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Abstract of the Dissertation

Longitudinally Coherent Single-Spike Radiation

from a Self-Amplified Spontaneous Emission

Free-Electron Laser

by

Gabriel Andrew Marcus

Doctor of Philosophy in Physics

University of California, Los Angeles, 2012

Professor James B. Rosenzweig, Chair

This work studies the production and measurement of longitudinally coherent,

ultrashort pulses of light from a self-amplified spontaneous emission free-electron

laser (SASE FEL) by using an energy-chirped electron beam in conjunction with

a tapered undulator. This scheme effectively preserves the FEL gain only where

an appropriate undulator taper compensates for the detuning experienced by an

amplifying radiation spike as it slips forward in the electron beam rest frame.

The simultaneous time and frequency-domain measurement of ultrashort pulses

of light generated in this manner were made with an advanced transient-grating

frequency-resolved optical gating (TG FROG) diagnostic, which has the potential

to push ultrashort light pulse measurement at FEL facilities to shorter wavelength

regimes.

The theoretical framework presented in this dissertation has two components.

The FEL theory presented here includes an analysis of the coupled wave and

Vlasov equations, which are linearized in the one-dimensional case, and are solved

in the frequency domain by the Laplace transform technique. The exponential
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gain regime for SASE FEL light is explored in detail to clearly identify concepts

that are relevant to the energy-chirp and undulator tapering experiment. Some

of these concepts are illustrated with fully three-dimensional, time-dependent

numerical particle simulations using the FEL code GENESIS for the supportive

case of ultrashort, low-charge electron beams. In addition, nonlinear optics, the

foundation upon which all FROG diagnostics are built, is briefly explored using

two complementary perspectives as they apply to the TG FROG geometry.

The experimental section describes in detail the first direct time-domain mea-

surements of a single coherent radiation spike from a SASE FEL amplifier em-

ploying the energy-chirped electron beam and tapered undulator technique at

the SPARC FEL test facility in Frascati, Italy. Electron beams were accelerated

and compressed using the velocity bunching technique, which leaves a residual

energy-chirp in the longitudinal phase space. The energy-chirp was compensated

by appropriately tapering individual undulator sections. This process was opti-

mized at a resonant wavelength of λ = 530 nm. The ultrashort light pulses that

were generated had a temporal full-width at half-maximum of δτRFWHM ∼ 98 fs

and a time-bandwidth product of TBP ∼ 1.2, indicating that the Fourier limit

was nearly achieved. This experiment provides further insight into methods that

can be used to shape the SASE FEL longitudinal profile and enhance coherence

properties. In addition, the measurements were taken with an advanced, and

relatively simple, TG FROG diagnostic that can potentially be used to measure

ultrashort UV pulses at FEL facilities.
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CHAPTER 1

Introduction

Increasing the understanding of, and ultimately the control over, matter at the

level of atoms, electrons, and spins has been one of the great challenges pre-

sented to the scientific community. Concurrently, the increase in knowledge in

this regard should serve the entire gamut of scientific disciplines ranging from

advanced materials to the life sciences. Reaching these goals requires new tools

that will enable different communities to probe deeper into regions of higher spa-

tial, temporal, and energy resolution. These tools, presumably, will allow for the

investigation of matter at the time and length scales of atomic and electronic

motion. The time and length scales of interest, however, span many orders of

magnitude; from the micron (10−6 m) to the Ångstrom (10−10 m) length scales

and from the micro- to the femto- (10−15), or even the attosecond, (10−18 s) time

scales. To this end, electron beam (e-beam) accelerator-based light sources have

proven to be an invaluable tool for the production of radiation possessing many of

the above characteristics. In particular, free-electron lasers, or FELs, are a source

of coherent and tunable radiation and are capable of producing extremely short

pulses from the far infrared down to the x-ray wavelength regime[1, 2]. FELs op-

erate on the principle that a coherent electromagnetic wave can be emitted and

amplified many orders of magnitude by the collective beam-radiation instability

that microbunches a relativistic e-beam as it propagates through a periodic static

magnetic undulator. First proposed in 1971 by Madey[3], this fourth-generation
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light source has pushed the spatial and temporal boundaries of ultrashort light

pulses to the Ångstrom and femtosecond frontier and was permitted by the con-

gruent technological advances that have been made in the accelerator community.

The recent presence and further development of advanced fourth generation

light sources has emboldened the scientific community at large to push for the

production of radiation that possesses ever more complex spatial and temporal

characteristics. One recurring theme that has been reverberating around the

various light source user communities is the desire for the production of longi-

tudinally coherent, ultrashort x-ray pulses. Self-amplified spontaneous emission,

or SASE, is the method and operating mode by which FELs currently reach the

x-ray wavelength regime. SASE FELs are only partially coherent, however, as the

emitted light is the result of the amplification of initial incoherent radiation shot

noise. Thus, the temporal structure of the light pulse is a collection of coherent

spikes randomly distributed over the e-beam’s longitudinal profile. Improving

the coherence of SASE FEL light pulses has been the subject of much study[4],

with emphasis placed on producing one longitudinally coherent radiation spike

[5, 6, 7].

One promising method to increase the radiation’s longitudinal coherence relies

on electron beam phase-space manipulations that preferentially concentrate the

gain along a small longitudinal portion of the e-beam. In essence, the process

uses e-beam phase-space manipulations to control the FEL output phase-space

characteristics. Thus, it seems appropriate to measure, or monitor, the phase-

space of the FEL light directly. Observation of the development of longitudinal

coherence in a SASE FEL is not possible in the x-ray wavelength range, however,

because of the lack of appropriate diagnostics. Thus one must examine, as is often

the case in FEL research, the physics of this scheme at longer wavelengths. In

2



this regard, the frequency-resolved optical gating[8] (FROG) diagnostic and pulse

reconstruction technique has proven to be effective in analyzing ultra-fast light

sources in the optical and near-infrared wavelength regions. FROG measures the

spectrogram of the light, a quantity that is intimately related to the longitudinal

phase-space.

The subject matter of this dissertation deals with the experimental results

that were obtained at the SPARC (Sorgente Pulsata Auto-amplificata di Ra-

diazione Coerente) FEL test facility in Frascati, Italy. In particular, the first

time-domain measurements of near single-spike radiation produced from a single

pass SASE FEL amplifier operating under advanced e-beam phase-space manip-

ulation techniques mentioned above are reported, by utilizing a relatively new

transient-grating (TG) FROG diagnostic. This particular TG FROG diagnostic

geometry was chosen and constructed while keeping in mind the specific difficul-

ties encountered while attempting to measure FEL output. Furthermore, there

is a need to advance robust longitudinal pulse measurement techniques into ever

shorter wavelength regimes while minimizing diagnostic complexities. The cur-

rent iteration of the TG FROG implemented for this work emphasizes both of

these points for the first time on an FEL. The results obtained from the ex-

periment are compared with fully three-dimensional time dependent numerical

simulations obtained from the FEL code GENESIS[9] and show excellent overall

agreement.

1.1 Outline of Dissertation

The organization of this thesis is as follows. Chapter 1 continues with a basic in-

troduction to the various aspects of this work. It proceeds with an explanation of

the fundamentals of longitudinal phase-space optics and the need to explore this
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pulse description modality in order to fully understand and appreciate advanced

ultrashort measurement techniques. The chapter continues with an introduction

to FROG and how this particular measurement technique relies on phase-space

measurements to longitudinally extract the temporal and spectral information of

ultrashort pulses simultaneously. It concludes with a brief introduction to the

basic operating principles of FELs and the development of ultrashort, high power

pulses from this particular linear accelerator based light source. Chapter 2 con-

tinues with the investigation into FEL theory in order to more fully understand

and appreciate the subtleties involved in the FEL collective instability. This

chapter also introduces concepts and e-beam characteristics that can effect the

FEL gain process. These concepts are vital to understanding the motivation in

using e-beam phase-space manipulation techniques to shape the FEL radiation

phase-space. Chapter 3 describes in detail the TG FROG geometry used in the

experiment. In particular, the theory behind the diagnostic operating principles

(nonlinear optics) are briefly explored to more intimately understand the sub-

tleties in modern ultrafast pulse measurement techniques. The description of the

experiment is presented in detail in Chapter 4. This lays the foundation for the

experimental results and analysis which are presented in Chapter 5.

1.2 Principles of Phase-Space Optics

Ultrafast laser sources have become ubiquitous in labs around the world as the

rapid development of ultrafast technology over the last decade has paved the

way for the production of optical pulses in both the femto- and attosecond time

scales[10]. These pulses have proven to be invaluable to the scientific community

as a whole because they can be utilized as tools for investigating various chemical

and physical processes that operate at temporal scales of atomic and molecular
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motion[11, 12, 13]. The need for new and advanced measurement techniques for

pulses with these timescales, therefore, is as compelling as ever.

In principle, it should be possible to simply use an antenna to directly measure

the oscillating electric field. The fastest antennas, however, are far too slow to

resolve the oscillations of optical fields, where a pulse in the visible spectrum

would have a period less than three femtoseconds. Therefore, in the optical

regime, the fields are measured by square-law detectors, such as photodiodes.

These detectors only respond to the intensity of the field and, at best, have a

temporal resolution on the order of about a picosecond (in the case of a state-

of-the-art streak camera). Not only are these detectors unable to resolve sub-

picosecond pulses, they fail to obtain any information regarding the phase of the

field. The phase of the field, as will be seen in subsequent sections and chapters,

carries a wealth of information regarding the pulse under investigation and is

oftentimes considered more valuable than the pulse amplitude.

Phase-space descriptions of optical pulses, not unlike phase-space descriptions

of relativistic particle beams, provide a convenient and thorough framework for

visualizing and developing an intuition about how these pulses propagate through

and interact with matter. In fact, it is possible to qualitatively determine complex

features of these ultrashort pulses, such as the time of arrival of various spectral

components of the pulse, by simply examining particular features of a given phase-

space trace. In addition, as shown in section 1.3, it is possible to extract both the

amplitude and phase of ultrafast pulses from the phase-space through iterative

phase-retrieval algorithms, allowing for a complete longitudinal description of

the pulse under investigation. In this section, the phase-space picture of ultrafast

pulses is developed with a particular emphasis placed on measurement methods

that are relatively simple and are based on square-law detectors.
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1.2.1 Ultrashort Laser Pulses

The fundamental quantity of interest that describes an individual pulse of light is

the real electric field vector ~ε(~r, t), which is a function of both time (t) and space

(~r). The magnetic field does not effect the propagation of light through matter

in all but the most intense pulses and can be estimated directly from the electric

field. Thus, the function of any ultrafast diagnostic should be to completely

characterize the electric field. This can be extremely difficult because the field

can potentially have a complicated spatial dependance. For the time being, the

spatial dependence of the field is neglected since the longitudinal (or temporal)

structure of the pulse is of more interest. The current problem is further simplified

by making the scalar approximation where the electric field’s vectoral nature is

neglected. Simultaneous measurement of two orthogonal polarizations can be

combined to yield the full pulse field if necessary.

With these approximations, the electric field, which is a real signal, has the

following temporal dependence

ε(t) =
√
I(t) cos(φt(t)). (1.1)

Here, A(t) =
√
I(t) and φt(t) are the time dependent amplitude and temporal

phase of the field. The field in the frequency domain is found by applying the

Fourier transform, which yields

ε̃(ω) =
1√
2π

∫ ∞

−∞
ε(t)e−iωtdt. (1.2)

For a real signal ε(t), the frequency domain representation satisfies ε̃(−ω) =

ε̃∗(ω) and thus the energy density spectrum, or simply the spectrum, |ε̃(ω)|2, is

symmetric about the origin. This description becomes problematic for a variety
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of reasons. For instance, the average frequency

〈ω〉 =

∫ ∞

−∞
ω|ε̃(ω)|2dω (1.3)

is always zero. Also, the spread in frequencies σω, where

σ2
ω =

∫ ∞

−∞
(ω − 〈ω〉)2|ε̃(ω)|2dω, (1.4)

will be roughly the distance between the positive and negative components of

the spectrum. There is also the question of uniqueness. An infinite number of

amplitudes and phases exist that can be combined to yield the real signal ε(t)

given by equation 1.1. It is beneficial, therefore, to define a complex field that

unambiguously specifies these quantities [14]. To this end, the analytic signal

approximation[15] is made by defining the new quantity

E(t) =
√
I(t)e−iφt(t) =

1√
2π

∫ ∞

0

ε̃(ω)eiωtdω (1.5)

where I(t) = |E(t)|2 is the signal intensity. The field in the frequency domain

can be found in this approximation to be:

Ẽ(ω) =
√
S(ω)eiφω(ω) =

1√
2π

∫ ∞

−∞
E(t)e−iωtdt

=
1

2π

∫ ∞

−∞

∫ ∞

0

ε̃(ω′)eiω
′tdω′eiωtdt

=
1

2π

∫ ∞

0

∫ ∞

−∞
ei(ω−ω

′)tdtε̃(ω′)dω′

=

∫ ∞

0

δ(ω − ω′)ε̃(ω′)dω′

=





ε̃(ω) ω > 0

0 ω < 0

(1.6)
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where S(ω) is the spectrum and φω(ω) is the spectral phase. The positive compo-

nents of the spectrum are automatically selected. The real field can be recovered

by taking twice the real part of the complex analytic field: ε(t) = 2 × Re[E(t)].

This can more clearly be seen by substituting equation 1.2 into equation 1.5:

E(t) =
1√
2π

∫ ∞

0

ε̃(ω)eiωtdω

=
1

2π

∫ ∞

0

∫ ∞

−∞
ε(t′)e−iωt

′
eiωtdt′dω

=
1

2π

∫ ∞

−∞
ε(t′)

∫ ∞

0

eiω(t−t′)dωdt′

=
1

2π

∫ ∞

−∞
ε(t′)

[
πδ(t− t′) +

i

t− t′
]

dt′

=
1

2
ε(t) +

i

2π

∫ ∞

−∞

ε(t′)

t− t′dt
′

(1.7)

This result also justifies the representation of the signal field in the first rela-

tionship in equation 1.5. Since equation 1.7 produces a field that has a real and

imaginary part, it can always be represented in polar form using an amplitude

and phase that are unambiguous. This allows for a clear definition of the am-

plitude and phase of the pulse. There is much literature on the analytic signal

approximation (for an excellent summary see [16]) and it has been shown to ac-

curately represent the real signal in the case of small bandwidth pulses, which is

primarily the subject of this thesis.

The analytic signal approximation also leads to an important quantity known

as the instantaneous frequency. This quantity is important when discussing exotic

pulses that exhibit a time-dependent frequency; a quantity otherwise known as

chirp. The average frequency, calculated using the analytic signal approximation,
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is found to be

〈ω〉 =

∫ ∞

−∞
ω|Ẽ(ω)|2dω =

1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ωE∗(t)E(t′)eiω(t−t′)dωdtdt′

=
1

2πi

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E∗(t)E(t′)

∂

∂t
eiω(t−t′)dωdtdt′

=
1

i

∫ ∞

−∞

∫ ∞

−∞
E∗(t)

∂

∂t
δ(t− t′)E(t′)dtdt′

=
1

i

∫ ∞

−∞
E∗(t)

∂

∂t
E(t)dt

(1.8)

For E(t) given by 1.5, 〈ω〉 can be recast in the form:

〈ω〉 =

∫ ∞

−∞
φ′t(t)|E(t)|2dt. (1.9)

The average frequency is obtained by integrating the instantaneous frequency

with the density over all time. The instantaneous frequency is identified as the

time derivative of the temporal phase, ω(t) = φ′t(t). The instantaneous frequency

is an intuitive results that is true for complex, rather than real, signals, and lends

further credence to the use of the analytic signal approximation.

1.2.2 Historical Measurement Techniques

In order to fully characterize an ultrashort pulse, or any pulse for that matter,

it is sufficient to measure the intensity and phase in either the temporal or spec-

tral domains. The only measurements that have been available, until recently,

have been either of the spectrum the autocorrelation (field or intensity). These

measurement techniques, as will seen shortly, fail to fully characterize the pulse

under investigation because they are one-dimensional quantities, i.e. functions

of either time or frequency, and fail to measure the pulse phase. It is therefore

sufficient to analyze only one measurement modality as the enumerated failures
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are analogous across the diagnostic platforms.

The most popular time-domain measurement is perhaps the intensity auto-

correlation, which will be discussed in a slightly different context in chapter 3.

The schematic for this type of measurement is shown in figure 1.1. The pulse

NLO Detector

Input pulse

Variable delay stage 

Esig ∝ E(t)E(t − τ)

E(t)

E(t − τ)

Figure 1.1: Experimental layout of a basic intensity autocorrelator using a second
harmonic generation nonlinear optical process.

to be measured is split in two by a beam splitter. The path length difference

between the two pulses is varied by translating a delay stage along one arm of

the diagnostic. The two pulses are then recombined and interfered in a second

order nonlinear optical medium, which produces a signal field at twice the input

frequency. This process is referred to as second harmonic generation (SHG)[17].

A more complete description of various nonlinear optical processes are discussed
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in more detail in section 3.3. This field is proportional to the amplitudes of the

two pulses, and is given by

Esig(t, τ) ∝ E(t)E(t− τ). (1.10)

Square-law detectors measure the signal intensity. Furthermore, these detectors

measure the time integral of the signal intensity because they lack very fine

temporal resolution:

A(τ) =

∫ ∞

−∞
I(t)I(t− τ)dt. (1.11)

A scan of the delay over the entire initial pulse longitudinal profile yields the full

autocorrelation signal.

There are a few qualitative features of the pulse that can be extracted from

the autocorrelation. The width of the intensity autocorrelation can be related

to the width of the pulse intensity profile. For a gaussian pulse, as in figure 1.2

(a), the width of the intensity autocorrelation in figure 1.2 (b) is
√

2 times longer

than the width of the pulse intensity. This numerical factor, sometimes referred

to as a deconvolution factor, is dependent on the pulse shape. For a pulse with a

hyperbolic secant squared (sech2) time profile, the deconvolution factor is ∼ 1.54.

To obtain accurate pulse width information from an intensity autocorrelation,

therefore, it is necessary to know the pulse shape a priori. This information is

not available for most ultrafast optical pulses, especially those that are generated

using exotic processes. This is certainly the case for FEL pulses, as will be seen in

chapter 2. In fact, as the pulse under consideration becomes more complicated,

more information is lost by the intensity autocorrelation. This can clearly be seen

in figure 1.2 (c) and (d). These plots show the intensity vs. time and intensity

autocorrelation vs. time of a gaussian pulse with third order spectral phase. The
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Figure 1.2: Examples of theoretical pulse intensities and their intensity autocor-
relations. Intensity vs. time and intensity autocorrelation vs. time for a Fourier
limited gaussian pulse, (a) and (b), and for a gaussian pulse with third order
spectral phase, (c) and (d). The autocorrelation in (d) misses the details of the
pulse with third order spectral phase in (c). As a result, the two very different
pulses in (a) and (c) have very similar autocorrelations.

intensity autocorrelation clearly misses the details in the leading edge of the pulse

and is quite similar to the intensity autocorrelation of a gaussian pulse.

The attribute that renders the intensity autocorrelation ineffective the most

is that the phase information is lost. This can more clearly be seen by taking the

Fourier transform of 1.11:

A(ω) = F{A(τ)} = |Ĩ(ω)|2. (1.12)
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Therefore, if the intensity autocorrelation of a pulse is measured, the magnitude,

but not the phase, of the Fourier transform of the quantity of interest, I(t),

is found. What remains to be seen, however, is if the phase can somehow be

retrieved from the intensity autocorrelation.

1.2.3 One-dimensional Phase Retrieval

Most ultrafast diagnostics that measure pulse quantities and are a function of a

single variable (t or ω) return either the magnitude squared of the quantity or the

magnitude squared of it’s Fourier transform. This was seen above for the intensity

autocorrelation measurement. There exists additional information, however, that

can be used in an attempt to constrain the measurement further. Most pulses,

for example, have a finite duration; the amplitude goes to zero outside a given

finite time interval. The pulse is then said to have finite support in the temporal

domain. An unresolved issue is whether additional information can be used to

extract the pulse phase from these ultrafast measurements. This type of problem

is dubbed the one-dimensional phase-retrieval problem. It has been shown that

in almost all cases it is impossible to extract the phase of the pulse, regardless of

the nature of the additional information.

The one-dimensional phase retrieval problem is illuminated by considering a

discrete set of data (numbers), {x1, x2, ..., xN}, that is a function of a single vari-

able, for example, time. Consider, now, a diagnostic (spectrometer) that mea-

sures the absolute value of the Fourier transform of this set, {|X1|, |X2|, ..., |XN |}.
These two data sets are related via the discrete Fourier transform:

Xk =
N∑

n=1

xne
−i2π k

N
n (1.13)
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where n is the time variable. Writing y = e−i2π
k
N , the expression becomes:

Xk =
N∑

n=1

xny
n. (1.14)

This expression is simply a polynomial in the variable y with coefficients given

by xn. The Fundamental Theorem of Algebra states that, in so many words,

every non-zero single-variable polynomial with complex coefficients has exactly

as many complex roots as its degree, if each root is counted up to its multiplicity.

Therefore, any single-variable polynomial can be factored into it’s roots. Xk then

takes the form:

Xk = a(y − y1)(y − y2)...(y − yN) (1.15)

where yi are the zeros of the polynomial in equation 1.14 and a is a coefficient of

factorization. The diagnostic only measures the magnitude of this quantity,

|Xk| = |a(y − y1)(y − y2)...(y − yN)|, (1.16)

and the failure of phase-retrieval in one-dimension is immediately apparent. The

measured quantity, |Xk|, remains unchanged under the complex conjugation of

any of the factors (y − yi). There are many functions of n that can produce the

measured value |Xk|, and therefore the set {x1, x2, ..., xN} cannot be uniquely

recovered. It turns out that the Fundamental Theorem of Algebra fails for poly-

nomials of two variables. A two-dimensional picture of ultrafast pulses is there-

fore needed if full pulse reconstruction is to be obtained using square-law based

detectors.
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1.2.4 Phase-Space Descriptions

The complimentary nature of the description of ultrashort laser pulses in both

the time and frequency space suggests that these pulses can be well described by

joint time-frequency distributions in the two-dimensional (t, ω) phase-space. The

distributions are central to the characterization of ultrashort pulses because, as

stated previously, the waveform is not currently directly measurable by today’s

diagnostics. The phase-space description also provides an excellent framework

for describing optical pulses that are measured by standard square-law detectors.

There exist many examples of these joint phase-space distributions[18], the

most common of which is the Wigner distribution:

W (t, ω) =
1

2π

∫ ∞

−∞
E∗(t− τ

2
)E(t+

τ

2
)e−iτωdτ

=
1

2π

∫ ∞

−∞
Ẽ∗(ω +

θ

2
)Ẽ(ω − θ

2
)e−itθdθ.

(1.17)

The Wigner distribution is considered to be part of a class of bilinear distribu-

tions because the signal enters twice in its formulation. There are many features

that make this distribution attractive for representing short optical pulses. The

Wigner distribution is always real, even if the signal is complex. This can be

verified by taking the complex conjugate of equation 1.17:

W ∗(t, ω) =
1

2π

∫ ∞

−∞
E(t− τ

2
)E∗(t+

τ

2
)eiτωdτ

= − 1

2π

∫ −∞

∞
E(t+

τ

2
)E∗(t− τ

2
)e−iτωdτ

=
1

2π

∫ ∞

−∞
E(t+

τ

2
)E∗(t− τ

2
)e−iτωdτ

= W (t, ω)

(1.18)
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The projection of the Wigner distribution onto one coordinate axis by integration

over the conjugate coordinate yields either the pulse temporal or spectral intensity

and is known as a marginal. The time marginal is found by integrating over the

frequency

I(t) =

∫ ∞

−∞
W (t, ω)dω =

1

2π

∫ ∞

−∞

∫ ∞

−∞
E∗(t− τ

2
)E(t+

τ

2
)e−iτωdτdω

=

∫ ∞

−∞
E∗(t− τ

2
)E(t+

τ

2
)δ(τ)dτ

= |E(t)|2.

(1.19)

Similarly, the frequency marginal is found by integrating the distribution over

the time coordinate

S(ω) =

∫ ∞

−∞
W (t, ω)dt =

1

2π

∫ ∞

−∞

∫ ∞

−∞
Ẽ∗(ω +

θ

2
)Ẽ(ω − θ

2
)e−itθdθdt

=

∫ ∞

−∞
Ẽ∗(ω +

θ

2
)Ẽ(ω − θ

2
)δ(θ)dθ

= |Ẽ(ω)|2.

(1.20)

The Wigner function also encompasses the intuitive result that the instantaneous

frequency is the temporal derivative of the temporal phase, which can clearly be

seen by evaluating

Ω(t) = 〈ω〉 =

∫∞
−∞ ωW (t, ω)dω∫∞
−∞W (t, ω)dω

= φ′t(t). (1.21)

The Wigner distribution also has some less intuitive, and often detrimental,

features. The largest issue arising from the Wigner distribution description is

that it isnot positive definite. This can be seen in figure 1.3 (b) and (d). Figure

1.3 (b) shows the plot of two identical Fourier limited gaussian pulses separated in

time. The central region of the plot, which alternates between positive (red) and
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(c) (d)

−1
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1

Figure 1.3: Wigner distribution (normalized to unity) of: (a) a Fourier limited
gaussian pulse, (b) two identical Fourier limited gaussian pulses separated in
time, (c) a gaussian pulse with second order spectral phase, (d) a gaussian pulse
with third order spectral phase. The pulse marginals are also shown for each
distribution.

negative (blue) values of the distribution, indicates interference between the two

pulses. The spectrum, or frequency marginal, is still entirely positive, however,

because the positive regions of the distribution corresponding to the single pulses

cancel out the negative values from the interference region. A more detailed

picture of this phenomenon is found in figure 1.4. Similar features can be seen

in 1.3 (d) where a third order spectral phase causes the distribution to contain

negative regions.

It turns out that the Wigner function is only one distribution belonging to a

class of bilinear distributions that can be obtained from the general Cohen class:
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Figure 1.4: Wigner distribution of two identical Fourier limited gaussian pulses
separated in time clearly exhibiting the negative components of the distribution.
The contour plot is a projection onto the (t, ω) plane and is identical to figure
1.3 (b).
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C(t, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E∗(u− τ

2
)E(u+

τ

2
)K(θ, τ)e−iθt−iτω+iθududτdθ,

(1.22)

where K(θ, τ) is a two dimensional function called the kernel[18]. The Wigner

distribution, is recovered when K(θ, τ) = 1. As mentioned previously, square-law

based detectors measure the intensity or energy of the field, which gives rise to

a photocurrent or charge, making the measurement inherently positive. It would

be beneficial, therefore, to find a phase-space distribution that is positive definite

and that reflects the measured values. If the kernel, K, in equation 1.22 is taken

to be the ambiguity function of an ancillary signal, g,

A(θ, τ) =

∫ ∞

−∞
g∗(t− τ

2
)g(t+

τ

2
)eiθtdt (1.23)

with the exception that K(θ, τ) = A(−θ, τ), the following distribution is ob-

tained:

C(t, ω) =
1

4π2

∫ ∫ ∫
E∗(u− τ

2
)E(u+

τ

2
)

∫
g∗(t′ − τ

2
)g(t′ +

τ

2
)e−iθt

′
dt′

× e−iθt−iτω+iθududτdθ

=
1

2π

∫ ∫ ∫
E∗(u− τ

2
)E(u+

τ

2
)g∗(t′ − τ

2
)g(t′ +

τ

2
)e−iτω

× δ(u− t− t′)dudτdt′

=
1

2π

∫ ∫
E∗
(
u− τ

2

)
E(u+

τ

2
)g∗(u− t− τ

2
)g(u− t+

τ

2
)e−iτωdudτ.

(1.24)

Here, the limits of integration are understood to be (−∞,∞). Making the sub-

stitutions x′ = u− τ
2
, x = u+ τ

2
⇒ u = 1

2
(x+ x′), τ = x− x′ with the knowledge
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that the Jacobian determinant,

J =

∣∣∣∣∣∣

∂u
∂x′

∂u
∂x

∂τ
∂x′

∂τ
∂x

∣∣∣∣∣∣
= 1, (1.25)

relates the differential area element dudτ = |J |dxdx′, the expression for C(t, ω)

can be recast as:

C(t, ω) =
1

2π

∫ ∫
E∗(x′)g∗(x′ − t)E(x)g(x− t)e−i(x−x′)ωdxdx′

=

∣∣∣∣
1√
2π

∫
E(x)g(x− t)e−ixωdx

∣∣∣∣
2

= S(t, ω).

(1.26)

S(t, ω) is known as the Gabor spectrogram, or simply the spectrogram. The

spectrogram can be interpreted as the spectrum of the field, E, after gating by

the function g. A different spectrum is obtained for each delay, t, between the

gate and the field. The totality of these spectra is the time-frequency distribution,

S(t, ω). It is represented as a function of the frequency, ω, and the time between

the gate and pulse fields, t.

The spectrogram in equation 1.26 is extremely useful as a two-dimensional

phase-space distribution for a variety of reasons. It is in a form that can be

measured by standard square-law detectors and is inherently positive. Some

qualitative features of the pulse can often be extracted from the distribution.

Figure 1.5 shows the spectrograms for different Gaussian pulses that have been

gated by a separate Gaussian pulse. The spectrogram on the right clearly indi-

cates a pulse with a positive chirp while the spectrogram in the center is clearly

the distribution of a double pulse structure. These qualitative features, however,

are more difficult to distinguish as the test pulse and the gate pulse become more

complex.
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Figure 1.5: Different Gaussian pulses (top) and their Spectrograms (bottom) for
a Gaussian gate pulse. There is a notable difference between the Gaussian pulse
with chirp (right) and the Gaussian pulse with a flat spectral phase (left). Notice
that the spectrogram does not have the interference region between the two pulses
that was seen in the Wigner distribution of a similar pulse (center).

There are also some less desirable features of the spectrogram. The marginals,

for instance, do not yield the pulse intensity or spectrum. The temporal marginal

yields the convolution of the intensity of the pulse, E, with the intensity of the

gate, g:

∫ ∞

−∞
S(t, ω)dω =

1

2π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
E∗(τ ′)g∗(τ ′ − t)E(τ)g(τ − t)e−i(τ−τ ′)ωdτdτ ′dω

=

∫ ∞

−∞

∫ ∞

−∞
E∗(τ ′)g∗(τ ′ − t)E(τ)g(τ − t)δ(τ − τ ′)dτdτ ′

=

∫ ∞

−∞
|E(τ)|2|g(τ − t)|2dτ.

(1.27)

21



A similar expression exists for the frequency marginal:

∫ ∞

−∞
S(t, ω)dt =

∫ ∞

−∞
|Ẽ(ω′)|2|Ẽ(ω′ − ω)|2dω′. (1.28)

Equation 1.26 can also be recast in the form[19]:

S(t, ω) =
1

2π

∫ ∞

−∞
WE(u,Ω)Wg(u− t, ω − Ω)dudΩ. (1.29)

The spectrogram in this representation is a convolution of the Wigner function of

the pulse with the Wigner function of the gate. The Wigner function of the pulse

is smoothed out by the Wigner function of the gate. The spectrogram, therefore,

is a smoothed version of the Wigner distribution of the pulse that is positive

definite. Most measurement strategies that determine a particular phase-space

distribution that ensures positivity can often be recast in this form. All of these

measurements, therefore, are intimately related to the Wigner distribution.

1.3 Principles of Frequency-Resolved Optical Gating

A physical interpretation of the spectrogram can be determined by examining

equation 1.26 more closely and with dependent variables that more accurately

describe the temporal nature of a light pulse’s longitudinal profile:

S(τ, ω) =

∣∣∣∣
1√
2π

∫ ∞

−∞
E(t)g(t− τ)e−iωtdt

∣∣∣∣
2

=

∣∣∣∣
1√
2π

∫ ∞

−∞
Esig(t, τ)e−iωtdt

∣∣∣∣
2

.

(1.30)

It is clear that the spectrogram is simply the magnitude squared of the Fourier

transform of a signal field that takes the form Esig(t, τ) = E(t)g(t− τ). For this
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reason, the spectrogram is often referred to as the short-time Fourier transform,

because the gate, g, presumably emphasizes the field, E, for a short time interval

around the time t = τ , and suppresses it at all other times. Determining the

spectrum of the signal field is the mathematical equivalent of taking it’s Fourier

transform. This is the operating principle behind frequency-resolved optical gat-

ing, which was first proposed by Trebino, et al.[8]. A FROG diagnostic measures

the signal spectrum vs. delay as opposed to the signal energy vs. delay. Measuring

the signal spectrum for all delays, by scanning the gate pulse over the unknown

pulse longitudinal profile, results in the two-dimensional spectrogram, otherwise

known as a FROG trace.

1.3.1 Choosing the Gate Pulse

The expression for the signal field in the mathematical representation of the

spectrogram contains the field under investigation, E(t), as well as a gate func-

tion, g(t). Naively, one might assume that the best pulse resolution, and thus

the most information, would be obtained if an infinitely short gate pulse was

available. Substituting g(t− τ) = δ(t− τ) into equation 1.30 yields:

S(τ, ω) = | 1√
2π

∫ ∞

−∞
E(t)δ(t− τ)e−iωtdt|2

= |E(τ)e−iωτ |2

= I(τ).

(1.31)

Here, the spectrogram reduces exactly to the pulse intensity. While it may be

useful to extract the pulse intensity with infinite temporal resolution, all phase

vs. time information, as well as all frequency information, is lost. This result

is intimately related to the uncertainty principle, which relates the allowable
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temporal and spectral resolutions for any measurement. The spectrogram is

useful because it provides temporal and spectral information simultaneously, and

the gate pulse width determines the shape of the phase-space distribution. It

turns out that for a purely frequency modulated signal, the ideal width of the

gate pulse, given by Tg, is[14]

Tg ∼
1

2|φ′′t (t)|
. (1.32)

Therefore, a gate pulse that is too short loses all phase information, while a

gate pulse that is too long can’t resolve the fastest phase variations in a pulse.

The above relation stated in equation 1.32 is the compromise. For general pulse

measurement, however, a gate pulse that has a width less than or equal to the

width of the pulse under investigation is sufficient[20]. To this end, autocorre-

lation provides an excellent framework for pulse measurement using the FROG

formalism.

A FROG diagnostic makes an autocorrelation-type measurement in which the

autocorrelation signal field is spectrally resolved. The autocorrelation signal field

is generated by interfering a pulse with its own copy within a nonlinear optical

medium (SHG intensity autocorrelation is shown in figure 1.1). The gate pulse

in the expression for the spectrogram is therefore a function of the pulse which

is being measured, and depends on which type of nonlinear optical process is

used to generate the autocorrelation signal field. It has been seen in equation

1.10 that an SHG autocorrelation yields a pulse with the appropriate form for

the spectrogram signal field: Esig(t, τ) = E(t)E(t − τ). Here, the gate pulse is

equal to the pulse under investigation. An experimental layout of a SHG FROG

diagnostic can be found in figure 1.6. The spectrum of the signal field can be

measured by a simple spectrometer, making sure that the signal field spectrum
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Esig ∝ E(t)E(t − τ)

E(t)

E(t − τ)

Spectrometer Camera

Figure 1.6: General experimental layout of a second harmonic generation FROG
diagnostic.

is entirely contained within the diagnostic operating range. The full (t, ω) phase-

space is explored by scanning the delay such that the gate pulse sweeps over

the full longitudinal profile of the pulse under investigation. It is interesting to

note that gating a complex pulse (a pulse that has a nonzero phase) with another

complex pulse, as in the case of SHG FROG, does not restrict the inversion of the

trace. It does, however, make the visual interpretation of the trace more difficult

as the gate adds nonzero phase to the autocorrelation signal field. Gating with a

real function, however, adds no phase information and yields the most intuitive

traces. An example of this can be found in figure 1.7.

1.3.2 Phase Retrieval and the FROG Algorithm

Unfortunately, there is no closed-form solution for inverting a FROG trace. It

was shown in section 1.2.3, however, that the Fundamental Theorem of Algebra
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Figure 1.7: FROG traces using an SHG (middle row) and TG or PG (bottom
row) nonlinear interaction for pulses of different complexity. The pulse on the left
is a simple Gaussian with quadratic spectral phase while the pulse on the right
has three distinct subpulses with varying degrees of quadratic phase. One can
see that the chirp is better represented on the FROG trace from the bottom row.
Also, as the pulse becomes more complex in nature (right column), it becomes
more difficult to extract qualitative features from the FROG trace.
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Mathematical 
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Fourier Transform

FROG Trace
Data Constraint

Inverse Fourier
Transform

Generate New Field

E(t) Esig(t, τ) ∝ E(t)g(t − τ)

Ẽsig(ω, τ)

Next Guess

E ′
sig(t, τ)

E ′(t) ∝
∫ ∞

−∞
E ′

sig(t, τ)dτ

Start

FROG Algorithm

Ẽ ′
sig =

√
Seiarg(Ẽsig)

Figure 1.8: Diagram outlining the general algorithm for inverting a FROG trace.

fails for two-dimensional functions. This allows for two-dimensional iterative al-

gorithms to extract phase information, permitting full pulse reconstruction of the

field, E(t). The majority of the existing FROG algorithms are based off of mod-

ified two-dimensional phase retrieval algorithms. All of these algorithms apply

alternating constraints between the time and frequency domains. This is known

as making “generalized projections” because the field is being projected onto solu-

tion sets that satisfy these constraints. This is schematically shown in figure 1.8.

The algorithm proceeds in the following manner: Starting with an initial guess

for the field E(t), a signal field is generated according to Esig(t, τ) = E(t)g(t−τ),

where the gate function, g(t−τ), takes a form that is dependent on the nonlinear

process used in the autocorrelation. This is known as the mathematical form

constraint. This field is then Fourier transformed into the frequency domain to

obtain Ẽsig(ω, τ). One can immediately see that taking the modulus squared of

this quantity yields the appropriate form for a FROG trace. At this point, the

first projection, in the frequency domain, is made by replacing the magnitude

of Ẽsig(ω, τ) with the square root of the experimentally measured FROG trace,

SFROG(ω, τ). In this way, the phase information is kept while the amplitude
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is replaced by experimentally measured values. This new field is then Fourier

transformed back into the time domain. The second projection, this time in the

time domain, is applied by using the new field to generate the field for the next

guess. In the basic implementation of this algorithm, this simply means that the

modified signal field is integrated over the delay coordinate, which results in the

next iteration being proportional to the real field. This can more clearly be seen

by evaluating the integral at the kth step:

Ek+1(t) =

∫ ∞

−∞
Ek
sig(t, τ)dτ =

∫ ∞

−∞
E ′k(t)g′k(t− τ)dτ

= E ′k(t)

∫ ∞

−∞
g′k(t− τ)dτ

∝ E ′k(t).

(1.33)

The algorithm then begins anew. After each iteration, the procedure produces a

field that is a better initial guess, and eventually converges to the correct complex

electric field.

There are many additional features of FROG that make it superior to other

pulse measurement techniques. There are a few, however, that are worth point-

ing out. The feedback provided by the FROG can be used to validate the pulse

retrieval. This involves comparing the marginals of the FROG trace to an inde-

pendently measured spectrum and/or autocorrelation. This feedback mechanism

can aid in the detection and correction of systematic errors in the measurement

apparatus. Also, while there is no formal proof that the pulse reconstruction from

a FROG diagnostic is essentially unique, the result is probabilistically true. This

stems from the fact that the FROG trace is an N ×N array of data points that

is used to determine 2N data points (N phase points and N intensity points).

Therefore, there is significant overdetermination of the phase and amplitude of
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the pulse, which results from many more degrees of freedom in the trace rather

than in the pulse. Another consequence of this is that it is highly unlikely that

the FROG algorithm will converge for a trace consisting of randomly generated

points, or for a trace that has been contaminated by systematic error. Likewise,

convergence of the FROG algorithm that produces a trace which agrees well with

the measured trace is highly indicative of a successful reconstruction for a mea-

sured trace free of systematic error. There are, however, certain quantities that a

FROG diagnostic and reconstruction process cannot measure. It cannot measure

the absolute phase of the pulse. This is not very important as one is usually

only concerned with relative phase, or the existence of chirp. Since FROG uses

the pulse, or some function of the pulse, to gate itself, there is no absolute time

reference. Hence, it cannot measure the time of arrival of the pulse. These are

known as trivial ambiguities because most scientists are unconcerned with their

measurement.

1.4 Basic Principles of Free Electron Laser Operation

The details of high-gain FEL theory are explored in depth in Chapter 2. This

section will review the basic ideas and physical processes behind the operation

of a FEL by considering the motion of a charged particle in a planar magnetic

undulator.

All particle-based light sources rely on the principle that accelerated charges

emit light. This is a consequence of a finite value for the velocity of light. Consider

a coordinate system moving with a constant velocity equal to that of a relativistic

particle before acceleration. In this coordinate system, the electric field emitted

by the particle is purely radial. If this particle is then accelerated, it is forced

to move with respect to it’s own coordinate system. As a consequence, parts
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of the electric field cannot “catch up” with the particle and cause distortions in

the radial field. These distortions manifest in radiation. This is expressed more

clearly by using the Léinard-Wiechert potentials to describe the electric field[21]

~E(~x, t) =
e

4πε0


 n̂− ~β

γ
(

1− ~β · n̂
)3

R2



ret

+
e

4πε0c



n̂×

{(
n̂− ~β

)
× ~̇β

}

(
1− ~β · n̂

)3

R



ret

,

(1.34)

where e is the electric charge, the Lorentz factor, γ = 1/
√

1− β2, is the particle

energy in units of the rest mass mc2, ~β = ~v/c (~v is the particle velocity and c is

the speed of light), ~R(t′) = R(t′)n̂ = |~x − ~r(t′)|n̂ is a vector pointing from the

source to the observer, the ‘·’ indicates a derivative with respect to time, and ‘ret’

means the quantities must be evaluated at the retarded time, t = t′ + [R(t′)/c].

The quantity on the left is referred to as the velocity field, which is independent

of acceleration and falls off as R−2, while the quantity on the right is referred to

as the acceleration field, which depends linearly on ~̇β and falls off as R−1. Not

all forms of acceleration produce equal amounts of radiated power though. This

can be seen by examining the instantaneous radiated power, derived from the

acceleration field, and expressed as

P =
2

3
rcmcγ

6

[
~̇β2 −

(
~β × ~̇β

)2
]
, (1.35)

where rc = e2/4πε0mc
2 is the classical electron redius. Evaluating this expression

for particle acceleration both perpendicular and parallel to the particle velocity

yields[22, 23]

P‖ =
2

3

rc
mc

(
dp‖
dt

)2

(1.36)

P⊥ =
2

3

rc
mc

γ2

(
dp⊥
dt

)2

. (1.37)
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An equal accelerating force leads to a much higher radiation power, by a factor

of γ2 for relativistic particles, for transverse acceleration compared to longitu-

dinal acceleration. Magnetic fields are often used to produce this transverse

acceleration. An electron traversing such a deflecting magnetic field produces

synchrotron radiation. This radiation was harnessed in second generation light

sources where dedicated electron storage rings were used exclusively to produce

improved photon beams for experimental uses. Unfortunately, the synchrotron

radiation spectrum is extremely broadband, as can be seen in figure 1.9[24]. This
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Figure 1.9: Synchrotron radiation spectral distribution.

is a consequence of the extremely short duration of a synchrotron radiation pulse

in the temporal domain. Third generation light sources used insertion devices in

storage rings. These insertion devices, such as wigglers and undulators, introduce

periodicity in the radiating structure, which produces a repetitive pulse train in

the time domain, and results in a spectral narrowing in the frequency domain.

Fourth generation light sources, such as FELs, extend this principle further to
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λu

Figure 1.10: The electron undergoes sinusoidal motion in a planar magnetic
undulator with period λu.

produce the brightest light sources currently available.

1.4.1 Undulator Radiation

The investigation into the physics of FEL operation begins with the study of

electron motion through a planar magnetic undulator such as the one shown in

Figure 1.10. An undulator usually consists of a series of equal dipole magnets

arranged with an alternating magnetic field direction. The alternating magnet

direction produces a sinusoidal magnetic field in the y direction on axis (y = 0),
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which can be described to first order by

Bx (z) = 0,

By (z) = B0 sin(kuz), (1.38)

Bz (z) = 0.

Here, B0 is the magnetic field amplitude on axis and ku = 2π/λu is the undulator

wavenumber with undulator period λu. The electron motion is governed by the

Lorentz force equation

~F = e
(
~E + ~v × ~B

)
, (1.39)

which yields

γm
dvx
dt

= e (vyBz − vzBy) ≈ −ecB0 sin(kuz) (1.40)

for an electron on axis in the above field. Here, the longitudinal velocity of the

electron is taken to be vz ≈ c in a first approximation. Since the electron energy

is unchanged in a magnetic field, γ remains constant, and equation 1.40 can be

integrated to obtain

vx =
eB0

γmku
cos(kuz) =

Kc

γ
cos(kuz), (1.41)

vy = 0, (1.42)

vz = c

√
1− 1

γ2
− v2

x

c2
≈ c

(
1− 1 +K2/2

2γ2

)

︸ ︷︷ ︸
=v̄z

−K
2c

4γ2
cos(2kuz). (1.43)

Here, K = eB0/mcku is the dimensionless deflection parameter (undulator pa-

rameter), v̄z is the average longitudinal velocity over an undulator period, and

γ � 1 for relativistic electrons. At this point it is instructive to analyze the

radiation from a relativistic electron undergoing oscillatory motion in an undula-
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tor. Imagine that the electron emits radiation at the peak of it’s deviation from

the undulator axis (see Figure 1.11). For constructive interference between pho-

Λu

K

Γ Ψ

Λr

z

x

Figure 1.11: Illustration of constructive interference yielding the resonance con-
dition in an undulator.

tons emitted at adjacent peaks, the difference in path lengths must be an integer

multiple of the radiation wavelength. The distance the first photon travels is cτ ,

where τ is the time it takes the electron to travel from peak to peak. This time

is found from λu = βzcτ . Therefore, constructive interference requires that the

radiation wavelength satisfies

λr =
λu
βz
− λu cos(ψ), (1.44)

where ψ is the emission angle from the nominal beam propagation direction,

z. Since the electrons are relativistic, the radiation is emitted within a cone

(ψ ∝ 1/γ) confined axially along the undulator. Expanding the expression for
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1/βz using equation 1.43, the resonant coherent radiation wavelength is

λr =
λu
2γ2

(
1 +

K2

2
+ γ2ψ2

)
. (1.45)

Equation 1.45 is known as the resonance condition, and can be generalized to

harmonic emissions. It is interesting to note that as the observation angle, ψ, is

increased from 0, the radiation is red-shifted:

λr(ψ)− λr(0)

λr(0)
=

γ2ψ2

1 +K2/2
> 0. (1.46)

This is a spatio-temporal phenomenon often referred to as spatial chirp, because

different spectral components of a pulse are distributed across it’s transverse

profile. This effect is detrimental to pulse reconstruction and will be discussed in

more detail in Chapter 3.

An undulator with Nu periods, and therefore a length of Lu = Nuλu, will

generate a wave train with Nu cycles. The spectrum of the undulator radiation,

therefore, is peaked around the resonant frequency

ωr =
2πc

λr
= cku

2γ2

1 +K2/2 + γ2ψ2
(1.47)

with an intrinsic bandwidth

∆ω

ωr
=

∆λ

λr
∼ 1

Nu

. (1.48)

Increasing the number of periods in an undulator reduces the spectral bandwidth

of the radiation. In principle, one can obtain very narrow bandwidth pulses by

increasing the number of periods. The above characteristics can more clearly be

seen by considering the photons radiated per unit solid angle into the spectral
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bandwidth ∆ω/ω[23] given by

dNph(ω)

dΩ
= αγ2β̄2

zN
2
u

∆ω

ω

∞∑

k=1

k2

[
sin(πNu∆ωk/ωr)

πNu∆ωk/ωr

]2

× [2γψΣ1 cos(φ)−KΣ2]2x2 + [2γψΣ1 sin(φ)]2y2

(1 +K2/2 + γ2ψ2)2
,

(1.49)

where

∆ωk
ωr

=
ω

ωr
− k, (1.50)

Σ1 =
∞∑

m=−∞
J−m(u)Jk−2m(v), (1.51)

Σ2 =
∞∑

m=−∞
J−m(u) [Jk−2m−1(v) + Jk−2m+1(v)] , (1.52)

u =
ω

ωr

2Koβ̄zγψ cos(φ)

1 +K2/2 + γ2ψ2
, (1.53)

v =
ω

ωr

K2β̄z
4 (1 +K2/2 + γ2ψ2)

, (1.54)

k indicates the harmonic number, α = e2/~c ≈ 1/137 is the fine structure con-

stant, Jm(x) are Bessel’s functions, and x and y are orthogonal unit vectors

indicating contributions from the σ and π mode polarizations respectively. The

radiation intensity distributions are determined by the factors

Iσ,k =
[2γψΣ1 cos(φ)−KΣ2]2

(1 +K2/2 + γ2ψ2)2
, (1.55)

Iπ,k =
[2γψΣ1 sin(φ)]2

(1 +K2/2 + γ2ψ2)2
, (1.56)

and are seen for the first three harmonics in Figure 1.12. There is no emission

in the forward direction for any harmonic from the π-mode while the σ-mode

emits in the forward direction for the odd harmonics only. The second harmonic
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(a) Iσ,1 (b) Iπ,1

(c) Iσ,2 (d) Iπ,2

(e) Iσ,3 (f) Iπ,3

Figure 1.12: Single electron planar undulator radiation transverse profile for the
first three harmonics. The left column corresponds to the σ-mode polarization
from equation 1.55. The right column corresponds to the π-mode polarization
from equation1.56.
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radiation therefore vanishes in the forward direction; a fact that is true for all

even harmonics. An electron beam with zero emittance can be said to emit no

even harmonics in the forward direction.

The function sinc(x) = sin(x)/x is peaked around x = 0, which gives a strong

peak in the spectral angular distribution about the frequency

ω = kωr. (1.57)

This is a restatement of the resonance condition in equation 1.45. One can

determine the full-width at half-maximum (FWHM) of the radiation in both

angle and frequency by considering that the half-maximum of sinc2(x) is found

at x ∼ 1.39. Thus, the spectral FWHM on axis is

∆ωFWHM =
0.88

Nu

ωr. (1.58)

One can determine the FWHM opening angle at resonance in a similar manner,

and is found to be

∆ψFWHM ≈
1

γ

√
0.88 (1 +K2/2)

Nu

. (1.59)

It is interesting to note that an increase in K leads to an increase in the angular

FWHM. This occurs because a larger value for K leads to a larger electron

deflection (see equation 1.41 and figure 1.11) providing radiation downstream

that sweeps out larger angles. This phenomenon is commonly referred to as the

searchlight effect.
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1.4.2 Pendulum Equations

The only subject discussed thus far is the generation of an electromagnetic (EM)

wave from “free” electrons as they propagate through an undulator and emitting

spontaneous radiation. This process is analogous to the spontaneous radiation

from “bound” electrons in atoms from more conventional laser sources. The free

electrons in the undulator, however, can interact with the EM wave, and un-

der certain favorable conditions, can lead to significant amplification (stimulated

emission). Therefore, the energy exchange between the electrons and the EM

wave must be studied to fully appreciate this process.

Consider, first, a linearly polarized plane EM wave propagating co-linearly

with the electron beam

~E = E0 cos(kz − ωt+ ϕ0)x̂. (1.60)

Energy can be exchanged between the electrons and the field at a rate given by

dU

dt
= e ~E · ~v =

eE0Kc

γ
cos(kuz) cos(kz − ωt+ ϕ0), (1.61)

where U = γmc2 is the electron energy and the expression for ~v is found in

equations 1.41-1.43. If dU/dt > 0 the electrons are accelerated and energy is

taken from the field. If, however, dU/dt < 0 energy is taken from the electrons

and the EM wave is amplified. This is the operating principle behind the FEL.

In general, the interaction of an EM wave and electrons is not sustained for free-

space propagation because the EM wave is always faster than the electron beam.

As the EM wave slips forward in the beam frame the electrons sample various

phases of the EM wave and there is no net energy exchange. In an undulator,

however, the EM wave slips past the electrons by one radiation wavelength for one
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Figure 1.13: Sustained interaction between an electron and an EM wave in an
undulator.

undulator period of propagation (from the resonance condition). This concept

is commonly referred to as slippage. The electrons, therefore, sample the same

phase of the EM wave as they co-propagate and the interaction can be sustained.

If the interaction phase is such that the electron lose energy on average, then the

EM wave gains energy and undergoes a sustained amplification. This can more

clearly be seen in Figure 1.13.

The energy exchange between the electrons and radiation field is governed by

mc2 dγ

dt
=
eE0Kc

γ
cos(kuz) cos(kz − ωt+ ϕ0)

=
eE0Kc

2γ


cos((k + ku)z − ωt+ ϕ0︸ ︷︷ ︸

θ+π/2

) + cos((k − ku)z − ωt+ ϕ0)


 .

(1.62)

To provide a sustained beam-radiation interaction the total phase in the above

expression must be kept constant. This implies that the time derivative must
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vanish. Analyzing the phase from the first term in 1.62 produces the condition:

dθ

dt
= (k + ku)vz − ck = 0. (1.63)

Therefore, optimal energy exchange is fulfilled for an electron with a velocity

βz =
k

k + ku
. (1.64)

The wavelength that satisfies this relationship can be found by substituting in

the average longitudinal velocity (βz → β̄z) and evaluating the expression in the

limit ku/k = λ/λu � 1 to produce

1− 1 +K2/2

2γ2
=

1

1 + ku/k
' 1− ku

k
, (1.65)

and thus
ku
k

=
λ

λu
=

1 +K2/2

2γ2
. (1.66)

This is, once again, a restatement of the undulator resonance condition, and has

now been shown to be the condition for a sustained interaction between the EM

wave and the electron beam. A similar condition to equation 1.64 is found if the

second term in equation 1.62 is examined under a vanishing time derivative:

βz =
k

k − ku
. (1.67)

This result requires an electron to have a velocity faster than the speed of light

in order for a sustained interaction to occur. This is, of course, a non-physical

result. The electrons would sample all phases of the radiation as it slips over

the electron beam. This term, therefore, does not contribute to the exchange in

energy between the electron beam and the EM wave on average.
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At this point it is appropriate to define the electron beam energy at which

resonance occurs because γ is now a function of time. The resonant energy is

found from the resonance condition

γ2
R =

λu
λ

1 +K2/2

2
. (1.68)

During the FEL interaction only small deviations from the resonant energy are

expected to first order. It is useful, therefore, to define a normalized electron

energy variable

η =
γ − γR
γR

� 1, (1.69)

so that the energy exchange rate becomes dγ/dt = γRdη/dt. Equations 1.62 and

1.63 become the well known Pendulum equations[25]

dθ

dz
= 2kuη, (1.70)

dη

dz
= − eE0K

2γ2
Rmc

2
sin(θ), (1.71)

where the independent variable was change from t to z by cdt ≈ dz. It should

be noted here that there is an oscillatory component to the longitudinal velocity

(see equation 1.43) that has so far been neglected. When this term is properly

taken into account in the phase equation with period averaging it introduces a

change from K → K[JJ ], where

[JJ ] = J0

(
K2

4 + 2K2

)
− J1

(
K2

4 + 2K2

)
(1.72)

is the well known Bessel form factor for planar undulators. The pendulum equa-
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tions now take the final form

dθ

dz
= 2kuη, (1.73)

dη

dz
= −ε sin(θ), (1.74)

where ε = eE0K[JJ ]/2γ2
Rmc

2.

An FEL operating under these principles is often referred to as being in the

small signal gain (SSG) regime[26]. Here, the gain in a single pass is small enough

that the field can be regarded as constant. The phase term θ is often referred to

as the ponderomotive phase and the pendulum equations describe the motion of

electrons in the ponderomotive potential. The motion of electrons in this potential

is illustrated in Figure 1.4.2, and can be described by the Hamiltonian

H(θ, η) = kuη
2 − ε cos(θ). (1.75)

One can clearly see that the potential forms a series of buckets in the longitudi-

nal phase-space (θ, η) of the electrons, where the solid lines indicate contours of

constant energy. The ponderomotive phase can be regarded as the longitudinal

position of an electron relative to a reference electron in units of λ/2π. There-

fore, the phase spread of a typical electron beam, which can be on the order of

∼ 0.1 − 10 picoseconds long, is a very large number, and the longitudinal pro-

file of the electron beam is divided into many phase buckets. An electron beam

with a small energy spread (blue in figure 1.4.2) will develop an energy modu-

lation (green in figure 1.4.2) when injected into an undulator. As this electron

beam propagates through the undulator the energy modulation begins to turn

into a density modulation (magenta and red in figure 1.4.2) as the energy de-

viations change the relative positions of the electrons. This process, known as
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Figure 1.14: The small signal gain regime illustrating the interaction of electrons
with an EM wave in the ponderomotive potential. An initially cold electron beam
(blue) develops and energy modulation (green) as it interacts with an EM wave
in an undulator. The energy modulation turns to a density modulation (magenta
then red) as the electrons rotate in phase-space. The bold black line indicates
the seperatrix of the ponderomotive potential.

microbunching, bunches the electrons at the resonant wavelength. In a high-gain

FEL, which is analyzed in detail in chapter 2, the microbunching has a feedback

mechanism on the phase of the EM wave and effectively shifts the phase buck-

ets to the left. The bunched electrons begin to radiate coherently and the EM

radiation field grows exponentially in a process known as the FEL collective in-

stability. When the microbunching reaches a maximum value the energy spread

in the electron beam covers the bandwidth of the FEL and the process reaches

saturation, where the radiation field amplitude no longer grows.
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CHAPTER 2

Coupled Maxwell-Klimontovich Solution of the

High-Gain 1-D FEL Equations

2.1 Introduction

The small signal gain regime analysis presented in section 1.4 provides a good

foundation for understanding some of the key concepts involved in the FEL in-

teraction process. The concepts introduced thus far include slippage, where the

light emitted by electrons slips forward in the beam frame. This in turn leads to

the concept of resonance, where the electron beam is able to sustain a prolonged

interaction with a specific wavelength of light. This wavelength can be tuned by

changing either the electron beam energy or the undulator period or magnetic

field strength. The SSG analysis also illustrates some of the longitudinal dynam-

ics of an electron under the influence of an undulator and EM field. What the

SSG fails to capture, however, is the feedback that the electrons can have on the

EM field and vice versa. The EM field influences the motion of the electrons

in the undulator, which, in turn, are the current source that generates the radi-

ation field. In particular, the radiation field can grow exponentially under the

appropriate conditions. This process of electron microbunching and coherent EM

radiation amplification is known as the collective instability, and is discussed in

detail below.
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This chapter begins with the study of the electromagnetic wave equation for

the transverse electric field in the frequency domain. The e-beam current distri-

bution can act as a source of radiation and is described here by the Klimontovich

distribution function, the evolution of which is governed by the Vlasov equation.

The coupled wave and Vlasov equations are linearized in the one-dimensional

case and are solved via the Laplace transform technique. The exponential gain

regime for SASE FEL light is then explored in detail. Here, three-dimensional

and other higher order effects are only discussed qualitatively. The chapter con-

cludes with examples of SASE FELs, given by GENESIS simulations, for three

specific cases which are of current interest. The analysis presented in this chapter

draws heavily on the work of Kim[27, 28, 29, 30], Colson[31], and Yu[32, 33].

2.2 High-Gain FEL

The investigation into the FEL collective instability and high-gain FEL opera-

tion begins with the relevant Maxwell equations, which in turn yields the wave

equation for the transverse electric field:

[(
1

c

∂

∂t

)2

−
(
∂

∂z

)2

−∇2
⊥

]
Ex = − 1

ε0c2

[
∂Jx
∂t

+ c2∂ρe
∂x

]
. (2.1)

Here, ∇⊥ is the transverse laplacian operator, ε0 is the permittivity of free

space, Jx = ρevx is the transverse current density, ρe is the charge density,

Ex = Ex(x, z, t), and x is the transverse position vector. The transverse charge

density gradient of the electron beam is often very small in an FEL and is usually

neglected in the limit c2∂ρe/∂x � ∂Jx/∂t. In order to effectively analyze SASE

FEL light, it becomes useful to move from the time domain to the frequency

domain. This is because a continuous frequency distribution about the resonant
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frequency must be explored since the spectral characteristics change as the sys-

tem evolves. Also, the study of the initial growth of radiation shot noise to an

intense signal is more effectively analyzed in the frequency domain where the ini-

tial electron beam distribution is entirely stochastic. To this end, the frequency

domain amplitude is defined as:

Ex(x, z, t) =
1

2

∫ ∞

−∞
dνA(x, z, ν)eiνk1(z−ct) + c.c. (2.2)

Here, k1 = ω1/c = 2π/λ1, λ1 is the resonant wavelength in equation 1.45,

ν = ω/ω1 = k/k1, and c.c stands for complex conjugate. The plane wave ap-

proximation has also been implemented by including the factor exp(ikz) in the

above expression. If A = A(x, z, ν) is assumed to vary slowly with z, i.e., the

amplitude does not change appreciably over the length scale of the radiation, the

slowly varying envelope approximation (SVEA) can be made, which allows for

the elimination of the second derivative of the amplitude with respect to z in the

limit ∣∣∣∣
∂2A

∂z2

∣∣∣∣�
∣∣∣∣2k1

∂A

∂z

∣∣∣∣ . (2.3)

The wave equation 2.2 transforms under this approximation to

1

2

∫ ∞

−∞
eiνk1(z−ct)

(
2iνk1

∂

∂z
+∇2

⊥

)
A(x, z, ν)dν =

1

ε0c2

∂Jx
∂t

. (2.4)

Equation 2.3 can be inverted by multiplying on the left by

ck1

π
eiν
′k1ct

and integrating over t from [−∞,∞]. Note that this is not the inverse Fourier

transform and leaves the field in the frequency domain. The left-hand side be-
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comes

∫ ∞

−∞
dν

∫ ∞

−∞

ck1dt

2π
ei(ν

′−ν)k1ct

︸ ︷︷ ︸
δ(ν′−ν)

eiνk1z

(
2iνk1

∂

∂z
+∇2

⊥

)
A(x, z, ν) =

eiνk1z

(
2iνk1

∂

∂z
+∇2

⊥

)
A(x, z, ν).

(2.5)

The right-hand side becomes

1

ε0c2

∫ ∞

−∞
eiνk1ct

∂Jx
∂t

ck1dt

π
(2.6)

which is integrated by parts to yield

−eK
ε0

∫ ∞

−∞
eiνk1ct

iνk1

γ0

cos(kuz)
Ne∑

j=1

δ(x− xj)δ(t− tj)
k1

π
dt. (2.7)

Here, Ne is the total number of electrons in the beam. The expression for Jx =

ρevx uses equation 1.41 for each electron and the energy spread is assumed to be

small so that γj ≈ γ0. Rearranging terms, using θ = (k + ku)(z − v̄zt) to change

variables from t→ θ, and properly averaging over the fast wiggle motion reduces

equation 2.4 to

(
∂

∂z
+
∇2
⊥

2iνk1

)
A(x, z, ν) = −ek1K[JJ ]

4πε0γ0

ei∆νkuz
∫ ∞

−∞
e−iνθ

Ne∑

j=1

δ(x−xj)δ(θ−θj)dθ,

(2.8)

where ∆ν = ν − 1.

2.2.1 1-D Maxwell-Klimontovich Equations

The analysis presented thus far is a fully 3-D treatment, which has been investi-

gated in detail using a variety of techniques[34, 35, 36, 37]. The 1-D case, however,
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provides a simpler framework with which to analyze SASE FEL physics directly

applicable to this thesis. Some of the key concepts considered here include start-

up from noise, exponential gain, effects of electron beam energy spread, and the

development of longitudinal coherence. Here, the focus is primarily on the 1-D

treatment where the electron beam is considered uniform and infinite in the trans-

verse dimension. In this limit all transverse modes become degenerate and have

the same growth rate (described by µ below). Relevant 3-D effects are discussed

briefly in section 2.2.4.

At this point it is useful to consider the Klimontovich distribution function[38]

to describe the electron beam. This distribution takes into account the discrete-

ness of the electrons that initiate the SASE process and is defined as:

F (θ, η; z) =
k1

dNe/dz

Ne∑

j=1

δ(θ − θj)δ(η − ηj). (2.9)

Here, dNe/dz is the line density. The distribution can be expanded to first order

in perturbation theory:

F (θ, η; z) = F0(η) + F1(θ, η; z). (2.10)

The smooth background, F0, is independent of θ; an approximation that is valid

for bunch lengths that are much longer than the slippage length (Nuλ1). The

normalization is such that

∫ ∞

−∞
F0(η)dη = 1. (2.11)

F1 is a perturbation due to the FEL interaction and contains the shot-noise fluc-

tuation in the electron beam as well as the FEL-induced microbunching. Moving
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to the frequency domain, the expression for F (ν, η; z) becomes

F (ν, η; z) =
1

2π

∫ ∞

−∞
e−iνθF (θ, η; z)dθ =

k1

2πdNe/dz

Ne∑

j=1

e−iνθjδ(η − ηj). (2.12)

Here, θj = θj(z) and ηj = ηj(z). Eliminating the transverse dependance in

equation 2.8, the 1-D wave equation in the frequency domain becomes

(
∂

∂z
+ i∆νku

)
A(z, ν) = −κ2n0

∫ ∞

−∞
F (ν, η; z)dη, (2.13)

where κ2 = eK[JJ ]/(2ε0γR), and n0 is the electron density. The smooth back-

ground, F0, vanishes here in the limit of small bandwidth, i.e., ν → 1, and

A(z, ν)→ A(z, ν)exp(−i∆νkuz) for notational convenience.

The Klimontovich distribution is governed by the continuity equation

d

dz
F (θ, η; z) =

∂F

∂z
+
∂F

∂θ

∂θ

∂z
+
∂F

∂η

∂η

∂z
= 0. (2.14)

It should be noted here that equation 2.14 is equivalent to the Vlasov equation,

which is often used to describe the fluid limit of the plasma distribution func-

tion. Here, though, the microscopic description of the electrons is used to more

accurately describe SASE radiation from the initial stochastic electron beam dis-

tribution. The terms θ′ and η′, where the prime indicates a partial derivative

with respect to z, are determined by the pendulum equations:

θ′ = 2kuη, (2.15)

η′ = κ1

∫ ∞

−∞
dνA(z, ν)eiνθ + c.c., (2.16)

where κ1 = eK[JJ ]/4γ2
Rmc

2. The continuity equation 2.14 is linearized by treat-
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ing both F1 and A as first order quantities to obtain in the frequency domain

∂F1

∂z
+ iν2kuηF1 + κ1A

∂F0

∂η
= 0, (2.17)

where F0, F1, and A are all functions of ν, η, and z. Henceforth, subscripts will

be used to indicate the operational space, i.e., equation 2.17 becomes

∂F1,ν

∂z
+ iν2kuηF1,ν + κ1Aν

∂F0,ν

∂η
= 0. (2.18)

2.2.2 Laplace Transform Solution of the Maxwell-Klimontovich Equa-

tions

The boundaries and constraints involved in the FEL interaction make it suitable

to be solved by using the Laplace transform. The Laplace transform is ideal

for solving initial value problems and problems that are one sided. The Laplace

transform is defined for this problem to be

Aν,µ =

∫ ∞

0

Aνe
iµ2ρkuzdz. (2.19)

A similar expression exists for the electron distribution function:

Fν,µ =

∫ ∞

0

Fνe
iµ2ρkuzdz. (2.20)

Here, ρ is the universal FEL scaling parameter[39], which will be defined shortly,

and is often referred to as the Pierce parameter[40]. The above transform exists

and converges uniformly if there exists some µ = iλ for some real λ such that

(
Aν
Fν

)
< e−λ2ρkuz. (2.21)
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Applying the Laplace transform to equations 2.13 and 2.18 yields

− iµ2ρkuAν,µ + i∆νkuAν,µ + κ2n0

∫ ∞

−∞
Fν,µdη = Aν(0), (2.22)

−iµ2ρkuFν,µ + i2kuηνFν,µ + κ1Aν,µ
∂F0,ν

∂η
= Fν(0). (2.23)

Solving for Fν,µ above, while letting ην → η for small bandwidth pulses, yields

Fν,µ =
Fν(0)− κ1Aν,µ

∂F0,ν

∂η

−iµ2ρku + i2kuη
. (2.24)

Substituting equation 2.24 into equation 2.22 produces

Aν,µ

(
−iµ2ρku + i∆νku +

κ1κ2n0

i2ρku

∫ ∞

−∞

∂F0,ν

∂η

µ− η
ρ

dη

)
=

Aν(0)− κ2n0

i2ρku

∫ ∞

−∞

Fν(0)
η
ρ
− µdη.

(2.25)

The second term on the right-hand side can be evaluated by substituting equation

2.12

Fν(0) =
1

Nλ

Ne∑

j=1

e−iνθjδ(η − ηj), (2.26)

where Nλ is the number of electrons in a radiation wavelength. Making this

substitution and applying the inverse Laplace transform produces

Aν,µ(z) =

∮
dµ

2πi

e−iµ2ρkuz

Ω(µ)

[
Aν(0) +

iκ2n0

2ρkuNλ

Ne∑

j=1

e−iνθj
ηj
ρ
− µ

]
. (2.27)

Here, θj = θj(0), ηj = ηj(0), and

Ω(µ) = µ− ∆ν

2ρ
+ ρ

∫ ∞

−∞

∂F0,ν

∂η

µ− η
ρ

dη. (2.28)
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Ω(µ) is known as the beam plasma dielectric function, and is given here in the

1-D limit including effects of energy spread. The parameter ρ is defined as ρ3 =

κ1κ2n0/4k
2
u so that

ρ =

(
e2K2 [JJ ]2 n2

0

32γ3
Rmc

2ε0k2
u

)1/3

. (2.29)

The first term in the bracket in equation 2.27 refers to the amplification of an

external field and is used to describe a seeded FEL. The second term, which

contains the random phase e−iνθj , describes the phenomenon of self-amplified

spontaneous emission and will be explored further below.

The contour integral in equation 2.27 must contain all singularities in order

to invert the Laplace transform. The dynamics of the system, therefore, are

controlled by both the singularities of kinematic origin (from the denominator

within the summation) and the singularity from the solution of the dispersion

relation

Ω(µ) = 0. (2.30)

An exponentially growing mode results if there exists a solution to this equation,

µk, that has a positive imaginary part. The resulting field will grow according to

Aν(z) =
e−iµk2ρkuz

Ω′(µ)

[
Aν(0) +

iκ2n0

2ρkuNλ

Ne∑

j=1

e−iνθj
ηj
ρ
− µk

]
, (2.31)

where

Ω′(µ) =
dΩ

dµ
= 1− 2

∫ ∞

−∞

F0,ν(
η
ρ
− µ

)3 dη. (2.32)

Once the amplitude is found the power spectrum can be computed using the

formula
dP

dω
=
ε0c

4π
λ2 ΣA

T

〈
|Eν(z)|2

〉
, (2.33)
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where ΣA is the beam cross sectional area, T is the pulse duration, and 〈〉 indicates

an ensemble average over the e-beam distribution. At this point it is useful to

consider a few examples that will illustrate basic properties of SASE FEL’s in

the exponential gain regime.

2.2.3 Exponential Gain Regime

Many useful properties can be found by considering an initially cold (zero energy

spread) e-beam where the distribution in energy is given by F0,ν(η) = δ(η). For

this case the dispersion relation reduces to that of the well known cubic equation

generalized to include the effects of detuning[41]

Ω(µ) = µ− ∆ν

2ρ
− 1

µ2
= 0. (2.34)

Solving the dispersion relation produces three roots, the second of which is:

µ2 =

∆ν
2ρ

3
−

(
1 + i

√
3
)

∆ν
2ρ

2

3× 22/3

(
27 + 2∆ν

2ρ

3
+ 3
√

3
√

27 + 4∆ν
2ρ

3
)1/3

− . . .

. . .−

(
1− i

√
3
)(

27 + 2∆ν
2ρ

3
+ 3
√

3
√

27 + 4∆ν
2ρ

3
)1/3

6× 21/3
,

(2.35)

The positive imaginary part of µ2 (µ2,I) yields a dominant exponentially growing

solution. The growth rate has a complicated dependance on the detuning as

can be seen in figure 2.1. It is useful to expand the growth rate µ2,I about the

maximum value (∆νm) as a function of the detuning to second order. For a cold

e-beam one finds that the growth rate becomes

µ2,I =

√
3

2
− ∆ν2

24ρ2
√

3
. (2.36)
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Figure 2.1: Detuning curve for a 1-D cold beam.

The FEL power, therefore, grows as

e4µ2,Iρkuz = e
z
Lg e−

1
2(ω−ωmωmσν

)
2

(2.37)

where

Lg =
λu

4π
√

3ρ
, (2.38)

σν = σ∆ω/ω =

√
3
√

3

kuz
ρ. (2.39)

Here, Lg is the power gain length and σν is the rms relative bandwidth. These

results hold for the very specific example of a 1-D cold e-beam while other signif-

icant effects due to e-beam emittance and space-charge are neglected. The FEL

growth rate has a complicated dependence on these parameters. For instance,

the detuning curve quickly becomes more complicated as an energy spread is
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Figure 2.2: Detuning curves for a 1-D e-beam with a flat top energy distribution.
The energy distribution has full widths of ∆η = 0 (blue), 4ρ (red), 8ρ (yellow)
and 12ρ (green).

introduced to the e-beam description. Figure 2.2 shows detuning curves for an

e-beam with a flat top energy distribution of varying widths. The growth rate

decreases as the energy spread increases and the optimal gain no longer occurs

for an e-beam injected on resonance. Figure 2.3 shows the detuning curves for

an e-beam with a Lorentzian distribution of varying widths of the form

F0,ν(η) =
1

2π

δη

η2 +
(
δη
2

)2 . (2.40)

As one can see, the FEL growth rate exhibits a complicated dependence on the

e-beam energy spread even for the simple cases considered in this chapter. This

has obvious implications for the investigation of a FEL operating with a longi-

tudinal e-beam energy chirp. The effects of a correlated energy spread on FEL

performance will be discussed in detail in chapters 4 and 5. Other parameters
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Figure 2.3: Detuning curves for a 1-D e-beam with a Lorentzian energy distribu-
tion. The energy distribution has widths of δη = 0 (blue), ρ (red), 2ρ (yellow)
and 3ρ (green).

that have an effect on FEL performance are discussed qualitatively in section

2.2.4 below.

Moving back to the time domain by applying equation 2.2 to equation 2.31

for a cold e-beam while expanding the growth rate, µ2, to second order an ap-

proximate result for the temporal profile of SASE FEL light is obtained as[42]

E(z, t) ∝ e
√

3ρkuz

√
z

Ne∑

j=1

exp
[
iω1

(z
c

(1 + ρ∆β)− t− tj
)]

(2.41)

× exp

[
−
(
t− z

c
(1 + 2∆β/3)− tj

)2

4σ2
τ

(
1 +

i√
3

)]
. (2.42)

Here, στ = 1/2σω is the coherence time and ∆β = 1− βz ≈ ku/k. This equation

describes a sum of Ne wavepackets of rms pulse length στ propagating with a
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group velocity

vg =
c

1 + 2
3
∆β

=
ω

k + 2
3
ku
, (2.43)

which is slightly less than the speed of light but slightly faster than the electrons.

This type of time domain picture was first emphasized by Bonifacio[43]. It is

also interesting to note that there exists an intrinsic frequency chirp within each

SASE spike due to the quadratic dependence on the time in the imaginary part

of the electric field’s phase. This chirp is easily calculated and can be expressed

as

b =
dφ

dt
=

1

2
√

3σ2
τ

. (2.44)

The frequency dependent propagation velocity and the intrinsic frequency chirp

for each of the individual spikes have a large influence on the longitudinal char-

acteristics of SASE FEL light and are discussed in greater detail in the following

chapters.

As mentioned previously, ρ is a scaling parameter that determines many char-

acteristics of high-gain FEL systems. A few important characteristics, which will

be discussed in later chapters as they pertain to the e-beam energy-chirp and

undulator experiments and results, are given below.

• Saturation length: Ls ∼ λu
ρ

• Saturation power: Ps ∼ ρIbeamEbeam

• Frequency bandwidth: ∆ω
ω
∼ ρ

• Power gain length: Lg = λu
4π
√

3ρ

• Cooperation length: Lc = λr
4π
√

3ρ
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2.2.4 3-D and Other Electron Beam Effects

Effects other than the e-beam energy detuning can have a strong influence on

the performance and characteristics of FEL systems, many of which come from

a fully three-dimensional treatment. The easiest way to see this is by taking the

logarithmic derivative of the resonance condition, equation 1.45, and evaluating

the expression about the forward propagation direction (ψ = 0), which produces

∆λ

λ
= −2∆γ

γ
+

K∆K

1 +K2/2
+
γ2 (∆ψ)2

1 +K2/2
. (2.45)

The first term on the right, ∆γ/γ, represents the broadening of the spectrum

due to an energy spread in the e-beam. The second term, K∆K/(1 + K2/2),

represents the effects due to undulator field or undulator period errors. The

third term, 2γ2(∆ψ)2/(1+K2/2), includes the effects of an angular spread in the

electron e-beam, which is usually described by the e-beam emittance[44]. Some

of these effects are discussed below.

It has already been shown that the relative bandwidth at saturation for a

SASE FEL scales as ∆ω/ω = ∆λ/λ ∼ ρ. The energy spread in the e-beam at

saturation, therefore, must also scale by a factor

∆γ

γ
∼ ρ. (2.46)

This places a constraint on the maximum initial energy spread an e-beam can

have at injection to the FEL. It has been shown above that an initial energy

spread can shift the detuning curves and can change the e-beam injection energy

responsible for optimal gain. Figures 2.2 and 2.3 also illustrate that an increasing

energy spread reduces the maximum growth rate and increases the gain length.

The saturation length is also reduced when compared to the ideal case of a cold
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e-beam. This is because the energy spread in the e-beam at saturation covers the

FEL bandwidth. If the e-beam injected into the FEL has an initial energy spread

it occupies a larger phase-space area than a cold beam and can more quickly cover

the bandwidth. An obvious constraint, therefore, is that the initial rms energy

spread in the e-beam must be much less than the FEL bandwidth:

σγ � σω ∼ ρ. (2.47)

An e-beam with a finite emittance, ε, is composed of electrons that have

a finite and intrinsic angular spread. This e-beam, if left to propagate in free

space, would expand indefinitely. The rms emittance quantifies the area in the

transverse phase-space an e-beam occupies and is given as

εx =
√
σ2
xσ

2
x′ − σ2

xx′ , (2.48)

where

σ2
x =

〈
x2
〉

=

∫
x2fxdxdx′, (2.49)

σ2
x′ = 〈x′〉 =

∫
x′2fxdxdx′, (2.50)

σxx′ = 〈xx′〉 =

∫
xx′fxdxdx′. (2.51)

Here, fx = fx(x, x
′) is the normalized e-beam distribution function in the (x, x′)

phase-space, and σ2
x, σ

2
x′ , and σxx′ define the mean-squared e-beam size, diver-

gence and correlation respectively. Electrons that are injected into an undulator

with an initial angle or displacement from the axis will undergo betatron oscilla-

tions. These oscillations reduce the longitudinal velocity on axis. This, in turn,

introduces a spread in the resonant wavelength and associated gain reduction,
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which has been discussed previously. The e-beam divergence can be written in

terms of the Twiss parameters as σx′ =
√
εx/βx[44, 22]. Consulting equation

2.45, a constraint on the e-beam emittance needed for effective FEL operation

can be defined as:

εx <
λ

4π

βx
Lg
. (2.52)

One of the more remarkable features of a SASE FEL is the large degree

of transverse coherence of the FEL light pulse obtained at saturation. The

initial transverse phase-space of the FEL light consists of a large number of

spatial modes. Higher order spatial modes, however, naturally have a larger

diffraction[45]. Since the beam-radiation interaction is localized within the e-

beam, the fundamental mode couples more effectively and has a larger growth

rate in a process known as gain guiding. This mode eventually becomes the

preferred spatial distribution and dominates the transverse profile[35].

Space-charge effects on FEL operation has been studied extensively[46]. The

space charge forces (electrostatic e-beam self forces) are repulsive. Thus, they act

in direct opposition to the induced microbunching arising from the e-beam and

radiation interaction within an undulator. This has a detrimental effect on the

FEL gain process. To help quantify this effect (and others), a power-fit formula

is presented in Appendix A for the gain length of a high-gain free-electron laser’s

fundamental mode in the presence of diffraction, uncorrelated energy spread,

and longitudinal space-charge effects. It is obtained from a variational analysis

using three-dimensional FEL theory. Space-charge effects are certainly present

in optical FELs, where the e-beam energy is relatively low. Thus, the results

obtained have specific applications to the topic of this thesis.

The approach in Appendix A is inspired by the work of Xie [36], and provides

a useful shortcut for calculating the gain length of the fundamental Gaussian
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Parameter Symbol Value

Period λu 9 mm

Undulator Parameter K 1.7

Gap g 1.6 mm

Table 2.1: Cryogenic undulator parameters for the examples considered here.

mode of a free-electron laser having strong space-charge effects in the 3-D regime.

The results derived from analytic theory are in good agreement with detailed

numerical particle simulations that also include higher-order space-charge effects,

supporting the assumptions made in the theoretical treatment and the variational

solutions obtained in the single mode limit.

2.3 SASE FEL Examples

It is useful at this point to consider examples of SASE FELs to better under-

stand and illuminate the concepts mentioned above. Here, the characteristic

behavior for some specific SASE FEL systems are evaluated. To this end the

time-dependent three-dimensional FEL simulation code GENESIS is used to ex-

plore the performance of high-brightness e-beams used in tandem with a short-

period, high-field cryogenic undulator[47], the parameters of which are found in

table 2.1.

The brightness of an e-beam is defined as:

B =
2I

ε2n
∝ Q

σtε2n
. (2.53)
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Here, I is the e-beam current, εn = βγε is the normalized emittance and σt

is the rms length in time. The brightness may be dramatically increased by

using lower charge (Q ∼ 1 pC) e-beams in the electron injector, rather than the

nominal design charge of Q ∼ 1 nC. This is enabled by the scaling laws which

define the emittance and beam sizes that can be obtained for a given charge

at the photocathode source[6]. Smaller emittance beams are capable of smaller

transverse sizes, σ2
x = εnβx/γ, where βx is the Twiss coefficient, in the undulator.

Simultaneously, smaller emittance e-beams mitigate some of the collective effects

that often degrade beam quality during longitudinal compression, allowing for

extremely short final bunch lengths and large peak currents. Therefore, these

high density e-beams are capable of reaching unprecedented brightness.

High-brightness beams have several implications for FEL performance. The

FEL gain parameter, ρ, scales with the beam density, n0, like ρ ∼ n
2/3
0 (see

equation 2.29). An increase in the e-beam density produces a larger gain param-

eter. This, in turn, yields an FEL that has a shorter gain length and shorter

saturation length. The saturation power also increases. More efficient driving of

the gain process, therefore, partially counterbalances the loss of photons due to

the decreased number of electrons participating in the FEL interaction. In addi-

tion, if the ultrashort e-beams are compressed such that the final bunch length

is on the order of the cooperation length (the slippage distance in a gain length),

it becomes possible for the beam to emit one longitudinally coherent radiation

spike[5], which pertains directly to this thesis.

The use of high-brightness e-beams in a short-period undulator is motivated

by the fact that shorter period undulators nominally produce shorter wavelength

light. Thus, it becomes possible to use moderate energy e-beams to produce rel-

atively high energy photons. Using a shorter undulator period, however, reduces
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the gain parameter. This can be counterbalanced by keeping the undulator pa-

rameter, K, relatively large. Modern permanent magnet undulators are limited

in the (λu, K) parameter space by available materials. A decrease in λu is usually

accompanied by a decrease in K. The use of cryogenically cooled exotic materials

minimizes this limitation.

The first example considered here utilizes a typical e-beam produced from

a laser wakefield accelerator (LWFA)[48] and was the original motivation for

investigating the cryogenic undulator. In this case, the short-period undulator

allows for the production of soft x-ray photons from the e-beam created by the

LWFA. Low charge e-beams from more standard photoinjectors are discussed

below. The present case illustrates the standard temporal structure of SASE

FEL light where the pulse is composed of coherent spikes somewhat randomly

distributed along the longitudinal profile. The main parameters for this scenario

can be found in table 2.2. This example serves to illustrate the possibilities in

realizing an ultracompact FEL driven by an e-beam from a LWFA. It employs an

extremely high current (I = 160 kA), moderate emittance (εn = 1×10−6 m-rad),

moderate energy spread (σγ = 0.1%) e-beam to reach saturation in the undulator

in 3 m as shown in figure 2.4. The output power for this case is an impressive 1.09

TW. It is important to note that the LWFA FEL reaches saturation even though

the e-beam does not satisfy the emittance condition stated in equation 2.52. This

is because the e-beam possesses an abnormally large current. The FEL saturates

in a short distance because a tremendous amount of electrons are packed into a

very short space, allowing them to contribute radiation to the fundamental laser

mode before diffraction or emittance effects can play a significant role. This is a

rather brute force, but effective, method to reach saturation.

The longitudinal profile of the light at saturation, shown in figure 2.5, con-
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Parameter Symbol LWFA LCLS SPARX

Energy (GeV) E 1.74 4.5 2.1

Charge (pC) Q 1600 0.25 1.0

Bunch length (µm rms) σξ 1.2 0.06 0.21

Current (kA) I 160 0.35 0.7

Normalized emittance (10−8 m-rad) εn,x(y) 100(100) 3.3(3.3) 7.5(3.3)

Energy spread (10−3 rms) σγ 1 0.2 0.25

Radiation wavelength (Å) λr 9.5 1.4 6.56

Beta function (m) β 4.3 4.8 2

Gain parameter (10−3) ρ 3.6 0.75 1.8

Saturation length (m) Ls 3 15 10

Cooperation length (nm) Lc 12.1 8.6 10.6

Output power (GW) P 1090 4.5 2.4

Table 2.2: Parameters for the three FEL scenarios considered in this section.
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Figure 2.4: Power growth along the undulator for the LWFA FEL.

sists of many spikes. This is because the cooperation length is significantly

smaller than the e-beam bunch length. The same spikey signature is found, as

expected, in the spectrum in figure 2.6. Figure 2.7 is a two-dimensional plot of

the normalized radiation power vs the longitudinal coordinate along the pulse (t)

and along the undulator (z). This plot is useful in visualizing the evolution of

the individual radiation spikes in the e-beam reference frame as they propagate

forward. The three primary regimes of SASE FEL operation are represented in

this plot. The start-up regime, where the e-beam first begins to microbunch as

it interacts with the initial radiation shot noise, is shown in the region between

z = 0 m and z = 1 m. This is also known as the region of lethargy. The region

between z = 1 m and z = 3 m is the exponential gain regime where the power

stored in each individual radiation spike grows exponentially. Finally, the region

between z = 3 m and z = 4 m indicates where the FEL has reached saturation.
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Figure 2.5: Longitudinal profile of the light at saturation for the LWFA FEL.
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Figure 2.6: Spectrum of the light at saturation for the LWFA FEL.
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Figure 2.7: Power vs longitudinal coordinate along the pulse (t) and along the
undulator (z) for the LWFA FEL. The power is normalized at each z to permit
the observation of the spike evolution along the whole undulator.
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In the lethargy regime, the light propagates forward at the speed of light. In the

exponential gain regime, however, the interaction of the light with the electrons

during the gain process slows the propagating wavepackets so that they move

forward at the group velocity (see equation 2.43), which is slightly faster than

the average e-beam velocity, but not at the speed of light. This is indicated by a

change in the slope of a propagating spike (they slip forward less in the e-beam

frame). When the FEL reaches saturation the light again propagates forward at

a speed near the speed of light and the slope of the propagating spike increases.

This phenomenon will be more evident in the next few examples.

The next example uses an ultralow charge e-beam to study the possibility of

producing single-spike radiation at the Linac Coherent Light Source (LCLS). The

LCLS is the world’s first hard x-ray FEL[2]. It nominally runs with an e-beam

charge of 250 pC which is capable of producing λ = 1.5 Å, x-ray photons. The

pulse length of the FEL light in this regime normally ranges from 70 to a few

hundred femtoseconds. In addition, a low charge scheme of operation (Q = 20

pC) has also been studied and established[49, 50]. The main goal of this operating

mode was to mitigate collective effects during compression so that ultrashort e-

beams could be created to produce x-ray pulses that are less than 10 fs. The drive

to further shorten the x-ray pulse so that single-spike operation can be achieved

is explored here (with the short-period, high-field undulator) for an e-beam with

a charge of 0.25 pC.

Start-to-end simulations were performed for this low charge case in the context

of the LCLS photoinjector and accelerating sections, which produced a final e-

beam bunch length of around σξ ' 60 nm with a peak current of 350 A for a

beam with an energy of 4.5 GeV (much lower than the 13.65 GeV e-beam used

in the nominal LCLS case). The main parameters for this scenario can be found
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Figure 2.8: Power growth along the undulator for the LCLS FEL case with a 4.5
GeV e-beam.

in table 2.2. Both the longitudinal and transverse phase-space are compact and

show no signs of filamentation during compression, which was accomplished by

velocity bunching (see section 4.2.2.1) at low energy and chicane compression[51]

at high energy. The final emittance in both the x and y planes is εn = 3.3× 10−8

m-rad while the final energy spread is σγ = 2 × 10−4. All of these quantities

easily satisfy the conditions mentioned in section 2.2.4. This is vital for pushing

the FEL to shorter wavelength operation.

The power growth along the undulator is shown in figure 2.8. Saturation is

reached within z = 15 m. This is just over a factor of 6 times shorter than what

is nominally achieved in the standard LCLS high charge case. The output power

at a wavelength of λ = 1.4 Å is an impressive 4.5 GW considering the charge

is 3 order of magnitude smaller than the standard LCLS case. The longitudinal
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Figure 2.9: Longitudinal profile of the light at saturation for the LCLS FEL case
with a 4.5 GeV e-beam.

profile in both the temporal and spectral domains can be found in figures 2.9

and 2.10 respectively. Notice that the typical SASE spiking found in the LWFA

scenario is absent. While single-spike operation was not achieved here, due to

an extremely short cooperation length, the longitudinal profile of the pulse is

cleaned up significantly, with the main spike in the temporal domain possessing

a FWHM of less than 0.5 fs.

The two-dimensional plot of the normalized radiation power vs the longitu-

dinal coordinate along the pulse (t) and along the undulator (z) is shown in

figure 2.11. The three regimes of SASE FEL operation are once again evident.

However, only three spikes reach full saturation in this case. The distinction in

the propagation velocities between the exponential gain regime and saturation is

more clearly evident in this figure where the transition is seen to occur around

71



0.141 0.1415 0.142 0.1425 0.143 0.1435 0.144
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ (nm)

Sp
ec

tra
l A

m
pl

itu
de

 (A
.U

.)

Figure 2.10: Spectrum of the light at saturation for the LCLS FEL case with a
4.5 GeV e-beam.

the z = 12 m mark.

The final example discussed in this section thoroughly exploits the advantages

of coupling low charge e-beams to the short period, high field undulator. This

case examines the the usage of a low charge e-beam (Q = 1 pC) from the SPARX

FEL[52], which is currently under design in Frascati, Italy. The e-beam in this

case is compressed by velocity bunching at low energy and further compressed

at high energy by a magnetic chicane. This produces a final bunch length of

σξ = 0.21 µm and a peak current just over I = 700 A. The transverse emittances

in this case are εn,x(y) = 7.5(3.3) × 10−8 m-rad. The larger horizontal emittance

is a consequence of coherent synchrotron radiation effects in the chicane. Other

parameters of interest for this scenario are given in table 2.2.

The power growth along the undulator is shown in figure 2.12. Saturation is
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Figure 2.11: Power vs longitudinal coordinate along the pulse (t) and along the
undulator (z) for the LCLS FEL case with a 4.5 GeV e-beam. The power is
normalized at each z to permit the observation of the spikes evolution along the
whole undulator.
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Figure 2.12: Power growth along the undulator for the SPARX FEL.

reached within z = 10 m and at a wavelength of λ = 6.56 Å. This is only about ∼
4 times the normal LCLS wavelength, and was achieved with a relatively modest

e-beam energy of 2.1 GeV. The longitudinal profiles in both the temporal and

spectral domains are shown in figures 2.13 and 2.14, respectively. Despite such

a short cooperation length, the ultrashort e-beam in this scenario was capable of

producing quasi-single-spike radiation in the soft x-ray wavelegnth regime with

an rms pulse length of 0.35 fs.

The two-dimensional plot of the normalized radiation power vs the longitudi-

nal coordinate along the pulse (t) and along the undulator (z) is shown in figure

2.15. The three regimes of operation are clearly evident in this plot. The discon-

tinuities in radiation propagation velocity between the lethargy and exponential

gain regimes occurs around z = 2.5 m while the discontinuity in propagation ve-
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Figure 2.13: Longitudinal profile of the light at saturation for the SPARX FEL.
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Figure 2.14: Spectrum of the light at saturation for the SPARX FEL.
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Figure 2.15: Power vs longitudinal coordinate along the pulse (t) and along the
undulator (z) for the SPARX FEL. The power is normalized at each z to permit
the observation of the spikes evolution along the whole undulator.

locity between the exponential gain regime and saturation occurs around z = 10

m. This plot also clearly shows the amplification of one dominant, coherent spike

of radiation.
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CHAPTER 3

Transient-Grating Frequency-Resolved Optical

Gating

3.1 Introduction

The basic operating principles behind FROG were explored in Chapter 1, where

the mechanisms used to generate the FROG trace and extract the pulse amplitude

and phase information were first introduced. This chapter describes in detail the

specific TG diagnostic geometry that was implemented at the SPARC FEL test

facility in Frascati while emphasizing the difficulties in using such an advanced

diagnostic on a FEL. In addition, the physics on nonlinear optics, with an empha-

sis on third-order processes, is briefly explored in order to more clearly identify

how the FROG signal field is created. This process is approached from two com-

plementary perspectives. The first perspective aims at describing the production

of the signal field from a diffraction grating picture. Here, two intense pulses of

light interfere in a third-order nonlinear optical crystal and spatially modify the

medium properties. A third pulse of light interacts with this grating and can

diffract into a unique direction if the Bragg condition is satisfied. This diffracted

signal can therefore be isolated and studied. The second perspective evaluates the

establishment of a third-order nonlinear polarization from the interaction of three

intense pulses of light within the nonlinear optical crystal. This polarization acts
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Figure 3.1: Schematic of transient-grating FROG diagnostic: (a) beam expander;
(b) Input mask, cylindrical lens, Fresnel bi-prism; (c) nonlinear optical medium,
output mask, knife edge slit; (d) Focusing optics, diffraction grating; (e) CCD
camera.

as a source term for a fourth light pulse only if the conditions for phase-matching

are satisfied.

3.2 Diagnostic Geometry

The TG FROG diagnostic used to extract the longitudinal profile was constructed

with the unique capabilities and challenges of measuring FEL output in mind,

particularly in its extendibility to short wavelength operation[53, 54]. It was

based on a geometry first proposed and demonstrated by Lee[55]. The diagnostic

geometry as constructed is shown in figure 3.1. A very early iteration of the

diagnostic is also shown in figure 3.2, where many of the optics in the setup

are spaced far apart in order to clearly label the individual components. Later

versions of the diagnostic have been made more compact. The light entering
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Figure 3.2: Image of the diagnostic during the design phase at the UCLA PE-
GASUS laboratory.
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the FROG device is first expanded to a relatively large diameter using a basic

telescope, allowing the generation of three identical copies of the input beam after

passage through a mask. The mask was machined from aluminum and was black

anodized with a matte finish to reduce reflections and stray light. It contains

three holes each with a diameter of 5 mm. These holes were placed in such a

way that the diagnostic operated in the familiar BOXCARS configuration[56].

The application of the mask is vital as it avoids the use of multiple delay stages

and beam splitters, and associated alignment difficulties, to produce the three

copies of the beam. More importantly, however, the beam expansion serves to

transversely filter the pulse. This mitigates possible sources of corruption in the

FROG reconstruction algorithms that may result from nonuniform transverse

intensity profiles as well as spatial (transverse) frequency chirp. Spatial chirp, as

mentioned in section 1.4.1, is prevalent in FEL light pulses and is a result of the

angular dependence of the FEL resonance condition on the emission angle[57].

This quadratic dependence (see equation 1.45) can clearly be seen in figure 3.3.

These spectral images were taken with the in-vacuum spectrometer at the SPARC

FEL facility for an e-beam experiencing exponential gain in the SASE mode.

Here, the horizontal axis serves as the dispersive direction and is wavelength

calibrated while the vertical axis indicates the position on the vertical entrance

slit of the spectrometer. The details of this spectrometer are discussed in chapter

4. Spatial chirp is clearly evident in the spectrum taken after the first undulator

module (UM in figure) and persists through the gain process as can be seen in

subsequent undulator sections. This is indicated by the quadratic dependence of

the wavelength on the vertical transverse dimension.

After their generation, the probe (from the lower hole in the mask) and two

gate pulses (from the upper holes in the mask) are passed through a cylindrical

lens, which brings each pulse to a line focus within the third-order nonlinear
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!x ¼ 100 "m and the corresponding gain length is shorter.
In this regime the gain length reduction is however mainly
due to the growth of current density, rather than to the
reduction of inhomogeneous broadening associated to the
emittances. Simulation (D) in Fig. 13 has been obtained
with the same emittance as in case (C), but with the same
cross section as in (B) and fits with a similar accuracy the
experimental data. We also simulated a mismatch of the
beam through the undulator line in MEDUSA by making
small changes in the Twiss parameters. A change in the
Twiss parameters that results in an increase in the average
beam envelope equal to 150 "m, yields with MEDUSA

simulation results that are quite close to the experimental
data.

Figure 14 shows the behavior of the radiation linewidth
as a function of the longitudinal position in the undulator.
The spectra are measured about two meters after the last
undulator. The geometry of the vacuum chamber and the
transport line to the spectrometer selects the low diver-
gence portion of the radiation field, affecting both the
measured energy and linewidth.

The lines represent predictions by PERSEO, GENESIS 1.3,
MEDUSA, and GINGER. The GENESIS 1.3 calculation of the
spectrum shown in the figure is given by the field at the
coordinate z, propagated in the far field.

A view of the evolution of the spectrum during the
exponential growth is given in Fig. 15. The spectra were
acquired during a different shift than that of the previous
figures, but with very similar beam parameters to those
listed in Table I. The picture represents a set of six spectra
obtained by progressively suppressing the amplification
process in the first part of the undulator, by detuning the
resonance in selected sections. This procedure allowed the
measure of the spectrum generated in the remaining

modules, with an increasing number of undulators partic-
ipating in amplification, while keeping unchanged the
geometry of the radiation detection. The vertical axis in
each picture indicates the position on the vertical entrance
slit of the spectrometer. The number on the upper left
corner represents the number of active undulator sections.
The intensities of the different images are normalized to
the peak value. The upper spectrum in Fig. 15, obtained
with only the last section being resonant, is the result of an
integration over 100 shots. The energy from (the last) 2–6
undulator sections allowed acquisition in single shot mode.
The spiky nature of the SASE radiation is already apparent
in the spectrum obtained with only two undulator sections.

V. CONCLUSIONS

In this paper we report for the first time the lasing
performance obtained in SASE mode at SPARC. For a
peak current of about 53 A at 500 nm wavelength, we
observed an overall amplification factor close to 107, with
an estimated gain length of 0.7 m. The maximum energy
collected was about 0.01 mJ. Detailed spectra measure-
ments were done by progressively turning off the FEL
interaction in selected undulators. The evolution of the
spectrum in exponential gain regime exhibits the spiky

5

FIG. 14. Experimental linewidth of the FEL radiation (black
circles) as a function of the longitudinal position in the undu-
lator. The lines represent simulation data obtained with PERSEO

(red), GENESIS 1.3 (brown), MEDUSA (blue), GINGER (green). The
error bars represent "2 standard deviation of the measured
linewidth evaluated over 50 samples.

FIG. 15. Evolution of the spectrum during the exponential gain
growth. The number of sections closed is reported on the upper
left corner. The vertical axis in each picture indicates the position
on the vertical entrance slit of the spectrometer.

SELF-AMPLIFIED SPONTANEOUS EMISSION FOR A . . . Phys. Rev. ST Accel. Beams 14, 060712 (2011)

060712-7

Figure 3.3: Evolution of the SPARC SASE FEL spectrum during the exponential
gain process[57].

optical medium. A 2 mm thick UV grade fused silica crystal was used as the third-

order nonlinear material because it supports broadband (UV - IR) operation and

is less dispersive than other materials. Before reaching the nonlinear medium, the

pulses are passed through a Fresnel bi-prism with an apex angle of 160 degrees.

This crosses the probe and gate pulses at a large angle within the nonlinear

optical medium. A variable delay is created between the interfering beams that

is mapped along the vertical transverse dimension, allowing the diagnostic to

make single-shot measurements. This concept is more clearly illustrated in figure

3.4. The ability to make single shot measurements is critically important for

SASE FEL light pulses, where there is a large shot-to-shot variability due to

81



1

2

beam 1 arrives here before beam 2

beam 2 arrives here before beam 1

τ

Figure 3.4: Two beams that are crossed at an angle within a nonlinear optical
medium map a relative delay of the signal field to a transverse dimension.

the stochastic startup nature. A major advantage of the Fresnel bi-prism is

that it is automatically aligned in space as well as in time. The interference

of the beams within the nonlinear medium generates an autocorrelation signal

field Esig(t, τ) ∝ E(t)|E(t − τ)|2, by a transient-grating nonlinear interaction

termed degenerate four-wave mixing (DFWM)[58, 59]. This process is described

in detail below. Here, τ is the relative delay between the gate and probe pulses.

This signal is not symmetric with respect to delay, and, as a result, does not

have ambiguity in the direction of time. Also, the third-order nonlinear optical

process does not suffer from the phase-matching constraints between the signal

and pump fields that limit second-order nonlinear processes. This permits phase

matching across a broad spectral range, which is ideal for a tunable laser source

such as the FEL; it is limited only by the transparency of the nonlinear optic.

The signal field is created at the same frequency as the pump and probe pulses,
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as opposed to the second-harmonic generated in second-order nonlinear optical

processes. This makes it challenging to filter scattered or stray light, arising from

spontaneous undulator emission, or radiation that diffracts (overcoming the gain

guiding) out of the FEL upstream. Once the signal field is optimally isolated, it

is passed through a custom fabricated spectrometer consisting of focusing optics

and a holographic reflective diffraction grating where it is spectrally resolved

along the transverse dimension orthogonal to the delay direction, and imaged

into a CCD camera to yield a FROG trace. The line focus in the nonlinear

optic serves as the entrance slit to the spectrometer. The diffraction grating is

mounted on a remotely controlled motorized rotation stage. Changing the angle

at which the light impinges on the grating changes the wavelength of light that

ultimately reaches the CCD camera. This is the only diagnostic realignment

that is necessary when tuning the FEL (or any other laser source) to a different

resonant wavelength. The expression for the trace in this particular geometry is

ITGFROG(ω, τ) ∝ |
∫ ∞

−∞
E(t)|E(t− τ)|2exp(−iωt) dt|2. (3.1)

Iterative Fourier transform algorithms are then used to retrieve the complex

electric field, E(t). While the TG FROG concept is not new[60, 61], it should

be noted that the geometry implemented here has minimal alignment degrees of

freedom and operates on a single-shot basis; key features that help simplify a

complex measurement at an FEL.

3.3 Nonlinear Optics

The workhorse in any FROG diagnostic is the nonlinear optical process that is

used to generate the signal field from the interference of the probe and gate pulses
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within a nonlinear optical medium. The time information of the unknown pulse

is encoded in this signal field. Here, the operating principles behind the DFWM

process used for this particular FROG diagnostic are outlined and follows closely

the analysis in [58, 62, 20].

3.3.1 Basic Concepts

When an electric field is applied to a dielectric material it will establish a macro-

scopic quantity known as the polarization, ~P (ω). If the electric field is not too

strong the polarization will exhibit a linear dependence on the electric field, ~E(ω):

~P (ω) = ε0χ(ω) · ~E(ω). (3.2)

Here, χ(ω) is the optical susceptibility of the material and is, in general, a tensor

(indicated by the bold symbol). The response of the medium to an applied electric

field is usually described by a complex index of refraction, ñ(ω):

ñ(ω) =
√

1 + χ(ω) = n(ω) + iK(ω). (3.3)

Here, n(ω) is the index of refraction and K(ω) is the attenuation constant within

the medium. For an isotropic and linear medium, K(ω) and n(ω) are related by

the familiar Kramers-Kronig relations[21]:

n(ω) = 1 +
1

π

∫ ∞

−∞

K(ω′)

ω′ − ωdω′, (3.4)

K(ω) = − 1

π

∫ ∞

−∞

n(ω′)− 1

ω′ − ω dω′. (3.5)

It is understood that the integrals should include only the principle part in the

complex ω′ plane.
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The polarization can act as a source term for new radiation at the frequency

ω through the relevant Maxwell equations. When the applied electric field of the

light is intense enough, however, the material response, and thus χ(ω) itself, can

exhibit a complicated dependence on the field ~E. In this case, the polarization

can be expanded into a power series in ~E[17, 63] to obtain:

~P = ~PL + ~PNL = ε0

[
χ(1) · ~E + χ(2) · ~E · ~E + χ(3) · ~E · ~E · ~E

]
. (3.6)

This expansion is generally referred to as the constitutive relationship. There are

many different behaviors that can result from the various terms in the expansion.

For the purposes of this thesis, however, only a nonlinear response arising from

the third-order nonlinear optical susceptibility, χ(3), will be considered.

The third-order polarization which results from the intense interaction of light

pulses is described by

P
(3)
i (ω) = ε0χ

(3)
ijkl(ω)Ej(ω1)Ek(ω2)El(ω3) (3.7)

where the indices i, j, k, and l refer to the Cartesian coordinate axes, χ
(3)
ijkl

is the relevant tensor element from one of the 34 = 81 elements of the third-

order nonlinear susceptibility, χ(3), and the Einstein summation convention for

repeated indices is assumed. The symmetry properties, which reduce the number

of relevant terms, and specific calculation of the elements of the third-order sus-

ceptibility is beyond the scope of this work. From equation 3.7, it is immediately

apparent that the nonlinear polarization can oscillate, and thus act as a source of

new radiation, at the frequencies ω = ±ω1 ± ω2 ± ω3. In general, the third order

nonlinear polarization, ~P = ~P (~k, ω), also has a spatial/directional dependence on

~k, which arises from the propagation direction of the interfering intense pulses of
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light, ~E = ~E(~k, ω). Rather than continuing down the path of the mathematical

description of the generation of new light from a driving nonlinear polarization

term, it is useful at this point to consider the simple grating picture of nonlinear

optics specific to the case of the TG FROG device.

3.3.2 Transient-Grating Interactions

The optical properties of matter can become spatially modulated in the presence

of two interfering intense light waves, i.e. interference between two laser sources.

This interference produces a spatially periodic intensity and/or polarization mate-

rial excitation which couples to the refractive index and/or absorption coefficient

detailed in equation 3.3 above. The periodic spatial modification of the material

properties acts as a diffraction grating. Diffraction gratings created in this way

only exist in the presence of the interfering light pulses and turn off when the

pulses are not present. Thus, these gratings are often referred to as dynamic,

or transient, gratings. Of interest to this thesis is a DFWM process by which a

probe beam is diffracted from a material grating caused by the interference of

two pump beams within a third-order nonlinear optical material.

The production of this type of grating can be illustrated by considering a

simple case of plane-wave interference as seen in figure 3.5. Here, two pump laser

pulses of wavelength λp and wave vectors ~k1 and ~k2, electric field amplitudes of ~E1

and ~E2 and intensities of I1 and I2 are crossed at an angle θ within a nonlinear

optical material. These quantities are all measured within a material with an

index of refraction, n. The wave vectors ~k1 and ~k2 are confined to the Cartesian

x-y plane and are defined as

~k1,2 = kz ẑ ± kxx̂. (3.8)

86



θ

x

x
λp

Λ

I

#k1

#k2

zy

Figure 3.5: Production of a material excitation grating by interference of two
plane waves.

The interaction of these pulses creates an interference pattern, defined by the

grating vector ~q, which is

~q = ±(~k1 − ~k2) = ±2kxx̂. (3.9)

The spatial period of the induced grating is

Λ =
2π

|~q| =
λp

2sin
(
θ
2

) (3.10)

and is a function of the pump pulse wavelength and interaction angle. For these
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two interacting plane waves the total time dependent field is given by

~E =
(
~E1e

ikxx + ~E2e
−ikxx

)
e(ikzz−ωpt) + c.c. (3.11)

The intensity distribution is therefore

I =
1

2
nε0c

(
~E · ~E∗

)

= I1 + I2 + 2∆Icos (2kxx)

(3.12)

where

∆I =
1

2
nε0c ~E1 · ~E∗2 (3.13)

is the intensity modulation and the asterisk indicates a complex conjugation

(c.c.). Equation 3.13 is the quantity of interest for transient grating creation.

This quantity is, in general, a tensor. It may contain elements, depending on the

material symmetry properties, that allows crossed polarized interfering beams to

create gratings in anisotropic materials.

The intensity modulation of the interfering pump pulses in a medium couples

to an excitation of the material and forms a spatial modulation of the mate-

rial properties. The type of excitation can vary from scalar (temperature) to

vector (electric field) to tensor (stress, strain, distribution of excited molecules).

Therefore, it is convenient to write the material excitation in tensor form:

∆Xij = gijkl∆Ikl, (3.14)

where g is a coupling constant and ∆X describes the excitation. Regardless of the

type of excitation, the material grating couples to either the index of refraction, n

(amplitude grating), the absorption, K (phase grating), or both. The modulation
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of the material properties with amplitude ∆X is accompanied by the creation of

a grating with amplitudes

∆n =
∂n

∂X
∆X, (3.15)

∆K =
∂K

∂X
∆X. (3.16)

This can also be combined for the complex refractive index:

∆ñ =
∂ñ

∂X
∆X, (3.17)

where the tensor character of ∆X has been ignored.

Gratings induced by the processes mentioned above can be probed by a third

pulse of light with field ~E3, wave vector ~k3 and intensity I3. The induced transient

grating can diffract the probe beam into various directions which depends strongly

on the grating orientation ~q, the incident direction of the probe pulse ~k3, and the

material sample, and thus grating, thickness. The discussion here is confined to

the analysis of thick gratings. Thick gratings, as a consequence of constructive

interference, can only be efficiently probed if the diffracted wave satisfies the

Bragg diffraction condition:

~ks,m = ~k3 +m~q. (3.18)

Here, ~ks,m is the diffracted wave and m can take the values m = ±1,±2, etc. A

complete and detailed discussion of the grating creation and detection is beyond

the scope of this work but can be found in reference [58].

Figure 3.6 shows the four wave interaction geometry used in the TG FROG

diagnostic while figure 3.7 shows a detailed k-vector diagram. The top two beams
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Figure 3.6: TG interaction geometry.

that are generated by the input mask with wave vectors ~k1 and ~k2 interfere in

the nonlinear medium and form a material excitation grating. This grating is

defined by the grating vector ~q in both figures. The third beam generated by the

input mask partially diffracts from this grating into a unique direction as defined

by equation 3.18 and is indicated in figures 3.6 and 3.7 by the wave vector ~ks.

This diffracted signal propagates in a unique direction and can be segregated

from the three input beams by the use of an output mask. In this way, the

signal field generated by the nonlinear interaction, which contains the pulse time

information, can be isolated and spectrally resolved.

3.3.3 Nonlinear Polarization

It was shown (equations 3.6 and 3.7) that ultrashort light pulses with sufficiently

high energy could drive a nonlinear response within an optical medium. The

nonlinear response takes the form of a nonlinear polarization term in Maxwell’s

equations and can act as a source of new radiation (the FROG signal field) at

a frequency, and in a direction, that is dependent on the interacting pulses. A

90



y

x

z
!k1

!k2

!k3

!q
!ks

Figure 3.7: Four wave mixing for the TG FROG diagnostic.

third-order nonlinear response is considered here in the context of the TG FROG

diagnostic geometry shown in figures 3.6 and 3.7.

Some assumptions must initially be made in order to make the analysis more

tractable. First, it is assumed that the focusing conditions of the interacting

beams are such that the confocal parameter is much longer than the longitudinal

interaction length within the nonlinear optical medium. Under this condition,

the wavefronts of the interacting beams are nearly flat and the generation of the

signal field can be considered in the longitudinal direction only while ignoring

transverse effects. Second, it is assumed that neither the three interacting beams

nor the signal field that they generate are absorbed in the nonlinear medium.

Third, it is assumed that the nonlinear interaction is a low efficiency process and

is purely third order. Under this assumption none of the interacting beams is

depleted and the coupled set of equations describing this four-wave interaction is

reduced to one for the signal field.
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The equation that describes the propagation and growth of the signal field

in the +z direction inside the crystal can be obtained from Maxwell’s equations

and is given by[17]:

∂2

∂z2
Es(z, t)−

1

c2

∂2

∂t2
Ds(z, t) = µ0

∂2

∂t2
P (3)(z, t), (3.19)

where

Ds(z, t) =

∫
ε(t− t′)Es(z, t′)dt′ (3.20)

is the linear electric displacement Ds(z, t) = ε0Es(z, t) +P (1)(z, t)[21]. Much like

the analysis presented in chapter 2, it is useful at this point to move into the

frequency domain for multiple reasons. For one, the spectrum of the signal field

is easily measured by a standard spectrometer while the temporal intensity is

not. The second reason will be illuminated shortly. Moving to the frequency

domain by writing the signal field and polarization as a Fourier superposition of

monochromatic waves transforms equation 3.19 into

∂2

∂z2
Ẽs(z,Ω) + k2

s(Ω)Ẽs(z,Ω) = −µ0Ω2P̃ (3)(z,Ω). (3.21)

Here, the transformation is made into the Ω frequency space to easily distinguish

the frequency of the signal field from the input waves,

k2
s(Ω) =

Ω2ε̃(Ω)

c2
=

Ω2n(Ω)2

c2
(3.22)

is the frequency dependent wave vector of the signal field, ε̃(Ω) is the Fourier

transform of the relative permittivity, ε(t), and n(Ω) =
√
ε(Ω) is the index of
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refraction. The plane wave approximation

Ẽs(z,Ω) = Ẽs(z,Ω)eiks(Ω)z (3.23)

is now made to further simplify equation 3.21 using the slowly varying amplitude

approximation (see equation 2.3). Substituting equation 3.23 into 3.21 produces:

2iks(Ω)
∂

∂z
Ẽs(z,Ω) = −µ0Ω2P̃ (3)(z,Ω)e−iks(Ω)z. (3.24)

A similar analysis could have been performed in the time domain rather than the

frequency domain. However, the slowly varying amplitude approximation would

have to have been made in the time domain to neglect the second order temporal

derivative. This approximation is not valid for pulses that are only a few cycles

long. Thus, the analysis presented here is valid for ultashort pulses of any tem-

poral duration and illustrates the power of the frequency domain representation

used throughout this thesis. Equation 3.24 can be solved by integrating over the

length of the interaction, L:

Ẽs(L,Ω) =
icµ0Ω

2n(Ω)

∫ L

0

P̃ (3)(z,Ω)e−iks(Ω)zdz. (3.25)

Following equation 3.7 the third order nonlinear polarization can be written in

the following form:

P̃ (3)(z,Ω) =

∫ ∫
χ(3)(ω1, ω2,Ω + ω1 − ω2)Ẽ1(z, ω1)Ẽ∗2(z, ω2)

×Ẽ3(z,Ω + ω1 − ω2)e−i(Ω+ω1−ω2)τ

×ei[k1(ω1)−k2(ω2)+k3(Ω+ω1−ω2)]zdω1dω2.

(3.26)

Here, Ẽi is the frequency representation of the three interacting fields in the
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plane wave approximation (equation 3.23), τ is the relative delay between pulse

three and pulses one and two, the exponential factor e−i(Ω+ω1−ω2)τ arises from

the Fourier shift theorem, and χ3 includes the (potentially dispersive) frequency-

dependence of the nonlinear susceptibility. The integrals in equation 3.26 indicate

that the nonlinear polarization should contain the contributions from all possible

permutations of the three interacting fields weighted by the nonlinear susceptibil-

ity. Inserting equation 3.26 into equation 3.25 and integrating over the interaction

length for a low-efficiency process (Ẽi = constant) produces a signal field of the

form:

Ẽs(Ω, τ) =
icµ0ΩL

2n(Ω)

∫ ∫
χ(3)(ω1, ω2,Ω + ω1 − ω2)Ẽ1(ω1)Ẽ∗2(ω2)Ẽ3(Ω + ω1 − ω2)

× sinc

(
∆k(Ω, ω1, ω2)L

2

)
ei

∆k(Ω,ω1,ω2)L
2

× e−i(Ω+ω1−ω2)τdω1dω2,

(3.27)

where

∆k(Ω, ω1, ω2) = k1(ω1)− k2(ω2) + k3(Ω + ω1 − ω2)− ks(Ω) (3.28)

is the phase mismatch. The signal field will be optimally produced if the three

interacting fields are phase matched (∆k = 0). For the special case of the TG

FROG diagnostic, which utilizes a DFWM process, ω1 = ω2 = ω3 = Ω and phase

matching is automatically fulfilled because the signal field satisfies the Bragg

condition (equation 3.18). Additionally, if the approximation χ(3) = constant is

made, equation 3.27 reduces to equation 3.1 for the signal field intensity.
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CHAPTER 4

Description of the Experiment

4.1 Introduction

As mentioned previously, one promising method to increase the longitudinal co-

herence of FEL radiation relies on electron beam phase space manipulations that

preferentially concentrate the gain along a small longitudinal portion of the e-

beam. The method utilizes an energy-chirped e-beam and an appropriately cho-

sen undulator taper (secular variation of the undulator field amplitude or period

along the nominal beam propagation direction, z). This method is described

in detail elsewhere[64, 65, 66], but can be summarized as follows: the resonant

frequency of light amplified in a FEL is determined by, among other things, the

e-beam’s mean energy (see equation 1.45). The amplified light propagates for-

ward with respect to the electrons because it’s group velocity (given by equation

2.43) is larger than the e-beam velocity (given on average by equation 1.64). In

an energy-chirped e-beam this velocity mismatch brings an amplifying radiation

spike out of resonance as it slips forward in the e-beam frame, inhibiting the

gain, unless an appropriate undulator taper is applied to compensate for the lo-

cal change in resonance. In the case of a linear energy chirp, the ‘mean’ local

change in resonance can be described as

γ(s) = γ(s0) + α(s− s0). (4.1)
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Here, s = z − β̄zct is the longitudinal position in the e-beam frame, s0 is the

position where a radiation spike begins amplification and α quantifies the energy

chirp. Because the amplifying radiation within an undulator slips forward one

radiation wavelength in one undulator period during exponential gain, equation

4.1 can be recast in the following form:

γ(z) = γ0 + αz
λr
λu
η. (4.2)

This equation describes the change in energy that a radiation spike experiences

in the laboratory frame. It is now possible to express the undulator taper that

compensates for the local change in resonance due to slippage as a function of

the distance along the undulator. It is found on axis to be

K(z) = 2

√
(γs + αzηωu/ωr)

2 ωu/ωr − 1/2, (4.3)

where γs is the normalized e-beam energy at the longitudinal position where the

radiation spike begins amplification and η is a factor that accounts for the different

light propagation velocities in different stages of the amplification process, e.g.

exponential gain or saturation[65]. For a short electron beam[5] it is possible for

only one coherent radiation spike undergoing exponential gain and propagating

at the appropriate velocity to match the e-beam energy chirp and associated

undulator taper; this spike eventually reaches saturation.

The e-beam energy chirp with compensating undulator taper experiment was

conducted at the SPARC FEL Test Facility in Frascati[57]. The facility as it

currently exists is shown in figure 4.1. High brightness electron beams are cre-

ated at SPARC using an injector that consists of a 1.6 cell RF (radio frequency)

photocathode gun, followed by three traveling wave (TW) linear accelerating
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Figure 4.1: General SPARC layout.
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(linac) sections, two of which are embedded in focusing solenoids. Longitudinal

e-beam compression is obtained by running the first linac section off crest near

the zero-crossing phase, where the first solenoid is used to optimize the emittance

compensation process[67]. This method, termed velocity bunching[68], gives an

increase in the peak current while leaving a residual energy chirp in the elec-

tron beam longitudinal phase space[69, 70]. Two quadrupole triplets along with

a dipole based magnetic spectrometer and RF deflecting cavity allow the mea-

surement of time-projected and time-resolved (slice) longitudinal and transverse

e-beam parameters. These same transport optics match the beam into the undu-

lator, which is comprised of 6 independent, variable gap sections. The undulator

sections were discretely tapered through gap adjustment in accord with the above

prescription for K(z), and for a radiation spike propagating with group velocity

near the speed of light. After undergoing exponential gain and entering satura-

tion, the FEL light exiting the last undulator section was directed to a diagnostic

station where it was input to the FROG device.

At this point it is useful to discuss relevant previous experimental results in

chirped SASE FELs and the applications of FROG diagnostics to provide context

for the SPARC scenario. In [71] Andonian, et al., studied the effects a chirped

e-beam could have on the spectral characteristics of the output radiation and

found the resulting light exhibited an anomalously large bandwidth[72]. In [73]

Li, et al., used a negatively chirped e-beam, where the electrons in the head of

the bunch had a higher energy than the electrons in the tail, to compensate for

the light’s intrinsic positive chirp that naturally arises from the SASE process.

Velocity bunching, however, results in a positively chirped electron beam, which

serves to reinforce this intrinsic chirp. In the present experiment, the undulator

tapering serves to compensate for both the intrinsic SASE chirp as well as the

e-beam chirp, while simultaneously compensating for the electron energy loss to
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the FEL radiation. This scheme effectively preserves the narrowband radiation

nominally produced in a standard non-chirped single-spike SASE FEL as seen in

[65]. However, it should be noted that no direct time-domain measurement had

been achieved in [65] and the pulse length at the Fourier limit was only estimated

from the spectral width. An advanced diagnostic, therefore, was implemented

that could simultaneously perform the measurement, while pushing the diagnostic

paradigm to shorter wavelength operation. Undulator tapering has also been

studied previously in the context of seeded FELs by Wang, et al., in [74] where

significant efficiency enhancement and spectral narrowing were first observed.

The present experiment, however, uses an undulator taper in a SASE FEL to

suppress radiation growth where the change in resonance due to slippage is not

compensated by an e-beam energy chirp. Superradiant FEL pulses generated by

a coherent seed, such as those observed with a SHG FROG by Watanabe, et

al., in [75] also share many similar characteristics to single-spike SASE pulses.

The physical mechanisms that govern their growth and propagation, however,

are significantly different. In addition, the TG FROG yields the direction of time

unambiguously.

This chapter presents a very brief introduction to the SPARC FEL test facility

where the bulk of the thesis work was completed, with emphasis placed on relevant

aspects related to the e-beam energy chirp and undulator tapering experiment

mentioned above.

4.2 The SPARC Test Facility

The SPARC project, based at the INFN (Instituto Nationale di Fisica Nucleare)

and originally proposed in March of 2002, is a research and development test facil-

ity that was designed to explore the challenges and technological issues inherent in
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establishing a world class SASE FEL based x-ray source[76]. Moreover, SPARC

was meant to be utilized as the injector prototype for the SPARX project[77],

a SASE FEL facility for the production of coherent radiation in the wavelength

range between 13 and 1 nm. There were originally four phases involved in the

construction of this facility:

1. 150 MeV advanced photoinjector test facility

2. SASE FEL test facility in the visible wavelength range

3. X-ray optics/monochromator research and development

4. SASE FEL coherent soft x-ray source

The goals of the first phase of the project were to generate high brightness e-beams

able to drive SASE FELs in the visible wavelength region and to investigate the

RF e-beam compression technique known as velocity bunching. The project is

currently in the second phase of development, where the high brightness e-beams

delivered by the advanced photoinjector are used to drive a SASE FEL optimally

tuned around λ ∼ 530 nm. It was during this time period that this thesis work

was carried out. Relevant components of the facility are discussed below.

4.2.1 The SPARC Laser

The production of high brightness beams for use in FEL experiments invariably

begins with a high quality laser system. The SPARC photoinjector drive laser

system[78] is capable of producing high quality, uniform flattop transverse pro-

file, ultraviolet (UV) pulses with a temporal duration normally between 5 − 10

picoseconds (ps) and a rise and fall time (the time needed for the pulse intensity

to grow from 10% to 90% of it’s maximum value and vice versa) of around 1 ps.
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Figure 4.2: The general SPARC laser system layout.

The laser system, as seen in figure 4.2, is based on a Ti:sapphire oscillater manu-

factured by CoherentTM, which produces ∼ 100 femtosecond (fs) long pulses that

are synchronized with the 2856 MHz accelerating field of the photocathode gun

and linac sections. It is pumped by the second harmonic of a Nd:YVO4 Verdi

laser, also from CoherentTM, which supplies 5 W CW power at λ = 532 nm. An

acousto-optic programmable dispersive filter called the DAZZLER[79], used to

modify the spectral amplitude and phase in order to control the laser temporal

profile in conjunction with a UV stretcher, is place between the oscillator and

regenerative pre-amplifier, which is pumped by a 7 W frequency doubled Nd:YLF

laser. Further amplification occurs in two double pass stages that are excited by a

separate frequency doubled Nd:YLF laser with an energy around 0.5 J per pulse.

This system is capable of producing 50 mJ pulses at a repetition rate of 10 Hz at

λ = 800 nm. The pulse power from the amplifier is usually lowered, however, to

around 20 mJ to limit nonlinear propagation effects. After amplification the IR
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Parameter Symbol Value

Wavelength λ 266 nm

Energy E 50− 150 µJ

Pulse length (FWHM) lc 4− 10 ps

Rise time τ 1 ps

Spot size (hard edge) σr ∼ 1 mm

Table 4.1: Typical SPARC laser parameters for this thesis.

(infrared) pulses undergo a third harmonic generation process through the use

of two type I beta barium borate (BBO) crystals to produce a few hundred fs

long UV pulses with an energy per pulse ∼ 3 mJ at λ = 266 nm. This frequency

conversion is required to generate photons with enough energy to overcome the

work function of the cathode in the photoinjector. At this point the pulse is

sent through a UV stretcher where the pulse is elongated and shaped in time in

accordance with the DAZZLER system[80, 81]. After stretching, the pulse is sent

through a circular aperture to obtain a transverse flat-top laser spot. The laser

is then imaged on the photocathode by an appropriate optical system. Typical

SPARC drive laser parameters for this thesis are shown in table 4.1.

4.2.2 The SPARC Photoinjector and Linac Sections

The SPARC RF photoinjector, often referred to simply as a ‘gun’, is one of the

most recent iterations of the 1.6 cell S-band (2856 MHz) BNL/UCLA/SLAC

type[82]. This particular generation (as seen in figures 4.3(a) and 4.3(b)) over-

comes some of the previously known deficiencies in the gun performance. The
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gun is run at a high gradient of 105−120 MV/m, which demands 11−15 MW of

RF power. It is fitted with a copper (Cu) cathode that typically has a quantum

efficiency of about 10−4 and a work function of around 4.59 eV. The cathode

is illuminated under quasi-normal incidence by the SPARC photoinjector drive

laser mentioned above that has been shaped to have a spatially and temporally

flat-top, uniform intensity profile. The photon energy of 4.66 eV (corresponding

to λ = 266 nm) is large enough to cause the photoemission of electrons, which

are then accelerated to high energy (∼ 5.6 MeV) by the RF field. The e-beam

charge is monitored by an insertable Faraday cup located just in front of the gun

and allows for the measurement of the correct phase setting between the drive

laser and the gun RF accelerating field.

The violent acceleration in the gun helps to reduce space-charge induced emit-

tance growth. Further control of the emittance growth is accomplished through

a process known as emittance compensation[83]. This process begins with the e-

beam being focused by a solenoid magnet approximately 20 cm in length placed

immediately after the gun and ends at the exit of the third linac section where

the e-beam energy is about 150 MeV (near on crest acceleration) and the emit-

tance is frozen. The first linac section is placed 1.5 m downstream of the cathode

coinciding with a laminar e-beam waist as called for in the ‘Ferrario’ working

point[84]. Normally, an e-beam in this regime would undergo emittance oscilla-

tions produced by transverse space-charge forces. Accelerating the beam in this

condition, known as the invariant envelope, damps these oscillations producing

a normalized emittance that reduces to a steady state minimum when properly

matched into the accelerating channel. The SPARC gun regularly produces e-

beams with normalized emittances in the range of εn = 1− 2 mm-mrad.

The SPARC facility uses three SLAC-type (S-band, 2856 MHz) TW linac
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(a) CAD rendering of the SPARC gun. (b) Image of the SPARC gun.

Figure 4.3: Depictions of the SPARC photoinjector.

sections to boost the final energy of the e-beam to 150 − 200 MeV. The first

two linac sections are embedded in long solenoids, which provides extra focusing

during the emittance compensation process. Each of the solenoids is composed of

a long iron yoke containing thirteen individual coils, which produces a solenoidal

magnetic field that is capable of reaching a maximum value of 1.8 kG. An image

of the linac sections is shown in figure 4.4.

The current profile of the emitted e-beam is intimately related to, and influ-

enced by, the temporal profile and total energy of the drive laser. The SPARC

photoinjector regularly produces peak currents of around I = 60 A. The combi-

nation of low normalized emittance coupled with relatively large peak currents

results in extremely high brightness e-beams. This is usually considered an impor-

tant figure of merit at advanced accelerator based light sources. A peak current

of I ∼ 60 A, however, while large, is not enough to push the SPARC FEL into

saturation. As reported in [57], the SPARC FEL nearly achieved saturation at

a wavelength of λ = 500 nm using an e-beam with a peak current of I ∼ 53

A. There is a need, therefore, to compress the e-beam to achieve higher currents

while simultaneously maintaining other critical e-beam properties, such as the
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Figure 4.4: Image of the three SPARC linac sections and two focusing solenoids.

emittance and energy spread, at low levels. To this end, the SPARC facility em-

ploys the RF based compression technique termed velocity bunching, rather than

using magnetic compression with a chicane[51], to reach large peak currents. This

process has been studied extensively in the past. A brief qualitative description

is given here.

4.2.2.1 Velocity Bunching

In the velocity bunching technique, the e-beam is injected into a long RF structure

at the zero crossing field phase. If the beam has a slower velocity than the RF

phase velocity it will slip back to a phase where the field is accelerating. While

it slips back the tail of the beam encounters a larger accelerating field, and thus
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Figure 4.5: Interaction of an e-beam with an accelerating field near the zero
crossing phase illustrating the velocity bunching concept.

gains more energy, than the head of the beam. The beam develops an energy chirp

and compresses because the energy difference between the head and tail changes

the relative positions of the electrons. Compression and acceleration, therefore,

occur simultaneously within the same linac section. The maximum energy gain,

however, is less than what would be obtained for on crest acceleration. This

process is more clearly illustrated in figure 4.5.

Velocity bunching can be further understood by considering the interaction

of an electron with a sinusoidal longitudinal accelerating electric field (averaged

over fast oscillations) of the form:

Ez = E0sin(kz − ωt+ φ0). (4.4)

The electron motion obeys a time-independent hamiltonian for this system given
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Figure 4.6: Phase space rotation of an e-beam in the velocity bunching picture.

by:

H = γ −
√
γ2 − 1− κcos(φ), (4.5)

which is thus a constant of the motion. Here, κ = eE0/mc
2k is a dimensionless

vector potential amplitude for the wave. Electron trajectories can be tracked

and plotted in phase space using the equations of motion derivable from the

hamiltonian, and follow the contours shown in figure 4.6. An e-beam injected

near φ = 0 will begin to slip in phase. As the particle is accelerated the phase

slippage slows until it stops, at which point the phase contours in figure 4.6 are

vertical. An obvious phase space rotation has occurred and the particle bunch

has been compressed.

The total compression is limited by various factors, including nonlinear RF
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Figure 4.7: Phase space contours at injection. The e-beam phase space is shown
as a dotted red ellipse.

forces, which increase the longitudinal emittance. One can see this qualitatively

by analyzing the contour lines at injection as seen in figure 4.7. Here, the contour

lines do not follow the outline of the longitudinal phase space ellipse. As the

contours straighten out it distorts the ellipse imparting a nonlinear correlation

thereby increasing the emittance as seen in figure 4.8. An excellent discussion

of the limiting factors involved in the velocity bunching scheme is found in [70],

where compression factors in excess of 10 have been reported.

4.2.3 Electron Beam Characterization

The diagnostic system at the SPARC facility was designed to optimize the trans-

port of the e-beam from the creation at the photoinjector, through acceleration
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Figure 4.8: The e-beam phase space illustrating longitudinal emittance growth.

in the linac sections, and ultimately through the passage in the undulator sec-

tions. In addition, the transfer line from the linac sections to the undulator

was meant to measure the main e-beam parameters and to optimally match the

e-beam into the FEL. The e-beam envelope and Twiss parameter evolution is

reconstructed by measuring the rms beam size on four screens along the linac:

at the entrance to each RF structure and at the linac exit. Further beam mea-

surements are made along a seven meter transfer line that also serves to match

the e-beam to the undulator sections using a host of six quadrupoles arranged

in two triplets. The diagnostic elements along this transfer line are shown in

figure 4.9. The first quadrupole triplet is used to measure the projected emit-

tance on a 100 µm thick Ce:Yag screen, which is mounted on a linear actuator

for quick insertion and extraction via remote control, by the quadrupole scan

technique[22, 23]. The read-out is through a CCD camera and frame grabber. A

109



Quad. Triplet

Quad. Triplet

RFDDipoleSpectrometer Screen

Emittance Screen

Figure 4.9: Image of the transfer line and the diagnostic/matching optics.

dipole-based magnetic spectrometer is used to deflect the e-beam onto a separate

100 µm thick Ce:Yag screen along a dogleg off the main line allowing for the

measurement of the beam energy and energy spread. In addition, an S-band,

five cell, standing-wave RF deflecting cavity (RFD) can be used in combination

with the first quadrupole triplet and and magnetic dipole spectrometer to mea-

sure slice longitudinal (bunch length, energy spread, trace space) and transverse

(emittance) e-beam parameters. For typical SPARC e-beam parameters the time

resolution is limited to around ∼ 90 fs while the energy resolution is limited to

about ∼ 5 keV for an e-beam with an energy of 150 MeV[85].

4.2.4 The SPARC Undulators

The SPARC undulator[86] (as seen in figure 4.10) is composed of six independent,

adjustable gap, permanent magnet sections arranged in the Halbach configura-

tion. The parameters for the undulator are listed in table 4.2. The individual un-
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Figure 4.10: Image along the axis of one SPARC undulator section. A focusing
quadrupole magnet can be seen at the end of the section.
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Parameter Value

Period 2.8 cm

Undulator Length 2.156 m

No. of Periods 77

Gap (nom/min/max) 0.958/0.82/2.5 cm

K (nom/min/max) 2.145/3.2/0.38

Remanent Field 1.31 T

Table 4.2: SPARC undulator parameters.

dulator sections are separated by breaks that host horizontal focusing quadrupole

magnets for e-beam transport as well as radiation and e-beam diagnostic stations.

Each diagnostic station is equipped with linear actuators that provide for the in-

sertion of alumina screens to monitor the e-beam size and position as well as

separate aluminum mirrors to extract the FEL radiation. The transport of the

e-beam through the undulators is realized with a FODO lattice where the vertical

focusing is provided by the undulator sections[26] and the horizontal focusing is

provided by the quadrupoles. Steering magnets are included in the design of the

quadrupole magnets as additional coils. Matching the e-beam into the undulator

sections is determined by imposing periodic conditions on the Twiss parameters

of the FODO period consisting of the undulator and drift section hosting the

quadrupole and by equalizing the transverse average beta functions (β̄x,y).
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4.2.5 The SPARC Control System

The SPARC control system was designed and built with the evolution of the ma-

chine in mind[87]. It is versatile enough to accommodate new beamline elements

and diagnostic systems as the facility has matured, from the beginning, as an

advanced photoinjector to a SASE FEL in the optical regime. Ultimately, it will

be able to integrate new technologies as the facility further advances to a fully

developed x-ray FEL facility. It is connected to all the major accelerator ele-

ments as well as data acquisition devices including, but not limited to: the laser,

RF and vacuum systems, magnet power supplies, electron beam diagnostics, and

FEL radiation diagnostics. The main operations in an accelerator control system

consists of:

• Acquiring data/information

• Displaying data/information

• Data/information analysis

• Storing data/information

• Executing commands

To simplify all of these aspects, the SPARC control system was designed on a

three level architecture. The first level encompasses the control room where the

human interface exists. This allows the operator to control different aspects of the

accelerator, access the logbook to share information, and store the information

on an internal database. The second level consists of the front-end CPU’s that

execute commands given by the operator, process the requested data (either by

the operator or by automatic commands), and save the information to the internal

database. The third level consists of the acquisition boards that actually obtain
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the data from the various accelerator elements. All three levels are connected by

a Gigabit Ethernet LAN.

The SPARC control system utilizes Labview, a well known and robust rapid

application development software, for the control of the various accelerator beam-

line elements and for data acquisition. In addition, various Matlab (which can

be easily integrated with Labview), Mathematica, and MathCad routines have

been introduced and incorporated into the control system to facilitate online and

offline analysis of acquired data.
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CHAPTER 5

Results and Analysis of the Chirp-Taper

Experiment

5.1 Introduction

The measurement of FEL light from an energy-chirped electron beam and a

tapered undulator was performed at the SPARC FEL test facility in Frascati,

Italy from 2010−2011. The first results were obtained in the spectral domain[65]

using an in-vacuum spectrometer[88, 89] located after the last undulator section.

This spectrometer covers the spectral range from 35 − 560 nm and can operate

in both the single shot and integrated modes. The CCD camera and upstream

optics were energy calibrated and allowed for the simultaneous measurements of

the FEL pulse energy. Most of the FEL light statistics from the chirp/taper

experiment were measured with this spectrometer and are presented in [65].

The excellent results obtained in the spectral domain prompted the recalibra-

tion of the TG FROG diagnostic from 400 nm (where it was initially calibrated

for seeded FEL experiments) to 530 nm where the chirp/taper experiment was

optimized. This chapter describes in detail the first time-domain measurements,

obtained in the summer of 2011, using the TG FROG diagnostic.
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Parameter Symbol Value

charge Q 250 pC

peak current I 264 A

mean e-beam energy E 113.1 MeV

e-beam energy chirp α −2.5 keV/µm

rms slice energy spread σγ 5× 10−3

norm. x(y) emittance εn,x(y) 2.3(1.6) mm-mrad

undulator period λu 2.8 cm

undulator parameter K 1.31

radiation wavelength λ 530 nm

Table 5.1: Experimental e-beam and undulator parameters

5.2 Experimental Electron Beam and Undulator Param-

eters

The e-beam used in the energy-chirp and undulator taper experiments was cre-

ated, accelerated, and compressed according to the prescription in section 4.1.

The projected and slice e-beam parameters were measured along the diagnostic

and matching section before entrance to the undulator. The experiment was done

at a mean energy of E = 113.1 MeV, a charge of Q = 250 pC, a peak current of

I = 264 A, and with a projected normalized x(y) emittance of εn,x(y) = 2.3(1.6)

mm-mrad (measured at 85% of the bunch charge). These parameters are sum-

marized in table 5.1. The measured current profile along with the slice energy
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Figure 5.1: E-beam longitudinal current profile (blue) and slice energy (green).

and slice energy spread can be found in figures 5.1 and 5.2, respectively. The

measured longitudinal phase space at the linac exit after velocity bunching shows

a residual energy chirp of α ' −2.5 keV/µm. The rms slice energy spread,

while not constant along the longitudinal profile of the beam, averages around

σγ ∼ 5× 10−3.

The SPARC undulators are optimized to produce SASE FEL radiation around

λ ∼ 530 nm. The nominal undulator parameter, tuned to produce radiation at

this wavelength given the average e-beam energy, was K = 1.31. The e-beam was

matched into the undulator sections after the measurement of the relevant Twiss

parameters along the transfer line between the linacs and undulators. Matching

the e-beam into the undulators consists of applying periodic boundary conditions

on, and equalizing, the transverse beta functions β̄x,y averaged over a FODO pe-

riod. The FODO period consists of an undulator section and the drift between
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Figure 5.2: E-beam longitudinal current profile (blue) and slice energy spread
(red).

two adjacent undulators hosting the horizontal focusing quadrupole magnets.

Each of the undulator sections were then individually and discretely tapered in

accord with the prescription found in equation 4.3 for a radiation spike beginning

amplification at the back of the e-beam and propagating forward near the speed

of light. The undulator matching and tapering conditions are modeled and calcu-

lated in a MATHCAD workbook written by Dr. Luca Giannessi, which has been

integrated into the SPARC control system. After each undulator section was

tuned to the calculated value, small adjustments to the gap (and thus undulator

K parameter) were made while minimizing the spectral width on the in-vacuum

spectrometer. This process had to proceed quickly due to linac phase drifts and

made obtaining ancillary data extremely difficult.

Linac phase jitters of ±1 ◦, which affects the injection phase of the e-beam

into the first accelerating section, cause current fluctuations of up to 100 A. This
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relatively large fluctuation is due to the extreme sensitivity of velocity bunching

on the injection phase. In addition to the phase jitter, there existed a slow

phase drift associated with temperature fluctuations that made accelerating and

compressing the e-beam in the velocity bunching mode extremely challenging.

This slow phase drift dramatically affected the measured e-beam parameters and

made matching and focusing the e-beam into and through the undulator sections

impossible after roughly 30 minutes of operation. Thus, only a finite amount

of data could be collected for any single set of measured running conditions.

Nevertheless, conditions were stable just long enough for the TG FROG to obtain

clear enough images to accurately reconstruct the longitudinal profile of the SASE

light at saturation by running the FEL in the energy-chirp and undulator tapering

mode.

5.3 TG FROG Image and Reconstruction

The FEL in the e-beam energy-chirp and undulator tapering scenario reached

saturation in the sixth undulator section. The energy of a typical pulse averaged

around ESASE ∼ 30 µJ, which was measured by both the in-vacuum spectrometer

and by a joule meter housed on an external (to vacuum) diagnostic station. In

addition to the joule meter, the diagnostic station hosts a photodiode (used for

synchronizing an external laser pulse and the e-beam for seeded FEL experiments)

and the TG FROG diagnostic. The FEL light was directed to the TG FROG

diagnostic after optimizing the undulator tapering by maximizing the FEL energy

and minimizing the spectral width. The average energy of the FEL pulse at

saturation was just large enough to initiate the third-order nonlinear optical

process necessary for obtaining the time information from the FROG diagnostic.

A typical experimental FROG trace (false color) is shown in Fig. 5.3 for the
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Figure 5.3: Experimental FROG trace.

experimental parameters listed in table 5.1. The raw image was post-processed

by centering the trace and using only a low-pass filter to smooth over high-

frequency noise. It should be noted, however, that noise has still managed to

survive and slightly corrupt the image. This is likely the result of light that has

diffracted out of the FEL before the onset of saturation and that has reflected in

multiple directions off of the undulator vacuum pipe. This scattered light enters

the diagnostic at various off-axis angles and is difficult to suppress because it is at

the same frequency as the FROG signal field. One strength of the reconstruction

process, however, is the ability of the algorithm to sift through the noise because

of the robust over-sampling involved[90].

There are some features of the experimental FROG trace that are worth

mentioning. The main body of the pulse is very slightly tilted. This is indicative

of a pulse that has a longitudinal chirp. The trace is also not symmetric with
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respect to time. There is a very weak, trailing tail that occurs just after the

main body of the trace. Thus, by inspection of the trace alone, and without

a full numerical reconstruction, one can surmise many of the longitudinal pulse

characteristics. This is part of the power of the FROG technique.

The experimental FROG trace was fed into a reconstruction code that was

written in MATLAB to extract the longitudinal profile of the pulse through the

use of two-dimensional phase retrieval algorithms. The algorithms converged and

yielded the reconstructed trace found in figure 5.4. The FROG error[20] for this

reconstruction was ∼ 1%. Any error ≤ 1% is considered a good value. Therefore,

the FROG retrieval is excellent for this case considering the amount of noise

that survived the filtering process. The FROG error, however, is not the only

measure by which the reconstruction can be evaluated (as mentioned in section

1.3.2). The reconstructed FROG trace also shows excellent overall agreement

with the experimental trace, thereby lending more credence to the reconstruction

process. Many of the key features of the experimental trace are well represented.

These features include the shape of the leading edge, the asymmetry in the main

body, and the length and shape of the trailing tail.

The normalized temporal profile for the light from the reconstruction is found

in figure 5.5 while the normalized spectrum is found in figure 5.6. The recon-

structed longitudinal profile is composed of a dominant coherent spike with a

FWHM of δτRFWHM = 98 fs followed by a weaker trailing tail. The reconstructed

spectrum is composed of a dominant spike centered at λ = 530 nm with a FWHM

of δλRFWHM = 1.4 nm.

One advantage of using the FROG technique is that the temporal and spectral

content, along with the pulse’s phase information can be extracted simultaneously

from the associated trace. This allows a rigorous determination of the time-
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Figure 5.4: Reconstructed FROG trace.
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Figure 5.5: Reconstructed normalized temporal profile.
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Figure 5.6: Reconstructed normalized spectrum.

bandwidth product[14], TBP = τrmsωrms, where

ω2
rms =

∫ ∞

−∞
E ′(t)2dt+

∫ ∞

−∞
E(t)2φ′t(t)

2dt. (5.1)

Here, E(t) =
√
I(t) is the electric field’s real amplitude, φt(t) is the temporal

phase minus the mean frequency, the prime indicates differentiation with re-

spect to time, and the intensity, I(t) = |E(t)|2, is normalized to have unity time

integral. This expression for the rms bandwidth contains contributions from

variations in pulse amplitude as well as those due to phase changes. A similar

relationship holds for τ 2
rms:

τ 2
rms =

∫ ∞

−∞
Ẽ(ω)2dω +

∫ ∞

−∞
Ẽ(ω)2φ′ω(ω)2dω. (5.2)

Here, Ẽ(ω) =
√
S(ω) is the spectral amplitude, φω(ω) is the spectral phase and
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Figure 5.7: Simulated FROG trace.

where the prime now indicates differentiation with respect to ω. The pulse in

figure 5.5 has a time-bandwidth product TBP ∼ 1.2. This indicates that single-

spike radiation production was nearly achieved while operating in the chirp and

taper scenario.

5.4 Comparison With Simulation

The results from the experimental reconstruction are compared to fully time-

dependent, 3-D particle-based simulations using the FEL code GENESIS. Here,

the experimentally measured e-beam parameters from table 5.1 were used to

specify the input electron particle distribution. Post-processing the simulation

data with an algorithm to extract the light’s longitudinal profile at the trans-

verse location indicated by the input mask in figure 3.1 results in the simulated

FROG trace found in Fig. 5.7. The agreement in the details of the reconstructed
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Figure 5.8: Simulated normalized longitudinal profile.

and simulated FROG traces is striking. There are several distinct features which

are well reproduced by the simulated FROG trace, such as the asymmetry in

the main body, indicating a slight chirp, as well as the length and shape of the

leading and trailing tails. The normalized longitudinal profile of the light from

the simulations of the e-beam energy-chirp and undulator tapering can be found

in figure 5.8. The simulated temporal profile is in excellent agreement with the

reconstructed profile. It is composed of a single dominant coherent spike with a

FWHM of δτGFWHM = 91 fs and a weaker trailing tail. It is interesting to note

that there remains a small positive chirp in the phase in both the reconstructed

and simulated temporal profiles that is likely a result of the discrete nature of

the undulator tapering. Other features, such as a nonlinear curvature in the

longitudinal e-beam energy-chirp, could also have an affect on the light’s tem-

poral phase. The two-dimensional plot of the normalized radiation power vs the
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Figure 5.9: Power vs longitudinal coordinate along the pulse (t) and along the
undulator (z).

longitudinal coordinate along the pulse (t) and along the undulator (z) is shown

in figure 5.9. It is clearly evident that the combination of the e-beam energy

chirp and undulator tapering produced one single dominant coherent spike for

the SASE FEL. The total energy of the pulse from simulation was Et
gen ∼ 28 µJ,

which is comparable to the experimentally measured energy.

One concern inherent with use of the TG FROG on a FEL is that the on axis

light is discarded by the input mask. Fig. 5.10 compares the off-axis and total

power from the reconstructed and simulated data. While the full power profile

shows a more pronounced tail, the main features of the pulse are still captured

by the off axis data gathered by the FROG system. The subtlety of interpreting

the results from the TG FROG is an inherent challenge in FELs (as opposed

to standard lasers), due to their non-negligible spatial chirp. Nevertheless, the

current measurement is seen to be robust.
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Figure 5.10: Comparison between the reconstructed intensity (blue), simulated
power at the mask (green), and total pulse simulated power (red).

Results from simulations for an energy-chirped e-beam in the absence of a

compensating undulator taper were examined to underscore the significance of

the present experiment. The simulation was identical to the one presented above

except that the undulator sections were not tapered. The temporal profile of

the resulting light, which had a total energy of Ent
gen ∼ 16 µJ, is shown in figure

5.11. The profile is no longer dominated by a single coherent spike. Rather,

there are multiple distinct lasing modes that are present. In addition, since the

total energy of the pulse, which is less in this case, is distributed over multiple

radiation spikes, the energy per spike is significantly less. The two-dimensional

plot of the normalized radiation power vs the longitudinal coordinate along the

pulse (t) and along the undulator (z) is shown in figure 5.12 for this case. It is

clear that more than one coherent spike of radiation propagates and is amplified

in the absence of an undulator taper.
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Figure 5.11: Simulated normalized longitudinal profile in the absence of undulator
tapering.
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Figure 5.12: Power vs longitudinal coordinate along the pulse (t) and along the
undulator (z) in the absence of undulator tapering.
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5.5 Conclusion

Self-amplified spontaneous emission free-electron lasers are capable of producing

coherent and tunable radiation on the time and length scales of atomic and elec-

tronic processes. This fourth generation light source allows the greater scientific

community to probe deeper into regions of higher spatial, temporal and energy

resolutions. SASE FELs, however, nominally produce longitudinally incoherent

radiation that is a collection of randomly distributed coherent spikes. Much ef-

fort has been placed on producing a single longitudinally coherent radiation spike.

To this end, longitudinal e-beam phase space manipulation techniques that can

concentrate the FEL gain along only a small portion of the e-beam longitudinal

profile have been investigated for their promising characteristics.

This dissertation reports the first direct time-domain measurement of a single

coherent radiation spike from a SASE FEL amplifier employing an energy-chirped

e-beam coupled with a tapered undulator. This energy-chirp/undulator taper

scheme effectively preserves the FEL gain only where an appropriate undulator

taper compensates for the detuning experienced by a propagating radiation spike

as it slips forward in the e-beam frame. The experiment was done in the optical

wavelength regime at the SPARC FEL test facility in Frascati, Italy where the

unique combination of velocity bunching, which leaves a residual longitudinal e-

beam energy-chirp during compression, and undulator tapering allowed for the

observation of this phenomenon. This measurement provides further insight into

methods that can be used to shape the SASE FEL longitudinal profile to enhance

coherence properties.

In addition, the measurement was taken with an advanced TG FROG diag-

nostic that has the potential to significantly extend FEL short pulse measurement

systems to short wavelength. The FROG pulse measurement and reconstruction
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technique has become the standard for ultrafast lasers in the optical regime. The

TG FROG diagnostic used in this dissertation employs a third-order nonlinear

optical process to generate the signal field, which is both the system’s primary

strength and weakness. On one hand, third-order processes are notably weaker

than second-order processes. Furthermore, the radiation field directly on-axis,

where the intensity is the highest, is discarded. These aspects, taken in com-

bination, demand greater input field strength, which is normally obtained only

at saturation in a FEL. On the other hand, phase-matching limitations and the

need for frequency doubling are removed by use of TG FROG, allowing its ap-

plication into the deep UV. In this spectral region, however, dispersion in the

device’s focusing optics becomes a limiting factor in the reconstruction process.

To mitigate this effect in the future, it would be useful to use an all reflective

geometry, as has been demonstrated by Nagy, et al. in [91].

The measured SASE FEL pulse from the energy-chirp/undulator taper ex-

periment had a temporal FWHM of δτRFWHM = 98 fs and a measured time-

bandwidth product of TBP ∼ 1.2, indicating that the Fourier limit was nearly

achieved. The TBP can be measured on a single-shot basis because the FROG

diagnostic technique simultaneously measures the temporal and spectral ampli-

tudes and phases. This is a major advantage that FROG has over its competitors.

The measurement was compared to in-depth particle simulations using the FEL

code GENESIS. There exists excellent overall agreement in both the measured

and simulated FROG traces as well as the measured and simulated temporal

profiles. The e-beam energy-chirp and undulator tapering modality could po-

tentially be used to produce coherent, extremely bright x-ray FEL pulses. In

addition, TG FROG could potentially be used, with appropriate optical changes,

at short wavelength FEL facilities as a means of longitudinally measuring high

power, ultrafast light pulses.
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APPENDIX A

Gain length fitting formula for free-electron

lasers with strong space-charge effects

A.1 Introduction

The work presented here is ancillary to the main theme of the thesis; that be-

ing the e-beam energy-chirp and undulator tapering experiment at the SPARC

facility. It illustrates, however, a different and complimentary analytic approach

to FEL theory other than what was presented in chapter 2. The main goal of

this work was to illustrate the detrimental effects that longitudinal space-charge

forces have on the FEL gain process and relies heavily on the three-dimensional

theory developed by Hemsing, et al., in [92, 93, 94].

The distance along the undulator it takes for the power of the emitted light

to increase by a factor of e during the exponential growth regime is known as

the power gain length (as seen in chapter 2). It is given in the one-dimensional,

cold-beam limit as

L1D =
1

2
√

3kuρ
, (A.1)

where ρ is the well-known Pierce parameter[39], given by

ρ =

[
K [JJ ]

4
√

2

θpγz
kuγ

] 2
3

. (A.2)
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Here, the Lorentz factor relating the average longitudinal beam motion to the

laboratory frame is γz = γ/
√

1 + K2

2
, the relativistic plasma wavenumber is

θp =

√
2Ie

IAγγ2
zσ

2
x

. (A.3)

and σx is the rms electron beam size, Ie is the electron beam peak current and

IA ' 17kA is the Alfvén current.

The power gain length is one of the most important parameters in the design

of a high-gain FEL, as it determines the overall size (and thus cost) of the un-

dulator system needed for the FEL to reach saturation. One-dimensional theory,

however, does not entirely capture the complexity of high-gain FELs operating in

the infrared or visible wavelength region where various strong three-dimensional

effects can be detrimental to performance and ultimately degrade the gain. For

these 3D FELs the gain length Lg exhibits a sensitive and complicated depen-

dence on diffraction (the tendency of the light to spread while propagating), the

detuning from resonance, and the uncorrelated energy spread and longitudinal

space-charge in the e-beam. Given the large number of physical parameters that

influence the dynamics, it is useful to describe these effects using scaled param-

eters that individually represent the essential features of the FEL system[36].

Here, focus is placed on the three of highest relevance to optical regime FELs:

the diffraction parameter, ηd = L1D/2kσ
2
x, which quantifies the extent to which

transverse effects contribute to the gain for a FEL with wavelength λ = 2π/k;

the scaled energy spread parameter ηγ = 2kuσγL1D, which captures the contri-

bution of the rms uncorrelated e-beam energy spread σγ; and θp = 2θpL1D, the

space-charge parameter, which is scaled to be twice the plasma phase advance

over a one dimensional gain length. Even in terms of this reduced set of parame-
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ters, determination of Lg for design and optimization of the FEL system requires

either numeric solutions to the governing equations or fully 3D numerical particle

simulations, which are often time consuming. Therefore, it would be useful to

quickly evaluate the performance of the FEL system without having to resort to

these more time intensive and computationally costly methods.

For short-wavelength FELs in which emittance effects can play an impor-

tant role and where space-charge can be neglected (θp → 0), Xie[36] provided a

power fit formula that has proven to be extremely useful for quickly predicting

the growth rate of the dominant Gaussian optical mode. The condition of ne-

glecting space-charge is usually easily satisfied for these high energy (γ ∼ 104),

short wavelength FELs such as the Linac Coherent Light Source (LCLS)[2] where

ρ ∼ 10−4 and θpL1D � 1. However, many FELs of current interest do not oper-

ate in this regime. The longitudinal space-charge field begins to counteract the

microbunching process as θp nears unity (θp approaches L−1
1D), which occurs as

ρ→ θpλu as evidenced in Eq (A.2). Space-charge effects are of interest for low en-

ergy Raman FELs where the beam charge density is sufficiently high[95, 96, 97].

The performance of the FEL in this limit is fundamentally changed by collective

space-charge effects. Of relevance recently are IR-optical self amplified sponta-

neous emission (SASE) high-gain FELs that are based on very high brightness

electron beams at relatively low energy (γ ∼ 102), and thus potentially are sus-

ceptible to both space-charge and diffraction effects. For instance, the ∼ 800 nm

VISA FEL[98] was characterized by ρ ∼ 5× 10−3, giving L1D ' 10 cm, but with

diffraction and space-charge effects the actual measured gain length was 18 cm.

While diffraction is always a notable degrading effect to the gain for IR-optical

FELs, space-charge may often play a larger role than the electron beam energy

spread or emittance.

133



FELs also have long been considered candidates as high average power light

sources[99] since the e-beam that acts as the gain medium does not suffer from

thermal loading and excitation bandwidth constraints that limit conventional

sources. FEL oscillators first demonstrated the progress made in realizing this

application[100]. More recently, there has been increased interest in obtaining

high average power using high-gain amplifiers operating at ∼ 100 MeV e-beam

energies and Ie ∼1kA currents where longitudinal space-charge will strongly af-

fect the FEL performance[101, 102]. The e-beam used in such FELs will operate

in a space-charge dominated, rather than emittance dominated, mode, and thus

the dominance of space-charge over emittance effects in the longitudinal FEL

dynamics should not be surprising. Similarly, the investigation of longitudinal

space-charge waves in high-brightness beams is still currently of great theoretical

interest[103, 104], following past emphases on understanding transverse beam-

plasma oscillations[83]. Taking this into account, it should be noted that there

is currently no handy formulation for quickly predicting important FEL charac-

teristics when space-charge has significant influence, despite the fact that there

has been strong historical interest and recent experimental investigations into

FELs that operate under these conditions . While some progress has been made

to this end in [105], the numerical algorithm produced therein suffers the same

time-consuming constraints as mentioned previously.

For the above reasons, the power fit approach of Xie is revisited, including in

the fit analysis space-charge as a relevant parameter while ignoring the negligible

effect of e-beam emittance, εx, in the limit that ηε = 2kL1Dε
2
x/σ

2
x → 0, or ηε � 2ηγ

in the presence of energy spread, and
√
ηεηd � 1. The analysis of [106, 107] is

followed and the three dimensional integro-differential FEL equations for the FEL

field amplitudes are solved in the limit where the FEL signal field is dominated

by the fundamental Gaussian mode. Similar to Xie, the gain length of the three
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dimensional mode Lg is expressed as

δki =
L1D

Lg
=

1

1 + Λ0,0

, (A.4)

where δki is maximized at the optimal detuning to yield the shortest possible

gain length and Λ0,0 is expressed as a power fitting formula that is a function

of ηd, ηγ and θp. The fit is obtained from numerical solutions to the analytic

theory presented in the next section, and shows excellent overall agreement with

results from numerical particle simulations performed with Genesis 1.3[9] that

also include higher-order space-charge distributions. It should be emphasized that

the results obtained in the following sections are in general limited to FELs that

operate from the optical to the far IR, or otherwise satisfy the stated parametric

constraints.

A.2 Analytic model

The three dimensional high-gain FEL equations in the presence of uncorrelated

energy spread and non-negligible space-charge effects have been explored in previ-

ous work[106]. Under a slowly-varying transverse field approximation, E⊥(x, t) =

Re
[
Ẽs(x⊥, z)eik(z−ct)

]
, the integro-differential equation that describes the FEL

field amplitude evolution along the undulator is given as,

D(z)Ẽs = i
kµ0ec

2

γmv2
0

∫ z

0

dz′
[

[JJ ] eK2

4γ2
Ẽs +

e

k2
D(z′)Ẽs

]

×
∫ ∞

−∞
dη
∂F0

∂η
e
i
(
k

γ2
z
η−θ0

)
(z′−z)

(A.5)

where D(z) = ∇2
⊥ + 2ik ∂

∂z
is the paraxial wave operator, η = (γ1 − γ)/γ is the

relative energy deviation of an electron with energy γ1 from the nominal beam
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energy γ, F0 = F0(x⊥, η) is the unmodulated e-beam distribution which stays

fixed during transport, θ0 = k/γ2
z − ku is the detuning, and γ2

z = 1/(1 − v2
0/c

2)

is the relativistic longitudinal energy factor. Zero initial modulation in the beam

has been assumed, as has the condition kσx/γz � 1, which stipulates that the

e-beam profile is large compared to the microbunching wavelength in the moving

frame. Under this latter constraint the space-charge fields are assumed to be

predominantly longitudinal. Further, to make the analysis more tractable, the

transverse variation of the charge density distribution is also neglected.

In the single-mode limit, the FEL is assumed to be dominated by a fixed-

profile transverse mode that grows exponentially in amplitude along z. The field

can then be written simply as

Ẽs = Ep,lup,l(x⊥)exp(iδkz) (A.6)

where Ep,l is the mode amplitude and δk = δkr− iδki is the complex wavenumber

associated with the FEL process. By inserting this into (A.5) one can calculate

the gain length Lg = 1/2δki of the (p, l) mode in the linear regime, where the

dominant, exponentially growing solutions are characterized by δki > 0. The

modal profile distribution up,l(x⊥) is any suitable function with indices p and l

to describe the mode of interest.

Following [107], a Laguerre-Gaussian basis provides a convenient description

for a FEL with cylindrical symmetry:

up,l(x⊥) = exp

[
ilφ− r2

w2

](
r
√

2

w

)|l|
L|l|p

(
2r2

w2

)
, (A.7)

where L
|l|
p is a Laguerre polynomial. With an uncorrelated Gaussian e-beam dis-

tribution, F0 = n0

(√
2πσ2

γ

)−1
exp

[
−r2/2σ2

x − η2/2σ2
γ

]
, Equation (A.5) reduces
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in the single mode limit to an expression that yields the complex wavenumber δk

for the (p, l) mode,

[
S1 − θp

2Fp,l
] [
δk +

ηd
α

(2p+ |l|+ 1)
]

= −
(

2√
3

)3

Fp,l. (A.8)

Scaled variables have been introduced: δk = 2L1Dδk is the scaled complex

wavenumber and α2 = w2/4σ2
x is the complex spot size parameter. The energy

spread contribution to the gain is given by the term,

S1 = −2
√

2πη3
γ

[∫
dη
η exp

(
−η2/2η2

γ

)

δk − θ + 2η

]−1

, (A.9)

where θ = 2L1Dθ0. The coupling between the optical modes and the transversely

Gaussian e-beam profile is given by,

Fp,l =
(2p+ |l|)!
p!(p+ |l|)!

α2p

(α + 1)2p+|l|+1

2F1

(
−p;−p;−2p− |l|; 1− 1

α2

)
,

(A.10)

where 2F1(a; b; c;x) is the hypergeometric function.

By virtue of the θp
2Fp,l term in (A.8), the effect of longitudinal plasma oscilla-

tions for higher order FEL modes are included. This is a quasi-three dimensional

extension of a purely one dimensional model that takes into account, as a first-

order approximation, the modification to the space-charge field profile due to the

structure of the optical modes that map to the transverse microbunching profile.

Averaged over the beam, this modifies the effective plasma wavenumber by the

coupling factor Fp,l.

In general, solutions to (A.8) can be found for a mode (p, l) by application

of the variational condition δ(δk)/δα = 0 as in[108, 36]. The scaled complex
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wavenumber δk and spot size parameter α can then be determined by solving the

two resulting equations.

A.2.1 One dimensional limit

In the 1D limit, the transverse variation of the e-beam and the fields is neglected.

The diffraction parameter becomes vanishingly small ηd → 0, and the degeneracy

of the modes sends the coupling factor to unity Fp,l → 1. Equation (A.8) is then

given simply as, [
S1 − θp

2
]
δk = −

(
2√
3

)3

. (A.11)

In the additional limit of vanishing energy spread for a cold-beam, ηγ → 0, Eq

(A.9) reduces to S1 = (δk − θ)2 and the familiar cubic equation for δk of the 1D

high-gain FEL is obtained,

[
(δk − θ)2 − θp

2
]
δk = −

(
2√
3

)3

. (A.12)

Figure A.1 depicts how the scaled gain of the cold-beam 1D system varies with the

detuning for several values of the space-charge parameter[46]. At resonance (θ =

0) and in the absence of space-charge effects (θp = 0) dominant solutions to (A.12)

are simply δk = 2L1Dδk = 1/
√

3 − i, and the 1D gain length is retrieved from

L1D = 1/2δki. In the colective regime where space-charge effects are significant,

it is straightforward to show that the shortest gain length (the maximum of δki)

is obtained at a detuning of θ = −θp, in the limit δki � θp [109]. The enhanced

oscillatory effects of space-charge on the FEL-induced charge wave serve to move

the frequency into optimized resonance at this detuning.
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Figure A.1: Detuning gain curves in the 1D limit for θp=0, 0.5, 1, 2 and 3.

A.2.2 Fundamental mode

For the fundamental Gaussian mode (p, l) = (0, 0), the variational constraint

δ(δk)/δα = 0 applied to the 3D single mode expression in (A.8) yields the equa-

tions

(
S1 −

θp
2

1 + α

)(
δk +

ηd
α

)
+

(
2√
3

)3
1

1 + α
= 0,

−
(
S1 −

θp
2

1 + α

)
ηd(1 + α2)

α2
+ θp

2
(
δk +

ηd
α

)
=

(
2√
3

)3

.

(A.13)

Figures A.2, A.3, and A.4 illustrate how ηd, θp and ηγ affect the gain curves of the

fundamental mode according to (A.13). Each contribution pushes the peak of the

gain curve into the detuning region θ < 0 where the e-beam energy is above the

resonant energy. The maximum in the detuning curve varies in a complicated way

with the parameters that specify the FEL. While these effects have been studied
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Figure A.2: Detuning curves of the fundamental (0,0) mode for ηd=0, 0.5, 1, and
1.5 with θp, ηγ=0.

previously[35, 46] they serve to demonstrate that the desired power fit formula,

calculated over a wide range of accessible parameters that still yield high-gain

solutions, would be a useful tool over numerical solutions of the full equations for

quick determination of the peak gain.

A.3 Power fit formula

Numerical solutions to the full variational equations taken from Eq (A.8) are fit

to a power formula over the constituent parameter space of ηd, ηγ, θp and θ. At

the detuning value that minimizes the gain length for given values of (ηd, ηγ, θp),
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Figure A.3: Contribution of space-charge on 3D system: θp=0, 0.5, and 1 with
ηγ=0, ηd = 0.5.
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θp=0, ηd = 0.5.
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the fit is found to be,

Λ0,0 = 0.450η0.570
d + 3.00η2

γ + 0.196θ
1.91

p + 51.0η0.950
d η3

γ

+ 0.0988η0.230
d θ

1.21

p + 0.0375η0.875
γ θ

12.7

p

+ 2.35η11.9
d η14.9

γ θ
11.4

p

(A.14)

Note the precise agreement with Xie’s fitting formula for the parameters ηd and

ηγ when θp = 0. To illustrate the utility of this formula and in the spirit of

Xie the representative parameters for the MW class FEL amplifier from [101]

are used, where E = 65MeV,K = 1.26, λu = 1.8cm, εn = 2.0mm − mrad, I =

600A, σγ = 5 × 10−4, σx = 100µm. The scaled parameters for this case are

ηd = 0.641, ηγ = 0.028, and θp = 0.400. The effects of diffraction, energy

spread and longitudinal space-charge conspire to extend the gain length from

L1D = 0.081m→ Lg = 0.114m.

A.4 Simulation and Results

The FEL simulation code Genesis 1.3[9] was used to evaluate the accuracy of

the fitting formula in (A.14). Nearly 14000 time-independent simulations were

performed using a large range of rms transverse electron beam sizes, relative rms

energy spreads, and beam currents in order to sample a significant portion of the

scaled parameter space where the analytical model is applicable (see Table A.1).

As with the analytic model, the detuning was adjusted to obtain the shortest gain

length for each set of parameters. At each optimized detuning value a scaled value

of the gain is obtained, denoted by δki
G

.

To quantify the agreement between the analytic model fit in (A.14) with
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Parameter Symbol Values

Diffraction ηd = L1D/2kσ
2
x 0.04 (10−4) – 0.98 (1)

Energy spread ηγ = 2kuσγL1D 0 (10−4) − 0.34 (0.4)

Space-charge θp = 2θpL1D 0.16 (10−4) − 0.42 (1)

Table A.1: Scan parameters. Simulations (Theory)

results from Genesis simulations, a variance is defined of the form

σ2 =
1

N

N∑

j

(
δki(j)− δk

G

i,j

)2

, (A.15)

where δki(j) is the value of the scaled gain from the analytic fit at the point

(ηd,j, ηγ,j, θp,j), and δk
G

i,j is the numerical value from Genesis at the same point.

Good agreement is found, with a variance of σ2 = 5.4 × 10−4 over the entire

parameter space. For comparison, an independent power fit was performed ac-

cording to the data points from Genesis. This fit is denoted by the scaled gain

function δk
F

i = δk
F

i (ηd, ηγ, θp). Using the fit function δk
F

i in place of the an-

alytic fit function δki, the variance was nearly the same value, σ2 = 4 × 10−4,

demonstrating that the model in (A.14) provides a reliable measure of the scaled

gain length. Figure A.5 shows the qualitative consistency between the analytic

contour from (A.14) and data points obtained through Genesis simulations for

the specific case of ηγ = 0.

Figure A.6 shows the relative difference between the analytic and simulated

fits, given by σF = 1− δki
F
/δki. The two fits agree across the scaled parameter

space for ηγ = 0 to within 4%. Figure A.7 also shows the relative difference, in

this case as a function of energy spread and space-charge for ηd = 0.5. This plot
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Figure A.5: Analytic fit contour and simulated data points for ηγ = 0.

indicates that the two fits are in better agreement as the energy spread increases.

Therefore, the 4% relative difference seen in figure A.6 where ηγ = 0 is the largest

error found across the scaled parameter space.

It is worth noting that, as the diffraction parameter increases, the difference

between the analytic and simulated fits increases as well. This can be seen in

Figure (A.5) where the analytic contour lies slightly above the simulated data

values for large values of the diffraction parameter. This illustrates the limitations

of the theory as the FEL system becomes more three dimensional in nature. It

occurs because, as the diffraction parameter increases and the FEL becomes more

sensitive to 3D effects, the transverse mode profile of the FEL light also increases.

When the optical mode becomes larger than the e-beam, the shape of the profile

begins to differ from that of the simple Gaussian assumed in the single-mode

analytic model. This behavior is depicted in Figure A.8 where the theoretical
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Figure A.7: Relative difference between the analytic and simulated fits for
ηd = 0.5.
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Figure A.8: Comparison of the transverse normalized intensity mode profile
between simulation and theory for two cases: (a) a quasi-1D scenario with
ηd = 0.04, ηγ = 0, θp = 0.23 where the mode profile is contained within the
e-beam, and (b) a 3D scenario with ηd = 0.97, ηγ = 0, θp = 0.28 where the edges
of the mode profile lie outside the e-beam. Genesis results are represented as
dashed lines while the solid, blue lines represent results from theory for both
cases. The e-beam is shown in black (c).

and simulated optical profiles for two different regimes are compared. For small

ηd the system tends to be more 1D and the optical mode is well inside the e-

beam. The agreement is excellent in this case, both in the predicted optical spot

size and in the gain length. But as ηd approaches unity, the large optical mode

calculated from Genesis clearly has richer structure, and does not precisely match

the profile predicted from theory. This occurs because the region of the laser field

near the e-beam center becomes narrowed due to gain compared to the region

farther from the axis. The result is a sharper profile. The inability of the single

Gaussian mode description to precisely match the optical profile for strongly 3D

FELs is the primary source of the few percent error between the single mode
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solutions and results from simulations for the predicted gain length. Future work

could strive to eliminate this small error by instead using a non-Gaussian mode

better suited to describe the pinched optical profiles of strongly 3D FELs.

It is also interesting to note that the agreement between simulated and an-

alytic fits actually improves as both the space-charge and the energy spread

increase. This can clearly be seen in Figure A.7, where the relative difference

between the analytical and simulated fits is shown as a function of ηγ and θp for

ηd = 0.5. Figure A.9 shows that the agreement extends to the predicted pro-

file, where despite a near doubling of the space-charge contribution, the profiles

closely match. This illustrates that the presence of strong space-charge effects

are well modeled by the theory presented.

Note that the numerical fit to the Genesis data points, δk
F

i , was omitted. This

result was not included for a variety of reasons. The power fit that was performed

does not yield a unique solution, and the coefficients that are recovered from the

fit are subject to multiple factors. These factors include the minimization method,

the function used to minimize the residuals, and the constraints applied to initial

parameter values. Regardless of these variables, every fit that was performed

yielded similar results, where the agreement with the analytic fit was accurate

to within at most ∼4%. Also, the probed parameter space from the Genesis

simulations did not span the entire space where the analytic model is applicable,

as evidenced in table A.1. In addition, Genesis includes only longitudinal space-

charge and does so on a Fourier decomposition basis. The inclusion of more

Fourier coefficients in the simulation increases the accuracy of the space-charge

calculation at the expense of computing time and resources. The power fits

obtained through simulation were in better agreement with the analytic model

as more Fourier coefficients were included. For these reasons, only the results of
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Figure A.9: Comparison of the transverse normalized intensity mode profile
between simulation and theory for two cases: (a) ηd = 0.04, ηγ = 0, θp = 0.23
where the mode profile is contained within the e-beam and (b)
ηd = 0.45, ηγ = 0, θp = 0.42 where the mode profile approximately matches the
e-beam. Genesis results are represented as dashed lines while the solid, blue lines
represent results from theory for both cases. The e-beam is shown in black (c).
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the analytic fit are quoted.
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