

modifled to force consistency among eigenvectors which span the intersecting detection

space annihilators, is as follows.

Algorithm B.1.

1) Find the dimensions of the detection spaces νi = dim T ∗i for i = 1, . . . , q and the

dimension of the complementary space ν0 = n−∑q
i=1 νi.

2) Deflne the complementary fault sets

F̂i =

{
[F1, . . . , Fq] for i = 0
[F1, . . . , Fi−1, Fi+1, . . . , Fq] for 1 ≤ i ≤ q (b.9)

Deflne (q + 1) sets of distinct self-conjugate complex numbers ⁄0,⁄1, . . . ,⁄q where

dim ⁄i = νi and where no elements of ⁄i are zeros of the triple (C,A, F̂i). By the

remarks at the end of Appendix A, each of these sets may be specifled arbitrarily

except for conjugate symmetry when (C,A) is observable and when the detection

spaces T ∗i are mutually detectable.
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3) For i = 0, . . . , q and j = 1, . . . , νi and for λij ∈ ⁄i solve[
AT − λijI CT

F̂ Ti 0

] [
vij
wij

]
=

[
0
0

]
(b.10)

for pairs (vij , wij ) where the vij are linearly independent for all i, j. Let

~Vi =
[
vi1 , . . . , viνi

]
(b.11a)

~Wi =
[
wi1 , . . . , wiνi

]
(b.11b)

4) Solve for the detection fllter gain L as

[
~V0, ~V1, . . . , ~Vq

]T
L =

[
~W0, ~W1, . . . , ~Wq

]T
(b.12)
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An H∞ Bounded Fault Detection Filter

Analytical redundancy methods for fault detection and identiflcation use a modeled

dynamic relationship between system inputs and measured system outputs to form a residual

process. Nominally, faults are detected as the residual process is nonzero only when a fault

has occurred and is zero at other times. An example of a residual process for an observable

system when no disturbances or sensor noise are present is the innovations process of any

stable linear observer. A detection fllter is a linear observer with the gain constructed so

that when a fault occurs, the residual responds in a known and flxed direction. Thus, when

a nonzero residual is detected, a fault can be announced and identifled at the same time.

Since process disturbances and sensor noise also produce a nonzero residual, the ambiguity

must be resolved with an appropriate threshold.

An objective of a detection fllter design in the presence of disturbances is to reduce the

component of the residual due to the disturbance without at the same time degrading the

component of the residual due to the fault. This suggests as a cost function, a ratio of
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transfer matrix norms (Frank and Wũnnenberg 1989), (Lee 1994). In the numerator is the

transfer matrix from the disturbance to the detection fllter residual and in the denominator

is the transfer matrix from the fault to the detection fllter residual. This formulation works

well when only one fault is to be detected. Generalized eigenvector solutions are found

using a parity equation approach in (Frank and Wũnnenberg 1989) and an optimization

approach in (Lee 1994). Unfortunately, for the detection fllter structure where several

faults are isolated simultaneously, no similar problem formulation is available.

The approach taken here follows two steps. First, bound the H∞ norm of the transfer

matrix from the disturbance to the detection fllter fault isolation residuals. Next, for each

multi-dimensional fault isolation residual and working within the noise bound constraint,

enhance the component due to the fault signal to be isolated. This is done by maximizing

the ratio of the residual component due to a fault to the residual component due to the

noise.

In the case of one-dimensional faults, the primary efiect of the flrst step is to bound

noise transmission through the complementary space, the state subspace independent of all

detection spaces. The second step is not usually needed. This is because, generically, a

fault detection space is given by the fault direction itself, which means the detection space

is spanned by a single flxed eigenvector. The associated eigenvalue is the only degree of

freedom left so there is no way to increase the residual component due to a fault without at

the same time increasing the residual component due to the noise. In practical applications,

plant and actuator failures usually are modeled as one-dimensional faults. Sensor faults

generically require a two dimensional detection space so a design freedom exists where a

residual component due to a fault could be enhanced.

This Appendix is organized as follows. Section C.1 shows that the detection fllter

gain is not unique and, given a set of invariant subspaces that solve the detection fllter

problem, parameterizes the set of detection fllter gains. Section C.2 deflnes a disturbance

robust detection fllter problem and Section C.3 provides a stabilizing and H∞ bounding

detection fllter gain by solving a modifled algebraic Riccati equation. Section C.4 enhances
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the residual component due to the associated isolated fault signal by solving a generalized

eigenvalue problem. Section C.5 provides an application to a simplifled aircraft elevon and

accelerometer fault detection fllter where wind and sensor noise is present. The example

illustrates how a numerical integration approach can be applied to solve the modifled Riccati

equation. Section C.6 contains a few concluding remarks.

C.1 Detection Filter Gain Parameterization

Given a set of subspaces W1, . . . ,Wq that solve the detection fllter problem, the next

problem is to characterize the set of maps L : Y 7→ X such that L ∈ ∩qi=1L(W i) where

L(W i) ∆= {L | (A+ LC)W i ⊆ W i}

A flrst step is to flnd a set L(W) for any one (C,A)-invariant subspace W. Proposition C.3

parameterizes L ∈ L(W) in two parameters α : CW 7→ W and β : Y 7→ X . Then, given

a set of (C,A)-invariant subspaces W1, . . . ,Wq that solve the detection fllter problem,

Proposition C.4 parameterizes L ∈ ∩qi=1L(W i) in q+ 1 parameters α1, . . . , αq and β. First,

a Lemma from (White and Speyer 1987, Lemma 1), except for the geometric language, is

restated to provide a solution to a generalized inverse problem. Lemma C.2 provides a few

well-known properties of projections.

Lemma C.1. Let B : U 7→ X , C : X 7→ Y and D : U 7→ Y where B is monic. Then a

general solution of CB = D for C is given by

C = D ~PB +K(I − PB) (c.1)

where PB : X 7→ X is any projection such that =PB = =B, ~PB : X 7→ U is the natural

projection where B ~PB = PB and K : X 7→ Y is arbitrary.

Lemma C.2. Let C : X 7→ Y and let P : X 7→ X be any projection. Then KerP ⊆ KerC

if and only if C = CP . Now let KerP = KerC and let V decompose P as V V T = P and

V TV = I. Then CV is monic with =CV = =C.
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An easy way to flnd a projector P that satisfles Lemma C.2 is to flnd the singular value

decomposition of C. For C = U§V T where § is a diagonal matrix of nonzero singular

values, the V of the lemma are the right singular vectors of C. Thus P = V V T and

CV = U§V TV = U§ is monic with =C = =U§.

Proposition C.3. Let W ⊂ X be a (C,A)-invariant subspace with insertion map W :

W 7→ X . Let P :W 7→ W be any projection where KerP = KerCW and let F̂ decompose P

as F̂ F̂ T = P and F̂ T F̂ = I. Let H : Y 7→ Y be another projection where =H = CW and

let ~H be the associated natural projection that satisfles CWF̂ ~H = H and ~HCWF̂ = I.

Then L : Y 7→ X satisfles (A+ LC)W = WAW for some AW :W 7→ W if and only if

L = (−AWF̂ +Wα) ~H + β(I −H) (c.2)

for some α : CW 7→ W and β : Y 7→ X .

Proof. (⇒) Assume L satisfles (A+ LC)W = WAW for some map AW . Then

LCW = −AW +WAW

and

LCWF̂ = −AWF̂ +WAW F̂ (c.3)

Now F̂ is deflned so that F̂ F̂ T is a projection with KerCW = Ker F̂ F̂ T and F̂ T F̂ = I.

Therefore, by Lemma C.2, CWF̂ is monic and by (c.3) and Lemma C.1

L = (−AWF̂ +WAW F̂ ) ~H + β(I −H)

So (A+ LC)W = WAW

⇒ L = (−AWF̂ +Wα) ~H + β(I −H)

where α = AW F̂ and β is anything.

(⇐) Suppose L = (−AWF̂ +Wα) ~H+β(I−H). Now HCWF̂ = CWF̂ and ~HCWF̂ = I

so LCWF̂ = (−AWF̂ +Wα) and

(A+ LC)WF̂ = Wα (c.4)
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F̂ is deflned so that F̂ F̂ T is a projector with KerCW = Ker F̂ F̂ T and F̂ T F̂ = I. Therefore,

by Lemma C.2, CW = CWF̂ F̂ T and it follows that CW (I − F̂ F̂ T ) = 0 and

=
[
W (I − F̂ F̂ T )

]
⊆ W ∩KerC (c.5)

Since for any (C,A)-invariant subspace W it is true that A(W ∩KerC) ⊆ W, it follows

from (c.5) that for some ~AW

AW (I − F̂ F̂ T ) = W ~AW (c.6)

and

(A+ LC)W (I − F̂ F̂ T ) = W ~AW

By (c.4), (A+ LC)WF̂F̂ T = WαF̂ T . So

(A+ LC)W = W
(
αF̂ T + ~AW

)
and L = (−AWF̂ +Wα) ~H + β(I −H)

⇒ (A+ LC)W = WAW

where AW = αF̂ T + ~AW and where ~AW satisfles (c.6). Note that ~AW = ~AW (I − F̂ F̂ T ) so

AW = αF̂ T + ~AW (I − F̂ F̂ T )

By Lemma C.1 AW is a particular solution to α = AW F̂ .

The remark following Lemma C.2 shows that F̂ is the set of right singular vectors of

CW .

Proposition C.4. Let W1, . . . ,Wq ⊂ X be a set of (C,A)-invariant subspaces that solve

the detection fllter problem and let the Wi :W i 7→ X be the insertion maps. Let Pi, F̂i, Hi

and ~Hi associated with W i be as in Proposition C.3 but partially specify the kernal of Hi

and ~Hi as
∑
j 6=iCWj ⊆ KerHi = Ker ~Hi. Also, deflne the projection H0 = (I −∑q

i=1Hi)

and the associated natural projection ~H0. Finally, deflne a set of maps

L(W i) = {L : Y 7→ X | (A+ LC)W i ⊆ W i}
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Then L ∈ ∩qi=1L(W i) if and only if

L =
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β ~H0 (c.7)

for some α0 : =H0 7→ X and αi : CW i 7→ W i where i = 1, . . . , q.

Proof. (⇒) Assume L ∈ L(W i). Then L satisfles (A + LC)Wi = WiAWi for some

AWi :W 7→ W for i = 1, . . . , q. So

LCWi = −AWi +WiAWi

and

LCWiF̂i = −AWiF̂i +WiAWiF̂i

and

L
[
CW1F̂1, . . . , CWqF̂q

]
=[(

−AW1F̂1 +W1AW1F̂1

)
, . . . ,

(
−AWqF̂q +WqAWq F̂q

)]
(c.8)

The F̂i are deflned so that F̂iF̂ Ti is a projector with KerCWi = Ker F̂iF̂ Ti and F̂ Ti F̂i =

I. Therefore, Lemma C.2 shows that =CWi = =CWiF̂i and CWiF̂i is monic. Since

the W1, . . . ,Wq solve the detection fllter problem, they are output separable, which means

the output subspaces CW1, . . . , CWq are independent. Therefore, [CW1F̂1, . . . , CWqF̂q] is

monic.

In Proposition C.3 KerH is not specifled and is not important. Here however, HiCWj =

0 so if H is the projection H =
∑q
i=1Hi then

H
[
CW1F̂1, . . . , CWqF̂q

]
=
[
CW1F̂1, . . . , CWqF̂q

]
A natural projection ~H associated with H is

~H =


~H1
...
~Hq
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because

[
CW1F̂1, . . . , CWqF̂q

]
~H =

q∑
i=1

CWiF̂i ~Hi

=
q∑
i=1

Hi

= H

and

~H
[
CW1F̂1, . . . , CWqF̂q

]
= diag

(
~HiCWiF̂i

)
= I

Since, [CW1F̂1, . . . , CWqF̂q] is monic and H and ~H meet the requirements of Lemma C.1,

the general solution of (c.8) for L is

L =
[(
−AW1F̂1 +W1AW1F̂1

)
, . . . ,

(
−AWqF̂q +WqAWq F̂q

)]
~H + β̂(I −H)

=
q∑
i=1

(−AWiF̂i +WiAWiF̂i) ~Hi + β̂(I −H)

=
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β̂(I −H)

where αi = AWiF̂i and β̂ is anything. Finally, it follows directly from the deflnitions of H

and ~H0 that for any β̂, there exists β such that β̂(I −H) = β ~H0. So,

L =
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β ~H0

(⇐) Assume

L =
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β ~H0

=
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β̂(I −H)

where the equality follows from the deflnitions of H and ~H0. Since HiHj = 0,

(I −H) = (I −
q∑
i=1

Hi) = (I −
∑
j 6=i

Hj)(I −Hi)



    

242 Appendix C. An H∞ Bounded Fault Detection Filter

Then

L =
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β(I −
q∑
i=1

Hi)

=
q∑
i=1

(−AWiF̂i +Wiαi) ~Hi + β(I −
∑
j 6=i

Hj)(I −Hi)

= (−AWiF̂i +Wiαi) ~Hi +

∑
j 6=i

(−AWjF̂j +Wjαj) ~Hj + β(I −
∑
j 6=i

Hj)

 (I −Hi)

Therefore, L has the form

L = (−AWiF̂i +Wiαi) ~Hi + βi(I −Hi)

where

βi =
∑
j 6=i

(−AWjF̂j +Wjαj) ~Hj + β(I −
∑
j 6=i

Hj)

By Proposition C.3, L ∈ L(W i) for each W i which means L ∈ ∩qi=1L(W i).

C.2 A Disturbance Robust Detection Filter Problem

Section C.1 showed that a detection fllter gain associated with a set of detection fllter

solution spaces W1, . . . ,Wq is easy to flnd, but generally is not unique. In this section, the

W1, . . . ,Wq are found as for the deterministic case, but the nonuniqueness of the detection

fllter gain is treated as a degree-of-freedom in the detection fllter design. This leads to the

deflnition of a noise robust detection fllter problem where the objective is to flnd a detection

fllter gain that minimizes or bounds a norm of the transfer matrix from the disturbance to

the residual.

The linear time-invariant system of (a.1) with q failure modes is extended to include

disturbances as

_x = Ax+Bω +Buu+
q∑
i=1

Fimi (c.9a)

y = Cx+Dω. (c.9b)
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The input ω includes dynamic disturbances and sensor noise and is square integrable over

[0,∞).

The error dynamics and residual of a full-order fllter have the same form as the observer

(a.3, a.4)

_e = (A+ LC)e− (B + LD)ω −
q∑
i=1

Fimi (c.10a)

r = Cx̂− y = Ce−Dω. (c.10b)

Since only forcing terms difierentiate the residual process of the observer (a.3, a.4) from

(c.10), the detection fllter structure does not change with the introduction of disturbances

and sensor noise. However, with the residual driven by an unknown signal, a nonzero

residual does not necessarily mean a fault has occurred.

An objective of a detection fllter design in the presence of disturbances is to reduce

the component of the residual due to the disturbance without at the same time degrading

the component of the residual due to the fault. This suggests as a cost function, a ratio

of transfer matrix norms (Frank and Wũnnenberg 1989). The transfer matrix from the

disturbance to the residual is in the numerator and the transfer matrix from the fault to the

residual is in the denominator. Unfortunately, this formulation requires some assumption

about the functional form of the fault because a transfer matrix norm does not convey much

information about the size of a transfer matrix output when nothing can be said about the

input. Since it is a standard and reasonable assumption that process and sensor noise is

white or nearly so, only the transfer matrix from the disturbance to the detection fllter

residual is retained in the deflnition of a noise robust detection fllter problem.

Before continuing, it is necessary to carefully deflne what is meant by the component of

the residual due to the fault. Deflne zi as a projection of the observer residual (c.10) onto

the output subspace CW i. Let Hi : Y 7→ Y be any projection onto CW i and along the

CWj 6=i so that CW i = =Hi and
∑
j 6=iCWj ⊆ KerHi. Let ~Hi be the associated natural

projection and deflne ~zi, a fault residual, as

~zi = ~Hir (c.11)
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Using ~Hi rather than Hi in (c.11) doesn’t change any information given by the fault residual

but is convenient later when certain matrix inverses are needed.

Now consider that for a system with q faults as in (c.9), there are q transfer matrices

from the system disturbance to each of the fault residuals ~zi (c.11). There are several

ways to proceed. One approach is to deflne a multi-objective problem where a detection

fllter gain L is found that in some way simultaneously bounds or makes small all the

transfer matrix norms ‖Tz̃iω‖, for example, a Pareto optimal solution. Another is to

abandon the structure of the full-order detection fllter for a system of q residual generators

(Massoumnia et al. 1989). The q reduced-order fllter gains are found independently of one

another with the penalty that the order of the combined system usually is somewhat larger

than the full-order detection fllter. The approach taken here is to combine the fault residuals

into a single detection fllter output as follows.

Deflne a combined fault residual z ∈ (CW1× · · ·×CWq) by forming a map H from the

~Hi in the expected way:

z = Hr, HT =
[

~HT
1 , . . . ,

~HT
q

]
(c.12)

The combined fault residual z provides the same information as the fault residuals, but

it combines the ~z1, . . . , ~zq so that a single cost function can be deflned for the detection

fllter. A noise robust detection fllter problem is to flnd a set of subspaces W i that solve

the detection fllter problem of Deflnition A.1. Then, given the W i and the associated fllter

gain sets

L(W i) = {Li | (A+ LiC)W i ⊆ W i}

flnd a fllter gain L ∈ ∩L(W i) that bounds or minimizes some norm ‖Tzω‖ where Tzω is the

transfer matrix from the disturbance ω to the combined fault residual z of (c.12).

Note that L is found in a two-step process. First, a set of subspaces W i is found that

satisfles Deflnition A.1. Then a map L is found from the set ∩L(W i). The alternative

is to flnd L from the union of sets ∩L(W i), where the union is taken over all sets of

subspaces W i that satisfy Deflnition A.1. While the latter statement certainly is more
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general, it is impractical because there is no known parameterization of all (C,A)-invariant

subspaces W i.

C.3 An H∞ Bounded Detection Filter

The main result of this section is a proposition that provides an H∞ norm bounding

detection fllter gain. Before this result is stated, a more generalH∞ norm bounding theorem

is needed. Consider an observer with error dynamics and output

_e = (A+ LC)e+ (B + LD)ω (c.13a)

z = Cze+Dzω (c.13b)

The following theorem and corollary provide a fllter gain L that stabilizes the fllter and

bounds the H∞ norm of the transfer matrix from ω to z. This standard result is mainly

from Lemma 1 of (Willems 1971) so no proof is provided here.

Theorem C.5. Consider a system G with the form (c.13), where (A−BDT (DDT )−1C)

has no purely imaginary eigenvalues and where (DDT )−1 exists. Suppose there exists a

scalar real constant γ > 0 and a symmetric positive deflnite real matrix Y > 0 that satisfles

the following algebraic Riccati equation

0 = (A+ LC)Y + Y (A+ LC)T + (B + LD)(B + LD)T

+ γ−2(Y CTz +BDT
z )(Y CTz +BDT

z )T (c.14)

Then (A + LC) is stable and ‖G‖∞ ≤ [γ2 + σ2
max(Dz)]1/2 where σmax(Dz) is the largest

singular value of Dz.

When the terms of (c.14) are manipulated to isolate L, a corollary which provides an L

that stabilizes G and bounds ‖G‖∞ follows immediately.
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Corollary C.6. Suppose a symmetric positive deflnite real matrix Y > 0 satisfles the

following algebraic Riccati equation

0 =
[
A−BDT (DDT )−1C + γ−2BDT

z Cz
]
Y

+ Y
[
A−BDT (DDT )−1C + γ−2BDT

z Cz
]T

+B
[
I −DT (DDT )−1D + γ−2DT

z Dz

]
BT

− Y
[
CT (DDT )−1C − γ−2CTz Cz

]
Y (c.15)

Then for

L = −(Y CT +BDT )(DDT )−1 (c.16)

(A+ LC) is stable and ‖G‖∞ ≤ [γ2 + σ2
max(Dz)]1/2 where σmax(Dz) is the largest singular

value of Dz.

Standard results strengthen Corollary C.6 by replacing (c.15) with conditions on an

associated Hamiltonian matrix and adding a system detectability requirement (Ku•cera 1972,

Doyle 1984). That is not done here because in the next proposition, the Riccati equation

(c.15) is modifled to provide a detection fllter gain and has no associated Hamiltonian

matrix.

In the detection fllter problem, L is constrained to generate a set of q invariant subspaces

W1, . . . ,Wq. There is no reason to expect that L, at the same time, should satisfy (c.16).

In the next proposition, (c.16) is modifled so that L satisfles both constraints. When the

modifled relation is substituted for L in (c.14) and L is eliminated, the result is an algebraic

Riccati equation with an extra term. The modifled Riccati equation has no associated

Hamiltonian and conditions for the uniqueness or even the existence of a solution are

unknown. However, (Veillette et al. 1992) reports success in flnding iterative numerical

solutions to a similar relation arising from a decentralized control problem. An example in

the next section illustrates the application a numerical integration approach.

Before stating the main proposition, it is convenient to rearrange the detection fllter

error dynamics by combining the error dynamics (c.10) with the detection fllter gain (c.7).
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Then the problem of choosing the parameters α0 and α1, . . . , αq has the same form as the

problem of choosing a set of q + 1 constant feedback gains for the system

_e = Âe−B̂ω−
q∑
i=1

Fimi+W1u1+· · ·+Wquq+u0 (c.17a)

y1 = ~H1Ce− ~H1Dω, u1 = α1y1 (c.17b)
... (c.17c)

yq = ~HqCe− ~HqDω, uq = αqyq (c.17d)

y0 = ~H0Ce− ~H0Dω, u0 = α0y0 (c.17e)

where

Â = A+ L̂C (c.17f)

B̂ = B + L̂D (c.17g)

L̂ = −
q∑
i=1

AWiF̂i ~Hi (c.17h)

Proposition C.7. Consider the system G with output given by (c.12)

G =



Â −B̂ W1 · · · Wq I

HC −HD 0 · · · 0 0
~H1C − ~H1D 0 · · · 0 0

...
...

...
. . .

...
...

~HqC − ~HqD 0 · · · 0 0
~H0C − ~H0D 0 · · · 0 0


Deflne

C2 =


~H1C

...
~HqC
~H0C

 D21 =


~H1D

...
~HqD
~H0D

 V = D21D
T
21

and the partitioning matrices ƒ1, . . . ,ƒq and ƒ0

ƒ1 =


I
...
0
0

 . . . ƒq =


0
...
I
0

 ƒ0 =


0
...
0
I
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such that

ƒT
i [ C2, D21 ] = [ ~HiC, ~HiD ],

ƒT
0 [ C2, D21 ] = [ ~H0C, ~H0D ]

Now deflne a set of projections PW1 , . . . , PWq where =PWi = =Wi and deflne a set of

associated natural projections ~PWi , which satisfyWi
~PWi = PWi . Assume (Â− B̂DT

21V
−1C2)

has no eigenvalues on the imaginary axis. Let γ > 0 be a constant real scalar and suppose

there exists Y > 0 such that

0 =
[
Â− B̂DT

21V
−1C2 + γ−2B̂DTHTC2

]
Y + Y

[
Â− B̂DT

21V
−1C2 + γ−2B̂DTHTC2

]T
+ B̂

[
I −DT

21V
−1D21 + γ−2DTHTHD

]
B̂T

− Y
[
CT2 V

−1C2 − γ−2CTHTHC
]
Y

+

( q∑
i=1

(I − PWi)(Y C
T
2 + B̂DT

21)V −1ƒi
~HiD

)

×
( q∑
i=1

(I − PWi)(Y C
T
2 + B̂DT

21)V −1ƒi
~HiD

)T
(c.18)

Then

α1 = − ~PW1(Y CT2 + B̂DT
21)V −1ƒ1

...

αq = − ~PWq(Y C
T
2 + B̂DT

21)V −1ƒq

α0 = −(Y CT2 + B̂DT
21)V −1ƒ0

stabilizes G and bounds the transfer matrix Tzω as ‖Tzω‖∞ ≤ [γ2 + σ2
max(HD)]1/2 where

σmax(HD) is the largest singular value of HD.

Proof. The transfer matrix Tzω is

Tzω =

[
AT −BT
HC −HD

]
where
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AT = Â+
q∑
i=1

Wiαi ~HiC + α0
~H0C

BT = B̂ +
q∑
i=1

Wiαi ~HiD + α0
~H0D

By Theorem C.5 and since (Â− B̂DT
21V

−1C2) has no eigenvalues on the imaginary axis, it

is su–cient to show that S = 0 for some Y > 0 where

S = ATY + Y ATT +BTB
T
T +

γ−2(Y CT + B̂DT )HTH(Y CT + B̂DT )T

The rest of the proof involves algebraic manipulations that put S in the form of the modifled

algebraic Riccati equation (c.18).

C.4 Fault Enhancement

As discussed in the introduction, it is not enough to bound the residual component due

to the process disturbances and sensor noise since this might, at the same time, make the

fault residual component small. The approach taken here is to enhance each fault residual

component while maintaining the disturbance and sensor noise bound.

Consider a cost function given as the fault signal to noise ratio

Ji =
‖Tzimi‖∞
‖Tziω‖∞

(c.19)

This is the same cost function as given in (Frank and Wũnnenberg 1989) for a set of parity

equations. Combining the fllter gain of Proposition C.7 with results from (Doyle et al. 1989)

provide a Youla parameterization of stable and H∞ norm bounded transfer matrices. This

could be applied to the fault detection fllter by restricting the Youla parameter to those

which maintain the invariant subspace structure. Maximizing (c.19) with respect to a

restricted set of Youla parameters is a very di–cult problem. A more tractable problem

may be deflned as follows.

First, consider the fault detection fllter transfer matrix for the fault isolation residual zi.

By the fllter unobservability subspace structure, only the fault mi in°uences residual zi, so a
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reduced-order realization is written. The subscript i is dropped for notational convenience.

_„e(t) = „A„e(t) + „Fm(t) + „Bω(t)

z(t) = „C„e(t) +Dmm(t) +Dωω(t)

The error „e lies in the factor space „e ∈ X/∑j 6=i T j , the observable factor space with respect

to z. All maps are taken as induced on this factor space. Now consider signals m(t) and

ω(t) as elements of L2(−∞, 0] spaces of appropriate dimensions and deflne the controllability

operators

ψm : L2(−∞, 0] 7→ Rn ∆=

∫ 0

−∞
e−Āτ „Fm(τ)dτ

ψω : L2(−∞, 0] 7→ Rn ∆=

∫ 0

−∞
e−Āτ „Bω(τ)dτ

Then z = zm + zω where zm and zω are residual components due to m(t) and ω(t) given by

zm(t) = „CeĀt„e0m = „CeĀtψmm

zω(t) = „CeĀt„e0ω = „CeĀtψωω

A detection fllter fault enhancement problem may be stated as follows. Consider the residual

components zm and zω as elements of L2[0, T ) spaces where T is an observation window.

Find a constant mapping qT that maximizes the cost

J =

max
ω

‖qT zm‖2L2[0,T )

‖ω‖2L2(−∞,0]

−1 max
m

 ‖m‖2L2(−∞,0]

‖qT zm‖2L2[0,T )

 (c.20)

Note that qT zm and qT zω are scalars. When maximized with respect to qT , this cost

penalizes large residual components due to a disturbance ω and small residual components

due to a fault m.

The choice of the observation window T and the fault detection threshold is a design

decision based on the functional form of the expected faults and disturbances. A detailed

discussion is found in (Emami-Naeini et al. 1988). However, it is worthwhile to point out

that a window of zero length, T = 0, is not practical. First, since faults and disturbances
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enter the residual directly through Dm and Dω, it is not possible to distinguish a fault from

a disturbance at any one point in time. Second, the operators that map signals m(t) and

ω(t) ∈ L2(−∞, 0] to the respective residual components at time t = 0 are given by

„ψm : L2(−∞, 0] 7→ Rm ∆= „Cψmm(t) +Dmm(0)

„ψω : L2(−∞, 0] 7→ Rm ∆= „Cψωω(t) +Dωω(0)

These operators are not bounded. For example, let

mh(t) =

{
1/
√
h −h ≤ t ≤ 0

0 t < −h (c.21)

Then mh(t) ∈ L2(−∞, 0] and ‖mh‖ = 1 for all h but „ψmmh →∞ as h→ 0. Hence, further

restrictions on m and ω need to be made before a cost function such as the following could

be used.

‖ „Cψmm+Dmm(0)‖Rm

‖ „Cψωω +Dωω(0)‖Rm

A well-known result (Doyle et al. 1989) is that for a given initial state „e0ω , the smallest

signal ω ∈ L2(−∞, 0] that produces „e0ω has a norm given by

inf
ω∈L2(−∞,0]

{‖ω‖2|„e(0) = „e0ω} = „eT0ωX
−1
ω „e0ω (c.22)

where Xω is the controllability grammian given as the solution to the steady-state Lyapunov

equation

0 = „AXω +Xω
„AT + „B „BT

If q were known, an initial state „e0ω could be found by maximizing the ratio

Jω = sup
ω∈L2(−∞,0]

‖qT zω‖2L2[0,T )

‖ω‖2L2(−∞,0]

= max
ē0ω 6=0

„eT0ω
[∫ T

0 eĀ
T τ „CT qqT „CeĀτdτ

]
„e0ω

„eT0ωX
−1
ω „e0ω

This is solved as an eigenvalue problem

Jω = λmax

[∫ T

0
eĀ

T τ „CT qqT „CeĀτdτXω

]
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where „e0ω is the eigenvector associated with the largest eigenvalue λmax. Note that in the

case where T =∞, J ′ is the Hankel norm of the transfer matrix.

Since q is not known, consider a worst case „e0ω as the eigenvector associated with[∫ T

0
eĀ

T τ „CT „CeĀτdτXω

]
„e0ω = λωmax „e0ω (c.23)

Similarly, a worst-case fault maximizes the ratio

Jm = sup
m∈L2(−∞,0]

‖m‖2L2(−∞,0]

‖qT zm‖2L2[0,T )

= max
ē0m 6=0

„eT0mXm„e0m

„eT0m
[∫ T

0 eĀT τ „CT qqT „CeĀτdτ
]

„e0m

where „e0m is the eigenvector associated with[∫ T

0
eĀ

T τ „CT „CeĀτdτXm

]
„e0m = λmmax „e0m (c.24)

Now maximize (c.20) with respect to q using „e0ω and „e0m from (c.23) and (c.24). This

is solved as another eigenvalue problem.

J = max
q 6=0

‖qT zm‖2L2[0,T )

‖qT zω‖2L2[0,T )

= λmax (c.25)

where (
„C
∫ T

0
eĀτ „e0m„eT0me

ĀT τdτ „CT
)T

q =

λmax

(
„C
∫ T

0
eĀτ „e0ω„eT0ωe

ĀT τdτ „CT
)T

q (c.26)

Finally, the controllability gramians in (c.26) for the case T =∞ may be found as solutions

to a pair of steady-state Lyapunov equations. Let

X0m =
∫ T

0
eĀτ „e0m„eT0me

ĀT τdτ

X0ω =
∫ T

0
„eĀτe0ω„eT0ωe

ĀT τdτ

Then

0 = „AX0m +X0m
„AT + „e0m„eT0m

0 = „AX0ω +X0ω
„AT + „e0ω„eT0ω
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C.5 Application to an Aircraft Fault Detection System

This example considers a simplifled aircraft fault detection fllter. The dynamics of an

F16XL are linearized about a trimmed level °ight condition at 10,000 feet altitude and

Mach 0.9. The flve-state model includes longitudinal dynamics only, no lateral dynamics

and no actuator dynamics. A flrst-order Dryden wind gust model is included.

_x = Ax+Bωω +Bδδ

y = Cx+Dν

The states are

u longitudinal body axis velocity (ft/sec)

w normal body axis velocity (ft/sec)

q pitch rate (deg/sec)

θ pitch angle (deg)

wg wind gust (ft/sec)

the measurements are

q pitch rate (deg/sec)

α angle of attack (deg)

Az normal acceleration (ft/sec2)

Ax longitudinal acceleration (ft/sec2)

the disturbances are

ω wind gust (ft/sec)

νq pitch rate sensor noise

να angle of attack sensor noise

νAz normal accelerometer sensor noise
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νAx longitudinal accelerometer sensor noise

and the input is

δ elevon de°ection angle (deg)

All disturbances are zero-mean uncorrelated white noise processes with unit spectral density.

The port and starboard elevon is modeled as a slaved system because only longitudinal

dynamics are considered for this simple example. The elevon actuator dynamics are not

included. The system matrices are

A =
−0.0674 0.0430 −0.8886 −0.5587 0.0430
0.0205 −1.4666 16.5800 −0.0299 −1.4666
0.1377 −1.6788 −0.6819 0 −1.6788

0 0 1.0000 0 0
0 0 0 0 −1.1948



Bω =


0
0
0
0

1.57

 , Bδ=


−0.1672
−1.5179
−9.7842

0
0



C =


0 0 1.0000 0 0
0 0.0591 0 1.0000 0

0.0139 1.0517 0.1485 −0.0299 0
−0.0677 0.0431 0.0171 0 0



D =


0.01 0 0 0

0 0.143 0 0
0 0 0.245 0
0 0 0 0.245


Now consider a fault detection system with two faults: a normal accelerometer sensor

fault and an elevon fault. The normal accelerometer fault can be modeled as an additive

term in the measurement equation

y = Cx+ EAzµAz where EAz =


0
0
1
0

 (c.27)
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and where µAz is an arbitrary time-varying real scalar. For the purpose of determining an

associated detection space, the fault EAz in (c.27) is equivalent to a two-dimensional fault

FAz (Douglas 1993)

_x = Ax+ FAzmAz with FAz = [F 1
Az, F

2
Az]

where the directions F 1
Az and F 2

Az are given by

EAz = CF 1
Az

F 2
Az = AF 1

Az

so that

FAz =


0 0.9986
0 0.0534
0 0
1 0
0 0


The elevon fault is given simply as Fδ = Bδ. Since CF 1

Az, CF
2
Az and CFδ are all nonzero and

since none of the triples (C,A, F 1
Az), (C,A, F 2

Az), (C,A, Fδ) have invariant zeros, the minimal

unobservability subspaces for the faults are given by the fault directions themselves, that is,

T 1∗
Az = SpanF 1

Az, T 2∗
Az = SpanF 2

Az and T ∗δ = SpanFδ. The faults are mutually detectable

so there are no constraints on the spectrum of the detection fllter.

The flrst step toward flnding a fault detection fllter gain is to flnd L̂ as in (c.17h). This

gain forms an observer with the correct detection space structure but without regard to

stability or any performance considerations.

L̂ = −
q∑
i=1

AWiF̂i ~Hi

Considering the two-dimensional normal accelerometer sensor fault as a pair of output

separable faults, the F̂i are identity matrices and the Wi are just the fault directions

themselves. To flnd the ~Hi, let F = [FAz, Fδ] and form the left inverse of CF as (CF )−` =

(F TCTCF )−1F TCT . Now take ~HAz as the flrst two rows of (CF )−` and ~Hδ as the third

row. Finally L̂ = −AFAz ~HAz−AFδ ~Hδ and all components needed to apply Proposition C.7

are now given.
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Application of Proposition C.7 involves solving a modifled algebraic Riccati equation.

One approach which has achieved practical success is to form a modifled difierential Riccati

equation and to numerically integrate until a steady state is reached. An initial condition

for the integration is chosen by solving the algebraic Riccati equation found by truncating

the modifying quadratic term. Choosing an H∞ bounding parameter γ = 1.2 results in a

fllter with eigenvalues −29.4629,−1.6062,−0.4351,−0.0032 and −1.1013.

Figure c.1 shows the maximum singular values in decibels of two fault detection fllter

transfer matrices. One is from the wind disturbance and sensor noise to the residual which

isolates a normal accelerometer fault. The other is from the normal accelerometer sensor to

the same residual. A third transfer matrix, one from the elevon de°ection is zero, as it should

be, and is not shown. Figure c.2 shows the maximum singular values of transfer matrices

to the elevon fault residual. Here the transfer matrix from the normal accelerometer sensor

is zero and is not shown. In both flgures, the residual is scaled so that the DC gain of the

disturbance component is 0 db. Both faults have been scaled by two to emphasize that

fault detection in the presence of disturbances resolves to a threshold selection problem.

Note that in the case of the elevon fault, both the residual and the detection space are

one-dimensional so the associated fllter eigenvector is flxed. There is no way to increase the

residual component due to the fault without at the same time increasing the component

due to the noise.

This is not the case for the normal accelerometer residual since it is two dimensional.

A fault enhancing residual direction is found from (c.26) as qTi = [−0.126,−0.992]. The

singular value frequency responses for the improved residual are also shown in Figure c.1.

Disturbance reduction is seen mainly at frequencies above 1 rad/sec. A modest increase in

the fault signal is seen at all frequencies.

Figures c.3 and c.4 show residual histories where white noise is applied to the wind gust

model and the sensors. Figure c.3 shows the normal accelerometer residual history when

a 2 ft/sec2 bias is added to the accelerometer signal after one second. Figure c.4 shows

the elevon residual history when a 2 degree bias is added to the elevon de°ection after one
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second. Clearly, in both cases, a hard fault is detectable with an appropriate threshold

(Emami-Naeini et al. 1988).
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Figure c.1: Magnitude of transfer functions to the normal accelerometer fault isolation
residual.

C.6 Conclusions

A stable and H∞ bounded detection fllter is found by solving a modifled algebraic Riccati

equation (c.18). This equation does not have an associated Hamiltonian and its properties

are not well known; however, in (Veillette et al. 1992), a similar equation appears in the

context of decentralized system control and there it is reported that a solution when it

exists can usually be found by iterative, numerical means. Future work will focus on flnding

necessary and su–cient conditions for (c.18) to have a solution.
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Figure c.4: Elevon fault isolation residual. 2 degree elevon fault occurs at t=1 sec.
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Vehicle Linear Model Data

The fourteen-order linear system matrices used for actuator fault detection fllter design are:

A =



−22.42 −0.12 0 0 0 0 0 ...
306.69 −29.75 331.11 −1.17 −196.62 −2278.82 56.77 ...

0 0.06 −0.68 0.06 0.51 5.95 −0.18 ...
0 −0.00 −0.07 −9.03 −0.33 −2.84 −18.33 ...
0 −0.00 0.02 −0.00 −3.55 −41.21 0.03 ...
0 0 0 0 1.00 0 0 ...
0 0 0 0 0 0 0 ...
0 −0.00 −0.03 −9.75 −0.41 −1.62 −60.48 ...
0 0 0 0 0 0 0 ...
0 −0.02 0.18 −0.01 −0.59 −7.05 0.32 ...
0 −0.00 0.01 0.33 0.05 0.53 −0.17 ...
0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 ...
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... 0 0 0 0 2.35 0 0

... 2.92 −3169.84 −273.50 2.99 0 −0.07 0

... −0.00 15.84 1.40 −0.34 0 −0.00 −1.09

... −1.83 −0.79 −0.10 −23.98 0 −0.00 123.72

... −0.00 −9.21 −0.81 0.01 0 0.00 0.04

... 0 0 0 0 0 0 0

... 1.00 0 0 0 0 0 0

... −6.05 −0.09 −0.10 0.91 0 −0.00 134.16

... 0 0 1.00 0 0 0 0

... −0.01 −40.09 −3.59 0.06 0 0.00 0.39

... −0.01 2.03 0.19 −5.62 0 0.00 49.17

... 0 0 0 0 −90.91 0 0

... 0 0 0 0 0 −1.25 0

... 0 0 0 0 0 0 −80.00



(d.1a)

B =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

90.91 0 0
0 1.25 0
0 0 80.00



(d.1b)

C =



1.00 0 0 0 0 0 0 ...
0 1.00 0 0 0 0 0 ...
0 0.06 −0.68 0.06 0.51 5.95 −0.18 ...
0 −0.00 −0.07 −9.03 −0.33 −2.84 −18.33 ...
0 −0.00 0.02 −0.00 −3.55 −41.21 0.03 ...
0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 ...
0 0 0 0 0 0 0 ...
0 0 3.54 −0.01 −2.24 −26.36 −19.11 ...
0 0 3.58 −0.01 −2.30 −26.33 19.09 ...
0 0.04 3.02 −0.01 −1.76 −20.06 −16.88 ...
0 0.03 3.12 −0.01 −1.89 −22.20 17.93 ...
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... 0 0 0 0 0 0 0

... 0 0 0 0 0 0 0

... −0.00 15.84 1.40 −0.34 0 −0.00 −1.09

... −1.83 −0.79 −0.10 −23.98 0 −0.00 123.72

... −0.00 −9.21 −0.81 0.01 0 0.00 0.04

... 1.00 0 0 0 0 0 0

... 0 0 1.00 0 0 0 0

... 0 0 0 1.00 0 0 0

... −1.63 29.89 2.54 −2.56 0 −0.00 −0.00

... 1.67 29.86 2.61 2.24 0 −0.00 −0.00

... −1.47 −27.90 −2.45 −2.50 0 −0.00 0

... 1.53 −30.88 −2.62 2.56 0 −0.00 0



(d.1c)

D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



(d.1d)

The twelveth-order linear system matrices used for sensor fault detection fllter design

are:

A =



−22.42 −0.12 0 0 0 0 ...
306.69 −29.75 331.11 −1.17 −196.62 −2278.82 ...

0 0.06 −0.68 0.06 0.51 5.95 ...
0 −0.00 −0.07 −9.03 −0.33 −2.84 ...
0 −0.00 0.02 −0.00 −3.55 −41.21 ...
0 0 0 0 1.00 0 ...
0 0 0 0 0 0 ...
0 −0.00 −0.03 −9.75 −0.41 −1.62 ...
0 0 0 0 0 0 ...
0 −0.02 0.18 −0.01 −0.59 −7.05 ...
0 −0.00 0.01 0.33 0.05 0.53 ...
0 0 0 0 0 0 ...
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... 0 0 0 0 0 0

... 56.77 2.92 −3169.84 −273.50 2.99 −0.07

... −0.18 −0.00 15.84 1.40 −0.34 −0.00

... −18.33 −1.83 −0.79 −0.10 −23.98 −0.00

... 0.03 −0.00 −9.21 −0.81 0.01 0.00

... 0 0 0 0 0 0

... 0 1.00 0 0 0 0

... −60.48 −6.05 −0.09 −0.10 0.91 −0.00

... 0 0 0 1.00 0 0

... 0.32 −0.01 −40.09 −3.59 0.06 0.00

... −0.17 −0.01 2.03 0.19 −5.62 0.00

... 0 0 0 0 0 −1.25



(d.2a)

B =



2.35 0 0
0 0 0
0 0 −1.09
0 0 123.72
0 0 0.04
0 0 0
0 0 0
0 0 134.16
0 0 0
0 0 0.39
0 0 49.17
0 1.25 0



(d.2b)

C =



1.00 0 0 0 0 0 ...
0 1.00 0 0 0 0 ...
0 0.06 −0.68 0.06 0.51 5.95 ...
0 −0.00 −0.07 −9.03 −0.33 −2.84 ...
0 −0.00 0.02 −0.00 −3.55 −41.21 ...
0 0 0 0 0 0 ...
0 0 0 0 0 0 ...
0 0 0 0 0 0 ...
0 0 3.54 −0.01 −2.24 −26.36 ...
0 0 3.58 −0.01 −2.30 −26.33 ...
0 0.04 3.02 −0.01 −1.76 −20.06 ...
0 0.03 3.12 −0.01 −1.89 −22.20 ...
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... 0 0 0 0 0 0

... 0 0 0 0 0 0

... −0.18 −0.00 15.84 1.40 −0.34 −0.00

... −18.33 −1.83 −0.79 −0.10 −23.98 −0.00

... 0.03 −0.00 −9.21 −0.81 0.01 0.00

... 0 1.00 0 0 0 0

... 0 0 0 1.00 0 0

... 0 0 0 0 1.00 0

... −19.11 −1.63 29.89 2.54 −2.56 −0.00

... 19.09 1.67 29.86 2.61 2.24 −0.00

... −16.88 −1.47 −27.90 −2.45 −2.50 −0.00

... 17.93 1.53 −30.88 −2.62 2.56 −0.00



(d.2c)

D =



0 0 0
0 0 0
0 0 −1.09
0 0 123.72
0 0 0.04
0 0 0
0 0 0
0 0 0
0 0 −0.00
0 0 −0.00
0 0 0
0 0 0



(d.2d)
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Fault Detection Filter Design Data

This appendix collects data associated with fault detection fllter designs of Section 4.

Section E.1 has the data for a fault detection fllter design for fault group three, the four

wheel speed sensors. Section E.2 has the data for a fault detection fllter design for fault

group four, the four wheel speed sensors.

E.1 Design Data for Fault Group Three

This appendix presents data associated with the fault detection fllter design for fault group

three, the four wheel speed sensors. The design details and a discussion are in Section 4.2.1.

For each eigenvalue λij ∈ ⁄i, the left eigenvectors vij generally are not unique and must

be chosen from a subspace as vij ∈ Vij where Vij is found by solving (4.2)[
AT − λijI CT

F̂ Ti 0

] [
Vij
Wij

]
=

[
0
0

]

267
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There are twelve Vij associated with twelve eigenvalues. Only two Vij , the two associated

with the front left wheel speed sensor fault, are shown here.

Vywfl1 =



0.0147 −0.0095 0.0089 −0.0572 0.1287 0.9898
0.0009 −0.0006 0.0005 −0.0033 0.0041 −0.0008
−0.0680 −0.1045 −0.2833 −0.3041 −0.3300 0.0279
−0.1436 −0.2173 −0.0126 −0.5593 −0.6139 0.0476
−0.0010 −0.0036 −0.0021 −0.0121 −0.0036 −0.0002

0.0100 −0.0087 0.0032 −0.0526 0.0543 −0.0104
−0.1343 0.0826 0.9460 −0.1194 −0.0980 0.0001

0.0176 −0.0340 0.0090 −0.1649 0.1749 −0.0329
0.4216 −0.8713 0.1488 0.1971 −0.0085 −0.0035
−0.0751 0.1252 0.0007 0.6939 −0.6443 0.1262

0.8790 0.3985 0.0489 −0.1635 −0.1980 0.0066
−0.0001 −0.0000 −0.0003 −0.0003 −0.0003 0.0000



Vywfl2 =



−0.0077 0.0039 −0.0135 0.4552 −0.8901 0.0166
−0.0003 0.0001 −0.0005 0.0042 0.0021 −0.0027

0.0098 0.0673 0.2871 0.1475 0.0793 0.4276
−0.1385 0.0536 0.0486 0.2694 0.1533 0.7997
−0.0014 0.0012 0.0025 0.0091 0.0048 0.0079
−0.0031 0.0013 −0.0026 0.0627 0.0315 −0.0326
−0.3370 −0.3002 −0.8473 0.0387 0.0369 0.1386

0.0048 0.0010 −0.0121 0.2002 0.1006 −0.1002
0.0897 0.9304 −0.3524 −0.0069 0.0052 0.0030
0.0020 −0.0034 0.0008 −0.8059 −0.4057 0.3461
−0.9268 0.1918 0.2698 −0.0581 −0.0280 −0.1649

0.0000 −0.0000 0.0003 0.0001 0.0001 0.0004



The left eigenvectors are chosen from vij ∈ Vij as the set with the greatest degree of linear

independence. The matrix of assigned left eigenvectors ~V is

~V =
[
v01 , v02 , v03 , v04 , vywfl1 , vywfl2 , vywfr1 , vywfr2 , vywrl1 , vywrl2 , vywrr1 , vywrr2

]
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=



0.2991 0.0000 −0.0000 −0.9542 −0.0000 0.0000 . . .
−0.0001 −0.0002 0.0000 −0.0000 −0.0017 0.0052 . . .

0.0119 0.0434 −0.0131 0.0037 −0.4802 −0.2551 . . .
0.1401 −0.1312 −0.3954 0.0439 −0.6638 −0.3524 . . .
0.0013 −0.0009 −0.0037 0.0004 −0.0126 0.0008 . . .
−0.0012 0.0002 −0.0005 −0.0004 −0.0316 0.0708 . . .

0.2894 −0.2470 −0.8074 0.0907 0.3290 0.1744 . . .
−0.0175 0.0031 −0.0078 −0.0055 −0.1006 0.2234 . . .
−0.2274 −0.9478 0.2053 −0.0713 −0.0254 0.0095 . . .

0.0446 −0.0280 0.0265 0.0140 0.4558 −0.8500 . . .
0.8678 −0.1439 0.3855 0.2720 −0.0280 0.0530 . . .
0.0000 0.0001 −0.0000 0.0000 −0.0005 −0.0002 . . .

. . . 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000

. . . −0.0009 −0.0054 −0.0212 −0.0007 0.0219 0.0008

. . . 0.5079 −0.0023 0.0003 −0.2479 0.0140 −0.2304

. . . −0.7729 0.0055 0.0053 −0.8662 −0.0570 0.8683

. . . −0.0088 0.0039 −0.0102 −0.0033 −0.0105 0.0048

. . . 0.0031 0.0444 −0.1179 −0.0009 −0.1176 −0.0080

. . . 0.3784 −0.0025 −0.0026 0.4275 0.0280 −0.4265

. . . 0.0176 0.2375 −0.9924 −0.0068 −0.9902 −0.0660

. . . 0.0316 −0.0205 −0.0006 −0.0013 0.0006 −0.0180

. . . 0.0028 0.9688 0.0146 −0.0738 0.0194 −0.0789

. . . 0.0002 −0.0503 −0.0211 0.0041 −0.0213 0.0031

. . . 0.0005 0.0000 −0.0000 0.0005 −0.0000 0.0006



where

v01 ∈ V01 v02 ∈ V02

v03 ∈ V03 v04 ∈ V04

vywfl1 ∈ Vywfl1 vywfl2 ∈ Vywfl2
vywfr1 ∈ Vywfr1 vywfr2 ∈ Vywfr2
vywrl1 ∈ Vywrl1 vywrl2 ∈ Vywrl2
vywrr1 ∈ Vywrr1 vywrr2 ∈ Vywrr2

The matrix ~W associated with the left eigenvectors ~V is

~W =
[
w01 , w02 , w03 , w04 , wywfl1 , wywfl2 , wywfr1 , wywfr2 , wywrl1 , wywrl2 , wywrr1 , wywrr2

]
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=



3.1340 0.0475 −0.0087 −7.0773 0.5261 −1.5937 . . .
0.0240 −0.0486 0.0116 −0.1165 −0.0064 0.1703 . . .
0.1726 0.7200 −0.1664 0.0690 −0.0379 −1.2071 . . .
0.0977 −0.0613 −0.1967 0.0453 0.4735 −0.3263 . . .
0.0161 0.1358 0.0176 0.0061 −0.4006 −0.3341 . . .
0.2604 −0.1254 −0.2117 0.1250 0.0587 −2.4525 . . .
−0.5476 0.2188 −0.3407 −0.2320 −1.7301 9.2842 . . .

0.2466 −3.2948 −17.4840 −0.3811 −3.2417 −17.0804 . . .
−0.0000 −0.0000 0.0000 −0.0000 0.5766 0.0589 . . .
−0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 . . .

0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 . . .
0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 . . .

. . . 0.2793 1.6517 6.4910 0.2300 −6.7146 −0.2571

. . . −0.0784 −0.1105 −0.5915 −0.1546 0.5887 −0.1013

. . . 0.4392 0.3352 −0.0791 1.7645 −0.1720 1.7127

. . . 0.3324 −0.2558 1.0693 0.0188 1.0810 −0.0187

. . . 0.5166 −0.1356 −0.0141 −0.2256 0.0014 −0.3392

. . . −0.3991 −2.2347 5.3986 −0.2538 6.3527 0.8144

. . . −0.0502 −9.5742 −0.0536 0.6232 −0.0978 0.5578

. . . −9.2347 −7.0837 32.5183 −16.9163 31.4442 18.7676

. . . −0.0000 −0.0000 0.0000 −0.0000 −0.0000 −0.0000

. . . −0.4555 0.5162 0.0000 −0.0000 −0.0000 −0.0000

. . . 0.0000 −0.0000 2.3178 1.1515 −0.0000 0.0000

. . . 0.0000 −0.0000 0.0000 0.0000 −2.3751 0.8506



The fault detection fllter gain L is found from (4.4), ~V TL = ~W T and is

L =



7.69 0.12 −0.01 −0.01 −0.00 −0.04 . . .
−306.69 27.24 0.22 0.19 −0.13 23.12 . . .

0.01 0.08 −1.43 0.09 1.04 0.42 . . .
0.13 0.01 −0.16 0.31 −0.11 0.18 . . .
0.00 −0.51 17.06 −44.36 4.24 46.22 . . .
−0.00 0.58 −13.13 0.06 −4.21 −28.33 . . .

0.26 −0.00 0.01 0.30 −0.02 0.06 . . .
−0.02 −0.05 1.45 −0.63 0.47 −3.05 . . .
−0.20 0.02 −0.45 −0.01 −0.09 0.06 . . .

0.04 0.03 0.51 0.07 −0.08 −0.31 . . .
0.78 −0.00 −0.02 0.01 0.01 0.12 . . .
0.00 −186.37 2481.31 64.36 −80.30 148.64 . . .
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. . . 0.06 0.44 0.00 0.00 −0.00 −0.00

. . . −0.26 4.45 −0.00 0.00 −53.97 −53.73

. . . −1.74 1.70 −0.36 −0.34 −0.71 −0.59

. . . 1.26 28.02 0.26 −0.22 −1.00 0.85

. . . −216.65 −867.22 −43.03 39.17 80.36 −68.11

. . . 11.29 −1.91 0.32 4.51 1.99 −2.63

. . . 0.41 8.69 0.07 −0.07 0.13 −0.11

. . . 0.80 −23.48 0.40 −0.93 −2.25 2.15

. . . −0.17 −0.56 −0.04 −0.04 0.08 0.07

. . . −9.75 1.55 0.06 0.39 −0.16 −0.43

. . . −0.14 −6.85 0.00 −0.03 −0.02 0.06

. . . −580.26 2141.09 −62.03 −164.78 466.76 651.96



(e.1)

The output projection matrices Ĥywfl
, Ĥywfr

, Ĥywrl
and Ĥywrr are as follows.

Ĥywfl
=



1.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 . . .
0.0000 0.0043 −0.0631 −0.0027 0.0007 −0.0021 . . .
−0.0000 −0.0631 0.9757 0.0674 0.0867 −0.0313 . . .

0.0000 −0.0027 0.0674 0.3023 0.1353 0.3567 . . .
0.0000 0.0007 0.0867 0.1353 0.2517 −0.0936 . . .
−0.0000 −0.0021 −0.0313 0.3567 −0.0936 0.8168 . . .
−0.0000 −0.0061 −0.0085 0.0901 −0.0223 −0.0463 . . .
−0.0000 0.0003 −0.0002 0.0021 −0.0006 −0.0011 . . .

0.0000 −0.0155 0.0815 −0.2296 −0.3915 0.1026 . . .
−0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000 . . .
−0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000 . . .

0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000 . . .

. . . −0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

. . . −0.0061 0.0003 −0.0155 0.0000 −0.0000 −0.0000

. . . −0.0085 −0.0002 0.0815 −0.0000 0.0000 0.0000

. . . 0.0901 0.0021 −0.2296 0.0000 0.0000 0.0000

. . . −0.0223 −0.0006 −0.3915 −0.0000 0.0000 0.0000

. . . −0.0463 −0.0011 0.1026 0.0000 −0.0000 −0.0000

. . . 0.9883 −0.0003 0.0267 0.0000 −0.0000 −0.0000

. . . −0.0003 1.0000 0.0006 −0.0000 0.0000 0.0000

. . . 0.0267 0.0006 0.6610 −0.0000 0.0000 −0.0000

. . . 0.0000 −0.0000 −0.0000 −0.0000 0.0000 −0.0000

. . . −0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000

. . . −0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0000



(e.2a)
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Ĥywfr
=



1.0000 0.0000 0.0000 0.0000 −0.0000 −0.0000 . . .
0.0000 0.0042 −0.0623 −0.0010 0.0023 −0.0021 . . .
0.0000 −0.0623 0.9773 −0.0532 0.0921 0.0225 . . .
0.0000 −0.0010 −0.0532 0.2016 −0.1514 0.2985 . . .
−0.0000 0.0023 0.0921 −0.1514 0.2915 0.0383 . . .
−0.0000 −0.0021 0.0225 0.2985 0.0383 0.8879 . . .

0.0000 −0.0050 −0.0057 −0.0729 −0.0101 0.0273 . . .
−0.0000 0.0002 0.0008 0.0102 0.0014 −0.0038 . . .

0.0000 0.0000 −0.0000 0.0000 −0.0000 −0.0000 . . .
−0.0000 −0.0174 0.0806 0.2017 −0.4166 −0.0877 . . .

0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 . . .
0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 . . .

. . . 0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000

. . . −0.0050 0.0002 0.0000 −0.0174 −0.0000 −0.0000

. . . −0.0057 0.0008 −0.0000 0.0806 0.0000 0.0000

. . . −0.0729 0.0102 0.0000 0.2017 −0.0000 −0.0000

. . . −0.0101 0.0014 −0.0000 −0.4166 0.0000 0.0000

. . . 0.0273 −0.0038 −0.0000 −0.0877 0.0000 0.0000

. . . 0.9933 0.0009 0.0000 0.0208 −0.0000 −0.0000

. . . 0.0009 0.9999 0.0000 −0.0029 0.0000 0.0000

. . . 0.0000 0.0000 −0.0000 −0.0000 −0.0000 0.0000

. . . 0.0208 −0.0029 −0.0000 0.6443 −0.0000 −0.0000

. . . −0.0000 0.0000 −0.0000 −0.0000 −0.0000 0.0000

. . . −0.0000 0.0000 0.0000 −0.0000 0.0000 0



(e.2b)

Ĥywrl
=



1.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000 . . .
0.0000 0.0106 −0.0607 −0.0477 0.0231 0.0212 . . .
−0.0000 −0.0607 0.8686 −0.1648 0.0110 −0.0009 . . .
−0.0000 −0.0477 −0.1648 0.7369 −0.2094 −0.0029 . . .
−0.0000 0.0231 0.0110 −0.2094 0.1044 −0.0051 . . .
−0.0000 0.0212 −0.0009 −0.0029 −0.0051 0.9995 . . .
−0.0000 −0.0006 −0.1267 −0.1929 −0.1201 −0.0028 . . .

0.0000 0.0004 0.0072 0.0109 0.0068 0.0002 . . .
0.0000 0.0000 −0.0000 0.0000 0.0000 0.0000 . . .
0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000 . . .
0.0000 −0.0598 0.2589 0.2885 −0.1857 0.0048 . . .
−0.0000 −0.0000 0.0000 −0.0000 −0.0000 −0.0000 . . .
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. . . −0.0000 0.0000 0.0000 0.0000 0.0000 −0.0000

. . . −0.0006 0.0004 0.0000 0.0000 −0.0598 −0.0000

. . . −0.1267 0.0072 −0.0000 −0.0000 0.2589 0.0000

. . . −0.1929 0.0109 0.0000 0.0000 0.2885 −0.0000

. . . −0.1201 0.0068 0.0000 −0.0000 −0.1857 −0.0000

. . . −0.0028 0.0002 0.0000 0.0000 0.0048 −0.0000

. . . 0.8556 0.0082 0.0000 0.0000 0.2362 0.0000

. . . 0.0082 0.9995 −0.0000 −0.0000 −0.0134 −0.0000

. . . 0.0000 −0.0000 0 −0.0000 −0.0000 0.0000

. . . 0.0000 −0.0000 −0.0000 0 −0.0000 0.0000

. . . 0.2362 −0.0134 −0.0000 −0.0000 0.4247 0.0000

. . . 0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0000



(e.2c)

Ĥywrr =



1.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 . . .
−0.0000 0.0079 −0.0750 0.0276 0.0007 −0.0222 . . .
−0.0000 −0.0750 0.8882 −0.1346 −0.0005 −0.0035 . . .
−0.0000 0.0276 −0.1346 0.7679 −0.2226 −0.0030 . . .
−0.0000 0.0007 −0.0005 −0.2226 0.1085 −0.0048 . . .
−0.0000 −0.0222 −0.0035 −0.0030 −0.0048 0.9994 . . .
−0.0000 −0.0184 −0.1079 −0.1688 −0.1297 −0.0030 . . .

0.0000 0.0006 0.0061 0.0096 0.0073 0.0002 . . .
0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000 . . .
0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000 . . .
−0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000 . . .

0.0000 −0.0243 0.2527 0.2849 −0.1740 0.0029 . . .

. . . −0.0000 0.0000 0.0000 0.0000 −0.0000 0.0000

. . . −0.0184 0.0006 0.0000 0.0000 −0.0000 −0.0243

. . . −0.1079 0.0061 −0.0000 −0.0000 0.0000 0.2527

. . . −0.1688 0.0096 0.0000 0.0000 −0.0000 0.2849

. . . −0.1297 0.0073 −0.0000 −0.0000 0.0000 −0.1740

. . . −0.0030 0.0002 0.0000 0.0000 −0.0000 0.0029

. . . 0.8741 0.0071 0.0000 0.0000 −0.0000 0.2296

. . . 0.0071 0.9996 −0.0000 −0.0000 0.0000 −0.0130

. . . 0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000

. . . 0.0000 −0.0000 0.0000 −0.0000 −0.0000 0.0000

. . . −0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000

. . . 0.2296 −0.0130 0.0000 0.0000 0.0000 0.3544



(e.2d)

E.2 Design Data for Fault Group Four

This section presents data associated with the fault detection fllter design for fault group

four, the throttle actuator, the brake actuator, the steering actuator and the manifold air



    

274 Appendix E. Fault Detection Filter Design Data

mass sensor faults. The design details and a discussion are in Section 4.2.2 The matrix of

assigned left eigenvectors ~V is

~V =
[
vuτb1 , vuτb2 , v01 , v02 , v03 , v04 , v05 , v06 , v07 , v08 , vuα1

, vuα2
, vuβ , vyma

]

=



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . . .
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . . .
−0.2987 −0.0798 −0.0347 −0.2210 −0.0072 −0.1135 −0.0660 . . .

0.2474 −0.0862 −0.0975 0.1370 −0.0600 −0.2142 −0.0554 . . .
0.0741 0.2022 −0.0180 −0.0077 0.7732 0.0533 −0.5932 . . .
0.0969 0.8501 0.4343 −0.0493 −0.0974 −0.1769 0.1505 . . .
0.6112 −0.1922 0.3729 −0.2343 −0.3427 0.2620 −0.4229 . . .
0.5307 0.2180 −0.6104 −0.2680 0.1409 0.2070 0.3641 . . .
−0.2724 0.3714 −0.4539 0.1310 −0.4681 0.3416 −0.4727 . . .
−0.1459 0.0026 −0.1328 −0.8021 −0.1030 −0.4189 −0.1773 . . .
−0.2900 −0.0119 0.2551 −0.3776 0.1484 0.7095 0.2277 . . .

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . . .
0.0033 −0.0108 0.0000 0.0000 0.0000 0.0000 0.0000 . . .
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . . .

. . . 0.0000 0.0000 0.0000 −0.4154 −0.4154 0.0000 0.0000

. . . 0.0000 0.0000 0.0000 −0.0304 −0.0304 0.0000 −0.0334

. . . −0.0674 −0.0227 −0.0321 0.8761 0.8761 0.0005 0.9632

. . . 0.1102 0.1017 0.1833 0.0017 0.0004 −0.5040 0.0009

. . . 0.0725 −0.2177 0.0046 −0.0241 −0.0242 −0.0075 −0.0266

. . . 0.1496 −0.8294 0.2028 0.0000 0.0000 −0.0006 0.0000

. . . 0.5781 0.0477 −0.3889 0.0000 0.0000 0.0000 0.0000

. . . 0.5729 −0.1711 0.0478 0.0028 0.0028 −0.0026 0.0030

. . . −0.2232 −0.2393 0.3537 0.0000 0.0000 0.0000 0.0000

. . . −0.2431 −0.0606 −0.1128 −0.2413 −0.2413 −0.0020 −0.2653

. . . −0.4294 −0.4017 −0.7955 −0.0014 −0.0015 −0.3289 −0.0017

. . . 0.0000 0.0000 0.0000 −0.0112 −0.0119 0.0000 0.0000

. . . 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

. . . 0.0000 0.0000 0.0000 0.0000 0.0000 −0.7986 0.0000


where

vuτb1 ∈ Vuτb1 vuτb2 ∈ Vuτb2
v01 ∈ V01 v02 ∈ V02

v03 ∈ V03 v04 ∈ V04

v05 ∈ V05 v06 ∈ V06

v07 ∈ V07 v08 ∈ V08

vuα1
∈ Vuα1

vuα2
∈ Vuα2

vuβ ∈ Vuβ vyma ∈ Vyma
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The matrix ~W associated with the left eigenvectors ~V is

~W =
[
wuτb1 , wuτb2 , w01 , w02 , w03 , w04 , w05 , w06 , w07 , w08 , wuα1

, wuα2
, wuβ , wyma

]

=



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . . .
−0.3985 2.1071 −0.0011 −0.0153 −0.5254 −0.0527 0.4772 . . .

5.2129 −30.3751 −0.0633 −0.2311 −2.1086 −0.3043 1.8758 . . .
−0.6640 −0.4129 0.6576 0.3023 −0.1710 −0.2946 −0.4125 . . .
−0.0144 −0.5023 0.0763 −0.3587 2.5332 −0.0086 −2.4937 . . .
−2.6707 −1.5851 5.6803 2.8445 −1.6433 −2.6140 −5.0102 . . .

0.7404 1.1030 1.3954 8.7177 2.4947 5.5332 1.1599 . . .
−10.2358 −10.5460 16.9547 13.0929 46.8558 −13.5944 −65.6255 . . .
−2.8892 −14.0216 0.4363 0.5322 −74.6867 −5.6399 67.4728 . . .

2.2630 17.8320 −0.3809 −0.6196 72.6355 5.3593 −65.4520 . . .
3.4007 12.0161 0.4531 −0.0412 82.5552 6.4825 −75.2208 . . .
−1.0436 −22.6153 −0.3933 0.8835 −78.7647 −5.6159 71.8864 . . .

. . . 0.0000 0.0000 0.0000 1.6614 3.7382 0.0000 10.2391

. . . −0.0551 0.1783 −0.0013 −0.9469 −0.7825 0.0009 −0.8789

. . . −0.2684 0.6723 −0.0262 −0.6606 −0.2928 −0.0017 −0.4836

. . . −0.5631 0.2499 0.0809 −0.0018 0.0026 0.1598 0.0012

. . . 0.1675 −1.3179 −0.0569 0.6414 1.3682 0.0278 1.1846

. . . −8.0615 2.6989 −0.8829 −0.0100 −0.0232 −0.0714 −0.0197

. . . 3.6905 0.4336 2.0548 0.9218 2.1104 0.0171 1.7975

. . . −4.3303 −5.1871 13.0855 −0.6735 −1.3325 −7.3383 −1.1740

. . . −7.6009 25.4596 0.2275 0.5095 1.1843 0.2158 1.0052

. . . 7.4717 −24.7021 −0.2517 −1.0911 −2.3345 −0.2088 −2.0197

. . . 8.0677 −28.0256 −0.5744 0.5309 −0.8923 −0.0534 −0.3551

. . . −7.4781 26.7949 0.7636 2.3150 3.0237 0.0384 3.0126
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The fault detection fllter gain L found from (4.9), ~V TL = ~W T is

L =



100.33 6.83 15.00 0.12 29.87 −0.04 . . .
−306.69 −15.59 405.89 3.54 80.18 −442.98 . . .
−0.00 −1.37 12.59 0.12 3.95 −13.94 . . .

0.00 −0.24 −0.61 −1.01 2.60 8.74 . . .
0.00 −0.70 −3.27 −0.03 3.64 0.79 . . .
0.00 −0.02 −0.06 −0.00 0.49 −1.44 . . .
0.00 −0.04 −0.17 −0.00 0.22 −0.70 . . .
0.00 0.02 0.18 −1.08 −0.15 −12.01 . . .
0.00 −0.04 −0.16 −0.00 0.27 0.84 . . .
−0.00 0.39 −3.21 −0.03 −0.58 4.99 . . .

0.00 −0.06 −0.17 −0.40 0.74 2.61 . . .
−3027.92 −239.30 −534.91 −4.36 −1065.10 1.59 . . .
−0.00 −196.99 2649.44 23.23 104.54 −120.99 . . .
−0.00 0.18 0.50 0.60 −2.01 −6.49 . . .

. . . 47.69 −28.13 25.51 −48.83 −55.88 26.71

. . . −49.87 861.41 −1354.33 1270.58 1534.55 −1405.89

. . . −2.84 28.89 −45.73 41.99 52.36 −45.78

. . . −15.97 −20.21 −35.32 34.12 39.29 −38.53

. . . 1.49 74.30 −102.96 100.08 114.05 −108.98

. . . −0.03 1.81 −2.70 2.65 2.96 −2.87

. . . 0.24 5.62 −5.27 5.12 6.26 −5.97

. . . 0.80 −34.87 3.14 −3.00 −4.59 4.42

. . . 0.27 3.83 −5.14 4.79 5.68 −5.20

. . . −10.98 −6.83 10.91 −9.84 −13.07 10.24

. . . −4.54 −23.55 −8.92 8.58 10.12 −9.93

. . . −1700.87 1002.82 −910.40 1741.89 1993.37 −953.17

. . . 95.53 1803.00 −228.45 −149.32 531.03 501.29

. . . 11.93 31.10 26.59 −25.68 −29.88 29.31



(e.3)
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The output projection matrices Ĥuα , Ĥuτb
, Ĥuβ and Ĥyma are as follows.

Ĥuα =



0.8886 0.0680 0.1377 0.0012 −0.0183 −0.0001 . . .
0.0680 0.0062 0.0109 0.0001 −0.0009 −0.0000 . . .
0.1377 0.0109 0.0263 0.0002 0.0457 0.0002 . . .
0.0012 0.0001 0.0002 0.0000 0.0001 0.0000 . . .
−0.0183 −0.0009 0.0457 0.0001 0.9962 −0.0000 . . .
−0.0001 −0.0000 0.0002 0.0000 −0.0000 1.0000 . . .

0.0129 0.0006 −0.0168 −0.0001 0.0022 0.0000 . . .
0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000 . . .
−0.1168 0.0098 −0.0321 −0.0003 −0.0149 −0.0002 . . .
−0.1209 0.0074 −0.0001 0.0000 −0.0164 −0.0002 . . .
−0.1464 −0.0265 −0.0556 −0.0005 −0.0187 −0.0002 . . .
−0.1587 −0.0239 −0.0008 −0.0000 −0.0218 −0.0002 . . .

. . . 0.0129 0.0000 −0.1168 −0.1209 −0.1464 −0.1587

. . . 0.0006 0.0000 0.0098 0.0074 −0.0265 −0.0239

. . . −0.0168 −0.0000 −0.0321 −0.0001 −0.0556 −0.0008

. . . −0.0001 −0.0000 −0.0003 0.0000 −0.0005 −0.0000

. . . 0.0022 0.0000 −0.0149 −0.0164 −0.0187 −0.0218

. . . 0.0000 0.0000 −0.0002 −0.0002 −0.0002 −0.0002

. . . 0.9984 −0.0000 0.0141 0.0146 0.0180 0.0195

. . . −0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

. . . 0.0141 0.0000 0.8316 −0.1670 −0.2181 −0.2223

. . . 0.0146 0.0000 −0.1670 0.8334 −0.2159 −0.2219

. . . 0.0180 0.0000 −0.2181 −0.2159 0.7158 −0.2887

. . . 0.0195 0.0000 −0.2223 −0.2219 −0.2887 0.7034



(e.4a)

Ĥuτb
=



0 −0.0000 0.0000 −0.0000 0.0000 0.0000 . . .
−0.0000 0.0063 −0.0595 −0.0005 0.0016 0.0000 . . .

0.0000 −0.0595 0.9964 0.0087 0.0001 0.0000 . . .
−0.0000 −0.0005 0.0087 0.0001 −0.0003 0.0000 . . .

0.0000 0.0016 0.0001 −0.0003 1.0000 −0.0000 . . .
0.0000 0.0000 0.0000 0.0000 −0.0000 1.0000 . . .
−0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 . . .
−0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 . . .

0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 . . .
−0.0000 0.0000 −0.0000 0.0000 0.0000 −0.0000 . . .

0.0000 −0.0402 −0.0024 −0.0000 0.0001 0.0000 . . .
−0.0000 −0.0339 −0.0020 −0.0000 0.0001 0.0000 . . .
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. . . −0.0000 −0.0000 0.0000 −0.0000 0.0000 −0.0000

. . . −0.0000 −0.0000 0.0000 0.0000 −0.0402 −0.0339

. . . −0.0000 −0.0000 −0.0000 −0.0000 −0.0024 −0.0020

. . . −0.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000

. . . 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

. . . 0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000

. . . 1.0000 −0.0000 0.0000 0.0000 −0.0000 −0.0000

. . . −0.0000 1.0000 0.0000 0.0000 −0.0000 −0.0000

. . . 0.0000 0.0000 1.0000 −0.0000 0.0000 0.0000

. . . 0.0000 0.0000 −0.0000 1.0000 0.0000 0.0000

. . . −0.0000 −0.0000 0.0000 0.0000 0.9984 −0.0014

. . . −0.0000 −0.0000 0.0000 0.0000 −0.0014 0.9988



(e.4b)

Ĥuβ =



0.0000 −0.0000 0.0000 −0.0000 0.0000 0.0000 . . .
−0.0000 0.0010 0.0003 0.0002 0.0005 0.0000 . . .

0.0000 0.0003 0.0050 −0.0063 0.0485 0.0002 . . .
−0.0000 0.0002 −0.0063 0.9999 0.0006 0.0000 . . .

0.0000 0.0005 0.0485 0.0006 0.9959 −0.0000 . . .
0.0000 0.0000 0.0002 0.0000 −0.0000 1.0000 . . .
0.0000 −0.0004 −0.0188 −0.0004 0.0025 0.0000 . . .
0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 . . .
−0.0000 0.0187 −0.0140 0.0028 −0.0173 −0.0002 . . .

0.0000 0.0167 0.0186 0.0030 −0.0189 −0.0002 . . .
−0.0000 −0.0153 −0.0330 0.0035 −0.0217 −0.0002 . . .

0.0000 −0.0117 0.0238 0.0039 −0.0251 −0.0003 . . .

. . . 0.0000 0.0000 −0.0000 0.0000 −0.0000 0.0000

. . . −0.0004 −0.0000 0.0187 0.0167 −0.0153 −0.0117

. . . −0.0188 −0.0000 −0.0140 0.0186 −0.0330 0.0238

. . . −0.0004 −0.0000 0.0028 0.0030 0.0035 0.0039

. . . 0.0025 0.0000 −0.0173 −0.0189 −0.0217 −0.0251

. . . 0.0000 0.0000 −0.0002 −0.0002 −0.0002 −0.0003

. . . 0.9982 −0.0000 0.0158 0.0164 0.0201 0.0218

. . . −0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

. . . 0.0158 0.0000 0.8163 −0.1829 −0.2373 −0.2431

. . . 0.0164 0.0000 −0.1829 0.8169 −0.2358 −0.2435

. . . 0.0201 0.0000 −0.2373 −0.2358 0.6917 −0.3149

. . . 0.0218 0.0000 −0.2431 −0.2435 −0.3149 0.6751



(e.4c)
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Ĥyma =



0 −0.0000 −0.0000 −0.0000 0.0000 0.0000 . . .
−0.0000 0.0478 0.0950 0.0008 −0.0121 −0.0001 . . .
−0.0000 0.0950 0.1966 0.0017 0.0231 0.0000 . . .
−0.0000 0.0008 0.0017 0.0000 −0.0001 0.0000 . . .

0.0000 −0.0121 0.0231 −0.0001 0.9992 −0.0000 . . .
0.0000 −0.0001 0.0000 0.0000 −0.0000 1.0000 . . .
0.0000 0.0084 −0.0008 −0.0000 0.0001 0.0000 . . .
−0.0000 0.0000 −0.0000 −0.0000 0.0000 0.0000 . . .

0.0000 −0.0615 −0.1765 −0.0016 0.0042 −0.0000 . . .
0.0000 −0.0664 −0.1496 −0.0013 0.0035 −0.0000 . . .
0.0000 −0.1159 −0.2367 −0.0021 0.0054 −0.0000 . . .
0.0000 −0.1208 −0.1971 −0.0017 0.0042 −0.0000 . . .

. . . 0.0000 −0.0000 0.0000 0.0000 0.0000 0.0000

. . . 0.0084 0.0000 −0.0615 −0.0664 −0.1159 −0.1208

. . . −0.0008 −0.0000 −0.1765 −0.1496 −0.2367 −0.1971

. . . −0.0000 −0.0000 −0.0016 −0.0013 −0.0021 −0.0017

. . . 0.0001 0.0000 0.0042 0.0035 0.0054 0.0042

. . . 0.0000 0.0000 −0.0000 −0.0000 −0.0000 −0.0000

. . . 0.9999 −0.0000 0.0005 0.0006 0.0010 0.0011

. . . −0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

. . . 0.0005 0.0000 0.9540 −0.0402 −0.0646 −0.0559

. . . 0.0006 0.0000 −0.0402 0.9646 −0.0569 −0.0496

. . . 0.0010 0.0000 −0.0646 −0.0569 0.9083 −0.0801

. . . 0.0011 0.0000 −0.0559 −0.0496 −0.0801 0.9296



(e.4d)
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